Powered by Deep Web Technologies
Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Refinery Capacity Report 2007  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2007-06-29T23:59:59.000Z

2

Refinery Capacity Report 2009  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2009-06-25T23:59:59.000Z

3

Refinery Capacity Report 2008  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2008-06-20T23:59:59.000Z

4

Tables - Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2009: PDF: 2: Production Capacity of Operable ...

5

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

6

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

7

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

8

Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Explanatory Notes Survey Methodology Description of Survey Form The Form EIA-820, “Annual Refinery Report,” is the primary source of data in the “Refinery ...

9

Texas Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

10

Colorado Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

11

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

12

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

13

Georgia Refinery Marketable Petroleum Coke Production Capacity ...  

U.S. Energy Information Administration (EIA)

Georgia Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

14

Motiva Enterprises Refinery Expansion Groundbreaking | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

it. When this expansion is complete this facility which is now one of the preeminent refineries on the Gulf Coast will become the largest in the United States and one of the...

15

Refinery Capacity Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration (U.S. Dept. of Energy) ... Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of ...

16

New Jersey Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

17

Colorado Refinery Marketable Petroleum Coke Production Capacity as ...  

U.S. Energy Information Administration (EIA)

Colorado Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

18

Guam Refinery Operable Atmospheric Crude Oil Distillation Capacity ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

19

Table 2. Production Capacity of Operable Petroleum Refineries by ...  

U.S. Energy Information Administration (EIA)

Includes hydrogen production capacity of hydrogen plants on refinery grounds. MMcfd = Million cubic feet per day. a ... (EIA), Form EIA-820, "Annual Refinery Report."

20

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Stream Day)

22

U.S. Refinery Marketable Petroleum Coke Production Capacity as ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

23

Indiana Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

24

California Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

25

U.S. Refinery Operable Capacity is Updated  

U.S. Energy Information Administration (EIA)

Released: March 28, 2012 Notice: Reported refinery operable capacity data shown in the Weekly Petroleum Status Report (WPSR) for the week-ended March 23, 2012, has ...

26

Motiva Enterprises Refinery Expansion Groundbreaking | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enterprises Refinery Expansion Groundbreaking Enterprises Refinery Expansion Groundbreaking Motiva Enterprises Refinery Expansion Groundbreaking December 10, 2007 - 4:44pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Bill. It's good to see Congressman Poe, Rob Routs, Mr. Al-Khayyal and Mayor Prince here. Thank you all for inviting me to be part of this occasion. In 1901 Texas wildcatters struck oil near here at a place called Spindletop, setting off the Texas Oil Boom. Like the California Gold Rush some 50 years before, the Texas Oil Boom helped to build America. People moved across the country in search of prosperity. To achieve it, they needed to develop new technologies and build new infrastructure like the original parts of the Port Arthur refinery, which opened here in 1903. As America's need for energy expanded as our demand for oil and gas

27

Refinery Capacity Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Respondents are operators of all operating and idle petroleum refineries ... Sources & Uses Petroleum Coal Natural Gas Renewable Nuclear Electricity Consumption

28

Louisiana Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

29

Delaware Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

30

Washington Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

31

Ohio Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

32

Mississippi Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

33

Utah Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

34

Montana Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

35

Alaska Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

36

Florida Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

37

Nebraska Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

38

Michigan Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

39

U.S. Percent Utilization of Refinery Operable Capacity (Percent)  

U.S. Energy Information Administration (EIA)

Annual : Download Data (XLS File) U.S. Percent Utilization of Refinery Operable Capacity (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 74.0 ...

40

PAD District 4 Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

Gross Input to Atmospheric Crude Oil Distillation Units: 575: 577: 562: 542: 578: 587: 1985-2013: Operable Capacity (Calendar Day) 625: 625: 630: 630: 630: 630: 1985 ...

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Challenging Times for Making Refinery Capacity Decisions  

Reports and Publications (EIA)

This presentation was given at the National Petrochemical and Refiners Association's annual meeting in March 2004. The presentation covers a wide range of refining issues from near term to long term, and focuses on refining capacity and factors affecting decisions to alter that capacity.

Information Center

2004-03-01T23:59:59.000Z

42

U.S. Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View History Gross Input to Atmospheric Crude Oil Distillation Units 15,450 15,027 14,659 15,177 15,289 15,362 1985-2012 Operable Capacity (Calendar...

43

Midwest (PADD 2) Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

Gross Input to Atmospheric Crude Oil Distillation Units: 3,318: 3,217: 3,151: 3,087: 3,336: 3,572: 1985-2013: Operable Capacity (Calendar Day) 3,769: 3,769: 3,769 ...

44

Capacity expansion in contemporary telecommunication networks  

E-Print Network (OSTI)

We study three capacity expansion problems in contemporary long distance telecommunication networks. The first two problems, motivated by a major long distance provider, address capacity expansion in national hybrid long ...

Sivaraman, Raghavendran

2007-01-01T23:59:59.000Z

45

U.S. Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Gross Input to Atmospheric Crude Oil Distillation Units 15,283 15,709 16,327 16,490 16,306 16,162 1985-2013 Operable Capacity (Calendar Day) 17,814 17,815 17,815 17,815 17,815 17,818 1985-2013 Operating 17,005 17,228 17,239 17,450 17,439 17,623 1985-2013 Idle 809 587 576 365 376 195 1985-2013 Operable Utilization Rate (%) 85.8 88.2 91.7 92.6 91.5 90.7 1985-2013 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum of components due to independent rounding. See Definitions, Sources, and Notes link above for more information on this table. Release Date: 11/27/2013

46

PAD District 4 Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

47

Virgin Islands Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

48

Midwest (PADD 2) Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

49

Puerto Rico Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

50

,"U.S. Production Capacity of Operable Petroleum Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Production Capacity of Operable Petroleum Refineries" Production Capacity of Operable Petroleum Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Production Capacity of Operable Petroleum Refineries",11,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capprod_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capprod_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

51

,"U.S. Working Storage Capacity at Operable Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Capacity at Operable Refineries" Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Storage Capacity at Operable Refineries",28,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capwork_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capwork_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

52

,"U.S. Downstream Charge Capacity of Operable Petroleum Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Charge Capacity of Operable Petroleum Refineries" Charge Capacity of Operable Petroleum Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Downstream Charge Capacity of Operable Petroleum Refineries",32,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capchg_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capchg_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

53

,"U.S. Total Shell Storage Capacity at Operable Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Shell Storage Capacity at Operable Refineries" Shell Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Shell Storage Capacity at Operable Refineries",28,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capshell_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capshell_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

54

Correlation between thermal expansion and heat capacity  

E-Print Network (OSTI)

Theoretically predicted linear correlation between the volume coefficient of thermal expansion and the thermal heat capacity was investigated for highly symmetrical atomic arrangements. Normalizing the data of these thermodynamic parameters to the Debye temperature gives practically identical curves from zero Kelvin to the Debye temperature. This result is consistent with the predicted linear correlation. At temperatures higher than the Debye temperature the normalized values of the thermal expansion are always higher than the normalized value of the heat capacity. The detected correlation has significant computational advantage since it allows calculating the volume coefficient of thermal expansion from one experimental data by using the Debye function.

Jozsef Garai

2004-04-25T23:59:59.000Z

55

Market survey on products from the Tema Oil Refinery carried out as part of the feasibility study on the Tema Oil Refinery expansion project. Export trade information  

SciTech Connect

The Tema Oil Refinery (TOR), which was commissioned in 1963, is a simple hydroskimming plant which processes crude oil into LPG, gasoline, kerosene, gasoil, and fuel oil. It is the only petroleum refinery in Ghana. Over the years some of the equipment in the refinery has deteriorated or become obsolete necessitating major rehabilitation. A feasibility study is investigating the modernization and expansion of the refinery to meet projected market demands until the year 2005. The report presents the results of a market survey done on products from TOR.

Not Available

1991-10-01T23:59:59.000Z

56

U.S. Refinery Hydrogen Production Capacity as of January 1 ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Hydrogen Production Capacity as of January 1 (Million Cubic Feet per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

57

U.S. Refinery Normal Butane/Butylene Shell Storage Capacity as ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Normal Butane/Butylene Shell Storage Capacity as of January 1 (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

58

Table 9. Refinery Receipts of Crude Oil by Method of ...  

U.S. Energy Information Administration (EIA)

Refinery Receipts of Crude Oil by Method of ... "Annual Refinery Report." 49 Energy Information Administration, Refinery Capacity 2011. Title: Refinery ...

59

Gulf Coast (PADD 3) Shell Storage Capacity at Operable Refineries  

U.S. Energy Information Administration (EIA)

Propane/Propylene: 4,376: 3,520: 3,565-----1982-2013: ... Notes: Shell storage capacity is the design capacity of the tank. See Definitions, Sources, ...

60

Table 39. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2003  

U.S. Energy Information Administration (EIA) Indexed Site

State/Refiner/Location Alkylates Aromatics State/Refiner/Location Alkylates Aromatics Isobutane Lubricants Isomers Isopentane and Isohexane Asphalt and Road Oil Marketable Petroleum Coke Hydrogen (MMcfd) Sulfur (short tons per day) Table 4. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2013 (Barrels per Stream Day, Except Where Noted) Isooctane a

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Refinery IGCC plants are exceeding 90% capacity factor after 3 years  

SciTech Connect

Steep learning curves for commercial IGCC plants in Italy show annual capacity factors of 55-60% in the first year of service and improvement to over 90% after the third year. The article reviews the success of three IGCC projects in Italy - those of ISAB Energy, Sarlux Saras and Api Energy. EniPower is commissioning a 250 MW IGCC plant that will burn syngas produced by gasification of residues at an adjacent Eni Sannazzaro refinery in north central Italy. The article lists 14 commercially operating IGCC plants worldwide that together provide close to 3900 MW of generating capacity. These use a variety of feedstock-coals, petroleum coke and refinery residues and biomass. Experience with commercial scale plants in Europe demonstrates that IGCC plants can operate at capacity factors comparable to if not better than conventional coal plants. 2 figs., 1 photo.

Jaeger, H.

2006-01-15T23:59:59.000Z

62

Changing World Product Markets and Potential Refining Capacity Increases  

Reports and Publications (EIA)

The presentation explores potential refinery capacity increases over the next 5 years in various world regions, based on changing demand patterns, changing price incentives, and capacity expansion announcements.

Information Center

2006-03-20T23:59:59.000Z

63

Oil Production Capacity Expansion Costs for the Persian Gulf  

U.S. Energy Information Administration (EIA)

DOE/EIA-TR/0606 Distribution Category UC-950 Oil Production Capacity Expansion Costs For The Persian Gulf January 1996 Energy Information Administration

64

Feasibility study on the modernization and expansion of the Tema Oil Refinery. Executive Summary. Export trade information  

Science Conference Proceedings (OSTI)

The Tema Oil Refinery (TOR), which was commissioned in 1963, is a simple hydro-skimming plant which processes crude oil into LPG, gasoline, kerosene, gasoil, and fuel oil. It is the only petroleum refinery in Ghana. Over the years some of the equipment in the refinery has deteriorated or become obsolete necessitating major rehabilitation. A study of the refinery expansion project takes into consideration earlier studies and, equally important, recognizes the extensive work done by TOR in rehabilitating the refinery. The program, carried out in phases because of funding limitations, has addressed the critical repairs and replacements in the process units and utilities necessary to prolong the life of the refinery and assure reliability and safe operation. It undertook the task of investigating the feasibility of modernizing and expanding the refinery at Tema, Ghana to meet projected market demands until the year 2005. A process planning study was conducted to select the optimal process and utility configuration which would result in economic benefits to Ghana.

Not Available

1992-04-01T23:59:59.000Z

65

Expansion of U. S. uranium enrichment capacity. Final environmental statement  

SciTech Connect

Reasonably foreseeable environmental, social, economic, and technological costs and benefits of postulated expansion of U. S. enrichment capacity through the year 2000 and reasonably available alternatives to such expansion are described. Both the gas centrifuge and gaseous diffusion methods for the enrichment of uranium are considered in this impact assessment. (JGB)

1976-04-01T23:59:59.000Z

66

Oil Production Capacity Expansion Costs for the Persian Gulf  

Gasoline and Diesel Fuel Update (EIA)

TR/0606 TR/0606 Distribution Category UC-950 Oil Production Capacity Expansion Costs For The Persian Gulf January 1996 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration Oil Production Capacity Expansion Costs for the Persian Gulf iii Preface Oil Production Capacity Expansion Costs for the Persian Gulf provides estimates of development and operating costs for various size fields in countries surrounding the Persian

67

Former Soviet refineries face modernization, restructuring  

Science Conference Proceedings (OSTI)

A massive modernization and restructuring program is under way in the refining sector of Russia and other former Soviet republics. Economic reforms and resulting economic dislocation following the collapse of the Soviet Union has left refineries in the region grappling with a steep decline and changes in product demand. At the same time, rising oil prices and an aging, dilapidated infrastructure promise a massive shakeout. Even as many refineries in the former Soviet Union (FSU) face possible closure because they are running at a fraction of capacity, a host of revamps, expansions, and grass roots refineries are planned or under way. The paper discusses plans.

Not Available

1993-11-29T23:59:59.000Z

68

Puerto Rico Refinery Catalytic Reforming Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

69

Puerto Rico Refinery Desulfurization, Gasoline Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Desulfurization, Gasoline Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

70

Mississippi Refinery Catalytic Reforming Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Mississippi Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

71

Mississippi Refinery Vacuum Distillation Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Mississippi Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

72

Minnesota Refinery Marketable Petroleum Coke Production ...  

U.S. Energy Information Administration (EIA)

Minnesota Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

73

EIA-820 ANNUAL REFINERY REPORT INSTRUCTIONS  

U.S. Energy Information Administration (EIA)

EIA-820, Annual Refinery Report Page 1 U.S. DEPARTMENT OF ENERGY ... production outside the refinery gate. Note: capacity should include base stocks and process oils

74

Oklahoma Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Oklahoma Downstream Charge Capacity of Operable Petroleum Refineries ...

75

Mississippi Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Mississippi Downstream Charge Capacity of Operable Petroleum Refineries ...

76

Status of Texas refineries, 1982  

Science Conference Proceedings (OSTI)

This report is a survey of current operations of the Texas refineries during the 1979-82 market slump using publicly available data from the US Department of Energy and the Texas Railroad Commission. The report looks at the small inland refineries, the large inland refineries, the small coastal refineries, the large coastal refineries in Texas, and the Louisiana coastal refineries. The report suggests that about 200 mb/d of inland capacity and 1.3 million b/d of coastal capacity has been permanently idled.

Langston, V.C.

1983-03-01T23:59:59.000Z

77

Retrofitting analysis of integrated bio-refineries  

E-Print Network (OSTI)

A bio-refinery is a processing facility that produces liquid transportation fuels and/or value-added chemicals and other products. Because of the dwindling resources and escalating prices of fossil fuels, there are emerging situations in which the economic performance of fossil-based facilities can be enhanced by retrofitting and incorporation of bio-mass feedstocks. These systems can be regarded as bio-refineries or integrated fossilbio- refineries. This work presents a retrofitting analysis to integrated bio-refineries. Focus is given to the problem of process modification to an existing plant by considering capacity expansion and material substitution with biomass feedstocks. Process integration studies were conducted to determine cost-effective strategies for enhancing production and for incorporating biomass into the process. Energy and mass integration approaches were used to induce synergism and to reduce cost by exchanging heat, material utilities, and by sharing equipment. Cost-benefit analysis was used to guide the decision-making process and to compare various production routes. Ethanol production from two routes was used as a case study to illustrate the applicability of the proposed approach and the results were bio-refinery has become more attractive then fossil-refinery.

Cormier, Benjamin R.

2005-12-01T23:59:59.000Z

78

Generation Capacity Expansion in a Risky Environment: A Stochastic Equilibrium Analysis  

Science Conference Proceedings (OSTI)

We cast models of the generation capacity expansion type formally developed for the monopoly regime into equilibrium models better adapted for a competitive environment. We focus on some of the risks faced today by investors in generation capacity and ... Keywords: capacity adequacy, risk functions, stochastic equilibrium models

Andreas Ehrenmann; Yves Smeers

2011-11-01T23:59:59.000Z

79

OMB No. 1905-0165 Version No.:xxxx.xx FORM EIA-820 ANNUAL REFINERY ...  

U.S. Energy Information Administration (EIA)

the comparable capacity numbers reported on the Form EIA-810, "Monthly Refinery Report," filed for January 2014. ... ANNUAL REFINERY REPORT.

80

Incorporating endogenous demand dynamics into long-term capacity expansion power system models for Developing countries  

E-Print Network (OSTI)

This research develops a novel approach to long-term power system capacity expansion planning for developing countries by incorporating endogenous demand dynamics resulting from social processes of technology adoption. ...

Jordan, Rhonda LeNai

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Rocky Mountains (PADD 4) Gross Inputs to Refineries (Thousand ...  

U.S. Energy Information Administration (EIA)

Gross Input to Atmospheric Crude Oil Distillation Units ; PAD District 4 Refinery Utilization and Capacity ...

82

North Carolina Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

North Carolina Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

83

Diamond Shamrock nears completion of major expansions  

SciTech Connect

With completion later this year of a second refined products line into Colorado, Diamond Shamrock Inc., San Antonio, will have added more than 600 miles of product and crude-oil pipeline on its system and expanded charge and production capacities at its two state-of-the-art refineries, all within 30 months. The projects aim at improving the company's ability to serve markets in the U.S. Southwest and increasing capacities and flexibility at its two refineries. The paper describes these projects under the following headings: new products service; another new line; and refineries, crude pipelines; Three Rivers expansion and Supplies for McKee.

True, W.R.

1993-05-24T23:59:59.000Z

84

Electric utility capacity expansion and energy production models for energy policy analysis  

DOE Green Energy (OSTI)

This report describes electric utility capacity expansion and energy production models developed for energy policy analysis. The models use the same principles (life cycle cost minimization, least operating cost dispatching, and incorporation of outages and reserve margin) as comprehensive utility capacity planning tools, but are faster and simpler. The models were not designed for detailed utility capacity planning, but they can be used to accurately project trends on a regional level. Because they use the same principles as comprehensive utility capacity expansion planning tools, the models are more realistic than utility modules used in present policy analysis tools. They can be used to help forecast the effects energy policy options will have on future utility power generation capacity expansion trends and to help formulate a sound national energy strategy. The models make renewable energy source competition realistic by giving proper value to intermittent renewable and energy storage technologies, and by competing renewables against each other as well as against conventional technologies.

Aronson, E.; Edenburn, M.

1997-08-01T23:59:59.000Z

85

Table 6. Operable Crude Oil and Downstream Charge Capacity of ...  

U.S. Energy Information Administration (EIA)

Downstream Charge Capacity Table 6. ... (EIA), Form EIA-820, "Annual Refinery Report." Energy Information Administration, Refinery Capacity 2011 46. Title:

86

Refinery receipts of crude oil by rail, truck, and barge ...  

U.S. Energy Information Administration (EIA)

While refinery receipts of crude by truck, rail, and barge remain a small percentage of total receipts, EIA's recently released Refinery Capacity ...

87

Michigan Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro.. Kerosene/Jet Fuel Downstream Charge Capacity (B/SD) Michigan Downstream Charge Capacity of Operable Petroleum Refineries ...

88

Refinery Capacity Report  

Gasoline and Diesel Fuel Update (EIA)

1 1 (Barrels per Stream Day, Except Where Noted) ......................................................... Alabama 120,100 0 130,000 0 48,000 32,000 0 0 0 Goodway Refining LLC 4,100 0 5,000 0 0 0 0 0 ............................................................................................................................... 0 Atmore Hunt Refining Co 36,000 0 40,000 0 18,000 32,000 0 0 ............................................................................................................................... 0 Tuscaloosa Shell Chemical LP 80,000 0 85,000 0 30,000 0 0 0 ............................................................................................................................... 0 Saraland .........................................................

89

Refinery Operating Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

90

Table 8. Capacity and Fresh Feed Input to Selected Downstream ...  

U.S. Energy Information Administration (EIA)

Capacity Inputs CapacityInputs Capacity Inputs Table 8. ... (EIA) Form EIA-820, "Annual Refinery Report." Inputs are from the form EIA-810, "Monthly Refinery Report."

91

U.S. Refinery Thermal Cracking, Visbreaking Downstream Charge ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Visbreaking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

92

Guam Refinery Thermal Cracking/Visbreaking Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Thermal Cracking/Visbreaking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

93

Guam Refinery Thermal Cracking/Other (including Gas Oil ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Thermal Cracking/Other (including Gas Oil) Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

94

U.S. Refinery Thermal Cracking, Fluid Coking Downstream Charge ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Fluid Coking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

95

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil ...  

U.S. Energy Information Administration (EIA)

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

96

Puerto Rico Refinery Thermal Cracking/Visbreaking Downstream ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Thermal Cracking/Visbreaking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

97

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

98

Puerto Rico Refinery Catalytic Hydrocracking, Gas Oil Downstream ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Hydrocracking, Gas Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

99

New Jersey Refinery Catalytic Reforming/High Pressure Downstream ...  

U.S. Energy Information Administration (EIA)

New Jersey Refinery Catalytic Reforming/High Pressure Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

100

Arkansas Refinery Catalytic Reforming/High Pressure Downstream ...  

U.S. Energy Information Administration (EIA)

Arkansas Refinery Catalytic Reforming/High Pressure Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

U.S. Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Catalytic Hydrotreating, Heavy Gas Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

102

East Coast (PADD 1) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

103

East Coast (PADD 1) Refinery Vacuum Distillation Downstream Charge ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

104

West Coast (PADD 5) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

West Coast (PADD 5) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

105

Puerto Rico Refinery Operable Atmospheric Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

106

Rocky Mountain (PADD 4) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

107

Gulf Coast (PADD 3) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

Gulf Coast (PADD 3) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

108

U.S. Refinery Operating Atmospheric Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Operating Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

109

Table 12. Refinery Sales During 2010  

U.S. Energy Information Administration (EIA)

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2010

110

U.S. Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro.. Kerosene/Jet Fuel Downstream Charge Capacity (B/SD) U.S. Downstream Charge Capacity of Operable Petroleum Refineries ...

111

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

112

U.S. Refinery Thermal Cracking, Other (including Gas Oil ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Other (including Gas Oil) Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

113

Lyondell, Citgo join for heavy oil upgrade project at Houston refinery  

Science Conference Proceedings (OSTI)

Lyondell-Citgo Refining Co. Ltd. is beginning an $800-million upgrade and expansion of its Houston refinery. The project will enable the refinery. The project will enable the refinery to produce clean fuels while processing about 80% heavy, high-sulfur Venezuelan crude oil. The paper describes the Houston refinery, the expansion project, the technologies to be used, operational changes, environmental impacts, and construction.

Rhodes, A.K.

1994-03-21T23:59:59.000Z

114

Documentation: The automated ORAD (Oil Refinery and Distribution Model) to RYMs (Refinery Yield Model) linked system  

SciTech Connect

The Refinery Evaluation Modeling System (REMS) is an analytic tool used by the Energy Information Administration (EIA) to provide insight into the domestic operations of United States refineries. REMS can be used to determine the potential impacts of changes in demands for petroleum products, crude and feedstock qualities, refinery processing capacities, foreign and domestic crude availabilities, transportation modes and costs, and government regulations. REMS is a set of linear programming models that solve for a partial equilibrium in the US refinery market by equating supply and demand while maximizing profits for US refiners. REMS consists of two models: the Refinery Yield Model (RYM), and the Oil Refinery and Distribution Model (ORAD). RYMs consists of nine separate regional models that represent the contiguous US refinery system. These nine regions are aggregates of the 13 Bureau of Mines (BOM) refinery districts. ORAD integrates the results from the individual RYMs into a transportation network which represents the US refinery market. ORAD uses the extreme point refinery representation from RYMs to solve for the optimal product prices in ORAD.

Sanders, R.P.; Kydes, A.S.

1987-01-01T23:59:59.000Z

115

Motiva Refinery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refinery Refinery Motiva Refinery May 18, 2006 - 10:45am Addthis Remarks Prepared for Energy Secretary Bodman Much of my time lately has been devoted to explaining why the price of gasoline has risen so sharply. President Bush understands the pinch this is creating for American consumers and has come forward with a variety of steps to address the problem. Rapid economic growth in emerging economies like China and India-and the growth here in the U.S.-have pushed up demand. Political unrest in some oil-producing regions has tightened supply. The transition from winter gasoline to summer blends, and the phase out of the additive MTBE in favor of ethanol, have increased the pressure on the market. Most significantly, we have very little spare refining capacity in this

116

Case Study 5: Replacement and Capacity Expansion Decisions at an Airplane Engine  

E-Print Network (OSTI)

a designed annual capacity of 1,300,000 compressor blades and 12,000 disks. The 700,000 square foot facility the machining and bu ng handling capacity to 600,000 airfoils per year. As this bottleneck problem remains. With this con guration the spindle/vibratory machinery can be used in a pure spindle mode at no additional cost

Colton, Jonathan S.

117

A review of Oil production capacity expansion costs for the Persian Gulf  

E-Print Network (OSTI)

The U.S. Energy Information Agency has recently published a report prepared by Petroconsultants, Inc. that addresses the cost of expanding crude oil production capacity in the Persian Gulf. A study on this subject is much ...

Adelman, Morris Albert

1996-01-01T23:59:59.000Z

118

Wastewater reuse and recycle in petroleum refineries  

SciTech Connect

The objectives of this study were to identify feasible reuse and recycle techniques that can be successful in reducing wastewater discharge and to estimate their associated costs. Wastewater reduction is a fundamental aspect of the US EPA's proposed regulations for the petroleum refining industry. EPA undertook this study to confirm the cost estimates used in the proposed guidelines, to identify specific technologies, and to accurately assess their costs. Fifteen refineries were chosen to represent the range of refinery characteristics including crude capacity, process employed, and wastewater generation. Significant wastewater reductions were found possible at 12 refineries studied.

Langer, B.S.

1983-05-01T23:59:59.000Z

119

Expansion capacity of an SX unit in uranium process pilot tests  

Science Conference Proceedings (OSTI)

The rising price of uranium has led uranium producers to increase their plant capacity. The new project proposed to increase capacity is based on processing low-grade uranium by heap leaching. It is necessary to modify the plant, particularly the solvent extraction unit, to handle the increased flow. The goal of our study is to determine the minimal changes necessary to process the whole flow. Several stages have been carried out (i) thermodynamic modelling of the solvent extraction process to determine the capacities of the SX plant and the impact of the modification and (ii) pilot tests at the plant of the different configurations proposed by modelling. This paper presents results of the pilot tests performed at the plant. (authors)

Courtaud, B.; Auger, F.; Morel, P. [AREVA-NC/SEPA, Bessines sur Gartempe (France); Sanoussi, M. [SOMAIR, Arlit (Niger)

2008-07-01T23:59:59.000Z

120

Complexity index indicates refinery capability, value  

Science Conference Proceedings (OSTI)

Refinery size usually is measured in terms of distillation capacity. Relative size, however, can be measured using refinery complexity--a concept developed by W.L. Nelson in the 1960s. Nelson developed the complexity index to quantify the relative cost of components that make up a refinery. It is a pure cost index that provides a relative measure of the construction costs of a particular refinery based on its crude and upgrading capacity. The Nelson index compares the costs of various upgrading units--such as a fluid catalytic cracking (FCC) unit or a catalytic reformer--to the cost of a crude distillation unit. Computation of the index is an attempt to quantify the relative cost of a refinery based on the added cost of various upgrading units and the relative upgrading capacity. A review of complexity calculations, and an explanation of how indices have changed, provide a simple means of determining the complexity of single refineries or refining regions. The impact of complexity on product slate is also examined in this paper.

Johnston, D. [Daniel Johnston and Co. Inc., Dallas, TX (United States)

1996-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

and tank farms. Excludes storage capacity of refineries, fuel ethanol plants, and pipelines. 2 Percent exclusive use is that portion of capacity in operation that is for the...

122

Secretary Bodman Tours Refinery and Calls for More Domestic Refining  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tours Refinery and Calls for More Domestic Tours Refinery and Calls for More Domestic Refining Capacity Secretary Bodman Tours Refinery and Calls for More Domestic Refining Capacity May 18, 2006 - 10:43am Addthis Highlights President Bush's Four-Point Plan to Combat High Energy Prices PORT ARTHUR, TX - Secretary of Energy Samuel W. Bodman today renewed the call for expanded oil refining capacity in the United States and discussed additional steps the Department of Energy (DOE) is taking to prepare for the upcoming hurricane season. Secretary Bodman made the statements after touring the Motiva Refinery in Port Arthur, Texas. "We need a more robust energy sector; and one way to do that is to strengthen and expand our domestic oil refining capacity. We're hopeful that Motiva will continue to work to expand their capacity to 600,000

123

Oklahoma, Kansas, Missouri Refinery District API Gravity ...  

U.S. Energy Information Administration (EIA)

Oklahoma, Kansas, Missouri Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

124

Refinery Yield of Liquefied Refinery Gases  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Yield Refinery Yield (Percent) Product: Liquefied Refinery Gases Finished Motor Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Residual Fuel Oil Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 5.3 5.4 5.2 5.2 5.1 3.9 1993-2013 PADD 1 4.4 5.1 4.9 4.9 4.6 2.1 1993-2013 East Coast 4.4 5.3 5.1 5.1 4.9 2.2 1993-2013

125

Refinery Investments and Future Market Incentives  

Reports and Publications (EIA)

Presentation given at the Annual NPRA Meeting that discusses factors affecting refinery investments. Refiners have plunged from a seeming "golden age" investment environment to a world with excess capacity, flat to declining demand, and weak margins. What is happening to refining investments in this turbulent and uncertain situation?

Information Center

2009-03-25T23:59:59.000Z

126

Total Atmospheric Crude Oil Distillation Capacity Former ...  

U.S. Energy Information Administration (EIA)

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd)a New Corporation/Refiner Date of Sale Table 14. Refinery Sales During 2005

127

Optimization of refinery hydrogen network  

Science Conference Proceedings (OSTI)

Tighter environmental regulations and more heavy-end upgrading in the petroleum industry lead to increased demand for hydrogen in oil refineries. In this paper, the method proposed to optimize the refinery hydrogen network is based upon mathematical ... Keywords: hydrogen management, optimization, refinery, superstructure

Yunqiang Jiao; Hongye Su

2010-09-01T23:59:59.000Z

128

Texas Gulf Coast Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

129

Texas Inland Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

130

Midwest (PADD 2) Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

Process: Area: 2007 2008 2009 2010 2011 2012 View History; Gross Input to Atmospheric Crude Oil Distillation Units: 3,238: 3,244: 3,153: 3,305: 3,395: 3,425: 1985-2012:

131

Nevada Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 0: 0: 0: 0: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Hydro ...

132

Alabama Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 28,700: 36,000: 33,000: 33,000: 2010-2013: Total Coking: 12,600: 12,600: 12,600: 28,000: 30,000: 30,000: 1987-2013: Catalytic Cracking - Fresh ...

133

Hawaii Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 11,800: 12,500: 12,500: 12,500: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 21,000: 21,000: 21,000 ...

134

Tennessee Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 34,200: 34,200: 33,000: 35,300: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 68,000: 68,000: 68,000 ...

135

Kansas Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 76,200: 76,700: 76,700: 76,700: 2010-2013: Total Coking: 59,530: 61,800: 61,800: 61,800: 61,800: 60,000: 1987-2013: Catalytic Cracking - Fresh ...

136

Virginia Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 11,000: 11,000 : 2010-2011: Total Coking: 17,675: 21,800: 20,000: 20,000: 0: 0: 1987-2013: Catalytic Cracking - Fresh Feed: 27,800: 27,800: 27,800:

137

Wyoming Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 31,420: 30,670: 31,296: 31,448: 2010-2013: Total Coking: 13,500: 29,500: 29,500: 29,000: 31,200: 31,200: 1987-2013: Catalytic Cracking - Fresh ...

138

Illinois Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 242,158: 245,124: 245,124: 230,274: 2010-2013: Total Coking: 144,322: 144,773: 138,830: 138,830: 197,330: 197,630: 1987-2013: Catalytic Cracking ...

139

Oklahoma Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 123,300: 118,320: 120,963: 123,044: 2010-2013: Total Coking: 34,873: 33,956: 32,861: 30,767: 29,157: 25,363: 1987-2013: Catalytic Cracking ...

140

Minnesota Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 64,770: 56,200: 57,800: 57,800: 2010-2013: Total Coking: 63,720: 60,500: 60,500: 58,700: 61,500: 58,600: 1987-2013: Catalytic Cracking - Fresh ...

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Guam Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 0: 0: 0: 0: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Hydro ...

142

Arkansas Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 14,500: 14,500: 14,800: 14,800: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 19,500: 19,500: 20,500 ...

143

PAD District 5 Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

144

New Mexico Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

145

Refinery Operable Capacity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

146

Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios  

DOE Green Energy (OSTI)

Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

2013-04-01T23:59:59.000Z

147

Economic forces push down selling prices of U.S. refineries  

Science Conference Proceedings (OSTI)

Recent data on US refinery sales reveal that selling prices have continued to decline in the 1990s. Reasons for this decrease include increased plant investments to meet regulatory requirements, excess refining capacity, increased imports of refined products, and reduced margins. While these expenditures enable a refinery to continue operating, they do not make the refinery more profitable or valuable. Other factors contributing to reduced selling prices of US refineries are: declining local crude production; unstable crude costs; increased energy conservation; growing competition from alternative fuels.

NONE

1996-03-25T23:59:59.000Z

148

U.S. Refining Capacity Utilization  

Reports and Publications (EIA)

This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in reported crude oil distillation capacities and utilization rates among different classes of refineries.

Tancred Lidderdale

1995-10-01T23:59:59.000Z

149

Texas Gulf Coast Refinery District API Gravity (Weighted ...  

U.S. Energy Information Administration (EIA)

Texas Gulf Coast Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

150

Texas Gulf Coast Refinery District API Gravity (Weighted Average ...  

U.S. Energy Information Administration (EIA)

Texas Gulf Coast Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

151

Appalachian No. 1 Refinery District Sulfur Content (Weighted ...  

U.S. Energy Information Administration (EIA)

Appalachian No. 1 Refinery District Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)

152

Number of Idle Refineries - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

153

Refinery Investments and Future Market Incentives  

Reports and Publications (EIA)

Presentation given at the Platts 2nd Annual Refining Marktets Conference that explored three major factors affecting incentives for refiners to invest in bottoms upgrading or expansion capacity and demand, light-heavy price differentials, and margins.

Information Center

2008-10-07T23:59:59.000Z

154

Refinery, petrochemical plant injuries decline  

Science Conference Proceedings (OSTI)

The National Petroleum Refiners Association (NPRA) reports a 7% reduction in workplace injury and illness incidence rates for refineries in 1993, and a 21% decrease for petrochemical plants. The report summarizes data from 135 of the 162 US member refineries, and 117 of the 172 US member petrochemical plants. This paper summarizes the report findings.

Not Available

1994-07-25T23:59:59.000Z

155

Changing World Product Markets and Potential Refining Capacity ...  

U.S. Energy Information Administration (EIA)

The presentation explores potential refinery capacity increases over the next 5 years in various world regions, based on changing demand patterns, changing price ...

156

U.S. Refining Capacity Utilization - Energy Information Administration  

U.S. Energy Information Administration (EIA)

distillation utilization rate that exceeded their reported stream day capacities. The observation that almost 40 percent of the domestic refineries reported a one ...

157

Biological treatment of refinery wastes  

SciTech Connect

A detailed study of the treatment situation at a Thai refinery that used an API separator with no equalization tank, followed by an activated-sludge system, showed that only 42% of the total COD and 57% of the soluble COD was degradable. In a study of the possibility of additional treatments, an aerated lagoon showed promising results. The wastewater composition of the three main Thai refineries was surveyed.

Mahmud, Z.; Thanh, N.C.

1978-01-01T23:59:59.000Z

158

On Integrating Theories of International Economics in the Strategic Planning of Global Supply Chains and Dynamic Supply Chain Reconfiguration with Capacity Expansion and Contraction  

E-Print Network (OSTI)

This dissertation discusses two independent topics. The first part of the dissertation relates three theories of international economics (comparative advantage, competitive advantage, and competitiveness), and formulates the thesis that incorporating them in the form of readily available individual competitiveness indicators in OR/MS models offers promise to enhance decision-support for the strategic planning of global supply chains in general, and for locating facilities in particular. The objectives of this research were to relate each of these theories and to describe their interrelationships; to describe measures provided by two well-known annual competitiveness reports; and to illustrate application of the theories as a means of supporting the thesis of the research, and justifying the research questions we pose for future research. While this research discusses topics relative to the broader background of global supply chain design, it illustrates applications associated with facility location, a component of the global supply chain design. In the last chapter of the first part of the dissertation, we provide a vision to foster future research that will enhance the profitability of international enterprises under NAFTA. The second part of the dissertation deals with the DSCR model with capacity expansion and contraction. The strategic dynamic supply chain reconfiguration (DSCR) problem is to prescribe the location and capacity of each facility, select links used for transportation, and plan material flows through the supply chain, including production, inventory, backorder, and outsourcing levels. The objective is to minimize total cost. The configuration must be dynamically redesigned over time to accommodate changing trends in demand and/or costs by opening facilities, expanding and/or contracting their capacities, and closing facilities. The problem involves a multi-period, multi-product, multi-echelon supply chain. Research objectives are alternative formulations of DSCR and tests that identify the computational characteristics of each model to determine if one offers superior solvability in comparison with the others. To achieve the first objective, we present an initial MIP model, a refined model that relates decision variables according to a convenient structure, and branch and price (B&P) schemes for the refined model. We found that the network-based formulation offered superior solvability compared to the traditional formulation.

Lee, Chaehwa

2011-12-01T23:59:59.000Z

159

House Passage of H.R. 5254 - The Refinery Permit Process Schedule Act |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Passage of H.R. 5254 - The Refinery Permit Process Schedule Passage of H.R. 5254 - The Refinery Permit Process Schedule Act House Passage of H.R. 5254 - The Refinery Permit Process Schedule Act June 8, 2006 - 2:17pm Addthis Statement from Secretary Bodman WASHINGTON, DC - The following is a statement from the Secretary Samuel W. Bodman of the Department of Energy on the passage of House Resolution 5254, The Refinery Permit Process Schedule Act: "I commend the House of Representatives for their passage of this important piece of legislation. Expanding our nation's refining capacity is an important part of President Bush's four-point plan to confront high gasoline prices and is a key component to strengthening our nation's energy security. By increasing our nation's domestic refining capacity we can help grow our nation's economy and reduce our reliance on foreign sources

160

Refinery suppliers face tough times  

SciTech Connect

Despite a handful of bright spots in hydroprocessing and petrochemical sectors, economic woes plague much of the refinery and petrochemical catalysts business, as suppliers are feeling the impact of mature markets and refiners` ongoing cost cutting. Industry experts say the doldrums could spur further restructuring in the catalyst business, with suppliers scrambling for market share and jockeying for position in growing sectors. Expect further consolidation over the next several years, says Pierre Bonnifay, president of IFP Enterprises (New York). {open_quotes}There are still too many players for the mature [refinery catalyst] markets.{close_quotes} Others agree. {open_quotes}Only about seven [or] eight major suppliers will survive,{close_quotes} says Robert Allsmiller, v.p./refinery and petrochemical catalysts at United Catalysts Inc. (UCI; Louisville, KY). {open_quotes}Who they [will be] is still up in the air.{close_quotes}

Rotman, D.; Walsh, K.

1997-03-12T23:59:59.000Z

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Number of Operating Refineries - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

162

Reformulated Gasoline Foreign Refinery Rules  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated Gasoline Complex Model * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 Introduction On August 27, 1997, the EPA promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an

163

Kansas refinery starts up coke gasification unit  

SciTech Connect

Texaco Refining and Marketing Inc. has started up a gasification unit at its El Dorado, Kan., refinery. The unit gasifies delayed coke and other refinery waste products. This is the first refinery to install a coke-fueled gasification unit for power generation. Start-up of the $80-million gasification-based power plant was completed in mid-June. The gasifier produces syngas which, along with natural gas, fuels a combustion turbine. The turbine produces virtually 100% of the refinery`s electricity needs and enough heat to generate 40% of its steam requirements.

Rhodes, A.K.

1996-08-05T23:59:59.000Z

164

Refinery and Blender Net Inputs  

Annual Energy Outlook 2012 (EIA)

Refinery and Blender Net Inputs Crude OIl ... 14.54 15.14 15.26 15.08 14.51 15.30 15.70 14.93 14.47 15.30 15.54 14.97 15.01...

165

Encon Motivation in European Refineries  

E-Print Network (OSTI)

One essential element in a successful energy conservation or Encon program is effective motivation of employees and organizations to conserve energy. Encon motivation in our European refineries is a continuing effort that requires utilization of various techniques and approaches, dependent on the local environment and effectiveness of the Encon program. In this paper, we begin with the importance for stimulating personnel, note the essential ingredients required to motivate our people, and briefly review several techniques used for Encon motivation. Two examples of Encon motivation programs are presented before introducing the characteristics of a successful Encon motivation program. The paper concludes with a review of the needs and suggestions for maintaining a continuing program. Energy utilization efficiency in Esso Europe's refineries improved about 16% in the mid 70's, due primarily to Encon motivation. Experience has since demonstrated that additional improvements can be achieved through operational and maintenance practices.

Gambera, S.; Lockett, W., Jr.

1982-01-01T23:59:59.000Z

166

Opportunities for Biorenewables in Petroleum Refineries  

Science Conference Proceedings (OSTI)

a summary of our collaborative 2005 project “Opportunities for Biorenewables in Petroleum Refineries” at the Rio Oil and Gas Conference this September.

Holmgren, Jennifer; Arena, Blaise; Marinangelli, Richard; McCall, Michael; Marker, Terry; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

2006-10-11T23:59:59.000Z

167

Opportunities for Biorenewables in Petroleum Refineries  

SciTech Connect

A presentation by UOP based on collaborative work from FY05 using some results from PNNL for upgrading biomass pyrolysis oil to petroleum refinery feedstock

Holmgren, Jennifer; Marinangelli, Richard; Marker, Terry; McCall, Michael; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

2007-02-01T23:59:59.000Z

168

Areas of Corrosion in the Refinery  

Science Conference Proceedings (OSTI)

...J.D. Poindexter, Corrosion Inhibitors for Crude Oil Refineries, Corrosion: Fundamentals, Testing, and Protection, Vol 13A, ASM Handbook, ASM International, 2003, p 887â??890...

169

Refinery Investments and Future Market Incentives  

U.S. Energy Information Administration (EIA)

Presentation given at the Annual NPRA Meeting that discusses factors affecting refinery investments. Refiners have plunged from a seeming “golden age” investment ...

170

A Louisiana Refinery Success Story  

E-Print Network (OSTI)

"Refining 155,000 barrels of crude oil daily, a Louisiana plant markets oil products to gas stations in at least 26 states, including Washington, D.C. The plant uses 8,538 steam traps with 1,200-, 600-, 250-, 75-, 40- and 15-psi nominal pressures. Standardized with inverted bucket steam traps, the Louisiana refinery’s maintenance and energy coordinator was content with the results. The Spirax Sarco Inc (SSI) team demonstrated SSI’s Energy Service Group (ESG) capabilities and successes to the refinery manager, operations manager and production manager. From 2004 through 2006, the team presented a series of ESG seminars at the refinery site. The numerous models demonstrated quantitative savings with 3- to 12-mo paybacks. For a complete SSI turnkey program, for example, the SSI team presented an ROI with less than six months payback. The ESG survey found that only 3,952 (46.3%) of the steam traps were operating correctly. The remaining steam traps experienced a variety of failures, including: 613 (7.2%) that failed open; 2,763 (32.4%) were cold; 1,012 (11.9%) that failed closed; 6 (0.0%) exhibited rapid cycling; and 192 (2.2%) were disconnected. The team also found performance and temperature issues with the HP sulfur reactors in the SRU units, largely due to the application of inverted bucket steam traps. Plus, as a result of excessive steam leaks, the sulfur reactors were creating a safety hazard. When these results were presented, management agreed that the sulfur reactors needed process improvement. The SSI team recommended replacing the inverted bucket steam traps with 1-1/2-in. strainers and 1-1/2-in. flanged float & thermostatic steam traps. They also suggested that the existing trap discharge piping should be removed and re-piped with globe-style bypass valves and gate-style isolation valves to reduce flow velocity. Once the SSI team began negotiations, it only took one survey for the Louisiana refinery to realize all the energy savings opportunities. In fact, the ESG survey uncovered more than $1.3 million in steam losses through failed steam traps and another $1 million in steam leak opportunities and production, process, safety and environmental improvements. Impressed with the survey results, the refinery approved the estimated $110,000 turnkey project, which offered a 5.3-month payback. Further negotiations netted the team annual steam trap surveys for the next three years, as well as an approved 2008 energy budget of $600,000. Additionally, the Louisiana refinery has indicated that upon successful completion of the ESG program, SSI’s annual energy budget will increase to $1,000,000."

Kacsur, D.

2009-05-01T23:59:59.000Z

171

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

MTC. Marano, J.J. , 2003. Refinery Technology Profiles:Deep Desulfurization of Oil Refinery Streams: A Review. FuelSavings for Flying J Refinery. Oil & Gas Journal, December 2

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

172

Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric  

E-Print Network (OSTI)

Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce quantify the benefits of controlled charging of plug-in hybrid electric vehicles. Costs are determined expansion Plug-in hybrid electric vehicles Controlled charging Wind power integration a b s t r a c

McGaughey, Alan

173

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

fuels in the graph. Source: Petroleum Supply Annual, Energypetroleum products, refineries are still a substantial sourceadded produced by petroleum refineries. Source: U.S. Census,

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

174

Petroleum refineries vary by level of complexity - Today in Energy ...  

U.S. Energy Information Administration (EIA)

A refinery is an industrial complex that manufactures petroleum products, such as gasoline, from crude oil and other feedstocks. Many different types of refineries ...

175

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Aspropyrgos Refinery Combined Cycle Cogeneration System.refineries operate combined cycles with higher efficiencies.in an Integrated Gasifier Combined Cycle (IGCC). In this

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

176

EIA-800 WEEKLY REFINERY AND FRACTIONATOR REPORT INSTRUCTIONS  

U.S. Energy Information Administration (EIA)

EIA-800, Weekly Refinery and Fractionator Report Page 3 Crude Oil (Code 050) Report all refinery input of domestic and foreign crude oil (including ...

177

Regional Refinery Utilization Shows Gulf Coast Pressure  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: But there is some room for hope. Refineries generally begin maintenance in February or March, and finish in April. The East Coast was experiencing some lengthy refinery maintenance outages, as shown by the drop in utilization that remained low in most of March and April. In the meantime, the East Coast was drawing on extra supplies from the Gulf Coast and imports. The Midwest refineries seem to have been ramping up in April as they finished what maintenance was needed. But the Midwest no longer has the Blue Island refinery, so it also is pulling more product from the Gulf Coast. The high Gulf Coast prices this spring reflect extra "pull" on product from both the Midwest and the East Coast, and probably from California as well. Inputs into Gulf Coast refineries over the last 4 weeks

178

Refinery burner simulation design architecture summary.  

SciTech Connect

This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

2011-10-01T23:59:59.000Z

179

Take an integrated approach to refinery automation  

Science Conference Proceedings (OSTI)

An integrated approach to designing refinery automation systems is essential to guaranteeing systems compatibility and maximizing benefits. Several aspects of implementing integrated refinery automation should be considered early in the project. Many refineries have major parts of their business automated, starting from corporate planning at the higher level, down to DCS and field instrumentation. A typical refinery automation system architecture of the mid-eighties is shown. Automation systems help refineries improve their business through: Rationalization of man power; Increased throughputs; Reduced give-away; Reduced energy consumption; Better response to market demands and changes; Effective use of offsite areas through scheduling and automatic line-up systems; Reduced losses; and Decision support systems.

Wadi, I. (Abu Dhabi National Oil Co. (United Arab Emirates))

1993-09-01T23:59:59.000Z

180

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wisconsin Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Wisconsin Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

182

Ohio Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and ...  

U.S. Energy Information Administration (EIA)

Ohio Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

183

Colorado Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Colorado Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

184

Colorado Finished Motor Gasoline Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Colorado Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

185

Midwest (PADD 2) Refinery and Blender Net Production of ...  

U.S. Energy Information Administration (EIA)

Midwest (PADD 2) Refinery and Blender Net Production of Finished Motor Gasoline (Thousand Barrels per Day)

186

Michigan Finished Motor Gasoline Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Michigan Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

187

South Dakota Distillate Fuel Oil Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

South Dakota Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

188

South Dakota Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

South Dakota Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

189

U.S. Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. PAD District 1 Delaware Florida Georgia Maryland New Jersey New York North Carolina Pennsylvania Virginia West Virginia PAD District 2 Illinois Indiana Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma Tennessee Wisconsin PAD District 3 Alabama Arkansas Louisiana Mississippi New Mexico Texas PAD District 4 Colorado Montana Utah Wyoming PAD District 5 Alaska Arizona California Hawaii Nevada Oregon Washington Guam Puerto Rico Virgin Islands Period: Area: U.S. PAD District 1 Delaware Florida Georgia Maryland New Jersey New York North Carolina Pennsylvania Virginia West Virginia PAD District 2 Illinois Indiana Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma Tennessee Wisconsin PAD District 3 Alabama Arkansas Louisiana Mississippi New Mexico Texas PAD District 4 Colorado Montana Utah Wyoming PAD District 5 Alaska Arizona California Hawaii Nevada Oregon Washington Guam Puerto Rico Virgin Islands Period: Annual (as of January 1) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

190

U.S. Total Shell Storage Capacity at Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual (as of January 1) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2008 2009 2010 2011 2012 2013 View History Total 765,593 758,619 710,413 -- -- -- 1982-2013 Crude Oil 180,830 179,471 180,846 -- -- -- 1985-2013 Liquefied Petroleum Gases 34,772 32,498 33,842 -- -- -- 1982-2013 Propane/Propylene 10,294 8,711 8,513 -- -- -- 1982-2013 Normal Butane/Butylene 24,478 23,787 25,329 -- -- -- 1982-2013 Other Liquids 95,540 96,973 96,157 -- -- -- 1982-2013 Oxygenates 1,336 1,028 1,005 -- -- -- 1994-2013

191

East Coast (PADD 1) Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

192

Gulf Coast (PADD 3) Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

193

U.S. Downstream Charge Capacity of Operable Petroleum Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Distillation 8,420,501 8,542,281 8,542,643 8,650,243 8,679,643 8,938,093 1982-2013 Thermal Cracking 2,606,260 2,639,090 2,631,676 2,672,376 2,763,356 2,877,456 1982-2013 Coking...

194

Indiana, Illinois and Kentucky Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

195

Weekly U.S. Percent Utilization of Refinery Operable Capacity ...  

U.S. Energy Information Administration (EIA)

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date Value End Date Value; 1990-Nov: 11/02 : 84.0 : 11/09 : 83.0 : 11/16

196

U.S. Working Storage Capacity at Operable Refineries  

Annual Energy Outlook 2012 (EIA)

Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual (as of January 1) Download Series History Download...

197

Crude oil distillation and the definition of refinery capacity ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

198

Table 39. Production Capacity of Operable Petroleum Refineries ...  

U.S. Energy Information Administration (EIA)

Flint Hills Resources LP.....Saint Paul 12,500 0 45,000 0 0 0 22,000 185 997 Marathon Petroleum Co LLC ...

199

Alabama Refinery Hydrogen Production Capacity as of January 1 ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 80: 80: 8: 8: 0: 6: 16: 6: 1990's: 6: 6: 6: 6: 6: 6: NA: 16: NA: 6: 2000's: 6: 6 ...

200

Hawaii Refinery Hydrogen Production Capacity as of January 1 ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 1: 3: 3: 3: 3: 23: 23: 23: 1990's: 23: 20: 3: 3: 21: 21: NA: 21: NA: 21: 2000's ...

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

West Virginia Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 3,350: 3,850: 3,850: 3,850: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 0: 0: 0: 0: 0: 0: 2006-2013 ...

202

New Mexico Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 34,243: 34,243: 34,243: 29,800: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 39,631: 39,631: 39,631 ...

203

Texas Downstream Charge Capacity of Operable Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming (Barrels per Calendar Day) 930,198: 920,168: 889,378: 1,008,227: 2010-2013: Fuels Solvent Deasphalting: 173,000: 171,600: 173,000: 172,000 ...

204

East Coast (PADD 1) Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 226,266: 266,950: 195,550: 240,550: 2010-2013: Total Coking: 91,575: 95,500: 45,300: 93,700: 74,900: 74,900: 1987-2013: Catalytic Cracking ...

205

California Downstream Charge Capacity of Operable Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming (Barrels per Calendar Day) 396,146: 371,306: 373,756: 379,406: 2010-2013: Fuels Solvent Deasphalting: 66,000: 66,000: 66,000: 66,000: 66,000 ...

206

PAD District 5 Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 543,246: 517,106: 527,756: 529,406: 2010-2013: Total Coking: 567,655: 573,008: 559,955: 530,400: 537,900: 529,700: 1987-2013: Catalytic Cracking ...

207

PADD 3 Downstream Charge Capacity of Operable Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming (Barrels per Calendar Day) 1,644,941: 1,629,967: 1,583,165: 1,696,615: 2010-2013: Fuels Solvent Deasphalting: 239,400: 242,000: 243,400: 242,900 ...

208

North Carolina Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 0: 0: 0: 0: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2007-2013: Catalytic Cracking - Fresh Feed: 0: 0: 0: 0: 0: 0: 2007-2013: Catalytic Hydro ...

209

Virginia Downstream Charge Capacity of Operable Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Crackin Fresh Feed (Barrels per Calendar Day) 27,800: 27,800: 27,800: 27,800: 0: 0: 1987-2013: ... Catalytic Reforming (Barrels per Calendar Day) 11,000 ...

210

Gulf Coast (PADD 3) Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 1,644,941: 1,629,967: 1,583,165: 1,696,615: 2010-2013: Total Coking: 1,281,539: 1,293,674: 1,321,900: 1,318,440: 1,373,056: 1,459,176: 1987-2013:

211

Table 4. Production Capacity of Operable Petroleum Refineries by ...  

U.S. Energy Information Administration (EIA)

ExxonMobil Refining & Supply Co.....Baton Rouge 39,700 0 0 0 0 0 19,500 31,525 0 800 Marathon Petroleum Co LLC ...

212

U.S. Production Capacity of Operable Petroleum Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Day, Except Where Noted) Day, Except Where Noted) Area: U.S. PAD District 1 Delaware Florida Georgia Maryland New Jersey New York North Carolina Pennsylvania Virginia West Virginia PAD District 2 Illinois Indiana Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma Tennessee Wisconsin PAD District 3 Alabama Arkansas Louisiana Mississippi New Mexico Texas PAD District 4 Colorado Montana Utah Wyoming PAD District 5 Alaska Arizona California Hawaii Nevada Oregon Washington Guam Puerto Rico Virgin Islands Period: Annual (as of January 1) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

213

Texas facility treats, recycles refinery, petrochemical wastes  

Science Conference Proceedings (OSTI)

A US Gulf Coast environmental services company is treating refinery and petrochemical plant wastes to universal treatment standards (UTS). DuraTherm Inc.`s recycling center uses thermal desorption to treat a variety of refinery wastes and other hazardous materials. The plant is located in San Leon, Tex., near the major Houston/Texas City refining and petrochemical center. DuraTherm`s customers include major US refining companies, plus petrochemical, terminal, pipeline, transportation, and remediation companies. Examples of typical contaminant concentrations and treatment levels for refinery wastes are shown. The paper discusses thermal desorption, the process description and testing.

NONE

1996-09-16T23:59:59.000Z

214

A Texas Refinery Success Story  

E-Print Network (OSTI)

"Common knowledge rules that maintenance is the key to long-lasting machinery performance. Yet steam traps are often left to their own devices, to fail or succeed alone. And without steam trap programs, plants are certain to experience a high failure rate. An oil refinery in Texas was continuously experiencing a high failure rate on its 4,790-steam trap system. Finally, the steam losses were judged to be too high, and plant management called on Spirax Sarco Inc. (SSI) to reduce costs. The SSI team noticed symptoms of subpar efficiency within the steam system. Steam traps were improperly installed, water hammer problems were evident and the condensate recovery system was damaged."

Kacsur, D.

2009-05-01T23:59:59.000Z

215

Inbicon Biomass Refinery Cellulosic Ethanol Technology Platforms  

U.S. Energy Information Administration (EIA)

for biogas production Inbicon Biomass Refinery Energy integrated solutions Wheat Straw 50 t/h (at 86 % dm) C5 molasses Power The Lignin and biogas are used in power

216

Refinery siting workbook: appendices A and B  

Science Conference Proceedings (OSTI)

The objective of this effort is to develop and provide basic refinery-related information for use by state and local government officials as a basis for establishing responsible refinery siting requirements and policies consistent with the federal clean air and water standards and socio-economic concerns. The report will be organized into two volumes. The main text comprises the basic topics of physical concerns, regulatory requirements, and permitting activities, while the second volume includes the detailed appendix materials such as the applicable laws, and the necessary permits, as available and a glossary of pertinent terms. As a means to this objective, three refinery sizes, 200,000, 100,000 and 30,000 barrels per day crude charge will be discussed in technical terms. Process unit configuration will be presented which will maximize either gasoline or heating oil production with either sweet or sour crude oil feedstocks. The major issues affecting the socio-economic impact of siting the refinery in a given locale will be presented. These data will review the factors affecting the human environment and the issues that must be addressed to assess the impact that a refinery will have on a community. The key federal registrations which impact upon a refinery siting decision shall be reviewed. Summaries of these regulations and a simplified decision diagram for the air and water acts shall be presented to assist both government and refinery officials in understanding the scope of regulatory impact. All pertinent procedures required for refinery permitting shall be reviewed under the generalized headings of air, water, health and safety, land use, and miscellaneous permits. This categorization at the federal, state and local levels of government shall be used as a basis for establishing degrees of emphasis.

Not Available

1980-07-01T23:59:59.000Z

217

Refinery analytical techniques optimize unit performance  

Science Conference Proceedings (OSTI)

Refinery process engineers need to consider benefits of laboratory analytical techniques when evaluating unit performance. Refinery heavy-oil laboratory analytical techniques use both old and new technologies. Knowing how to use available laboratory analytical techniques within their limitations are critical to obtain correct refinery optimization decisions. Better refinery stream distillation and contaminant data ultimately improves the accuracy of various refinery decision-making tools. These laboratory analytical techniques are covered: high-temperature simulated distillation (HTSD); true boiling point (TBP) distillation--ASTM D2892; vacuum distillation--ASTM D5236; continuous-flash vaporizers; wiped-film evaporators; inductively coupled plasma atomic-emission spectroscopy (ICP-AES); Conradson--ASTM D189/Microcarbon residue--ASTM D4530; and asphaltene IP-143, ASTM D3279, ASTM D4124. Analysis of atmospheric crude, vacuum crude and delayed coker units highlight these laboratory techniques to identify potential yield and product quality benefits. Physical distillation or wiped-film evaporation in conjunction with HTSD, ICP-AES, microcarbon residue and asphaltened data will better characterize a feedstock as well as determine the source of contaminants. Economics are refinery specific, therefore, these examples focus on applying laboratory techniques as opposed to discussing specifics of unit improvement. These are discussed qualitatively.

Golden, S.W. [Process Consulting Services Inc., Grapevine, TX (United States); Craft, S. [Chempro, Inc., LaPorte, TX (United States); Villalanti, D.C. [Triton Analytics Corp., Houston, TX (United States)

1995-11-01T23:59:59.000Z

218

Electric Power Generation Expansion in Deregulated Markets.  

E-Print Network (OSTI)

??The generation expansion problem involves increasing electric power generation capacity in an existing power network. In competitive environment, power producers, distributors, and consumers all make… (more)

KAYMAZ, PINAR

2007-01-01T23:59:59.000Z

219

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network (OSTI)

A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP™) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver, Colorado. The refrigeration unit is designed to provide refrigeration for two process units at the refinery while utilizing waste heat as the energy source. The added refrigeration capacity benefits the refinery by recovering salable products, debottlenecking process units, avoiding additional electrical demand, and reducing the refinery Energy Intensity Index. In addition, the WHAARP unit lowers air pollutant emissions by reducing excess fuel gas that is combusted in the refinery flare. A comprehensive utility and process efficiency Master Plan developed for the Denver refinery by Planetec provided the necessary platform for implementing this distinctive project. The $2.3 million WHAARP system was paid for in part by a $760,000 grant from the U.S. Department of Energy, as part of their "Industry of the Future Program". Total combined benefits are projected to be approximately $1 million/year with a 1.6 year simple payback including the grant funding.

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

1998-04-01T23:59:59.000Z

220

U.S. Exports of Natural Gas Liquids and Liquid Refinery Gases ...  

U.S. Energy Information Administration (EIA)

Natural Gas Plant Liquids and Liquefied Refinery Gases Exports; Natural Gas Plant Liquids and Liquefied Refinery Gases Supply and Disposition;

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Kyrgyzstan starts up its first refinery  

Science Conference Proceedings (OSTI)

The Central Asian republic of Kyrgyzstan started up its first oil refinery in October 1996. The 10,000 b/d plant is designed to produce gasoline, diesel, and mazut (heavy fuel oil) from local Kyrgyz crude. Before construction of the Jalalabad refinery, all finished petroleum products were imported from neighboring countries. Kyrgyzstan`s demand for finished products is about 40,000 b/d. The new refinery was designed and constructed by Petrofac of Tyler, Texas, on behalf of Kyrgoil Corp., Calgary. Kyrgoil is a partner with the Kyrgyz state oil company, Kyrgyzsneft, in a venture called Kyrzgyz Petroleum Co. (KPC). KPC has undertaken restoration and continued development of the oil fields in Kyrgyzstan`s Fergana basin, in addition to the refinery project. The company also has marketing rights for finished products within Kyrgyzstan. The refinery comprises: a hydroskimming (atmospheric distillation) section, diesel steam stripping, gasoline blending, and utilities and off-sites, including steam generation, power generation, tank farm, truck and rail tank-car loading and unloading facilities, crude inlet pipeline, high-voltage power line, substation, air compression, laboratory, and maintenance facilities.

McLeod, G. [Petrofac LLC, Tyler, TX (United States)

1997-05-05T23:59:59.000Z

222

U.S. Refinery Yield  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Liquefied Refinery Gases 5.3 5.4 5.2 5.2 5.1 3.9 1993-2013 Finished Motor Gasoline 44.4 44.1 44.4 43.9 43.9 44.9 1993-2013 Finished Aviation Gasoline 0.1 0.1 0.1 0.1 0.1 0.1 1993-2013 Kerosene-Type Jet Fuel 10.0 9.1 9.3 9.4 9.8 9.6 1993-2013 Kerosene 0.0 0.1 0.1 0.1 0.0 0.0 1993-2013 Distillate Fuel Oil 28.4 29.4 28.7 29.2 29.3 29.7 1993-2013 Residual Fuel Oil 3.3 2.9 2.8 2.8 2.5 2.6 1993-2013 Naphtha for Petrochemical Feedstock Use 1.4 1.5 1.5 1.6 1.5 1.5 1993-2013 Other Oils for Petrochemical Feedstock Use 0.6 0.6 0.7 0.7 0.6 0.7 1993-2013 Special Naphthas 0.3 0.3 0.3 0.2 0.3 0.2 1993-2013 Lubricants 0.9 1.1 1.1 1.1 1.1 1.1 1993-2013 Waxes

223

U.S. Refinery Yield  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Liquefied Refinery Gases 4.1 4.1 4.1 4.3 4.0 4.1 1993-2012 Finished Motor Gasoline 45.5 44.2 46.1 45.7 44.9 45.0 1993-2012 Finished Aviation Gasoline 0.1 0.1 0.1 0.1 0.1 0.1 1993-2012 Kerosene-Type Jet Fuel 9.1 9.7 9.3 9.3 9.4 9.5 1993-2012 Kerosene 0.2 0.1 0.1 0.1 0.1 0.1 1993-2012 Distillate Fuel Oil 26.1 27.8 26.9 27.5 28.9 29.1 1993-2012 Residual Fuel Oil 4.2 4.0 4.0 3.8 3.4 3.2 1993-2012 Naphtha for Petrochemical Feedstock Use 1.3 1.0 1.3 1.4 1.3 1.3 1993-2012 Other Oils for Petrochemical Feedstock Use 1.3 1.2 0.8 0.8 0.7 0.6 1993-2012 Special Naphthas 0.3 0.3 0.2 0.2 0.2 0.3 1993-2012 Lubricants 1.1 1.1 1.0 1.1 1.1 1.0 1993-2012 Waxes 0.1 0.1 0.1 0.1 0.1 0.1 1993-2012

224

Indiana, Illinois, Kentucky Refinery District Gross Inputs to ...  

U.S. Energy Information Administration (EIA)

Indiana, Illinois, Kentucky Refinery District Gross Inputs to Refineries (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 1,739 ...

225

Texas City Refinery Update: The Price of Safety Complacency  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas City Refinery Update: The Price of Safety Complacency DOEEH-0699 2006-01 January 2006 ES&H Safety Bulletin 2005-09 (July 2005) discussed the Texas City Refinery accident in...

226

Improved oil refinery operations and cheaper crude oil to help...  

Annual Energy Outlook 2012 (EIA)

Improved oil refinery operations and cheaper crude oil to help reduce gasoline prices U.S. gasoline prices are expected to fall as more oil refineries come back on line and crude...

227

Flare Gas Recovery in Shell Canada Refineries  

E-Print Network (OSTI)

Two of Shell Canada's refineries have logged about six years total operating experience with modern flare gas recovery facilities. The flare gas recovery systems were designed to recover the normal continuous flare gas flow for use in the refinery fuel gas system. The system consists of liquid knock-out, compression, and liquid seal facilities. Now that the debugging-stage challenges have been dealt with, Shell Canada is more than satisfied with the system performance. A well-thought-out installation can today be safe, trouble-free, and attractive from an economic and environmental viewpoint. This paper highlights general guidelines for the sizing, design and operation of a refinery flare gas recovery facility.

Allen, G. D.; Wey, R. E.; Chan, H. H.

1983-01-01T23:59:59.000Z

228

How refinery fuel indexes have varied  

Science Conference Proceedings (OSTI)

Refinery fuels costs have endured a steady incline since 1993, except for a period in 1993. As shown in the accompanying table, these increases in cost have occurred for residual fuel oil costs in three of the five PADD districts. The cost for natural gas for refinery usage also dropped steadily during the 3-year study. These conclusions are based on costs of an average refinery fuel consisting of 1 bbl each of PADD Districts 1--5 and an average US cost of 4.4 MMscf natural gas (a 1 bbl equivalent on a BTU content basis). Raw residual fuel oil and natural gas prices come from publications put out by the US Department of Labor.

Farrar, G.

1997-01-06T23:59:59.000Z

229

Market Assessment of Refinery Outages Planned for October 2009 ...  

U.S. Energy Information Administration (EIA)

January fuel demand with availability of the refinery process units for distillate and gasoline production net of outages.

230

Refineries are also indirectly exposed to forced processing rate ...  

U.S. Energy Information Administration (EIA)

Refineries receive crude oil from two sources: waterborne deliveries by ship and domestic production from California crude oil producing fields.

231

Potential Impacts of Reductions in Refinery Activity on Northeast ...  

U.S. Energy Information Administration (EIA)

receipt of crude oil at idled refineries require considerable modification before they can be used to receive products. Moreover, ...

232

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Refinery Technology Profiles: Gasification and SupportingGasification.to be carried out. 18.5 Gasification Gasification provides

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

233

Refining District Oklahoma-Kansas-Missouri Refinery and ...  

U.S. Energy Information Administration (EIA)

Refining District Oklahoma-Kansas-Missouri Refinery and Blender Net Input of Fuel Ethanol (Thousand Barrels per Day)

234

Structural, energy and environmental aspects in Iranian oil refineries  

Science Conference Proceedings (OSTI)

Petroleum refineries extract and upgrade the valuable components of crude oil to produce a variety of marketable petroleum products. However Iranian refineries are old and their efficiency and structure do not satisfy demand of the country in which their ... Keywords: Iran, demand, energy, refinery

Sourena Sattari; Akram Avami

2008-02-01T23:59:59.000Z

235

Exxon reduces production at U. S. refineries  

SciTech Connect

This paper reports that Exxon Co. U.S.A. has trimmed output of its U.S. refineries by a combined 15% because of depressed margins on products markets. The company made the announcement last week as it began increasing crude runs at its 396,000 b/cd refinery at Baytown, Tex., on the Houston Ship Channel. Exxon trimmed Baytown crude runs late last month to manage feedstock inventories after a barge was rammed and sunk in the ship channel, briefly halting traffic. Most feedstock is delivered to the Baytown plant by water.

Not Available

1993-01-11T23:59:59.000Z

236

Monitoring and Management of Refinery Energy Consumption  

E-Print Network (OSTI)

Since 1972, the U.S. refining industry has made much progress in reducing energy consumption. Lately, falling energy prices have de-emphasized the need to appropriate new capital for additional energy conservation projects. One area neglected in most refineries is the need to monitor and manage the daily use of energy. Setting up an energy auditing system will tell management how well each unit in the refinery is being operated and can be used as a valuable tool in reducing energy costs. An example of an energy monitorirg and management system is discussed and illustrated with examples.

Pelham, R. O.; Moriarty, R. D.; Hudgens, P. D.

1986-06-01T23:59:59.000Z

237

Stochastic Equilibrium Models for Generation Capacity Expansion  

E-Print Network (OSTI)

in household and tertiary and hence reduction of demand. The second reason is that the increasing interest for de- mand side management and the development of new technologies of the smart grid type will progressively introduce a true price response... , for the integrability property). This variant of the equilibrium model can be stated as follows. Let D(?) = (d(`, ?), ` ? L) and P (?) = (p(`, ?), ` ? L) denote the vectors of demand and price in the different time segments. Smart grid technologies aim, among other...

Ehrenmann, Andreas; Smeers, Yves

238

Robust capacity expansion solutions for telecommunication ...  

E-Print Network (OSTI)

tr—ffi™ dem—nd in order to —™hieve the required oƒF „his is likely to result in ... ?Orange Labs, R&D, France. ...... Management Science volFQD ppF PVS!

239

Robust Capacity Expansion of Transit Networks  

E-Print Network (OSTI)

alleviate congestion and accommodate the increase in traffic demand across ...... and a rate of investments of 2 for all diagonal arcs and 1 for all non-diagonal ...

240

Powering the people: India's capacity expansion plans  

Science Conference Proceedings (OSTI)

India has become a global business power even though hundreds of millions of its citizens still live in poverty. To sustain economic growth and lift its people out of poverty, India needs more and more reliable power. Details of government plans for achieving those goals demonstrate that pragmatism may be in shorter supply than ambition and political will. 1 ref., 12 figs., 1 tab.

Patel, S.

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

U.S. Refinery Net Production  

U.S. Energy Information Administration (EIA)

Liquefied Refinery Gases: 11,903: 12,936: 13,591: 20,226: 24,599: 26,928: 2005-2013: ... Asphalt and Road Oil: 10,230: 9,328: 8,595: 9,973: 9,494: 9,914: 2005-2013 ...

242

Refinery siting workbook: appendices C to O  

Science Conference Proceedings (OSTI)

Applicable laws and permits available for the selection and building of petroleum refineries are enclosed. A glossary of pertinent terms is also included. References related to the National Environmental Policy Act, the Clean Air Act, the Federal Water Pollution Control Act, Resource Conservation and Recovery Act, Toxic Substance Control Act, and Wetlands and Coastal Zone are included. Permit information is also presented. (DC)

Not Available

1980-07-01T23:59:59.000Z

243

January 2011 U.S. refining capacity was the highest in 29 years ...  

U.S. Energy Information Administration (EIA)

Atmospheric crude oil distillation capacity at U.S. refineries was 17.7 million barrels per day at the beginning of 2011 according to the U.S. Energy Information ...

244

Firing Excess Refinery Butane in Peaking Gas Turbines  

E-Print Network (OSTI)

New environmentally-driven regulations for motor gasoline volatility will significantly alter refinery light ends supply/demand balancing. This, in turn, will impact refinery economics. This paper presumes that one outcome will be excess refinery normal butane production, which will reduce refinery normal butane value and price. Explored is an opportunity for a new use for excess refinery normal butane- as a fuel for utility peaking gas turbines which currently fire kerosene and #2 oil. Our paper identifies the fundamental driving forces which are changing refinery butane economics, examines how these forces influence refinery production, and evaluates the potential for using normal butanes as peaking utility gas turbine fuel, especially on the US East Coast.

Pavone, A.; Schreiber, H.; Zwillenberg, M.

1989-09-01T23:59:59.000Z

245

Frequency dependent thermal expansion in binary viscoelastic composites  

E-Print Network (OSTI)

coe?cient, c p is the heat capacity, T is the ambient systemthermal expansion and heat capacity e?ects, also has thisincrement of heat, c v is heat capacity at constant volume,

Berryman, James G.

2008-01-01T23:59:59.000Z

246

Louisiana Refinery Catalytic Hydrotreating, Diesel Fuel Downstream ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Louisiana Downstream Charge Capacity of Operable ...

247

The Effect of Technological Improvement on Capacity  

E-Print Network (OSTI)

We formulate a model of capacity expansion that is relevant to a service provider for whom the cost of capacity shortages would be considerable but difficult to quantify exactly. Due to demand uncertainty and a lead time for adding capacity, not all shortages are avoidable. In addition, technological innovations will reduce the cost of adding capacity but may not be completely predictable. Analytical expressions for the infinite horizon expansion cost and shortages are optimized numerically. Sensitivity analyses allow us to determine the impact of technological change on the optimal timing and sizes of capacity expansions to account for economies of scale, the time value of money and penalties for insufficient capacity.

Expansion For Uncertain; Dohyun Pak; Nattapol Pornsalnuwat; Sarah M. Ryan

2004-01-01T23:59:59.000Z

248

Opportunities for Biorenewables in Oil Refineries  

Science Conference Proceedings (OSTI)

Abstract: The purpose of this study was to evaluate the potential for using biorenewable feedstocks in oil refineries. Economic analyses were conducted, with support from process modeling and proof of principle experiments, to assess a variety of potential processes and configurations. The study considered two primary alternatives: the production of biodiesel and green diesel from vegetable oils and greases and opportunities for utilization of pyrolysis oil. The study identified a number of promising opportunities for biorenewables in existing or new refining operations.

Marker, T.L.

2005-12-19T23:59:59.000Z

249

PAD District / Refinery Location Total Atmospheric Distillation  

U.S. Energy Information Administration (EIA) Indexed Site

Operable Date of Last Operation Date Shutdown Table 11. New, Shutdown and Reactivated Refineries During 2012 a b REACTIVATED PAD District I 185,000 366,700 Monroe Energy LLC Trainer, PA 185,000 366,700 09/12 c SHUTDOWN PAD District I 80,000 47,000 ChevronUSA Inc Perth Amboy, NJ 80,000 47,000 03/08 07/12 PAD District III 16,800 19,500 Western Refining Southwest Inc Bloomfield, NM 16,800 19,500 12/09 11/12 PAD District VI 500,000 1,086,000 Hovensa LLC Kingshill, VI 500,000 1,086,000 02/12 02/12 a b bbl/cd=Barrels per calendar day. bbl/sd=Barrels per stream day. Sources: Energy Information Administration (EIA) Form EIA-810, "Monthly Refinery Report" and Form EIA-820, "Annual Refinery Report." c Formerly owned by ConocoPhillips Company.

250

GreenHunter Biodiesel Refinery Grand Opening | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening June 2, 2008 - 12:51pm Addthis Remarks as Prepared for (Acting) Deputy Secretary Kupfer Today, Acting Deputy Secretary Jeffrey Kupfer delivered remarks at the launch of GreenHunter Energy's biodiesel refinery, which will be the nation's single largest biodiesel refinery, producing 105 million gallons of "white-water" B100 biodiesel per year. Thank you Gary. I'm pleased to join with Governor Perry, Congressmen Green and Lampson, and Mayor Garcia in celebrating this important occasion. Today, as we open the nation's largest biodiesel refinery, we reach another milestone in our effort to make America more energy secure. As you know, global energy demand is surging. We must act swiftly and aggressively to

251

Economic impact analysis for the petroleum refineries NESHAP. Final report  

Science Conference Proceedings (OSTI)

An economic analysis of the industries affected by the Petroleum Refineries National Emmissions Standard for Hazardous Air Pollutants (NESHAP) was completed in support of this standard. The industry for which economic impacts was computed was the petroleum refinery industry. Affected refineries must reduce HAP emissions by the level of control required in the standard. Several types of economic impacts, among them price product changes, output changes, job impacts, and effects on foriegn trade, were computed for the selected regulatory alternative.

NONE

1995-08-01T23:59:59.000Z

252

Summary of Market Assessment of Planned Refinery Outages  

U.S. Energy Information Administration (EIA)

Home > Petroleum > Analysis > Summary of Market Assessment of Planned Refinery ... As required under Section 804 of the Energy Independence and Security Act of 2007 ...

253

U.S. refineries and blenders produced record amounts of ...  

U.S. Energy Information Administration (EIA)

Because of its chemical composition, crude oil run through a refinery typically yields roughly twice as much motor gasoline as distillate fuels.

254

Directory of Operable Petroleum Refineries on Tables 38 and 39  

U.S. Energy Information Administration (EIA)

Directory of Operable Petroleum Refineries on Tables 38 and 39 Refiner State(s)aRefiner State(s)a.....Age Refining Inc ...

255

Environmentally advanced refinery nears start-up in Germany  

SciTech Connect

Mitteldeutsche Erdoel-Raffinerie GmbH (Mider), is building a 170,000 b/d, grassroots refinery in Leuna, Germany. The refinery is scheduled to start up in third quarter of this year. At the heart of the new refinery is a new technology called progressive distillation. Other major units include: vacuum distillation, catalytic reforming, alkylation, visbreaking, fluid catalytic cracking (FCC), and hydrodesulfurization (HDS). In addition, an existing partial oxidation (POX)/methanol production unit will be integrated with the new refinery. The paper describes the plant and its major processes.

Rhodes, A.K.

1997-03-17T23:59:59.000Z

256

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

are also listed. The Energy Guide draws upon the experiencesmanagement programs. This Energy Guide describes researchpetroleum refineries. This Energy Guide introduces energy

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

257

Gulf Coast (PADD 3) Refinery Grade Butane Stocks at Bulk ...  

U.S. Energy Information Administration (EIA)

Gulf Coast (PADD 3) Refinery Grade Butane Stocks at Bulk Terminals (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 935: ...

258

EIA Energy Kids - Carson Refinery - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Hydrogen. Recent Statistics ... and then distributed to gas stations all over Los Angeles and Southern ... you are probably filling up with gas from the Carson refinery.

259

Market Assessment of Refinery Outages Planned for March 2010 ...  

U.S. Energy Information Administration (EIA)

DOE/EIA-0641(2010)/1 Market Assessment of Refinery Outages Planned for March 2010 through June 2010 March 2010 Energy Information Administration

260

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Net Available Shell Storage Capacity by PAD District as of September 30, 2013 Net Available Shell Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 Refineries Crude Oil 17,334 831 21,870 1,721 86,629 3,468 4,655 174 39,839 1,230 170,327 7,424 Fuel Ethanol 174 - 175 1 289 - 134 - 92 - 864 1 Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,267 23 11,599 382 28,865 78 641 19 2,412 23 44,784 525 Propane/Propylene (dedicated)

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working Storage Capacity by PAD District as of September 30, 2013 Working Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity 1 2 3 4 5 U.S. Total Ending Stocks Utilization Rate 1 Refineries Crude Oil 15,154 17,952 72,858 4,109 35,324 145,397 90,778 62% Fuel Ethanol 151 142 257 114 79 743 482 65% Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,149 10,996 24,902 581 2,219 39,847 19,539 49% Propane/Propylene (dedicated) 3 405 3,710 3,886 54 199 8,254 4,104 NA Motor Gasoline (incl. Motor Gasoline Blending Components)

262

Dedicated Compact Refinery - Programmaster.org  

Science Conference Proceedings (OSTI)

Meeting, 2013 TMS Annual Meeting & Exhibition ... capital cost per tonne of alumina (tA) capacity; * Compact plant production capacity, resulting in a simple and ...

263

When was the last refinery built in the United States? - FAQ ...  

U.S. Energy Information Administration (EIA)

When was the last refinery built in the United States? There were a total of 143 operable petroleum refineries in the United States as of January 1, 2013.

264

Poland petroleum refinery sludge lagoon demonstration project  

SciTech Connect

The US Department of Energy and the Institute for Ecology of Industrial Area have been working together to develop mutually beneficial, cost-effective environmental remediation technologies such as the demonstration of bioremediation techniques for the clean up of acidic petroleum sludge impacted soils at an oil refinery in southern Poland. After an expedited site characterization, treatability study, and a risk assessment study, a remediation strategy was devised. The waste material was composed primarily of high molecular weight paraffinic and polynuclear aromatic hydrocarbons. A biopile design which employed a combination of passive and active aeration in conjunction with nutrient and surfactant application as used to increase the biodegradation of the contaminants of concern.

Altman, D.J.

2000-05-05T23:59:59.000Z

265

Upgrade Your Refinery for Energy Conservation  

E-Print Network (OSTI)

Upgrading existing refineries for efficient energy utilization imposes strict restraints upon design engineers. Present and future production requirements must be defined. Reliable operating data must be obtained from historical records and test runs to accurately define actual performance of each piece of equipment. A complete simulation model of the facility is developed and tested. Future operations are evaluated using the model to define heat and material balance requirements for all projected operations. Energy conservation projects are evaluated with the model to define energy savings over the life of each project. A discounted cash flow analysis is formulated and an optimum set of projects yielding maximum rates of return are selected for implementation.

Johnnie, D. H., Jr.; Klooster, H. J.

1983-01-01T23:59:59.000Z

266

Value of Options in Airport Expansion - Example of AICM  

E-Print Network (OSTI)

Investments decisions for airport capacity expansion are usually taken, either when demand exceeds the current capacity and the airport is working under congestion, or when current demand is expected to overcome current ...

Morgado, Frederico

267

Summary of Market Assessment of Upcoming Planned Refinery Outages  

Gasoline and Diesel Fuel Update (EIA)

Summary of Market Assessment of Upcoming Planned Refinery Outages Summary of Market Assessment of Upcoming Planned Refinery Outages Summary of Market Assessment of Upcoming Planned Refinery Outages Market Assessment of Upcoming Planned Refinery Outages, December 2008 - March 2009 reviews planned U.S. refinery outages from December 2008 though March 2009 in order to identify any regions where outages might create enough supply pressure to impact prices significantly. As required under Section 804 of the Energy Independence and Security Act of 2007 (Pub. L. 110-140), this report reviews the supply implications of planned refinery outages for December 2008 through March 2009, which covers the winter period when demand for distillate fuels (diesel and heating oil) is high. As a result, emphasis in this report is on distillate rather than gasoline. Refinery outages are the result of planned maintenance and unplanned outages. Maintenance is usually scheduled during the times when demand is lowest - in the first quarter and again in the fall. Unplanned outages, which occur for many reasons including mechanical failures, fires, and flooding, can occur at any time.

268

Flare-gas recovery success at Canadian refineries  

SciTech Connect

It appears that some North American refining companies still cling to an old philosophy that flare gas recovery systems are unsafe, unreliable, uneconomic, or unnecessary. Shell Canada's recent experience with two modern systems has proven otherwise. Two of Shell Canada's refineries, at Sarnia, Ont., and Montreal East, Que., have now logged about 6 years' total operating experience with modern flare gas recovery units. The compression facilities in each utilize a two-stage reciprocating machine, one liquid seal drum per flare stack, and an automated load control strategy. The purpose was to recover the normal continuous flow of refinery flare gas for treatment and use in the refinery fuel gas system.

Allen, G.D.; Chan, H.H.; Wey, R.E.

1983-06-01T23:59:59.000Z

269

Master development plan for the Cartagena Refinery. Export trade information  

Science Conference Proceedings (OSTI)

This study, conducted by the M.W. Kellogg Company, was funded by the U.S. Trade and Development Agency on behalf of ECOPETROL, Colombia`s national oil company. The objective of the study was to investigate technical, economic, and environmental issues that challenge the Cartagena Refinery. The study also recommends the most attractive options for the refinery to improve profitability. The document is divided into the following sections: (1) Executive Summary; (2) Market Survey; (3) Refinery Configuration; (4) Economic Evaluation; (5) Other Technical/Strategic Considerations; (6) Appendix.

NONE

1996-09-01T23:59:59.000Z

270

Application of Pinch Technology in Refinery Retrofits  

E-Print Network (OSTI)

This paper reviews the application of pinch technology in the identification of the most attractive retrofit prospects in typical refineries. In the first part of the paper, methodology is described to identify attractive inter-unit heat integration opportunities as well as attractive process-utility system integration (co-generation). An example of an atmospheric pipestill-alkylation unit integration evaluation is given using both composite stream and Grand composite stream methods. In the second part of the paper, the application of pinch technology in a typical intra-unit heat integration problem is given. It is explained how inefficiencies in an APS crude preheat train are identified, and a typical small retrofit project is described.

Thomas, W. R.; Siegell, J. H.; Sideropoulos, T.; Robertson, J. L.; Papoulias, S. A.

1987-09-01T23:59:59.000Z

271

North Dakota Refining Capacity Study  

Science Conference Proceedings (OSTI)

According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

2011-01-05T23:59:59.000Z

272

Rocky Mountain (PADD 4) Refinery and Blender Net Production of ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Refinery and Blender Net Production of Normal Butane (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

273

,"U.S. Refinery Crude Oil Input Qualities"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"7242013 11:46:42 PM" "Back to Contents","Data 1: U.S. Refinery Crude Oil Input Qualities" "Sourcekey","MCRS1US2","MCRAPUS2" "Date","U.S. Sulfur...

274

Coal Use in Petroleum Refineries -- Opportunities and Issues  

Science Conference Proceedings (OSTI)

This report is a brief review of the technologies and key issues involved in considering the use of coal as a replacement, supplemental, or additional fuel in petroleum refineries.

2002-10-21T23:59:59.000Z

275

World Energy Projection System Plus Model Documentation: Refinery Model  

Reports and Publications (EIA)

This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS+) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

Adrian Geagla

2011-10-04T23:59:59.000Z

276

Rocky Mountain (PADD 4) Foreign Crude Oil Refinery Receipts by ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Foreign Crude Oil Refinery Receipts by Tank Cars (Rail) (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

277

U.S. Petroleum Coke Consumed at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Petroleum Coke Consumed at Refineries (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: ...

278

U.S. Petroleum Coke Stocks at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Petroleum Coke Stocks at Refineries (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 10,747: 11,072: 11,444: ...

279

Flexible hydrogen plant utilizing multiple refinery hydrocarbon streams  

Science Conference Proceedings (OSTI)

Numerous processes are available to produce hydrogen, however, steam reforming is still the dominant and currently preferred process because it can economically process a variety of refinery feedstocks into hydrogen. This paper discusses the Air Products 88 MMSCFD hydrogen plant built by KTI, adjacent to Shell`s Martinez refinery, which utilizes up to eight separate refinery hydrocarbon streams as feed and fuel for the production of hydrogen in the steam reforming unit. The integration of refinery hydrocarbon purge streams, normally sent to fuel, allows greater flexibility in refinery operations and increases the overall refinery fuel efficiencies. The hydrogen plant also incorporates a number of process control design features to enhance reliability, such as two out of three voting systems, in-line sparing, and reduced bed PSA operation. The final section of the paper describes the environmental features of the plant required for operation in the Bay Area Air Quality Management District (BAAQMD). Air Products and KTI designed BACT features into the hydrogen plant to minimize emissions from the facility.

Kramer, K.A.; Patel, N.M. [Air Products and Chemicals Inc., Allentown, PA (United States); Sekhri, S. [Kinetics Technology International Corp., San Dimas, CA (United States); Brown, M.G. [Shell Oil Products Co., Martinez, CA (United States)

1996-12-01T23:59:59.000Z

280

Engineering firm has designed refinery of the future  

SciTech Connect

Four years ago, JGC Corp. organized a project team called ``Refinery Engineering for the Future in the Twenty-First Century,`` or REF-21. The purpose of the team was to forecast the environment facing the refining industry in Japan, long-range energy supply and demand, population and economic growth, traffic system trends, and technology and science progress through the middle of the twenty-first century. The REF-21 team also was charged with developing a conceptual design for the future refinery. The team proposed four types of configurations for the so-called new-generation refineries. These schemes included some new technologies that it deemed commercializable by 2000. JGC evaluated these new-generation refinery schemes in terms of overall yields, energy efficiencies, emissions, and economics, as compared with existing refineries. JGC also has developed an amenity design program (ADP), and is applying it to a refinery in Japan to produce a new-concept operation center. Through amenity design, JGC intends to improve the operating environment for employees in order to enhance overall productivity.

Inomata, Makoto; Sato, Kyohei; Yamada, Yu; Sasaki, Hajime [JGC Corp., Yokohama (Japan)

1997-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Refinery Investments and Future Market Incentives  

U.S. Energy Information Administration (EIA)

... Asian demand will grow as it simply adds cars and trucks, ... Capacity Changes KB/D Volume Changes KB/D Area Crude Input Hydro-cracking (*) ...

282

U.S. Refinery Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 5,383,494 5,119,100 4,676,865 4,568,301 4,484,600 4,395,128 2005-2012 Liquefied Refinery Gases 238,904 230,431 227,470 240,454 225,992 230,413 2005-2012 Ethane/Ethylene 7,323 6,671 7,069 7,228 7,148 6,597 2005-2012 Ethane 5,145 4,608 5,229 5,200 5,105 4,835 2005-2012 Ethylene 2,178 2,063 1,840 2,028 2,043 1,762 2005-2012 Propane/Propylene 205,179 190,020 196,011 204,223 201,492 202,309 2005-2012 Propane 120,596 114,268 106,177 102,913 98,508 100,933 2005-2012 Propylene 84,583 75,752 89,834 101,310 102,984 101,376 2005-2012 Normal Butane/Butylene 24,285 30,887 24,148 30,281 17,449 20,580 2005-2012 Normal Butane 25,715 33,092 25,825 32,094 19,263 22,965 2005-2012

283

PAD District / Refinery Location Total Atmospheric Distillation  

U.S. Energy Information Administration (EIA) Indexed Site

of Last of Last Operation Date Shutdown Table 13. Refineries Permanently Shutdown By PAD District Between January 1, 1990 and January 1, 2013 PAD District I 542,450 GNC Energy Corp Greensboro, NC 3,000 0 a Primary Energy Corp Richmond, VA 6,100 0 a Saint Mary's Refining Co Saint Mary's, WV 4,000 4,480 02/93 03/93 Cibro Refining Albany, NY 41,850 27,000 07/93 09/93 Calumet Lubricants Co LP Rouseville, PA 12,800 26,820 03/00 06/00 Young Refining Corp. Douglasville, GA 5,400 0 07/04 07/04 Sunoco Inc Westville, NJ 145,000 263,000 11/09 02/10 Western Refining Yorktown Inc Yorktown, VA 66,300 182,600 09/10 12/11 Sunoco Inc Marcus Hook, PA 178,000 278,000 12/11 12/11 ChevronUSA Inc Perth Amboy, NJ 80,000 47,000 03/08 07/12 PAD District II 460,315 Coastal Refining & Mktg El Dorado, KS 0 20,000 b Intercoastal Energy Svcs

284

Environmental Regulation and Productivity: Evidence from Oil Refineries  

E-Print Network (OSTI)

Abstract: We examine the effect of air quality regulation on the productivity of some of the most heavily regulated manufacturing plants in the United States, the oil refineries of the Los Angeles (South Coast) Air Basin. We use direct measures of local air pollution regulation in this region to estimate their effects on abatement investment. Refineries not subject to these local environmental regulations are used as a comparison group. We study the period of increased regulation between 1979 and 1992. On average, each regulation cost $3M per plant on compliance dates and a further $5M per plant on dates of increased stringency. We also construct measures of total factor productivity using plant level data which allow us to observe physical quantities of inputs and outputs for the entire population of refineries. Despite the high costs associated with the local regulations, productivity in the Los Angeles Air Basin refineries rose sharply during the 1987-92 period, a period of decreased refinery productivity in other regions. We conclude that measures of the cost of environmental regulation may be significantly overstated. The gross costs may be far greater than the net cost, as abatement may be productive.

Eli Berman; Linda T. M. Bui

1998-01-01T23:59:59.000Z

285

Assessment of coal liquids as refinery feedstocks  

Science Conference Proceedings (OSTI)

The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

Zhou, P.

1992-02-01T23:59:59.000Z

286

Assessment of coal liquids as refinery feedstocks  

Science Conference Proceedings (OSTI)

The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

Zhou, P.

1992-02-01T23:59:59.000Z

287

OPEC production: Untapped reserves, world demand spur production expansion  

Science Conference Proceedings (OSTI)

To meet projected world oil demand, almost all members of the Organization of Petroleum Exporting Countries (OPEC) have embarked on ambitious capacity expansion programs aimed at increasing oil production capabilities. These expansion programs are in both new and existing oil fields. In the latter case, the aim is either to maintain production or reduce the production decline rate. However, the recent price deterioration has led some major OPEC producers, such as Saudi Arabia and Iran, to revise downward their capacity plans. Capital required for capacity expansion is considerable. Therefore, because the primary source of funds will come from within each OPEC country, a reasonably stable and relatively high oil price is required to obtain enough revenue for investing in upstream projects. This first in a series of two articles discusses the present OPEC capacity and planned expansion in the Middle East. The concluding part will cover the expansion plans in the remaining OPEC countries, capital requirements, and environmental concerns.

Ismail, I.A.H. (Organization of the Petroleum Exporting Countries, Vienna (Austria))

1994-05-02T23:59:59.000Z

288

2013 Short Course Analytical Techniques: Quality Control, Process Control, and Refinery Optimization  

Science Conference Proceedings (OSTI)

Analytical Techniques: Quality Control, Process Control, and Refinery Optimization held at the 104th AOCS Annual Meeting and Expo. 2013 Short Course Analytical Techniques: Quality Control, Process Control, and Refinery Optimization Analytical Techn

289

DOE - Office of Legacy Management -- International Rare Metals Refinery Inc  

Office of Legacy Management (LM)

Rare Metals Refinery Rare Metals Refinery Inc - NY 38 FUSRAP Considered Sites Site: International Rare Metals Refinery, Inc. (NY.38 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Canadian Radium and Uranium Corporation NY.38-1 Location: 69 Kisko Avenue , Mt. Kisko , New York NY.38-1 NY.38-3 Evaluation Year: 1987 NY.38-4 Site Operations: Manufactured and distributed radium and polonium products. NY.38-5 Site Disposition: Eliminated - No Authority - Site was a commercial operation not under the jurisdiction of DOE predecessor agencies NY.38-2 NY.38-4 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Radium, Plutonium NY.38-5 Radiological Survey(s): Yes NY.38-1 NY.38-5 Site Status: Eliminated from consideration under FUSRAP

290

Alternative multimedia regulatory programs for next-generation refineries  

Science Conference Proceedings (OSTI)

The 25-year-old command-and-control environmental regulatory structure in the US has resulted in significant environmental improvements. Recently, however, its limitations (e.g., rigid application regardless of site-specific conditions, disregard of cross-media and multimedia impacts, limited incentives for new technology development and use) have become increasingly apparent. New regulatory approaches that recognize current and anticipated economic constraints, new knowledge of environmental processes and impacts, and the benefits of new technologies are needed. Such approaches could be especially important for the US petroleum refining industry. This industry operates under thin profit margins, releases chemicals that can produce adverse health and environmental impacts, and must meet the technological challenges of producing more highly refined fuels from poorer quality feedstocks. Under a grant from the Environmental Technology Initiative (ETI), Argonne National Laboratory and its subcontractor, Analytical Services, Inc. developed two alternative environmental regulatory programs for next-generation petroleum refineries. (In this report, next-generation refineries refers to the refineries of today as they operate in the next 20 or more years rather than to fully reengineered future refineries.) The objective of the ETI refinery project was to develop future-oriented regulatory programs for next-generation refineries that will expand the use of innovative technologies, encourage pollution prevention, demonstrate environmental responsibility, and maintain refinery economic performance. Rather than suggesting targeted, short-term modifications to existing media-specific command-and-control regulations, the ETI project suggests the use of new approaches that are broader and more flexible. It recognizes that giving refineries flexibility in meeting environmental protection goals can stimulate new technology development and use. Unlike most US Environmental Protection Agency (EPA) reinvention efforts, which seek results in 12 to 18 months, this ETI effort assumes a time frame of 20 years or more. It also assumes that existing laws and regulations can be changed. An iterative and interactive process was used by the project team to develop the alternative approaches. Information and stakeholder input were integrated to provide for constant revision and improvement. First, guidelines and principles were established to bound the study and set parameters for developing the approaches. Next, existing and projected environmental laws and regulations affecting petroleum refineries were examined to identify areas needing change. Then, to understand future challenges and opportunities, the projected refinery operating environment was described in terms of feedstock, product, technology, and economics. Finally several goals and indicators for assessing and comparing the alternatives were identified. On the basis of this background information, more than 60 options that could efficiently and effectively protect human health and the environment were identified. These options ranged from fundamental changes in program philosophy to procedural improvements. After the options were evaluated against the goals and indicators, many of them were integrated into two separate thematic paradigms: a risk-based paradigm and a goal-based paradigm. Elements common to both approaches include the following: (1) Establish the baseline--In establishing the baseline, the refinery and the regulator jointly identify residuals for which release limits must be established; (2) Set residual release limits--The refinery and the regulator jointly specify release limits on a facility-wide rather than a source-specific basis. A facility-wide permit documents the release limits; and (3) Assure compliance--Incentives provide the basis for assuring compliance, and flexibility in the compliance method is encouraged. Penalties apply if releases exceed the limits, and reporting requirements are streamlined relative to current practices.

Elcock, D.; Gasper, J.; Arguerro, R.; Emerson, D.

2000-06-22T23:59:59.000Z

291

Mazheikiai refinery modernization study. Executive summary. Export trade information  

Science Conference Proceedings (OSTI)

The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. The volume contains the Executive Summary.

Not Available

1994-01-01T23:59:59.000Z

292

Monitoring near refineries or airborne chemicals on the SARA Title 3 section 313 list  

Science Conference Proceedings (OSTI)

In this volume, detailed procedures recommended for the measurement of selected petroleum refinery emissions in ambient air are presented.

Not Available

1988-01-01T23:59:59.000Z

293

Monitoring near refineries for airborne chemicals on the SARA Title 3 Section 313 list  

SciTech Connect

This study provides an ambient air concentration perspective to the engineering estimates of petroleum refinery emissions required under SARA Title III Section 313. It presents and discusses ambient air concentrations of 25 selected target chemicals measured at and near the perimeter (fenceline) of three refineries. Measurements were made over three consecutive 24-hour sampling periods at each refinery. The extent to which the concentrations of the target chemicals were due to fugitive emissions from the refineries is estimated.

Not Available

1989-01-01T23:59:59.000Z

294

Monitoring near refineries or airborne chemicals on the SARA Title 3 Section 313 list  

Science Conference Proceedings (OSTI)

This volume identifies publications and databases that address ambient air concentrations measured near petroleum refineries for the selected target chemicals.

Not Available

1988-01-01T23:59:59.000Z

295

Distillate yields at U.S. refineries are rising - Today in ...  

U.S. Energy Information Administration (EIA)

Refinery processing gain results from some refining processes, such as fluid catalytic cracking and hydrocracking, where volumes can increase when ...

296

Fuzzy possibilistic modeling and sensitivity analysis for optimal fuel gas scheduling in refinery  

Science Conference Proceedings (OSTI)

In refinery, fuel gas which is continuously generated during the production process is one of the most important energy sources. Optimal scheduling of fuel gas system helps the refinery to achieve energy cost reduction and cleaner production. However, ... Keywords: Fuel gas, Fuzzy possibilistic programming, Marginal value analysis, Refinery, Scheduling, Sensitivity analysis

J. D. Zhang; G. Rong

2010-04-01T23:59:59.000Z

297

GENERATING CAPACITY  

E-Print Network (OSTI)

Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating capacity consistent with mandatory reliability criteria. A large part of the problem can be associated with the failure of wholesale spot market prices for energy and operating reserves to rise to high enough levels during periods when generating capacity is fully utilized. Reforms to wholesale energy markets, the introduction of well-design forward capacity markets, and symmetrical treatment of demand response and generating capacity resources to respond to market and institutional imperfections are discussed. This policy reform program is compatible with improving the efficiency of spot wholesale electricity markets, the continued evolution of competitive retail markets, and restores incentives for efficient investment in generating capacity consistent with operating reliability criteria applied by system operators. It also responds to investment disincentives that have been associated with volatility in wholesale energy prices, limited hedging opportunities and to concerns about regulatory opportunism. 1

Paul L. Joskow; Paul L. Joskow; Paul L. Joskow

2006-01-01T23:59:59.000Z

298

Saudi Aramco Mobile Refinery Company (SAMREF) | Open Energy Information  

Open Energy Info (EERE)

Saudi Aramco Mobile Refinery Company (SAMREF) Saudi Aramco Mobile Refinery Company (SAMREF) Jump to: navigation, search Logo: Saudi Aramco Mobile Refinery Company (SAMREF) Name Saudi Aramco Mobile Refinery Company (SAMREF) Address P.O. Box 30078 Place Yanbu, Saudi Arabia Sector Oil and Gas Product Crude Oil Refining Phone number (966) (4) 396-4443 Website http://www.samref.com.sa/ Coordinates 24.0866932°, 38.0585527° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.0866932,"lon":38.0585527,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Obstacles and Opportunity: Turbine Motorization in Refineries Today  

E-Print Network (OSTI)

Steam turbines have been widely used in oil refineries for driving pumps, compressors and other rotary machines. However, in recent years, the authors of this paper have seen substantial turbine motorization projects completed or being planned in the refineries. This paper discusses the key aspects that should be considered in evaluating the feasibility of motorization projects. Based on the literature review and a refinery survey conducted by the authors, the key factors include the critical level of the related equipment, the potential energy savings and capital cost, the steam and power balance in the related area, and the reliability in the refinery's power supply. Based on the authors' experience, the utilities' energy efficiency incentive programs in California also influence the decision-making process for turbine motorization projects. Therefore, this paper includes a description of the utilities' guidelines for fuel substitution projects. In particular, the utilities' three-prong requirements on net source-BTU energy savings, cost effectiveness, and avoidance of adverse impacts to the environment are discussed. Two real life case studies are presented to demonstrate how the above criteria should be applied for determining if a motorization opportunity is economically viable. A discussion on suggested features is also included for prescreening turbine motorization project candidates for better energy and environment economics such as venting of exhaust steam from a back pressure turbine and oversized design of the existing turbine and pump.

Feng, Hua; Liu, Jinghing; Liu, Xiang; Ahmad, Mushtaq; Deng, Alan

2012-01-01T23:59:59.000Z

300

Refinery Outages: Description and Potential Impact on Petroleum Product Prices  

Reports and Publications (EIA)

This report responds to a July 13, 2006 request from Chairman Jeff Bingaman of the Senate Committee on Energy and Natural Resources requested that EIA conduct a study of the impact that refinery shutdowns have had on the price of oil and gasoline.

Joanne Shore

2007-03-27T23:59:59.000Z

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

U.S. LPG's Consumed at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. LPG's Consumed at Refineries (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 8,966: 8,021: 9,466: 11,962 ...

302

U.S. Refinery Yield of Petroleum Coke (Percent)  

U.S. Energy Information Administration (EIA)

U.S. Refinery Yield of Petroleum Coke (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 4.3: 4.3: 4.3: ...

303

U.S. Refinery Yield of Petroleum Coke (Percent)  

U.S. Energy Information Administration (EIA)

U.S. Refinery Yield of Petroleum Coke (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 4.4: 4.6: 4.5: 4.3: 4.1: 4.2: 4.4: 4.3: ...

304

Energy efficiency improvement and cost saving opportunities forpetroleum refineries  

Science Conference Proceedings (OSTI)

The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

Worrell, Ernst; Galitsky, Christina

2005-02-15T23:59:59.000Z

305

Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by  

NLE Websites -- All DOE Office Websites (Extended Search)

2: August 13, 2: August 13, 2007 Refinery Output by World Region to someone by E-mail Share Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Facebook Tweet about Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Twitter Bookmark Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Google Bookmark Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Delicious Rank Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Digg Find More places to share Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on AddThis.com... Fact #482: August 13, 2007

306

Rocky Mountain area petroleum product availability with reduced PADD IV refining capacity  

Science Conference Proceedings (OSTI)

Studies of Rocky Mountain area petroleum product availability with reduced refining capacity in Petroleum Administration for Defense IV (PADD IV, part of the Rocky Mountain area) have been performed with the Oak Ridge National Laboratory Refinery Yield Model, a linear program which has been updated to blend gasolines to satisfy constraints on emissions of nitrogen oxides and winter toxic air pollutants. The studies do not predict refinery closures in PADD IV. Rather, the reduced refining capacities provide an analytical framework for probing the flexibility of petroleum refining and distribution for winter demand conditions in the year 2000. Industry analysts have estimated that, for worst case scenarios, 20 to 35 percent of PADD IV refining capacity could be shut-down as a result of clean air and energy tax legislation. Given these industry projections, the study scenarios provide the following conclusions: The Rocky Mountain area petroleum system would have the capability to satisfy winter product demand with PADD IV refinery capacity shut-downs in the middle of the range of industry projections, but not in the high end of the range of projections. PADD IV crude oil production can be maintained by re-routing crude released from PADD IV refinery demands to satisfy increased crude oil demands in PADDs II (Midwest), III (Gulf Coast), and Washington. Clean Air Act product quality regulations generally do not increase the difficulty of satisfying emissions reduction constraints in the scenarios.

Hadder, G.R.; Chin, S.M.

1994-02-01T23:59:59.000Z

307

Midwest (PADD 2) Refinery Catalytic Hydrotreating, Diesel Fuel ...  

U.S. Energy Information Administration (EIA)

Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Midwest (PADD 2) Downstream Charge Capacity of ...

308

U.S. Refinery Catalytic Hydrotreating, Diesel Fuel Downstream ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; U.S. Downstream Charge Capacity of Operable ...

309

U.S. Refinery Catalytic Hydrocracking, Gas Oil Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro-Cracking Gas Oil Downstream Charge Capacity ; Cat. Hydro-Cracking Gas Oil Downstream Charge Capacity ; U.S. Downstream Charge Capacity of Operable ...

310

Table 5.9 Refinery Capacity and Utilization, 1949-2011  

U.S. Energy Information Administration (EIA)

1954. 308: 7,984: na: 7,266: 88.8: 1955. 296: 8,386: na: 7,820: 92.2: 1956. 317: 8,583: na: 8,250: 93.5: 1957. 317: 9,072: na: 8,222: 89.2: 1958. 315: ...

311

Table 5.9 Refinery Capacity and Utilization, 1949-2011  

U.S. Energy Information Administration (EIA)

1954. 308: 7,984: na : 2,651,992 : 88.8 : 1955. 296: 8,386: na : 2,854,137 : 92.2 : 1956. 317: 8,583: na : 3,019,601 : 93.5 : 1957. 317: 9,072: na : ...

312

Much of the country’s refinery capacity is concentrated along ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

313

Capacity at existing U.S. refineries increases in 2013 - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

314

Much of the country’s refinery capacity is concentrated along ...  

U.S. Energy Information Administration (EIA)

Wind › Geothermal › ... unplanned maintenance, or market conditions. ... (which has significant volumes of crude oil produced both onshore and offshore); ...

315

Alternative future environmental regulatory approaches for petroleum refineries.  

Science Conference Proceedings (OSTI)

Recently, many industrial, regulatory, and community leaders have expressed concern that the current environmental regulatory structure disregards multimedia environmental impacts, provides few incentives to develop and use new technologies, and fails to consider site-specific conditions. For the US petroleum refining industry, faced with the need to produce higher-quality fuels from poorer-quality feedstocks, such criticisms are expected to increase. This article offers two alternative environmental regulatory approaches for existing petroleum refineries to use in the future. These alternative approaches are multimedia in scope, provide for new technology development and use, and allow flexibility in the means for meeting environmental goals. They have been reviewed and critiqued by various stakeholders, including industry representatives, regulators, and local and national community and environmental organizations. The integration of stakeholder comments and findings of ongoing national and international regulatory reinvention efforts in the development of these approaches positions them for potential use by other industries in addition to petroleum refineries.

Elcock, D.; Gasper, J.; Moses, D. O.; Emerson, D.; Arguerro, R.; Environmental Assessment; DOE; Analytical Services, Inc.

2000-01-01T23:59:59.000Z

316

New process effectively recovers oil from refinery waste streams  

Science Conference Proceedings (OSTI)

A new process uses chemically assisted, thermal flashing to break difficult emulsions and recover oil for reprocessing. The process is best suited for refinery waste management and slop oil systems, where it can process streams with high oil content to recover high-quality oil. Recent testing of a full-scale, commercial prototype unit on slop oil emulsions at a major Gulf Coast refinery resulted in: 97.9% recovery of oil with 99.3--99.6% purity; 99.5% recovery of water with 99+% purity; and a centrifuge cake containing 49-60% solids, 23--30 oil, and 17--22% water. The paper discusses background of the process, then gives a process description as well as results of field studies and cost.

Rhodes, A.

1994-08-15T23:59:59.000Z

317

Pemex to acquire interest in Shell Texas refinery  

Science Conference Proceedings (OSTI)

This paper reports that Petroleos Mexicanos and Shell Oil Co. have signed a memorandum of understanding to form a joint refining venture involving Shell's 225,000 b/d Deer Park, Tex., refinery. Under the agreement, Mexico's state owned oil company is to purchase a 50% interest in the refinery, and Shell is to sell Pemex unleaded gasoline on a long term basis. Under the venture, Shell and Pemex plan to add undisclosed conversion and upgrading units tailored to process heavy Mexican crude. The revamp will allow Pemex to place more than 100,000 b/d of Mayan heavy crude on the U.S. market. Mayan accounts for 70% of Mexico's crude oil exports. In turn, Shell will sell Pemex as much as 45,000 b/d of unleaded gasoline to help meet Mexico's rapidly growing demand.

Not Available

1992-08-31T23:59:59.000Z

318

Martinez Refinery Completes Plant-Wide Energy Assessment  

SciTech Connect

This OIT BestPractices Case Study describes how the Equilon Enterprises oil refinery in Martinez, California undertook a plant-wide energy assessment that focused on three key areas: waste minimization, process debottlenecking, and operations optimization. The assessment yielded recommendations, which, if implemented, can save more than 6,000,000 MMBtu per year and an estimated $52,000,000 per year, plus improve process control and reduce waste.

Not Available

2002-11-01T23:59:59.000Z

319

Initial Assessment of U.S. Refineries for Purposes of Potential Bio-Based Oil Insertions  

SciTech Connect

This study examines how existing U.S. refining infrastructure matches in geography and processing capability with the needs projected from anticipated biofuels production. Key findings include: ? a potential shortfall in both overall hydrotreating capacity and hydrogen production capacity in refineries to manage the conversion of certain bio-derived feedstocks having high oxygen contents; ? a regional concentration of anticipated biofuel resources, placing added stress in particular refining regions (e.g. the Gulf Coast); ? uncertainties surrounding the impact of bio-derived fuel intermediates on the refiner’s ability to meet product performance and product quantity demands, and the need for better and more comprehensive chemical composition information; ? the need for considerably more data and experience on the behavior of projected biofuels feedstocks in refining processes (e.g. impacts on process performance and reliability); ? and the need to examine the optimum capital investment locations for additional processing equipment. For example, whether it is better to further refine biofuels at the new production sites, in centralized biofuel "depots", or whether the existing refining facilities should be expanded to better handle a more 'raw' biofuel.

Freeman, Charles J.; Jones, Susanne B.; Padmaperuma, Asanga B.; Santosa, Daniel M.; Valkenburg, Corinne; Shinn, John

2013-04-25T23:59:59.000Z

320

A17: Heat Capacity and Thermal Expansion Measurements of Solar ...  

Science Conference Proceedings (OSTI)

One of the main tasks for getting reliable cp and enthalpy data of solar salts is therefore to find the right measurement parameters and crucible material/salt ...

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

FINREG : a financialregulatory model for utility capacity expansion plan evaluation  

E-Print Network (OSTI)

A corporate financial/regulatory model, called FINREG, is presented to simulate a utility's accounting practices, financial policy and constraints, and ratemaking environment. For each year of simulation FINREG will yield ...

Klosowicz, Peter C.

1981-01-01T23:59:59.000Z

322

Disaggregated memory for expansion and sharing in blade servers  

Science Conference Proceedings (OSTI)

Analysis of technology and application trends reveals a growing imbalance in the peak compute-to-memory-capacity ratio for future servers. At the same time, the fraction contributed by memory systems to total datacenter costs and power consumption during ... Keywords: disaggregated memory, memory blades, memory capacity expansion, power and cost efficiencies

Kevin Lim; Jichuan Chang; Trevor Mudge; Parthasarathy Ranganathan; Steven K. Reinhardt; Thomas F. Wenisch

2009-06-01T23:59:59.000Z

323

Updated estimation of energy efficiencies of U.S. petroleum refineries.  

SciTech Connect

Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels such as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.

Palou-Rivera, I.; Wang, M. Q. (Energy Systems)

2010-12-08T23:59:59.000Z

324

Petroleum complex of Russia. Reconstruction of petroleum refineries: Means for accomplishing the task  

SciTech Connect

This report describes the refining industry in Russia with respect to production and economic factors. The modernization and reconstruction of the refineries is also discussed.

Rykunova, T.

1994-11-01T23:59:59.000Z

325

New desorption process treats refinery K and F wastes in demo trial  

SciTech Connect

A new desorption process for treating refinery wastes has been proven in pilot demonstrations at Amoco Oil Co.'s Texas City, Tex., refinery. The process -- Waste-Tech Services Inc.'s desorption and recovery unit (DRU) -- treats petroleum-contaminated refinery wastes and recovers oil and water suitable for recycling to the refinery. The DRU meets Resource Conservation and Recovery Act (RCRA) recycle exemptions and produces solids that satisfy US Environmental Protection Agency (EPA) land disposal restrictions (LDRs). This paper discusses RCRA wastes, the process, the demonstration unit, operating conditions, and analyses of semivolatiles, volatiles, leachable metals, and recovered oil and water.

Rasmussen, G.P. (Waste-Tech Services Inc., Golden, CO (United States))

1994-01-10T23:59:59.000Z

326

The Revival of Onahama Smelter & Refinery from the Disaster by the ...  

Science Conference Proceedings (OSTI)

Presentation Title, The Revival of Onahama Smelter & Refinery from the ... Study of Modified Semi-Coke on the Advanced Treatment of Coking Wastewater's Oil.

327

Aspects of Holly Corporation's Acquisition of Sunoco Inc.'s Tulsa, Oklahoma Refinery  

Reports and Publications (EIA)

The Energy Information Administration has produced a review of aspects of the Holly's acquisition of Sunoco's 85,000-barrels-per-day Tulsa refinery

Neal Davis

2009-04-22T23:59:59.000Z

328

table of contents  

Science Conference Proceedings (OSTI)

Refinery Modernizations, Expansions and Improvements ... Tankhouse Expansion and Modernisation of Copper Refineries Ltd., Townsville, Australia [pp .

329

Texas Refinery Catalytic Hydrotreating, Heavy Gas Oil Downstream ...  

U.S. Energy Information Administration (EIA)

Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Cat. Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Texas Downstream Charge Capacity of Operable ...

330

Capacity Markets for Electricity  

E-Print Network (OSTI)

ternative Approaches for Power Capacity Markets”, Papers andand Steven Stoft, “Installed Capacity and Price Caps: Oil onElectricity Markets Have a Capacity requirement? If So, How

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

331

2. Gas Productive Capacity  

U.S. Energy Information Administration (EIA)

2. Gas Productive Capacity Gas Capacity to Meet Lower 48 States Requirements The United States has sufficient dry gas productive capacity at the wellhead to meet ...

332

Atmospheric Crude Oil Distillation Idle Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

333

Atmospheric Crude Oil Distillation Operating Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

334

Atmospheric Crude Oil Distillation Operable Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

335

Clean air amendments put big burden on refinery planners  

SciTech Connect

The Clean Air Act Amendments of 1990 will not only require the production of reformulated gasoline but also have significant impact on other refinery-related construction. This must be considered when developing sound planning strategy. The three titles of the Clean Air Act Amendments that will have the greatest effect on refining are: Title I: Nonattainment; Title III: Air toxics; Title V: Permitting. To understand the ramifications of these amendments, it is necessary to review the interactions of new requirements with the permitting and construction schedule shown.

Scherr, R.C.; Smalley, G.A. Jr.; Norman, M.E. (ENSR Consulting and Engineering, Houston, TX (US))

1991-06-10T23:59:59.000Z

336

Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy  

DOE Green Energy (OSTI)

The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project is economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.

Not Available

1981-03-01T23:59:59.000Z

337

Petroleum storage and transportation capacities. Volume III. Petroleum pipeline  

SciTech Connect

Capacity data as of December 31, 1978, are presented for common carrier crude lines, refined petroleum product lines, and liquified petroleum gas/natural gas liquids (LPG/NGL) lines in the form of maps and tables. The maps include: a United States map, including all lines, for crude lines, petroleum product lines, and LPG/NGL lines, each separately; and Petroleum Administration for Defense (PAD) maps for crude and petroleum product lines, each separately. Tables presenting more detailed information than contained on the maps and intended to be used as a supplement to them are included in the Appendices. Several significant trends have developed in the years since the 1967 report was published. The United States has imported increasing amounts of foreign crude oil to supplement its declining domestic production. This foreign crude oil is imported through water terminals and their associated facilities and distributed through petroleum pipelines to inland refineries. Major amounts of imported crude oil are transported by pipeline from the Gulf Coast to the Central and upper Midwest refineries. The trend at the present time is to mix these individual crude oils having similar qualities and deliver the mixes to the refineries. Also, it has become common to batch various combinations of crude oil, refined product, LPG, and petrochemicals through a single pipeline. This ability to ship various petroleum materials in a single pipeline has enhanced the flexibility of the pipeline network.

1979-01-01T23:59:59.000Z

338

NETL: Oil & Natural Gas Projects 00516 North Dakota Refining Capacity Study  

NLE Websites -- All DOE Office Websites (Extended Search)

North Dakota Refining Capacity Study North Dakota Refining Capacity Study DE-FE0000516 Goal The objective of the North Dakota Refining Capacity study is to assess the feasibility of increasing the oil refinery capacity in North Dakota, and, if possible, determine the scale of such an expansion, the slate of refined product(s) that would produce the most economic benefit, and the preferred ownership model, i.e., private, public or private-public. Performer North Dakota Association of Rural Electric Cooperatives (NDAREC) Corval Group, partnered with Purvin & Gertz and Mustang Engineering Background The genesis of this study came from an April 2008 report issued by the U.S. Geological Survey (USGS) asserting that North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. This assessment shows a 25-fold increase in the amount of recoverable oil compared to the USGS 1995 estimate of 151 million barrels of oil. The Bakken Formation estimate is larger than all other current USGS oil assessments of the lower 48 states and is the largest "continuous" oil accumulation ever assessed by the USGS. The new report points out that the new geologic models applied to the Bakken Formation, advances in drilling and production technologies, and recent oil discoveries have resulted in these substantially larger technically recoverable oil volumes. About 105 million barrels of oil were produced from the Bakken Formation by the end of 2007. In 2008, the formation produced another 27.2 million barrels of oil, which represented 43% of the stateÂ’s annual oil production of some 62.3 million barrels. Even though oil prices have dropped significantly in recent months, it appears that oil production from this formation will continue strong for decades to come. Most recently, a major production find has occurred in the Three Forks formation underlying the Bakken. This find is still undergoing significant testing, but early evidence suggests it represents another significant recoverable pool of oil in western North Dakota.

339

High-Octane Fuel from Refinery Exhaust Gas: Upgrading Refinery Off-Gas to High-Octane Alkylate  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus’ process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

None

2009-12-01T23:59:59.000Z

340

Reissner-Nordstrom Expansion  

E-Print Network (OSTI)

We propose a classical mechanism for the cosmic expansion during the radiation-dominated era. This mechanism assumes that the Universe is a two-component gas. The first component is a gas of ultra-relativistic "normal" particles described by an equation of state of an ideal quantum gas of massless particles. The second component consist of "unusual" charged particles (namely, either with ultra-high charge or with ultra-high mass) that provide the important mechanism of expansion due to their interaction with the "normal" component of the gas. This interaction is described by the Reissner--Nordstr\\"om metric purely geometrically -- the ``unusual'' particles are modeled as zero-dimensional naked singularities inside spheres of gravitational repulsion. The radius of a repulsive sphere is inversely proportional to the energy of an incoming particle or the temperature. The expansion mechanism is based on the inflating of the "unusual" particles (of charge $Q$) with the drop of the temperature -- this drives apart all neutral particles and particles of specific charge $q/m$ such that ${sign}(Q) q/m \\ge - 1$. The Reissner--Nordstr\\"om expansion naturally ends at recombination. We discuss the range of model parameters within which the proposed expansion mechanism is consistent with the restrictions regarding quantum effects.

Emil M. Prodanov; Rossen I. Ivanov; V. G. Gueorguiev

2007-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Implementing an Energy Management Strategy for a Houston Refinery  

E-Print Network (OSTI)

Intense competition and environmental regulation of industries utilizing combustion equipment have motivated many owners and operators to seek ways to reduce costs, improve performance, and minimize emissions. Energy management programs are being implemented throughout industry to improve equipment operating efficiencies, profitability, extend equipment life, prevent forced shutdowns, generate substantial fuel savings, track valuable information, and enhance compliance margins. A well designed and maintained energy management program translates to PROFIT added directly to the BOTTOM LINE. Woodward-Clyde Consultants (WCC) recently implemented and energy management program at the Lyondell-Citgo Refinery in Houston, Texas. The basis of the program is the 80/20 rule where 80% of the total potential savings are derived from optimizing the energy utilization from 20% of the combustion equipment. In this case, 11 out of 55 heaters were targeted for inclusion in the program. The fuel savings potential alone exceeded $1,250,000. In addition to the fuel savings, there were reduced costs from improved operation, as well as reduction in maintenance requirements and forced shutdowns. The remainder of this paper discusses the technical approach, the benefits, and the results of the program implemented at the Lyondell-Citgo Refinery.

Wood, S. C.; Agrawal, R. K.; Canon, D.

1996-04-01T23:59:59.000Z

342

The Universe Adventure - Expansion  

NLE Websites -- All DOE Office Websites (Extended Search)

Expansion: Chunk-by-Chunk Expansion: Chunk-by-Chunk A sample of the Universe. A very small portion of the Universe. In order to better understand the significance of expansion, let's look at a cubic sample of space. By considering a finite volume we can follow changes in the size of the Universe as we move forwards and backwards in time. Remember, only the size of the cube will change. The galaxies inside the cube stay the same size. This animation illustrates how our cubic piece of the Universe changes with time. If the Universe followed the simplest expansionary models, its size would increase linearly with time. The Universe would continue to expand at a constant rate forever. If you look at only a narrow time-slice of the Universe's history, it does, in fact, appear that this is how the Universe

343

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

344

Bed expansion crucible tests  

SciTech Connect

The Am/Cm program will vitrify the americium and curium currently stored in F-canyon. A batch flowsheet has been developed (with non-radioactive surrogate feed in place of the F-canyon solution) and tested full-scale in the 5-inch Cylindrical Induction Melter (CIM) facility at TNX. During a normal process run, a small bed expansion occurs when oxygen released from reduction of cerium (IV) oxide to cerium (III) oxide is trapped in highly viscous glass. The bed expansion is characterized by a foamy layer of glass that slowly expands as the oxygen is trapped and then dissipates when the viscosity of the foam becomes low enough to allow the oxygen to escape. Severe bed expansions were noted in the 5-inch CIM when re-heating after an interlock during the calcination phase of the heat cycle, escaping the confines of the melter vessel. In order to better understand the cause of the larger than normal bed expansion and to develop mitigating techniques, a series of three crucible tests were conducted.

Stone, M.E.

2000-04-04T23:59:59.000Z

345

Hydrotreating Pyrolytic Lignin to Produce a Refinery Feedstock (Poster)  

Science Conference Proceedings (OSTI)

Fast pyrolysis of biomass followed by water separation to produce pyrolytic lignin and hydrotreating of the lignin could be used to produce a stable volatile low-oxygen intermediate liquid. Such a liquid could be converted into a finished motor-fuel in a refinery, taking advantage of the existing infrastructure and economies of scale of refineries. Hydrotreating just the lignin would consume less hydrogen while preserving about half of the energy of the original oil. The aqueous by-products could be reformed to produce the needed hydrogen and would contain much of the unwanted acids and unstable oxygenates. To assess such intermediate liquids, several pyrolytic lignins were prepared by mixing pyrolysis oil with water at 1:1 and 3:1 ratios. The carboxylic acidity in the pyrolytic lignin was reduced to 24 and 10 mg-KOH/g-lignin compared to 81 in the whole oil. These lignins were hydrotreated using Ni-Mo(S)/alumina, Pt/char, or Pd/C(activated) in a semi-batch 1 L stirred autoclave. The oil was stabilized under hydrogen at 150-280 degrees C, then water and light organics were removed by partial depressurization. Hydrodeoxygenation was then performed at 340-400 degrees C. Total pressure was controlled at 70 or 170 bar with hydrogen gas. Organic liquid yields of 39-56% were obtained. For many experiments the organic oxygen content was oil, the volatility was greater than or equal to 94% and, on a carbon basis, the total yield of organic products miscible in hydrocarbons at a 1:10 ratio was over 50%. These properties are probably acceptable to a refinery.The residual liquids left in the reactor at the end of the experiment comprised 60-85% of the organic-phase product while the rest was condensate. 13C-NMR of the residual liquids showed that they were 50-80% aliphatic. 13C-NMR coupled with GC-MS identified phenolic compounds as the main oxygenates in most residual liquids.

French, R. J.

2013-09-01T23:59:59.000Z

346

Hydrotreating Pyrolytic Lignin to Produce a Refinery Feedstock (Poster)  

DOE Green Energy (OSTI)

Fast pyrolysis of biomass followed by water separation to produce pyrolytic lignin and hydrotreating of the lignin could be used to produce a stable volatile low-oxygen intermediate liquid. Such a liquid could be converted into a finished motor-fuel in a refinery, taking advantage of the existing infrastructure and economies of scale of refineries. Hydrotreating just the lignin would consume less hydrogen while preserving about half of the energy of the original oil. The aqueous by-products could be reformed to produce the needed hydrogen and would contain much of the unwanted acids and unstable oxygenates. To assess such intermediate liquids, several pyrolytic lignins were prepared by mixing pyrolysis oil with water at 1:1 and 3:1 ratios. The carboxylic acidity in the pyrolytic lignin was reduced to 24 and 10 mg-KOH/g-lignin compared to 81 in the whole oil. These lignins were hydrotreated using Ni-Mo(S)/alumina, Pt/char, or Pd/C(activated) in a semi-batch 1 L stirred autoclave. The oil was stabilized under hydrogen at 150-280 degrees C, then water and light organics were removed by partial depressurization. Hydrodeoxygenation was then performed at 340-400 degrees C. Total pressure was controlled at 70 or 170 bar with hydrogen gas. Organic liquid yields of 39-56% were obtained. For many experiments the organic oxygen content was <7%, acidity was < 7 mg-KOH/g-oil, the volatility was greater than or equal to 94% and, on a carbon basis, the total yield of organic products miscible in hydrocarbons at a 1:10 ratio was over 50%. These properties are probably acceptable to a refinery.The residual liquids left in the reactor at the end of the experiment comprised 60-85% of the organic-phase product while the rest was condensate. 13C-NMR of the residual liquids showed that they were 50-80% aliphatic. 13C-NMR coupled with GC-MS identified phenolic compounds as the main oxygenates in most residual liquids.

French, R. J.

2013-09-01T23:59:59.000Z

347

Market Assessment of Planned Refinery Outages March Â… June 2009  

Gasoline and Diesel Fuel Update (EIA)

09)/1 09)/1 Market Assessment of Planned Refinery Outages March - June 2009 March 2009 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requestor.

348

Optimization of Steam Network in Tehran Oil Refinery  

E-Print Network (OSTI)

Dominated energy crisis in the world dictates to reduce energy consumption and identify energy saving opportunities in large and complex industries especially in oil refining industry. In this paper, Tehran oil refinery is considered as a proper case study and its steam network is analyzed. At the first step, using STAR software, the steam network is simulated and then optimized, which determines the optimum conditions. In this regard, energy saving potential was identified and total operating costs (TOC) in two states of fixed fuel fraction and changeable fuel fraction was calculated. In addition, different scenarios were proposed like using HRSG instead of two boilers. The results showed that amount of total operating cost has been reduced, as the result the best scenario regarding TOC is selected.

Khodaie, H.; Nasr, M. R. J.

2008-01-01T23:59:59.000Z

349

Low Temperature Waste Energy Recovery at Chemical Plants and Refineries  

E-Print Network (OSTI)

Technologies to economically recover low-temperature waste energy in chemical plants and refineries are the holy grail of industrial energy efficiency. Low temperature waste energy streams were defined by the Texas Industries of the Future Chemical and Refining Sectors Advisory Committee as streams with a temperature below 400 degrees F. Their waste energy streams were also characterized as to state, flow rate, heat content, source and temperature. These criteria were then used to identify potential candidates of waste heat recovery technologies that might have an application in these industries. Four technologies that met the criteria of the Advisory Committee included: organic rankine cycle (ORC), absorption refrigeration and chilling, Kalina cycle, and fuel cell technologies. This paper characterizes each of these technologies, technical specifications, limitations, potential costs/ payback and commercialization status as was discussed in the Technology Forum held in Houston, TX in May 2012 (TXIOF 2012).

Ferland, K.; papar, R.; Quinn, J.; Kumar, S.

2013-01-01T23:59:59.000Z

350

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

351

Comparison of Productive Capacity  

U.S. Energy Information Administration (EIA)

Appendix B Comparison of Productive Capacity Comparisons of base case productive capacities for this and all previous studies were made (Figure B1).

352

OPEC and lower oil prices: Impacts on production capacity, export refining, domestic demand and trade balances  

SciTech Connect

The East-West Center received a research grant from the US Department of Energy's Office of Policy, Planning, and Analysis to study the impact of lower oil prices on OPEC production capacity, on export refineries, and the petroleum trade. The project was later expanded to include balance-of-payments scenarios and impacts on OPEC domestic demand. The Department of Energy requested that the study focus on the Persian Gulf countries, as these countries have the largest share of OPEC reserves and production. Since then, staff members from the East-West Center have visited Iran, the United Arab Emirates, and Saudi Arabia and obtained detailed information from other countries. In addition, the East-West Center received from a number of large international oil companies and national governments valuable information on OPEC production capabilities. In order to safeguard the confidential nature of this information, these data have been aggregated in this report. The East-West Center considers the results presented to be the most up-to-date information and analysis available today. This report also provides a major reassessment of the export refining and economic competitiveness of Middle East refineries. As pioneers of the research on OPEC export refineries, the East-West Center has fully reevaluated the performance and outlook of these refineries as of the present. 21 figs., 20 tabs.

Fesharaki, F.; Fridley, D.; Isaak, D.; Totto, L.; Wilson, T.

1989-01-01T23:59:59.000Z

353

Market Assessment of Refinery Outages Planned for March 2011 through June 2011  

Gasoline and Diesel Fuel Update (EIA)

Assessment of Refinery Assessment of Refinery Outages Planned for March 2011 through June 2011 APRIL 2011 www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration / Market Assessment of Planned Refinery Outages / March 2011 - June 2011 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration / Market Assessment of Planned Refinery Outages /

354

Appendix D Short-Term Analysis of Refinery Costs and Supply  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Short-Term Analysis of Refinery Costs and Supply 9302 Appendix D Short-Term Analysis of Refinery Costs and Supply As a result of the new regulations issued by the U.S. Estimating Components of the Distillate Environmental Protection Agency (EPA) for ultra-low- Blend Pool sulfur diesel fuel (ULSD) the U.S. refining industry faces two major challenges: to meet the more stringent specifi- The initial step of the analysis was to analyze the poten- cations for diesel product, and to keep up with demand tial economics of producing ULSD for each refinery. by producing more diesel product from feedstocks of Using input and output data submitted to the Energy lower quality. Some refineries in the United States and Information Administration (E1A) by refiners, the cur-

355

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network (OSTI)

Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NOx emissions while also generating electricity at an attractive heat rate. Design considerations and system costs are presented.

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

1985-05-01T23:59:59.000Z

356

,"U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks...  

U.S. Energy Information Administration (EIA) Indexed Site

S1","MDGSXUS1","MRESXUS1","MPRSXUS1" "Date","U.S. Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)","U.S. Reformulated Motor...

357

U.S. Refinery and Blender Net Production of Normal Butane ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery and Blender Net Production of Normal Butane (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993-884: 268: 4,851: 6,387: 6,489 ...

358

Valero: Houston Refinery Uses Plant-Wide Assessment to Develop an Energy Optimization and Management System  

SciTech Connect

This Industrial Technologies Program case study describes an energy assessment team's recommendations for saving $5 million in energy, water, and other costs at an oil refinery in Houston, Texas.

Not Available

2005-08-01T23:59:59.000Z

359

U.S. Refinery Grade Butane Stocks at Bulk Terminals (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Grade Butane Stocks at Bulk Terminals (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; ...

360

U.S. Refinery Grade Butane Stocks at Bulk Terminals (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Grade Butane Stocks at Bulk Terminals (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 1,077: 999: 1,362: ...

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Models and algorithms for a multilevel control system of primary oil refinery installations  

Science Conference Proceedings (OSTI)

Algorithms and mathematical models for the technological process of primary oil refinery operating in the uncertain conditions are developed; the solution of the optimal control problem in the form of stochastic programming with probabilistic characteristics ...

I. A. Guseinov; E. A. Melikov; N. A. Khanbutaeva; I. R. Efendiev

2012-02-01T23:59:59.000Z

362

West Coast (PADD 5) Foreign Crude Oil Refinery Receipts by Tank ...  

U.S. Energy Information Administration (EIA)

West Coast (PADD 5) Foreign Crude Oil Refinery Receipts by Tank Cars (Rail) (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

363

Assuring Mechanical Integrity of Refinery Equipment Through Global ON-Stream Inspection  

SciTech Connect

The development of global on-stream inspection technology will have a dramatic effect on how refinery operations are managed in the U.S. in the future. Global on-stream inspection will provide assurance of the mechanical integrity of critical plant equipment and will allow refineries to operate more efficiently with less impact on our environment and with an increased margin of safety.

John W. Berthold

2006-02-22T23:59:59.000Z

364

Network Routing Capacity  

E-Print Network (OSTI)

We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every non-negative rational number is the routing capacity of some network. We also determine the routing capacity for various example networks. Finally, we discuss the extension of routing capacity to fractional coding solutions and show that the coding capacity of a network is independent of the alphabet used.

Jillian Cannons; Randall Dougherty; Christopher Freiling; Kenneth Zeger

2005-01-01T23:59:59.000Z

365

U.S. Refinery & Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total 526,996 566,851 559,032 581,600 578,456 543,388 1981-2013 Crude Oil 445,937 474,296 474,991 497,241 489,887 468,825 1981-2013 Natural Gas Plant Liquids and Liquefied Refinery Gases 12,805 11,759 12,769 13,227 13,760 16,794 1981-2013 Pentanes Plus 4,949 4,341 4,752 4,734 5,331 5,666 1981-2013 Liquefied Petroleum Gases 7,856 7,418 8,017 8,493 8,429 11,128 1981-2013 Ethane 1981-1992 Normal Butane 2,668 1,880 1,998 2,014 2,083 4,711 1981-2013 Isobutane 5,188 5,538 6,019 6,479 6,346 6,417 1981-2013 Other Liquids 68,254 80,796 71,272 71,132 74,809 57,769 1981-2013 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons 32,667 34,665 34,097 35,446 36,356 33,881 1981-2013

366

U.S. Refinery and Blender Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 6,567,929 6,641,293 6,527,069 6,735,067 6,815,590 6,794,407 1981-2012 Liquefied Refinery Gases 238,904 230,431 227,470 240,454 225,992 230,413 1981-2012 Ethane/Ethylene 7,323 6,671 7,069 7,228 7,148 6,597 1981-2012 Ethane 5,145 4,608 5,229 5,200 5,105 4,835 1993-2012 Ethylene 2,178 2,063 1,840 2,028 2,043 1,762 1993-2012 Propane/Propylene 205,179 190,020 196,011 204,223 201,492 202,309 1981-2012 Propane 120,596 114,268 106,177 102,913 98,508 100,933 1995-2012 Propylene 84,583 75,752 89,834 101,310 102,984 101,376 1993-2012 Normal Butane/Butylene 24,285 30,887 24,148 30,281 17,449 20,580 1981-2012 Normal Butane 25,715 33,092 25,825 32,094 19,263 22,965 1993-2012

367

U.S. Refinery and Blender Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total 559,639 599,643 591,916 616,905 613,451 578,101 1981-2013 Liquefied Refinery Gases 24,599 26,928 25,443 26,819 25,951 19,023 1981-2013 Ethane/Ethylene 464 426 407 441 487 379 1981-2013 Ethane 317 277 283 312 332 232 1993-2013 Ethylene 147 149 124 129 155 147 1993-2013 Propane/Propylene 16,840 17,792 16,966 17,839 18,063 17,254 1981-2013 Propane 8,051 8,949 8,756 9,002 9,153 8,816 1995-2013 Propylene 8,789 8,843 8,210 8,837 8,910 8,438 1993-2013 Normal Butane/Butylene 7,270 8,876 8,122 8,676 7,664 1,738 1981-2013 Normal Butane 7,447 9,044 8,314 8,832 8,067 1,743 1993-2013 Butylene -177 -168 -192 -156 -403 -5 1993-2013 Isobutane/Isobutylene

368

U.S. Refinery & Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 6,204,500 6,277,893 6,169,893 6,345,372 6,422,710 6,406,693 1981-2012 Crude Oil 5,532,097 5,361,287 5,232,656 5,374,094 5,404,347 5,489,516 1981-2012 Natural Gas Plant Liquids and Liquefied Refinery Gases 184,383 177,559 177,194 161,479 178,884 186,270 1981-2012 Pentanes Plus 64,603 55,497 59,100 56,686 63,385 63,596 1981-2012 Liquefied Petroleum Gases 119,780 122,062 118,094 104,793 115,499 122,674 1981-2012 Ethane 1981-1992 Normal Butane 48,292 50,024 48,509 43,802 47,571 52,246 1981-2012 Isobutane 71,488 72,038 69,585 60,991 67,928 70,428 1981-2012 Other Liquids 488,020 739,047 760,043 809,799 839,479 730,907 1981-2012 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons

369

Refinery & Blender Net Production of Total Finished Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

& Blender Net Production & Blender Net Production Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha For Petro. Feed. Use Other Oils For Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

370

Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams  

SciTech Connect

We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

Clifford, C.E.B.; Schobert, H.H. [Pennsylvania State University, PA (United States)

2008-07-01T23:59:59.000Z

371

Evaluating the role of uncertainty in electric utility capacity planning  

SciTech Connect

This final report on Evaluating the Role of Uncertainty in Electric Utility Capacity Planning is divided into separate sections addressing demand, supply and the simultaneous consideration of both and describes several mathematical characterizations of the effects of uncertainty on the capacity expansion decision. The basic objective is to develop more robust models which can appropriately include the fundamental uncertainties associated with capacity expansion planning in the electric utility industry. Much of what has been developed in this project has been incorporated into a long-term, computer model for capacity expansion planning. A review is provided of certain deterministic capacity expansion methodologies. The effect of load curve uncertainty on capacity planning is considered and the use of a certain expected load curve to account for uncertainty in demand is proposed. How uncertainty influences the allocation of capital costs among the various load curve realizations is also discussed. The supply side uncertainties of fuel prices and random availability of generating units are considered. In certain cases it is shown that the use of the expected fuel costs will furnish a solution which minimizes the total expected costs. The effect of derating units to account for their random availability is also characterized. A stochastic linear program formulated to examine the simultaneous consideration of fuel cost and demand uncertainties is analyzed. This volume includes the report text one appendix with information on linear programming-based analysis of marginal cost pricing in the electric utility industry.

Soyster, A.L.

1981-08-31T23:59:59.000Z

372

Year/PAD District Cokers Catalytic Crackers Hydrocrackers Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2011 - 2013 (Barrels per Calendar Day) Reformers Capacity Inputs 2011 2,396,787 5,794,214 1,687,745 2,093,849 4,952,455 1,466,627 2,570,970 3,346,457 93,700 673,300 41,500 37,932 490,729 18,030 PADD I 188,389 266,950 373,897 1,176,972 254,000 350,063 1,017,616 223,751 PADD II 664,852 812,244 1,318,440 2,933,842 841,285 1,183,318 2,570,348 744,638 PADD III 1,243,427 1,629,967 80,350 185,800 28,200 63,362 158,192 18,214 PADD IV 96,649 120,190 530,400 824,300 522,760 459,175 715,570 461,995 PADD V 377,652 517,106 2012 2,499,293 5,611,191 1,706,540 2,173,336 4,901,284 1,528,708 2,614,571 3,246,874 74,900 489,300 20,000

373

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Asphalt Hydrogen Coke Sulfur Capacity Distribution (Barrelstill gas, natural gas, and coke. Other CO2 Emissions (MtCE)Coal Natural Gas Petroleum Coke Still Gas Residual Fuel oil

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

374

Hydro Aluminium Sunndal Expansion Project  

Science Conference Proceedings (OSTI)

Apr 1, 2003 ... Hydro Aluminium Sunndal Expansion Project ... very competitive, and it is the prerequisite for the present project, both in terms of cost efficiency ...

375

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

376

A Case Study of Steam System Evaluation in a Petroleum Refinery  

E-Print Network (OSTI)

ASI conducted a steam system evaluation study at a multinational petroleum Refinery located in the Eastern UK during June-July, 1999. At this refinery, Steam, Fuel and Electricity systems are inter-connected. Steam is generated from direct fuel fired boilers as well from Furnace and Kiln waste heat. Steam is also supplied from the CHP waste heat boilers. Steam generation averages 1,500,000 lbs/hr and does not change significantly between winter and summer since steam needs for process and power generation dominates way above comfort heating. To generate steam, the refinery spends about £28 million per year ($46 million). The system evaluation study identified 31 Energy & steam system cost savings measures (ECM) to save fuel, steam and condensate in the areas of: Steam generation, Steam distribution, Steam Utilization, Condensate recovery, and Combustion optimization in kilns. By implementing all the above 31 ECMs, the refinery is estimated to save $3.5 million annually. Based on our preliminary investment estimate the average payback would be within 2 years. The refinery also would reduce 5600 metric tons Carbon emission to environment. Some of the opportunities address the installation defects of the steam system components that would improve the system reliability and longevity.

Venkatesan, V. V.; Iordanova, N.

2003-05-01T23:59:59.000Z

377

FEASIBILITY STUDY FOR A PETROLEUM REFINERY FOR THE JICARILLA APACHE TRIBE  

Science Conference Proceedings (OSTI)

A feasibility study for a proposed petroleum refinery for the Jicarilla Apache Indian Reservation was performed. The available crude oil production was identified and characterized. There is 6,000 barrels per day of crude oil production available for processing in the proposed refinery. The proposed refinery will utilize a lower temperature, smaller crude fractionation unit. It will have a Naphtha Hydrodesulfurizer and Reformer to produce high octane gasoline. The surplus hydrogen from the reformer will be used in a specialized hydrocracker to convert the heavier crude oil fractions to ultra low sulfur gasoline and diesel fuel products. The proposed refinery will produce gasoline, jet fuel, diesel fuel, and a minimal amount of lube oil. The refinery will require about $86,700,000 to construct. It will have net annual pre-tax profit of about $17,000,000. The estimated return on investment is 20%. The feasibility is positive subject to confirmation of long term crude supply. The study also identified procedures for evaluating processing options as a means for American Indian Tribes and Native American Corporations to maximize the value of their crude oil production.

John D. Jones

2004-10-01T23:59:59.000Z

378

Modeling Capacity Reservation Contract  

E-Print Network (OSTI)

In this paper we model a scenario where a chip designer (buyer) buys capacity from chip manufacturers (suppliers) in the presence of demand uncertainty faced by the buyer. We assume that the buyer knows the probability distribution of his demand. The supplier offers the buyer to reserve capacity in advance at a price that is lower than the historical average of the spot price. The supplier’s price (if the buyer reserves capacity in advance) is function of her capacity, demand for her capacity, unit production cost, the average spot market price and the amount of capacity reserved by the buyer. Based on these parameters we derive the price the suppliers will charge. We formulate the problem from the buyer’s perspective. The buyer’s decisions are how much capacity to reserve and from how many suppliers. The optimal solution is obtained numerically. Our model addresses the following issues that are not covered in the current literature on capacity reservation models. In the existing literature the supplier’s price is an exogenous parameter. We model the supplier’s price from relevant parameters mentioned above. This makes our model richer. For example, if the expected capacity utilization for the supplier is likely to be low then the supplier will charge a lower price for capacity reservation. In reality, the buyer sources from multiple suppliers. Most mathematical models on capacity reservation, we are aware of, assumes a single buyer and a single supplier. We generalize this to a single buyer and multiple suppliers.

Jishnu Hazra; B. Mahadevan; Sudhi Seshadri

2002-01-01T23:59:59.000Z

379

,"U.S. Refinery Net Input"  

U.S. Energy Information Administration (EIA) Indexed Site

3,"Monthly","9/2013","1/15/2005" 3,"Monthly","9/2013","1/15/2005" ,"Data 2","Alaskan Crude Oil Receipts",1,"Monthly","9/2013","1/15/1986" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_inpt2_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_inpt2_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:21:05 AM" "Back to Contents","Data 1: Refinery Net Input" "Sourcekey","MTTRO_NUS_1","MCRRO_NUS_1","MNGRO_NUS_1","MPPRO_NUS_1","MLPRO_NUS_1","MBNRO_NUS_1","MBIRO_NUS_1","MOLRO_NUS_1","MOHRO_NUS_1","M_EPOOOH_YIY_NUS_MBBL","M_EPOOXXFE_YIY_NUS_MBBL","MMTRO_NUS_1","MOORO_NUS_1","M_EPOOR_YIY_NUS_MBBL","MFERO_NUS_1","M_EPOORD_YIY_NUS_MBBL","M_EPOORO_YIY_NUS_MBBL","M_EPOOOXH_YIY_NUS_MBBL","MUORO_NUS_1","MNLRO_NUS_1","MKORO_NUS_1","MH1RO_NUS_1","MRURO_NUS_1","MBCRO_NUS_1","MO1RO_NUS_1","M_EPOBGRR_YIY_NUS_MBBL","MO3RO_NUS_1","MO4RO_NUS_1","MO5RO_NUS_1","MO6RO_NUS_1","MO7RO_NUS_1","MO9RO_NUS_1","MBARO_NUS_1"

380

,"U.S. Refinery Net Input"  

U.S. Energy Information Administration (EIA) Indexed Site

2,"Annual",2012,"6/30/2005" 2,"Annual",2012,"6/30/2005" ,"Data 2","Alaskan Crude Oil Receipts",1,"Annual",2012,"6/30/1986" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_inpt2_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_inpt2_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:21:04 AM" "Back to Contents","Data 1: Refinery Net Input" "Sourcekey","MTTRO_NUS_1","MCRRO_NUS_1","MNGRO_NUS_1","MPPRO_NUS_1","MLPRO_NUS_1","MBNRO_NUS_1","MBIRO_NUS_1","MOLRO_NUS_1","MOHRO_NUS_1","M_EPOOOH_YIY_NUS_MBBL","M_EPOOXXFE_YIY_NUS_MBBL","MMTRO_NUS_1","MOORO_NUS_1","M_EPOOR_YIY_NUS_MBBL","MFERO_NUS_1","M_EPOORD_YIY_NUS_MBBL","M_EPOOOXH_YIY_NUS_MBBL","MUORO_NUS_1","MNLRO_NUS_1","MKORO_NUS_1","MH1RO_NUS_1","MRURO_NUS_1","MBCRO_NUS_1","MO1RO_NUS_1","M_EPOBGRR_YIY_NUS_MBBL","MO3RO_NUS_1","MO4RO_NUS_1","MO5RO_NUS_1","MO6RO_NUS_1","MO7RO_NUS_1","MO9RO_NUS_1","MBARO_NUS_1"

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Petroleum Refinery Catalytic Reforming -- Cutting High Energy Costs  

E-Print Network (OSTI)

Hydrocarbon reforming involves a variety of chemical reactions at high temperatures and pressures in the presence of suitable catalysts. The conversion of naptha to high octane aromatics requires high energy to initiate and sustain the reaction at temperatures of 850-950oF. Hydrogen - rich off - gases are fired in combinations of process furnaces. Heat is transferred to hydrocarbon fluids by radiation, principally. Feed or return stream temperatures determine the need for convection sections. It is essential that the operation and maintenance of these furnaces be optimized to minimize production costs. This paper describes the performance testing and evaluation of a set of ten refinery furnaces used to thermally drive several reforming reactors and to regenerate catalysts. Firing rates provide an input of 216.2 x 106 Btu/hr. to the furnaces, at $1.90 per 106 Btu. The units are fitted with multiple natural draft burners. There is insufficient turbulence and swirl in the burners. Operators manually set up the burners with excessive airflows for normal, full-load firing. These furnaces represent production limits. Products of combustion exhaust at high thermal levels - the range is from 985-1700oF. The mixed gases flow through a "waste heat" boiler, or they bypass the boiler and enter a single stack. Steam generation at 150 psig averages 38,200 lb/hr. Heat is wasted via the bypass at a rate of 41.1x106 Btu /hr. at 1240oF. When airflows are reduced (to 15% excess air) the loss will be 18.7x106 Btu/hr. at 1180oF. Installation of a second, parallel waste heat boiler will result in a saving of l3.4x106 Btu/hr. Energy savings at this furnace complex will be equivalent to $628,700 per year. Investment costs were estimated to be less than $250,000 for the proposed heat trap addition.

Viar, W. L.

1979-01-01T23:59:59.000Z

382

,"Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities"  

U.S. Energy Information Administration (EIA) Indexed Site

Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities" Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities",16,"Monthly","9/2013","1/15/1985" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_crq_a_epc0_ycs_pct_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_crq_a_epc0_ycs_pct_m.htm" ,"Source:","Energy Information Administration"

383

Mazheikiai refinery modernization study. Final report. Volume 1. Export trade information  

SciTech Connect

The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. This is Volume 1 of the study.

Not Available

1994-01-01T23:59:59.000Z

384

Mazheikiai refinery modernization study. Final report. Volume 3. Export trade information  

Science Conference Proceedings (OSTI)

The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. This is Volume 3 of the study.

Not Available

1994-01-01T23:59:59.000Z

385

Mazheikiai refinery modernization study. Final report. Volume 2. Export trade information  

Science Conference Proceedings (OSTI)

The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. This is Volume 2 of the study.

Not Available

1994-01-01T23:59:59.000Z

386

Potentials for fuel cells in refineries and chlor-alkali plants  

DOE Green Energy (OSTI)

The market potentials for fuel cell cogeneration systems in petroleum refineries and chlor-alkali plants were evaluated. the most promising application appears to be in chlor-alkali plants where the production process is electricity intensive. Future anticipated changes in the production process are favorable to the use of fuel cells. The energy use in refineries is steam intensive with the required steam pressures ranging from approximately 15 to 650 psig. The near-term use of fuel cell cogeneration in refineries is not as attractive as in chlor-alkali plants. The phosphoric acid fuel cell is the most developed and the most competitive, but its use is limited by its being able to produce only low-pressure steam. Over the longer term, the molten carbonate and the solid oxide fuel cell both of which operate at significantly higher temperatures, are technically very attractive. However, they do not appear to be cost competitive with conventional systems.

Altseimer, J.H.; Roach, F.

1986-01-01T23:59:59.000Z

387

Increasing Distillate Production at U.S. Refineries Â… Past Changes and Future Potential  

Gasoline and Diesel Fuel Update (EIA)

Increasing Distillate Production at U.S. Refineries - Past Changes and Future Increasing Distillate Production at U.S. Refineries - Past Changes and Future Potential U.S. Energy Information Administration Office of Petroleum, Gas, and Biofuels Analysis Department of Energy Office of Policy and International Affairs October 2010 Summary World consumption growth for middle distillate fuels (diesel fuel, heating oil, kerosene, and jet fuel) has exceeded the consumption growth for gasoline for some time, and the United States is no exception. Although the decrease in the ratio of total gasoline consumption to consumption for middle distillate fuels has been small in the United States, recent legislation requiring increased use of renewable fuels has resulted in forecasts that project a decline in consumption for petroleum-based gasoline from refineries, which would accelerate the decline in the

388

Short-Term Schedulability Analysis of Crude Oil Operations in Refinery With Oil Residency Time Constraint Using Petri Nets  

Science Conference Proceedings (OSTI)

A short-term schedule for oil refinery should arrange all the activities in every detail for the whole scheduling horizon, leading to a complex problem. There lacks efficient techniques and software tools for its solution applicable to industrial oil ... Keywords: Automated manufacturing system, Petri net (PN), hybrid Petri net, oil refinery, scheduling, short-term scheduling

NaiQi Wu; Feng Chu; Chengbin Chu; MengChu Zhou

2008-11-01T23:59:59.000Z

389

Modeling and Conflict Detection of Crude Oil Operations for Refinery Process Based on Controlled Colored Timed Petri Net  

Science Conference Proceedings (OSTI)

Recently, there has been a great interest in the modeling and analysis of process industry, and various models are proposed for different uses. It is meaningful to have a model to serve as an analytical aid tool in short-term scheduling for oil refinery ... Keywords: Hybrid systems, petri net, refinery process, system modeling

Naiqi Wu; Liping Bai; Chengbin Chu

2007-07-01T23:59:59.000Z

390

CTR/ANL, July 2010 1 Updated Estimation of Energy Efficiencies of U.S. Petroleum Refineries  

E-Print Network (OSTI)

for emissions associated with hydrogen production. Hydrogen is generated in a refinery's catalytic reformer-process distillate material into commercial diesel and jet fuel. From this perspective catalytic reforming transfers refinery operations, most notably catalytic reforming. References Bredeson, L., Quiceno-Gonzalez, R., Riera

Argonne National Laboratory

391

Increasing State Capacity Through Clans  

E-Print Network (OSTI)

their role in increasing state capacity With the decline ofhere focus on state capacity and the associated discussionselements of state capacity during the transition from one

Doyle, Jr, Thomas Martin

2009-01-01T23:59:59.000Z

392

Natural Gas Underground Storage Capacity (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of...

393

Cat. Hydro-Cracking Gas Oil Downstream Charge Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

394

Cat. Hydro-Cracking Residual Downstream Charge Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

395

Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

396

Capacity Markets for Electricity  

E-Print Network (OSTI)

Designing Markets for Electricity. Wiley IEEE Press. [25]in the England and Wales Electricity Market”, Power WorkingFelder (1996), “Should Electricity Markets Have a Capacity

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

397

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute...

398

,"U.S. Refinery Net Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1993" Monthly","9/2013","1/15/1993" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_refp2_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_refp2_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:28:06 AM" "Back to Contents","Data 1: U.S. Refinery Net Production" "Sourcekey","MTTRX_NUS_1","MLPRX_NUS_1","METRX_NUS_1","MENRX_NUS_1","MEYRX_NUS_1","MPRRX_NUS_1","MPARX_NUS_1","MPLRX_NUS_1","MBNRX_NUS_1","MBURX_NUS_1","MBYRX_NUS_1","MBIRX_NUS_1","MIIRX_NUS_1","MIYRX_NUS_1","MGFRX_NUS_1","MGRRX_NUS_1","MG1RX_NUS_1","M_EPM0RO_YPY_NUS_MBBL","MG4RX_NUS_1","MG5RX_NUS_1","M_EPM0CAL55_YPY_NUS_MBBL","M_EPM0CAG55_YPY_NUS_MBBL","MG6RX_NUS_1","MGARX_NUS_1","MKJRX_NUS_1","M_EPJKC_YPY_NUS_MBBL","M_EPJKM_YPY_NUS_MBBL","MKERX_NUS_1","MDIRX_NUS_1","MD0RX_NUS_1","MD1RX_NUS_1","MDGRX_NUS_1","MRERX_NUS_1","MRXRX_NUS_1","MRMRX_NUS_1","MRGRX_NUS_1","MPCRX_NUS_1","MPNRX_NUS_1","MPORX_NUS_1","MNSRX_NUS_1","MLURX_NUS_1","M_EPPLN_YPY_NUS_MBBL","M_EPPLP_YPY_NUS_MBBL","MWXRX_NUS_1","MCKRX_NUS_1","MCMRX_NUS_1","MCORX_NUS_1","MAPRX_NUS_1","MSGRX_NUS_1","MMSRX_NUS_1","MMFRX_NUS_1","MMNRX_NUS_1","MPGRX_NUS_1"

399

,"U.S. Refinery Net Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1993" Annual",2012,"6/30/1993" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_refp2_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_refp2_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:28:05 AM" "Back to Contents","Data 1: U.S. Refinery Net Production" "Sourcekey","MTTRX_NUS_1","MLPRX_NUS_1","METRX_NUS_1","MENRX_NUS_1","MEYRX_NUS_1","MPRRX_NUS_1","MPARX_NUS_1","MPLRX_NUS_1","MBNRX_NUS_1","MBURX_NUS_1","MBYRX_NUS_1","MBIRX_NUS_1","MIIRX_NUS_1","MIYRX_NUS_1","MGFRX_NUS_1","MGRRX_NUS_1","MG1RX_NUS_1","M_EPM0RO_YPY_NUS_MBBL","MG4RX_NUS_1","MG5RX_NUS_1","M_EPM0CAL55_YPY_NUS_MBBL","M_EPM0CAG55_YPY_NUS_MBBL","MG6RX_NUS_1","MGARX_NUS_1","MKJRX_NUS_1","M_EPJKC_YPY_NUS_MBBL","M_EPJKM_YPY_NUS_MBBL","MKERX_NUS_1","MDIRX_NUS_1","MD0RX_NUS_1","MD1RX_NUS_1","MDGRX_NUS_1","MRERX_NUS_1","MRXRX_NUS_1","MRMRX_NUS_1","MRGRX_NUS_1","MPCRX_NUS_1","MPNRX_NUS_1","MPORX_NUS_1","MNSRX_NUS_1","MLURX_NUS_1","M_EPPLN_YPY_NUS_MBBL","M_EPPLP_YPY_NUS_MBBL","MWXRX_NUS_1","MCKRX_NUS_1","MCMRX_NUS_1","MCORX_NUS_1","MAPRX_NUS_1","MSGRX_NUS_1","MMSRX_NUS_1","MMFRX_NUS_1","MMNRX_NUS_1","MPGRX_NUS_1"

400

Capacity on Finsler Spaces  

E-Print Network (OSTI)

Here, the concept of electric capacity on Finsler spaces is introduced and the fundamental conformal invariant property is proved, i.e. the capacity of a compact set on a connected non-compact Finsler manifold is conformal invariant. This work enables mathematicians and theoretical physicists to become more familiar with the global Finsler geometry and one of its new applications.

Bidabad, B

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Liquid heat capacity lasers  

DOE Patents (OSTI)

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

402

capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment

403

Battery capacity indicator  

SciTech Connect

This patent describes a battery capacity indicator for providing a continuous indication of battery capacity for a battery powered device. It comprises means for periodically effecting a first and a second positive discharge rate of the battery; voltage measurement means, for measuring the battery terminal voltage at the first and second positive discharge rates during the operation of the device, and for generating a differential battery voltage value in response thereto; memory means for storing a set of predetermined differential battery voltage values and a set of predetermined battery capacity values, each of the set of predetermined differential battery voltage values defining one of the set of predetermined battery capacity values; comparison means, coupled to the memory means and to the voltage measurement means, for comparing the measured differential battery voltage values with the set of predetermined differential battery voltage values, and for selecting the predetermined battery capacity value corresponding thereto.

Kunznicki, W.J.

1991-07-16T23:59:59.000Z

404

High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources  

DOE Green Energy (OSTI)

This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

Laxson, A.; Hand, M. M.; Blair, N.

2006-10-01T23:59:59.000Z

405

Expansion of the U.S. Natural Gas Pipeline Network:  

Gasoline and Diesel Fuel Update (EIA)

Expansion of the U.S. Natural Gas Pipeline Network: Expansion of the U.S. Natural Gas Pipeline Network: Additions in 2008 and Projects through 2011 This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives. Questions or comments on this article should be directed to Damien Gaul at damien.gaul@eia.doe.gov or (202) 586-2073. Robust construction of natural gas infrastructure in 2008 resulted in the completion of 84 pipeline projects in the lower 48 States, adding close to 4,000 miles of natural gas pipeline. These completions of new natural gas pipelines and expansions of existing pipelines in the United States

406

Allocation of energy use in petroleum refineries to petroleum products : implications for life-cycle energy use and emission inventory of petroleum transportation fuels.  

Science Conference Proceedings (OSTI)

Studies to evaluate the energy and emission impacts of vehicle/fuel systems have to address allocation of the energy use and emissions associated with petroleum refineries to various petroleum products because refineries produce multiple products. The allocation is needed in evaluating energy and emission effects of individual transportation fuels. Allocation methods used so far for petroleum-based fuels (e.g., gasoline, diesel, and liquefied petroleum gas [LPG]) are based primarily on mass, energy content, or market value shares of individual fuels from a given refinery. The aggregate approach at the refinery level is unable to account for the energy use and emission differences associated with producing individual fuels at the next sub-level: individual refining processes within a refinery. The approach ignores the fact that different refinery products go through different processes within a refinery. Allocation at the subprocess level (i.e., the refining process level) instead of at the aggregate process level (i.e., the refinery level) is advocated by the International Standard Organization. In this study, we seek a means of allocating total refinery energy use among various refinery products at the level of individual refinery processes. We present a petroleum refinery-process-based approach to allocating energy use in a petroleum refinery to petroleum refinery products according to mass, energy content, and market value share of final and intermediate petroleum products as they flow through refining processes within a refinery. The results from this study reveal that product-specific energy use based on the refinery process-level allocation differs considerably from that based on the refinery-level allocation. We calculated well-to-pump total energy use and greenhouse gas (GHG) emissions for gasoline, diesel, LPG, and naphtha with the refinery process-based allocation approach. For gasoline, the efficiency estimated from the refinery-level allocation underestimates gasoline energy use, relative to the process-level based gasoline efficiency. For diesel fuel, the well-to-pump energy use for the process-level allocations with the mass- and energy-content-based weighting factors is smaller than that predicted with the refinery-level allocations. However, the process-level allocation with the market-value-based weighting factors has results very close to those obtained by using the refinery-level allocations. For LPG, the refinery-level allocation significantly overestimates LPG energy use. For naphtha, the refinery-level allocation overestimates naphtha energy use. The GHG emission patterns for each of the fuels are similar to those of energy use.We presented a refining-process-level-based method that can be used to allocate energy use of individual refining processes to refinery products. The process-level-based method captures process-dependent characteristics of fuel production within a petroleum refinery. The method starts with the mass and energy flow chart of a refinery, tracks energy use by individual refining processes, and distributes energy use of a given refining process to products from the process. In allocating energy use to refinery products, the allocation method could rely on product mass, product energy contents, or product market values as weighting factors. While the mass- and energy-content-based allocation methods provide an engineering perspective of energy allocation within a refinery, the market-value-ased allocation method provides an economic perspective. The results from this study show that energy allocations at the aggregate refinery level and at the refining process level could make a difference in evaluating the energy use and emissions associated with individual petroleum products. Furthermore, for the refining-process-level allocation method, use of mass -- energy content- or market value share-based weighting factors could lead to different results for diesel fuels, LPG, and naphtha. We suggest that, when possible, energy use allocations should be made at the lowest subprocess level

Wang, M.; Lee, H.; Molburg, J.

2004-01-01T23:59:59.000Z

407

Crossroads Expansion | Open Energy Information  

Open Energy Info (EERE)

Expansion Expansion Jump to: navigation, search Name Crossroads Expansion Facility Crossroads Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oklahoma Gas & Electric Developer RES Americas Energy Purchaser Oklahoma Gas & Electric Coordinates 36.021°, -98.667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.021,"lon":-98.667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

408

Job Expansion Tax Credit (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

The Job Expansion Tax Credit allows eligible businesses to receive tax credits for each new full-time position created. Up to $500 per month per employee is available for up to three years. The...

409

Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)  

E-Print Network (OSTI)

for the first time. Bioelectrochemical treatability was evaluated relative to oxygen demand. MECs were-oiled refinery wastewater sample from one site (DOW1) produced the best results, with 2.1 ± 0.2 A/m2 (maximum current density), 79% chemical oxygen demand removal, and 82% headspace biological oxygen demand removal

410

U.S. Gross Inputs to Refineries (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

U.S. Gross Inputs to Refineries (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 11,583: 11,485: 11,484: 11,969: 12,269: 12,422 ...

411

CO2 Reduction through Optimization of Steam Network in Petroleum Refineries: Evaluation of New Scenario  

E-Print Network (OSTI)

Steam network of petroleum refinery is energy intensive, and consequently contribute significantly to the greenhouse gases emissions. A simple model for the estimation of CO2 emissions associated with operation of steam network as encountered in refineries is introduced. In conjunction with a shortcut model this model has been used to calculate of the steam network of an existing refinery aiming at minimization total annualized cost with considering emissions. In this paper, the case study is steam network of southern Tehran refinery. Simulation of this case has been performed in STAR software that licensed by energy system laboratory at K.N. Toosi University of Technology. Mathematical linear programming method has been applied to optimization of steam network. In addition, the short cut model of CO2 production has been provided for evaluation of steam network with considering CO2 production taxes and other economic effects in total annualized cost. Meanwhile, in this research, new scenario has been defined and evaluated. Results shows new scenario have 45 % less TAOC rather than base scenario in optimal condition.

Manesh, M. H. K; Khodaie, H.; Amidpour, M.

2008-01-01T23:59:59.000Z

412

U.S. Refinery Net Production of Normal Butane-Butylene (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Net Production of Normal Butane-Butylene (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005-4,241-2,244: 2,431: 7,319: 7,538 ...

413

Web based multilayered distributed SCADA/HMI system in refinery application  

Science Conference Proceedings (OSTI)

The paper describes system synthesis and architecture of a multilayered distributed SCADA/HMI system. The system is used for monitoring and control of refinery terminals for truck loading and oil products pipeline shipping. Network-centered, distributed ... Keywords: Data server, Fieldbuses, OPC protocols, Real time systems, SCADA/HMI

Adnan Salihbegovic; Vlatko Marinkovi?; Zoran Cico; Elvedin Karavdi?; Nina Delic

2009-03-01T23:59:59.000Z

414

THE NEW GASIFICATION PROJECT AT ENI SANNAZZARO REFINERY AND ITS INTEGRATION WITH A  

E-Print Network (OSTI)

Following the new regulation introduced in Europe in the last years, defining more stringent limits for the emissions to the atmosphere, the necessity to find an alternative use for the fuel oil has created a new challenge for the refineries. At the same time the need to improve the Italian power production has pushed Eni, the Italian energy company, to enter the electricity market.

Mwe Power Plant; Guido Collodi; Dario Camozzi; Snamprogetti Italy

2004-01-01T23:59:59.000Z

415

U.S. Kerosene-Type Jet Fuel Stocks at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Kerosene-Type Jet Fuel Stocks at Refineries (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 13,255: 14,640: 14,907: 15,583: 14,878 ...

416

Table 4b. U.S. Petroleum Refinery Balance (Million Barrels per Day ...  

U.S. Energy Information Administration (EIA)

Refinery Distillation Utilization Factor ..... 0.86 0.90 0.90 0.89 0.83 0.89 0.91 0.87 0.83 0.88 0.90 0.87 0.89 0.88 0.87 - = no data available Table 4b. U.S ...

417

Beyond Adiabatic Elimination: Systematic Expansions  

E-Print Network (OSTI)

We restate the adiabatic elimination approximation as the first term in a singular perturbation expansion. We use the invariant manifold formalism for singular perturbations in dynamical systems to identify systematic improvements on adiabatic elimination, connecting with well established quantum mechanical perturbation methods. We prove convergence of the expansions when energy scales are well separated. We state and solve the problem of hermiticity of improved effective hamiltonians.

I. L. Egusquiza

2013-09-03T23:59:59.000Z

418

Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1  

SciTech Connect

The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH`s, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass.

Altman, D.J.; Hazen, T.C.; Tien, A.J. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Worsztynowicz, A.; Ulfig, K. [Inst. for Ecology of Industrial Areas, Katowice (Poland)

1997-05-10T23:59:59.000Z

419

Development of Low Thermal Expansion Superalloys  

Science Conference Proceedings (OSTI)

For heat resistant alloys it is useful to decrease the thermal expansion for improved adherance of low thermal expansion ceramic coatings like silicon nitride,.

420

Cosmic Growth History and Expansion History  

E-Print Network (OSTI)

LBNL- 58260 Cosmic Growth History andExpansion History Eric V. Linder Physics Division, LawrenceCalifornia. Cosmic Growth History and Expansion History Eric

Linder, Eric V.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Power supply expansion and the nuclear option in Poland  

SciTech Connect

Poland is in the process of liberalizing and modernizing its electric power system. Given its heavy reliance on coal and a consequent history of often severe environmental externalities associated with power production, the nature of capacity expansion in Poland has important environmental and social implications. To better understand capacity expansion in Poland, we constructed a data set of the Polish power sector for use with the Elfin capacity expansion planning model. Using Elfin, we derived four scenarios and several sensitivities for new generating capacity construction. These scenarios simulate choices among several generic generating technologies made to achieve the lowest overall net present cost of operating the power system through 2015. We find that natural gas is a highly desirable fuel for future power generation in Poland, but primarily as a peaking resource. As the current system is inflexible and peaking capacity appears to be the most pressing need, this result is not surprising. However, when nuclear power is included as a generation option, natural gas is less desirable than the Polish Power Grid Company (PPGCo) has suggested, and, despite the PPGCo`s claims to the contrary, nuclear power cannot be ruled out in Poland on economic grounds alone. In the unconstrained Elfin scenarios, using PPGCo assumptions, nuclear power is attractive, especially after 2010. The attractiveness of nuclear generation proves sensitive to certain input variables, however, notably fixed operating and maintenance cost, and possible carbon taxes. Moreover, we find that the effectiveness of conservation efforts designed to reduce airborne emissions is limited under scenarios in which nuclear generation is adopted. 23 refs., 11 figs., 5 tabs.

Marnay, C.; Pickle, S.

1997-06-01T23:59:59.000Z

422

Environmental Assessment for the Terminal Expansion Project.  

SciTech Connect

The Terminal Expansion Project is proposed by Bonneville Power Administration (BPA), Southern California Edison (SCE), and the Los Angeles Department of Water and Power (LADWP) to increase the operating capacity of the existing bipole direct current (dc) Intertie line between the Celilo Converter Station at The Dalles, Oregon, and the Sylmar converter Station at Sylmar, California. The proposal will allow a greater exchange of electric power between the Pacific Northwest (PNW) and Southern California without constructing new interregional transmission lines. By adding more alternating ac/dc converter equipment at the terminals, the conductors on the existing 845-mile dc intertie transmission line can be operated at full design capacity. The dc Intertie plus two other ac lines which terminate near San Francisco comprise the ''Intertie.'' Though the project is interregional, relatively little construction will be needed. This Environmental Assessment addresses the environmental impacts of the proposed actions and makes a determination as to their significance. Though LADWP is complying with the State environmental process, as required by the California Environmental Quality Act (CEQA), the impacts of their construction are being considered as part of the impacts of the overall proposal and are considered in the determination of significance.

United States. Bonneville Power Administration.

1985-02-01T23:59:59.000Z

423

Capacity Markets for Electricity  

E-Print Network (OSTI)

Global Agenda, August 15. [6] FERC, Docket No. EL01-63-003,at http://www.pjm.com. [7] FERC, Docket No. ER01-1440-capacity of the others” (FERC, 2001). Therefore, if an LSE

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

424

Lateral Capacity Exchange and Its Impact on Capacity Investment Decisions  

E-Print Network (OSTI)

We study the problem of capacity exchange between two …rms in anticipation of the mismatch between demand and capacity and its impact on …rm’s capacity investment decisions. For given capacity investment levels of the two …rms, we demonstrate how capacity price may be determined and how much capacity should be exchanged when either manufacturer acts as a Stackelberg leader in the capacity exchange game. By benchmarking against the centralized system, we show that a side payment may be used to coordinate the capacity exchange decisions. We then study the …rms’capacity investment decisions using a biform game framework in which capacity investment decisions are made individually and exchange decisions are made as in a centralized system. We demonstrate the existence and uniqueness of the Nash equilibrium capacity investment levels and study the impact of …rms’share of the capacity exchange surplus on their capacity investment levels.

Amiya K. Chakravartyz; Jun Zhangy

2005-01-01T23:59:59.000Z

425

Comparison of the response of bacterial luminescence and mitochondrial respiration to the effluent of an oil refinery  

Science Conference Proceedings (OSTI)

The effects of oil refinery effluents on rat mitochondrial respiration and on the luminescence of the bacterium Photobacterium phosphoreum were compared. Mitochondria from male Wistar rat livers were exposed to different concentrations of refinery effluents in a semiclosed 3-ml reaction vessel. Respiration was measured polarographically with an oxygen electrode. Effects on P. phosphoreum were measured by the standard test developed by Microbics. The mitochondrial method showed EC50s in the range from 1 to 7.5%, while Microtox gave EC50 in the range from 30 to 42%. The higher sensitivity of mitochondria may be exploited in the development of a sensitive biosensor for toxicity of oil refinery effluents.

Riisberg, M.; Bratlie, E.; Stenersen, J. [Univ. of Oslo (Norway)

1996-04-01T23:59:59.000Z

426

Forward capacity market CONEfusion  

Science Conference Proceedings (OSTI)

In ISO New England and PJM it was assumed that sponsors of new capacity projects would offer them into the newly established forward centralized capacity markets at prices based on their levelized net cost of new entry, or ''Net CONE.'' But the FCCMs have not operated in the way their proponents had expected. To clear up the CONEfusion, FCCM designs should be reconsidered to adapt them to the changing circumstances and to be grounded in realistic expectations of market conduct. (author)

Wilson, James F.

2010-11-15T23:59:59.000Z

427

U.S. Virgin Islands Refinery Catalytic Hydrocracking/Gas Oil ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro-Cracking Gas Oil Downstream Charge Capacity ; Cat. Hydro-Cracking Gas Oil Downstream Charge Capacity ; Virgin Islands Downstream Charge Capacity of ...

428

Numerical Simulation of an Industrial Cumulus Affected by Heat, Moisture, and CCN Released from an Oil Refinery  

Science Conference Proceedings (OSTI)

Large oil refineries emit heat, vapor, and cloud condensation nuclei (CCN), all of which can affect the formation of cloud and precipitation. This study quantities the relative contributions of the three factors on cloud development in calm wind ...

S. Guan; G. W. Reuter

1996-08-01T23:59:59.000Z

429

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

Wolfe, R.W.

1984-10-30T23:59:59.000Z

430

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

Wolfe, Robert W. (Wilkinsburg, PA)

1984-01-01T23:59:59.000Z

431

Energy Guideline Factors Provide a Better Measure of Refinery Energy Performance  

E-Print Network (OSTI)

Exxon Company, U.S.A. refineries reduced energy consumption by 25% between 1972 and 1978 compared with an 18% reduction for the U.S. Petroleum Refining Industry over the same period. The Exxon approach to conserving energy in petroleum refining operations goes beyond energy conservation housekeeping measures and investments, and uses a comprehensive method to measure energy efficiency rather than energy consumption per barrel. It uses the Exxon Research and Engineering developed energy guideline factors, which are based on energy efficient designs and criteria, to (1) Evaluate the energy efficiency performance of refineries of different complexity in a consistent manner. (2) Compensate for changes in individual process unit throughputs and in unit operating intensity/severity. (3) Identify and quantify areas of energy inefficiency. (4) Regularly monitor and steward energy efficiency performance. Effective conservation also requires the analysis of energy performance and setting goals for future improvement. The paper explains how this can be done.

Libbers, D. D.

1980-01-01T23:59:59.000Z

432

Restoration of Refinery Heaters Using the Technique of Prefabricated Ceramic Fiber Lined Panels  

E-Print Network (OSTI)

Refinery heater fuel requirements often represent 50% of a units operating cost. A one percent change in the efficiency of a heater firing 100 MBtu/hr amounts to more than $25,000 per year. Heater efficiency is influenced by casing hot spots, air leakage, corbel damage, flue gas obstruction and dirty tubes. Efficiency impact is greatest in the convection section since conventional repairs only permit accessing from the outside, thus only hot spots and some air leakage are repaired. Exxon USA's Baton Rouge refinery has adopted a restoration procedure, using the technique of ceramic fiber lined panels, which corrects all the problem areas and returns the heater to new condition. Restorations have been successfully completed on convection sections as well as total heaters. All restorations have been within a normal turnaround period. Efficiency increases greater than 3% have been realized, as well as improvements in the heater's operation.

Sento, H. D.

1981-01-01T23:59:59.000Z

433

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-09-17T23:59:59.000Z

434

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-04-23T23:59:59.000Z

435

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

SciTech Connect

This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2005-05-18T23:59:59.000Z

436

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2005-11-17T23:59:59.000Z

437

Coke Gasification - A Solution to Excess Coke Capacity and High Energy Costs  

E-Print Network (OSTI)

United States crude slate is becoming heavier and generally higher in sulfur. At the same time demand of distillate products is increasing. Refiners are reworking their plans to include resid conversion via coking and approximately 230,000 BPD of new coking capacity is either under construction or announced. Even if 50 percent of the coke produced is exported, there will be an excess capacity of coke selling at less than $30/ton depending upon the sulfur content. This coke can be gasified effectively to produce medium-Btu (300 Btu/scf) gas which, in turn, can fuel the refinery furnaces to replace natural gas. Coke gasification should prove economical with natural gas price decontrol and the average price projected to rise to over $14.0 per million Btu in 1990. The paper will discuss three gasifiers - Gesellschaft fur Kohle-Technologie Gmbh (GKT), Texaco and Westinghouse which may be used for the production of medium-Btu gas from coke. The design parameters, which for coke gasification may be different from coal gasification because of the difference in physical and chemical characteristics of coke and coal, will be evaluated. Conceptual design will be performed based upon normal fuel requirements of about 20 billion Btu per day for a typical 50,000 BPD refinery. Adaptability of coke derived gas to refinery fuel systems will be discussed in terms of flame temperatures, flue gas volumes, derating and required furnace modifications. Estimates of capital and operating costs will be obtained to calculate the gas cost using the new tax laws. Finally, the GKT gasifier will be compared to the developing Texaco and Westinghouse gasifiers to assess the effect of second generation gasifiers on the economics of coke gasification.

Patel, S. S.

1982-01-01T23:59:59.000Z

438

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2006-05-17T23:59:59.000Z

439

AN AGGREGATED VECTORIAL MODEL OF PETROLEUM FLOW IN THE UNITED STATES  

E-Print Network (OSTI)

only; i.e. , individual refineries owned by the same companyting ~ for example. refinery production. ) (3) Supplies on21. Capacity of Petroleum Refineries U K REFINERY INPUTS 11.

Krishnan, V. V.

2011-01-01T23:59:59.000Z

440

Who lives near coke plants and oil refineries An exploration of the environmental inequity hypothesis  

SciTech Connect

Facility-specific information on pollution was obtained for 36 coke plants and 46 oil refineries in the US and matched with information on populations surrounding these 82 facilities. These data were analyzed to determine whether environmental inequities were present, whether they were more economic or racial in nature, and whether the racial composition of nearby communities has changed significantly since plants began operations. The Census tracts near coke plants have a disproportionate share of poor and nonwhite residents. Multivariate analyses suggest that existing inequities are primarily economic in nature. The findings for oil refineries are not strongly supportive of the environmental inequity hypothesis. Rank ordering of facilities by race, poverty, and pollution produces limited (although not consistent) evidence that the more risky facilities tend to be operating in communities with above-median proportions of nonwhite residents (near coke plants) and Hispanic residents (near oil refineries). Over time, the radical makeup of many communities near facilities has changed significantly, particularly in the case of coke plants sited in the early 1900s. Further risk-oriented studies of multiple manufacturing facilities in various industrial sectors of the economy are recommended.

Graham, J.D.; Beaulieu, N.D.; Sussman, D.; Sadowitz, M.; Li, Y.C. (Harvard Center for Risk Analysis, Boston, MA (United States))

1999-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Use of Oil Refinery Wastes as a Dust Suppression Surfactant for Use in Mining  

Science Conference Proceedings (OSTI)

In this research, the suitability of a selection of petroleum refinery wastes as a dust suppressant were examined. Dust is a significant problem in surface and underground mining mainly because of its adverse effects on human health and machinery. Hence, dust control and suppression is a vital part of mine planning for mining engineers. Water is the oldest and the cheapest suppressant in dealing with the mine dusts. However, surfactant use has recently been used for a wider range of applications in the mining industry. In order to carry out laboratory experiments, a dust chamber was designed and manufactured. The chamber has an inlet for coal dust entrance and a nozzle for spraying water and the oil refinery wastes. Water and the surfactants were mixed at various ratios and then sprayed onto the coal dusts within the cell. Dust concentration was measured systematically to determine the effects of surfactant containing solution on the coal dust and the data obtained by the measurements were analyzed. The results showed that the oil refinery wastes could be used as a dust suppressant, which may create an economical utilization for the wastes concerned.

Dixon-Hardy, D.W.; Beyhan, S.; Ediz, I.G.; Erarslan, K. [University of Leeds, Leeds (United Kingdom)

2008-10-15T23:59:59.000Z

442

Production of ethanol from refinery waste gases. Phase 2, technology development, annual report  

DOE Green Energy (OSTI)

Oil refineries discharge large volumes of H{sub 2}, CO, and CO{sub 2} from cracking, coking, and hydrotreating operations. This program seeks to develop a biological process for converting these waste gases into ethanol, which can be blended with gasoline to reduce emissions. Production of ethanol from all 194 US refineries would save 450 billion BTU annually, would reduce crude oil imports by 110 million barrels/year and emissions by 19 million tons/year. Phase II efforts has yielded at least 3 cultures (Clostridium ljungdahlii, Isolate O-52, Isolate C-01) which are able to produce commercially viable concentrations of ethanol from CO, CO{sub 2}, and H{sub 2} in petroleum waste gas. Single continuous stirred tank reactor studies have shown that 15-20 g/L of ethanol can be produced, with less than 5 g/L acetic acid byproduct. Culture and reactor optimization in Phase III should yield even higher ethanol concentrations and minimal acetic acid. Product recovery studies showed that ethanol is best recovered in a multi-step process involving solvent extraction/distillation to azeotrope/azeotropic distillation or pervaporation, or direct distillation to the azeotrope/azeotropic distillation or pervaporation. Projections show that the ethanol facility for a typical refinery would require an investment of about $30 million, which would be returned in less than 2 years.

Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

1995-07-01T23:59:59.000Z

443

Potentials for Fuel Cells in Refineries and Chlor-Alkali Plants  

E-Print Network (OSTI)

The market potentials for fuel cell cogeneration systems in petroleum refineries and chlor-alkali plants were evaluated. Costs of the total energy consumed (power plus steam) were calculated and compared with those for more conventional cogeneration systems. Questionnaires were sent to major plants in both industries to determine technical requirements and data required for the assessment of the market potential. The most promising application appears to be in chlor-alkali plants where the production process is electricity intensive. Future anticipated changes in the production process are favorable to the use of fuel cells. The energy use in refineries is steam intensive with the required steam pressures ranging from approximately 15 to 650 psig. The near-term use of fuel cell cogeneration in refineries is not as attractive as in chlor-alkali plants. The phosphoric acid fuel cell is the most developed and the most cost competitive, but its use is limited by its being able to produce only low-pressure steam. Over the longer term, the molten carbonate and the solid oxide fuel cell, both of which operate at significantly higher temperatures, are technically very attractive. However, they do not appear to be cost competitive with conventional systems.

Altseimer, J. H.; Roach, F.

1986-06-01T23:59:59.000Z

444

Questions cloud outlook for oil production capacity growth in the Middle East  

SciTech Connect

Future expansion of crude oil production capacity in the Middle East is anything but certain-at least with crude prices at recent levels. There is little doubt that the world will need more production capacity than now exists unless petroleum consumption sags. And there is even less doubt about where prospects are best for production capacity growth. The paper discusses the normal surplus, growing demand, financial conditions, and political stability.

Tippee, B.

1994-07-11T23:59:59.000Z

445

Quantum Zero-error Capacity  

E-Print Network (OSTI)

We define here a new kind of quantum channel capacity by extending the concept of zero-error capacity for a noisy quantum channel. The necessary requirement for which a quantum channel has zero-error capacity greater than zero is given. Finally, we point out some directions on how to calculate the zero-error capacity of such channels.

Rex A. C. Medeiros; Francisco M. De Assis

2006-11-08T23:59:59.000Z

446

Heat kernel expansion: user's manual  

E-Print Network (OSTI)

The heat kernel expansion is a very convenient tool for studying one-loop divergences, anomalies and various asymptotics of the effective action. The aim of this report is to collect useful information on the heat kernel coefficients scattered in mathematical and physical literature. We present explicit expressions for these coefficients on manifolds with and without boundaries, subject to local and non-local boundary conditions, in the presence of various types of singularities (e.g., domain walls). In each case the heat kernel coefficients are given in terms of several geometric invariants. These invariants are derived for scalar and spinor theories with various interactions, Yang-Mills fields, gravity, and open bosonic strings. We discuss the relations between the heat kernel coefficients and quantum anomalies, corresponding anomalous actions, and covariant perturbation expansions of the effective action (both "low-" and "high-energy" ones).

D. V. Vassilevich

2003-06-15T23:59:59.000Z

447

Load Capacity of Bodies  

E-Print Network (OSTI)

For the stress analysis in a plastic body $\\Omega$, we prove that there exists a maximal positive number $C$, the \\emph{load capacity ratio,} such that the body will not collapse under any external traction field $t$ bounded by $Y_{0}C$, where $Y_0$ is the elastic limit. The load capacity ratio depends only on the geometry of the body and is given by $$ \\frac{1}{C}=\\sup_{w\\in LD(\\Omega)_D} \\frac{\\int_{\\partial\\Omega}|w|dA} {\\int_{\\Omega}|\\epsilon(w)|dV}=\\left\\|\\gamma_D\\right\\|. $$ Here, $LD(\\Omega)_D$ is the space of isochoric vector fields $w$ for which the corresponding stretchings $\\epsilon(w)$ are assumed to be integrable and $\\gamma_D$ is the trace mapping assigning the boundary value $\\gamma_D(w)$ to any $w\\in LD(\\Omega)_D$.

Reuven Segev

2005-11-01T23:59:59.000Z

448

Capacity Value of Solar Power  

Science Conference Proceedings (OSTI)

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

449

Total Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt...

450

Query expansion techniques for question answering  

E-Print Network (OSTI)

Query expansion is a technique used to boost performance of a document retrieval engine, such as those commonly found in question answering (QA) systems. Common methods of query expansion for Boolean keyword-based document ...

Bilotti, Matthew W. (Matthew William), 1981-

2004-01-01T23:59:59.000Z

451

Cluster Expansion Methods - Progress and Outlook  

Science Conference Proceedings (OSTI)

Symposium, Computational Thermodynamics and Kinetics. Presentation Title, Cluster Expansion Methods - Progress and Outlook. Author(s), Axel van de Walle .

452

Expansion and Collapse of Liquid Aluminum Foams  

Science Conference Proceedings (OSTI)

ESP Dust Recovery Process Test Works, Plant Trial, Commissioning, Operations and Metallurgical Performance · Expansion and Collapse of Liquid Aluminum ...

453

Exploration of Resource and Transmission Expansion Decisions  

E-Print Network (OSTI)

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energyin.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis Division #12;Resource and Transmission ExpansionResource and Transmission Expansion Decisions in WREZ

454

Capacities associated with scalar signed Riesz kernels, and analytic capacity  

E-Print Network (OSTI)

The real and imaginari parts of the Cauchy kernel in the plane are scalar Riesz kernels of homogeneity -1. One can associate with each of them a natural notion of capacity related to bounded potentials. The main result of the paper asserts that these capacities are comparable to classical analytic capacity, thus stressing the real variables nature of analytic capacity. Higher dimensional versions of this result are also considered.

Mateu, Joan; Verdera, Joan

2010-01-01T23:59:59.000Z

455

Extensive expansion at Karsto gas plant under way  

SciTech Connect

By 2000, the gas and condensate plant at Karsto, Norway, will have been expanded extensively: gas-processing capacity will increase to 2.2 bscfd from current 775 MMscfd; and production capacity for LPG, naphtha, and condensate will reach approximately 10 million metric tons/year (mty). Prompting this expansion is the landing of Karsto in 2000 of a 42-in., rich-gas pipeline from Haltenbanken, offshore mid-Norway, and installation of the 42-in. Europipe II dry-gas pipeline from Karsto to Germany. In the same period, several spin-off projects adding value to the overall concept may be constructed. These could include a 350-mw power plant and ethane-shipment facilities. Total investment at Karsto in the next 3--4 years will reach approximately $1.1 billion (US). Civil work began in June 1997; the detail engineering contract was awarded in August 1997. The paper describes the project.

Svenes, S. [Den Norske Stats Oljeselskap AS, Haugesund (Norway)

1998-07-27T23:59:59.000Z

456

Multipath Channels of Unbounded Capacity  

E-Print Network (OSTI)

The capacity of discrete-time, noncoherent, multipath fading channels is considered. It is shown that if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the transmit power.

Koch, Tobias

2008-01-01T23:59:59.000Z

457

Standard practice for evaluating and qualifying oil field and refinery corrosion inhibitors using rotating cage  

E-Print Network (OSTI)

1.1 This practice covers a generally accepted procedure to use the rotating cage (RC) for evaluating corrosion inhibitors for oil field and refinery applications. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

458

Heat capacities of elastic solids  

E-Print Network (OSTI)

The work function is embedded in the equation describing the relationship between the constant volume and constant pressure heat capacities. The modification of the work function results that the relationship between these quantities must be changed accordingly. Using the newly derived work functions of elastic solids the description of the heat capacities and the relationship between the heat capacities are given for solid phase.

Garai, J

2005-01-01T23:59:59.000Z

459

Symmetrical Symplectic Capacity with Applications  

E-Print Network (OSTI)

In this paper, we first introduce the concept of symmetrical symplectic capacity for symmetrical symplectic manifolds, and by using this symmetrical symplectic capacity theory we prove that there exists at least one symmetric closed characteristic (brake orbit and $S$-invariant brake orbit are two examples) on prescribed symmetric energy surface which has a compact neighborhood with finite symmetrical symplectic capacity.

Liu, Chungen

2010-01-01T23:59:59.000Z

460

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Celebrates Expansion of Lithium-Ion Battery Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 - 3:15pm Addthis Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Celgard received $49 million in Recovery Act funding to help expand its Charlotte operations and build a new lithium-ion battery separator facility in Concord. With the help of Recovery Act-funded expansions, Celgard expects to double its production capacity by 2012 and since January 2010, the company

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Celebrates Expansion of Lithium-Ion Battery Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 - 3:15pm Addthis Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Celgard received $49 million in Recovery Act funding to help expand its Charlotte operations and build a new lithium-ion battery separator facility in Concord. With the help of Recovery Act-funded expansions, Celgard expects to double its production capacity by 2012 and since January 2010, the company

462

An Assessment of Railway Capacity  

E-Print Network (OSTI)

In this paper, we review the main concepts and methods to perform capacity analyses, and we present an automated tool that is able to perform several capacity analyses. Capacity is extremely dependent on infrastructure, traffic, and operating parameters. Therefore, an in-depth study of the main factors that influence railway capacity is performed on several Spanish railway infrastructures. The results show how the capacity varies according to factors such as train speed, commercial stops, train heterogeneity, distance between railway signals, and timetable robustness.

M. Abril; F. Barber; A L. Ingolotti; A M. A. Salido; P. Tormos; B A. Lova

2007-01-01T23:59:59.000Z

463

Integrated framework for analysis: electric sector expansion in developing countries  

Science Conference Proceedings (OSTI)

The objective of this dissertation is the development of an analytical framework for the assessment of electric sector expansion strategies in developing countries, in the context of overall development planning, and with particular emphasis on macroeconomic and social implications. The framework will ensure that each electric capacity expansion alternative is linked quantitatively and consistently with a given economic development plan. The analytical model employs an integrated set of technological and economic models to explore the national energy and economy response to electric sector expansion planning for the Korean case. In this study, two integrated models were developed. The integrated model 1 is composed of a macroeconomic model, an energy input-output model, and an energy network flow model. This model accounts for the relationships of energy demand with overall economic development, and interfuel substitution, for the relationships between the investment capital required to meet astated levels of electric demand and overall investment planning and foreign exchange requirements, and economic impacts of the energy sector on gross national product (GNP) and balance of payments (BOP). The integrated model 2 is composed of an energy input-output model, and energy network flow model, and a GNP identify constraint,and calculates the macroeconomic-balanced level of comsumption, electric sector investments, industrial sector investments, and energy imports given policy-determined GNP and other GNP components. The two models were applied ot the Korean case by using a trial scenario and assumed input data. Computational results demonstrate and prove the workability of the models.

Lee, M.K.

1982-01-01T23:59:59.000Z

464

Entangling capacity with local ancilla  

E-Print Network (OSTI)

We investigate the entangling capacity of a dynamical operation with access to local ancilla. A comparison is made between the entangling capacity with and without the assistance of prior entanglement. An analytic solution is found for the log-negativity entangling capacity of two-qubit gates, which equals the entanglement of the Choi matrix isomorphic to the unitary operator. Surprisingly, the availability of prior entanglement does not affect this result; a property we call resource independence of the entangling capacity. We prove several useful upper-bounds on the entangling capacity that hold for general qudit dynamical operations, and for a whole family of entanglement measures including log-negativity and log-robustness. The log-robustness entangling capacity is shown to be resource independent for general dynamics. We provide numerical results supporting a conjecture that the log-negativity entangling capacity is resource independence for all two-qudit unitaries.

Campbell, Earl T

2010-01-01T23:59:59.000Z

465

Expansion analyses of strategic petroleum reserve in Bayou Choctaw : revised locations.  

SciTech Connect

This report summarizes a series of three-dimensional simulations for the Bayou Choctaw Strategic Petroleum Reserve. The U.S. Department of Energy plans to leach two new caverns and convert one of the existing caverns within the Bayou Choctaw salt dome to expand its petroleum reserve storage capacity. An existing finite element mesh from previous analyses is modified by changing the locations of two caverns. The structural integrity of the three expansion caverns and the interaction between all the caverns in the dome are investigated. The impacts of the expansion on underground creep closure, surface subsidence, infrastructure, and well integrity are quantified. Two scenarios were used for the duration and timing of workover conditions where wellhead pressures are temporarily reduced to atmospheric pressure. The three expansion caverns are predicted to be structurally stable against tensile failure for both scenarios. Dilatant failure is not expected within the vicinity of the expansion caverns. Damage to surface structures is not predicted and there is not a marked increase in surface strains due to the presence of the three expansion caverns. The wells into the caverns should not undergo yield. The results show that from a structural viewpoint, the locations of the two newly proposed expansion caverns are acceptable, and all three expansion caverns can be safely constructed and operated.

Ehgartner, Brian L.; Park, Byoung Yoon

2010-11-01T23:59:59.000Z

466

Sulfur recovery in U.S. refineries is at an all-time high  

SciTech Connect

Environmental pressures are reducing allowable sulfur emissions and tightening fuel sulfur specifications on a global basis. Combined with an increasingly sour crude slate, this means that ever-greater quantities of sulfur are recovered each year. Sulfur is produced through three main routes: Frasch mining, recovery from pyrites, and recovery from crude oil and natural gas. Sulfur recovery from US refineries reached an all-time high in 1995: 13,753 metric tons/calendar day (mt/cd). Frasch mining has lost its place as the primary source of elemental sulfur. Current demand patterns for sulfur are expected to continue through the next decade. About half of world sulfur production will be used to produce phosphatic fertilizers. The other half will be used in some 30 chemically oriented industries. The data reported in this article were collected by the US Bureau of Mines/US Geological Survey, unless otherwise noted. The paper discusses sulfur from natural gas, sulfur from refineries, sulfur prices, imports and exports.

Swain, E.J. [Swain (Edward J.), Houston, TX (United States)

1997-04-21T23:59:59.000Z

467

Achieving very low mercury levels in refinery wastewater by membrane filtration.  

Science Conference Proceedings (OSTI)

Microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes were evaluated for their ability to achieve the world's most stringent Hg discharge criterion (oil refinery's wastewater. The membrane processes were operated at three different pressures to demonstrate the potential for each membrane technology to achieve the targeted effluent mercury concentrations. The presence of mercury in the particulate form in the refinery wastewater makes the use of MF and UF membrane technologies more attractive in achieving very low mercury levels in the treated wastewater. Both NF and RO were also able to meet the target mercury concentration at lower operating pressures (20.7 bar). However, higher operating pressures ({ge}34.5 bar) had a significant effect on NF and RO flux and fouling rates, as well as on permeate quality. SEM images of the membranes showed that pore blockage and narrowing were the dominant fouling mechanisms for the MF membrane while surface coverage was the dominant fouling mechanism for the other membranes. The correlation between mercury concentration and particle size distribution was also investigated to understand mercury removal mechanisms by membrane filtration. The mean particle diameter decreased with filtration from 1.1 {+-} 0.0 {micro}m to 0.74 {+-} 0.2 {micro}m after UF.

Urgun Demirtas, M.; Benda, P.; Gillenwater, P. S.; Negri, M. C.; Xiong, H.; Snyder, S. W. (Center for Nanoscale Materials); ( ES)

2012-05-15T23:59:59.000Z

468

Organic Rankine Cycle Systems for Waste Heat Recovery in Refineries and Chemical Process Plants  

E-Print Network (OSTI)

The design of a low temperature Rankine cycle system using R-113 working fluid for recovery and conversion of process waste heat is described for typical applications in oil refineries and chemical plants. The system is designed to produce electric power from waste heat available in a temperature range from 180oF to 400oF. The design of a new ORC turbo generator uniquely adapted to applications of this type is presented. The unit has been designed for power outputs from 3/4 to 2 1/2 MW and turbine inlet temperatures from 170 to 260oF. The machine design has eliminated the need for shaft seals, shaft couplings and the usual lube oil console normally required for turbine-generator units. Results of prototype tests of a 1 MW unit are presented. A product package and recommended division of responsibilities between purchaser, A&E company and supplier is presented for installations in refineries and process plants. The product package covers the electrical power range from 3/4 to 5 MW and waste heat streams from 20 to 130 million BTU/hr.

Meacher, J. S.

1981-01-01T23:59:59.000Z

469

Market Power in California's Gasoline Market  

E-Print Network (OSTI)

increasing scarcity of refinery capacity among plants thatincreasing scarcity of refinery capacity among plants thatof the U.S. , nearby foreign refineries in the Caribbean and

Borenstein, Severin; Bushnell, James; Lewis, Matthew

2004-01-01T23:59:59.000Z

470

China's industrial sector in an international context  

E-Print Network (OSTI)

improvement and increasing refinery complexity. Data forenergy consumption in refineries accounted for roughly 8% (and expand capacity. Refinery capacity and production of

Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

2000-01-01T23:59:59.000Z

471

Natural Gas Pipeline and System Expansions  

U.S. Energy Information Administration (EIA)

Energy Information Administration / Natural Gas Monthly April 1997 vii This special report examines recent expansions to the North American natural gas pipeline network

472

Transmission Expansion Planning Using an AC Model  

E-Print Network (OSTI)

Jan 2, 2013 ... Abstract: Transmission expansion planning (TEP) is a rather complicated process which requires extensive studies to determine when, where ...

473

Cosmic Growth History and Expansion History  

E-Print Network (OSTI)

of the expansion history dark energy equation of state,and growth history constraints on the dark energy equationand growth history constraints on the dark energy equation

Linder, Eric V.

2009-01-01T23:59:59.000Z

474

Query expansion techniques for question answering.  

E-Print Network (OSTI)

??Query expansion is a technique used to boost performance of a document retrieval engine, such as those commonly found in question answering (QA) systems. Common… (more)

Bilotti, Matthew W. (Matthew William), 1981-

2004-01-01T23:59:59.000Z

475

Resonant Polarized Radiation Catalysis, and the Expansion  

Science Conference Proceedings (OSTI)

Presentation Title, The Birth of a New Field of Materials Science: Resonant Polarized Radiation Catalysis, and the Expansion of Thermodynamics. Author(s)  ...

476

Energy Infrastructure Events and Expansions Infrastructure Security...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Year-in-Review: 2010 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S....

477

Cyberspace Security Econometrics System (CSES) Expansion to ...  

In typical usage, analysts create matrices that capture their expert opinion, and then use those matrices to quantify costs to stakeholders. This expansion

478

Evaluating capacity and expansion opportunities at tank farm: a decision support system using discrete event simulation  

Science Conference Proceedings (OSTI)

This paper presents a discrete event simulation based Decision Support System to evaluate tank farm operations. The Decision Support System was developed in order to reduce capital expenditures and assist in decision making for assessing the impact of ...

Bikram Sharda; Adriana Vazquez

2009-12-01T23:59:59.000Z

479

Strategic level three-stage production distribution planning with capacity expansion  

Science Conference Proceedings (OSTI)

In this paper, we address a strategic planning problem for a three-stage production-distribution network. The problem under consideration is a single-item, multi-supplier, multi-producer, and multi-distributor production-distribution network with deterministic ... Keywords: Heuristics, Mixed integer programming, Production-distribution planning

P?nar Y?lmaz; Bülent Çatay

2006-12-01T23:59:59.000Z

480

[en] EXPANSION OF THE PEAK CAPACITY OF AN INTERCONNECTED HYDROELECTRIC GENERATING SYSTEM.  

E-Print Network (OSTI)

??[pt] Descreve-se uma metodologia para planejamento da expansão da capacidade de ponta em sistemas interligados de usinas hidroelétricas. O objetivo é determinar os geradores e… (more)

CRISTINA MARIA DE ANDRADE LEOPOLDINO

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refinery capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

QUANTITY AND CAPACITY EXPANSION DECISIONS FOR ETHANOL IN NEBRASKA AND A MEDIUM SIZED PLANT.  

E-Print Network (OSTI)

??Corn-based ethanol is the leader of sustainable sources of energy in the United States due to the abundance of corn and the popularity of ethanol-gasoline… (more)

Khoshnoud, Mahsa

2012-01-01T23:59:59.000Z

482

Capacity and Character Expansions: Moment generating function and other exact results for MIMO correlated channels  

E-Print Network (OSTI)

We apply a promising new method from the field of representations of Lie groups to calculate integrals over unitary groups, which are important for multi-antenna communications. To demonstrate the power and simplicity of this technique, we first re-derive a number of results that have been used recently in the community of wireless information theory, using only a few simple steps. In particular, we derive the joint probability distribution of eigenvalues of the matrix GG*, with G a semicorrelated Gaussian random matrix or a Gaussian random matrix with a non-zero mean (and G* its hermitian conjugate) . These joint probability distribution functions can then be used to calculate the moment generating function of the mutual information for Gaussian channels with multiple antennas on both ends with this probability distribution of their channel matrices G. We then turn to the previously unsolved problem of calculating the moment generating function of the mutual information of MIMO (multiple input-multiple output) channels, which are correlated at both the receiver and the transmitter. From this moment generating function we obtain the ergodic average of the mutual information and study the outage probability. These methods can be applied to a number of other problems. As a particular example, we examine unitary encoded space-time transmission of MIMO systems and we derive the received signal distribution when the channel matrix is correlated at the transmitter end.

Steven H. Simon; Aris L. Moustakas; Luca Marinelli

2005-09-27T23:59:59.000Z

483

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Former Corporation/Refiner Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2012 Antelope Refining LLC Garco Energy LLC 3/12 Douglas, WY 3,800 Delta Air Lines/Monroe Energy LLC ConocoPhillips Company 4/12 Trainer, PA 185,000 Phillips 66 Company ConocoPhillips Company 5/12 Belle Chasse, LA 252,000 Billings, MT 59,000 Ferndale, WA 101,000 Linden, NJ 238,000 Ponca City, OK 198,400 Rodeo, CA 120,200 Sweeny, TX 247,000 Westlake, LA 239,400 Wilmington, CA 139,000 Nustar Asphalt LLC (50% Nustar Energy LP and 50% Lindsay Goldberg LLC) Nustar Energy LP/Nustar Asphalt Refining LLC 9/12 Paulsboro, NJ 70,000 Savannah, GA 28,000 Carlyle Group/Philadelphia Energy Solutions Refining and Marketing LLC Sunoco Inc./Sunoco Inc. R&M

484

Decentralized capacity management and internal pricing  

E-Print Network (OSTI)

Press. Goex, R. (2002). Capacity planning and pricing undermanufacturing on innovation, capacity and pro?tability.Mieghem, V. J. (2003). Capacity management, investment and

Dutta, Sunil; Reichelstein, Stefan

2010-01-01T23:59:59.000Z

485

Capacity consideration of wireless ad hoc networks  

E-Print Network (OSTI)

Capacity ProblemCurrent Research on Capacity of Wireless Ad HocChapter 3 Upper Bound on the Capacity of Wireless Ad Hoc

Tan, Yusong

2008-01-01T23:59:59.000Z

486

Are there capacity limitations in symmetry perception?  

E-Print Network (OSTI)

1980). The demonstration of capacity limitation. Cognitive1972). Visual processing capacity and attentional control.J. (1996). Goodness of CAPACITY LIMIT OF SYMMETRY PERCEPTION

Huang, L Q; Pashler, Harold; Junge, J A

2004-01-01T23:59:59.000Z

487

The Ergodic Capacity of Interference Networks  

E-Print Network (OSTI)

A. Jafar, “The ergodic capacity of interference networks,”Gupta and P. R. Kumar, “The capacity of wireless networks,”cooperation achieves optimal capacity scaling in ad hoc

Jafar, Syed A

2010-01-01T23:59:59.000Z

488

Mapping Individual Variations in Learning Capacity  

E-Print Network (OSTI)

in working memory capacity. Integrative Physiological andVariations in Learning Capacity Eduardo Mercado IIIdifferences in learning capacity are evident in humans and

Mercado III, Eduardo

2011-01-01T23:59:59.000Z

489

Definition: Capacity Emergency | Open Energy Information  

Open Energy Info (EERE)

Emergency Jump to: navigation, search Dictionary.png Capacity Emergency A capacity emergency exists when a Balancing Authority Area's operating capacity, plus firm purchases from...

490

Use of various acute, sublethal and early life-stage tests to evaluate the toxicity of refinery effluents  

Science Conference Proceedings (OSTI)

The toxicities of effluents from three Ontario, Canada, refineries were assessed with microbes, plants, invertebrates, and fish. Acute toxicity was assessed by the Microtox test, an assay based on electron transport activity in submitochondrial particles, and Daphnia magna (water flea); growth of Selenastrum capricornutum (alga); growth of Lemna minor (aquatic plant); germination of Lactuca sativa (nonaquatic plant); survival, growth, and maturation of Panagrellus redivivus (nematode); and genotoxicity in the SOS-Chromotest. Only the Microtox test and the submitochondrial particle test detected acute toxicity in the effluent samples. Reduced survival and sublethal responses were caused by some effluents, but not all effluents were toxic, and none caused a response in all of the tests applied. The results suggest that the effluent treatment systems used at Ontario refineries have largely eliminated acute toxicity to the organisms in their test battery. Although reduced survival and sublethal effects were detected in some of the effluents, the effects were minor. Some of the tests provided evidence, albeit weak, of variations in the responses of the test organisms to a temporal series of effluent samples. Not unexpectedly, there were also minor differences in the responses of the tests to effluents from the three refineries. The fathead minnow test seems to be a sensitive indicator of the sublethal toxicity of Ontario refinery effluents.

Sherry, J.; Scott, B.; Dutka, B. [National Water Research Inst., Burlington, Ontario (Canada)

1997-11-01T23:59:59.000Z

491

Cat. Hydro.. Kerosene/Jet Fuel Downstream Charge Capacity (B/SD)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

492

Cat. Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

493

Electric Capacity | OpenEI  

Open Energy Info (EERE)

Capacity Capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated December 15th, 2010 (3 years ago) Keywords Electric Capacity Electricity Generation New Zealand projections

494

Adaptive capacity and its assessment  

SciTech Connect

This paper reviews the concept of adaptive capacity and various approaches to assessing it, particularly with respect to climate variability and change. I find that adaptive capacity is a relatively under-researched topic within the sustainability science and global change communities, particularly since it is uniquely positioned to improve linkages between vulnerability and resilience research. I identify opportunities for advancing the measurement and characterization of adaptive capacity by combining insights from both vulnerability and resilience frameworks, and I suggest several assessment approaches for possible future development that draw from both frameworks and focus on analyzing the governance, institutions, and management that have helped foster adaptive capacity in light of recent climatic events.

Engle, Nathan L.

2011-04-20T23:59:59.000Z

495

Want to Put an End to Capacity Markets? Think Real-Time Pricing  

Science Conference Proceedings (OSTI)

The amount of generation capacity that must be installed to meet resource adequacy requirements often causes the energy market to be suppressed to the point that it fails to produce sufficient revenues to attract new entry. A significant expansion in the use of real-time pricing can, over time, cause the energy market to become a more bountiful source of revenues for generators, allowing the elimination of the capacity market. (author)

Reeder, Mark

2006-07-15T23:59:59.000Z

496

A finite Toda representation of the box-ball system with box capacity  

E-Print Network (OSTI)

A connection between the finite ultradiscrete Toda lattice and the box-ball system is extended to the case where each box has own capacity and a carrier has a capacity parameter depending on time. In order to consider this connection, new carrier rules "size limit for solitons" and "recovery of balls", and a concept "expansion map" are introduced. A particular solution to the extended system of a special case is also presented.

Kazuki Maeda

2011-09-10T23:59:59.000Z

497

Market Assessment of Refinery Outages Planned for October 2010 through January 2011  

Gasoline and Diesel Fuel Update (EIA)

10)/2 10)/2 Market Assessment of Refinery Outages Planned for October 2010 through January 2011 November 2010 Energy Information Administration Office of Petroleum, Gas, and Biofuels Analysis U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. E nergy Information Adminis tration Market As s es s ment of P lanned R

498

Market Assessment of Refinery Outages Planned for October 2009 through January 2010  

Gasoline and Diesel Fuel Update (EIA)

09)/2 09)/2 Market Assessment of Refinery Outages Planned for October 2009 through January 2010 November 2009 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the independent statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views herein should not be construed as representing those of the Department or the Administration. Preface and Contacts The Energy Information Administration (EIA) is the independent statistical and analytical

499

Reformulated Gasoline Foreign Refinery Rules (Released in the STEO January 1998)  

Reports and Publications (EIA)

On August 27, 1997, the EPA promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an individual refinery baseline is not available to domestic refiners.) If a foreign refiner did not establish and use an individual baseline, the gasoline they export to the U.S. would be regulated through the importer, and subject to the importer's baseline (most likely the statutory baseline). Specific regulatory provisions are implemented to ensure that the option to use an individual baseline would not lead to adverse environmental impacts. This involves monitoring the average quality of imported gasoline, and if a specified benchmark is exceeded, remedial action would be taken by adjusting the requirements applicable to imported gasoline.

Information Center

1998-01-02T23:59:59.000Z

500

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

SciTech Connect

This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking. Investigation of coal extraction as a method to produce RCO continues; the reactor modifications to filter the products hot and to do multi-stage extraction improve extraction yields from {approx}50 % to {approx}70%. Carbon characterization of co-cokes for use as various carbon artifacts continues.

Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2006-09-17T23:59:59.000Z