Powered by Deep Web Technologies
Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Oklahoma Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Oklahoma Downstream Charge Capacity of Operable Petroleum Refineries ...

2

Mississippi Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Mississippi Downstream Charge Capacity of Operable Petroleum Refineries ...

3

Flare Gas Recovery in Shell Canada Refineries  

E-Print Network (OSTI)

Two of Shell Canada's refineries have logged about six years total operating experience with modern flare gas recovery facilities. The flare gas recovery systems were designed to recover the normal continuous flare gas flow for use in the refinery fuel gas system. The system consists of liquid knock-out, compression, and liquid seal facilities. Now that the debugging-stage challenges have been dealt with, Shell Canada is more than satisfied with the system performance. A well-thought-out installation can today be safe, trouble-free, and attractive from an economic and environmental viewpoint. This paper highlights general guidelines for the sizing, design and operation of a refinery flare gas recovery facility.

Allen, G. D.; Wey, R. E.; Chan, H. H.

1983-01-01T23:59:59.000Z

4

U.S. Exports of Natural Gas Liquids and Liquid Refinery Gases ...  

U.S. Energy Information Administration (EIA)

Natural Gas Plant Liquids and Liquefied Refinery Gases Exports; Natural Gas Plant Liquids and Liquefied Refinery Gases Supply and Disposition;

5

Guam Refinery Thermal Cracking/Other (including Gas Oil ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Thermal Cracking/Other (including Gas Oil) Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

6

Puerto Rico Refinery Catalytic Hydrocracking, Gas Oil Downstream ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Hydrocracking, Gas Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

7

U.S. Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Catalytic Hydrotreating, Heavy Gas Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

8

U.S. Refinery Thermal Cracking, Other (including Gas Oil ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Other (including Gas Oil) Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

9

Firing Excess Refinery Butane in Peaking Gas Turbines  

E-Print Network (OSTI)

New environmentally-driven regulations for motor gasoline volatility will significantly alter refinery light ends supply/demand balancing. This, in turn, will impact refinery economics. This paper presumes that one outcome will be excess refinery normal butane production, which will reduce refinery normal butane value and price. Explored is an opportunity for a new use for excess refinery normal butane- as a fuel for utility peaking gas turbines which currently fire kerosene and #2 oil. Our paper identifies the fundamental driving forces which are changing refinery butane economics, examines how these forces influence refinery production, and evaluates the potential for using normal butanes as peaking utility gas turbine fuel, especially on the US East Coast.

Pavone, A.; Schreiber, H.; Zwillenberg, M.

1989-09-01T23:59:59.000Z

10

Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR  

E-Print Network (OSTI)

In the past 10 years ENERGY STAR has developed a track record as a certification mark to hang buildings performance hat on. By implementing upgrade strategies and pursuing operations and maintenance issues simultaneously, ENERGY STAR has led the nation and many states to pursue greenhouse gas reduction initiatives using energy efficiency as a model program. In developing these partnerships with industry, states and local government, what has occurred is a variety of program approaches that works to accomplish strategically a reduction in emissions. Through its development, ENERGY STAR has become an integral player with many Green Buildings Program to help them carry the energy efficiency banner to higher levels of cooperation. What is occurring today is that more and more local programs are looking to green buildings as an approach to reducing problems they face in air pollution, water pollution, solid waste, needed infrastructure and better of resources needs and the growth of expensive utility infrastructures. EPA - Region 6's ENERGY STAR and Green Building Program assistance has led to some unique solutions and the beginning workups for the integrated expansion of effort to support State Implementation Plans in new innovative voluntary approaches to transform certain markets, similarly to those of energy efficient products. This presentation will be an overview of activity that is being spearheaded in Texas in the DFW and Houston metro areas in ENERGY STAR and Green Buildings. The voluntary programs impacts are reducing energy consumption, creating markets for renewables, reducing air polluting chemicals and reducing greenhouse gas emissions using verifiable approaches.

Patrick, K.

2008-01-01T23:59:59.000Z

11

Flare-gas recovery success at Canadian refineries  

SciTech Connect

It appears that some North American refining companies still cling to an old philosophy that flare gas recovery systems are unsafe, unreliable, uneconomic, or unnecessary. Shell Canada's recent experience with two modern systems has proven otherwise. Two of Shell Canada's refineries, at Sarnia, Ont., and Montreal East, Que., have now logged about 6 years' total operating experience with modern flare gas recovery units. The compression facilities in each utilize a two-stage reciprocating machine, one liquid seal drum per flare stack, and an automated load control strategy. The purpose was to recover the normal continuous flow of refinery flare gas for treatment and use in the refinery fuel gas system.

Allen, G.D.; Chan, H.H.; Wey, R.E.

1983-06-01T23:59:59.000Z

12

Failure Analysis in Oil & Gas Industry - Programmaster.org  

Science Conference Proceedings (OSTI)

Failure Analysis and Prevention: Failure Analysis in Oil & Gas Industry ... Failure Analysis Case Studies from Refinery and Petrochemical Pilot Plants: Benjamin ...

13

Fuzzy possibilistic modeling and sensitivity analysis for optimal fuel gas scheduling in refinery  

Science Conference Proceedings (OSTI)

In refinery, fuel gas which is continuously generated during the production process is one of the most important energy sources. Optimal scheduling of fuel gas system helps the refinery to achieve energy cost reduction and cleaner production. However, ... Keywords: Fuel gas, Fuzzy possibilistic programming, Marginal value analysis, Refinery, Scheduling, Sensitivity analysis

J. D. Zhang; G. Rong

2010-04-01T23:59:59.000Z

14

Industry  

E-Print Network (OSTI)

Emission reduction at Engen refinery in South Durban. Paperenergy consumed in refineries and other energy conversionCement Membrane separation Refinery gas Natural gas Bio-

Bernstein, Lenny

2008-01-01T23:59:59.000Z

15

High-Octane Fuel from Refinery Exhaust Gas: Upgrading Refinery Off-Gas to High-Octane Alkylate  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus’ process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

None

2009-12-01T23:59:59.000Z

16

Guide to Industrial Control Systems (ICS) Security  

Science Conference Proceedings (OSTI)

... location for industries such as oil refineries, water and ... that could potentially affect oil and natural gas production, refinery operations, water ...

2013-05-13T23:59:59.000Z

17

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network (OSTI)

Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NOx emissions while also generating electricity at an attractive heat rate. Design considerations and system costs are presented.

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

1985-05-01T23:59:59.000Z

18

,"U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks...  

U.S. Energy Information Administration (EIA) Indexed Site

S1","MDGSXUS1","MRESXUS1","MPRSXUS1" "Date","U.S. Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)","U.S. Reformulated Motor...

19

NIST SP 800-82, Guide to Industrial Control Systems (ICS) ...  

Science Conference Proceedings (OSTI)

... location for industries such as oil refineries, water and ... that could potentially affect oil and natural gas production, refinery operations, water ...

2012-02-21T23:59:59.000Z

20

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

U.S. Refinery Catalytic Hydrocracking, Gas Oil Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro-Cracking Gas Oil Downstream Charge Capacity ; Cat. Hydro-Cracking Gas Oil Downstream Charge Capacity ; U.S. Downstream Charge Capacity of Operable ...

22

Outsourcing Logistics in the Oil and Gas Industry  

E-Print Network (OSTI)

The supply chain challenges that the Oil and Gas industry faces in material logistics have enlarged in the last few decades owing to an increased hydro-carbon demand. Many reasons justify the challenges, such as exploration activities which have moved to remote locations, not only increasing distances from supply houses and refineries but also escalating logistics costs. Mammoth costs of material unavailability drive the inefficiencies largely. The objectives of the study is to discover the logistics needs of oil and gas companies, the motivation, benefits and the requirements of outsourcing logistics. The study aims to identify the material supply chain inefficiencies in the industry and proposes solutions to solve them. In this study, Oil and Gas industry’s outsourcing practices in logistics are analyzed along with the trends of the third party logistics companies serving the industry. The participants of this study are from different companies in the Oil and Gas industry dealing with supply chain operations.

Herrera, Cristina 1988-

2012-05-01T23:59:59.000Z

23

Texas Refinery Catalytic Hydrotreating, Heavy Gas Oil Downstream ...  

U.S. Energy Information Administration (EIA)

Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Cat. Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Texas Downstream Charge Capacity of Operable ...

24

Topsoe`s Wet gas Sulfuric Acid (WSA) process: An alternative technology for recovering refinery sulfur  

SciTech Connect

The Topsoe Wet gas Sulfuric Acid (WSA) process is a catalytic process which produces concentrated sulfuric acid from refinery streams containing sulfur compounds such as H{sub 2}S (Claus plant feed), Claus plant tail gas, SO{sub 2} (FCC off-gas, power plants), and spent sulfuric acid (alkylation acid). The WSA process recovers up to 99.97% of the sulfur value in the stream as concentrated sulfuric acid (93--98.5 wt%). No solid waste products or waste water is produced and no chemicals are consumed in the process. The simple process layout provides low capital cost and attractive operating economy. Twenty four commercial WSA plants have been licensed. The WSA process is explained in detail and comparisons with alternative sulfur management technology are presented. Environmental regulations applying to SO{sub x} abatement and sulfuric acid production plants are explained in the context of WSA plant operation.

Ward, J.W. [Haldor Topsoe, Inc., Houston, TX (United States)

1995-09-01T23:59:59.000Z

25

Natural gas industry directory  

SciTech Connect

This directory has information on the following: associations and organizations; exploration and production; gas compression; gas processors; gathering and transmission companies; liquefied natural gas; local distribution companies; marketing firms; regulatory agencies; service companies; suppliers and manufacturers; and regional buyer`s guide.

NONE

1999-11-01T23:59:59.000Z

26

Borla Performance Industries, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

cost and safety implications. This technology is also being integrated for use in refineries, industry gas and fuel cells systems and was developed using technology from the...

27

Jeff Cornett Manager, Industrial and Economic Development  

NLE Websites -- All DOE Office Websites (Extended Search)

and numerous chemical industry clients such as chemical manufacturers, oil & gas refineries, paper product manufacturers, and special material manufacturers assisting them with...

28

The Venezuelan natural gas industry  

Science Conference Proceedings (OSTI)

Venezuela's consumption energy of comes from three primary sources: hydroelectricity, liquid hydrocarbons and natural gas. In 1986, the energy consumption in the internal market was 95.5 thousand cubic meters per day of oil equivalent, of which 32% was natural gas, 46% liquid hydrocarbons and 22% hydroelectricity. The Venezuelan energy policy established natural gas usage after hydroelectricity, as a substitute of liquid hydrocarbons, in order to increase exports of these. This policy permits a solid development of the natural gas industry, which is covered in this paper.

Silva, P.V.; Hernandez, N.

1988-01-01T23:59:59.000Z

29

Optimization of refinery hydrogen network  

Science Conference Proceedings (OSTI)

Tighter environmental regulations and more heavy-end upgrading in the petroleum industry lead to increased demand for hydrogen in oil refineries. In this paper, the method proposed to optimize the refinery hydrogen network is based upon mathematical ... Keywords: hydrogen management, optimization, refinery, superstructure

Yunqiang Jiao; Hongye Su

2010-09-01T23:59:59.000Z

30

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Membrane Technology and Membrane Technology and Research, Inc. (MTR), based in Menlo Park, CA, is a privately- owned developer, manufacturer, and supplier of customized membrane process solutions. Currently, the company's principal membrane products are * VaporSep® systems to remove organic vapors from air and nitrogen * NitroSep TM and fuel gas conditioning systems for natural gas treatment * Hydrogen recovery systems for refinery and other applications MTR's current R&D is extending use of membranes to carbon sequestration and biofuels separations. www.mtrinc.com New Membrane Technology Boosts Efficiency in Industrial Gas Processes Challenge Membrane technology was first commercialized in the 1960s and 1970s for well-known applications such as water filtration

31

Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz  

Science Conference Proceedings (OSTI)

The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2008-03-15T23:59:59.000Z

32

Energy Efficiency Fund (Gas) - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas) - Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Programs Eligibility Commercial Industrial...

33

,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1993" Monthly","9/2013","1/15/1993" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_stoc_st_a_epm0f_str_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_st_a_epm0f_str_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:32:19 AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks" "Sourcekey","MGFSXUS1","MGFSXP11","MGFSXCT1","MGFS3_SDE_1","MGFSXFL1","MGFSXGA1","MGFS3_SME_1","MGFS3_SMD_1","MGFSXMA1","MGFS3_SNH_1","MGFSXNJ1","MGFSXNY1","MGFSXNC1","MGFSXPA1","MGFSXRI1","MGFSXSC1","MGFS3_SVT_1","MGFSXVA1","MGFSXWV1","MGFSXP21","MGFSXIL1","MGFSXIN1","MGFSXIA1","MGFS3_SKS_1","MGFSXKY1","MGFSXMI1","MGFSXMN1","MGFSXMO1","MGFS3_SNE_1","MGFS3_SND_1","MGFSXOH1","MGFSXOK1","MGFS3_SSD_1","MGFSXTN1","MGFSXWI1","MGFSXP31","MGFSXAL1","MGFSXAR1","MGFSXLA1","MGFSXMS1","MGFSXNM1","MGFSXTX1","MGFSXP41","MGFSXCO1","MGFSXID1","MGFSXMT1","MGFSXUT1","MGFSXWY1","MGFSXP51","MGFSXAK1","MGFSXAZ1","MGFSXCA1","MGFSXHI1","MGFSXNV1","MGFSXOR1","MGFSXWA1"

34

,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1993" Annual",2012,"6/30/1993" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_stoc_st_a_epm0f_str_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_st_a_epm0f_str_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:32:18 AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks" "Sourcekey","MGFSXUS1","MGFSXP11","MGFSXCT1","MGFS3_SDE_1","MGFSXFL1","MGFSXGA1","MGFS3_SME_1","MGFS3_SMD_1","MGFSXMA1","MGFS3_SNH_1","MGFSXNJ1","MGFSXNY1","MGFSXNC1","MGFSXPA1","MGFSXRI1","MGFSXSC1","MGFS3_SVT_1","MGFSXVA1","MGFSXWV1","MGFSXP21","MGFSXIL1","MGFSXIN1","MGFSXIA1","MGFS3_SKS_1","MGFSXKY1","MGFSXMI1","MGFSXMN1","MGFSXMO1","MGFS3_SNE_1","MGFS3_SND_1","MGFSXOH1","MGFSXOK1","MGFS3_SSD_1","MGFSXTN1","MGFSXWI1","MGFSXP31","MGFSXAL1","MGFSXAR1","MGFSXLA1","MGFSXMS1","MGFSXNM1","MGFSXTX1","MGFSXP41","MGFSXCO1","MGFSXID1","MGFSXMT1","MGFSXUT1","MGFSXWY1","MGFSXP51","MGFSXAK1","MGFSXAZ1","MGFSXCA1","MGFSXHI1","MGFSXNV1","MGFSXOR1","MGFSXWA1"

35

Refinery Capacity Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Respondents are operators of all operating and idle petroleum refineries ... Sources & Uses Petroleum Coal Natural Gas Renewable Nuclear Electricity Consumption

36

Petroleum refineries vary by level of complexity - Today in Energy ...  

U.S. Energy Information Administration (EIA)

A refinery is an industrial complex that manufactures petroleum products, such as gasoline, from crude oil and other feedstocks. Many different types of refineries ...

37

Wisconsin Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Wisconsin Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

38

Ohio Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and ...  

U.S. Energy Information Administration (EIA)

Ohio Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

39

Colorado Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Colorado Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

40

Colorado Finished Motor Gasoline Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Colorado Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Michigan Finished Motor Gasoline Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Michigan Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

42

South Dakota Distillate Fuel Oil Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

South Dakota Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

43

South Dakota Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

South Dakota Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

44

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

MTC. Marano, J.J. , 2003. Refinery Technology Profiles:Deep Desulfurization of Oil Refinery Streams: A Review. FuelSavings for Flying J Refinery. Oil & Gas Journal, December 2

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

45

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

46

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

47

Hydrogen leak detection - low cost distributed gas sensors  

NLE Websites -- All DOE Office Websites (Extended Search)

leak detection that can be economically satisfied using our technology. * Due to limited refinery capacity, downtime in the oil and gas refining industry has become of critical...

48

Refinery Yield of Liquefied Refinery Gases  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Yield Refinery Yield (Percent) Product: Liquefied Refinery Gases Finished Motor Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Residual Fuel Oil Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 5.3 5.4 5.2 5.2 5.1 3.9 1993-2013 PADD 1 4.4 5.1 4.9 4.9 4.6 2.1 1993-2013 East Coast 4.4 5.3 5.1 5.1 4.9 2.2 1993-2013

49

GAS INDUSTRY GROUNDWATER RESEARCH PROGRAM  

SciTech Connect

The objective of the research described in this report was to provide data and insights that will enable the natural gas industry to (1) significantly improve the assessment of subsurface glycol-related contamination at sites where it is known or suspected to have occurred and (2) make scientifically valid decisions concerning the management and/or remediation of that contamination. The described research was focused on subsurface transport and fate issues related to triethylene glycol (TEG), diethylene glycol (DEG), and ethylene glycol (EG). TEG and DEG were selected for examination because they are used in a vast majority of gas dehydration units, and EG was chosen because it is currently under regulatory scrutiny as a drinking water pollutant. Because benzene, toluene, ethylbenzene, and xylenes (collectively referred to as BTEX) compounds are often very closely associated with glycols used in dehydration processes, the research necessarily included assessing cocontaminant effects on waste mobility and biodegradation. BTEX hydrocarbons are relatively water-soluble and, because of their toxicity, are of regulatory concern. Although numerous studies have investigated the fate of BTEX, and significant evidence exists to indicate the potential biodegradability of BTEX in both aerobic and anaerobic environments (Kazumi and others, 1997; Krumholz and others, 1996; Lovely and others, 1995; Gibson and Subramanian, 1984), relatively few investigations have convincingly demonstrated in situ biodegradation of these hydrocarbons (Gieg and others, 1999), and less work has been done on investigating the fate of BTEX species in combination with miscible glycols. To achieve the research objectives, laboratory studies were conducted to (1) characterize glycol related dehydration wastes, with emphasis on identification and quantitation of coconstituent organics associated with TEG and EG wastes obtained from dehydration units located in the United States and Canada, (2) evaluate the biodegradability of TEG and DEG under conditions relevant to subsurface environments and representative of natural attenuation processes, and (3) examine the possibility that high concentrations of glycol may act as a cosolvent for BTEX compounds, thereby enhancing their subsurface mobility. To encompass a wide variety of potential wastes representative of different natural gas streams and dehydration processes, raw, rich, and lean glycol solutions were collected from 12 dehydration units at eight different gas-processing facilities located at sites in Texas, Louisiana, New Mexico, Oklahoma, and Alberta. To generate widely applicable environmental fate data, biodegradation and mobility experiments were performed using four distinctly different soils: three obtained from three gas-producing areas of North America (New Mexico, Louisiana, and Alberta), and one obtained from a North Dakota wetland to represent a soil with high organic matter content.

James A. Sorensen; John R. Gallagher; Steven B. Hawthorne; Ted R. Aulich

2000-10-01T23:59:59.000Z

50

,"South Dakota Natural Gas Industrial Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"South Dakota Natural Gas Industrial Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

51

Percent of Industrial Natural Gas Deliveries in Minnesota ...  

U.S. Energy Information Administration (EIA)

Percentage of Total Natural Gas Industrial Deliveries included in Prices ; Minnesota Natural Gas Prices ...

52

New Concepts in Hardware and Processes to Conserve Oil and Gas in Industrial Processes  

E-Print Network (OSTI)

A broad program to identify and evaluate new types of hardware and processes to conserve oil and gas in chemical plants and petroleum refineries has been completed. During the course of this program, which was sponsored by the Office of Industrial Programs of the U.S. Department of Energy, Argonne interacted with 130 industrial companies to help define and evaluate appropriate areas of technology. The initial step was to assemble a master list of technologies that promised to conserve oil and gas. These technologies were then screened on the basis of quantity of energy saved, capital and operating costs, industry attitude, market potential, and special barriers to implementation such as environmental issues and other special types of problems. One approach used to determine industry attitudes on technologies was to poll several key energy-conservation groups. These included the Gulf Coast Energy Society, Golden Triangle Energy Society, CMA Energy Committee, and the Energy Conservation Committee of the American Petroleum Institute. This paper will summarize some of the results of this program in terms of the following areas of technology: Energy-efficient methods of separation ; Alternative fuels and feed stocks ; Recovery of low-level heat; Advanced Concepts Although the above technologies were identified and evaluated in terms of their application specifically to chemical plants and petroleum refineries, they have the potential of conserving oil and gas across a broad spectrum of industrial processes.

Humphrey, J. L.

1982-01-01T23:59:59.000Z

53

Texas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)  

U.S. Energy Information Administration (EIA)

Release Date: 9/30/2013: Next Release Date: 10/31/2013: Referring Pages: Natural Gas Industrial Price ; Texas Natural Gas Prices; Natural Gas Industrial Price

54

Deregulation in Japanese gas industries : significance and problems of gas rate deregulation for large industrial customers  

E-Print Network (OSTI)

In recent years, the circumstances surrounding Japanese City gas industries have been changing drastically. On one hand, as energy suppliers, natural gas which has become major fuel resource for city gas, as public utilities, ...

Inoue, Masayuki

1994-01-01T23:59:59.000Z

55

Design and implementation of a fuzzy expert system for performance assessment of an integrated health, safety, environment (HSE) and ergonomics system: The case of a gas refinery  

Science Conference Proceedings (OSTI)

The objective of this study is to design a fuzzy expert system for performance assessment of health, safety, environment (HSE) and ergonomics system factors in a gas refinery. This will lead to a robust control system for continuous assessment and improvement ... Keywords: Environment, Ergonomics, Expert system, Fuzzy logic, Health, Safety

A. Azadeh; I. M. Fam; M. Khoshnoud; M. Nikafrouz

2008-11-01T23:59:59.000Z

56

Numerical Simulation of an Industrial Cumulus Affected by Heat, Moisture, and CCN Released from an Oil Refinery  

Science Conference Proceedings (OSTI)

Large oil refineries emit heat, vapor, and cloud condensation nuclei (CCN), all of which can affect the formation of cloud and precipitation. This study quantities the relative contributions of the three factors on cloud development in calm wind ...

S. Guan; G. W. Reuter

1996-08-01T23:59:59.000Z

57

U.S. Virgin Islands Refinery Catalytic Hydrocracking/Gas Oil ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro-Cracking Gas Oil Downstream Charge Capacity ; Cat. Hydro-Cracking Gas Oil Downstream Charge Capacity ; Virgin Islands Downstream Charge Capacity of ...

58

ISRAELS OIL & GAS INDUSTRY NEWSLETTER  

NLE Websites -- All DOE Office Websites (Extended Search)

ISRAEL'S OIL & GAS INDUSTRY NEWSLETTER 2013 June Issue N o 6 A service provided by: U.S. Commercial Service - Israel Department of Commerce 06132013 We are pleased to send you...

59

,"New Mexico Natural Gas Industrial Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 3:27:55 PM" "Back to Contents","Data 1: New Mexico Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NM2" "Date","New Mexico...

60

Applied Virtual Intelligence in Oil & Gas Industry;  

E-Print Network (OSTI)

1 Applied Virtual Intelligence in Oil & Gas Industry; Past, Present, & Future Shahab D. Mohaghegh on a daily basis by almost everyone. Credit Card Fraud Detection Bank Loan Approval Bomb Sniffing Devices

Mohaghegh, Shahab

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Natural Gas Industry and Markets  

Reports and Publications (EIA)

This special report provides an overview of the supply and disposition of natural gas in 2004 and is intended as a supplement to the Energy Information Administration's (EIA) Natural Gas Annual 2004 (NGA). Unless otherwise stated, all data and figures in this report are based on summary statistics published in the NGA 2004.

Information Center

2006-03-03T23:59:59.000Z

62

Opportunities for Biorenewables in Petroleum Refineries  

Science Conference Proceedings (OSTI)

a summary of our collaborative 2005 project “Opportunities for Biorenewables in Petroleum Refineries” at the Rio Oil and Gas Conference this September.

Holmgren, Jennifer; Arena, Blaise; Marinangelli, Richard; McCall, Michael; Marker, Terry; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

2006-10-11T23:59:59.000Z

63

Texas Natural Gas Number of Industrial Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of...

64

Texas Natural Gas Industrial Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Texas Natural Gas Industrial Price (Dollars per Thousand...

65

Texas Natural Gas Industrial Consumption (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Industrial Consumption (Million Cubic Feet) Texas Natural Gas Industrial Consumption (Million Cubic Feet)...

66

South Dakota Natural Gas Industrial Consumption (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Industrial Consumption (Million Cubic Feet) South Dakota Natural Gas Industrial Consumption (Million...

67

South Dakota Natural Gas Industrial Price (Dollars per Thousand...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) South Dakota Natural Gas Industrial Price...

68

Percent of Industrial Natural Gas Deliveries in South Dakota...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) Percent of Industrial Natural Gas Deliveries in South Dakota Represented by the Price (Percent) Percent of Industrial Natural Gas...

69

South Dakota Natural Gas Number of Industrial Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers...

70

Natural gas decontrol: a Northwest industrial perspective  

SciTech Connect

Natural gas prices have increased dramatically since Congress passed the Natural Gas Policy Act in 1978. This report looks at the effects of higher gas prices on three states in the Pacific Northwest: Washington, Oregon, and Idaho, where natural gas is an important fuel for many homeowners and local industries. The incentive to switch to oil increases as gas prices become less competitive. The region will continue to rely on imports of gas from Canada, but the logistical advantage of Canadian gas has recently been offset by government export and pricing policies. A model of interregional trade flows analyzes eight different scenarios to indicate net shifts in regional income associated with gas deregulation and the competitive effects in comparison with an earlier analysis of the Northeast. Data from the model runs appear in the appendix. 5 figures, 3 tables.

Lee, H.; Bender, S.; Kalt, J.

1983-01-01T23:59:59.000Z

71

Kansas refinery starts up coke gasification unit  

SciTech Connect

Texaco Refining and Marketing Inc. has started up a gasification unit at its El Dorado, Kan., refinery. The unit gasifies delayed coke and other refinery waste products. This is the first refinery to install a coke-fueled gasification unit for power generation. Start-up of the $80-million gasification-based power plant was completed in mid-June. The gasifier produces syngas which, along with natural gas, fuels a combustion turbine. The turbine produces virtually 100% of the refinery`s electricity needs and enough heat to generate 40% of its steam requirements.

Rhodes, A.K.

1996-08-05T23:59:59.000Z

72

Increased demand spurs gas compression industry  

Science Conference Proceedings (OSTI)

The increasing demand for natural gas in the last five years has led to dynamic development in the gas compression industry as producers and transmission companies expand operations to supply gas. To handle the increase, for example, transmission companies have been steadily adding new lines to the pipeline infrastructure--3,437 miles in 1995 and an estimated 4,088 miles in 1997. New compression for pipelines has also increased from 212,637 horsepower added in 1989 to an estimated 311,685 horsepower to be added in 1997. Four key trends which influence the gas compression business have developed since the mid 1980s: first, a steady resurgence of demand for natural gas each year; second, a phenomenal number of mergers and buyouts among gas compression companies; third, an alarming drop in average daily gas production per well since 1972; and fourth, high drilling activity in the Gulf of Mexico.

Honea, M. [Weatherford Enterra, Inc., Houston, TX (United States)

1997-10-01T23:59:59.000Z

73

Competition in a Network of Markets: The Natural Gas Industry  

E-Print Network (OSTI)

on the behavior of natural gas prices. Twodata sets arethe industry, natural gas prices could not be equalized4. ~d .. Figure 9. Natural Gas Spot Prices by Region

Walls, W. David

1992-01-01T23:59:59.000Z

74

Technologies for the oil and gas industry  

DOE Green Energy (OSTI)

This is the final report of a five-month, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors performed a preliminary design study to explore the plausibility of using pulse-tube refrigeration to cool instruments in a hot down-hole environment for the oil and gas industry or geothermal industry. They prepared and distributed a report showing that this appears to be a viable technology.

Goff, S.J.; Swift, G.W.; Gardner, D.L.

1998-12-31T23:59:59.000Z

75

Gas insulated substation equipment for industrial applications  

SciTech Connect

Until recently the only available method for construction of high voltage systems was to use exposed air insulated equipment supported on porcelain columns. The past decade has witnessed the introduction and wide acceptance of compressed gas insulated equipment as a viable alternative to the conventional substation system. The characteristics of gas insulated substations (GIS) and their application for industrial use at service voltages at 69 kV and above are discussed.

Kenedy, J.J.

1984-11-01T23:59:59.000Z

76

United States Natural Gas Industrial Price (Dollars per Thousand ...  

U.S. Energy Information Administration (EIA)

Release Date: 9/30/2013: Next Release Date: 10/31/2013: Referring Pages: Natural Gas Industrial Price ; U.S. Natural Gas Prices; Natural Gas Industrial Price

77

Energy Efficiency Improvement in the Petroleum Refining Industry  

E-Print Network (OSTI)

Opportunities for Petroleum Refineries. An ENERGY STAR®and the chemical industry. Refineries spend typically 50% ofStates. Typically, refineries can economically improve

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

78

EIA Energy Kids - Carson Refinery - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Hydrogen. Recent Statistics ... and then distributed to gas stations all over Los Angeles and Southern ... you are probably filling up with gas from the Carson refinery.

79

New Mexico Natural Gas Delivered to Industrial Consumers for...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers for the Account of Others (Million Cubic Feet) New Mexico Natural Gas Delivered to Industrial Consumers for the Account of Others (Million Cubic Feet) Decade...

80

Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Explanatory Notes Survey Methodology Description of Survey Form The Form EIA-820, “Annual Refinery Report,” is the primary source of data in the “Refinery ...

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alabama Natural Gas Industrial Price (Dollars per Thousand ...  

U.S. Energy Information Administration (EIA)

View History: Monthly Annual : Download Data (XLS File) Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) ... Alabama Natural Gas ...

82

The Natural Gas Industry and Markets in 2004  

U.S. Energy Information Administration (EIA)

The Natural Gas Industry and Markets in 2004 Energy Information Administration, Office of Oil and Gas, February 2006 1 This special report provides an overview of the ...

83

Pennsylvania Natural Gas Industrial Price (Dollars per Thousand ...  

U.S. Energy Information Administration (EIA)

Release Date: 8/30/2013: Next Release Date: 9/30/2013: Referring Pages: Natural Gas Industrial Price ; Pennsylvania Natural Gas Prices

84

Context of '2002: Study Finds that Oil and Gas Industry ...  

U.S. Energy Information Administration (EIA)

Context of '2002: Study Finds that Oil and Gas Industry Responsible for Significant Portion of Louisiana Coastal Wetland Loss'

85

Competitive position of natural gas: Industrial baking  

SciTech Connect

Industrial baking is one of the largest natural gas consumers in the food industry. In 1985, bread, rolls, cookies, and crackers accounted for over 82 percent of all baked goods production. Bread accounting for 46 percent of all production. The baking industry consumed approximately 16 trillion Btu in 1985. About 93 percent was natural gas, while distillate fuel oil accounted for seven percent, and electricity accounted for much less than one percent. The three main types of baking ovens are the single lap, tunnel, and Lanham ovens. In the single lap oven, trays carry the product back and forth through the baking chamber once. The single lap oven is the most common type of oven and is popular due to its long horizontal runs, extensive steam zone, and simple construction. The tunnel oven is slightly more efficient and more expensive that the single lap oven. IN the tunnel oven, the hearth is a motorized conveyor which passes in a straight line through a series of heating zones, with loading and unloading occurring at opposite ends of the oven. The advantages of the tunnel oven include flexibility with respect to pan size and simple, accurate top and bottom heat control. The tunnel oven is used exclusively in the cookie and cracker baking, with the product being deposited directly on the oven band. The most recently developed type of oven is the Lanham oven. The Lanham oven is the most efficient type of oven, with a per pound energy consumption approaching the practical minimum for baking bread. Between one--half and two--thirds of all new industrial baking ovens are Lanham ovens. In the Lanham oven, the product enters the oven near the top of the chamber, spirals down through a series of heating zones, and exits near the bottom of the oven. The oven is gas--fired directly by ribbon burners. 31 refs.

Minsker, B.S.; Salama, S.Y.

1988-01-01T23:59:59.000Z

86

Refinery Capacity Report 2007  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2007-06-29T23:59:59.000Z

87

Refinery Capacity Report 2009  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2009-06-25T23:59:59.000Z

88

Refinery Capacity Report 2008  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2008-06-20T23:59:59.000Z

89

Economic impact analysis for the petroleum refineries NESHAP. Final report  

Science Conference Proceedings (OSTI)

An economic analysis of the industries affected by the Petroleum Refineries National Emmissions Standard for Hazardous Air Pollutants (NESHAP) was completed in support of this standard. The industry for which economic impacts was computed was the petroleum refinery industry. Affected refineries must reduce HAP emissions by the level of control required in the standard. Several types of economic impacts, among them price product changes, output changes, job impacts, and effects on foriegn trade, were computed for the selected regulatory alternative.

NONE

1995-08-01T23:59:59.000Z

90

Refinery suppliers face tough times  

SciTech Connect

Despite a handful of bright spots in hydroprocessing and petrochemical sectors, economic woes plague much of the refinery and petrochemical catalysts business, as suppliers are feeling the impact of mature markets and refiners` ongoing cost cutting. Industry experts say the doldrums could spur further restructuring in the catalyst business, with suppliers scrambling for market share and jockeying for position in growing sectors. Expect further consolidation over the next several years, says Pierre Bonnifay, president of IFP Enterprises (New York). {open_quotes}There are still too many players for the mature [refinery catalyst] markets.{close_quotes} Others agree. {open_quotes}Only about seven [or] eight major suppliers will survive,{close_quotes} says Robert Allsmiller, v.p./refinery and petrochemical catalysts at United Catalysts Inc. (UCI; Louisville, KY). {open_quotes}Who they [will be] is still up in the air.{close_quotes}

Rotman, D.; Walsh, K.

1997-03-12T23:59:59.000Z

91

Investigations of Ubicomp in the oil and gas industry  

Science Conference Proceedings (OSTI)

In this paper we describe a use context for ubicomp technology seldom investigated: the industrial setting, and in particular, the oil and gas industry. We suggest that the field offers interesting challenges to the ubicomp field and briefly outline ... Keywords: industrial, oil and gas, ubiquitous computing

Clint Heyer

2010-09-01T23:59:59.000Z

92

Utah Natural Gas Number of Industrial Consumers (Number of Elements...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

93

Illinois Natural Gas Number of Industrial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

94

Wisconsin Natural Gas Number of Industrial Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

95

California Natural Gas Number of Industrial Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

96

Ohio Natural Gas Number of Industrial Consumers (Number of Elements...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

97

Colorado Natural Gas Number of Industrial Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

98

Thailand: Petroleum and natural gas industry profile. Export trade information  

SciTech Connect

The report profiles the petroleum, natural gas, and petrochemical industries in Thailand. It covers: exploration production, consumption, trade, pipelines, industry structure, national energy policy, product marketing, refining, conservation/environmental issues, alternative energy sources, prices, transportation, and commercial opportunities.

1992-06-11T23:59:59.000Z

99

Vermont Natural Gas Number of Industrial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

100

Alabama Natural Gas Percentage Total Industrial Deliveries (Percent...  

Annual Energy Outlook 2012 (EIA)

Industrial Deliveries (Percent) Alabama Natural Gas Percentage Total Industrial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Michigan Natural Gas Number of Industrial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

102

Idaho Natural Gas Number of Industrial Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

103

New Mexico Natural Gas Number of Industrial Consumers (Number...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

104

New Mexico Natural Gas Average Consumption per Industrial Consumer...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumer (Thousand Cubic Feet) New Mexico Natural Gas Average Consumption per Industrial Consumer (Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

105

New Mexico Natural Gas % of Total Industrial Delivered for the...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Delivered for the Account of Others (Percent) New Mexico Natural Gas % of Total Industrial Delivered for the Account of Others (Percent) Decade Year-0 Year-1 Year-2...

106

New Mexico Natural Gas Percentage Total Industrial Deliveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Deliveries (Percent) New Mexico Natural Gas Percentage Total Industrial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

107

Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Commercial Industrial Institutional Local Government Low-Income Residential Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate All Gas Programs: Contact utility Custom Retrofits: 40% Comprehensive Project: 50% of total cost Program Info Funding Source Connecticut Energy Efficiency Fund State Connecticut Program Type Utility Rebate Program Rebate Amount

108

,"Utah Natural Gas Industrial Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","52013"...

109

,"Wisconsin Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 9:15:29 AM" "Back to Contents","Data 1: Wisconsin Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

110

,"Wisconsin Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 9:15:30 AM" "Back to Contents","Data 1: Wisconsin Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

111

,"Texas Natural Gas Industrial Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

112

Corrosion in the Oil and Gas Industry - Programmaster.org  

Science Conference Proceedings (OSTI)

Oct 20, 2010 ... Qualifying Materials for Advanced Heat Transfer Application in Oil and Gas Industry: Scott Nguyen1; Damodaran Raghu2; Kumar Sridharan3; ...

113

High Collapse Tubulars for the Oil and Gas Industry, Manufacturing ...  

Science Conference Proceedings (OSTI)

Presentation Title, High Collapse Tubulars for the Oil and Gas Industry, Manufacturing and Characterization. Author(s), Federico Daguerre, Gustavo Lopez ...

114

The Value of Underground Storage in Today's Natural Gas Industry  

U.S. Energy Information Administration (EIA)

Energy Information Administration iii The Value of Underground Storage in Today's Natural Gas Industry Preface The Value of Underground Storage in Today's Natural ...

115

Titanium composite material for oil and gas industry applications  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2010. Symposium, Corrosion and Corrosion Protection of Materials in the Oil and Gas Industry.

116

,"U.S. Natural Gas Average Annual Consumption per Industrial...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Average Annual Consumption per Industrial Consumer (Mcf)",1,"Annual",2011...

117

,"Ohio Natural Gas Industrial Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013"...

118

Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy and Logistical Challenges to Smart Grid The undersigned members of the natural gas industry are pleased to submit for your consideration the following comments in response...

119

,"Massachusetts Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

120

,"Oregon Natural Gas Industrial Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

,"Washington Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

122

,"Montana Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

123

,"North Dakota Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

124

,"Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

125

,"Arkansas Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

126

,"Indiana Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

127

,"West Virginia Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

128

,"Maryland Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

129

,"Maine Natural Gas Industrial Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

130

,"Oklahoma Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

131

,"Missouri Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

132

,"Rhode Island Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

133

,"Arizona Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

134

,"Tennessee Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

135

,"Minnesota Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

136

,"New York Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

137

,"Wyoming Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

138

,"Virginia Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

139

,"New Hampshire Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

140

,"Mississippi Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

,"Louisiana Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

142

,"Kentucky Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

143

,"North Carolina Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

144

,"New Jersey Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

145

,"Nebraska Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

146

,"Vermont Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013"...

147

,"Michigan Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013"...

148

,"South Dakota Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet...

149

Impact of the 2008 Hurricanes Natural Gas Industry  

U.S. Energy Information Administration (EIA)

Impact of the 2008 Hurricanes on the Natural Gas Industry This report provides an overview of the 2008 Atlantic hurricane season and its impacts on ...

150

,"Texas Natural Gas Industrial Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","52013"...

151

Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laclede Gas Company - Commercial and Industrial Energy Efficiency Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate Program Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Maximum Rebate Commercial Incentive: Contact Laclede Gas for general program incentive maximum Gas Boilers: 1,000,000 BTU/hr ($3,000) Continuous Modulating Burner: $15,000 cap per burner Gas-fired Boiler Tune Up: $750 per building (non-profit), $500 per boiler (C&I) High Efficiency Air-Forced Furnaces: $200-$250 Vent Dampers: $500 per boiler Steam Trap Replacements: $2,500 Primary Air Dampers: $500 Food Service Gas Steamer: $475 Food Service Gas Fryer: $350

152

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

Oil LPG Refinery Gas Other Petroleum Products Natural GasOil LPG Refinery Gas Other Petroleum Products Natural GasEquipment Chemicals Food Petroleum & Coking Textiles Paper

Lu, Hongyou

2013-01-01T23:59:59.000Z

153

Percent of Industrial Natural Gas Deliveries in U.S. Total ...  

U.S. Energy Information Administration (EIA)

Percentage of Total Natural Gas Industrial Deliveries included in Prices ; U.S. Natural Gas Prices ...

154

The Gas Utility View of Industrial Energy Conservation  

E-Print Network (OSTI)

The gas industry fostered more efficient energy utilization long before the idea of energy conservation became fashionable. It became apparent in the late '60's that misguided Federal Legislation was discouraging necessary search for new gas supplies and the gas industry mounted a determined engineering and development effort to stretch existing supplies until changes in the legislation could be implemented. These and similar programs are ongoing even now that the outlook for new gas supplies is constantly improving. This paper makes references to specific efforts by gas utilities in concert with industrial users.

Loberg, T. J.

1980-01-01T23:59:59.000Z

155

Wastewater reuse and recycle in petroleum refineries  

SciTech Connect

The objectives of this study were to identify feasible reuse and recycle techniques that can be successful in reducing wastewater discharge and to estimate their associated costs. Wastewater reduction is a fundamental aspect of the US EPA's proposed regulations for the petroleum refining industry. EPA undertook this study to confirm the cost estimates used in the proposed guidelines, to identify specific technologies, and to accurately assess their costs. Fifteen refineries were chosen to represent the range of refinery characteristics including crude capacity, process employed, and wastewater generation. Significant wastewater reductions were found possible at 12 refineries studied.

Langer, B.S.

1983-05-01T23:59:59.000Z

156

Energy Efficiency Improvement in the Petroleum Refining Industry  

E-Print Network (OSTI)

used in the refinery are refinery gas, natural gas and coke.The refinery gas and coke are by-products of the differentprocesses. The coke is mainly produced in the crackers,

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

157

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

158

DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy (Gas) - Commercial and Industrial Energy Efficiency DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Construction Manufacturing Insulation Design & Remodeling Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Facility: $200,000 Project: $100,000 Customer: $200,000 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom Measures: $4/MCF of first year energy savings Whole Building Design Incentive: 50% of cost up to $3,000 Steam Trap Repair/Replacement: $100

159

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

in the chemical and refinery industries. Energy Researchand by petroleum refineries from the fluid catalyticproduction of propylene at refineries. In the first quarter

Neelis, Maarten

2008-01-01T23:59:59.000Z

160

Restructuring Energy Industries: Lessons from Natural Gas  

U.S. Energy Information Administration (EIA)

system. systems are susceptible to monopoly control and will These differences in law and industry structure give the foreseeable future.

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Knowledge-Intensive Work in the Oil and Gas Industry  

E-Print Network (OSTI)

Knowledge-Intensive Work in the Oil and Gas Industry: A Case Study Thesis for the degree collaborative work practices within a large international oil and gas company (OGC). The work is founded empirical findings, we argue that in knowledge-intensive, interdisciplinary work such as oil and gas

Langseth, Helge

162

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

appear in the syrup refinery through process integration –etc. In many corn refineries, some of the dextrose solutionjet conversion of starch in refineries. Flue gas is used for

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-01-01T23:59:59.000Z

163

Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Commercial and Industrial EnergySense Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit Program (Pennsylvania) < Back Eligibility Commercial Industrial Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Insulation Appliances & Electronics Water Heating Maximum Rebate $75,000 Program Info Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Varies Widely Philadelphia Gas Works' (PGW) Commercial and Industrial Retrofit Incentive Program is part of EnergySense, PGW's portfolio of energy efficiency

164

North Shore Gas - Commercial and Industrial Prescriptive Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Shore Gas - Commercial and Industrial Prescriptive Rebate North Shore Gas - Commercial and Industrial Prescriptive Rebate Program North Shore Gas - Commercial and Industrial Prescriptive Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Contact North Shore Gas Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Steam Traps (Low Pressure): $60/unit Steam Traps (High Pressure): $150/unit Industrial/Process Steam Trap (Low Pressure): $150 Industrial/Process Steam Trap (High Pressure): $200 HVAC Steam Trap Test: $5/unit surveyed Condensing Unit Heater: $2/MBH Boilers: $2 - $6.67/MBH Boiler Cutout/Reset Control: $250

165

Austin Utilities (Gas and Electric) - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Utilities (Gas and Electric) - Commercial and Industrial Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Commercial Weatherization Water Heating Maximum Rebate Electric Measures: $100,000 per customer location, per technology, per year Custom Gas Measures: $75,000 per commercial location per year, $5,000 per industrial location per year Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: See Program Website Air Source Heat Pumps: $20-$25/ton, plus bonus rebate of $4/ton for each

166

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network (OSTI)

A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP™) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver, Colorado. The refrigeration unit is designed to provide refrigeration for two process units at the refinery while utilizing waste heat as the energy source. The added refrigeration capacity benefits the refinery by recovering salable products, debottlenecking process units, avoiding additional electrical demand, and reducing the refinery Energy Intensity Index. In addition, the WHAARP unit lowers air pollutant emissions by reducing excess fuel gas that is combusted in the refinery flare. A comprehensive utility and process efficiency Master Plan developed for the Denver refinery by Planetec provided the necessary platform for implementing this distinctive project. The $2.3 million WHAARP system was paid for in part by a $760,000 grant from the U.S. Department of Energy, as part of their "Industry of the Future Program". Total combined benefits are projected to be approximately $1 million/year with a 1.6 year simple payback including the grant funding.

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

1998-04-01T23:59:59.000Z

167

Peoples Gas - Commercial and Industrial Prescriptive Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peoples Gas - Commercial and Industrial Prescriptive Rebate Program Peoples Gas - Commercial and Industrial Prescriptive Rebate Program Peoples Gas - Commercial and Industrial Prescriptive Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Commercial Prescriptive Incentives: 50,000/project; 100,000/customer per year Commercial Custom Incentives: 100,000/project; 250,000/customer per year Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Steam Traps (Low Pressure): $60/unit Steam Traps (High Pressure): $150/unit Industrial/Process Steam Trap (Low Pressure): $150 Industrial/Process Steam Trap (High Pressure): $200

168

Venezuela`s gas industry poised for long term growth  

Science Conference Proceedings (OSTI)

Venezuela`s enormous gas resource, combined with a new willingness to invite outside investment, could result in rapid growth in that industry into the next century. The development of liquefied natural gas exports will depend on the future course of gas prices in the US and Europe, but reserves are adequate to supply additional projects beyond the proposed Cristobal Colon project. Venezuela`s gas reserves are likely to increase if exploration for nonassociated gas is undertaken on a larger scale. The paper discusses gas reserves in Venezuela, internal gas markets, the potential for exports, competition from Trinidad, LNG export markets, and the encouragement of foreign investment in the gas industry of Venezuela.

Croft, G.D. [Pantera Petroleum Inc., San Leandro, CA (United States)

1995-06-19T23:59:59.000Z

169

Philadelphia Gas Works - Commercial and Industrial Equipment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

available to all PGW commercial and industrial customers installing high efficiency boilers or eligible commercial food service equipment. All equipment must meet program...

170

Tables - Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2009: PDF: 2: Production Capacity of Operable ...

171

Table 9. Refinery Receipts of Crude Oil by Method of ...  

U.S. Energy Information Administration (EIA)

Refinery Receipts of Crude Oil by Method of ... "Annual Refinery Report." 49 Energy Information Administration, Refinery Capacity 2011. Title: Refinery ...

172

Oklahoma, Kansas, Missouri Refinery District API Gravity ...  

U.S. Energy Information Administration (EIA)

Oklahoma, Kansas, Missouri Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

173

NORM Management in the Oil & Gas Industry  

Science Conference Proceedings (OSTI)

It has been established that Naturally Occurring Radioactive Materials (NORM) accumulates at various locations along the oil/gas production process. Components such as wellheads

Michael Cowie; Khalid Mously; Osama Fageeha; Rafat Nassar

2008-01-01T23:59:59.000Z

174

Industrial Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA)

... electric power price data are for regulated electric ... Gas volumes delivered for vehicle fuel are included in the State monthly totals from January 2011 ...

175

Industrial type gas turbines for offshore applications  

SciTech Connect

The paper discusses, with reference to the power generating gas turbines on the FRIGG TCP-2 platform, the specific and general requirements for offshore gas turbine, and how those sometimes conflicting requirements are met. Furthermore, interesting details of the particular installation on the FRIGG TCP-2 platform are described. The gas turbines on the FRIGG TCP-2 platform are the first ones to be installed in Norwegian water after the Norwegian regulations for ''Production and auxiliary systems on production installations, etc.'' were officially issued in April 1978. Some of these special regulations and their influence on the gas turbine design are discussed. Paper No. 79-GT-105.

Elmhed, G.; Ferm, S.; Svensson, S.O.

1980-04-01T23:59:59.000Z

176

Gas Turbines Increase the Energy Efficiency of Industrial Processes  

E-Print Network (OSTI)

It is a well known fact that the gas turbine in a combined cycle has a higher inherent Carnot efficiency than the steam cycle which has been more generally accepted by industry. Unlike steam turbines, gas turbines do not require large boiler feed water, condensate and cooling water facilities. The benefits of the high efficiency of combined cycle gas turbines can only be realized if the energy in the hot exhaust can be utilized. Data for several plants, in various stages of engineering, in which clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial processes, namely in the production of ammonia, LNG, and olefins. These options are briefly discussed.

Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

1981-01-01T23:59:59.000Z

177

ConEd (Gas) - Commercial and Industrial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ConEd (Gas) - Commercial and Industrial Energy Efficiency Program ConEd (Gas) - Commercial and Industrial Energy Efficiency Program ConEd (Gas) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Manufacturing Other Appliances & Electronics Water Heating Maximum Rebate Large Commercial Energy Study: 50,000 (gas); 67,000 (combined with electric) VFD: 12,000 Program Info Expiration Date 12/31/2015 State New York Program Type Utility Rebate Program Rebate Amount Energy Study: 50% of the cost Custom: $1/therm at less than 20% savings; $2/therm at greater than 20% savings Control/Automation Systems: $2/therm saved, up to 50% of cost

178

Illinois Natural Gas Industrial Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Illinois Natural Gas Industrial Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 317,577 ...

179

Superior Thermal Barrier Coatings for Industrial Gas-Turbine...  

NLE Websites -- All DOE Office Websites (Extended Search)

070103 (36 Months Duration) 546,000 Total Contract Value (546,000 DOE) Superior Thermal Barrier Coatings for Industrial Gas-Turbine Engines Using a Novel Solution-Precursor...

180

Wisconsin Natural Gas Industrial Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Wisconsin Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2001: 14,962: 14,885: 17,481: 10,597: 8,607 ...

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wisconsin Natural Gas Industrial Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Wisconsin Natural Gas Industrial Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 155,677: 141,980:

182

Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic ...  

U.S. Energy Information Administration (EIA)

Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2001: 9.54: 8.44: 9.52: ...

183

Monitoring system improves maintenance for North Sea industrial gas turbines  

SciTech Connect

A change in maintenance emphasis and installation of a computerized condition-monitoring system for Type-H industrial gas turbines on Ekofisk platforms have led to more efficient use of manpower and more-productive machinery.

Cullen, J.P. (Phillips Petroleum Co., Tanager (NO))

1988-10-24T23:59:59.000Z

184

Ohio Natural Gas Industrial Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Ohio Natural Gas Industrial Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 334,874: 331,122 ...

185

Evaluation of capacity release transactions in the natural gas industry  

E-Print Network (OSTI)

The purpose of this thesis is to analyze capacity release transactions in the natural gas industry and to state some preliminary conclusions about how the capacity release market is functioning. Given FERC's attempt to ...

Lautzenhiser, Stephen

1994-01-01T23:59:59.000Z

186

,"Pennsylvania Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

586-8800",,,"9302013 9:15:16 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035PA3"...

187

,"Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"172014 2:51:35 PM" "Back to Contents","Data 1: Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ID3"...

188

Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition November 16, 2007 - 4:31pm Addthis Holds Bilateral Discussion with President of Turkmenistan on Opening of Markets, Increased Investment, and Multiple Trade Routes ASHGABAT, TURKMENISTAN - U.S. Secretary of Energy Samuel W. Bodman today held bilateral energy discussions with the President of Turkmenistan and other senior Turkmenistan officials and delivered remarks to the Turkmenistan Industrial Oil and Gas Exhibition. Secretary Bodman highlighted the role of international investment in developing Turkmenistan's vast resources and expanding infrastructure. He also discussed the importance of establishing a stable and transparent

189

,"New Mexico Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 3:27:55 PM" "Back to Contents","Data 1: New Mexico Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035NM3"...

190

New Mexico Natural Gas Number of Industrial Consumers - Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers - Sales (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

191

New Mexico Natural Gas Number of Industrial Consumers - Transported...  

U.S. Energy Information Administration (EIA) Indexed Site

Transported (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

192

How refinery fuel indexes have varied  

Science Conference Proceedings (OSTI)

Refinery fuels costs have endured a steady incline since 1993, except for a period in 1993. As shown in the accompanying table, these increases in cost have occurred for residual fuel oil costs in three of the five PADD districts. The cost for natural gas for refinery usage also dropped steadily during the 3-year study. These conclusions are based on costs of an average refinery fuel consisting of 1 bbl each of PADD Districts 1--5 and an average US cost of 4.4 MMscf natural gas (a 1 bbl equivalent on a BTU content basis). Raw residual fuel oil and natural gas prices come from publications put out by the US Department of Labor.

Farrar, G.

1997-01-06T23:59:59.000Z

193

Industrial gas turbines with subatmospheric expansion  

SciTech Connect

A modification is proposed to the basic Brayton cycle, by coupling the gas turbine with a jet pump. This allows subatmospheric pressure to exist at the exit of the turbine, a bigger turbine ratio and, hence, a higher efficiency. The jet pump operates with steam, produced from pressurized water heated by the exhaust gasses of the gas turbine. A simple configuration of the coupling is studied in detail.

Georgiou, D.P. (Patras Univ. (Greece))

1988-01-01T23:59:59.000Z

194

Main line natural gas sales to industrial users: 1978  

Science Conference Proceedings (OSTI)

Main line natural gas sales (in million cubic feet) by interstate natural gas companies to industrial users are itemized for 1974 to 1978. Information includes company name, customer name, customer's Standard Industrial Classification (SIC), the type of sale (where available and applicable), the delivery point, and the state involved in transactions. Tabulations summarize sales by SIC, by state and SIC, and by natural gas companies and SIC. Also summarized in the tables are sales by state and type (offpeak, interruptible, and not specified) for 1978. A brief narrative highlights recent trends and makes comparisons between the two most recent years. 5 tables.

Not Available

1980-01-08T23:59:59.000Z

195

Main line natural gas sales to industrial users, 1980  

Science Conference Proceedings (OSTI)

Main line natural gas sales (in million cubic feet) by interstate natural gas companies to industrial users and other public authorities are itemized for each year from 1976 through 1980. Information includes company name, customer name, customer's Standard Industrial Classification (SIC), the type of sale (where available and applicable), the delivery point, and the state involved in transactions. Tabulations summarize sales by SIC, by State and SIC, and by Natural Gas Companies and SIC. Also summarized in the tables and sales by State and type (offpeak interruptible, and not specified) for 1980 A brief narrative highlights recent trends and makes comparisons between the two most recent years. 5 tables.

Dillard, F.B.

1981-12-01T23:59:59.000Z

196

Main-line natural gas sales to industrial users 1979  

Science Conference Proceedings (OSTI)

Main line natural gas sales by interstate natural gas companies to industrial users are itemized for 1975 to 1979. Information includes company name, customer name, customer's standard industrial classification (SIC), the type of sale (where available), the delivery point, and the state involved in transactions. Tabulations summarize sales by SIC, by state and SIC, and by natural gas companies and SIC. Also summarized are sales by state and type (offpeak, interruptible, and not specified) for the year 1979. An accompanying narrative highlights recent trends and makes comparisons between the two most recent years. 5 tables.

Not Available

1981-02-01T23:59:59.000Z

197

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Program Info Start Date 9/1/2012 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Boiler Size 300-500 (kBtu/h): $800; $2900 Boiler Size 500-700 (kBtu/h): $1400; $3600 Boiler Size 700-900 (kBtu/h): $2000; $4200 Boiler Size 900-1100 (kBtu/h): $2600; $4800 Boiler Size 1100-1300 (kBtu/h): $3200; $5400 Boiler Size 1300-1500 (kBtu/h): $3800; $6000 Boiler Size 1500-1700 (kBtu/h): $4400; $6600 Boiler Size 1700-2000 (kBtu/h): $5200; $7400

198

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate Custom: 50% of project cost Program Info Start Date 06/09/2011 State Wyoming Program Type Utility Rebate Program Rebate Amount Water Heater: $75 - $300 Furnaces: $250 - $400 Boilers: $150 - $400 Setback Thermostat: $25 - $50 Convection Oven: $100 High Efficiency Range/Oven: $500 Conveyor Oven: $500 Fryer: $500 Broiler: $100 Steam Cooker: $500 Vent Dampers for Boilers: $125 Custom: Two year buy down or 50% of project cost, whichever is less

199

Investigation of greenhouse gas reduction strategies by industries : an enterprise systems architecting approach  

E-Print Network (OSTI)

This thesis explores an enterprise systems architecting approach to investigate the greenhouse gas reduction strategies followed by industries, especially for automotive industry and Information Technology industry. The ...

Tanthullu Athmaram, Kumaresh Babu

2012-01-01T23:59:59.000Z

200

Natural Gas Industrial Price - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Prices ... History; U.S. 4.97: 5.03: 4.91: 4.50: 4.34: 4.39: 2001-2013: Alabama: 5.38: 5.25: 5.25: 4.82: 4.52: 4.48: 2001-2013: Alaska: ...

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Oil, gas tanker industry responding to demand, contract changes  

SciTech Connect

Steady if slower growth in demand for crude oil and natural gas, low levels of scrapping, and a moderate newbuilding pace bode well for the world`s petroleum and natural-gas shipping industries. At year-end 1997, several studies of worldwide demand patterns and shipping fleets expressed short and medium-term optimism for seaborne oil and gas trade and fleet growth. The paper discusses steady demand and shifting patterns, the aging fleet, the slowing products traffic, the world`s fleet, gas carriers, LPG demand, and LPG vessels.

True, W.R.

1998-03-02T23:59:59.000Z

202

Commercial national accounts program is a gas industry revenue builder  

SciTech Connect

The need for gas distributors to implement revenue-generating strategies is clearly evident in the commercial sector - their fastest growing market. One strategy is A.G.A.'s commercial national accounts marketing program, designed to establish working relationships with national and regional food, hotel, and retail chains and with the firms that design energy systems for them. The program supplies these chains with information on gas industry services and research aimed at increasing energy utilization efficiency. Regular communications and coordinated sales calls by gas utility executives on chain headquarters often produce increased gas sales, even of traditionally all-electric chains, as illustrated by several case histories.

Moskitis, T.L.

1984-04-01T23:59:59.000Z

203

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Simulation Tools Available from Energy Analysis and Environmental Impacts Department Tools header image January 2014 Tools and models to find the best way to save energy and reduce greenhouse gas emissions in cities and industries, to follow the transport of pollutants through the environment, and to calculate the cost of power interruptions are among those available on a new Lawrence Berkeley National Laboratory (Berkeley Lab) web site. The site brings together models and simulation tools developed by the Energy Analysis and Environmental Impacts (EAEI) Department of the Lab's Environmental Energy Technologies Division. "Our hope is that the site will facilitate greater technical awareness of

204

Electric and Gas Industries Association | Open Energy Information  

Open Energy Info (EERE)

and Gas Industries Association and Gas Industries Association Jump to: navigation, search Name Electric and Gas Industries Association Place Sacramento, CA Zip 95821 Website http://www.egia.org/ Coordinates 38.6228166°, -121.3827505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6228166,"lon":-121.3827505,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

PROJECT RULISON A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O  

Office of Legacy Management (LM)

A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O N S T I M U L A T I O N EXPERIMENT U S I N G A NUCLEAR EXPLOSIVE Issued By PROJECT RULISON JOINT OFFICE OF INFORMATION U. S. ATOMIC ENERGY COMMISSION - AUSTRAL OIL COMPANY, INCORPORATED THE DEPARTMENT OF THE INTERIOR - CER GEONUCLEAR CORPORATION May 1, 1969 OBSERVATION AREA J SURFACE GROUND ZERO AREA S C A L E - I inch e q u a l s approximatly I 2 m i l e s Project Rulison Area Map PROJECT RULISON A N INDUSTRY-GOVERNMENT NATURAL GAS PRODUCT1 ON STIMULATION EXPERIMENT USING A NUCLEAR EXPLOSIVE I. INTRODUCTION Project Rulison is o joint experiment sponsored by Austral O i l Company, Incorporated, of Houston, Texas, the U. S. Atomic Energy Commission and the Department o f the Interior, w i t h the Program Management provided b y CER Geonuclear Corporotion of L

206

Monitoring and Management of Refinery Energy Consumption  

E-Print Network (OSTI)

Since 1972, the U.S. refining industry has made much progress in reducing energy consumption. Lately, falling energy prices have de-emphasized the need to appropriate new capital for additional energy conservation projects. One area neglected in most refineries is the need to monitor and manage the daily use of energy. Setting up an energy auditing system will tell management how well each unit in the refinery is being operated and can be used as a valuable tool in reducing energy costs. An example of an energy monitorirg and management system is discussed and illustrated with examples.

Pelham, R. O.; Moriarty, R. D.; Hudgens, P. D.

1986-06-01T23:59:59.000Z

207

Petroleum complex of Russia. Reconstruction of petroleum refineries: Means for accomplishing the task  

SciTech Connect

This report describes the refining industry in Russia with respect to production and economic factors. The modernization and reconstruction of the refineries is also discussed.

Rykunova, T.

1994-11-01T23:59:59.000Z

208

Commission ushers in new era in Mexican gas industry  

Science Conference Proceedings (OSTI)

Transportation and distribution of natural gas in Mexico are undergoing fundamental changes as a result of the 1995 passage by the Congress of Mexico of the law that created the Energy Regulatory Commission (Comision Reguladora de Energia--CRE). The law mandates that the commission must achieve a competitive, efficient, safe, and sustainable gas industry, allowing the country to make the difficult energy transition to open gas and electricity markets relying on cleaner fuels. The paper discusses the situation before CRE, the regulatory framework, market development, and the North American market.

Monteforte, R. [Energy Regulatory Commission of Mexico, Mexico City (Mexico)

1998-04-06T23:59:59.000Z

209

Case study: City of Industry landfill gas recovery operation  

DOE Green Energy (OSTI)

Development of civic, recreation, and conservation facilities throughout a 150-acre site which had been used for waste disposal from 1951 to 1970 is described. The history of the landfill site, the geology of the site, and a test well program to assess the feasibility of recoverying landfill gas economically from the site are discussed. Based on results of the test well program, the City of Industry authorized the design and installation of a full-scale landfill gas recovery system. Design, construction, and operation of the system are described. The landfill gas system provides fuel for use in boilers to meet space heating and hot water demands for site development (MCW)

None

1981-11-01T23:59:59.000Z

210

Status of Texas refineries, 1982  

Science Conference Proceedings (OSTI)

This report is a survey of current operations of the Texas refineries during the 1979-82 market slump using publicly available data from the US Department of Energy and the Texas Railroad Commission. The report looks at the small inland refineries, the large inland refineries, the small coastal refineries, the large coastal refineries in Texas, and the Louisiana coastal refineries. The report suggests that about 200 mb/d of inland capacity and 1.3 million b/d of coastal capacity has been permanently idled.

Langston, V.C.

1983-03-01T23:59:59.000Z

211

U.S. Natural Gas Industrial Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Industrial Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 8,510,879: 8,320,407:

212

Value of Underground Storage in Today's Natural Gas Industry, The  

Reports and Publications (EIA)

This report explores the significant and changing role of storage in the industry by examining the value of natural gas storage; short-term relationships between prices, storage levels, and weather; and some longer term impacts of the Federal Energy Regulatory Commission's (FERC) Order 636.

Information Center

1995-03-01T23:59:59.000Z

213

A Louisiana Refinery Success Story  

E-Print Network (OSTI)

"Refining 155,000 barrels of crude oil daily, a Louisiana plant markets oil products to gas stations in at least 26 states, including Washington, D.C. The plant uses 8,538 steam traps with 1,200-, 600-, 250-, 75-, 40- and 15-psi nominal pressures. Standardized with inverted bucket steam traps, the Louisiana refinery’s maintenance and energy coordinator was content with the results. The Spirax Sarco Inc (SSI) team demonstrated SSI’s Energy Service Group (ESG) capabilities and successes to the refinery manager, operations manager and production manager. From 2004 through 2006, the team presented a series of ESG seminars at the refinery site. The numerous models demonstrated quantitative savings with 3- to 12-mo paybacks. For a complete SSI turnkey program, for example, the SSI team presented an ROI with less than six months payback. The ESG survey found that only 3,952 (46.3%) of the steam traps were operating correctly. The remaining steam traps experienced a variety of failures, including: 613 (7.2%) that failed open; 2,763 (32.4%) were cold; 1,012 (11.9%) that failed closed; 6 (0.0%) exhibited rapid cycling; and 192 (2.2%) were disconnected. The team also found performance and temperature issues with the HP sulfur reactors in the SRU units, largely due to the application of inverted bucket steam traps. Plus, as a result of excessive steam leaks, the sulfur reactors were creating a safety hazard. When these results were presented, management agreed that the sulfur reactors needed process improvement. The SSI team recommended replacing the inverted bucket steam traps with 1-1/2-in. strainers and 1-1/2-in. flanged float & thermostatic steam traps. They also suggested that the existing trap discharge piping should be removed and re-piped with globe-style bypass valves and gate-style isolation valves to reduce flow velocity. Once the SSI team began negotiations, it only took one survey for the Louisiana refinery to realize all the energy savings opportunities. In fact, the ESG survey uncovered more than $1.3 million in steam losses through failed steam traps and another $1 million in steam leak opportunities and production, process, safety and environmental improvements. Impressed with the survey results, the refinery approved the estimated $110,000 turnkey project, which offered a 5.3-month payback. Further negotiations netted the team annual steam trap surveys for the next three years, as well as an approved 2008 energy budget of $600,000. Additionally, the Louisiana refinery has indicated that upon successful completion of the ESG program, SSI’s annual energy budget will increase to $1,000,000."

Kacsur, D.

2009-05-01T23:59:59.000Z

214

The Natural Gas Industry and Markets in 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 Overview The natural gas industry in 2003 experienced sustained high prices, supported at least in part by pressure on supplies as gas in storage was rebuilt from historic lows in the early part of the year. The national annual average natural gas wellhead price was $4.88 per thousand cubic feet (Mcf), which is the highest wellhead price (based on 2003 constant dollars) in the Energy Information Administration's historical data series dating to 1930. U.S. marketed production was virtually unchanged compared with the previous year at 19.9 trillion cubic feet (Tcf), despite the high prices and an increased number of drilling rigs employed in the commercial development of gas deposits. Imports of liquefied natural gas (LNG) mitigated supply declines, reaching a record

215

Texas Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

216

Colorado Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

217

Nickel-Based Superalloy Welding Practices for Industrial Gas Turbine Applications M.B. Henderson  

E-Print Network (OSTI)

1 Nickel-Based Superalloy Welding Practices for Industrial Gas Turbine Applications M.B. Henderson and reduced costs for industrial gas turbine engines demands extended use of high strength-high temperature superalloys are used within the industrial gas turbine (IGT) engine manufacturing industry, specifically

Cambridge, University of

218

NYSEG (Gas) - Commercial and Industrial Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Efficiency Program Commercial and Industrial Efficiency Program NYSEG (Gas) - Commercial and Industrial Efficiency Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Multi-Family Residential Nonprofit State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Maximum Rebate No maximum per customer rebate; however, NYSEG/RG&E reserve the right to cap the rebate to any one customer. Program Info State New York Program Type Utility Rebate Program Rebate Amount HVAC: Prescriptive incentives vary Condensing Boilers: $1000-$6000 Hydronic Boilers: $500-$4000 Steam Boilers: $200 Furnaces: $100 Programmable Thermostats: $25 Boiler Reset Controls: $150 Provider NYSEG/RGE NYSEG and RG&E offer rebates to non-residential customers installing energy

219

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network (OSTI)

adjusted to include OCS oil and gas. Natural gas productionfacilities increased offshore oil and gas production nuclearwells, refineries, and oil and gas The major non-electrical

Authors, Various

2010-01-01T23:59:59.000Z

220

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Reduce Natural Gas Use in Your Industrial Steam Systems: Ten Timely Tips  

SciTech Connect

This DOE Industrial Technologies Program brochure provides 10 timely tips to help industrial manufacturing plants save money and reduce natural gas use in their steam systems.

2006-02-01T23:59:59.000Z

222

Investigation of greenhouse gas reduction strategies by industries : an enterprise systems architecting approach.  

E-Print Network (OSTI)

??This thesis explores an enterprise systems architecting approach to investigate the greenhouse gas reduction strategies followed by industries, especially for automotive industry and Information Technology… (more)

Tanthullu Athmaram, Kumaresh Babu

2012-01-01T23:59:59.000Z

223

'81-'82 peakshaving capacity is gas industry's best ever  

SciTech Connect

During the 1981-82 winter, the US gas industry expected to draw its peakshaving supplies from (1) 58.40 billion CF of underground storage, (2) 5.21 billion CF of propane-air, (3) 8.99 billion CF of LNG, and (4) 0.27 billion CF of other sources. The industry's top peak-day sendout could reach 80-88 billion CF in a single 24-hr period. During 1981, underground-storage capacity continued its rising trend, while LNG-plant deliverability remained static and propane-air plant additions tapered off.

Hale, D.

1981-11-01T23:59:59.000Z

224

Pipeline Access and Market Integration in the Natural Gas Industry: Evidence from Cointegration Tests  

E-Print Network (OSTI)

System for Natural Gas Pipelines." Study prepared underin the Natural Gas Pipeline Industry. Ph.D. dissertation,the remaining barfers to pipeline integration. REFERENCES

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

225

Industrial sector natural gas use rising - Today in Energy - U.S ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... Industrial customers form an important gas-use sector, using natural gas for a variety of purposes, including the following:

226

Supplies of Refinery Natural Gas  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

227

Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector  

E-Print Network (OSTI)

The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23.6 metric tons of carbon dioxide equivalent per capita in 2006. The industrial sector (agriculture is excluded) is responsible for 28.7 percent of the GHG emissions in the U.S. However, the U.S. industrial sector has numerous economically viable opportunities to reduce energy use and GHG emissions. Energy efficiency, including new clean technologies, plays a significant role in increasing productivity and reducing energy intensity, and thus emissions. Increasing energy efficiency in industrial processes is central to addressing climate change issues in the industrial sector. This paper describes the energy-efficiency programs, methodologies, and technologies that can economically lead to significant GHG reductions in the industrial sector. The paper also discusses the impacts of climate change policies and programs to the application of advanced low-carbon industrial technologies.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

228

Gas Turbine Considerations in the Pulp and Paper Industry  

E-Print Network (OSTI)

The pulp and paper industry is one of the largest users of energy in the industrial arena. Large quantities of process steam and electrical energy are required per unit of production. The pulp and paper industry has recognized the thermodynamic benefits and potentially attractive economics of developing power generation as an integral part of their power plant systems. The large requirements for process steam combined with process by-products and wood wastes make steam turbines a serious consideration in plant locations where suitable economic conditions are present. And many systems incorporating a wide variety of steam turbine types have been installed and are contributing toward profitable operations. In recent years, competitive pressures, environmental concerns, the cost and availability of various fuels, and new power generation opportunities have awakened the interest in power generation in the pulp and paper industry, as well as others. A strategic review of these issues creates the opportunity to favorably position the pulp and paper industry for the coming century. The industry has also become aware that gas turbine-based cogeneration systems can frequently be highly desirable relative to their traditional steam turbine approach.

Anderson, J. S.; Kovacik, J. M.

1990-06-01T23:59:59.000Z

229

North Dakota Industrial Commission, Oil and Gas Divisioin | Open Energy  

Open Energy Info (EERE)

North Dakota Industrial Commission, Oil and Gas Divisioin North Dakota Industrial Commission, Oil and Gas Divisioin Jump to: navigation, search State North Dakota Name North Dakota Industrial Commission, Oil and Gas Divisioin Address 600 East Boulevard Ave Dept 405 City, State Bismarck, North Dakota Zip 58505-0840 Website https://www.dmr.nd.gov/oilgas/ Coordinates 46.8206977°, -100.7827515° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.8206977,"lon":-100.7827515,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

A guide for the gas and oil industry  

SciTech Connect

This guide has been prepared to assist those in the natural gas and oil industry who may not be familiar with how the Federal government, particularly the U.S. Department of Energy (DOE or Department), does business with private sector companies. Basic information is provided on what DOE is trying to do, why it wants to work with the natural gas and oil industry, how it can work with companies, who to contact, and where to inquire for further information. This last item is noteworthy because it is important for users of this guide to be able to access information about subjects that may interest them. Selected other Federal agencies and their activities related to those of DOE`s Office of Fossil Energy (FE or Fossil Energy) also are included in this document as Appendix A. This guide provides an address and/or phone number for every topic covered to prevent any information impasse. If a question is not adequately answered by the guide, please do not hesitate to contact the appropriate person or office. It is hoped that the information provided in this guide will lead to a better understanding of the mission, roles, and procedures of DOE and result in more and better cooperative working relationships between the natural gas and oil industry and DOE. Such relationships will provide a significant benefit to our Nation`s economic, technological, and energy security.

Not Available

1994-12-01T23:59:59.000Z

231

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

232

THE NATURAL GAS INDUSTRY AND MARKETS IN 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 This special report provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Energy Information Administration's (EIA) Natural Gas Annual 2002 (NGA). Unless otherwise stated, all data in this report are based on summary statistics published in the NGA 2002. Questions or comments on the contents of this report should be directed to William Trapmann at william.trapmann@eia.doe.gov or (202) 586-6408. Overview The natural gas industry and markets experienced a number of key changes during 2002. Current supplies of production and net imports decreased by about 750 billion cubic feet (Bcf) in 2002, so storage stocks were drawn down to meet an increase in consumption. Average prices in 2002 declined from the relatively high levels of 2001.

233

Can a more competitive natural gas industry provide stability  

SciTech Connect

This paper addresses the question, ''Can a more competitive natural gas industry provide stability.'' When we discuss a free gas market here, we are primarily referring to a market in which flexible, accurate prices are free to adjust to achieve market equilibrium -- a balance of supply and demand. Implied is the lack of wellhead price regulations and the transmission of accurate price signals to both suppliers and end-users. Economic efficiency requires that prices respond to changes in conditions such as the world oil price, such as the world oil price, regional demands (for example, those of the Northeast US), sectoral demands (e.g., those of the electric utilities), and environmental policy (select use of gas for emission control, for example). 11 refs., 2 figs., 1 tab.

Hanson, D.A.; Jennings, T.V.; Lemon, J.R.

1988-01-01T23:59:59.000Z

234

Impact of the 2008 Hurricane Season on the Natural Gas Industry  

Reports and Publications (EIA)

This report provides an overview of the 2008 Atlantic hurricane season and its impacts on the natural gas industry

Information Center

2009-01-26T23:59:59.000Z

235

New techniques and products solve industry problems. [New technology available for the natural gas pipeline industry  

SciTech Connect

Recently introduced technology advances in data handling, manipulation and delivery; new gas and storage marketing products; a nonintrusive pipe-crack arrester; and responsive pipe-coating mill construction show promise for cutting industry costs by increasing efficiency in pipe line construction, repair, rehabilitation, and operations. The products, services and methods described in this new technology survey include: a PC-compatible dataserver that requires no user programming; flexible, responsive gas transportation scheme; evaluation of possible further uses on brittle transmission lines for fiberglass-reinforced resin composite; new multilayer epoxy PE coating mill in Corinth, Greece, near areas where large pipe line construction and rehabilitation projects are contemplated.

Bullion, L.

1993-09-01T23:59:59.000Z

236

NORM Management in the Oil and Gas Industry  

Science Conference Proceedings (OSTI)

It has been established that Naturally Occurring Radioactive Materials (NORM) accumulates at various locations along the oil/gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become NORM contaminated, and NORM can accumulate in sludge and other waste media. Improper handling and disposal of NORM contaminated equipment and waste can create a potential radiation hazard to workers and the environment. Saudi Aramco Environmental Protection Department initiated a program to identify the extent, form and level of NORM contamination associated with the company operations. Once identified the challenge of managing operations which had a NORM hazard was addressed in a manner that gave due consideration to workers and environmental protection as well as operations' efficiency and productivity. The benefits of shared knowledge, practice and experience across the oil and gas industry are seen as key to the establishment of common guidance on NORM management. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy and its goals of establishing common guidance throughout the oil and gas industry.

Cowie, Michael; Mously, Khalid; Fageeha, Osama; Nassar, Rafat [Environmental Protection Department, Saudi Aramco Dhahran 31311 (Saudi Arabia)

2008-08-07T23:59:59.000Z

237

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels per Day)

238

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

239

The Regional Gas Infrastructure -- Is It Ready for the Power Boom?: How Changes in Gas and Electric Industries Affect Reliability an d Competitiveness of Gas-Fired Generation  

Science Conference Proceedings (OSTI)

The boom in gas-fired capacity additions, coupled with today's overheated gas market, make questions of gas supply a top priority for gas and electric industry planners. The relationships between the gas and electric industries are changing -- with the latter becoming a premium customer of the former. While the commodity market is national in scope, many of the impacts and planning challenges are best understood on a regional basis. This report examines five regions where gas-fired capacity additions are...

2001-01-17T23:59:59.000Z

240

Motiva Enterprises Refinery Expansion Groundbreaking | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enterprises Refinery Expansion Groundbreaking Enterprises Refinery Expansion Groundbreaking Motiva Enterprises Refinery Expansion Groundbreaking December 10, 2007 - 4:44pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Bill. It's good to see Congressman Poe, Rob Routs, Mr. Al-Khayyal and Mayor Prince here. Thank you all for inviting me to be part of this occasion. In 1901 Texas wildcatters struck oil near here at a place called Spindletop, setting off the Texas Oil Boom. Like the California Gold Rush some 50 years before, the Texas Oil Boom helped to build America. People moved across the country in search of prosperity. To achieve it, they needed to develop new technologies and build new infrastructure like the original parts of the Port Arthur refinery, which opened here in 1903. As America's need for energy expanded as our demand for oil and gas

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Texas Gulf Coast Refinery District API Gravity (Weighted ...  

U.S. Energy Information Administration (EIA)

Texas Gulf Coast Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

242

Texas Gulf Coast Refinery District API Gravity (Weighted Average ...  

U.S. Energy Information Administration (EIA)

Texas Gulf Coast Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

243

Appalachian No. 1 Refinery District Sulfur Content (Weighted ...  

U.S. Energy Information Administration (EIA)

Appalachian No. 1 Refinery District Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)

244

The potential application of fuel cell cogeneration systems in petroleum refineries. [Phosphoric acid, molten carbonate and solid oxide fuel cells  

Science Conference Proceedings (OSTI)

The market potential for fuel cell cogeneration systems within the petroleum refinery industry is evaluated. Phosphoric acid (PAFC), molten carbonate (MCFC), and solid oxide (SOFC) fuel cells were considered. Conventional competitive systems now available including purchased power plus boiler-generated steam, gas turbine combined cycle, and a relatively new coke fluidized bed-boiler were characterized. Refineries use large quantities of steam at pressures ranging from about 15 to 650 psig. PAFCs can only meet a limited number of steam requirements because of their relatively low operating temperature. The high temperature MCFC and SOFC are technically much more attractive for this application. However, current estimates of their capital costs are too large to make the technologies competitive. The capital costs of MCFCs and SOFCs would have to decrease approx.50% from their present estimated $1300/kWe. If costs could be decreased to give a 10% energy cost advantage to fuel cells, the industry projects that fuel cells might supply about 300 MWe by the year 2000, and modules in the 5- to 20-MWe size would be of interest. The market opportunities in refineries are varied - the industry is large, each plant is unique, thermal energy consumption is large, and both domestic and international competitiveness is intense. 10 refs., 26 figs., 17 tabs.

Altseimer, J.H.; Roach, F.; Anderson, J.M.; Krupka, M.C.

1987-08-01T23:59:59.000Z

245

EIA-820 ANNUAL REFINERY REPORT INSTRUCTIONS  

U.S. Energy Information Administration (EIA)

EIA-820, Annual Refinery Report Page 1 U.S. DEPARTMENT OF ENERGY ... production outside the refinery gate. Note: capacity should include base stocks and process oils

246

Indiana Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

247

Number of Idle Refineries - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

248

California Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

249

Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using  

E-Print Network (OSTI)

Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission and the oil & gas industries. The combustion system used in Solar's products are discussed along- bility for the introduction of new combustion systems for gas turbine products to enhance fuel

Ponce, V. Miguel

250

Chapter 5 Appendices 1 Appendix 5A:Natural Gas Use in Industrial  

E-Print Network (OSTI)

Efficiency % -- -- 62 80 94 2010 Industrial Coal Price $/MMBtu 2.88 2.88 -- -- -- 2010 Industrial Natural Gas) the relative prices of coal and natural gas. Our analysis uses the EPA capital cost assumptions prices. The price differential between coal and natural gas used in our analysis was $2.31/MMBtu, based

Reuter, Martin

251

Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application to Canada  

E-Print Network (OSTI)

Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application explore the implications for Canada's industrial sector of an economy-wide, compulsory greenhouse gas of these strengths is linked to challenges when it comes to forecasting the impact of greenhouse gas policy. We

252

Refinery, petrochemical plant injuries decline  

Science Conference Proceedings (OSTI)

The National Petroleum Refiners Association (NPRA) reports a 7% reduction in workplace injury and illness incidence rates for refineries in 1993, and a 21% decrease for petrochemical plants. The report summarizes data from 135 of the 162 US member refineries, and 117 of the 172 US member petrochemical plants. This paper summarizes the report findings.

Not Available

1994-07-25T23:59:59.000Z

253

Engineering firm has designed refinery of the future  

SciTech Connect

Four years ago, JGC Corp. organized a project team called ``Refinery Engineering for the Future in the Twenty-First Century,`` or REF-21. The purpose of the team was to forecast the environment facing the refining industry in Japan, long-range energy supply and demand, population and economic growth, traffic system trends, and technology and science progress through the middle of the twenty-first century. The REF-21 team also was charged with developing a conceptual design for the future refinery. The team proposed four types of configurations for the so-called new-generation refineries. These schemes included some new technologies that it deemed commercializable by 2000. JGC evaluated these new-generation refinery schemes in terms of overall yields, energy efficiencies, emissions, and economics, as compared with existing refineries. JGC also has developed an amenity design program (ADP), and is applying it to a refinery in Japan to produce a new-concept operation center. Through amenity design, JGC intends to improve the operating environment for employees in order to enhance overall productivity.

Inomata, Makoto; Sato, Kyohei; Yamada, Yu; Sasaki, Hajime [JGC Corp., Yokohama (Japan)

1997-04-28T23:59:59.000Z

254

Equilibrium Analysis of the Oil and Gas Field Services Industry  

E-Print Network (OSTI)

This paper examines the response of employment and wages in the US oil and gas …eld services industry to changes in the price of crude petroleum using a time series of quarterly data spanning the period 1972-2002. I …nd that labor quickly reallocates across sectors in response to price shocks but that substantial wage premia are necessary to induce such reallocation. The timing of these premia is at odds with the predictions of standard models — wage premia emerge quite slowly, peaking only as labor adjustment ends and then slowly dissipating. After considering alternative explanations, I argue that a dynamic market clearing model with sluggish movements in industry wide labor demand is capable of rationalizing these …ndings. I proceed to structurally estimate the parameters of the model by minimum distance and …nd that simulated impulse responses match key features of the estimated dynamics. I also provide auxiliary evidence corroborating the implied dynamics of some important unobserved variables. I conclude with a discussion of the strengths and weaknesses of the model and implications for future research. I am deeply indebted to Chris House for sharing with me the art of formulating and solving dynamic

Patrick Kline; Patrick Kline

2008-01-01T23:59:59.000Z

255

Key Federal Decisions/Regulation of the Gas Industry  

U.S. Energy Information Administration (EIA)

Led to market dislocations, gas “bubble” Orders 436, 500, 636 (1985 - 1993) restructured interstate market Natural Gas Decontrol Act ...

256

SourceGas- Commercial and Industrial Energy Efficiency Rebate Program (Arkansas)  

Energy.gov (U.S. Department of Energy (DOE))

SourceGas offers a variety of incentives for high efficiency commercial and industrial equipment. Rebates are available for the purchase of qualifying furnaces, hydronic heating systems, high...

257

An enhanced hazardous communication program to aid communities affected by oil and gas industry pipelines.  

E-Print Network (OSTI)

??A main objective of this work is to propose an enhanced hazard communication program for the oil and gas industry that can be enforced by… (more)

Malik, Mohammad A. (Mohammad Ashfaq)

2009-01-01T23:59:59.000Z

258

In Summary: Risk of Infrastructure Failure in the Natural Gas Industry  

U.S. Energy Information Administration (EIA)

In Summary: Risk of Infrastructure Failure in the Natural Gas Industry. Increasing demand could put additional stress on capacity-constrained areas

259

U.S. natural gas consumption for electric power tops industrial ...  

U.S. Energy Information Administration (EIA)

tags: consumption demand electricity generation industrial natural gas. Email Updates. RSS Feeds. Facebook. Twitter. YouTube. Add us to your site.

260

Energy Efficiency Improvement in the Petroleum Refining Industry  

E-Print Network (OSTI)

Chemical Manufacturing and Petroleum Refining Industries.Saving Opportunities for Petroleum Refineries. An ENERGYAdministration (EIA), 2002. Petroleum Supply Annual 2001,

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy efficiency improvement and cost saving opportunities forpetroleum refineries  

Science Conference Proceedings (OSTI)

The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

Worrell, Ernst; Galitsky, Christina

2005-02-15T23:59:59.000Z

262

Puerto Rico Refinery Catalytic Reforming Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

263

Puerto Rico Refinery Desulfurization, Gasoline Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Desulfurization, Gasoline Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

264

Mississippi Refinery Catalytic Reforming Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Mississippi Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

265

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

266

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

267

Mississippi Refinery Vacuum Distillation Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Mississippi Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

268

Georgia Refinery Marketable Petroleum Coke Production Capacity ...  

U.S. Energy Information Administration (EIA)

Georgia Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

269

Minnesota Refinery Marketable Petroleum Coke Production ...  

U.S. Energy Information Administration (EIA)

Minnesota Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

270

Poland petroleum refinery sludge lagoon demonstration project  

SciTech Connect

The US Department of Energy and the Institute for Ecology of Industrial Area have been working together to develop mutually beneficial, cost-effective environmental remediation technologies such as the demonstration of bioremediation techniques for the clean up of acidic petroleum sludge impacted soils at an oil refinery in southern Poland. After an expedited site characterization, treatability study, and a risk assessment study, a remediation strategy was devised. The waste material was composed primarily of high molecular weight paraffinic and polynuclear aromatic hydrocarbons. A biopile design which employed a combination of passive and active aeration in conjunction with nutrient and surfactant application as used to increase the biodegradation of the contaminants of concern.

Altman, D.J.

2000-05-05T23:59:59.000Z

271

Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing  

SciTech Connect

PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOEâ??s goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines, Incorporated Saturn engine rig. High pressure single-injector rig and modified engine rig tests demonstrated NOx less than 2 ppm and CO less than 10 ppm over a wide flame temperature operating regime with low combustion noise (<0.15% peak-to-peak). Minimum NOx for the optimized engine retrofit Full RCL® designs was less than 1 ppm with CO emissions less than 10 ppm. Durability testing of the substrate and catalyst material was successfully demonstrated at pressure and temperature showing long term stable performance of the catalytic reactor element. Stable performance of the reactor element was achieved when subjected to durability tests (>5000 hours) at simulated engine conditions (P=15 atm, Tin=400C/750F.). Cyclic tests simulating engine trips was also demonstrated for catalyst reliability. In addition to catalyst tests, substrate oxidation testing was also performed for downselected substrate candidates for over 25,000 hours. At the end of the program, an RCL® catalytic pilot system has been developed and demonstrated to produce NOx emissions of less than 3 ppm (corrected to 15% O2) for 100% and 50% load operation in a production engine operating on natural gas. In addition, a Full RCL® combustor has been designed and demonstrated less than 2 ppm NOx (with potential to achieve 1 ppm) in single injector and modified engine testing. The catalyst/substrate combination has been shown to be stable up to 5500 hrs in simulated engine conditions.

Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

2009-09-30T23:59:59.000Z

272

Competition in a Network of Markets: The Natural Gas Industry  

E-Print Network (OSTI)

Growth in Unbundled Natural Gas Transportation Services:Purchasesby Interstate Natural Gas Pipelines Companies,1987.U.S. GPO, 1988. . Natural Gas Monthly. WashingtonD.C. : U.S.

Walls, W. David

1992-01-01T23:59:59.000Z

273

Corrosion of Materials in the Oil and Gas Industry  

Science Conference Proceedings (OSTI)

Oct 20, 2010 ... Corrosion and Corrosion Protection of Materials in the Oil and Gas ... to be observed in steel equipment used to produce sour oil and gas.

274

Competition in a Network of Markets: The Natural Gas Industry  

E-Print Network (OSTI)

Regulatory Commission (FERC). Under the NGA, pipelines wereby for gas users, the FERC authorized transportation ofcustomer-owned gas. The FERC approved transportation

Walls, W. David

1992-01-01T23:59:59.000Z

275

Valero: Houston Refinery Uses Plant-Wide Assessment to Develop an Energy Optimization and Management System  

SciTech Connect

This Industrial Technologies Program case study describes an energy assessment team's recommendations for saving $5 million in energy, water, and other costs at an oil refinery in Houston, Texas.

Not Available

2005-08-01T23:59:59.000Z

276

Biological treatment of refinery wastes  

SciTech Connect

A detailed study of the treatment situation at a Thai refinery that used an API separator with no equalization tank, followed by an activated-sludge system, showed that only 42% of the total COD and 57% of the soluble COD was degradable. In a study of the possibility of additional treatments, an aerated lagoon showed promising results. The wastewater composition of the three main Thai refineries was surveyed.

Mahmud, Z.; Thanh, N.C.

1978-01-01T23:59:59.000Z

277

Impact of the Global Forest Industry on Atmospheric Greenhouse Gas | Open  

Open Energy Info (EERE)

Impact of the Global Forest Industry on Atmospheric Greenhouse Gas Impact of the Global Forest Industry on Atmospheric Greenhouse Gas Jump to: navigation, search Tool Summary Name: Impact of the Global Forest Industry on Atmospheric Greenhouse Gas Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Industry, Forestry Topics: GHG inventory, Co-benefits assessment, - Environmental and Biodiversity Resource Type: Publications Website: www.fao.org/docrep/012/i1580e/i1580e00.pdf Impact of the Global Forest Industry on Atmospheric Greenhouse Gas Screenshot References: Forestry Industry Impacts[1] "This book examines the influence of the forest products (roundwood, processed wood products and pulp and paper) value chain on atmospheric greenhouse gases. Forests managed for natural conservation, for protection

278

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

Science Conference Proceedings (OSTI)

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

279

Alternative future environmental regulatory approaches for petroleum refineries.  

Science Conference Proceedings (OSTI)

Recently, many industrial, regulatory, and community leaders have expressed concern that the current environmental regulatory structure disregards multimedia environmental impacts, provides few incentives to develop and use new technologies, and fails to consider site-specific conditions. For the US petroleum refining industry, faced with the need to produce higher-quality fuels from poorer-quality feedstocks, such criticisms are expected to increase. This article offers two alternative environmental regulatory approaches for existing petroleum refineries to use in the future. These alternative approaches are multimedia in scope, provide for new technology development and use, and allow flexibility in the means for meeting environmental goals. They have been reviewed and critiqued by various stakeholders, including industry representatives, regulators, and local and national community and environmental organizations. The integration of stakeholder comments and findings of ongoing national and international regulatory reinvention efforts in the development of these approaches positions them for potential use by other industries in addition to petroleum refineries.

Elcock, D.; Gasper, J.; Moses, D. O.; Emerson, D.; Arguerro, R.; Environmental Assessment; DOE; Analytical Services, Inc.

2000-01-01T23:59:59.000Z

280

Industrial Fuel Gas Demonstration Plant Program. Annual progress report, January-December 1979  

SciTech Connect

The objective of the Industrial Fuel Gas Demonstration Plant Program is to demonstrate the feasibility of converting agglomerating and high sulfur coal to clean fuel gas and utilizing this gas in a commercial application. Specific objectives are to conduct process analysis, design, construction, testing, operation and evaluation of a plant based on the U-Gas process for converting coal to industrial fuel gas. Phase I of the MLGW Industrial Fuel Gas Demonstration Plant Program started in September, 1977. In the first quarter of 1978, a conceptual design of a commercial plant was started, together with environmental monitoring activities and technical support work at the U-Gas pilot plant. After a series of successful pilot plant runs during the October 1978-March 1979 period, design work on the Demonstration Plant commenced. With the exception of Task I - Design and Evaluation of Commercial Plant, the majority of all other efforts were completed in 1979. These tasks are listed.

None

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Do Private Firms Invest Dierently than Public Firms? Taking Cues from the Natural Gas Industry  

E-Print Network (OSTI)

Do Private Firms Invest Dierently than Public Firms? Taking Cues from the Natural Gas Industry Erik and public rms using a unique dataset of onshore U.S. natural gas producers. In rm-level regressions we nd that investments by private rms are 68% less responsive to changes in natural gas prices, a measure that captures

Lin, Xiaodong

282

Sulfur recovery in U.S. refineries is at an all-time high  

SciTech Connect

Environmental pressures are reducing allowable sulfur emissions and tightening fuel sulfur specifications on a global basis. Combined with an increasingly sour crude slate, this means that ever-greater quantities of sulfur are recovered each year. Sulfur is produced through three main routes: Frasch mining, recovery from pyrites, and recovery from crude oil and natural gas. Sulfur recovery from US refineries reached an all-time high in 1995: 13,753 metric tons/calendar day (mt/cd). Frasch mining has lost its place as the primary source of elemental sulfur. Current demand patterns for sulfur are expected to continue through the next decade. About half of world sulfur production will be used to produce phosphatic fertilizers. The other half will be used in some 30 chemically oriented industries. The data reported in this article were collected by the US Bureau of Mines/US Geological Survey, unless otherwise noted. The paper discusses sulfur from natural gas, sulfur from refineries, sulfur prices, imports and exports.

Swain, E.J. [Swain (Edward J.), Houston, TX (United States)

1997-04-21T23:59:59.000Z

283

Meeting the challenges of the new energy industry: The driving forces facing electric power generators and the natural gas industry  

SciTech Connect

The proceedings of the IGT national conference on meeting the challenges of the New Energy Industry: The driving forces facing Electric Power Generators and the Natural Gas Industry are presented. The conference was held June 19-21, 1995 at the Ambassador West Hotel in Downtown Chicago, Illinois. A separate abstract and indexing for each of the 18 papers presented for inclusion in the Energy Science and Technology Database.

1995-12-31T23:59:59.000Z

284

Recent Corporate Combinations in the Natural Gas Industry  

U.S. Energy Information Administration (EIA)

Gas Inc plants and Energy Cogeneration, BUG sought to cogeneration maximize shareholder value and pursue other investment opportunities.

285

Natural Gas and Electric Industry Coordination in New England  

Science Conference Proceedings (OSTI)

Introduction of gas-fired generation will place unfamiliar operating requirements on the pipeline system in some parts of the country. Facing rapid growth in natural gas-fired generation in New England, regional gas and electric companies formed a group to improve operational coordination and understanding. This report documents the group's progress and procedures.

1993-11-01T23:59:59.000Z

286

Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid The undersigned members of the natural gas industry are pleased to submit for your consideration the following comments in response to the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability's Request for Information Addressing Policy and Logistical Challenges to Smart Grid Implementation, 75 Fed. Reg. 57,006 (Sep. 17, 2010). The Request seeks comment on challenges that confront smart grid implementation and recommendations on how best to overcome those challenges. We believe abundant, domestic, low-carbon natural gas resources along with

287

New Jersey Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

288

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet from Membrane Technology and Research, Inc. about its pilot-scale industrial membrane system that was funded by the SBIR program.

289

Philadelphia Gas Works - Commercial and Industrial EnergySense...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

incentives of up to 75,000 to commercial and industrial rate customers who make energy efficiency improvements to existing buildings. Incentives are awarded to projects...

290

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network (OSTI)

uranium mines, oil wells, refineries, and oil and gas TheHi BTU (80Xl0 9 ft 3/yr) Refinery (2XI05 bbl/day) Oil importmIne (4.4Xl05 ST/yr ore) Refinery (2Xl05 bbl/day) Oil import

Authors, Various

2010-01-01T23:59:59.000Z

291

Alternative multimedia regulatory programs for next-generation refineries  

Science Conference Proceedings (OSTI)

The 25-year-old command-and-control environmental regulatory structure in the US has resulted in significant environmental improvements. Recently, however, its limitations (e.g., rigid application regardless of site-specific conditions, disregard of cross-media and multimedia impacts, limited incentives for new technology development and use) have become increasingly apparent. New regulatory approaches that recognize current and anticipated economic constraints, new knowledge of environmental processes and impacts, and the benefits of new technologies are needed. Such approaches could be especially important for the US petroleum refining industry. This industry operates under thin profit margins, releases chemicals that can produce adverse health and environmental impacts, and must meet the technological challenges of producing more highly refined fuels from poorer quality feedstocks. Under a grant from the Environmental Technology Initiative (ETI), Argonne National Laboratory and its subcontractor, Analytical Services, Inc. developed two alternative environmental regulatory programs for next-generation petroleum refineries. (In this report, next-generation refineries refers to the refineries of today as they operate in the next 20 or more years rather than to fully reengineered future refineries.) The objective of the ETI refinery project was to develop future-oriented regulatory programs for next-generation refineries that will expand the use of innovative technologies, encourage pollution prevention, demonstrate environmental responsibility, and maintain refinery economic performance. Rather than suggesting targeted, short-term modifications to existing media-specific command-and-control regulations, the ETI project suggests the use of new approaches that are broader and more flexible. It recognizes that giving refineries flexibility in meeting environmental protection goals can stimulate new technology development and use. Unlike most US Environmental Protection Agency (EPA) reinvention efforts, which seek results in 12 to 18 months, this ETI effort assumes a time frame of 20 years or more. It also assumes that existing laws and regulations can be changed. An iterative and interactive process was used by the project team to develop the alternative approaches. Information and stakeholder input were integrated to provide for constant revision and improvement. First, guidelines and principles were established to bound the study and set parameters for developing the approaches. Next, existing and projected environmental laws and regulations affecting petroleum refineries were examined to identify areas needing change. Then, to understand future challenges and opportunities, the projected refinery operating environment was described in terms of feedstock, product, technology, and economics. Finally several goals and indicators for assessing and comparing the alternatives were identified. On the basis of this background information, more than 60 options that could efficiently and effectively protect human health and the environment were identified. These options ranged from fundamental changes in program philosophy to procedural improvements. After the options were evaluated against the goals and indicators, many of them were integrated into two separate thematic paradigms: a risk-based paradigm and a goal-based paradigm. Elements common to both approaches include the following: (1) Establish the baseline--In establishing the baseline, the refinery and the regulator jointly identify residuals for which release limits must be established; (2) Set residual release limits--The refinery and the regulator jointly specify release limits on a facility-wide rather than a source-specific basis. A facility-wide permit documents the release limits; and (3) Assure compliance--Incentives provide the basis for assuring compliance, and flexibility in the compliance method is encouraged. Penalties apply if releases exceed the limits, and reporting requirements are streamlined relative to current practices.

Elcock, D.; Gasper, J.; Arguerro, R.; Emerson, D.

2000-06-22T23:59:59.000Z

292

Short-Term Schedulability Analysis of Crude Oil Operations in Refinery With Oil Residency Time Constraint Using Petri Nets  

Science Conference Proceedings (OSTI)

A short-term schedule for oil refinery should arrange all the activities in every detail for the whole scheduling horizon, leading to a complex problem. There lacks efficient techniques and software tools for its solution applicable to industrial oil ... Keywords: Automated manufacturing system, Petri net (PN), hybrid Petri net, oil refinery, scheduling, short-term scheduling

NaiQi Wu; Feng Chu; Chengbin Chu; MengChu Zhou

2008-11-01T23:59:59.000Z

293

Modeling and Conflict Detection of Crude Oil Operations for Refinery Process Based on Controlled Colored Timed Petri Net  

Science Conference Proceedings (OSTI)

Recently, there has been a great interest in the modeling and analysis of process industry, and various models are proposed for different uses. It is meaningful to have a model to serve as an analytical aid tool in short-term scheduling for oil refinery ... Keywords: Hybrid systems, petri net, refinery process, system modeling

Naiqi Wu; Liping Bai; Chengbin Chu

2007-07-01T23:59:59.000Z

294

Natural Gas Industry Restructuring and EIA Data Collection  

Reports and Publications (EIA)

EIA's Reserves and Natural Gas Division has undertaken an in-depth reevaluation of its programs in an effort to improve the focus and quality of the natural gas data that it gathers and reports. This article is to inform natural gas data users of proposed changes and of the opportunity to provide comments and input on the direction that EIA is taking to improve its data.

Information Center

1996-06-01T23:59:59.000Z

295

Motiva Refinery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refinery Refinery Motiva Refinery May 18, 2006 - 10:45am Addthis Remarks Prepared for Energy Secretary Bodman Much of my time lately has been devoted to explaining why the price of gasoline has risen so sharply. President Bush understands the pinch this is creating for American consumers and has come forward with a variety of steps to address the problem. Rapid economic growth in emerging economies like China and India-and the growth here in the U.S.-have pushed up demand. Political unrest in some oil-producing regions has tightened supply. The transition from winter gasoline to summer blends, and the phase out of the additive MTBE in favor of ethanol, have increased the pressure on the market. Most significantly, we have very little spare refining capacity in this

296

Louisiana Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

297

Delaware Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

298

Washington Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

299

Ohio Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

300

Mississippi Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Utah Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

302

Number of Operating Refineries - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

303

Montana Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

304

Alaska Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

305

Florida Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

306

Nebraska Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

307

North Carolina Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

North Carolina Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

308

Michigan Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

309

The Development of ODS Superalloys for Industrial Gas Turbines  

Science Conference Proceedings (OSTI)

of advanced gas turbine engines, these alloys display long-term strength beyond the capabilities of conventional superalloys. The increasing use of ODS alloys,.

310

Waste Heat Recovery from Industrial Smelting Exhaust Gas  

Science Conference Proceedings (OSTI)

For a cost efficient capture of more valuable heat (higher exergy), heat exchangers should operate on the exhaust gases upstream of the gas treatment plants.

311

Reformulated Gasoline Foreign Refinery Rules  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated Gasoline Complex Model * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 Introduction On August 27, 1997, the EPA promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an

312

1170-MW(t) HTGR-PS/C plant application study report: Geismar, Louisiana refinery/chemical complex application  

SciTech Connect

This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to an industrial complex at Geismar, Louisiana. This study compares the HTGR with coal and oil as process plant fuels. This study uses a previous broad energy alternative study by the Stone and Webster Corporation on refinery and chemical plant needs in the Gulf States Utilities service area. The HTGR-PS/C was developed by General Atomic (GA) specifically for industries which require both steam and electric energy. The GA 1170-MW(t) HTGR-PC/C design is particularly well suited to industrial applications and is expected to have excellent cost benefits over other energy sources.

McMain, Jr., A. T.; Stanley, J. D.

1981-05-01T23:59:59.000Z

313

Analysis of relative industrial performance and it's implications for gas demand  

SciTech Connect

The analysis of the U.S. manufacturing sector and the opportunities it presents to the natural gas industry uses a weighted index of 11 economic/financial/market indicators to evaluate the performance of over 300 industries. Output and investment growth appear to be key determinants of industrial energy demand. Industries with high growth and investment potential over the period 1983-1993 are plastic materials and resins, aluminum rolling and drawing, motor vehicle parts, and glass products. Organic chemicals and paper mills exhibit above average potential, while petroleum refining, sugar, and primary aluminum are deemed slow growing industries.

Feldman, S.J.; Rogers, G.

1984-07-01T23:59:59.000Z

314

US Department of Energy investments in natural gas R&D: An analysis of the gas industry proposal  

SciTech Connect

The natural gas industry has proposed an increase in the DOE gas R&D budget from about $100 million to about $250 million per year for each of the next 10 years. The proposal includes four programs: natural gas supplies, fuel cells, natural gas vehicles and stationary combustion systems. This paper is a qualitative assessment of the gas industry proposal and recommends a natural gas R&D strategy for the DOE. The methodology is a conceptual framework based on an analysis of market failures and the energy policy objectives of the DOE`s (1991) National Energy Strategy. This framework would assist the DOE in constructing an R&D portfolio that achieves energy policy objectives. The natural gas supply program is recommended to the extent that it contributes to energy price stability. Stationary combustion programs are supported on grounds of economic efficiency and environmental quality. The fuel cell program is supported on grounds of environmental quality. The natural gas vehicle program may potentially contribute to environmental quality and energy price stability. The R&D programs in natural gas vehicles and in fuel cells should be complemented with policies that encourage the commercialization and use of the technology, not merely its development.

Sutherland, R.J.

1992-04-13T23:59:59.000Z

315

Laclede Gas Company - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Infrared Heaters: 300unit Gas-fired Boiler Tune Up: 75% of cost (non-profit); 50% of cost (C&I Customers) Steam-Trap Replacements: 50% of cost Vent Dampers: 50% of cost...

316

Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Electricity Shortage in Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply 1. Summary 2. Electricity Reliability Issues in California 3. Petroleum Refineries 4. Constraints Outside the Refinery Gate 5. Petroleum Product Prices and Supply Disruptions 6. Natural Gas 7. End Notes 8. Contacts 1. Summary Industry electric reliability organizations, the California Energy Commission, and the California Independent System Operator, expect California to be subject to rotating electricity outages in the summer of 2001 during the peak afternoon demand hours. These outages are expected to affect almost all sectors of the State's economy, including crude oil and natural gas producers, petroleum refineries, and pipelines. This report addresses the potential impact of rotating electrical

317

Refinery and Blender Net Inputs  

Annual Energy Outlook 2012 (EIA)

Refinery and Blender Net Inputs Crude OIl ... 14.54 15.14 15.26 15.08 14.51 15.30 15.70 14.93 14.47 15.30 15.54 14.97 15.01...

318

Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications  

DOE Green Energy (OSTI)

This report is a preliminary comparison of conventional and potential HTGR-integrated processesa in several common industrial areas: ? Producing electricity via a traditional power cycle ? Producing hydrogen ? Producing ammonia and ammonia-derived products, such as fertilizer ? Producing gasoline and diesel from natural gas or coal ? Producing substitute natural gas from coal, and ? Steam-assisted gravity drainage (extracting oil from tar sands).

Lee Nelson

2009-10-01T23:59:59.000Z

319

Natural gas liquids: a review of their role in the petroleum industry  

SciTech Connect

The U.S. Bureau of Mines compiled information for the nonspecialist about natural gas liquids recovery from hydrocarbon streams in natural gas processing plants. Attention is directed to the impact of the technology of processing and the quality of gas processed, in view of the increased availability of natural gas for processing. Significant changes in product and market trends within the natural gas processing industry are highlighted. Fixed capital-plant costs for grassroots, refrigerated-oil absorption, and conventional adsorption schemes, adapted from published studies, are presented giving ranges of cost estimates for medium-sized plants. Marketed products of the natural gas processing industry are briefly discussed in relation to automotive air-pollution problems and approaches to their control. (10 refs.)

Zaffarano, R.F.

1970-01-01T23:59:59.000Z

320

Issues in gas load research: An industry perspective. A white paper, December 1992-August 1993  

SciTech Connect

An overview of recently computed and ongoing gas load metering programs (residential, commercial, and industrial) by North American utilities is presented. The project objectives, the methods used, availability of data, and problems encountered have been documented. The report provides a list of contacts in utilities with extensive metering program experience. To obtain the industry profile of current gas load research, a telephone survey was conducted, with special attention to identifying new load research applications and metering approaches in response to new technologies and structural changes in the industry.

Violette, D.M.; Brakken, R.

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Case history of industrial plant steam system layup for direct-fired gas operations  

Science Conference Proceedings (OSTI)

This paper presents the facts of an industrial plant steam system layup for direct fired gas operations. Fuel price savings indicated that gas firing a paper dryer, the largest steam user in the plant, would pay for itself in one year. Conversion work is detailed. Primary gas distribution was achieved by using one line of the steam loop. Machine water heating, power venting, space heating, and air makeup heating, among other conversions, are also specified.

Stacy, G.N.

1983-06-01T23:59:59.000Z

322

Investing in Russia`s oil and gas industry: The legal and bureaucratic obstacles  

SciTech Connect

This article discusses the unusual challenges the international oil companies have as they consider investing in the oil and gas industry of the Russian Federation. Topics include the following: Russian oil and gas reserves; the Russian legislative process; law on subsurface resources; regulations on licensing procedure; draft law on oil and gas; draft law on concessions; proposed modification draft legislation; obstacles to wide scale investment.

Skelton, J.W. Jr. [Conoco, Inc., Houston, TX (United States)

1993-12-31T23:59:59.000Z

323

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect

Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1991-07-01T23:59:59.000Z

324

Percentage of Total Natural Gas Industrial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 16.5 16.3 16.0 16.2 16.6 16.9 2001-2013 Alabama 22.1 21.7 21.6 22.8 22.0 22.7 2001-2013 Alaska 100.0 100.0 100.0 100.0 100.0 100.0 2001-2013 Arizona 13.4 15.7 15.3 13.8 13.7 13.9 2001-2013 Arkansas 1.7 1.4 1.2 1.4 1.3 1.5 2001-2013

325

Role of gas and steam turbines to reduce industrial plant energy costs  

SciTech Connect

Data are given to help industry select the economic fuel and economic mix of steam and gas turbines for energy-conservation measures and costs. Utilities and industrials can no longer rely on a firm supply of natural gas to fuel their boilers and turbines. The effect various liquid fuels have on gas turbine maintenance and availability is summarized. Process heat requirements per unit of power, process steam pressure, and the type of fuel will be factors in evaluating the proper mix of steam and gas turbines. The plant requirements for heat, and the availability of a reliable source of electric power will influence the amount of power (hp and kW) that can be economically generated by the industrial. (auth)

Wilson, W.B.; Hefner, W.J.

1973-11-01T23:59:59.000Z

326

Industrial Potential for Substitution of Electricity for Oil and Natural Gas  

E-Print Network (OSTI)

The prospect of natural gas decontrol as well as uncertainties of gas and other fuel supplies have aroused interest in electric processes among industrial officials. Where there is ample electric power supply at reasonable cost, an opportunity exists for selected industry groups to make cost-effective conversions to electric processes. Technological advances in high-efficiency electric process equipment increase the potential for energy substitution. This, in turn, is changing the market outlook for electric utilities. By and large, energy substitution decisions will be based on their economic and technical feasibility. In view of projections of the long-term price escalations of oil and natural gas, the economic of choosing electricity are looking good at present. This paper will describe certain industrial applications where the substitution of electricity for oil and natural gas appears economically advantageous.

Reynolds, S. D.; Gardner, J. R.

1983-01-01T23:59:59.000Z

327

Saudi Aramco Mobile Refinery Company (SAMREF) | Open Energy Information  

Open Energy Info (EERE)

Saudi Aramco Mobile Refinery Company (SAMREF) Saudi Aramco Mobile Refinery Company (SAMREF) Jump to: navigation, search Logo: Saudi Aramco Mobile Refinery Company (SAMREF) Name Saudi Aramco Mobile Refinery Company (SAMREF) Address P.O. Box 30078 Place Yanbu, Saudi Arabia Sector Oil and Gas Product Crude Oil Refining Phone number (966) (4) 396-4443 Website http://www.samref.com.sa/ Coordinates 24.0866932°, 38.0585527° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.0866932,"lon":38.0585527,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

Fiscal Policy and Utah's Oil and Gas Industry  

E-Print Network (OSTI)

unconventional sources, such as oil sands and oil shale. It is important to note that overall reserve figures. Although Utah contains large deposits of oil shale and oil sands, both of which can be processed to yield from oil shale and oil sands is exempt from the state oil and gas severance tax. Utah also levies

Provancher, William

329

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

330

Allocation of energy use in petroleum refineries to petroleum products : implications for life-cycle energy use and emission inventory of petroleum transportation fuels.  

Science Conference Proceedings (OSTI)

Studies to evaluate the energy and emission impacts of vehicle/fuel systems have to address allocation of the energy use and emissions associated with petroleum refineries to various petroleum products because refineries produce multiple products. The allocation is needed in evaluating energy and emission effects of individual transportation fuels. Allocation methods used so far for petroleum-based fuels (e.g., gasoline, diesel, and liquefied petroleum gas [LPG]) are based primarily on mass, energy content, or market value shares of individual fuels from a given refinery. The aggregate approach at the refinery level is unable to account for the energy use and emission differences associated with producing individual fuels at the next sub-level: individual refining processes within a refinery. The approach ignores the fact that different refinery products go through different processes within a refinery. Allocation at the subprocess level (i.e., the refining process level) instead of at the aggregate process level (i.e., the refinery level) is advocated by the International Standard Organization. In this study, we seek a means of allocating total refinery energy use among various refinery products at the level of individual refinery processes. We present a petroleum refinery-process-based approach to allocating energy use in a petroleum refinery to petroleum refinery products according to mass, energy content, and market value share of final and intermediate petroleum products as they flow through refining processes within a refinery. The results from this study reveal that product-specific energy use based on the refinery process-level allocation differs considerably from that based on the refinery-level allocation. We calculated well-to-pump total energy use and greenhouse gas (GHG) emissions for gasoline, diesel, LPG, and naphtha with the refinery process-based allocation approach. For gasoline, the efficiency estimated from the refinery-level allocation underestimates gasoline energy use, relative to the process-level based gasoline efficiency. For diesel fuel, the well-to-pump energy use for the process-level allocations with the mass- and energy-content-based weighting factors is smaller than that predicted with the refinery-level allocations. However, the process-level allocation with the market-value-based weighting factors has results very close to those obtained by using the refinery-level allocations. For LPG, the refinery-level allocation significantly overestimates LPG energy use. For naphtha, the refinery-level allocation overestimates naphtha energy use. The GHG emission patterns for each of the fuels are similar to those of energy use.We presented a refining-process-level-based method that can be used to allocate energy use of individual refining processes to refinery products. The process-level-based method captures process-dependent characteristics of fuel production within a petroleum refinery. The method starts with the mass and energy flow chart of a refinery, tracks energy use by individual refining processes, and distributes energy use of a given refining process to products from the process. In allocating energy use to refinery products, the allocation method could rely on product mass, product energy contents, or product market values as weighting factors. While the mass- and energy-content-based allocation methods provide an engineering perspective of energy allocation within a refinery, the market-value-ased allocation method provides an economic perspective. The results from this study show that energy allocations at the aggregate refinery level and at the refining process level could make a difference in evaluating the energy use and emissions associated with individual petroleum products. Furthermore, for the refining-process-level allocation method, use of mass -- energy content- or market value share-based weighting factors could lead to different results for diesel fuels, LPG, and naphtha. We suggest that, when possible, energy use allocations should be made at the lowest subprocess level

Wang, M.; Lee, H.; Molburg, J.

2004-01-01T23:59:59.000Z

331

Advanced coal-fueled industrial cogeneration gas turbine system  

DOE Green Energy (OSTI)

The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. This quarter, work was centered on design, fabrication, and testing of the combustor, cleanup, fuel specifications, and hot end simulation rig. 2 refs., 59 figs., 29 tabs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1990-07-01T23:59:59.000Z

332

Electricity in lieu of nautral gas and oil for industrial thermal energy: a preliminary survey  

SciTech Connect

In 1974, industrial processors accounted for nearly 50% of the nation's natural gas consumption and nearly 20% of its consumption of petroleum. This report is a preliminary assessment of the potential capability of the process industries to substitute utility-generated electricity for these scarce fuels. It is tacitly assumed that virtually all public utilities will soon be relying on coal or nuclear fission for primary energy. It was concluded that the existing technology will permit substitution of electricity for approximately 75% of the natural gas and petroleum now being consumed by industrial processors, which is equivalent to an annual usage of 800 million barrels of oil and 9 trillion cubic feet of gas at 1974 levels. Process steam generation, used throughout industry and representing 40% of its energy usage, offers the best near-term potential for conversion to electricity. Electric boilers and energy costs for steam are briefly discussed. Electrically driven heat pumps are considered as a possible method to save additional low-grade energy. Electrical reheating at high temperatures in the primary metals sector will be an effective way to conserve gas and oil. A wholesale shift by industry to electricity to replace gas and oil will produce impacts on the public utilities and, perhaps, those of a more general socio-economic nature. The principal bar to large-scale electrical substitution is economics, not technology. 174 references.

Tallackson, J. R.

1979-02-01T23:59:59.000Z

333

Encon Motivation in European Refineries  

E-Print Network (OSTI)

One essential element in a successful energy conservation or Encon program is effective motivation of employees and organizations to conserve energy. Encon motivation in our European refineries is a continuing effort that requires utilization of various techniques and approaches, dependent on the local environment and effectiveness of the Encon program. In this paper, we begin with the importance for stimulating personnel, note the essential ingredients required to motivate our people, and briefly review several techniques used for Encon motivation. Two examples of Encon motivation programs are presented before introducing the characteristics of a successful Encon motivation program. The paper concludes with a review of the needs and suggestions for maintaining a continuing program. Energy utilization efficiency in Esso Europe's refineries improved about 16% in the mid 70's, due primarily to Encon motivation. Experience has since demonstrated that additional improvements can be achieved through operational and maintenance practices.

Gambera, S.; Lockett, W., Jr.

1982-01-01T23:59:59.000Z

334

Emissions data for stationary reciprocating engines and gas turbines in use by the gas pipeline transmission industry  

SciTech Connect

A.G.A. Project PR-15-613, conducted under the sponsorship of the Pipeline Committee (PRC), involved two phases. This final report for the overall project combines both of the separate phase reports into a single document. The project was entitled ''Compilation of Emissions Data for Stationary Reciprocating Engines and Gas Turbines in Use by the Gas Pipeline Transmission Industry (Update).'' The purpose of this project was to update the 1980 edition of the Compilation of Emissions Data. Phase I involved collection of emissions data from companies in the natural gas industry and from gas engine manufacturers and recommending engine and gas turbine models for testing under Phase II. Phase I was completed in March 1987 and the findings and recommendations were included in an interim report. Phase II involved emissions testing of a number of reciprocating engines and gas turbines. Phase II was completed in April 1988 and the findings are included in this project final report. 9 refs., 5 tabs.

Fanick, E.R.; Dietzmann, H.E.; Urban, C.M.

1988-04-01T23:59:59.000Z

335

Industry  

Science Conference Proceedings (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

336

Appendix D Short-Term Analysis of Refinery Costs and Supply  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Short-Term Analysis of Refinery Costs and Supply 9302 Appendix D Short-Term Analysis of Refinery Costs and Supply As a result of the new regulations issued by the U.S. Estimating Components of the Distillate Environmental Protection Agency (EPA) for ultra-low- Blend Pool sulfur diesel fuel (ULSD) the U.S. refining industry faces two major challenges: to meet the more stringent specifi- The initial step of the analysis was to analyze the poten- cations for diesel product, and to keep up with demand tial economics of producing ULSD for each refinery. by producing more diesel product from feedstocks of Using input and output data submitted to the Energy lower quality. Some refineries in the United States and Information Administration (E1A) by refiners, the cur-

337

China's Industrial Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasoline 43,070 TJMt Kerosene 43,070 TJMt Diesel 42,652 TJMt Fuel Oil 41,816 TJMt LPG 50,179 TJMt Refinery Gas 46,055 TJMt Other Petroleum Products 38,368 TJMt Natural...

338

Mineral-wool industry: opportunities for natural gas technologies. Topical report, January-July 1987  

SciTech Connect

To quantify the opportunities for natural gas and identify technological advances needed to capture such opportunities, the mineral-wool industry was analyzed with respect to the principal companies, their capabilities, and markets. The mineral-wool industry is stable with a slightly declining market. Of its market segments, only commercial acoustic insulation (which is currently dominant) is likely to be affected by growth in the next ten years. The principal process is based on treatment of blast-furnace slags in a cupola furnace using coke as the fuel and reducing agent. Expanded use of gas, as a substitute for coke, would eliminate environmental problems and expand the latitude of suitable raw materials. The study provides insights into the mineral-wool industry and identifies factors that may constitute bases for future usage of natural gas.

Not Available

1988-05-01T23:59:59.000Z

339

Wetland mitigation banking for the oil and gas industry: Assessment, conclusions, and recommendations  

Science Conference Proceedings (OSTI)

Wetland mitigation banks are already in existence in the United States, and the number is increasing. To date, most of these banks have been created and operated for mitigation of impacts arising from highway or commercial development and have not been associated with the oil and gas industry. Argonne National Laboratory evaluated the positive and negative aspects of wetland mitigation banking for the oil and gas industry by examining banks already created for other uses by federal, state, and private entities. Specific issues addressed in this study include (1) the economic, ecological, and technical effectiveness of existing banks; (2) the changing nature of local, state, and federal jurisdiction; and (3) the unique regulatory and jurisdictional problems affecting bank developments associated with the oil and gas industry.

Wilkey, P.L.; Sundell, R.C.; Bailey, K.A.; Hayes, D.C.

1994-01-01T23:59:59.000Z

340

Table 12. Refinery Sales During 2010  

U.S. Energy Information Administration (EIA)

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2010

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Opportunities for Biorenewables in Petroleum Refineries  

SciTech Connect

A presentation by UOP based on collaborative work from FY05 using some results from PNNL for upgrading biomass pyrolysis oil to petroleum refinery feedstock

Holmgren, Jennifer; Marinangelli, Richard; Marker, Terry; McCall, Michael; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

2007-02-01T23:59:59.000Z

342

Areas of Corrosion in the Refinery  

Science Conference Proceedings (OSTI)

...J.D. Poindexter, Corrosion Inhibitors for Crude Oil Refineries, Corrosion: Fundamentals, Testing, and Protection, Vol 13A, ASM Handbook, ASM International, 2003, p 887â??890...

343

Refinery Investments and Future Market Incentives  

U.S. Energy Information Administration (EIA)

Presentation given at the Annual NPRA Meeting that discusses factors affecting refinery investments. Refiners have plunged from a seeming “golden age” investment ...

344

Refinery Capacity Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration (U.S. Dept. of Energy) ... Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of ...

345

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

346

Advanced coal-fueled industrial cogeneration gas turbine system  

DOE Green Energy (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

347

Essays on Environmental Regulatory Policy  

E-Print Network (OSTI)

24. Printing 25. Oil Refineries 26. Industrial Gas 27.Automobile Manufacturing Oil Refineries Industry Industryindustry sectors from oil refineries. Costs from the measure

Dobson, Sarah

2012-01-01T23:59:59.000Z

348

Industry  

E-Print Network (OSTI)

oxide emission reductions in industry in the EU. Europeanissues: Annual survey of industries. Central StatisticalDesiccated coconut industry of Sri- Lanka’s opportunities

Bernstein, Lenny

2008-01-01T23:59:59.000Z

349

Industrial Fuel Gas Demonstration Plant Program. Task III, Demonstration plant safety, industrial hygiene, and major disaster plan (Deliverable No. 35)  

SciTech Connect

This Health and Safety Plan has been adopted by the IFG Demonstration Plant managed by Memphis Light, Gas and Water at Memphis, Tennessee. The plan encompasses the following areas of concern: Safety Plan Administration, Industrial Health, Industrial Safety, First Aid, Fire Protection (including fire prevention and control), and Control of Safety Related Losses. The primary objective of this plan is to achieve adequate control of all potentially hazardous activities to assure the health and safety of all employees and eliminate lost work time to both the employees and the company. The second objective is to achieve compliance with all Federal, state and local laws, regulations and codes. Some thirty specific safe practice instruction items are included.

None

1980-03-01T23:59:59.000Z

350

Table 2. Production Capacity of Operable Petroleum Refineries by ...  

U.S. Energy Information Administration (EIA)

Includes hydrogen production capacity of hydrogen plants on refinery grounds. MMcfd = Million cubic feet per day. a ... (EIA), Form EIA-820, "Annual Refinery Report."

351

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

fuels in the graph. Source: Petroleum Supply Annual, Energypetroleum products, refineries are still a substantial sourceadded produced by petroleum refineries. Source: U.S. Census,

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

352

Refinery receipts of crude oil by rail, truck, and barge ...  

U.S. Energy Information Administration (EIA)

While refinery receipts of crude by truck, rail, and barge remain a small percentage of total receipts, EIA's recently released Refinery Capacity ...

353

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Aspropyrgos Refinery Combined Cycle Cogeneration System.refineries operate combined cycles with higher efficiencies.in an Integrated Gasifier Combined Cycle (IGCC). In this

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

354

EIA-800 WEEKLY REFINERY AND FRACTIONATOR REPORT INSTRUCTIONS  

U.S. Energy Information Administration (EIA)

EIA-800, Weekly Refinery and Fractionator Report Page 3 Crude Oil (Code 050) Report all refinery input of domestic and foreign crude oil (including ...

355

PAD District 4 Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

356

Compilation of emissions data for stationary reciprocating gas engines and gas turbines in use by the natural gas pipeline transmission industry  

SciTech Connect

This publication compiles the available exhaust emission data for stationary reciprocating engines and gas turbines used by the natural gas pipeline transmission industry into a single, easy-to-use source. Data in the original issue and the revisions were obtained from projects sponsored by the A.G.A. PRC and from inhouse projects within a number of the A.G.A. member companies. Additional data included in this reissue were obtained from additional emissions measurement projects sponsored by the A.G.A. PRC, and from A.G.A. member companies and natural gas engine manufacturers.

Urban, C.M.

1988-05-01T23:59:59.000Z

357

Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications  

Science Conference Proceedings (OSTI)

This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

Lee Nelson

2011-09-01T23:59:59.000Z

358

Derivatives and Risk Management in the Petroleum, Natural Gas, and Electricity Industries  

Reports and Publications (EIA)

In February 2002 the Secretary of Energy directed the Energy Information Administration (EIA) to prepare a report on the nature and use of derivative contracts in the petroleum, natural gas, and electricity industries. Derivatives are contracts ('financial instruments') that are used to manage risk, especially price risk.

Information Center

2002-10-01T23:59:59.000Z

359

Equipment/product classification. [Equipment suppliers for the oil and gas industry  

SciTech Connect

This article contains information about the manufacturers and suppliers of goods for the oil and gas industry, including machines, software, services, and equipment used to build, operate, and maintain energy pipeline systems. The article represents companies around the world and are arranged by product category for ease of use.

Not Available

1994-05-01T23:59:59.000Z

360

Solar energy and the oil refining industry  

DOE Green Energy (OSTI)

This paper surveys process heat requirements of the major petroleum refinery processes. Previous studies have overestimated requirements for process heat at high temperatures. About 22% of the process heat in a refinery is consumed below 550/sup 0/F; 62.5% is consumed between 550/sup 0/ and 1100/sup 0/F. A refinery gets about 40% of its total energy supply, and 50% of its process heat, from natural gas and fuel oil. Technological constraints limit the use of alternatives such as coal or solar energy to processes operating below 700/sup 0/F (about 25% of process heat requirements). Curtailments of natural gas supplies and advances in bottom of the barrel oil processing technology will produce strong incentives to develop alternatives to the burning of liquid fuels for low-temperature processes. Energy from coal or solar radiation is most appropriately generated at a central facility to heat a heat transfer fluid, which is then heat exchanged with the process medium. The same process could also produce steam. The cost of installing coal-burning equipment can be up to eight times the cost of the equivalent gas or oil-burning facility. The major obstacle ot the use of coal is environmental. An analysis of a central-receiver solar system, without storage, and sized to deliver a maximum of 25% of process heat needs, indicates that 4.1% of refinery fuel needs could be displaced. For the entire industry, this is equivalent to 57,000 BPD of fuel oil. If long-term cost goals are achieved, capital expenditures to realize these savings would amount to $6.5 billion.

May, E.K.

1980-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Regional Refinery Utilization Shows Gulf Coast Pressure  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: But there is some room for hope. Refineries generally begin maintenance in February or March, and finish in April. The East Coast was experiencing some lengthy refinery maintenance outages, as shown by the drop in utilization that remained low in most of March and April. In the meantime, the East Coast was drawing on extra supplies from the Gulf Coast and imports. The Midwest refineries seem to have been ramping up in April as they finished what maintenance was needed. But the Midwest no longer has the Blue Island refinery, so it also is pulling more product from the Gulf Coast. The high Gulf Coast prices this spring reflect extra "pull" on product from both the Midwest and the East Coast, and probably from California as well. Inputs into Gulf Coast refineries over the last 4 weeks

362

Refinery burner simulation design architecture summary.  

SciTech Connect

This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

2011-10-01T23:59:59.000Z

363

Take an integrated approach to refinery automation  

Science Conference Proceedings (OSTI)

An integrated approach to designing refinery automation systems is essential to guaranteeing systems compatibility and maximizing benefits. Several aspects of implementing integrated refinery automation should be considered early in the project. Many refineries have major parts of their business automated, starting from corporate planning at the higher level, down to DCS and field instrumentation. A typical refinery automation system architecture of the mid-eighties is shown. Automation systems help refineries improve their business through: Rationalization of man power; Increased throughputs; Reduced give-away; Reduced energy consumption; Better response to market demands and changes; Effective use of offsite areas through scheduling and automatic line-up systems; Reduced losses; and Decision support systems.

Wadi, I. (Abu Dhabi National Oil Co. (United Arab Emirates))

1993-09-01T23:59:59.000Z

364

Hardening and Resiliency: U.S. Energy Industry Response to Recent...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of oil and gas pipelines were built in the 1950s and 1960s. 14 The newest greenfield oil refinery in the United States was built in 1976. 15 The first refinery in the Gulf...

365

Refining District Oklahoma-Kansas-Missouri Natural Gas Liquids ...  

U.S. Energy Information Administration (EIA)

Refining District Oklahoma-Kansas-Missouri Natural Gas Liquids and Liquid Refinery Gases Stocks at Natural Gas Processing Plants (Thousand Barrels)

366

RG&E (Gas) - Commercial and Industrial Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Efficiency Program Commercial and Industrial Efficiency Program RG&E (Gas) - Commercial and Industrial Efficiency Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Multi-Family Residential Nonprofit State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Maximum Rebate No maximum per customer rebate; however, NYSEG/RG&E reserve the right to cap the rebate to any one customer. Program Info State New York Program Type Utility Rebate Program Rebate Amount HVAC: Prescriptive incentives vary Condensing Boilers: $1000-$6000 Hydronic Boilers: $500-$4000 Steam Boilers: $200 Furnaces: $100 Programmable Thermostats: $25 Boiler Reset Controls: $150 Provider NYSEG/RGE NYSEG and RG&E offer rebates to non-residential customers installing energy

367

President Obama Announces Major Initiative to Spur Biofuels Industry...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

everyone." "By building a national biofuels industry, we are creating construction jobs, refinery jobs and economic opportunity in rural communities throughout the country," said...

368

Industrial structures : an analysis and transformation of their formal characteristics  

E-Print Network (OSTI)

Industrial structures such as blast furnaces, oil refineries, gravel crushers etc. are often beautiful and fascinating. Furthermore, they exemplify certain formal and organizational characteristics which could be incorporated ...

Strub, Damon

1988-01-01T23:59:59.000Z

369

Documentation: The automated ORAD (Oil Refinery and Distribution Model) to RYMs (Refinery Yield Model) linked system  

SciTech Connect

The Refinery Evaluation Modeling System (REMS) is an analytic tool used by the Energy Information Administration (EIA) to provide insight into the domestic operations of United States refineries. REMS can be used to determine the potential impacts of changes in demands for petroleum products, crude and feedstock qualities, refinery processing capacities, foreign and domestic crude availabilities, transportation modes and costs, and government regulations. REMS is a set of linear programming models that solve for a partial equilibrium in the US refinery market by equating supply and demand while maximizing profits for US refiners. REMS consists of two models: the Refinery Yield Model (RYM), and the Oil Refinery and Distribution Model (ORAD). RYMs consists of nine separate regional models that represent the contiguous US refinery system. These nine regions are aggregates of the 13 Bureau of Mines (BOM) refinery districts. ORAD integrates the results from the individual RYMs into a transportation network which represents the US refinery market. ORAD uses the extreme point refinery representation from RYMs to solve for the optimal product prices in ORAD.

Sanders, R.P.; Kydes, A.S.

1987-01-01T23:59:59.000Z

370

Borla Performance Industries, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Element One, Inc. Element One, Inc. National Renewable Energy Laboratory 191524 likes Element One, based in Boulder, Colorado, has created the only available coatings that change color when detecting hydrogen and other hazardous gas leaks, either reversibly or non-reversibly, to provide both current and historical information about leaks. Element One's patented gas indicators and sensors use catalyzed thin films or nanoparticles of a transition metal oxide to create very low cost sensors for use in industrial and consumer environments, greatly reducing the potential for undetected leaks and their cost and safety implications. This technology is also being integrated for use in refineries, industry gas and fuel cells systems and was developed using technology from the National Renewable Energy Laboratory.

371

Human resource needs and development for the gas industry of the future  

SciTech Connect

The natural gas industry will confront many challenges in the 1990s and beyond, one of which is the development of human resources to meet future needs. An efficient, trained work force in this era of environmental concern, high technology, and alternative fuels is essential for the industry to continue to meet the competition and to safely deliver our product and service to all customers. Unfortunately, during this period there will be an increasing shortfall of technical personnel to replace those lost to attrition and a steady decline in the availability of new employees who are able to read, write, and perform simple math. Technological and government developments that will impact the industry and the skill levels needed by the industry employees are reviewed. In-house and external training of professional and nonprofessional personnel and the benefits and disadvantages of selected advanced training methods are discussed. Recommendations are presented that can help improve the training of gas industry employees to meet future needs. 22 refs.

Klass, D.L.

1991-01-01T23:59:59.000Z

372

Industry  

E-Print Network (OSTI)

the paper, glass or ceramics industry) making it difficulttechnology in the ceramic manufacturing industry. industries: iron and steel, non-ferrous metals, chemicals (including fertilisers), petroleum refining, minerals (cement, lime, glass and ceramics) and

Bernstein, Lenny

2008-01-01T23:59:59.000Z

373

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

374

Colorado Refinery Marketable Petroleum Coke Production Capacity as ...  

U.S. Energy Information Administration (EIA)

Colorado Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

375

Midwest (PADD 2) Refinery and Blender Net Production of ...  

U.S. Energy Information Administration (EIA)

Midwest (PADD 2) Refinery and Blender Net Production of Finished Motor Gasoline (Thousand Barrels per Day)

376

Guam Refinery Operable Atmospheric Crude Oil Distillation Capacity ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

377

Rocky Mountains (PADD 4) Gross Inputs to Refineries (Thousand ...  

U.S. Energy Information Administration (EIA)

Gross Input to Atmospheric Crude Oil Distillation Units ; PAD District 4 Refinery Utilization and Capacity ...

378

Flue Gas Conditioning to Reduce Particulate Emissions in Industrial Coal-Fired Boilers  

E-Print Network (OSTI)

Chemical technology has been used successfully to solve many of the operational and emissions problems that result from burning coal. This paper describes the use of blended chemical flue gas conditioners to significantly reduce particulate emissions in coal-fired industrial boilers. In many cases, these chemical conditioning agents have increased the efficiency of electrostatic precipitators and mechanical collectors by more than fifty percent. The effectiveness of this technology has been demonstrated on units generating 50,000 to 200,000 lbs./hr. steam. Results achieved at various industrial plants under actual operating conditions are presented.

Miller, B.; Keon, E.

1980-01-01T23:59:59.000Z

379

Power Industry Development Paths and Natural Gas Market Risks: Cycles of Markets, Drilling, and Demand  

Science Conference Proceedings (OSTI)

The current natural gas market is depressed by a combination of unusual factorsa great excess of supply and weak demand. Excess supply comes from the momentum of exploration and production (EP) to the new U.S. gas shale plays, a phenomenon barely 18 months old and a game-changing event in the industry. Weak demand comes from the "Great Recession." The seeds for correcting this imbalance would appear to be a dramatic cutback in drilling, which has collapsed over the past year and which is a principal focu...

2009-09-28T23:59:59.000Z

380

Former Soviet refineries face modernization, restructuring  

Science Conference Proceedings (OSTI)

A massive modernization and restructuring program is under way in the refining sector of Russia and other former Soviet republics. Economic reforms and resulting economic dislocation following the collapse of the Soviet Union has left refineries in the region grappling with a steep decline and changes in product demand. At the same time, rising oil prices and an aging, dilapidated infrastructure promise a massive shakeout. Even as many refineries in the former Soviet Union (FSU) face possible closure because they are running at a fraction of capacity, a host of revamps, expansions, and grass roots refineries are planned or under way. The paper discusses plans.

Not Available

1993-11-29T23:59:59.000Z

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Texas facility treats, recycles refinery, petrochemical wastes  

Science Conference Proceedings (OSTI)

A US Gulf Coast environmental services company is treating refinery and petrochemical plant wastes to universal treatment standards (UTS). DuraTherm Inc.`s recycling center uses thermal desorption to treat a variety of refinery wastes and other hazardous materials. The plant is located in San Leon, Tex., near the major Houston/Texas City refining and petrochemical center. DuraTherm`s customers include major US refining companies, plus petrochemical, terminal, pipeline, transportation, and remediation companies. Examples of typical contaminant concentrations and treatment levels for refinery wastes are shown. The paper discusses thermal desorption, the process description and testing.

NONE

1996-09-16T23:59:59.000Z

382

A Texas Refinery Success Story  

E-Print Network (OSTI)

"Common knowledge rules that maintenance is the key to long-lasting machinery performance. Yet steam traps are often left to their own devices, to fail or succeed alone. And without steam trap programs, plants are certain to experience a high failure rate. An oil refinery in Texas was continuously experiencing a high failure rate on its 4,790-steam trap system. Finally, the steam losses were judged to be too high, and plant management called on Spirax Sarco Inc. (SSI) to reduce costs. The SSI team noticed symptoms of subpar efficiency within the steam system. Steam traps were improperly installed, water hammer problems were evident and the condensate recovery system was damaged."

Kacsur, D.

2009-05-01T23:59:59.000Z

383

,"Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035co3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035co3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:00 PM" "Back to Contents","Data 1: Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CO3" "Date","Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,9.36 36937,10.07

384

,"South Dakota Natural Gas Industrial Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035sd2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035sd2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:03 PM" "Back to Contents","Data 1: South Dakota Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035SD2" "Date","South Dakota Natural Gas Industrial Consumption (MMcf)" 35611,6928 35976,5607 36341,5043 36707,4323 37072,4211 37437,10584

385

,"Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035al3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035al3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:53 PM" "Back to Contents","Data 1: Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AL3" "Date","Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,9.55 36937,8.54

386

,"California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ca3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ca3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:58 PM" "Back to Contents","Data 1: California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CA3" "Date","California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,7.75

387

,"Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035co3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035co3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:00 PM" "Back to Contents","Data 1: Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CO3" "Date","Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,3.02 35976,2.55 36341,3.08

388

,"Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ct3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ct3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:02 PM" "Back to Contents","Data 1: Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CT3" "Date","Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,10.11

389

,"Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ak3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ak3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:51 PM" "Back to Contents","Data 1: Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AK3" "Date","Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,1.54 35976,1.34 36341,1.25

390

,"Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ga3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ga3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:08 PM" "Back to Contents","Data 1: Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035GA3" "Date","Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,10.05 36937,9.35

391

,"Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035fl3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035fl3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:06 PM" "Back to Contents","Data 1: Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035FL3" "Date","Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,4.41 35976,3.98 36341,4.12

392

,"Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035fl3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035fl3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:06 PM" "Back to Contents","Data 1: Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035FL3" "Date","Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,8.27 36937,8.02

393

,"Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035de3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035de3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:04 PM" "Back to Contents","Data 1: Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035DE3" "Date","Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,7.37 36937,4.61

394

,"South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035sc3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035sc3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:02 PM" "Back to Contents","Data 1: South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035SC3" "Date","South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,3.72 35976,3.29

395

,"Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035id3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035id3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:13 PM" "Back to Contents","Data 1: Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ID3" "Date","Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,2.76 35976,3.09 36341,3.29 36707,4.02

396

,"Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ga3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ga3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:07 PM" "Back to Contents","Data 1: Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035GA3" "Date","Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,4.55 35976,3.92 36341,3.41

397

,"Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035hi3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035hi3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:09 PM" "Back to Contents","Data 1: Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035HI3" "Date","Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,11.65 36937,11.84

398

,"South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035sc3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035sc3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:02 PM" "Back to Contents","Data 1: South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035SC3" "Date","South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

399

,"California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ca3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ca3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:58 PM" "Back to Contents","Data 1: California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CA3" "Date","California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,4.18 35976,3.75 36341,3.33

400

,"Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ak3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ak3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:51 PM" "Back to Contents","Data 1: Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AK3" "Date","Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,1.57 36937,1.55

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

,"South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035sd3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035sd3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:04 PM" "Back to Contents","Data 1: South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035SD3" "Date","South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,4.02 35976,3.28

402

Total Supplemental Supply of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources &...

403

U.S. Natural Gas Average Consumption per Industrial Consumer (Thousand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Consumer (Thousand Cubic Feet) Industrial Consumer (Thousand Cubic Feet) U.S. Natural Gas Average Consumption per Industrial Consumer (Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 0 0 0 0 0 0 1980's 39,245 37,530 30,909 29,915 24,309 30,956 29,057 30,423 32,071 30,248 1990's 32,144 33,395 35,908 38,067 40,244 40,973 43,050 36,239 36,785 35,384 2000's 36,968 33,840 36,458 34,793 34,645 31,991 33,597 33,561 29,639 29,705 2010's 35,418 36,947 38,155 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Average Natural Gas Consumption per Industrial

404

Inbicon Biomass Refinery Cellulosic Ethanol Technology Platforms  

U.S. Energy Information Administration (EIA)

for biogas production Inbicon Biomass Refinery Energy integrated solutions Wheat Straw 50 t/h (at 86 % dm) C5 molasses Power The Lignin and biogas are used in power

405

Motiva Enterprises Refinery Expansion Groundbreaking | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

it. When this expansion is complete this facility which is now one of the preeminent refineries on the Gulf Coast will become the largest in the United States and one of the...

406

Low Temperature Waste Energy Recovery at Chemical Plants and Refineries  

E-Print Network (OSTI)

Technologies to economically recover low-temperature waste energy in chemical plants and refineries are the holy grail of industrial energy efficiency. Low temperature waste energy streams were defined by the Texas Industries of the Future Chemical and Refining Sectors Advisory Committee as streams with a temperature below 400 degrees F. Their waste energy streams were also characterized as to state, flow rate, heat content, source and temperature. These criteria were then used to identify potential candidates of waste heat recovery technologies that might have an application in these industries. Four technologies that met the criteria of the Advisory Committee included: organic rankine cycle (ORC), absorption refrigeration and chilling, Kalina cycle, and fuel cell technologies. This paper characterizes each of these technologies, technical specifications, limitations, potential costs/ payback and commercialization status as was discussed in the Technology Forum held in Houston, TX in May 2012 (TXIOF 2012).

Ferland, K.; papar, R.; Quinn, J.; Kumar, S.

2013-01-01T23:59:59.000Z

407

Refinery siting workbook: appendices A and B  

Science Conference Proceedings (OSTI)

The objective of this effort is to develop and provide basic refinery-related information for use by state and local government officials as a basis for establishing responsible refinery siting requirements and policies consistent with the federal clean air and water standards and socio-economic concerns. The report will be organized into two volumes. The main text comprises the basic topics of physical concerns, regulatory requirements, and permitting activities, while the second volume includes the detailed appendix materials such as the applicable laws, and the necessary permits, as available and a glossary of pertinent terms. As a means to this objective, three refinery sizes, 200,000, 100,000 and 30,000 barrels per day crude charge will be discussed in technical terms. Process unit configuration will be presented which will maximize either gasoline or heating oil production with either sweet or sour crude oil feedstocks. The major issues affecting the socio-economic impact of siting the refinery in a given locale will be presented. These data will review the factors affecting the human environment and the issues that must be addressed to assess the impact that a refinery will have on a community. The key federal registrations which impact upon a refinery siting decision shall be reviewed. Summaries of these regulations and a simplified decision diagram for the air and water acts shall be presented to assist both government and refinery officials in understanding the scope of regulatory impact. All pertinent procedures required for refinery permitting shall be reviewed under the generalized headings of air, water, health and safety, land use, and miscellaneous permits. This categorization at the federal, state and local levels of government shall be used as a basis for establishing degrees of emphasis.

Not Available

1980-07-01T23:59:59.000Z

408

Retrofitting analysis of integrated bio-refineries  

E-Print Network (OSTI)

A bio-refinery is a processing facility that produces liquid transportation fuels and/or value-added chemicals and other products. Because of the dwindling resources and escalating prices of fossil fuels, there are emerging situations in which the economic performance of fossil-based facilities can be enhanced by retrofitting and incorporation of bio-mass feedstocks. These systems can be regarded as bio-refineries or integrated fossilbio- refineries. This work presents a retrofitting analysis to integrated bio-refineries. Focus is given to the problem of process modification to an existing plant by considering capacity expansion and material substitution with biomass feedstocks. Process integration studies were conducted to determine cost-effective strategies for enhancing production and for incorporating biomass into the process. Energy and mass integration approaches were used to induce synergism and to reduce cost by exchanging heat, material utilities, and by sharing equipment. Cost-benefit analysis was used to guide the decision-making process and to compare various production routes. Ethanol production from two routes was used as a case study to illustrate the applicability of the proposed approach and the results were bio-refinery has become more attractive then fossil-refinery.

Cormier, Benjamin R.

2005-12-01T23:59:59.000Z

409

Refinery analytical techniques optimize unit performance  

Science Conference Proceedings (OSTI)

Refinery process engineers need to consider benefits of laboratory analytical techniques when evaluating unit performance. Refinery heavy-oil laboratory analytical techniques use both old and new technologies. Knowing how to use available laboratory analytical techniques within their limitations are critical to obtain correct refinery optimization decisions. Better refinery stream distillation and contaminant data ultimately improves the accuracy of various refinery decision-making tools. These laboratory analytical techniques are covered: high-temperature simulated distillation (HTSD); true boiling point (TBP) distillation--ASTM D2892; vacuum distillation--ASTM D5236; continuous-flash vaporizers; wiped-film evaporators; inductively coupled plasma atomic-emission spectroscopy (ICP-AES); Conradson--ASTM D189/Microcarbon residue--ASTM D4530; and asphaltene IP-143, ASTM D3279, ASTM D4124. Analysis of atmospheric crude, vacuum crude and delayed coker units highlight these laboratory techniques to identify potential yield and product quality benefits. Physical distillation or wiped-film evaporation in conjunction with HTSD, ICP-AES, microcarbon residue and asphaltened data will better characterize a feedstock as well as determine the source of contaminants. Economics are refinery specific, therefore, these examples focus on applying laboratory techniques as opposed to discussing specifics of unit improvement. These are discussed qualitatively.

Golden, S.W. [Process Consulting Services Inc., Grapevine, TX (United States); Craft, S. [Chempro, Inc., LaPorte, TX (United States); Villalanti, D.C. [Triton Analytics Corp., Houston, TX (United States)

1995-11-01T23:59:59.000Z

410

Complexity index indicates refinery capability, value  

Science Conference Proceedings (OSTI)

Refinery size usually is measured in terms of distillation capacity. Relative size, however, can be measured using refinery complexity--a concept developed by W.L. Nelson in the 1960s. Nelson developed the complexity index to quantify the relative cost of components that make up a refinery. It is a pure cost index that provides a relative measure of the construction costs of a particular refinery based on its crude and upgrading capacity. The Nelson index compares the costs of various upgrading units--such as a fluid catalytic cracking (FCC) unit or a catalytic reformer--to the cost of a crude distillation unit. Computation of the index is an attempt to quantify the relative cost of a refinery based on the added cost of various upgrading units and the relative upgrading capacity. A review of complexity calculations, and an explanation of how indices have changed, provide a simple means of determining the complexity of single refineries or refining regions. The impact of complexity on product slate is also examined in this paper.

Johnston, D. [Daniel Johnston and Co. Inc., Dallas, TX (United States)

1996-03-18T23:59:59.000Z

411

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

412

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report  

DOE Green Energy (OSTI)

This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

Sutton, W.H.

1997-06-30T23:59:59.000Z

413

Soot and SO[subscript 2] contribution to the supersites in the MILAGRO campaign from elevated flares in the Tula Refinery  

E-Print Network (OSTI)

This work presents a simulation of the plume trajectory emitted by flaring activities of the Miguel Hidalgo Refinery in Mexico. The flame of a representative sour gas flare is modeled with a CFD combustion code in order ...

Molina, Luisa Tan

414

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

415

Government/industry partnership: A revolutionary approach in global leadership of advanced gas turbines  

SciTech Connect

The U.S. Department of Energy (DOE) has established a government/industry partnership program to greatly improve the capabilities of U.S. gas turbine technology. A new and challenging program named the Advanced Turbine Systems Program (ATS) has been initiated by DOE. The technical and business objectives of this initiative are to challenge the bounds of high performance capabilities of gas turbines, meet stringent environmental requirements, and produce lower cost electric power and cogeneration steam. This program will also yield greater societal benefits through continued expansion of high skilled U.S. jobs and export of U.S. products world wide. A progress report on the ATS program pertaining to program status at DOE will be presented and reviewed in this paper. A preliminary design of an industrial advanced turbine system configuration will also be outlined in the paper. The technical challenges; advanced critical technologies incorporation, analytical and experimental solutions, and test results of an advanced gas turbine meeting the DOE goals will be described and discussed.

Ali, S.A. [Allison Engine Co., Indianapolis, IN (United States); Zeh, C.M. [Morgantown Energy Technology Center, WV (United States)

1996-02-01T23:59:59.000Z

416

Impact of the Great Plains coal gasification decision on a coal gas industry  

SciTech Connect

In approving the special tariff and financing features of the Great Plains coal-gasification project, the Federal Energy Regulatory Commission took the first major federal action toward encouraging the construction of a commercial-sized synthetic-fuels facility, asserts the law firm of Morley, Caskin and Generelly. Owned by Great Plains Gasification Associates - a partnership of five pipeline companies - the commercial-sized plant qualifies for FERC approval under the commission's RD and D regulations. The special financing terms for the project will require customers of existing natural gas companies to bear the costs incurred by the project regardless of its success in operation or the amount of gas produced for the customer's utilization. This RD and D rate treatment serves to mitigate market forces and thus operates as an effective subsidy for the pipeline industry. If this or a similar regulatory subsidy is extended to other coal-gas projects, the pipeline industry could take the lead in the nation's synfuels program.

Zipp, J.F.

1980-05-08T23:59:59.000Z

417

Increasing Distillate Production at U.S. Refineries … Past Changes and Future Potential  

Gasoline and Diesel Fuel Update (EIA)

Increasing Distillate Production at U.S. Refineries - Past Changes and Future Increasing Distillate Production at U.S. Refineries - Past Changes and Future Potential U.S. Energy Information Administration Office of Petroleum, Gas, and Biofuels Analysis Department of Energy Office of Policy and International Affairs October 2010 Summary World consumption growth for middle distillate fuels (diesel fuel, heating oil, kerosene, and jet fuel) has exceeded the consumption growth for gasoline for some time, and the United States is no exception. Although the decrease in the ratio of total gasoline consumption to consumption for middle distillate fuels has been small in the United States, recent legislation requiring increased use of renewable fuels has resulted in forecasts that project a decline in consumption for petroleum-based gasoline from refineries, which would accelerate the decline in the

418

Implementing an Energy Management Strategy for a Houston Refinery  

E-Print Network (OSTI)

Intense competition and environmental regulation of industries utilizing combustion equipment have motivated many owners and operators to seek ways to reduce costs, improve performance, and minimize emissions. Energy management programs are being implemented throughout industry to improve equipment operating efficiencies, profitability, extend equipment life, prevent forced shutdowns, generate substantial fuel savings, track valuable information, and enhance compliance margins. A well designed and maintained energy management program translates to PROFIT added directly to the BOTTOM LINE. Woodward-Clyde Consultants (WCC) recently implemented and energy management program at the Lyondell-Citgo Refinery in Houston, Texas. The basis of the program is the 80/20 rule where 80% of the total potential savings are derived from optimizing the energy utilization from 20% of the combustion equipment. In this case, 11 out of 55 heaters were targeted for inclusion in the program. The fuel savings potential alone exceeded $1,250,000. In addition to the fuel savings, there were reduced costs from improved operation, as well as reduction in maintenance requirements and forced shutdowns. The remainder of this paper discusses the technical approach, the benefits, and the results of the program implemented at the Lyondell-Citgo Refinery.

Wood, S. C.; Agrawal, R. K.; Canon, D.

1996-04-01T23:59:59.000Z

419

Industry  

E-Print Network (OSTI)

Cornland, 2001), and anaerobic digestion of residues to DoBiogas, Natural Anaerobic gas digestion, Gasification Do Not

Bernstein, Lenny

2008-01-01T23:59:59.000Z

420

,"Illinois Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035il3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035il3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

,"Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ia3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ia3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

422

Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines  

E-Print Network (OSTI)

equivalent to those from landfill gas to liquified petroleumlandfill and biomass fuels, H 2 -enriched CH 4 to simulate refinery gas

Littlejohn, David

2008-01-01T23:59:59.000Z

423

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

424

OMB No. 1905-0165 Version No.:xxxx.xx FORM EIA-820 ANNUAL REFINERY ...  

U.S. Energy Information Administration (EIA)

the comparable capacity numbers reported on the Form EIA-810, "Monthly Refinery Report," filed for January 2014. ... ANNUAL REFINERY REPORT.

425

The Economic Impact of the Natural Gas Industry and the Marcellus Shale Development in West Virginia in 2009  

E-Print Network (OSTI)

The Economic Impact of the Natural Gas Industry and the Marcellus Shale Development in West for this research was provided by the West Virginia Oil and Natural Gas Association (WVONGA). The opinions herein reservoir being the Marcellus Shale play. The Marcellus Shale play stretches across an area of 95,000 square

Mohaghegh, Shahab

426

Pipeline Access and Market Integration in the Natural Gas Industry: Evidence from Cointegration Tests  

E-Print Network (OSTI)

NattmdGas Pipeline of America(NGPL) Northern Natural GasNatural Gas Pipeline of America (NGPL) Teanease~Gas PipelineGas Pipeline of America(NGPL) Northern Natural Gas (NOR’H-I)

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

427

Optimization of Steam Network in Tehran Oil Refinery  

E-Print Network (OSTI)

Dominated energy crisis in the world dictates to reduce energy consumption and identify energy saving opportunities in large and complex industries especially in oil refining industry. In this paper, Tehran oil refinery is considered as a proper case study and its steam network is analyzed. At the first step, using STAR software, the steam network is simulated and then optimized, which determines the optimum conditions. In this regard, energy saving potential was identified and total operating costs (TOC) in two states of fixed fuel fraction and changeable fuel fraction was calculated. In addition, different scenarios were proposed like using HRSG instead of two boilers. The results showed that amount of total operating cost has been reduced, as the result the best scenario regarding TOC is selected.

Khodaie, H.; Nasr, M. R. J.

2008-01-01T23:59:59.000Z

428

Kyrgyzstan starts up its first refinery  

Science Conference Proceedings (OSTI)

The Central Asian republic of Kyrgyzstan started up its first oil refinery in October 1996. The 10,000 b/d plant is designed to produce gasoline, diesel, and mazut (heavy fuel oil) from local Kyrgyz crude. Before construction of the Jalalabad refinery, all finished petroleum products were imported from neighboring countries. Kyrgyzstan`s demand for finished products is about 40,000 b/d. The new refinery was designed and constructed by Petrofac of Tyler, Texas, on behalf of Kyrgoil Corp., Calgary. Kyrgoil is a partner with the Kyrgyz state oil company, Kyrgyzsneft, in a venture called Kyrzgyz Petroleum Co. (KPC). KPC has undertaken restoration and continued development of the oil fields in Kyrgyzstan`s Fergana basin, in addition to the refinery project. The company also has marketing rights for finished products within Kyrgyzstan. The refinery comprises: a hydroskimming (atmospheric distillation) section, diesel steam stripping, gasoline blending, and utilities and off-sites, including steam generation, power generation, tank farm, truck and rail tank-car loading and unloading facilities, crude inlet pipeline, high-voltage power line, substation, air compression, laboratory, and maintenance facilities.

McLeod, G. [Petrofac LLC, Tyler, TX (United States)

1997-05-05T23:59:59.000Z

429

U.S. Refinery Yield  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Liquefied Refinery Gases 5.3 5.4 5.2 5.2 5.1 3.9 1993-2013 Finished Motor Gasoline 44.4 44.1 44.4 43.9 43.9 44.9 1993-2013 Finished Aviation Gasoline 0.1 0.1 0.1 0.1 0.1 0.1 1993-2013 Kerosene-Type Jet Fuel 10.0 9.1 9.3 9.4 9.8 9.6 1993-2013 Kerosene 0.0 0.1 0.1 0.1 0.0 0.0 1993-2013 Distillate Fuel Oil 28.4 29.4 28.7 29.2 29.3 29.7 1993-2013 Residual Fuel Oil 3.3 2.9 2.8 2.8 2.5 2.6 1993-2013 Naphtha for Petrochemical Feedstock Use 1.4 1.5 1.5 1.6 1.5 1.5 1993-2013 Other Oils for Petrochemical Feedstock Use 0.6 0.6 0.7 0.7 0.6 0.7 1993-2013 Special Naphthas 0.3 0.3 0.3 0.2 0.3 0.2 1993-2013 Lubricants 0.9 1.1 1.1 1.1 1.1 1.1 1993-2013 Waxes

430

U.S. Refinery Yield  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Liquefied Refinery Gases 4.1 4.1 4.1 4.3 4.0 4.1 1993-2012 Finished Motor Gasoline 45.5 44.2 46.1 45.7 44.9 45.0 1993-2012 Finished Aviation Gasoline 0.1 0.1 0.1 0.1 0.1 0.1 1993-2012 Kerosene-Type Jet Fuel 9.1 9.7 9.3 9.3 9.4 9.5 1993-2012 Kerosene 0.2 0.1 0.1 0.1 0.1 0.1 1993-2012 Distillate Fuel Oil 26.1 27.8 26.9 27.5 28.9 29.1 1993-2012 Residual Fuel Oil 4.2 4.0 4.0 3.8 3.4 3.2 1993-2012 Naphtha for Petrochemical Feedstock Use 1.3 1.0 1.3 1.4 1.3 1.3 1993-2012 Other Oils for Petrochemical Feedstock Use 1.3 1.2 0.8 0.8 0.7 0.6 1993-2012 Special Naphthas 0.3 0.3 0.2 0.2 0.2 0.3 1993-2012 Lubricants 1.1 1.1 1.0 1.1 1.1 1.0 1993-2012 Waxes 0.1 0.1 0.1 0.1 0.1 0.1 1993-2012

431

Industry  

E-Print Network (OSTI)

cycle Black liquor gasification combined cycle RecycledAnaerobic gas digestion, Gasification Do Not Cite or Quotesee Section 7.3.7), biomass gasification, or electrolysis of

Bernstein, Lenny

2008-01-01T23:59:59.000Z

432

Indiana, Illinois, Kentucky Refinery District Gross Inputs to ...  

U.S. Energy Information Administration (EIA)

Indiana, Illinois, Kentucky Refinery District Gross Inputs to Refineries (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 1,739 ...

433

Texas City Refinery Update: The Price of Safety Complacency  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas City Refinery Update: The Price of Safety Complacency DOEEH-0699 2006-01 January 2006 ES&H Safety Bulletin 2005-09 (July 2005) discussed the Texas City Refinery accident in...

434

Improved oil refinery operations and cheaper crude oil to help...  

Annual Energy Outlook 2012 (EIA)

Improved oil refinery operations and cheaper crude oil to help reduce gasoline prices U.S. gasoline prices are expected to fall as more oil refineries come back on line and crude...

435

A program to develop the domestic natural gas industry in Indonesia: Case history of two World Bank projects  

Science Conference Proceedings (OSTI)

Indonesia depends heavily on revenues from the export of LNG and oil, the availability of which appears to be decreasing. It is therefore making a strong effort to accelerate development of a domestic natural gas industry. A high priority has been given to the conversion of power plants and city gas systems, including local industries and commercial facilities, from liquid fuels to natural gas. This will release more oil for export, help to meet the objectives of Repelita V, and provide substantial environmental benefits. The World Bank recently provided loans to the Indonesian Government for two projects that are aimed at substituting natural gas for oil and manufactured gas in domestic markets. One project involves expansion of the gas distribution systems of Indonesia's natural gas utility (PGN) in three cities: Jakarta and Bogor in Java, and Medan in Sumatra. The project also includes training programs for PGN staff and an energy pricing policy study to be carried out by Indonesia's Ministry of Mines and Energy. The second project involves expansion of the supply of natural gas for Surabaya and twelve other towns in its vicinity in East Java, and further expansion of Medan's supply system. Technical assistance will be provided to enhance the skills ofPGN and the Ministry of Mines and Energy, and a Gas Technology Unit similar to the Institute of Gas Technology will be established at Indonesia's Research and Development Center for Oil and Gas (LEMIGAS) in Jakarta. 14 refs., 3 figs., 11 tabs.

Klass, D.L. (Institute of Gas Technology, Chicago, IL (United States)); Khwaja, S. (World Bank, Washington, DC (United States))

1991-01-01T23:59:59.000Z

436

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study  

SciTech Connect

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

437

U.S. Refinery Thermal Cracking, Visbreaking Downstream Charge ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Visbreaking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

438

Guam Refinery Thermal Cracking/Visbreaking Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Thermal Cracking/Visbreaking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

439

U.S. Refinery Thermal Cracking, Fluid Coking Downstream Charge ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Fluid Coking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

440

Market Assessment of Refinery Outages Planned for October 2009 ...  

U.S. Energy Information Administration (EIA)

January fuel demand with availability of the refinery process units for distillate and gasoline production net of outages.

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Virgin Islands Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

442

Midwest (PADD 2) Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

443

Puerto Rico Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

444

Refineries are also indirectly exposed to forced processing rate ...  

U.S. Energy Information Administration (EIA)

Refineries receive crude oil from two sources: waterborne deliveries by ship and domestic production from California crude oil producing fields.

445

Potential Impacts of Reductions in Refinery Activity on Northeast ...  

U.S. Energy Information Administration (EIA)

receipt of crude oil at idled refineries require considerable modification before they can be used to receive products. Moreover, ...

446

Michigan Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro.. Kerosene/Jet Fuel Downstream Charge Capacity (B/SD) Michigan Downstream Charge Capacity of Operable Petroleum Refineries ...

447

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil ...  

U.S. Energy Information Administration (EIA)

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

448

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Refinery Technology Profiles: Gasification and SupportingGasification.to be carried out. 18.5 Gasification Gasification provides

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

449

Puerto Rico Refinery Thermal Cracking/Visbreaking Downstream ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Thermal Cracking/Visbreaking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

450

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

451

Refining District Oklahoma-Kansas-Missouri Refinery and ...  

U.S. Energy Information Administration (EIA)

Refining District Oklahoma-Kansas-Missouri Refinery and Blender Net Input of Fuel Ethanol (Thousand Barrels per Day)

452

New Jersey Refinery Catalytic Reforming/High Pressure Downstream ...  

U.S. Energy Information Administration (EIA)

New Jersey Refinery Catalytic Reforming/High Pressure Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

453

Arkansas Refinery Catalytic Reforming/High Pressure Downstream ...  

U.S. Energy Information Administration (EIA)

Arkansas Refinery Catalytic Reforming/High Pressure Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

454

East Coast (PADD 1) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

455

East Coast (PADD 1) Refinery Vacuum Distillation Downstream Charge ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

456

West Coast (PADD 5) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

West Coast (PADD 5) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

457

Puerto Rico Refinery Operable Atmospheric Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

458

Rocky Mountain (PADD 4) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

459

Gulf Coast (PADD 3) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

Gulf Coast (PADD 3) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

460

U.S. Refinery Operating Atmospheric Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Operating Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

462

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Stream Day)

463

U.S. Refinery Marketable Petroleum Coke Production Capacity as ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

464

Structural, energy and environmental aspects in Iranian oil refineries  

Science Conference Proceedings (OSTI)

Petroleum refineries extract and upgrade the valuable components of crude oil to produce a variety of marketable petroleum products. However Iranian refineries are old and their efficiency and structure do not satisfy demand of the country in which their ... Keywords: Iran, demand, energy, refinery

Sourena Sattari; Akram Avami

2008-02-01T23:59:59.000Z

465

Exxon reduces production at U. S. refineries  

SciTech Connect

This paper reports that Exxon Co. U.S.A. has trimmed output of its U.S. refineries by a combined 15% because of depressed margins on products markets. The company made the announcement last week as it began increasing crude runs at its 396,000 b/cd refinery at Baytown, Tex., on the Houston Ship Channel. Exxon trimmed Baytown crude runs late last month to manage feedstock inventories after a barge was rammed and sunk in the ship channel, briefly halting traffic. Most feedstock is delivered to the Baytown plant by water.

Not Available

1993-01-11T23:59:59.000Z

466

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

467

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

468

A desiccant/steam-injected gas-turbine industrial cogeneration system  

SciTech Connect

An integrated desiccant/steam-injected gas-turbine system was evaluated as an industrial cogenerator for the production of electricity and dry, heated air for product drying applications. The desiccant can be regenerated using the heated, compressed air leaving the compressor. The wet stream leaves the regenerator at a lower temperature than when it entered the desiccant regenerator, but with little loss of energy. The wet stream returns to the combustion chamber of the gas-turbine system after preheating by exchanging heat with the turbine exhaust strewn. Therefore, the desiccant is regenerated virtually energy-free. In the proposed system, the moisture-laden air exiting the desiccant is introduced into the combustion chamber of the gas-turbine power system. This paper discusses various possible design configurations, the impact of increased moisture content on the combustion process, the pressure drop across the desiccant regenerator, and the impact of these factors on the overall performance of the integrated system. A preliminary economic analysis including estimated potential energy savings when the system is used in several drying applications, and equipment and operating costs are also presented.

Jody, B.J.; Daniels, E.J.; Karvelas, D.E.; Teotia, A.P.S.

1993-12-31T23:59:59.000Z

469

A desiccant/steam-injected gas-turbine industrial cogeneration system  

SciTech Connect

An integrated desiccant/steam-injected gas-turbine system was evaluated as an industrial cogenerator for the production of electricity and dry, heated air for product drying applications. The desiccant can be regenerated using the heated, compressed air leaving the compressor. The wet stream leaves the regenerator at a lower temperature than when it entered the desiccant regenerator, but with little loss of energy. The wet stream returns to the combustion chamber of the gas-turbine system after preheating by exchanging heat with the turbine exhaust strewn. Therefore, the desiccant is regenerated virtually energy-free. In the proposed system, the moisture-laden air exiting the desiccant is introduced into the combustion chamber of the gas-turbine power system. This paper discusses various possible design configurations, the impact of increased moisture content on the combustion process, the pressure drop across the desiccant regenerator, and the impact of these factors on the overall performance of the integrated system. A preliminary economic analysis including estimated potential energy savings when the system is used in several drying applications, and equipment and operating costs are also presented.

Jody, B.J.; Daniels, E.J.; Karvelas, D.E.; Teotia, A.P.S.

1993-01-01T23:59:59.000Z

470

Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines  

DOE Green Energy (OSTI)

This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

2011-01-07T23:59:59.000Z

471

Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes  

DOE Green Energy (OSTI)

This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

Lee O. Nelson

2011-04-01T23:59:59.000Z

472

Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications  

E-Print Network (OSTI)

The study was conducted to evaluate the energy use of natural gas and electric ovens in the production of polymer bearings and components. Tests were conducted to evaluate and compare the performance of natural gas and electric ovens in the process of sintering billets which are made from a broad range of materials such as PTFE and other fluoropolymers, elastomers, themosets, themoplastics and composites. The purpose of this study was to compare the process parameters under similar conditions for industrial applications where electric ovens have predominant use. Tests were performed to obtain the process efficiency and examine cost savings potential in converting electric ovens to natural gas. Preliminary results show that, for the plat studied, cost savings of about $10,000 per oven can be achieved, with a simple payback period of less than two years. The results also show that additional energy savings will be realized if the oven size and exhaust flow are carefully selected. The data obtained from these experiments were used to calculate process efficiency. Design features and environmental issues are discussed.

Kosanovic, D.; Ambs, L.

2000-04-01T23:59:59.000Z

473

Biofacts: Fueling a stronger economy. Renewable fuel solutions for petroleum refineries  

DOE Green Energy (OSTI)

The DOE Biofuels Program is investigating processes to condition synthesis gas (syngas) produced from the gasification of biomass, coke, waste oils, and other inexpensive feedstocks and low-cost by-products. Syngas technologies offer refiners economical, flexible solutions to the challenges presented by today`s market forces and regulatory environment, such as: increasingly stringent environmental regulations that dictate the composition of petroleum products; increasingly sour crudes; increased coke production and hydrogen use resulting from heavier crude; increased disposal cost for coke and residuals oils; and decreasing hydrogen supply resulting from decreased catalytic reforming severity--a necessity to comply with requirements for reduced aromatic content. Most importantly, refiners can use the DOE syngas processes to upgrade refinery residuals and coke, which minimizes environmental problems and maximizes profitability. DOE`s solution also offers refiners the flexibility to economically supplement petroleum feedstocks with a wide variety of locally available renewable feedstocks that can be fed into the gasifier--feedstocks such as energy crops, municipal solid wastes, many industrial wastes, and agricultural by-products.

NONE

1995-07-01T23:59:59.000Z

474

Pilot Test of Bauxite Residue Carbonation With Flue Gas  

Science Conference Proceedings (OSTI)

... of bauxite residue in water with flue gas, produced from direct oil burning. ... New Development Model for Bauxite Deposits - Dedicated Compact Refinery.

475

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

Petroleum Refineries: An ENERGY STAR Guide for Energy andGlass Industry: An ENERGY STAR Guide for Energy and PlantAssembly Industry: An ENERGY STAR Guide for Energy and Plant

Price, Lynn

2008-01-01T23:59:59.000Z

476

U.S. Refinery Net Production  

U.S. Energy Information Administration (EIA)

Liquefied Refinery Gases: 11,903: 12,936: 13,591: 20,226: 24,599: 26,928: 2005-2013: ... Asphalt and Road Oil: 10,230: 9,328: 8,595: 9,973: 9,494: 9,914: 2005-2013 ...

477

Refinery siting workbook: appendices C to O  

Science Conference Proceedings (OSTI)

Applicable laws and permits available for the selection and building of petroleum refineries are enclosed. A glossary of pertinent terms is also included. References related to the National Environmental Policy Act, the Clean Air Act, the Federal Water Pollution Control Act, Resource Conservation and Recovery Act, Toxic Substance Control Act, and Wetlands and Coastal Zone are included. Permit information is also presented. (DC)

Not Available

1980-07-01T23:59:59.000Z

478

Refinery Investments and Future Market Incentives  

Reports and Publications (EIA)

Presentation given at the Annual NPRA Meeting that discusses factors affecting refinery investments. Refiners have plunged from a seeming "golden age" investment environment to a world with excess capacity, flat to declining demand, and weak margins. What is happening to refining investments in this turbulent and uncertain situation?

Information Center

2009-03-25T23:59:59.000Z

479

Alternative Cooling and Mounting Concepts for Transition Duct in Industrial Gas Turbines at Siemens Industrial Turbomachinery AB.  

E-Print Network (OSTI)

?? Gas turbine development is constantly moving forward and for higher efficiency hotter turbine inlet temperature is required. Because of that, one of the largest… (more)

Öfverstedt, Tomas

2011-01-01T23:59:59.000Z

480

Investigation of Swirl Flows Applied to the Oil and Gas Industry  

E-Print Network (OSTI)

Understanding how swirl flows can be applied to processes in the oil and gas industry and how problems might hinder them, are the focus of this thesis. Three application areas were identified: wet gas metering, liquid loading in gas wells and erosion at pipe bends due to sand transport. For all three areas, Computational Fluid Dynamics (CFD) simulations were performed. Where available, experimental data were used to validate the CFD results. As a part of this project, a new test loop was conceived for the investigation of sand erosion in pipes. The results obtained from CFD simulations of two-phase (air-water) flow through a pipe with a swirl-inducing device show that generating swirl flow leads to separation of the phases and creates distinct flow patterns within the pipe. This effect can be used in each of the three application areas of interest. For the wet gas metering application, a chart was generated, which suggests the location of maximum liquid deposition downstream of the swirling device used in the ANUMET meter. This will allow taking pressure and phase fraction measurements (from which the liquid flow rate can be determined) where they are most representative of the flow pattern assumed for the ANUMET calculation algorithms. For the liquid loading application, which was taken as an upscaling of the dimensions investigated for the wet gas metering application, the main focus was on the liquid hold-up. This parameter is defined as the ratio of the flowing area occupied by liquid to the total area. Results obtained with CFD simulations showed that as the water rate increases, the liquid hold-up increases, implying a more effective liquid removal. Thus, it was concluded that the introduction of a swirler can help unload liquid from a gas well, although no investigation was carried out on the persistance of the swirl motion downstream of the device. For the third and final application, the erosion at pipe bends due to sand transport, the main focus was to check the erosion rate on the pipe wall with and without the introduction of a swirler. The erosion rate was predicted by CFD simulations. The flow that was investigated consisted of a liquid phase with solid particles suspended in it. The CFD results showed a significant reduction in erosion rate at the pipe walls when the swirler was introduced, which could translate into an extended working life for the pipe. An extensive literature review performed on this topic, complemented by the CFD simulations, showed the need for a dedicated multiphase test loop for the investigation of sand erosion in horizontal pipes and at bends. The design of a facility of this type is included in this thesis. The results obtained with this work are very encouraging and provide a broad perspective of applications of swirl flows and CFD for the oil and gas industry.

Ravuri Venkata Krish, Meher Surendra

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "refineries industry gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Analysis of the potential for automating EIA-0129 main line natural gas sales to industrial users  

Science Conference Proceedings (OSTI)

This report presents the results of a review of the publication, Main Line Natural Gas Sales to Industrial Users, to examine alternative approaches to data handling. Preparation of the publication is divided into three phases: collection, processing, and production. Much of the information presented in the report is generated by manually searching the reporting schedule and performing arithmetic calculations to determine sales totals and price averages. Simple alphabetic searches and computational algorithms could be implemented to greatly simplify the production of this report. In particular, the most quantitative phase of developing the report, that of processing the data, has aspects which present possibilities for automation. Potential options include total automation, in which all calculations, checking and table construction are performed by the system; partial automation, in which calculations are processed by the system but preparation of tables is performed by hand; and retention of the current manual system.

Not Available

1982-05-10T23:59:59.000Z

482

Comparison of coal-based systems: marketability of medium-Btu gas and SNG (substitute natural gas) for industrial applications. Final report, July 1979-March 1982  

Science Conference Proceedings (OSTI)

In assessing the marketability of synthetic fuel gases from coal, this report emphasizes the determination of the relative attractiveness of substitute natural gas (SNG) and medium-Btu gas (MBG) for serving market needs in eight industrial market areas. The crucial issue in predicting the marketability of coal-based synthetic gas is the future price level of competing conventional alternatives, particularly oil. Under a low oil-price scenario, the market outlook for synthetic gases is not promising, but higher oil prices would encourage coal gasification.

Olsen, D.L.; Trexel, C.A.; Teater, N.R.

1982-05-01T23:59:59.000Z

483

Industrial Plant for Flue Gas Treatment with High Power Electron Accelerators  

SciTech Connect

Fossil fuel combustion leads to acidic pollutants, like SO2, NOx, HCl emission. Different control technologies are proposed however, the most popular method is combination of wet FGD (flue gas desulfurization) and SCR (selective catalytic reduction). First, using lime or limestone slurry leads to SO2 capture, and gypsum is a product. The second process where ammonia is used as reagent and nitrogen oxides are reduced over catalyst surface to gaseous nitrogen removes NOx. New advanced method using electron accelerators for simultaneous SO2 and NOx removal has been developed in Japan, the USA, Germany and Poland. Both pollutants are removed with high efficiency and byproduct can be applied as fertilizer. Two industrial plants have been already constructed. One in China and second in Poland, third one is under construction in Japan. Information on the Polish plant is presented in the paper. Plant has been constructed at Power Station Pomorzany, Szczecin (Dolna Odra Electropower Stations Group) and treats flue gases from two Benson boilers 60 MWe and 100 MWth each. Flow rate of the flue gas stream is equal to 270 000 Nm3/h. Four transformer accelerators, 700 keV electron energy and 260 kW beam power each were applied. With its 1.05 MW total beam power installed it is a biggest radiation facility over the world, nowadays. Description of the plant and results obtained has been presented in the paper.

Chmielewski, Andrzej G. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); University of technology, faculty of Process and Chemical Engineering, Warsaw (Poland); Tyminski, Bogdan; Zimek, Zbigniew; Pawelec, Andrzej [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Licki, Janusz [Institute of Atomic Energy, Swierk (Poland)

2003-08-26T23:59:59.000Z

484

Pipeline Access and Market Integration in the Natural Gas Industry: Evidence from Cointegration Tests  

E-Print Network (OSTI)

contract with the Natural Gas Supply Association. Strateconsupply fields form a common pool. Our empirical examination of natural gas

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

485

Innovation in mature industries : recent impacts of the oil & gas and automobile technological trends on the steel industry  

E-Print Network (OSTI)

In order to survive, the steel industry has undergone traumatic changes in the last years. A thirty years old overcapacity combined with a slow growing market led to a steadily eroding profitability of steel companies, ...

Tivelli, Marco M. (Marco Mario), 1964-

2004-01-01T23:59:59.000Z

486

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network (OSTI)

to the refineries. quantity of crude oil would be refined inspecify the quantities of natural gas, oil or elec- tricity.The additional oil requirement is quantities are also shown

Authors, Various

2010-01-01T23:59:59.000Z

487

Market Assessment of Planned Refinery Outages March … June 2009  

Gasoline and Diesel Fuel Update (EIA)

09)/1 09)/1 Market Assessment of Planned Refinery Outages March - June 2009 March 2009 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requestor.

488

A NEW LED-LED PORTABLE CO2 GAS SENSOR BASED ON AN INTERCHANGEABLE MEMBRANE SYSTEM FOR INDUSTRIAL APPLICATIONS  

E-Print Network (OSTI)

A NEW LED-LED PORTABLE CO2 GAS SENSOR BASED ON AN INTERCHANGEABLE MEMBRANE SYSTEM FOR INDUSTRIAL, consisting of two LEDs wherein one is used as the light source (emitter) and the other is used in reverse bias mode as the light detector. The first configuration uses a green LED as emitter and a red LED

Lee, Hyowon

489

Evaluation of local content strategies to plan large engineering projects in the oil & gas industry in high risk country areas  

Science Conference Proceedings (OSTI)

The Local content of a complex project is an important variable to create value and increase the overall sustainability of large engineering projects in the Oil & Gas industry, especially in the developing countries. The paper proposes a method to ... Keywords: causal knowledge map, large engineering projects, local content, scenario analysis

Troncone Enzo Piermichele; De Falco Massimo; Gallo Mosè; Santillo Liberatina Carmela; Pier Alberto Viecelli

2012-01-01T23:59:59.000Z

490

Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes  

Science Conference Proceedings (OSTI)

Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids the redundant work generally done in the near-well regions. We improved the accuracy of the streamline simulator with a higher order mapping from pressure grid to streamlines that significantly reduces smoothing errors, and a Kriging algorithm is used to map from the streamlines to the background grid. The higher accuracy of the Kriging mapping means that it is not essential for grid blocks to be crossed by one or more streamlines. The higher accuracy comes at the price of increased computational costs, but allows coarser coverage and so does not generally increase the overall costs of the computations. To reduce errors associated with fixing the pressure field between pressure updates, we developed a higher order global time-stepping method that allows the use of larger global time steps. Third-order ENO schemes are suggested to propagate components along streamlines. Both in the two-phase and three-phase experiments these ENO schemes outperform other (higher order) upwind schemes. Application of the third order ENO scheme leads to overall computational savings because the computational grid used can be coarsened. Grid adaptivity along streamlines is implemented to allow sharp but efficient resolution of solution fronts at reduced computational costs when displacement fronts are sufficiently separated. A correction for Volume Change On Mixing (VCOM) is implemented that is very effective at handling this effect. Finally, a specialized gravity operator splitting method is proposed for use in compositional streamline methods that gives an effective correction of gravity segregation. A significant part of our effort went into the development of a parallelization strategy for streamline solvers on the next generation shared memory machines. We found in this work that the built-in dynamic scheduling strategies of OpenMP lead to parallel efficiencies that are comparable to optimal schedules obtained with customized explicit load balancing strategies as long as the ratio of number of streamlines to number of threads is sufficiently high, which is the case in real-fie

Margot Gerritsen

2008-10-31T23:59:59.000Z

491

Opportunities for Biorenewables in Oil Refineries  

Science Conference Proceedings (OSTI)

Abstract: The purpose of this study was to evaluate the potential for using biorenewable feedstocks in oil refineries. Economic analyses were conducted, with support from process modeling and proof of principle experiments, to assess a variety of potential processes and configurations. The study considered two primary alternatives: the production of biodiesel and green diesel from vegetable oils and greases and opportunities for utilization of pyrolysis oil. The study identified a number of promising opportunities for biorenewables in existing or new refining operations.

Marker, T.L.

2005-12-19T23:59:59.000Z

492

Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings  

Science Conference Proceedings (OSTI)

Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

Price, Lynn; Worrell, Ernst; Khrushch, Marta

1999-09-01T23:59:59.000Z

493

PAD District / Refinery Location Total Atmospheric Distillation  

U.S. Energy Information Administration (EIA) Indexed Site

Operable Date of Last Operation Date Shutdown Table 11. New, Shutdown and Reactivated Refineries During 2012 a b REACTIVATED PAD District I 185,000 366,700 Monroe Energy LLC Trainer, PA 185,000 366,700 09/12 c SHUTDOWN PAD District I 80,000 47,000 ChevronUSA Inc Perth Amboy, NJ 80,000 47,000 03/08 07/12 PAD District III 16,800 19,500 Western Refining Southwest Inc Bloomfield, NM 16,800 19,500 12/09 11/12 PAD District VI 500,000 1,086,000 Hovensa LLC Kingshill, VI 500,000 1,086,000 02/12 02/12 a b bbl/cd=Barrels per calendar day. bbl/sd=Barrels per stream day. Sources: Energy Information Administration (EIA) Form EIA-810, "Monthly Refinery Report" and Form EIA-820, "Annual Refinery Report." c Formerly owned by ConocoPhillips Company.

494

GreenHunter Biodiesel Refinery Grand Opening | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening June 2, 2008 - 12:51pm Addthis Remarks as Prepared for (Acting) Deputy Secretary Kupfer Today, Acting Deputy Secretary Jeffrey Kupfer delivered remarks at the launch of GreenHunter Energy's biodiesel refinery, which will be the nation's single largest biodiesel refinery, producing 105 million gallons of "white-water" B100 biodiesel per year. Thank you Gary. I'm pleased to join with Governor Perry, Congressmen Green and Lampson, and Mayor Garcia in celebrating this important occasion. Today, as we open the nation's largest biodiesel refinery, we reach another milestone in our effort to make America more energy secure. As you know, global energy demand is surging. We must act swiftly and aggressively to

495

Environmental quality indexing of large industrial development alternatives using AHP  

Science Conference Proceedings (OSTI)

Two industrial development alternatives have been proposed for the East Coast of Iceland in order to strengthen its socio-economic basis. The favoured option is to build a large aluminium smelter, which requires massive hydropower development in the nearby highlands. Another viable option is the construction of a 6-million-ton oil refinery, following the planned exploitation of the Timan Pechora oil reserves in the Russian Arctic. A third 'fictitious' alternative could be general development of existing regional industry and new knowledge-based industries, development of ecotourism, establishment of national parks, accompanied by infrastructure improvement (roads, tunnels, communications, schools, etc.). The three alternatives will have different environmental consequences. The controversial hydropower plant for the smelter requires a large water reservoir as well as considerable land disturbance in this unique mountain territory, considered to be the largest uninhabited wilderness in Western Europe. The aluminium smelter and the oil refinery will give rise to substantial increase of the greenhouse gas (GHG) emissions of the country (about 20%). Then there is potential environmental risk associated with the refinery regarding oil spills at sea, which could have disastrous impact on the fisheries industry. However, the oil refinery does not require any hydropower development, which is a positive factor. Finally, the third alternative could be defined as a ''green'' solution whereby the detrimental environmental consequences of the two industrial solutions are mostly avoided. In order to compare the three alternatives in an orderly manner, the analytic hierarchy process methodology of Saaty was applied to calculate the environmental quality index of each alternative, which is defined as a weighted sum of selected environmental and socio-economic factors. These factors are evaluated on a comparison basis, applying the AHP methodology, and the weights in the quality index summation are estimated in the same manner. Six persons with different backgrounds were asked to fill in the comparison matrices in order to reduce bias in the evaluation. The final results show that the two industrial alternatives come out poorly, i.e. with low quality indices, whereas the third pseudo-alternative, i.e. general development, with a considerably higher quality index, is certainly worth a further study.

Solnes, Julius

2003-05-01T23:59:59.000Z

496

Hydrotreating Pyrolytic Lignin to Produce a Refinery Feedstock (Poster)  

Science Conference Proceedings (OSTI)

Fast pyrolysis of biomass followed by water separation to produce pyrolytic lignin and hydrotreating of the lignin could be used to produce a stable volatile low-oxygen intermediate liquid. Such a liquid could be converted into a finished motor-fuel in a refinery, taking advantage of the existing infrastructure and economies of scale of refineries. Hydrotreating just the lignin would consume less hydrogen while preserving about half of the energy of the original oil. The aqueous by-products could be reformed to produce the needed hydrogen and would contain much of the unwanted acids and unstable oxygenates. To assess such intermediate liquids, several pyrolytic lignins were prepared by mixing pyrolysis oil with water at 1:1 and 3:1 ratios. The carboxylic acidity in the pyrolytic lignin was reduced to 24 and 10 mg-KOH/g-lignin compared to 81 in the whole oil. These lignins were hydrotreated using Ni-Mo(S)/alumina, Pt/char, or Pd/C(activated) in a semi-batch 1 L stirred autoclave. The oil was stabilized under hydrogen at 150-280 degrees C, then water and light organics were removed by partial depressurization. Hydrodeoxygenation was then performed at 340-400 degrees C. Total pressure was controlled at 70 or 170 bar with hydrogen gas. Organic liquid yields of 39-56% were obtained. For many experiments the organic oxygen content was oil, the volatility was greater than or equal to 94% and, on a carbon basis, the total yield of organic products miscible in hydrocarbons at a 1:10 ratio was over 50%. These properties are probably acceptable to a refinery.The residual liquids left in the reactor at the end of the experiment comprised 60-85% of the organic-phase product while the rest was condensate. 13C-NMR of the residual liquids showed that they were 50-80% aliphatic. 13C-NMR coupled with GC-MS identified phenolic compounds as the main oxygenates in most residual liquids.

French, R. J.

2013-09-01T23:59:59.000Z

497

Hydrotreating Pyrolytic Lignin to Produce a Refinery Feedstock (Poster)  

DOE Green Energy (OSTI)

Fast pyrolysis of biomass followed by water separation to produce pyrolytic lignin and hydrotreating of the lignin could be used to produce a stable volatile low-oxygen intermediate liquid. Such a liquid could be converted into a finished motor-fuel in a refinery, taking advantage of the existing infrastructure and economies of scale of refineries. Hydrotreating just the lignin would consume less hydrogen while preserving about half of the energy of the original oil. The aqueous by-products could be reformed to produce the needed hydrogen and would contain much of the unwanted acids and unstable oxygenates. To assess such intermediate liquids, several pyrolytic lignins were prepared by mixing pyrolysis oil with water at 1:1 and 3:1 ratios. The carboxylic acidity in the pyrolytic lignin was reduced to 24 and 10 mg-KOH/g-lignin compared to 81 in the whole oil. These lignins were hydrotreated using Ni-Mo(S)/alumina, Pt/char, or Pd/C(activated) in a semi-batch 1 L stirred autoclave. The oil was stabilized under hydrogen at 150-280 degrees C, then water and light organics were removed by partial depressurization. Hydrodeoxygenation was then performed at 340-400 degrees C. Total pressure was controlled at 70 or 170 bar with hydrogen gas. Organic liquid yields of 39-56% were obtained. For many experiments the organic oxygen content was <7%, acidity was < 7 mg-KOH/g-oil, the volatility was greater than or equal to 94% and, on a carbon basis, the total yield of organic products miscible in hydrocarbons at a 1:10 ratio was over 50%. These properties are probably acceptable to a refinery.The residual liquids left in the reactor at the end of the experiment comprised 60-85% of the organic-phase product while the rest was condensate. 13C-NMR of the residual liquids showed that they were 50-80% aliphatic. 13C-NMR coupled with GC-MS identified phenolic compounds as the main oxygenates in most residual liquids.

French, R. J.

2013-09-01T23:59:59.000Z

498

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

499

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; ...

500

Summary of Market Assessment of Planned Refinery Outages  

U.S. Energy Information Administration (EIA)

Home > Petroleum > Analysis > Summary of Market Assessment of Planned Refinery ... As required under Section 804 of the Energy Independence and Security Act of 2007 ...