Powered by Deep Web Technologies
Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table 19. U.S. Refiner Residual Fuel Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Prices," source for backcast estimates prior to January 1983. 19. U.S. Refiner Residual Fuel Oil Prices 36 Energy Information Administration Petroleum Marketing Annual 1996...

2

Table 19. U.S. Refiner Residual Fuel Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Prices," source for backcast estimates prior to January 1983. 19. U.S. Refiner Residual Fuel Oil Prices 36 Energy Information Administration Petroleum Marketing Annual 1997...

3

,"U.S. Residual Fuel Oil Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Refiner Sales Volumes" Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Residual Fuel Oil Refiner Sales Volumes",2,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_c_nus_eppr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_c_nus_eppr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

4

,"U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil and No. 4 Fuel Sales Volumes" Residual Fuel Oil and No. 4 Fuel Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes",4,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_d_nus_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_d_nus_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

5

,"U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil and No. 4 Fuel Sales Volumes" Residual Fuel Oil and No. 4 Fuel Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes",4,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_d_nus_vwr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_d_nus_vwr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

6

,"Residual Fuel Oil Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales to End Users Refiner Sales Volumes" Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residual Fuel Oil Sales to End Users Refiner Sales Volumes",9,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_a_eppr_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_a_eppr_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

7

Minimally refined biomass fuel  

DOE Patents (OSTI)

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

1984-01-01T23:59:59.000Z

8

Refiner options for converting and utilizing heavy fuel oil  

SciTech Connect

Ongoing advances in established technologies, together with recent commercial applications of residue fluid catalytic cracking (RFCC), automated residue demetallization, solvent deasphalting and gasification of pitch and coke, have markedly enhanced options for processing and economically using residues. Key long-term driving forces for processing strategies are: the need for flexibility to handle heavy, high-metals crude oils, and the economic benefit of being able to convert low-value residues to high-value light transportation fuels, hydrogen and electric power. Narrowing light/heavy crude oil price differentials and relatively low crude oil price levels since the early 1990s until the first quarter of 1996 have slowed the addition of new bottom-of-the-barrel conversion projects over the past two years. At the same time, world crude oil demand has increased at an annual average rate of nearly one million barrels/day (MMbpd) since 1985. Some major producer/refining companies forecast this rate of increase to continue well into the next decade. The inevitable net result will be the increased production of heavier crude oils. The authors project that this will be accompanied by flat or declining markets for heavy fuel oil and a resultant need for additional residue conversion/utilization capacity. The paper discusses technology application and status, economic observations, and technology outlook.

Dickenson, R.L.; Biasca, F.E.; Schulman, B.L.; Johnson, H.E. [SFA Pacific, Inc., Mountain View, CA (United States)

1997-02-01T23:59:59.000Z

9

Hydrogen and Fuel Cells - Refining the Message Initiating a National Dialogue and Educational Agenda  

E-Print Network (OSTI)

Hydrogen and Fuel Cells – Refining the Message Initiating aApril 1, 2005 Hydrogen and Fuel Cells – Refining the Messagethe communication problem. Hydrogen and fuel cells have now

Eggert, Anthony; Kurani, Kenneth S; Turrentine, Tom; Ogden, Joan M; Sperling, Dan; Winston, Emily

2005-01-01T23:59:59.000Z

10

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1998 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) -...

11

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) -...

12

,,,"Residual Fuel Oil(b)",,,," Alternative...  

U.S. Energy Information Administration (EIA) Indexed Site

Standard Errors for Table 10.5;" " Unit: Percents." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

13

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

W 839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration...

14

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Annual Energy Outlook 2012 (EIA)

W 1,039.3 132.9 1,418.3 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration...

15

Table A3. Refiner/Reseller Prices of Distillate and Residual...  

Annual Energy Outlook 2012 (EIA)

Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Residual Fuel Oil Sales to End...

16

Source: Energy Information Administration, Form EIA-782A, "Refiners...  

Annual Energy Outlook 2012 (EIA)

Gallons per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil 5. U.S. Refiner Wholesale Petroleum Product Volumes Figure Percentages of Refiner Wholesale Volumes 1997...

17

Source: Energy Information Administration, Form EIA-782A, "Refiners...  

Annual Energy Outlook 2012 (EIA)

Gallons per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil 5. U.S. Refiner Wholesale Petroleum Product Volumes Figure Percentages of Refiner Wholesale Volumes 1996...

18

Source: Energy Information Administration, Form EIA-782A, "Refiners...  

Annual Energy Outlook 2012 (EIA)

Gallons per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil 5. U.S. Refiner Wholesale Petroleum Product Volumes Figure Percentages of Refiner Wholesale Volumes 1995...

19

Petroleum Refining Energy Use in Relation to Fuel Products Made  

E-Print Network (OSTI)

In recent years crude oils available to refiners have required more energy to refine and refiners have adjusted their processes to obtain better energy efficiency. In addition, the shift to lead-free gasoline has led to refining adjustments...

White, J. R.; Marshall, J. F.; Shoemaker, G. L.; Smith, R. B.

1983-01-01T23:59:59.000Z

20

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

Marketing Annual 1995 467 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

Marketing Annual 1999 421 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

22

Model for Gasification of Residual Fuels from Petroleum Refineries Using the Equation Oriented (EO) Approach  

Science Journals Connector (OSTI)

An attractive way to use residual fuels from petroleum refineries (vacuum residue and petcoke) is their gasification to produce syngas, which contains mainly H2, CO and small quantities of CH4, CO2, as well as nitrogen and sulfur compounds. ... Vacuum residue and petroleum coke (petcoke) are, respectively, heavy liquid and solid byproducts from crude oil refining, they are often used as fuel in boilers for power production, natural gas has been more commonly used in the past few years in power generation; reducing the market for both vacuum residue and petcoke. ... Regarding petroleum refinery residuals Uson et al.(1) developed a model for cogasification of coal, petcoke and biomass, based on reaction kinetics. ...

Jorge E. Marin-Sanchez; Miguel A. Rodriguez-Toral

2010-07-29T23:59:59.000Z

23

Table 19. U.S. Refiner Residual Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

32.1 29.6 25.7 32.2 28.7 November ... 38.1 30.7 27.5 22.5 30.5 26.2 December ... 35.1 27.5 25.8 21.8 29.2 24.8 1993...

24

Table 19. U.S. Refiner Residual Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

31.0 28.1 27.0 29.7 28.2 November ... 33.6 27.3 28.9 25.1 30.5 26.0 December ... 31.9 24.0 24.5 23.0 26.8 23.3 1998...

25

Table 19. U.S. Refiner Residual Fuel Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

January 1983 forward; Form EIA-460, "Petroleum Industry Monthly Report for Product Prices," source for backcast estimates prior to January 1983. 36 Energy Information...

26

Residual Fuel Oil Sales to End Users Refiner Sales Volumes  

Annual Energy Outlook 2012 (EIA)

2008 2009 2010 2011 2012 2013 View History U.S. 8,431.6 8,544.1 7,556.6 6,422.8 5,516.8 5,179.4 1983-2013 PADD 1 2,687.4 2,890.4 2,080.3 1,414.7 1,057.0 961.0 1983-2013 New England...

27

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

- W 73.5 See footnotes at end of table. A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present Energy Information Administration ...

28

,"Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes",60,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_a_epjk_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_a_epjk_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

29

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

30

Process Refinements - Reporting of Public Use of Diesel Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Based on FHWA's reassessment of the reporting and attribution process and on the GAO study, several specific issues were identified. These issues were published in a Federal Register notice for public response.3 Sixteen States provided comments on the issues provided in the Federal Register. Two additional issues were also raised by commenters. The comments may be found at http://dmses.dot.gov; search for docket number FHWA-2000-7635. All of the issues are discussed below. Certain process refinements are required to address these issues; these changes are explained in the following sections. Based on FHWA's reassessment of the reporting and attribution process and on the GAO study, several specific issues were identified. These issues were published in a Federal Register notice for public response.3 Sixteen States provided comments on the issues provided in the Federal Register. Two additional issues were also raised by commenters. The comments may be found at http://dmses.dot.gov; search for docket number FHWA-2000-7635. All of the issues are discussed below. Certain process refinements are required to address these issues; these changes are explained in the following sections. Some of the issues concern the data reported by the States. Because of differences in State laws, States collect different types of data. Chapter 2 of A Guide to Reporting Highway Statistics4 provides instructions for completing Forms FHWA-551M and FHWA-556.

31

Process Refinements - Accounting for Motor-Fuel Losses  

NLE Websites -- All DOE Office Websites (Extended Search)

Accounting for Motor-Fuel Losses Accounting for Motor-Fuel Losses Motor fuel may be lost by leakage from storage tanks, spillage, fire, or other means; in addition, measurement differences brought about by temperature or other conditions and meter faults can result in apparent losses. Because this lost fuel is neither consumed on the highway nor used for off-highway purposes, it presents a problem for determining the appropriate base for taxation. In the past, FHWA allowed States to report actual losses or a percentage loss, which was capped at 1%. Usage data for States that did not report losses were not adjusted by FHWA to account for losses. In addition, diesel losses were not considered significant and were not counted. During the reassessment meetings and in the Federal Register notice of August 17, 2000, it was recommended that actual diesel losses also be documented and reported. However, because diesel reporting accounts for actual on-highway fuel use, a reporting of diesel losses is unnecessary.

32

Diesel engine lubrication with poor quality residual fuel  

SciTech Connect

The quality of marine residual fuel is declining. This is being caused by a gradual trend towards production of heavier crudes and increased residuum conversion processes in refineries to meet light product demand while holding down crude runs. Additionally, more stringent inland fuel sulfur regulations have caused the higher sulfur residues to be used for marine residual fuel blending. Engine manufacturers are making major efforts in design so that their engines can burn these fuels at high efficiency with minimum adverse effects. The oil industry is developing improved lubricants to reduce as much as possible the increased wear and deposit formation caused by these poor quality fuels. To guide the development of improved lubricants, knowledge is required about the impact of the main fuel characteristics on lubrication. This paper summarizes work conducted to assess the impact of fuel sulfur, Conradson carbon and asphaltenes on wear and deposit formation in engines representative of full scale crosshead diesel engines and medium speed trunk piston engines. Results obtained with improved lubricants in these engines are reviewed.

Van der Horst, G.W.; Hold, G.E.

1983-01-01T23:59:59.000Z

33

Hydrogen milestone could help lower fossil fuel refining costs  

ScienceCinema (OSTI)

Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, laboratory fellow and technical director of the INL High Temperature Electrolysis team, today announced that the latest fuel cell modification has set a new mark in endurance. The group's Integrated Laboratory Scale experiment has now operated continuously for 2,583 hours at higher efficiencies than previously attained. Learn more about INL research at http://www.facebook.com/idahonationallaboratory.

McGraw, Jennifer

2013-05-28T23:59:59.000Z

34

Residual Fuel Oil Prices, Average - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product/Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. - - - - - - 1983-2013 East Coast (PADD 1) - - - - - - 1983-2013 New England (PADD 1A) - - - - - - 1983-2013 Connecticut - - - - - - 1983-2013 Maine - - - - - - 1983-2013 Massachusetts - - - - - - 1983-2013

35

,"No. 2 Diesel Fuel Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales to End Users Refiner Sales Volumes" Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","No. 2 Diesel Fuel Sales to End Users Refiner Sales Volumes",60,"Monthly","9/2013","1/15/1994" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_a_epd2d_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_a_epd2d_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

36

Source: Energy Information Administration, Form EIA-782A, "Refiners...  

Annual Energy Outlook 2012 (EIA)

S O N D 0 10 20 30 40 50 60 70 1995 Cents per Gallon Excluding Taxes Retail < or 1% Wholesale < or 1% Retail > 1% Wholesale > 1% 7. U.S. Refiner Residual Fuel Oil Prices and...

37

,,,,"Reasons that Made Residual Fuel Oil Unswitchable"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 10.25;" 5 Relative Standard Errors for Table 10.25;" " Unit: Percents." ,,,,"Reasons that Made Residual Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Residual Fuel Oil ","Unswitchable Residual","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, " "Code(a)","Subsector and Industry","Consumed as a Fuel","Fuel Oil Fuel Use","Another Fuel","the Products","Fuel Supply","Restrictions(b)","in Place(c)","Alternative Fuels(d)","Reason","H, I, J, and K","Don't Know"

38

Mechanisms of hydrocracking of heavy oil residues  

Science Journals Connector (OSTI)

Based on research data, a technology of low-pressure residual fuel oil hydrocracking with a suspended catalyst has been developed. The process has been refined on a laboratory setup. The reaction kinetics has ...

Kh. I. Abad-zade; F. M. Velieva…

2009-07-01T23:59:59.000Z

39

Conversion of Residual Biomass into Liquid Transportation Fuel: An Energy Analysis  

Science Journals Connector (OSTI)

Conversion of Residual Biomass into Liquid Transportation Fuel: An Energy Analysis ... An energy balance, in broad outline, is presented for the production of a high-quality liquid transportation fuel from residual crop biomass. ... That is, 40% of the initial energy in the biomass will be found in the final liquid fuel after subtracting out external energy supplied for complete processing, including transportation as well as material losses. ...

J. Manganaro; B. Chen; J. Adeosun; S. Lakhapatri; D. Favetta; A. Lawal; R. Farrauto; L. Dorazio; D. J. Rosse

2011-04-20T23:59:59.000Z

40

Pretreatment of automobile shredder residue (ASR) for fuel utilization  

Science Journals Connector (OSTI)

Automobile shredder residue (ASR) was pretreated to improve its quality for fuel utilization. Composition analysis revealed that ASR components could be classified into four groups: (1) urethane and textile—light fraction and combustibles containing low levels of ash and Cl; (2) plastics and rubber—light or heavy fraction and combustibles containing high levels of Cl; (3) metals and electrical wire—heavy fraction and incombustibles, and (4) particles smaller than 5.6 mm with high ash contents. Based on these results, we successively performed sieving to remove particles smaller than 5.6 mm, float and sink separations to reject the heavy fraction and plastics and rubber containing Cl, thermal treatment under an inert atmosphere to remove Cl derived from PVC, and char washing to remove soluble chlorides. This series of pretreatments enabled the removal of 78% of the ash and 91% of the Cl from ASR. Sieving using a 5.6-mm mesh removed a considerable amount of ash. Product quality was markedly improved after the float and sink method. Specifically, the sink process using a 1.1 g cm?3 medium fluid rejected almost all rubber containing Cl and a large amount of PVC. The remaining Cl in char, after heating at 300 °C under an inert atmosphere and washing, was considered to be present as insoluble chlorides that volatilized at temperatures above 300 °C. Based on a tradeoff relationship between product quality and treatment cost, ASR may be utilized as a form of refuse plastic fuel or char.

I.H. Hwang; S. Yokono; T. Matsuto

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

,"U.S. Total Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsd_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsd_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

42

,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsda_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsda_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

43

Table 42. Residual Fuel Oil Prices by PAD District and State  

Gasoline and Diesel Fuel Update (EIA)

55.1 47.1 W W 55.1 46.2 See footnotes at end of table. 42. Residual Fuel Oil Prices by PAD District and State Energy Information Administration Petroleum...

44

Ocean Sequestration of Crop Residue Carbon: Recycling Fossil Fuel Carbon Back to Deep Sediments  

Science Journals Connector (OSTI)

burial of crop residues in the deep ocean (hereafter, CROPS: Crop Residue Oceanic Permanent Sequestration). ... As long as fuels exist with higher energy yield-to-carbon content (E/C) ratios than biomass, it will always be more energy efficient and less carbon polluting to sequester the biomass in the deep oceans, and use those fuels with higher E/C ratios for power generation, rather than to burn biomass for power generation. ...

Stuart E. Strand; Gregory Benford

2009-01-12T23:59:59.000Z

45

Wood Residues as Fuel Source for Lime Kilns  

E-Print Network (OSTI)

completed and the preliminary results indicate that our approach is potentially a very cost-effective and simple option to substantially reduce or possibly eliminate fossil-fuel usage in lime kilns....

Azarniouch, M. K.; Philp, R. J.

1984-01-01T23:59:59.000Z

46

Viability study of automobile shredder residue as fuel  

Science Journals Connector (OSTI)

Abstract Car Fluff samples collected from a shredding plant in Italy were classified based on particle size, and three different size fractions were obtained in this way. A comparison between these size fractions and the original light fluff was made from two different points of view: (i) the properties of each size fraction as a fuel were evaluated and (ii) the pollutants evolved when each size fraction was subjected to combustion were studied. The aim was to establish which size fraction would be the most suitable for the purposes of energy recovery. The light fluff analyzed contained up to 50 wt.% fines (particle size fraction inappropriate for energy recovery, and therefore, landfilling would be the best option. The 50–100 mm fraction exhibited a high calorific value and low PCDD/F emissions were generated when the sample was combusted, making it the most suitable fraction for use as refuse-derived fuel (RDF). Results obtained suggest that removing fines from the original ASR sample would lead to a material product that is more suitable for use as RDF.

Mar Edo; Ignacio Aracil; Rafael Font; Manuela Anzano; Andrés Fullana; Elena Collina

2013-01-01T23:59:59.000Z

47

Molecular gas in early-type galaxies: Fuel for residual star formation  

E-Print Network (OSTI)

Abstract: Molecular gas in early-type galaxies: Fuel for residual star formation Timothy A. Davis Survey 2. The ATLAS3D CARMA Survey 3. Kinematic Misalignments 4. Origin of the molecular gas The ATLAS3D is to determine how (major and minor) mergers, gas, star formation and feedback affect the transformation

Bureau, Martin

48

The Effect of Weld Residual Stress on Life of Used Nuclear Fuel Dry Storage Canisters  

SciTech Connect

With the elimination of Yucca Mountain as the long-term storage facility for spent nuclear fuel in the United States, a number of other storage options are being explored. Currently, used fuel is stored in dry-storage cask systems constructed of steel and concrete. It is likely that used fuel will continue to be stored at existing open-air storage sites for up to 100 years. This raises the possibility that the storage casks will be exposed to a salt-containing environment for the duration of their time in interim storage. Austenitic stainless steels, which are used to construct the canisters, are susceptible to stress corrosion cracking (SCC) in chloride-containing environments if a continuous aqueous film can be maintained on the surface and the material is under stress. Because steel sensitization in the canister welds is typically avoided by avoiding post-weld heat treatments, high residual stresses are present in the welds. While the environment history will play a key role in establishing the chemical conditions for cracking, weld residual stresses will have a strong influence on both crack initiation and propagation. It is often assumed for modeling purposes that weld residual stresses are tensile, high and constant through the weld. However, due to the strong dependence of crack growth rate on stress, this assumption may be overly conservative. In particular, the residual stresses become negative (compressive) at certain points in the weld. The ultimate goal of this research project is to develop a probabilistic model with quantified uncertainties for SCC failure in the dry storage casks. In this paper, the results of a study of the residual stresses, and their postulated effects on SCC behavior, in actual canister welds are presented. Progress on the development of the model is reported.

Ronald G. Ballinger; Sara E. Ferry; Bradley P. Black; Sebastien P. Teysseyre

2013-08-01T23:59:59.000Z

49

U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

103.5 144.3 150.9 116.6 117.5 101.0 1983-2012 103.5 144.3 150.9 116.6 117.5 101.0 1983-2012 Kerosene-Type Jet Fuel 40,136.3 39,913.9 37,954.6 34,775.2 33,272.0 32,545.7 1983-2012 Propane (Consumer Grade) 3,263.4 2,672.2 3,671.1 3,871.2 4,457.3 5,556.4 1983-2012 Kerosene 139.7 46.0 39.8 30.3 27.1 21.0 1983-2012 No. 1 Distillate 161.0 102.0 100.9 107.8 108.9 108.5 1983-2012 No. 2 Distillate 24,345.6 20,801.6 17,757.7 15,767.1 13,802.1 12,536.7 1983-2012 No. 2 Diesel Fuel NA NA NA NA NA NA 1994-2012 Ultra Low-Sulfur 12,415.9 12,419.4 12,458.2 11,698.0 10,441.1 10,608.9 2007-2012 Low-Sulfur 7,720.2 6,037.6 3,392.4 3,186.1 2,579.3 1,185.4 1994-2012 High-Sulfur 3,419.6 1,403.5 1,028.3 448.8 402.0 427.5 1994-2012 No. 2 Fuel Oil 789.9 941.0 878.9 434.2 379.7 314.9

50

U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

Sales Type: Sales to End Users Sales for Resale Sales Type: Sales to End Users Sales for Resale Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Aviation Gasoline 93.3 8.2 10.0 12.0 10.9 11.4 1983-2013 Kerosene-Type Jet Fuel 32,893.1 32,452.7 33,281.4 32,532.8 29,876.9 29,004.1 1983-2013 Propane (Consumer Grade) 6,321.3 6,161.4 5,990.4 6,377.7 6,892.8 3,264.5 1983-2013 Kerosene 3.5 2.4 3.6 2.2 3.6 8.8 1983-2013 No. 1 Distillate 45.2 31.9 36.3 32.5 44.6 103.0 1983-2013 No. 2 Distillate 11,266.8 11,311.6 11,647.9 11,375.1 11,192.1 12,138.1 1983-2013 No. 2 Diesel Fuel NA NA NA NA NA NA 1994-2013

51

Microstructure, residual stress, and mechanical properties of thin film materials for a microfabricated solid oxide fuel cell  

E-Print Network (OSTI)

The microstructure and residual stress of sputter-deposited films for use in microfabricated solid oxide fuel cells are presented. Much of the work focuses on the characterization of a candidate solid electrolyte: Yttria ...

Quinn, David John, Sc. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

52

U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Aviation Gasoline 413.1 602.6 593.2 547.1 431.5 432.6 1983-2013 Kerosene-Type Jet Fuel 26,119.1 27,197.0 28,168.9 27,226.7 25,645.0 27,379.5 1983-2013 Propane (Consumer Grade) 26,164.7 24,627.2 25,506.9 30,382.5 31,250.8 38,981.9 1983-2013 Kerosene 1,302.3 897.9 1,049.8 1,199.7 1,224.4 1,318.9 1983-2013 No. 1 Distillate 197.2 124.8 141.7 228.9 336.0 947.3 1983-2013 No. 2 Distillate 148,472.9 149,527.5 153,402.1 152,957.9 149,298.1 160,704.2 1983-2013 No. 2 Diesel Fuel NA NA NA NA NA NA 1994-2013 Ultra Low-Sulfur 140,589.9 143,645.5 145,899.9 142,352.7 139,922.9 151,092.7 2007-2013 Low-Sulfur 1,976.7 1,020.9 2,521.9 2,944.3 2,205.9 3,904.5 1994-2013 High-Sulfur

53

Evaluation of improved materials for stationary diesel engines operating on residual and coal based fuels. Final report  

SciTech Connect

Experimental results to date from an on-going research program on improved materials for stationary diesel engines using residual or coal-based fuels are presented with little discussion of conclusions about these results. Information is included on ring and liner wear, fuel oil qualities, ceramic materials, coatings, test procedures and equipment, and tribology test results. (LCL)

Not Available

1980-01-01T23:59:59.000Z

54

Focus on Venezuelan heavy crude: refining margins  

SciTech Connect

Of six crudes refined in the US Gulf Coast, heavy Venezuelan crude Lagunillas (15/sup 0/ API) provides the best margin per barrel. Data for end of December 1983 and the first three weeks of January show that margins on all crudes are on the rise in this market, due to a turnaround in product prices. The lighter crudes are showing the greatest increase in Gross Product Worth. This is having a modest shrinking effect on the margin differential between light and heavy crudes in this market. The domestic crude West Texas Intermediate, at 40/sup 0/ API, provides the highest GPW in this crude slate sample, over US $31 per barrel, compared to GPW of under US $28 per barrel for Lagunillas. Still, as Lagunillas cost about US $8 less than does WTI, refiners with sufficient residue conversion capacity can be earning about US $3.50 more in margin per barrel than they can with WTI. Although few refiners would be using a 15/sup 0/ API crude exclusively for any length of time, heavier oil's inclusion in modern refiners' diets is enhancing their competitive position more than any other single factor. This issue of Energy Detente presents the fuel price/tax series and industrial fuel prices for January 1984 for countries of the Western Hemisphere.

Not Available

1984-01-25T23:59:59.000Z

55

,"U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_d_nus_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_d_nus_vtr_mgalpd_m.htm"

56

,"U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_d_nus_vwr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_d_nus_vwr_mgalpd_m.htm"

57

,"U.S. Residual Fuel Oil Prices by Sales Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Prices by Sales Type" Prices by Sales Type" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residual Fuel Oil Average",2,"Monthly","9/2013","1/15/1983" ,"Data 2","Sulfur Less Than or Equal to 1%",2,"Monthly","9/2013","1/15/1983" ,"Data 3","Sulfur Greater Than 1%",2,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_pri_resid_dcu_nus_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pri_resid_dcu_nus_m.htm"

58

Studies on design of a process for organo-refining of coal to obtain super clean coal  

SciTech Connect

Organo-refining of coal results in refining the coal to obtain super clean coal and residual coal. Super clean coal may be used to obtain value added chemicals, products, and cleaner fuels from coal. In the present work, studies on the design of a semicontinuous process for organo-refining of one ton of coal have been made. The results are reported. This is only a cursory attempt for the design, and further studies may be required for designing this process for use in the development of a scaled-up process of organo-refining of coal.

Sharma, C.S.; Sharma, D.K. [Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies

1999-08-01T23:59:59.000Z

59

Cleaning residual NaK in the fast flux test facility fuel storage cooling system  

SciTech Connect

The Fast Flux Test Facility (FFTF), located on the U.S. Department of Energy's Hanford Reservation, is a liquid metal-cooled test reactor. The FFTF was constructed to support the U.S. Liquid Metal Fast Breeder Reactor Program. The bulk of the alkali metal (sodium and NaK) has been drained and will be stored onsite prior to final disposition. Residual NaK needed to be removed from the pipes, pumps, heat exchangers, tanks, and vessels in the Fuel Storage Facility (FSF) cooling system. The cooling system was drained in 2004 leaving residual NaK in the pipes and equipment. The estimated residual NaK volume was 76 liters in the storage tank, 1.9 liters in the expansion tank, and 19-39 liters in the heat transfer loop. The residual NaK volume in the remainder of the system was expected to be very small, consisting of films, droplets, and very small pools. The NaK in the FSF Cooling System was not radiologically contaminated. The portions of the cooling system to be cleaned were divided into four groups: 1. The storage tank, filter, pump, and associated piping; 2. The heat exchanger, expansion tank, and associated piping; 3. Argon supply piping; 4. In-vessel heat transfer loop. The cleaning was contracted to Creative Engineers, Inc. (CEI) and they used their superheated steam process to clean the cooling system. It has been concluded that during the modification activities (prior to CEI coming onsite) to prepare the NaK Cooling System for cleaning, tank T-914 was pressurized relative to the In-Vessel NaK Cooler and NaK was pushed from the tank back into the Cooler and that on November 6, 2005, when the gas purge through the In-Vessel NaK Cooler was increased from 141.6 slm to 283.2 slm, NaK was forced from the In-Vessel NaK Cooler and it contacted water in the vent line and/or scrubber. The gases from the reaction then traveled back through the vent line coating the internal surface of the vent line with NaK and NaK reaction products. The hot gases also exited the scrubber through the stack and due to the temperature of the gas, the hydrogen auto ignited when it mixed with the oxygen in the air. There was no damage to equipment, no injuries, and no significant release of hazardous material. Even though the FSF Cooling System is the only system at FFTF that contains residual NaK, there are lessons to be learned from this event that can be applied to future residual sodium removal activities. The lessons learned are: - Before cleaning equipment containing residual alkali metal the volume of alkali metal in the equipment should be minimized to the extent practical. As much as possible, reconfirm the amount and location of the alkali metal immediately prior to cleaning, especially if additional evolutions have been performed or significant time has passed. This is especially true for small diameter pipe (<20.3 centimeters diameter) that is being cleaned in place since gas flow is more likely to move the alkali metal. Potential confirmation methods could include visual inspection (difficult in all-metal systems), nondestructive examination (e.g., ultrasonic measurements) and repeating previous evolutions used to drain the system. Also, expect to find alkali metal in places it would not reasonably be expected to be. - Staff with an intimate knowledge of the plant equipment and the bulk alkali metal draining activities is critical to being able to confirm the amount and locations of the alkali metal residuals and to safely clean the residuals. - Minimize the potential for movement of alkali metal during cleaning or limit the distance and locations into which alkali metal can move. - Recognize that when working with alkali metal reactions, occasional pops and bangs are to be anticipated. - Pre-plan emergency responses to unplanned events to assure responses planned for an operating reactor are appropriate for the deactivation phase.

Burke, T.M.; Church, W.R. [Fluor Hanford, PO Box 1000, Richland, Washington, 99352 (United States); Hodgson, K.M. [Fluor Government Group, PO Box 1050, Richland, Washington, 99352 (United States)

2008-01-15T23:59:59.000Z

60

Advanced thermal treatment of auto shredder residue and refuse derived fuel  

Science Journals Connector (OSTI)

The disposal of End-of-Life Vehicles (ELVs) results in a highly heterogeneous polymeric waste stream of Automobile shredder residue (ASR). Within Europe, strict legislation, such as the End-of-Life Vehicle Directive and the Landfill Directive, has imposed targets for reducing this waste stream and diverting the material away from landfill. One pathway open to recyclers is to thermally process these wastes, but the presence of chlorine and metallic species can present challenges to traditional incineration technologies. This paper discusses the use of Gasplasma®, an advanced thermal treatment technology, comprising fluidised bed oxy-steam gasification followed by plasma treatment, for ASR, refuse derived fuel (RDF) and blends of ASR and RDF wastes. The work demonstrates the ability to process these highly heterogeneous materials achieving high energy conversion (87–94%) and virtually complete carbon conversion, producing a calorific synthetic gas (syngas) capable of being used for power generation or as a chemical feedstock. The actual conversion efficiency achieved is dependent on feed chemistry and properties. The study also shows that ash components of the feed material can be transformed into an environmentally stable vitrified product.

Richard Taylor; Ruby Ray; Chris Chapman

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Size distribution of metals in particulate matter formed during combustion of residual fuel oil  

SciTech Connect

Between July 1992 and January 1993 three full-scale test programs were performed by Carnot for the Electric Power Research Institute and the Fuel Oil Users` Support (FOUS) Group, as part of a program for development and testing of various stack emissions models. One of the components of the program was determination of the concentrations of individual elements as a function of the size of particles suspended in flue gas. The size distributions of species are important because several aspects of system performance depend upon particulate matter size and composition: (1) the rate of ash deposition in the convection section, and activity of deposits for high temperature corrosion and SO{sub 3} formation, (2) the efficiency of precipitators for collection of individual elements, and (3) scattering of visible light and contribution of particles to stack plume opacity. Size distributions of major ash constituents were measured at the entrance and exit of the dust collectors during each of the field tests. To the authors` knowledge, these are the first reports of such measurements in residual oil-fired utility boilers. The focus, in the present paper, is on the composition of the particles entering the dust collectors.

Walsh, P. [Pennsylvania State Univ., University Park, PA (United States); Rovesti, W.C. [Electric Power Research Institute, Washington, DC (United States); Freeman, R.F. [Niagara Mohawk Power Corp., Oswego, NY (United States); Olen, K.R.; Washington, K.T.; Patrick, S.T.; Campbell, G.L.; Harper, D.S. [Florida Power & Light Co., West Palm Beach, FL (United States); Teetz, R.D.; Bennett, T.E. [Long Island Lighting Co., Glenwood Landing, NY (United States)] [and others

1994-08-01T23:59:59.000Z

62

Regional refining models for alternative fuels using shale and coal synthetic crudes: identification and evaluation of optimized alternative fuels. Annual report, March 20, 1979-March 19, 1980  

SciTech Connect

The initial phase has been completed in the project to evaluate alternative fuels for highway transportation from synthetic crudes. Three refinery models were developed for Rocky Mountain, Mid-Continent and Great Lakes regions to make future product volumes and qualities forecast for 1995. Projected quantities of shale oil and coal oil syncrudes were introduced into the raw materials slate. Product slate was then varied from conventional products to evaluate maximum diesel fuel and broadcut fuel in all regions. Gasoline supplement options were evaluated in one region for 10% each of methanol, ethanol, MTBE or synthetic naphtha in the blends along with syncrude components. Compositions and qualities of the fuels were determined for the variation in constraints and conditions established for the study. Effects on raw materials, energy consumption and investment costs were reported. Results provide the basis to formulate fuels for laboratory and engine evaluation in future phases of the project.

Sefer, N.R.; Russell, J.A.

1980-11-01T23:59:59.000Z

63

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production.  

E-Print Network (OSTI)

??Distributed mobile conversion facilities using either fast pyrolysis or torrefaction processes can be used to convert forest residues to more energy dense substances (bio-oil, bio-slurry… (more)

Brown, Duncan

2013-01-01T23:59:59.000Z

64

Firing of pulverized solvent refined coal  

DOE Patents (OSTI)

A burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired successfully without any performance limitations and without the coking of the solvent refined coal on the burner components. The burner is provided with a tangential inlet of primary air and pulverized fuel, a vaned diffusion swirler for the mixture of primary air and fuel, a center water-cooled conical diffuser shielding the incoming fuel from the heat radiation from the flame and deflecting the primary air and fuel steam into the secondary air, and a watercooled annulus located between the primary air and secondary air flows.

Lennon, Dennis R. (Allentown, PA); Snedden, Richard B. (McKeesport, PA); Foster, Edward P. (Macungie, PA); Bellas, George T. (Library, PA)

1990-05-15T23:59:59.000Z

65

Refiner Crude Oil Inputs  

NLE Websites -- All DOE Office Websites (Extended Search)

Day) Refiner Percent Operable Utilization Net Inputs (Refiner and Blender) of Motor Gasoline Blending Comp Net Inputs (Refiner and Blender) of RBOB Blending Components Net...

66

Evaluation of a zirconium additive for the mitigation of molten ash formation during combustion of residual fuel oil  

SciTech Connect

Florida Power & Light Company (FP&L) currently fires a residual fuel oil (RFO) containing catalyst fines, which results in a troublesome black aluminosilicate liquid phase that forms on heat-transfer surfaces, remains molten, and flows to the bottom of the boiler. When the unit is shut down for a scheduled outage, this liquid phase freezes to a hard black glass that damages the contracting waterwalls of the boiler. Cleaning the boiler bottom and repairing damaged surfaces increase the boiler downtime, at a significant cost to FP&L. The Energy & Environmental Research Center (EERC) proposed to perform a series of tests for FP&L to evaluate the effectiveness of a zirconium additive to modify the mechanism that forms this liquid phase, resulting in the formation of a dry refractory phase that may be easily handled during cleanup of the boiler.

NONE

1996-12-01T23:59:59.000Z

67

Error estimation and adaptive mesh refinement for aerodynamic flows  

E-Print Network (OSTI)

Error estimation and adaptive mesh refinement for aerodynamic flows Ralf Hartmann, Joachim Held-oriented mesh refinement for single and multiple aerodynamic force coefficients as well as residual-based mesh refinement applied to various three-dimensional lam- inar and turbulent aerodynamic test cases defined

Hartmann, Ralf

68

Effects of alternate fuels report No. 8: analysis of degradiation of magnesia-based refractory bricks from a residual oil-fired rotary cement kiln  

SciTech Connect

Residual oil was used as an alternate fuel to natural gas to supply heat in a rotary cement kiln. Principal impurities in the residual oil were Ca, Fe, Mg, Na, Ni, P.S. and V. the kiln operators were concerned about the effects of these oil impurities on observed degradation of the magnesia-based bricks used as a liner in the burning zone of the kiln. Two degraded bricks, which had been in service for six to nine months, were analyzed to determine the role of fuel impurities on the observed degradation. The maximum hot-face temperature of the refractory during service was about 1500/sup 0/C. One brick had decreased in thickness about 45%, the about 15%. Various analytical measurements on these samples failed to reveal the presence of fuel impurities at or near the hot face of the bricks, and therefore it is concluded that the relatively short service life of these refractories was not due to use of residual oil as the fuel in the kiln. The observed degradation, therefore, was attributed to other reactions and to thermal mechanical conditions in the kiln, which inevitably resulted in extensive erosion of the bricks.

Federer, J.I.; Tennery, V.J.

1980-05-01T23:59:59.000Z

69

Used oil re-refining  

SciTech Connect

Used oils, especially used lubricating oils which are normally considered waste and are discarded or burned, are reclaimed for reuse by a re-refining procedure involving the steps of: heat soaking the used oil; distilling the heat soaked oil; passing the distillate through a guard bed of activated material; hydrotreating the guard bed treated distillate under standard hydrotreating conditions. If the used oil to be re-refined contains a quantity of water and/or fuel fraction which the practioner considers sufficiently large to be detrimental, the used oil may be subjected to a dewatering/defueling step prior to being heat soaked.

Reid, L. E.; Ryan, D. G.; Yao, K. C.

1985-04-23T23:59:59.000Z

70

Gasoline and Diesel Fuel Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Fuel Pump Components History WHAT WE PAY FOR IN A GALLON OF DIESEL FUEL Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage)...

71

ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bandwidth for Petroleum Refining Processes ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining Processes bandwidth.pdf More Documents & Publications ITP Petroleum...

72

ITP Petroleum Refining: Profile of the Petroleum Refining Industry...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Profile of the Petroleum Refining Industry in California: California Industries of the Future Program ITP Petroleum Refining: Profile of the Petroleum Refining Industry in...

73

Refines Efficiency Improvement  

SciTech Connect

Refinery processes that convert heavy oils to lighter distillate fuels require heating for distillation, hydrogen addition or carbon rejection (coking). Efficiency is limited by the formation of insoluble carbon-rich coke deposits. Heat exchangers and other refinery units must be shut down for mechanical coke removal, resulting in a significant loss of output and revenue. When a residuum is heated above the temperature at which pyrolysis occurs (340 C, 650 F), there is typically an induction period before coke formation begins (Magaril and Aksenova 1968, Wiehe 1993). To avoid fouling, refiners often stop heating a residuum before coke formation begins, using arbitrary criteria. In many cases, this heating is stopped sooner than need be, resulting in less than maximum product yield. Western Research Institute (WRI) has developed innovative Coking Index concepts (patent pending) which can be used for process control by refiners to heat residua to the threshold, but not beyond the point at which coke formation begins when petroleum residua materials are heated at pyrolysis temperatures (Schabron et al. 2001). The development of this universal predictor solves a long standing problem in petroleum refining. These Coking Indexes have great potential value in improving the efficiency of distillation processes. The Coking Indexes were found to apply to residua in a universal manner, and the theoretical basis for the indexes has been established (Schabron et al. 2001a, 2001b, 2001c). For the first time, a few simple measurements indicates how close undesired coke formation is on the coke formation induction time line. The Coking Indexes can lead to new process controls that can improve refinery distillation efficiency by several percentage points. Petroleum residua consist of an ordered continuum of solvated polar materials usually referred to as asphaltenes dispersed in a lower polarity solvent phase held together by intermediate polarity materials usually referred to as resins. The Coking Indexes focus on the amount of these intermediate polarity species since coke formation begins when these are depleted. Currently the Coking Indexes are determined by either titration or solubility measurements which must be performed in a laboratory. In the current work, various spectral, microscopic, and thermal techniques possibly leading to on-line analysis were explored for measuring the Coking Indexes.

WRI

2002-05-15T23:59:59.000Z

74

MECS 2006- Petroleum Refining  

Energy.gov (U.S. Department of Energy (DOE))

Manufacturing Energy and Carbon Footprint for Petroleum Refining (NAICS 324110) Sector with Total Energy Input, October 2012 (MECS 2006)

75

Method of producing a colloidal fuel from coal and a heavy petroleum fraction. [partial liquefaction of coal in slurry, filtration and gasification of residue  

DOE Patents (OSTI)

A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300 to 550/sup 0/C. The slurry is heated to a temperature of 400 to 500/sup 0/C for a limited time of only about 1 to 5 minutes before cooling to a temperature of less than 300/sup 0/C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

Longanbach, J.R.

1981-11-13T23:59:59.000Z

76

Petroleum Refining | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Petroleum Refining Petroleum Refining Maintaining the viability of the U.S. petroleum refining industry requires continuous improvement in productivity and energy efficiency. The...

77

Effects of SO2/SO2 on the efficiency with which MgO inhibits vanadic corrosion in residual fuel fired gas turbines  

Science Journals Connector (OSTI)

The use of MgO as a fuel additive to combat vanadic corrosion is widely accepted practice for boilers and turbines operating on residual or low grade fuels. MgO has the ability to form high melting stable vanadates but the presence of SO2/SO2 can react with the magnesium and reduce its effectiveness. This paper aims to quantify the effectiveness of MgO as an inhibitor in the presence of increasing amounts of SOx. A method of determining permissible levels of \\{SOx\\} to satisfy predetermined corrosion rates or additive efficiencies is described. Examples of the loss of additive efficiency with volume of \\{SOx\\} at temperatures of 750 and 850°C are given for both nickel and cobalt base alloys.

T.N. Rhys-Jones; J.R. Nicholls; P. Hancock

1983-01-01T23:59:59.000Z

78

Biocatalysis in Oil Refining  

SciTech Connect

Biocatalysis in Oil Refining focuses on petroleum refining bioprocesses, establishing a connection between science and technology. The micro organisms and biomolecules examined for biocatalytic purposes for oil refining processes are thoroughly detailed. Terminology used by biologists, chemists and engineers is brought into a common language, aiding the understanding of complex biological-chemical-engineering issues. Problems to be addressed by the future R&D activities and by new technologies are described and summarized in the last chapter.

Borole, Abhijeet P [ORNL; Ramirez-Corredores, M. M. [BP Global Fuels Technology

2007-01-01T23:59:59.000Z

79

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

80

Coal-liquid fuel/diesel engine operating compatibility. Final report  

SciTech Connect

This work is intended to assess the possibilities of using coal-derived liquids (CDL) represented by a specific type (SRC II) and shale-derived distillate fuel in blends of petroleum-derived fuels in medium-speed, high-output, heavy-duty diesel engines. Conclusions are as follows: (1) Blends of solvent refined coal and diesel fuel may be handled safely by experienced diesel engine mechanics. (2) A serious corrosion problem was found in the fuel pump parts when operating with solvent refined coal blended with petroleum. It is expected that a metallurgy change can overcome this problem. (3) Proper selection of materials for the fuel system is required to permit handling coal-derived liquid fuels. (4) A medium speed, high horsepower, 4-cycle diesel engine can be operated on blends of solvent refined coal and petroleum without serious consequences save the fuel system corrosion previously mentioned. This is based on a single, short durability test. (5) As represented by the product evaluated, 100% shale-derived distillate fuel may be used in a medium speed, high horsepower, 4-cycle diesel engine without significant consequences. (6) The shale product evaluated may be blended with petroleum distillate or petroleum residual materials and used as a fuel for medium speed, high horsepower, 4-cycle diesel engines. 7 references, 24 figures, 20 tables.

Hoffman, J.G.; Martin, F.W.

1983-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Chapter 2 Conventional refining processes  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses conventional refining processes. Refining is a very elaborate operation by which crude oil is transformed into a series of products such as, gases, fuels, solvents, lube oils, etc. Crude oil is a complex mixture of hydrocarbons (HC) of different C/H ratio and molecular structures. The different classes of HC molecules comprise paraffins, olefins, cycles, aromatics, resins, asphaltenes, and other poly-unsaturated molecules. In addition to hydrocarbons, crude oils also contain some other compounds composed by other atoms (heteroatoms) than carbon and hydrogen. Those moieties consist of sulfur (S), nitrogen (N), oxygen (O), and heavy metals. Crudes are usually classified in terms of their specific gravity as very light, light, median, heavy, and extra heavy. An empirical set of units for the crude gravity, defined by the American Petroleum Institute (API), is currently used in oil industry. Their appearance varies from transparent liquids to black solids, going from light to heavy. Light oils have lower specific gravity and larger API gravity, while for heavy oils vice versa. Their composition also changes, and so the concentration of those heteroatomic compounds typically increases from light to heavy. The crude oils are also categorized in terms of their chemical composition, as for instance, sour crude oils, those presenting high acidity, paraffinic, naphthenic, and aromatic.

2007-01-01T23:59:59.000Z

82

Hirshfeld atom refinement  

Science Journals Connector (OSTI)

The new automated iterative Hirshfeld atom refinement method is explained and validated through comparison of structural models of Gly-L-Ala obtained from synchrotron X-ray and neutron diffraction data at 12, 50, 150 and 295 K. Structural parameters involving hydrogen atoms are determined with comparable precision from both experiments and agree mostly to within two combined standard uncertainties.

Capelli, S.C.

2014-08-29T23:59:59.000Z

83

Issues in adaptive mesh refinement  

SciTech Connect

In this paper, we present an approach for a patch-based adaptive mesh refinement (AMR) for multi-physics simulations. The approach consists of clustering, symmetry preserving, mesh continuity, flux correction, communications, and management of patches. Among the special features of this patch-based AMR are symmetry preserving, efficiency of refinement, special implementation offlux correction, and patch management in parallel computing environments. Here, higher efficiency of refinement means less unnecessarily refined cells for a given set of cells to be refined. To demonstrate the capability of the AMR framework, hydrodynamics simulations with many levels of refinement are shown in both two- and three-dimensions.

Dai, William Wenlong [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

84

The crisis in Kuwait and U. S. refiners' travail  

SciTech Connect

The August 2, 1990, invasion of Kuwait on the part of Iraq has set in motion an accelerated domino affect in US fuels markets. The impact on US refiners has been generally negative, both in terms of margins and perceptions of same. This issue of Energy Detente (ED) updates a few directional indicators that affect refining margins and considers longer-term refining capacity requirements in the US. ED feels the invasion of Kuwait might force oil companies to allocate more talent, time, and financial resources to public affairs. This issue also contains the following: (1) The ED Refining Netback Data Series for the US Gulf and West Coasts, Rotterdam, and Singapore as of Aug. 24, 1990; and (2) the ED Fuel Price/Tax Series for countries of the Eastern Hemisphere Aug. 1990 edition. 4 figs., 5 tabs.

Not Available

1990-08-31T23:59:59.000Z

85

Destruction and formation of PCDD/Fs in a fluidised bed combustor co-incinerating automotive shredder residue with refuse derived fuel and wastewater treatment sludge  

Science Journals Connector (OSTI)

During an eight day trial automotive shredder residue (ASR) was added to the usual waste feed of a Fluidized Bed Combustor (FBC) for waste-to-energy conversion; the input waste mix consisted of 25% ASR, 25% refuse-derived fuel (RDF) and 50% wastewater treatment (WWT) sludge. All inputs and outputs were sampled and the concentration of the 17 PCDD/Fs with TEF-values was determined in order to obtain “PCDD/F fingerprints”. The ASR contained approximately 9000 ng PCDD/Fs/kgDW, six times more than the RDF and 10 times more than the WWT sludge. The fingerprint of ASR and RDF was dominated by HpCDD and OCDD, which accounted for 90% of the total PDDD/F content, whereas the WWT sludge contained relatively more HpCDFs and OCDF (together 70%). The flue gas cleaning residue (FGCR) and fly and boiler ash contained approximately 30,000 and 2500 ng PCDD/Fs/kgDW, respectively. The fingerprints of these outputs were also dominated by HpCDFs and OCDF. The bottom ash contained only OCDD and OCDF, in total 8 ng PCDD/Fs/kgDW. From the comparison of the bottom ash fingerprints with the fingerprints of the other output fractions and of the inputs, it could be concluded that the PCDD/Fs in the waste were destroyed and new PCDD/Fs were formed in the post combustion process by de novo synthesis. During the ASR-co-incineration, the PCDD/F congener concentrations in the fly and boiler ash, FGCR and flue gas were 1.25–10 times higher compared to the same output fractions generated during incineration of the usual waste mix (70% RDF and 30% WWT sludge). The concentration of the higher chlorinated PCDD/Fs increased most. As these congeners have the lowest TEF-factors, the total PCDD/F output, expressed in kg TEQ/year, of the FBC did not increase significantly when ASR was co-incinerated. Due to the relatively high copper levels in the ASR, the copper concentrations in the \\{FBCs\\} outputs increased. As copper catalysis the de novo syntheses, this could explain the increase in PCDD/F concentrations in these outputs.

J. Van Caneghem; I. Vermeulen; C. Block; A. Van Brecht; P. Van Royen; M. Jaspers; G. Wauters; C. Vandecasteele

2012-01-01T23:59:59.000Z

86

Petroleum Refining (2010 MECS) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Petroleum Refining (2010 MECS) Petroleum Refining (2010 MECS) Manufacturing Energy and Carbon Footprint for Petroleum Refining Sector (NAICS 324110) Energy use data source: 2010...

87

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

88

Weekly Refiner Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

Refiner Net Production Refiner Net Production (Thousand Barrels per Day) Period: Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Product/Region 11/08/13 11/15/13 11/22/13 11/29/13 12/06/13 12/13/13 View History Finished Motor Gasoline 2,168 2,300 2,336 2,359 2,462 2,368 2010-2013 East Coast (PADD 1) 54 53 52 67 71 67 2010-2013 Midwest (PADD 2) 696 745 722 711 798 790 2010-2013 Gulf Coast (PADD 3) 891 916 1,010 1,053 1,011 1,021 2010-2013 Rocky Mountain (PADD 4) 260 248 245 232 279 235 2010-2013 West Coast (PADD 5) 268 338 308 296 302 255 2010-2013 Reformulated 50 49 49 49 48 49 2010-2013 Blended with Ethanol 50 49 49 49 48 49 2010-2013 Other

89

Fuel.vp  

Gasoline and Diesel Fuel Update (EIA)

0: Residual Fuel Oil Price and Expenditure Estimates, 2012 State Prices Expenditures Commercial Industrial Transportation Electric Power Total Commercial Industrial Transportation...

90

ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining Processes  

Energy.gov (U.S. Department of Energy (DOE))

This energy bandwidth analysis provides a realistic estimate of the energy that may be saved in petroleum refining processes by quantifying measures of energy consumption.

91

ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Refining Processes Prepared by Energetics Incorporated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Industrial Technologies Program...

92

Refiner Wholesale Price ...........................  

Gasoline and Diesel Fuel Update (EIA)

Prices (cents per gallon) Prices (cents per gallon) Refiner Wholesale Price ........................... 297 299 302 275 289 290 288 262 275 289 280 257 293 282 276 Gasoline Regular Grade Retail Prices Including Taxes PADD 1 .................................................... 363 366 364 355 361 350 355 331 341 355 347 327 362 349 343 PADD 2 .................................................... 355 366 369 340 350 368 352 318 334 355 346 318 357 347 338 PADD 3 .................................................... 346 353 345 326 339 336 337 307 323 341 329 305 343 330 325 PADD 4 .................................................... 322 374 358 348 323 361 362 326 322 351 348 322 351 344 337 PADD 5 .................................................... 390 413 390 384 382 390 385 355 362 384 379 356 394 378 371 U.S. Average ........................................

93

LCA of a spent lube oil Re-refining process  

Science Journals Connector (OSTI)

Although re-refining of spent lubricating oils (used oils) has been practiced with varying technical and commercial success for over the past 50 years, a sustainable processing technology has yet to become widely accepted. Poor on-stream efficiency, inconsistent product quality, and careless management of feedstock contaminants and byproducts have often resulted in widespread environmental problems and poor economics. Environmentally-conscious design of processes and products is increasingly viewed as an integral strategy in the sustainable development of new refining and chemical processes. Life cycle assessment is becoming the preferred methodology for comparing the environmental impacts of competing processes. A life cycle analyses of a promising new re-refining technology, the HyLubeTM process, has been undertaken to quantify the intrinsic benefits of HyLube re-refining over the current practice of recovering used oils for fuel value

Tom N. Kalnes; David R. Shonnard; Andreas Schuppel

2006-01-01T23:59:59.000Z

94

Re-refining in India  

SciTech Connect

The Indian Institute of Petroleum, Dehra Dun made available its know-how for re-refining used engine oil to about 30 entrepreneurs. Out of these only a handful are utilizing their process. However, there are about 30 members in Petroleum Re-Refiners Association of India. After the certification scheme, as announced by the Ministry of Petroleum, is completed, a true picture would emerge as to the actual number of re-refiners engaged in the proper re-refining of used engine oil. The total consumption of lubricants in India is 500,000 tons of which about 5 percent maximum comes to the recognized re-refining industry and the balance is either burnt or discarded. The Government of India has been encouraging in particular the Government undertakings to set up their own captive units for re-refining but these have not been so successful and the output of captive units is used for topping up purpose. With the establishment of a re-refined engine oil specification and registration of the re-refiners it is hoped that the Government will take a more positive step in encouraging the re-refining industry.

Bhargava, M.K.

1980-11-01T23:59:59.000Z

95

Integration Strategy of Gasification Technology:? A Gateway to Future Refining  

Science Journals Connector (OSTI)

The historical evidence of the operation of a coal gasification plant goes as far back in time as 1878.1 The United State's first power plant based on coal gasification technology was installed in 1980.2 The concept of gasification has begun to attract much attention from the refining industry because of stringent environmental regulations on transportation fuel, slashing demands for fuel oils, and uncertainty in the availability of good crude oils. ... Therefore, it is a challenging task for refining industries to economically integrate gasification technology, and this is the major theme of the paper. ... Gasification is superior to many of the available power production and waste disposal technologies by addressing various issues together regarding environmental emissions, maintaining quality of refining products, and waste management. ...

Jhuma Sadhukhan; X. X. Zhu

2002-02-09T23:59:59.000Z

96

Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford and P. Westerhoff  

E-Print Network (OSTI)

Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford to global warming. Biofuel from phototrophic microbes like algae and bacteria provides a viable substitute improves biofuel sustainability by refining phosphorus recycling. Biomass Production Residual Biomass

Hall, Sharon J.

97

TOPICAL PAPER Potential Synergies and Challenges in Refining Cellulosic Biomass  

E-Print Network (OSTI)

TOPICAL PAPER Potential Synergies and Challenges in Refining Cellulosic Biomass to Fuels, Chemicals that can reduce greenhouse gas emissions, enhance energy security, improve the economy, dispose of such products, and sugar costs are predicted to drop with plant size as a result of economies of scale

California at Riverside, University of

98

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology For Gasoline and Diesel Fuel Pump Components Methodology For Gasoline and Diesel Fuel Pump Components The components for the gasoline and diesel fuel pumps are calculated in the following manner in cents per gallon and then converted into a percentage: Crude Oil - the monthly average of the composite refiner acquisition cost, which is the average price of crude oil purchased by refiners. Refining Costs & Profits - the difference between the monthly average of the spot price of gasoline or diesel fuel (used as a proxy for the value of gasoline or diesel fuel as it exits the refinery) and the average price of crude oil purchased by refiners (the crude oil component). Distribution & Marketing Costs & Profits - the difference between the average retail price of gasoline or diesel fuel as computed from EIA's

99

residual magnetism  

Science Journals Connector (OSTI)

The magnetization, i.e., the magnetic polarization, that remains in a magnetized material after all attempts to remove the magnetization have been made. Note: An example of residual magnetization is the magnetiza...

2001-01-01T23:59:59.000Z

100

Refinement in Object-Z and CSP  

Science Journals Connector (OSTI)

In this paper we explore the relationship between refinement in Object-Z and refinement in CSP. We prove with a simple counter-example ... , does not imply failures-divergences refinement in CSP. This contradicts...

Christie Bolton; Jim Davies

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Anomalies in the refinement of isoleucine  

Science Journals Connector (OSTI)

The side-chain torsion angles of isoleucines in X-ray protein structures are a function of resolution, secondary structure and refinement software. Detailing the standard torsion angles used in refinement software can improve protein structure refinement.

Berntsen, K.R.M.

2014-03-19T23:59:59.000Z

102

"Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

7.4;" " Unit: Percents." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"...

103

Nucleic Acid Standards - Refinement Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Refinement Parameters Refinement Parameters The DNA/RNA topology and parameter files for X-PLOR are shown below. These were tested with DNA structures and with protein-DNA complexes. X-PLOR topology file X-PLOR parameter files: X-PLOR parameter file For the refinement of high resolution structures (< 1.7 Angstroms) the parameter file with distinct bond distances and bond angles for both C2'-endo and C3'-endo conformations should be considered: X-PLOR parameter file for high resolution structures "New Parameters for the Refinement of Nucleic Acid Containing Structures." Gary Parkinson, Jaroslav Vojtechovsky, Lester Clowney, Axel Brunger*, and Helen M. Berman. (1996) Acta Cryst. D 52, 57-64 Rutgers University, Department of Chemistry, Piscataway, NJ 08855-0939; *The Howard Hughes Medical Institute and Departments of Molecular and

104

NORTHEAST REGIONAL REFINED PETROLEUM PRODUCT RESERVE | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NORTHEAST REGIONAL REFINED PETROLEUM PRODUCT RESERVE NORTHEAST REGIONAL REFINED PETROLEUM PRODUCT RESERVE The Northeast region of the U.S. is particularly vulnerable to gasoline...

105

Improving the accuracy of macromolecular structure refinement  

NLE Websites -- All DOE Office Websites (Extended Search)

and subsequent refinement is challenging at low resolution. We compared refinement methods using synchrotron diffraction data of photosystem I at 7.4 resolution, starting...

106

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA) Indexed Site

End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2 Distillate Industrial - No. 2 Fuel Oil Industrial - Low Sulfur Diesel Industrial - High Sulfur Diesel Industrial - No. 4 Fuel Oil Industrial - Residual Fuel Oil Industrial - Kerosene Farm - Distillate Fuel Oil Farm - Diesel Farm - Other Distillate Farm - Kerosene Electric Power - Distillate Fuel Oil Electric Power - Residual Fuel Oil Oil Company Use - Distillate Fuel Oil Oil Company Use - Residual Fuel Oil Total Transportation - Distillate Fuel Oil Total Transportation - Residual Fuel Oil Railroad Use - Distillate Fuel Oil Vessel Bunkering - Distillate Fuel Oil Vessel Bunkering - Residual Fuel Oil On-Highway - No. 2 Diesel Military - Distillate Fuel Oil Military - Diesel Military - Other Distillate Military - Residual Fuel Oil Off-Highway - Distillate Fuel Oil Off-Highway - Distillate F.O., Construction Off-Highway - Distillate F.O., Non-Construction All Other - Distillate Fuel Oil All Other - Residual Fuel Oil All Other - Kerosene Period:

107

Power Gas and Combined Cycles: Clean Power from Fossil Fuels  

Science Journals Connector (OSTI)

...gas has such a low heating value that it cannot...from residual fuel oil (the relatively...Oil Residual fuel oil with a low sulfur...stations in Maryland, Connecticut, and New York-has...low-sulfur residual fuel oil is growing and its price is rising. Residual...

William D. Metz

1973-01-05T23:59:59.000Z

108

Application of High-Temperature Simulated Distillation to the Residuum Oil Supercritical Extraction Process in Petroleum Refining  

Science Journals Connector (OSTI)

......fractions from the residual oil supercritical...JOURNAL ARTICLE The gas chromatographic method...presented for refinery residual feed, deasphalted...fractions from the residual oil supercritical...fuels, gasoline, turbine (jet) fuels, diesel...high-value deasphalted gas oil (DAO) from......

Joe C. Raia; Dan C. Villalanti; Murugesan Subramanian; Bruce Williams

2000-01-01T23:59:59.000Z

109

DSm Vector Spaces of Refined Labels  

E-Print Network (OSTI)

In this book the authors introduce the notion of DSm vector spaces of refined labels. They also realize the refined labels as a plane and a n-dimensional space. Further, using these refined labels, several algebraic structures are defined. Finally DSm semivector space or refined labels is described. Authors also propose some research problems.

Kandasamy, W B Vasantha

2011-01-01T23:59:59.000Z

110

DSm Vector Spaces of Refined Labels  

E-Print Network (OSTI)

In this book the authors introduce the notion of DSm vector spaces of refined labels. They also realize the refined labels as a plane and a n-dimensional space. Further, using these refined labels, several algebraic structures are defined. Finally DSm semivector space or refined labels is described. Authors also propose some research problems.

W. B. Vasantha Kandasamy; Florentin Smarandache

2011-12-02T23:59:59.000Z

111

Conformal refinement of unstructured quadrilateral meshes  

SciTech Connect

We present a multilevel adaptive refinement technique for unstructured quadrilateral meshes in which the mesh is kept conformal at all times. This means that the refined mesh, like the original, is formed of only quadrilateral elements that intersect strictly along edges or at vertices, i.e., vertices of one quadrilateral element do not lie in an edge of another quadrilateral. Elements are refined using templates based on 1:3 refinement of edges. We demonstrate that by careful design of the refinement and coarsening strategy, we can maintain high quality elements in the refined mesh. We demonstrate the method on a number of examples with dynamically changing refinement regions.

Garmella, Rao [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

112

Electronic structure of superconductivity refined  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic structure of superconductivity refined Electronic structure of superconductivity refined Electronic structure of superconductivity refined A team of physicists propose a new model that expands on a little understood aspect of the electronic structure in high-temperature superconductors. July 10, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

113

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Refining Industry Petroleum Refining Industry Carbon Emissions in the Petroleum Refining Industry The Industry at a Glance, 1994 (SIC Code: 2911) Total Energy-Related Emissions: 79.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.5% -- Nonfuel Emissions: 16.5 MMTC Total First Use of Energy: 6,263 trillion Btu -- Pct. of All Manufacturers: 28.9% Nonfuel Use of Energy Sources: 3,110 trillion Btu (49.7%) -- Naphthas and Other Oils: 1,328 trillion Btu -- Asphalt and Road Oil: 1,224 trillion Btu -- Lubricants: 416 trillion Btu Carbon Intensity: 12.75 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey", "Monthly Refinery Report" for 1994, and Emissions of Greenhouse Gases in the United States 1998.

114

Vacuum State/Refiner/Location  

U.S. Energy Information Administration (EIA) Indexed Site

Vacuum Vacuum State/Refiner/Location Barrels per Atmospheric Crude Oil Distillation Capacity Barrels per Operating Idle Operating Idle Downstream Charge Capacity Thermal Cracking Delayed Fluid Coking Visbreaking Other/Gas Calendar Day Stream Day Distillation Coking Oil Table 3. Capacity of Operable Petroleum Refineries by State as of January 1, 2013 (Barrels per Stream Day, Except Where Noted) ......................................................... Alabama 120,100 0 130,000 0 48,000 32,000 0 0 0 Goodway Refining LLC 4,100 0 5,000 0 0 0 0 0 0 ....................................................................................................................................................................................................

115

Characterization of Gaseous- and Particle-Phase Emissions from the Combustion of Biomass-Residue-Derived Fuels in a Small Residential Boiler  

Science Journals Connector (OSTI)

The aim of this study was to fill the gap in the data of emissions from the combustion of agricultural biomass fuels. ... Before starting each experiment, the heat transfer medium (water) was preheated to 70 °C by an additional natural gas boiler, with the objective to reach optimal combustion conditions quicker and avoid condensation on the surfaces of the boiler during the startup phase. ... hydrocarbons (PAHs) in residential areas, particularly in the winter season, is the burning process when wood is used for domestic heating. ...

Edvinas Krugly; Dainius Martuzevicius; Egidijus Puida; Kestutis Buinevicius; Inga Stasiulaitiene; Inga Radziuniene; Algirdas Minikauskas; Linas Kliucininkas

2014-07-15T23:59:59.000Z

116

"Table A2. Total Consumption of LPG, Distillate Fuel Oil,...  

U.S. Energy Information Administration (EIA) Indexed Site

. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in...

117

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

118

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

119

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

120

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Green Petroleum Refining - Mathematical Models for Optimizing Petroleum Refining Under Emission Constraints.  

E-Print Network (OSTI)

??Petroleum refining processes provide the daily requirements of energy for the global market. Each refining process produces wastes that have the capacity to harm the… (more)

Ali Yusuf, Yusuf

2013-01-01T23:59:59.000Z

122

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

of residual fuel oil are identical in the inventory and inCARB SEDS inventory fuel use Residual fuel oil Distillatein their oil and gas extraction processes. In its inventory,

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

123

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimize the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimize gaseous emissions, such as NOx. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R.

1998-07-01T23:59:59.000Z

124

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimise the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimise gaseous emissions, such as NO{sub x}. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The next sections of the paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R. [ABB Combustion Services Limited, Derby (United Kingdom)

1998-04-01T23:59:59.000Z

125

A design flow based on modular refinement  

E-Print Network (OSTI)

We propose a practical methodology based on modular refinement to design complex systems. The methodology relies on modules with latency-insensitive interfaces so that the refinements can change the timing contract of a ...

Dave, Nirav H.

126

Sharp Retrenchment, Modulated Refinement and Simulation  

E-Print Network (OSTI)

retrenchment is introduced and briefly justified informally, as a liberalisation of refinement. In sharp as a liberalisation of the notion of refinement, whose purpose was to enable more of the informal aspects of de

Banach, Richard

127

Entitlements exemptions for new refiners  

SciTech Connect

The practice of exempting start-up inventories from entitlement requirements for new refiners has been called into question by the Office of Hearings and Appeals and other responsible Departmental officials. ERA with the assistance of the Office of General Counsel considering resolving the matter through rulemaking; however, by October 26, 1979 no rulemaking had been published. Because of the absence of published standards for use in granting these entitlements to new refineries, undue reliance was placed on individual judgements that could result in inequities to applicants and increase the potential for fraud and abuse. Recommendations are given as follows: (1) if the program for granting entitlements exemptions to new refiners is continued, the Administrator, ERA should promptly take action to adopt an appropriate regulation to formalize the program by establishing standards and controls that will assure consistent and equitable application; in addition, files containing adjustments given to new refiners should be made complete to support benefits already allowed; and (2) whether the program is continued or discontinued, the General Counsel and the Administrator, ERA, should coordiate on how to evaluate the propriety of inventory adjustments previously granted to new refineries.

Not Available

1980-02-29T23:59:59.000Z

128

Reaping Energy Savings from Petroleum Refining  

E-Print Network (OSTI)

REAPING ENERGY SAVINGS FROM PETROLEUM REFINING Alan Deng, Project Manager, San Francisco, CA, Ron Cascone, Project Manager, White Plains, NY, Nexant, Inc. ABSTRACT The refining industry is one of the largest energy users in Pacific Gas.... Market barriers include lack of standards and perceptions of unproven reliability for new technologies in petroleum refining, lack of understanding of the refining process by energy efficiency professionals, lack of capital investment, high up...

Deng, A.; Cascone, R.

2006-01-01T23:59:59.000Z

129

DIESEL FUEL LUBRICATION  

SciTech Connect

The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

Qu, Jun [ORNL

2012-01-01T23:59:59.000Z

130

Firing of pulverized solvent refined coal  

DOE Patents (OSTI)

An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

Derbidge, T. Craig (Sunnyvale, CA); Mulholland, James A. (Chapel Hill, NC); Foster, Edward P. (Macungie, PA)

1986-01-01T23:59:59.000Z

131

ITP Petroleum Refining: Impacts of Condition Assessment on Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ITP Petroleum Refining: Impacts of Condition Assessment on Energy Use: Selected Applications in Chemicals Processing and Petroleum Refining ITP Petroleum Refining: Impacts of...

132

ITP Petroleum Refining: Energy and Environmental Profile of the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Environmental Profile of the U.S. Petroleum Refining Industry (November 2007) ITP Petroleum Refining: Energy and Environmental Profile of the U.S. Petroleum Refining Industry...

133

Solvent refined coal (SRC) process  

SciTech Connect

This report summarizes the progress of the Solvent Refined Coal (SRC) project by The Pittsburg and Midway Coal Mining Co. at the SRC Pilot Plant in Fort Lewis, Washington and the Gulf Science and Technology Company Process Development Unit (P-99) in Harmarville, Pennsylvania, for the Department of Energy during the month of October, 1980. The Fort Lewis Pilot Plant was shut down the entire month of October, 1980 for inspection and maintenance. PDU P-99 completed two runs during October investigating potential start-up modes for the Demonstration Plant.

Not Available

1980-12-01T23:59:59.000Z

134

Alternative Fuels Data Center - Fuel Properties Comparison  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Data Center - Fuel Properties Comparison Fuels Data Center - Fuel Properties Comparison www.afdc.energy.gov 1 2/27/2013 Gasoline Diesel (No. 2) Biodiesel Propane (LPG) Compressed Natural Gas (CNG) Liquefied Natural Gas (LNG) Ethanol Methanol Hydrogen Electricity Chemical Structure C 4 to C 12 C 8 to C 25 Methyl esters of C 12 to C 22 fatty acids C 3 H 8 (majority) and C 4 H 10 (minority) CH 4 (83-99%), C 2 H 6 (1-13%) CH 4 CH 3 CH 2 OH CH 3 OH H 2 N/A Fuel Material (feedstocks) Crude Oil Crude Oil Fats and oils from sources such as soy beans, waste cooking oil, animal fats, and rapeseed A by-product of petroleum refining or natural gas processing Underground reserves Underground reserves Corn, grains, or

135

Using a conformation-dependent stereochemical library improves crystallographic refinement of proteins  

SciTech Connect

The major macromolecular crystallographic refinement packages restrain models to ideal geometry targets defined as single values that are independent of molecular conformation. However, ultrahigh-resolution X-ray models of proteins are not consistent with this concept of ideality and have been used to develop a library of ideal main-chain bond lengths and angles that are parameterized by the {phi}/{psi} angle of the residue [Berkholz et al. (2009), Structure, 17, 1316-1325]. Here, it is first shown that the new conformation-dependent library does not suffer from poor agreement with ultrahigh-resolution structures, whereas current libraries have this problem. Using the TNT refinement package, it is then shown that protein structure refinement using this conformation-dependent library results in models that have much better agreement with library values of bond angles with little change in the R values. These tests support the value of revising refinement software to account for this new paradigm.

Tronrud, Dale E.; Berkholz, Donald S.; Karplus, P. Andrew (Oregon State U.)

2010-07-02T23:59:59.000Z

136

Representations of finite groups The Alperin-McKay refinement  

E-Print Network (OSTI)

Representations of finite groups The Alperin-McKay refinement The Isaacs-Navarro refinements The Mc-McKay refinement The Isaacs-Navarro refinements The basics Some history The McKay conjecture (for now) Let G groups The Alperin-McKay refinement The Isaacs-Navarro refinements The basics Some history The Mc

Cossey, James P.

137

--No Title--  

U.S. Energy Information Administration (EIA) Indexed Site

4. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District (Thousand Gallons per Day) | |...

138

Optimal Fueling Strategies for Locomotive Fleets in Railroad Networks  

E-Print Network (OSTI)

Price 3 · Railroad fuel consumption remains steady · Crude oil price sharply increases in recent years · Fuel-related expenditure is one of the biggest cost items in the railroad industry #12;Fuel Price · Fuel (diesel) price influenced by: ­ Crude oil price ­ Refining ­ Distribution and marketing ­ Others 4

Barkan, Christopher P.L.

139

Combustion Emissions from Refining Lower Quality Oil: What Is the Global Warming Potential?  

Science Journals Connector (OSTI)

Refinery crude feed, processing, yield, and fuel data from four regions accounting for 97% of U.S. refining capacity from 1999 to 2008 were compared among regions and years for effects on processing and energy consumption predicted by the processing characteristics of heavier, higher sulfur oils. ... Estimates that construct process-by-process allocations of emissions among these factors have not been verified by observations from operating refineries in part because publicly reported data are limited for refinery-specific crude feeds and unavailable for process-level material and energy inputs and outputs (4-6). ... Rough estimates including the energy, d, and S lost in bitumen upgrading for SCO refined reveal greater effects of total processing for crude feeds refined in Districts 2 and 4 and follow the relationships observed in refining (Figure 2). ...

Greg Karras

2010-11-30T23:59:59.000Z

140

Document: P1332 Category: Physical Sciences, Chemical/Materials License Status: Available for licensing Texas Industry Cluster: Petroleum Refining & Chemical Products  

E-Print Network (OSTI)

Protection Agency states: "Accelerating the development of fuel cells and hydrogen is one of the most. This solution offers not only reduced cost of the fuel cell catalyst but also improved performance. Benefits for licensing Texas Industry Cluster: Petroleum Refining & Chemical Products Lower-cost fuel cells Problem

Lightsey, Glenn

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Refining Bio-Oil alongside Petroleum  

Office of Energy Efficiency and Renewable Energy (EERE)

W.R. Grace and Pacific Northwest National Laboratory are working to establish a bio-oil refining process that users existing petroleum refinery infrastructure.

142

Total Sales of Residual Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 10,706,479 8,341,552 6,908,028 7,233,765 6,358,120 6,022,115 1984-2012 East Coast (PADD 1) 5,527,235 4,043,975 2,972,575 2,994,245 2,397,932 2,019,294 1984-2012 New England (PADD 1A) 614,965 435,262 281,895 218,926 150,462 101,957 1984-2012 Connecticut 88,053 33,494 31,508 41,686 6,534 5,540 1984-2012 Maine 152,082 110,648 129,181 92,567 83,603 49,235 1984-2012 Massachusetts 300,530 230,057 59,627 52,228 34,862 30,474 1984-2012

143

Residual Fuel Oil Sales for Military Use  

Gasoline and Diesel Fuel Update (EIA)

17,719 9,250 14,609 9,851 14,653 10,324 1984-2012 17,719 9,250 14,609 9,851 14,653 10,324 1984-2012 East Coast (PADD 1) 15,618 8,626 14,049 9,344 14,362 9,408 1984-2012 New England (PADD 1A) 1,880 729 767 693 574 174 1984-2012 Connecticut 599 729 767 693 574 174 1984-2012 Maine 0 0 0 0 0 0 1984-2012 Massachusetts 1,280 0 0 0 0 0 1984-2012 New Hampshire 0 0 0 0 0 0 1984-2012 Rhode Island 0 0 0 0 0 0 1984-2012 Vermont 0 0 0 0 0 0 1984-2012 Central Atlantic (PADD 1B) 7,518 7,012 11,744 7,200 12,458 8,922 1984-2012 Delaware 0 0 0 0 0 0 1984-2012 District of Columbia 0 0 0 0 0 0 1984-2012 Maryland 6,638 6,291 6,479 7,200 6,022 5,754 1984-2012 New Jersey 0 0 1,740 0 1,539 585 1984-2012 New York 0 0 3,518 0 4,897 2,583 1984-2012 Pennsylvania

144

California: Agricultural Residues Produce Renewable Fuel  

Office of Energy Efficiency and Renewable Energy (EERE)

Logos Technologies and EERE are partnering with Edeniq of Visalia to build a plant that will produce cellulosic ethanol from switchgrass, wood chips, and corn leaves, stalks, and husks--all plentiful, nonfood feedstock sources in California.

145

Residual Fuel Oil for All Other Uses  

Gasoline and Diesel Fuel Update (EIA)

3,740 6,503 5,860 2,664 1,418 26 1984-2013 East Coast (PADD 1) 153 1,857 5,230 2,151 1,418 0 1984-2013 New England (PADD 1A) 30 385 0 0 0 0 1984-2013 Connecticut 30 7 0 0 0 0...

146

California: Agricultural Residues Produce Renewable Fuel | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

that validated the viability of this technology platform for producing cellulosic ethanol from corn stover at reasonable yields. The California Energy Commission has awarded...

147

Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...  

Annual Energy Outlook 2012 (EIA)

145.8 461.3 48,876.2 13,893.0 268.5 3,966.8 391.5 3,072.0 3,773.6 35,832.0 December ... 138.2 466.6 49,701.7 14,199.8 342.2 4,861.0 599.8 3,200.2...

148

Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...  

Gasoline and Diesel Fuel Update (EIA)

... 64.5 101.3 12,742.5 2,029.5 190.8 2,042.2 12.7 38.0 91.2 4,874.9 December ... 57.1 89.7 13,275.8 2,017.6 210.4 2,595.6 26.2 58.1 112.5...

149

Hydrogen milestone could help lower fossil fuel refining costs  

ScienceCinema (OSTI)

Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, lab

Stephen Herring

2010-01-08T23:59:59.000Z

150

Multisolvent successive extractive refining of coal  

SciTech Connect

A selected group of commercial solvents, namely, anthracene oil (AO), ethylenediamine (EDA), and liquid paraffin (LP), were used for successive extraction of Assam coal. Hot AO provided a wide range of mixed solvents that dissociate chemically and interact favorably with dissociated and undissociated coal macromolecules (like dissolves like). This resulted in the enhancement of the EDA extractability of the AO-pretreated residual coal. EDA is a good swelling solvent and results in physical dissociation of coal molecules. The residual coal obtained after EDA extraction was subjected to extraction with LP, an H-donor, high-boiling (330--360 C) solvent. LP thermally dissociates coal macromolecules and interacts with the coal at its plastic stage at the free radical pockets. The mechanism and molecular dynamics of the multisolvent successive extraction of Assam coal using AO-EDA-LP solvents are discussed. In early attempts, successive extractions did not modify the extraction yield in the single solvent showing the maximum extraction. However, the AO-EDA-LP extraction resulted in the extraction of 70% coal, more than for any of the individual solvents used. Therefore, AO-EDA-LP extraction of coal affords a process yielding a superclean, high-heating value fuel from coal under milder conditions. Several uses of superclean coal have been recommended. Present studies have revealed a new concept concerning the structure of coal having 30% polyaromatic condensed entangled rings and 70% triaromatic-heterocyclic-naphthenic-aliphatic structure. The insolubility of coal is due to the polyfunctional-heterocyclic-condensed structure having a polyaromatic core with intermacromolecular entanglements.

Sharma, D.K.; Singh, S.K. [Indian Inst. of Tech., New Delhi (India)

1996-01-01T23:59:59.000Z

151

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

152

Liquid Fuels Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Liquid Fuels Market Module Liquid Fuels Market Module This page inTenTionally lefT blank 145 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Liquid Fuels Market Module The NEMS Liquid Fuels Market Module (LFMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the LFMM projects capacity expansion and fuel consumption at domestic refineries. The LFMM contains a linear programming (LP) representation of U.S. petroleum refining

153

Making premium diesel fuel  

SciTech Connect

For refiners, extra processing and blending is a practical, though not always easy, option for improving diesel fuel properties; however, it entails compromises. For example, ignition quality can be improved by including more paraffins, but this negatively impacts the required low-temperature operability properties. Another example is adding aromatics to increase the diesel`s Btu value, but aromatics burn poorly and tend to cause smoking. Due to these and other types of diametrical trade-offs, the scope of distillate processing and fuels blending at the refinery is often very limited. Therefore, fuel additives are rapidly becoming the only alternative for obtaining the superior quality necessary in a premium diesel fuel. If stabilizers, dispersants and other fuel additive components are used in the additive package, the product can be marketed as a premium diesel fuel additive. Engines using this additive-treated fuel will consistently have less emissions, produce optimum power from the fuel energy conversion process and perform to design specifications. And the user will truly have a premium diesel fuel. The paper discusses detergent additives, cetane or ignition improvers, fuel stabilizers, cold weather additives, and lubricity additives.

Pipenger, G. [Amalgamated Inc., Fort Wayne, IN (United States)

1997-02-01T23:59:59.000Z

154

Heavy oils (natural and refined)  

SciTech Connect

This section of the Petroleum and Coal review again contains discussions on the analysis of asphalts, bitumens, tars, and pitches as well as heavy natural and refined oils. The characterization of these heavy (high-boiling) materials impacts the way they are produced, their effect on the processing environment, and their suitability for various end products. The analysis of these heavy materials is becoming increasingly important as crude oil stocks get heavier and larger quantities of high-boiling materials are processed to derive clean lower boiling products. This review covers articles found in the literature in the last two years. This review will cover new or improved analytical procedures and applications to new sources of heavy oils. This review will be subdivided into individual separation or analytical techniques. Combined analytical techniques (e.g., GC-FT-IR) will be included under the technique most emphasized in the article. The review is categorized further by chromatographic techniques, spectroscopic techniques, thermal techniques, and miscellaneous. 71 refs.

Lintelmann, K.A. [Marathon Oil Co., Littleton, CO (United States)

1995-06-15T23:59:59.000Z

155

"Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 7.5;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel...

156

"Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal"...

157

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

residual fuel oil, petroleum coke, and waste and other oil)residual fuel oil, petroleum coke, and waste and other oil22 CHP plants. For petroleum coke, CALEB only reports final

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

158

MECS Fuel Oil Tables  

U.S. Energy Information Administration (EIA) Indexed Site

: Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas : Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas Year Distillate Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 185 148 1224 3.4% 1994 152 125 1020 3.1% Residual Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 505 290 1577 16.7% 1994 441 241 1249 19.8% Natural Gas (TBtu) Actual Minimum Maximum Discretionary Rate 1985 4656 2702 5233 77.2% 1994 6141 4435 6758 73.4% Source: Energy Information Administration, Office of Energy Markets and End Use, 1985 and 1994 Manufacturing Energy Consumption Surveys. Table 2: Establishments That Actually Switched Between Natural Gas and Residual Fuel Oil Type of Switch Number of Establishments in Population Number That Use Original Fuel Percentage That Use Original Fuel Number That Can Switch to Another Fuel Percentage That Can Switch to Another Fuel Number That Actually Made a Switch Percentage That Actually Made a Switch

159

Re-refining enters a new era  

SciTech Connect

The author describes the current state of affairs in the re-refining industry. Re-refiners are companies that recycle used lubricating oil into high quality base oils and other petroleum products. The re-refining industry has experienced it's own unique problems, as well as some of those occurring in the rest of the petroleum industry. For these reasons, other solutions are forthcoming, resulting in a new era. The future will see existing plants retrofitted, shut down plants being reopened, expanded and modernized and in the long term, new grass roots ''mega'' plants will be constructed in strategic marketing territories.

Booth, G.T. III

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Valero Refining Company - NJ | Open Energy Information  

Open Energy Info (EERE)

Valero Refining Company - NJ Valero Refining Company - NJ Jump to: navigation, search Name Valero Refining Company - NJ Place New Jersey Utility Id 56325 Utility Location Yes Ownership R Operates Generating Plant Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0652/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Valero_Refining_Company_-_NJ&oldid=411921" Categories: EIA Utility Companies and Aliases

162

Introducing Reference Semantics via Refinement Graeme Smith  

E-Print Network (OSTI)

Introducing Reference Semantics via Refinement Graeme Smith Software Verification Research Centre, University of Queensland, Australia smith@svrc.uq.edu.au Abstract. Two types of semantics have been given

Smith, Graeme

163

Diameter-Refined Metallic Carbon Nanotubes as Optically Tunable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Diameter-Refined Metallic Carbon Nanotubes as Optically Tunable Transparent Conductors Home > Research > ANSER Research Highlights > Diameter-Refined Metallic Carbon Nanotubes as...

164

Genealogy of major U.S. refiners  

U.S. Energy Information Administration (EIA) Indexed Site

of major U.S. refiners of major U.S. refiners 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Amoco SOHIO BP ARCO Mapco Williams Clark Refining 1/89 12/98 4/00 3/98 Orion Diamond Shamrock Ultramar k 12/96 7/03 Ultramar Diamond Shamrock (UDS) Total North America UDS 9/97 Valero Salomon (Basis) Valero Williams BP BP b BP-Husky Refining LLC (jv) Husky Huntway 5/97 6/01 9/05 Valero Premcor g Valero Valero Valero 12/01 7/94 e 12/98 f Carlyle Group y Coastal 3/03 d 12/88 a 6/01 o Sun Company Sunoco v 7/07 i 4/08 c 5/04 h Pacific Refining (jv) 12/88 r El Paso 1/04 w 10/98 m 6/00 n 9/89 t 8/94 u See notes, footnotes, and source notes below. PBF Energy 6/10 p 12/10 q 3/11 x 10/11 j 9/00 l 1/01 s Genealogy of major U.S. refiners (continued) 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

165

Hydrogen Storage and Supply for Vehicular Fuel Systems  

Various alternative-fuel systems have been proposed for passenger vehicles and light-duty trucks to reduce the worldwide reliance on fossils fuels and thus mitigate their polluting effects.  Replacing gasoline and other refined hydrocarbon fuels continues to present research and implementation challenges for the automotive industry. During the last decade, hydrogen fuel technology has emerged as the prime alternative that will finally drive automotive fuel systems into the new millennium....

2012-05-11T23:59:59.000Z

166

Refining intensity, energy consumption, and pulp quality in two-stage chip refining  

SciTech Connect

This paper reports on thermomechanical pulps produced in two pilot plant installations. Both installations were conventional two-stage systems in which the first stage was pressurized and the second was atmospheric. At a given specific energy, pulp quality was improved. Alternatively, for a given pulp quality, the energy consumption was reduced when refining in the first stage was carried out at a high refining intensity. High refining intensity was reached by operating the first stage either at a high rotational speed or low consistency. There were indications that these benefits could be enhanced if the second stage were operated at a low refining intensity.

Miles, K.B.; May, W.D.; Karnis, A. (Pulp and Paper Research Inst. of Canada, 570 St. John's Boulevard, Pointe Claire, Quebec H9R 3J9 (CA))

1991-03-01T23:59:59.000Z

167

Reformulated diesel fuel and method  

DOE Patents (OSTI)

A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

2006-08-22T23:59:59.000Z

168

Equipment specifications for an electrochemical fuel reprocessing plant  

SciTech Connect

Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

Hemphill, Kevin P [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

169

Experimental and theoretical study on the characteristics of vacuum residue gasification in an entrained-flow gasifier  

Science Journals Connector (OSTI)

About 200,000 bpd (barrel/day) vacuum residue oil is produced from oil refineries in Korea. These are supplied to use asphalt, high sulfur fuel oil, and upgrading residue hydro-desulfurization units. High sulfur ...

Young-Chan Choi; Jae-Goo Lee; Sang-Jun Yoon…

2007-01-01T23:59:59.000Z

170

Green Petroleum Refining -Mathematical Models for Optimizing Petroleum Refining Under Emission Constraints  

E-Print Network (OSTI)

Green Petroleum Refining - Mathematical Models for Optimizing Petroleum Refining Under Emission understand that my thesis may be made electronically available to the public. #12;iii Abstract Petroleum and treating options for petroleum refinery waste streams. The performance of the developed model

Anderson, Charles H.

171

Residuals, Sludge, and Composting (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residuals, Sludge, and Composting (Maine) Residuals, Sludge, and Composting (Maine) Residuals, Sludge, and Composting (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The Maine Department of Environmental Protection's Residuals, Sludge, and Composting program regulates the land application and post-processing of organic wastes, including sewage sludge, septage, food waste, and wood

172

Emergency fuels utilization guidebook. Alternative Fuels Utilization Program  

SciTech Connect

The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

Not Available

1980-08-01T23:59:59.000Z

173

Hydrogen Piping Experience in Chevron Refining  

NLE Websites -- All DOE Office Websites (Extended Search)

Piping Piping Experience in Chevron Refining Ned Niccolls Materials Engineer Chevron Energy Technology Company Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Outline 2 Overall perspectives from long term use of hydrogen piping in refining. Piping specifications and practices. The (few) problem areas. Related industry work: American Petroleum Institute corrosion and materials work on high temperature hydrogen attack. Overall Perspectives 3 Few problems with hydrogen piping operating at ambient to at least 800F and pressures up to at least 3000psia as long as we stay within well- defined limits H2S contamination presents many more problems, beyond the scope of this talk We will note a couple of specific vulnerabilities Refining tracks materials performance in

174

Hydrotreating operations discussed at refining meeting  

SciTech Connect

At the most recent National Petroleum Refiners Association question and answer session on refining and petrochemical technology, refiners and a panel of experts exchanged experiences on hydrotreater operations. Topics addressed included reactor pressurization, scale basket removal, and the use of antifoulants in effluent exchangers. This article presents comments from the panelists on the following questions. (1) What is the industry practice used to speed up the pressurization of 2.25 Cr/1 Mo reactors during start-up? Is there any relationship between reactor skin temperature and pressure used? (2) Has anyone removed scale baskets from a hydrotreating reactor and compared operations before and after? If so, were there any noticeable differences? Why? (3) What is the industry experience with the use of antifoulants for hydrocracking or hydrotreating reactor effluent exchangers?

NONE

1995-06-12T23:59:59.000Z

175

Norwegian Silicon Refining AS | Open Energy Information  

Open Energy Info (EERE)

Refining AS Refining AS Jump to: navigation, search Name Norwegian Silicon Refining AS Place Oslo, Norway Zip 214 Product Oslo-based company with an upgraded metallurgical silicon (UMG) production process called the Stubergh method. Coordinates 59.91228°, 10.74998° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.91228,"lon":10.74998,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

1995 Reformulated Gasoline Market Affected Refiners Differently  

Gasoline and Diesel Fuel Update (EIA)

5 Reformulated Gasoline Market Affected 5 Reformulated Gasoline Market Affected Refiners Differently by John Zyren, Charles Dale and Charles Riner Introduction The United States has completed its first summer driving season using reformulated gasoline (RFG). Motorists noticed price increases at the retail level, resulting from the increased cost to produce and deliver the product, as well as from the tight sup- ply/demand balance during the summer. This arti- cle focuses on the costs of producing RFG as experienced by different types of refiners and on how these refiners fared this past summer, given the prices for RFG at the refinery gate. RFG Regulatory Requirements The use of RFG is a result of the Clean Air Act Amendments of 1990 (CAAA). The CAAA cover a wide range of programs aimed at improving air qual-

177

Alternative Fuels Used in Transportation: Science Projects in...  

Energy Savers (EERE)

with a hydroxyl radical (OH). Methanol can be produced from natural gas, coal, residual oil, or biomass. Although vehicles can operate on pure methanol fuel (M100), methanol...

178

Changing structure of the world refining industry: implications for the United States and other major consuming regions  

SciTech Connect

There are five chapters in this publication. Chapter I on refining industry in transition covers refining history highlights, and OPEC's downstream operations. Chapter II on demand for oil and oil products discusses supply and demand for OPEC oil, demand for oil products, historical growth trends, future growth trends and the case of East Asia - emergence of a fuel oil glut. Chapter III on the US and other traditional refining centers begins with an introduction on the structure of refining and continues on to cover the refining industry in OECD countries, USA, Western Europe, Japan, Singapore and Caribbean and closes with some conclusions. Chapter IV is on refining expansions in OPEC and the third World Nations. The following are covered: (1) nations of the Gulf (Saudi Arabia, Kuwait, Iran, Iraq, Bahrain, Qatar, Oman, United Arab Emirates); (2) OPEC members beyond the Gulf (Indonesia, Africa, Libya, Algeria, Nigeria and Gabon, South America, Venezuela); (3) other major exporters (China, Egypt, Malaysia, Mexico); (4) non-OPEC developing countries - trends in the refining sector. The chapter ends with a short summary on capacity prospects and comparative economics. The final chapter has conclusions and recommendations on: price interactions between crude and products; product exports - impact on OPEC's internal; prices and market influence; importers and exporters - decisions; and course of action of the United States. 18 figures, 40 tables.

Not Available

1985-02-01T23:59:59.000Z

179

Resource characterization and residuals remediation, Task 1.0: Air quality assessment and control, Task 2.0: Advanced power systems, Task 3.0: Advanced fuel forms and coproducts, Task 4.0  

SciTech Connect

This report addresses three subtasks related to the Resource Characterization and Residuals Remediation program: (1) sulfur forms in coal and their thermal transformations, (2) data resource evaluation and integration using GIS (Geographic Information Systems), and (3) supplementary research related to the Rocky Mountain 1 (RM1) UCG (Underground Coal Gasification) test program.

Hawthorne, S.B.; Timpe, R.C.; Hartman, J.H. [and others

1994-02-01T23:59:59.000Z

180

Evaluation of the residual gas tolerance of homogeneous combustion processes with high exhaust-gas recirculation rates  

Science Journals Connector (OSTI)

The development of concepts with low emissions and fuel consumption for gasoline engines requires an early knowledge of the combustion process’ residual gas tolerance. At the Institute...

Dipl.-Ing. Dr. techn. Thomas Lauer…

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Refinement of the crystal structure of hydroboracite  

Science Journals Connector (OSTI)

...1978) ABSTRACT The crystal structure of caysichite was determined and refined to R=0.06, using 959 independentreflec-iions; the space group is CcmZy with a 13,27(L), b 13.91(1),c 9.73G)4,. The crystal chemical formula is Ye(CagREJ...

C. Sabelli; A. Stoppioni

182

Transforming and Refining Abstract Constraint Specifications  

E-Print Network (OSTI)

Transforming and Refining Abstract Constraint Specifications Alan M. Frisch1 , Brahim Hnich2 , Ian choose model transformations to reduce greatly the amount of effort that is required to solve a problem by systematic search. It is a consid- erable challenge to automate such transformations. A problem may be viewed

Walsh, Toby

183

Fuel oil and kerosene sales 1997  

SciTech Connect

The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

NONE

1998-08-01T23:59:59.000Z

184

Using supercritical fluids to refine hydrocarbons  

DOE Patents (OSTI)

This is a method to reactively refine hydrocarbons, such as heavy oils with API gravities of less than 20.degree. and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure using a selected fluid at supercritical conditions. The reaction portion of the method delivers lighter weight, more volatile hydrocarbons to an attached contacting device that operates in mixed subcritical or supercritical modes. This separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques. This method produces valuable products with fewer processing steps, lower costs, increased worker safety due to less processing and handling, allow greater opportunity for new oil field development and subsequent positive economic impact, reduce related carbon dioxide, and wastes typical with conventional refineries.

Yarbro, Stephen Lee

2014-11-25T23:59:59.000Z

185

Improve corrosion control in refining processes  

SciTech Connect

New guidelines show how to control corrosion and environmental cracking of process equipment when processing feedstocks containing sulfur and/or naphthenic acids. To be cost competitive refiners must be able to process crudes of opportunity. These feedstocks when processed under high temperatures and pressures and alkaline conditions can cause brittle cracks and blisters in susceptible steel-fabricated equipment. Even with advances in steel metallurgy, wet H{sub 2}S cracking continues to be a problem. New research data shows that process conditions such as temperature, pH and flowrate are key factors in the corrosion process. Before selecting equipment material, operators must understand the corrosion mechanisms present within process conditions. Several case histories investigate the corrosion reactions found when refining naphthenic crudes and operating amine gas-sweetening systems. These examples show how to use process controls, inhibitors and/or metallurgy to control corrosion and environmental cracking, to improve material selection and to extend equipment service life.

Kane, R.D.; Cayard, M.S. [CLI International, Houston, TX (United States)

1995-11-01T23:59:59.000Z

186

Parabolic refined invariants and Macdonald polynomials  

E-Print Network (OSTI)

A string theoretic derivation is given for the conjecture of Hausel, Letellier, and Rodriguez-Villegas on the cohomology of character varieties with marked points. Their formula is identified with a refined BPS expansion in the stable pair theory of a local root stack, generalizing previous work of the first two authors in collaboration with G. Pan. Haiman's geometric construction for Macdonald polynomials is shown to emerge naturally in this context via geometric engineering. In particular this yields a new conjectural relation between Macdonald polynomials and refined local orbifold curve counting invariants. The string theoretic approach also leads to a new spectral cover construction for parabolic Higgs bundles in terms of holomorphic symplectic orbifolds.

Chuang, Wu-yen; Donagi, Ron; Pantev, Tony

2013-01-01T23:59:59.000Z

187

Genealogy of major U.S. refiners - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

See full Genealogy of Major U.S. Refiners Previous Release Genealogy of Major U.S. Refiners Genealogy of Major U.S. Refiners Release date: September 18, 2013 figre 1. World energy consumption, 1990-2040. The structure of the U.S. petroleum refining industry has changed substantially over the past several years. In the diagram the companies shown on the right side are presently active in U.S. refining. The transactions over the past 25 years that created these companies also are shown. The transactions included here may be as little as a single refinery, or as much as all the refining assets of the parties to the transaction. Transactions that include less than all refining assets are indicated by vertical dotted lines while vertical solid lines indicate that all refining assets are included. Additionally,

188

Grain Refinement of Permanent Mold Cast Copper Base Alloys  

SciTech Connect

Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

2005-04-01T23:59:59.000Z

189

Hardware/Software Co-Design via Specification Refinement  

E-Print Network (OSTI)

. The Rosetta refinement capability extends this by allowing a system's functional behavior and its implementation details to be described separately. The Rosetta Refinement Tool combines the functional behavior and the implementation details to form a system...

Peck, Wesley Graham

2011-12-31T23:59:59.000Z

190

5.841 Crystal Structure Refinement, Fall 2006  

E-Print Network (OSTI)

This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and ...

Mueller, Peter

191

5.067 Crystal Structure Refinement, Fall 2007  

E-Print Network (OSTI)

This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and ...

Mueller, Peter

192

Verification of microarchitectural refinements in rule-based systems  

E-Print Network (OSTI)

Microarchitectural refinements are often required to meet performance, area, or timing constraints when designing complex digital systems. While refinements are often straightforward to implement, it is difficult to formally ...

Dave, Nirav H.

193

Table A3. Refiner/Reseller Prices of Distillate and Residual...  

Gasoline and Diesel Fuel Update (EIA)

75.1 71.9 64.4 60.6 W W 43.5 41.6 1998 ... 55.7 55.2 51.2 44.2 W W 32.9 30.5 1999 ... 54.9 54.6 60.8 49.5 W...

194

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

195

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

196

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

U.S. Energy Information Administration (EIA) Indexed Site

14,904.2 64,004.5 7,706.0 13,736.2 22,610.2 77,740.7 3,589.8 33,377.1 26,199.9 111,117.7 December ... 13,026.7 56,295.0 7,550.1 15,171.0 20,576.8 71,466.0...

197

An investigation on recycling the recovered uranium from electro-refining process in a CANDU reactor  

Science Journals Connector (OSTI)

Feasibility studies for recycling the recovered uranium from electro-refining process of pyroprocessing into a Canada Deuterium Uranium (CANDU) reactor have been carried out with a source term analysis code ORIGEN-S, a reactor lattice analysis code WIMS-AECL, and a Monte Carlo analysis code MCNPX. The uranium metal can be recovered in a solid cathode during an electro-refining process and has a form of a dendrite phase with about 99.99% expecting recovery purity. Considering some impurities of transuranic (TRU) elements and fission products in the recovered uranium, sensitivity calculations were also performed for the compositions of impurities. For a typical spent PWR fuel of 3.0 wt.% of uranium enrichment, 30 GWD/tU burnup and 10 years cooling, the recovered uranium exhibited an extended burnup up to 14 GWD/tU. And among the several safety parameters, the void reactivity at the equilibrium state was estimated 15 mk. Additionally, a simple sphere model was constructed to analyze surface dose rates with the Monte Carlo calculations. It was found that the recovered uranium from the spent PWR fuel by electro-refining process has a significant radioactivity depending on the impurities such as fission products.

Chang Je Park; Kweon Ho Kang; Jung Won Lee; Ki Seog Seo

2011-01-01T23:59:59.000Z

198

Relation between fuel properties and chemical composition. II. Chemical characterization of US Navy Shale-II fuels  

SciTech Connect

The Navy has completed two crude production/refining exercises with shale. The first of these was a 10,000 barrel operation (Shale-I). The second, a 73,000 barrel operation (Shale-II), was completed in 1979 at the Toledo refinery of Sohio. This paper describes the chemical characterization of the JP-5 and DFM from the Shale-II project. The information presented in this paper shows that shale oil has an excellent potential as a source for high quality middle distillate fuels. The composition of such fuels may vary widely, however, depending on the overall refining process. Much work is needed to explore other refining options and to examine the effect of refining on finished fuel composition and properties.

Solash, J.; Hazlett, R.N.; Burnett, J.C.; Beal, E.; Hall, J.M.

1980-01-01T23:59:59.000Z

199

Hydrogen at the Fueling Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen) Service Stations 101 Hydrogen) Service Stations 101 Steven M. Schlasner September 22, 2004 2 DISCLAIMER Opinions expressed within are strictly those of the presenter and do not necessarily represent ConocoPhillips Company. 3 Presentation Outline * Introduction to ConocoPhillips * Introduction to Service Stations * Comparison of Conventional with Hydrogen Fueling Stations * Hydrogen Fueling Life Cycle * Practical Design Example * Concluding Observations 4 ConocoPhillips * 7 th on Fortune's list of largest companies (2003 revenues) * 3 rd largest integrated petroleum company in U.S. * 1 st (largest) petroleum refiner in U.S. * 14,000 retail outlets (350 company-owned) in 44 states * Brands: Conoco, Phillips 66, 76 * 32,800 miles pipeline, owned or interest in * 64 terminals: crude, LPG, refined products

200

untitled  

Gasoline and Diesel Fuel Update (EIA)

Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District (Thousand Gallons per Day) Geographic Area Month Residual Fuel Oil No. 4 Fuel a Sulfur Less Than or Equal to 1...

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

European refiners must seek creative processes to justify heavy-ends projects  

SciTech Connect

There are strong reasons for wanting to upgrade the bottom of the crude oil barrel. But European refiners will not find it easy to get approval and funding for major capital investment projects. In most cases, investment justification will have to be creative and may need to rely on factors traditionally considered to be outside the conventional refinery fence. Examples of such creative upgrading schemes are those employed in four gasification projects planned for refineries in Italy. It is clear that the major obstacles to heavy residue processing are not technical, but economic. A review of these obstacles will set the stage for European investment in bottom-of-the-barrel processing.

Hunt, P. [Chem Systems Ltd., London (United Kingdom)

1996-12-09T23:59:59.000Z

202

Chapter 9 - Zinc and Residue Recycling  

Science Journals Connector (OSTI)

Abstract Annual global production of zinc is more than 13 million tons. More than 50% of this amount is used for galvanizing while the rest is mainly split into brass production, zinc-based alloys, semi manufacturers and zinc compounds such as zinc oxide and zinc sulfate. For the zinc and steel industries, recycling of zinc-coated steel provides an important new source of raw material. Historically, the generation of zinc-rich dusts from steel recycling was a source of loss from the life-cycle (landfill); however, technologies today provide incentive for steel recyclers to minimize waste. Thus, the recycling loop is endless—both zinc and steel can be recycled again and again without losing any of their physical or chemical properties. Depending on the composition of the scrap being recycled, it can either be remelted or returned to the refining process. This chapter describes the main processes for zinc recycling from different scraps and residues.

Jürgen Antrekowitsch; Stefan Steinlechner; Alois Unger; Gernot Rösler; Christoph Pichler; Rene Rumpold

2014-01-01T23:59:59.000Z

203

Materials - Recycling - Shredder Residue  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovering Materials from Shredder Residue Recovering Materials from Shredder Residue Obsolete automobiles, home appliances and other metal-containing scrap are shredded for the recovery of metals. More than 50% of the material shredded is automobiles. In the United States, shredders generate about 5 million tons of shredder residue every year. Similar amounts are produced in Europe and in the Pacific Rim. Because recycling shredder waste has not been profitable, most of it ends up in landfills; smaller amounts are incinerated. Argonne researchers have developed and tested a process to recover polymers and metals from shredder residue. A 2-ton/hr pilot plant, consisting of a mechanical separation facility and a six-stage wet density/froth flotation plant, was built at Argonne. In the mechanical part of the plant, the shredder waste was separated into five primary components: a polymer fraction (about 45% by weight), a residual metals concentrate (about 10% by weight), a polyurethane foam portion (about 5% by weight), an organic-rich fraction (about 25% by weight) and a metal oxides fraction (about 15% by weight). The polymer fraction was then separated further in the wet density/froth flotation system to recover individual plastic types or compatible families of polymers.

204

PETROPHYSICS 217June 2011 Assessment of Residual Hydrocarbon Saturation with the Combined  

E-Print Network (OSTI)

, and neutron logs. Initial estimates of residual hydrocarbon saturation and parametric relative permeability refine initial estimates of water saturation, porosity, and permeability until securing a good match and water saturation in capillary equilibrium. Application examples are described for the cases of tight

Torres-Verdín, Carlos

205

Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

206

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative

207

Self-consistent QM/MM methodologies for structural refinement of photosystem II and other macromolecules of biological interest  

SciTech Connect

The combination of quantum mechanics and molecular mechanics (QM/MM) is one of the most promising approaches to study the structure, function, and properties of proteins and nucleic acids. However, there some instances in which the limitations of either the MM (lack of a proper electronic description) or QM (limited to a few number of atoms) methods prevent a proper description of the system. To address this issue, we review here our approach to fine-tune the structure of biological systems using post-QM/MM refinements. These protocols are based on spectroscopy data, and/or partitioning of the system to extend the QM description to a larger region of a protein. We illustrate these methodologies through applications to several biomolecules, which were pre-optimized at the QM/MM level and then further refined using postQM/MM refinement methodologies: mod(QM/MM), which refines the atomic charges of the residues included in the MM region accounting for polarization effects; mod(QM/MM)-opt that partition the MM region in smaller parts and optimizes each part in an iterative. self-consistent way, and the Polarized-Extended X-Ray Absorption Fine Structure (P-EXAFS) fitting procedure, which fine-tune the atomic coordinates to reproduce experimental polarized EXAFS spectra. The first two techniques were applied to the guanine quadruplex. while the P-EXAFS refinement was applied to the oxygen evolving complex of photosystem II.

Batista, Enrique R [Los Alamos National Laboratory; Sproviero, Eduardo M [YALE UNIV; Newcomer, Michael [YALE UNIV; Gascon, Jose A [YALE UNIV; Batista, Victor S [YALE UNIV

2008-01-01T23:59:59.000Z

208

Vehicle Technologies Office Merit Review 2014: Residual Stress of Bimetallic Joints and Characterization  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about residual stress...

209

Fuel pin  

DOE Patents (OSTI)

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

210

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Fueling Infrastructure Funding and Technical Assistance and Fueling Infrastructure Funding and Technical Assistance to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Digg

211

Fuel System and Fuel Measurement  

Science Journals Connector (OSTI)

Fuel management provides optimal solutions to reduce fuel consumption. Merchant vessels, such as container ships, drive at a reduced speed to save fuel since the reduction of the speed from...?1 lowers consumption

Michael Palocz-Andresen

2013-01-01T23:59:59.000Z

212

Navy Mobility Fuels Forecasting system: Phase 3, Report. [Navy  

SciTech Connect

The world oil scenarios were analyzed using the NMFFS. The linear programming models of the NMFFS have great value in the analysis of petroleum resource allocation and refining. The results of the general market analysis indicated that all disruptions resulted in reduced crude oil supply, higher prices, and reduced demand in the world. In a major Persian Gulf disruption, US refining capability appeared adequate to satisfy normal US military fuel requirements, including those supplied by foreign refiners. However, this would be at the expense of civilian fuels production. Mobilization fuel requirements during a major disruption that curtailed most Persian Gulf and Venezuelan crude exports resulted in significant competition in the production of civil versus military jet fuels, particularly in Texas Gulf Coast and West Coast refineries. In all disruption scenarios studied, the Middle East emerged as a potentially important refiner of both civil and military jet fuels. With SPR drawdown and the IEA agreements in effect, the impacts of the disruptions on the production of refined products were significantly reduced, particularly in the United States, compared to the impacts without these programs. The IEA agreement caused a redistribution of the regional demand levels among IEA countries in favor of the major oil consuming countries like the United States, Canada, and some of the European countries. The results of the RYM analysis of refinery regions focused on the availability and quality of JP-5 production in key Navy supply regions. Several findings potentially important to the Navy are listed.

Hadder, G.R.; Das, S.; Lee, R.; Davis, R.M.

1987-08-01T23:59:59.000Z

213

Renewable Energy Project Refinement Webinar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Project Refinement Webinar Renewable Energy Project Refinement Webinar Renewable Energy Project Refinement Webinar May 28, 2014 11:00AM MDT Attendees will become familiar with the three components of project refinement: project financing strategies, off-taker agreements, and vendor selection. Project refinement obstacles, particularly financing, can deter the deployment of renewable energy projects on tribal lands. Attendees will learn about the financial resources and ownership options available-including venture capital and innovative financing-that can help Tribes overcome longstanding barriers and attract higher levels of private investment. Finally, attendees will learn how project refinement can accelerate renewable energy development and, with it, tribal economic and community development. There is no cost to attend the webinar, but

214

A CSP Account of Event-B Refinement  

E-Print Network (OSTI)

Event-B provides a flexible framework for stepwise system development via refinement. The framework supports steps for (a) refining events (one-by-one), (b) splitting events (one-by-many), and (c) introducing new events. In each of the steps events can moreover possibly be anticipated or convergent. All such steps are accompanied with precise proof obligations. Still, it remains unclear what the exact relationship - in terms of a behaviour-oriented semantics - between an Event-B machine and its refinement is. In this paper, we give a CSP account of Event-B refinement, with a treatment for the first time of splitting events and of anticipated events. To this end, we define a CSP semantics for Event-B and show how the different forms of Event-B refinement can be captured as CSP refinement.

Schneider, Steve; Wehrheim, Heike; 10.4204/EPTCS.55.9

2011-01-01T23:59:59.000Z

215

Direct Reduction of Waste through Refining of DOE Metal Assets - 13632  

SciTech Connect

CVMR{sup R} presents a technology for refining nickel from the enrichment barrier materials of the DOE that is proven through 100 years of use by the metals industry. CVMR{sup R} applies modern controls, instrumentation for process and monitoring of the system, and innovative production methods to produce a wide spectrum of products that generate new technology applications and improvements to our society and economy. CVMR{sup R} will receive barrier materials as a secure operation and size reduce the metal to a shred that is fed to a carbonylation reactor where nickel is reacted with carbon monoxide and generate nickel carbonyl. The carbonyl will be filtered and decomposed with heat to form a variety of products that include high value nano powders, coated substrates, net shapes and pure nickel. The residue from the reactor will retain radionuclides from enrichment activities. The carbon monoxide will only react and extract nickel under the operating conditions to leave volumetric contamination in the unreacted residue. A demonstration plant was designed and built by CVMR{sup R} and operated by BWXT, to demonstrate the systems capabilities to DOE in 2006. A pilot plant operation precedes the detailed design of the nickel refinery and provides essential data for design, safe work practices, waste characterizations and system kinetics and confirms the project feasibility. CVMR{sup R} produces nickel products that are cleaner than the nickel in U.S. commerce and used by industry today. The CVMR{sup R} process and systems for nickel refining is well suited for DOE materials and will provide value through environmental stewardship, recovery of high value assets, and support of the DOE environmental remediation programs as the refined nickel generates additional long term benefits to local communities. (authors)

Hargett, Michael C.; Terekhov, Dimitri; Khozan, Kamran M. [Chemical Vapour Metal Refining - CVMR (United States)] [Chemical Vapour Metal Refining - CVMR (United States)

2013-07-01T23:59:59.000Z

216

Chapter 7 - Gas Turbine Fuel Systems and Fuels  

Science Journals Connector (OSTI)

Abstract The basics of a gas turbine fuel system are similar for all turbines. The most common fuels are natural gas, LNG (liquid natural gas), and light diesel. With appropriate design changes, the gas turbine has proved to be capable of handling residual oil, pulverized coal, syngas from coal and various low BTU fluids, both liquid and gas, that may be waste streams of petrochemical processes or, for instance, gas from a steel (or other industry) blast furnace. Handling low BTU fuel can be a tricky operation, requiring long test periods and a willingness to trade the savings in fuel costs with the loss of turbine availability during initial prototype full load tests. This chapter covers gas turbine fuel systems and includes a case study (Case 5) on blast furnace gas in a combined cycle power plant (CCPP). “All truths are easy to understand once they are discovered, the point is to discover them.” —Plato

Claire Soares

2015-01-01T23:59:59.000Z

217

Refinement of synchroton spectral tip calculations  

Science Journals Connector (OSTI)

Refinements in the computing techniques were performed in the calculation of transition rates to the ground and first excited states in magnetic bremsstrahlung via the use of exact matrix elements. The above calculations were carried out to double precision on a UNIVAC 1108 computer as was the calculation of transition rates to the second excited state. Empirical formulas are given for the transition rates from arbitrary upper states to the ground state, first excited state, and the second excited state for arbitrary magnetic field strengths. In addition the relative probabilities of transitions from level three to the remaining three lower levels is investigated in detail in the vicinity of the quantum-mechanical critical field, and the spectral tip structure for an electron in state n?1 is viewed in this high-field regime.

D. White

1978-09-15T23:59:59.000Z

218

Life-Cycle Analysis of Transportation Fuels and Vehicle Technologies  

E-Print Network (OSTI)

Camelina Algae Gasoline Diesel Jet Fuel Liquefied Petroleum Gas Naphtha Residual Oil Hydrogen Fischer Coke Nuclear Energy Hydrogen #12;GREET examines more than 80 vehicle/fuel systems Conventional Spark-Tropsch diesel 4 Dimethyl ether 4 Biodiesel Fuel Cell Vehicles 4 On-board hydroge

Bustamante, Fabián E.

219

Renewable Energy Financial Instruments Guidance Tool (REFINe) | Open Energy  

Open Energy Info (EERE)

Renewable Energy Financial Instruments Guidance Tool (REFINe) Renewable Energy Financial Instruments Guidance Tool (REFINe) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Financial Instruments Guidance Tool (REFINe) Focus Area: Renewable Energy Topics: Policy Impacts Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/0,,contentMDK:2298 Equivalent URI: cleanenergysolutions.org/content/renewable-energy-financial-instrument Language: English Policies: "Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Training & Education Renewable Energy Financial Instruments Guidance Tool (REFINe) aims to assist policy in identifying appropriate financial instruments to scale-up

220

New Process for Grain Refinement of Aluminum. Final Report  

SciTech Connect

A new method of grain refining aluminum involving in-situ formation of boride nuclei in molten aluminum just prior to casting has been developed in the subject DOE program over the last thirty months by a team consisting of JDC, Inc., Alcoa Technical Center, GRAS, Inc., Touchstone Labs, and GKS Engineering Services. The Manufacturing process to make boron trichloride for grain refining is much simpler than preparing conventional grain refiners, with attendant environmental, capital, and energy savings. The manufacture of boride grain refining nuclei using the fy-Gem process avoids clusters, salt and oxide inclusions that cause quality problems in aluminum today.

Dr. Joseph A. Megy

2000-09-22T23:59:59.000Z

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Gasoline and Diesel Fuel Update (EIA)

by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1996 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

222

ITP Petroleum Refining: Technology Roadmap for the Petroleum...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Roadmap for the Petroleum Industry ITP Petroleum Refining: Technology Roadmap for the Petroleum Industry petroleumroadmap.pdf More Documents & Publications ITP Aluminum:...

223

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Gasoline and Diesel Fuel Update (EIA)

by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1997 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

224

,"U.S. Total Refiner Petroleum Product Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

NUSDPG","EMAEPPRLPWGNUSDPG","EMAEPPRHPWGNUSDPG" "Date","U.S. Total Gasoline WholesaleResale Price by Refiners (Dollars per Gallon)","U.S. Aviation Gasoline Wholesale...

225

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1998 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons per...

226

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2012 (EIA)

Information Administration Petroleum Marketing Annual 1995 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

227

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Annual Energy Outlook 2012 (EIA)

Information AdministrationPetroleum Marketing Annual 1999 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons per...

228

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Annual Energy Outlook 2012 (EIA)

- - - - W W - - - - - - See footnotes at end of table. 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State 292 Energy Information...

229

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2012 (EIA)

Information AdministrationPetroleum Marketing Annual 1999 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

230

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Petroleum Marketing Annual 1995 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons per...

231

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2012 (EIA)

Information AdministrationPetroleum Marketing Annual 1998 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) -...

232

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1998 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

233

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2012 (EIA)

Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) -...

234

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1999 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) -...

235

Diesol: an alternative fuel for compression ignition engines  

SciTech Connect

Physical properties including specific gravity, kinematic viscosity, heat of combustion, flash point, cetane number and distillation curves are presented for several blends of No. 2 diesel fuel and soybean oil. The mixture is referred to as Diesol. The soybean oil received a minimal amount of refining by water-washing to remove most of the lecithin type gums. The Diesol fuels were tested in a Cooperative Fuel Research single cylinder diesel test engine to determine the short time engine performance using soybean oil as a diesel fuel extender. Brake specific fuel consumption, volumetric fuel consumption, exhaust smoke opacity and power were determined. Various blends of Diesol were also tested in a multicylinder diesel commercial power system. Results are presented to show the comparison between Diesol blends and diesel fuel. The fuel properties and engine performance test results indicate that soybean oil would be a viable extender of diesel fuel for compression-ignition engines.

Cochran, B.J.; Baldwin, J.D.C.; Daniel, L.R. Jr.

1981-01-01T23:59:59.000Z

236

Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste”  

Science Journals Connector (OSTI)

Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste” ... Validated material flow models of waste treatment systems form a sound basis to evaluate system performance in view of environmental pollution as well as with respect to resource recovery. ... characteristics of refuse-derived fuels (RDF) that are processed from residual household waste by mech. ...

David Laner; Oliver Cencic

2013-12-05T23:59:59.000Z

237

Transportation fuels from synthetic gas  

SciTech Connect

Twenty-five experimental Fischer-Tropsch synthesis runs were made with 14 different catalysts or combinations of catalysts using a Berty reactor system. Two catalysts showed increased selectivity to transportation fuels compared to typical Fischer-Tropsch catalysts. With a catalyst consisting of 5 wt % ruthenium impregnated on a Y zeolite (run number 24), 63 to 70 wt % of the hydrocarbon product was in the gasoline boiling range. Using a 0.5 wt % ruthenium on alumina catalyst (run number 22), 64 to 78 wt % of the hydrocarbon product was in the diesel fuel boiling range. Not enough sample was produced to determine the octane number of the gasoline from run number 24, but it is probably somewhat better than typical Fischer-Tropsch gasoline (approx. 50) and less than unleaded gasoline (approx. 88). The diesel fuel produced in run number 22 consisted of mostly straight chained paraffins and should be an excellent transportation fuel without further refining. The yield of transportation fuels from biomass via gasification and the Fischer-Tropsch synthesis with the ruthenium catalysts identified in the previous paragraph is somewhat less, on a Btu basis, than methanol (via gasification) and wood oil (PERC and LBL processes) yields from biomass. However, the products of the F-T synthesis are higher quality transportation fuels. The yield of transportation fuels via the F-T synthesis is similar to the yield of gasoline via methanol synthesis and the Mobil MTG process.

Baker, E.G.; Cuello, R.

1981-08-01T23:59:59.000Z

238

Alternative Fuels Data Center: Alternative Fuel and Special Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Special Fuel Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Special Fuel Definitions

239

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

240

Unveiling Structure-Property Relationships in Sr2Fe1.5Mo0.5O6-, an Electrode Material for Symmetric Solid Oxide Fuel Cells  

E-Print Network (OSTI)

Solid Oxide Fuel Cells Ana B. Munoz-García, Daniel E. Bugaris, Michele Pavone,,§ Jason P. Hodges, Ashfia oxide fuel cell electrode material Sr2Fe1.5Mo0.5O6- (SFMO). Rietveld refinement of powder neutron oxide fuel cells (SOFCs) can convert a wide variety of fuels with simpler and cheaper designs than those

Carter, Emily A.

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Microstructured Hydrogen Fuel Cells  

Science Journals Connector (OSTI)

Micro fuel cells ; Polymer electrolyte membrane fuel cells ; Proton exchange membrane fuel cells ...

Luc G. Frechette

2014-05-01T23:59:59.000Z

242

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The definition of an alternative fuel includes natural gas, liquefied petroleum gas, electricity, hydrogen, fuel mixtures containing not less

243

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

244

Alternative Fuels Data Center: Alternative Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Promotion The Missouri Alternative Fuels Commission (Commission) promotes the continued production and use of alternative transportation fuels in

245

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

246

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

247

Pelletskvalitet.  

E-Print Network (OSTI)

?? Fuel pellets are a refined bio fuel mostly consisting of residues from sawmills and wood industry. At Rindi Västerdala AB's combined bio energy plant… (more)

Lidberg, Tina

2012-01-01T23:59:59.000Z

248

Ordered Intermetallics as Electrocatalysts for Fuel Cell Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Ordered Intermetallics as Ordered Intermetallics as Electrocatalysts for Fuel Cell Applications Héctor D. Abruña, Francis J. DiSalvo Dept. of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301 Pt PtBi 2.4 mA/cm 2 0.063 mA/cm 2 x p a n d e d Pt (111) plane Pt-Pt 2.77 Å PtBi (001) plane Pt-Pt 4.32 Å Alloys vs. Ordered Intermetallics (A) Alloy; e.g. Pt/Ru (1:1) (B) Ordered Intermetallic e.g. BiPt Bismuth Platinum (BiPt) Intermetallic Phase ¾ Powder Refinement for BiPt ---- Residual between experimental P6 3 /mmc a = c = 5.490 Å Pt Bi Diffraction X-ray 4.315 Å and theoretical results Platinum vs. PtBi Pt (111) plane Pt-Pt 2.77 Å PtBi (001) plane Pt-Pt 4.32 Å Voltammetric Profile in H 2 SO 4 ¾ Cyclic Voltammetry in 0.1 M H 2 SO 4 at a sweep rate of 10 mV/s

249

11 California Petroleum Supply, Transportation, Refining and Marketing Trends  

E-Print Network (OSTI)

11 California Petroleum Supply, Transportation, Refining and Marketing Trends Chapter 2 CALIFORNIA PETROLEUM SUPPLY, TRANSPORTATION, REFINING AND MARKETING TRENDS INTRODUCTION California is an integral part of the world oil market as a world-scale petroleum consumer. Historically, about 50 percent of this petroleum

250

fCourse: Learn to Swim Level 5: Stroke Refinement  

E-Print Network (OSTI)

fCourse: Learn to Swim Level 5: Stroke Refinement Purpose To further learn how to coordinate and refine strokes Prerequisites Valid American Red Cross Learn-to-Swim Level 4: Fundamental Aquatic Skills Shallow-angle dive from the side then glide and begin a front stroke Tuck and pike surface dives, submerge

Hemmers, Oliver

251

On Adaptive Mesh Refinement for Atmospheric Pollution Models  

E-Print Network (OSTI)

On Adaptive Mesh Refinement for Atmospheric Pollution Models Emil M. Constantinescu and Adrian Springer-Verlag Berlin Heidelberg 2005 #12;On Adaptive Mesh Refinement for Atmospheric Pollution Models 799 res- olution system for modeling regional air pollution based on the chemical transport model STEM

Sandu, Adrian

252

Refining Landscape Change Models through Outlier Analysis in the  

E-Print Network (OSTI)

Refining Landscape Change Models through Outlier Analysis in the Muskegon Watershed of Michigan significantly to the state economy, accounting for nearly 20% of its economic output (Michigan Land Use, 1965; Lee, 1973; Wegener, 1994), and model refinement/advancement, in large part due to advances

Walker, Robert T.

253

Refined BPS state counting from Nekrasov's formula and Macdonald functions  

E-Print Network (OSTI)

It has been argued that the Nekrasov's partition function gives the generating function of refined BPS state counting in the compactification of M theory on local Calabi-Yau spaces. We show that a refined version of the topological vertex we proposed before (hep-th/0502061) is a building block of the Nekrasov's partition function with two equivariant parameters. Compared with another refined topological vertex by Iqbal-Kozcaz-Vafa (hep-th/0701156), our refined vertex is expressed entirely in terms of the specialization of the Macdonald symmetric functions which is related to the equivariant character of the Hilbert scheme of points on C^2. We provide diagrammatic rules for computing the partition function from the web diagrams appearing in geometric engineering of Yang-Mills theory with eight supercharges. Our refined vertex has a simple transformation law under the flop operation of the diagram, which suggests that homological invariants of the Hopf link are related to the Macdonald functions.

Hidetoshi Awata; Hiroaki Kanno

2009-03-10T23:59:59.000Z

254

The response of mechanical and chemical pulps to refining  

SciTech Connect

This paper reports on theoretical equations describing the flow of pulp in refiners were used to analyze the experimental results obtained in a series of pilot plant trials. Western red cedar and loblolly pine wood chips were refined in 1-3 stages at rotational speeds of 1200 and 1800 rpm to produce thermomechanical pulps (TMP). Also, sulfate semibleached and low-yield sulfite pulps were refined at low (5%), medium (12%), and high (25%) consistency. The results indicate that the number of refining stages did not affect mechanical pulp quality. At a given specific energy, increasing the rotational speed increased the specific energy per impact and decreased the total number of impacts, resulting in a faster rate of fines generation for mechanical pulps. For chemical pulps higher pulp consistency produced gentler refining and yielded a higher rate of freeness decrease.

Miles, K.B.; Karnis, A. (Pulp and Paper Research Inst. of Canada, 570 St. John's Rd., Pointe Claire, Quebec H9R 3J9 (CA))

1991-01-01T23:59:59.000Z

255

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

256

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

257

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on AddThis.com...

258

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on AddThis.com... More in this section...

259

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on AddThis.com...

260

Fuel oil and kerosene sales 1996  

SciTech Connect

The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

NONE

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Steel refining with an electrochemical cell  

DOE Patents (OSTI)

Apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contact with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.

Blander, Milton (Palos Park, IL); Cook, Glenn M. (Naperville, IL)

1988-01-01T23:59:59.000Z

262

Technoeconomic Comparison of Biofuels: Ethanol, Methanol, and Gasoline from Gasification of Woody Residues (Presentation)  

SciTech Connect

This presentation provides a technoeconomic comparison of three biofuels - ethanol, methanol, and gasoline - produced by gasification of woody biomass residues. The presentation includes a brief discussion of the three fuels evaluated; discussion of equivalent feedstock and front end processes; discussion of back end processes for each fuel; process comparisons of efficiencies, yields, and water usage; and economic assumptions and results, including a plant gate price (PGP) for each fuel.

Tarud, J.; Phillips, S.

2011-08-01T23:59:59.000Z

263

Life Cycle Carbon Footprint of Re-Refined versus Base Oil That Is Not Re-Refined  

Science Journals Connector (OSTI)

The study showed that global warming potential was lower for all five re-refining techniques considered compared to the production of base oil in standard refineries. ... Safety-Kleen, the largest used oil re-refiner in North America, collects and re-refines used oil into approximately 100,000,000 gallons of base oil per year. ... Figure 4 presents the re-refined carbon footprint-based oil GHG emissions for re-refinery system yields of 50% (equivalent to two gallons of use over a gallon of base oil’s lifetime; 50% burden from virgin base oil input) to 100% (infinite re-refining; no burden from virgin base oil input). ...

Lisa N. Grice; Carolyn E. Nobel; Lin Longshore; Ramsay Huntley; Ashley L. DeVierno

2013-10-25T23:59:59.000Z

264

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Infrastructure Grants to someone by E-mail Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

265

Table E3.1. Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

E3.1. Fuel Consumption, 1998;" E3.1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

266

Table 4.3 Offsite-Produced Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Offsite-Produced Fuel Consumption, 2002;" 3 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

267

Changing System Interfaces Consistently: a New Refinement Strategy for CSP B  

E-Print Network (OSTI)

Changing System Interfaces Consistently: a New Refinement Strategy for CSP B Steve Schneider refinement in the context of CSP B. Our motivation to include this notion of refinement within the CSP B to change the events of a CSP process and the B machines when refining a system. Notions of refinement based

Doran, Simon J.

268

Synthetic Fuel  

ScienceCinema (OSTI)

Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

2010-01-08T23:59:59.000Z

269

Table 24. Refining Industry Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

- Corrections to Tables 24 to 32 - Corrections to Tables 24 to 32 Table 24. Refining Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2002- 2025 Carbon Dioxide Emissions 4/ (million metric tons) 190.4 185.7 188.0 191.3 207.3 215.6 220.0 222.8 225.1 226.3 228.0 230.7 234.1 237.5 238.5 239.4 239.4 238.6 240.6 240.5 242.2 244.2 245.9 246.3 246.6 1.2% Table 25. Food Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2002- 2025 Carbon Dioxide Emissions 3/ (million metric tons) 87.8 89.4 87.5 87.8 89.2 90.2 90.9 91.4 92.2 93.5 94.5 95.7 96.7 97.7 98.6 99.6 100.8 101.9 102.9 104.1 105.4 107.0 108.7 110.3 112.1 1.0% Table 26. Paper Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007

270

,"Weekly Refiner Net Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Refiner Net Production" Refiner Net Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Refiner Net Production",21,"Weekly","12/13/2013","6/4/2010" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","pet_pnp_wprodr_s1_w.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_wprodr_s1_w.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 10:39:21 AM"

271

Development of pyro-processing technology at CRIEPI for carving out the future of nuclear fuel cycle  

SciTech Connect

Pyro-processing has been attracting increasing attention as a promising candidate as an advanced nuclear fuel cycle technology. It provides economic advantage as well as reduction in proliferation risk and burden of long live radioactive waste, especially when it is combined with advanced fuels such as metallic or nitride fuel which gives excellent burning efficiency of minor actinides (MA). CRIEPI has been developing pyro-processing technology since late eighties with both domestic and international collaborations. In the early stage, electrochemical and thermodynamic properties in LiCl-KCl eutectic melt, and fundamental feasibility of core technology like electrorefining were chiefly investigated. Currently, stress in the process chemistry development is also placed on supporting technologies, such as treatment of anode residue and high temperature distillation for cathode product from electrorefining, and so on. Waste treatment process development, such as studies on adsorption behavior of various FP elements into zeolite and conditions for the fabrication of glass-bonded sodalite waste form, are steadily improved as well. In parallel, dedicated pyro-processing equipment such as zeolite column for treatment of spent electro-refiner salt is currently in progress. Recently, an integrated engineering-scale fuel cycle tests were performed funded by Japanese government (MEXT) as an important step before proceeding to large scale hot demonstration of pyro-processing. Oxide fuels can be readily introduced into the pyro-processing by reducing them to metals by adoption of electrochemical reduction technique. Making use of this advantage, the pyro-processing is currently under preliminary evaluation for its applicability to the treatment of the corium, mainly consisting of (U,Zr)O{sub 2}, formed in different composition during the accident of the Fukushima Daiichi nuclear power plant. (authors)

Iizuka, M.; Koyama, T.; Sakamura, Y.; Uozumi, K.; Fujihata, K.; Kato, T.; Murakami, T.; Tsukada, T. [Central Research Institute of Electric Power Industry, Komae-shi, Tokyo 201-8511 (Japan); Glatz, J.P. [European Commission, JRC, Institute for Transuranium Elements (Germany)

2013-07-01T23:59:59.000Z

272

Alternative Fuels Data Center: Alternative Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

273

Relationship between fuel composition and properties. III. Physical properties of US Navy Shale-II fuels  

SciTech Connect

The Naval Research Laboratory and the Naval Air Propulsion Center are currently participating in a program to characterize the products from the Shale-II refining process conducted by the Standard Oil Company of Ohio at their refinery in Toledo, Ohio. This paper is concerned with a part of this program and is a summary of the work on the physical and related properties of three military type fuels derived from shale: JP-5 and JP-8 jet turbine fuels, and diesel fuel marine (DFM). The shale derived fuels which were used in these studies were derived from Paraho crude shale oil. The boiling range distribution of a representative sample of each of the three fuels was determined by gas chromatography. Data for specific gravity, freezing point, pour point, flammability, ignition and electrostatic properties and copper corrosion tests were also obtained. Conclusions from this study are: physical properties of the Shale-II fuels are similar to that of equivalent fuels derived from petroleum; and differences observed could be minimized by modest changes in refining steps.

Affens W.A. (Naval Research Lab., Washington, DC); Hall, J.M.; Beal, E.; Hazlett, R.N.; Nowack, C.J.; Speck, G.

1980-01-01T23:59:59.000Z

274

Alternative Fuels Data Center: Drop-In Biofuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Drop-In Biofuels to Drop-In Biofuels to someone by E-mail Share Alternative Fuels Data Center: Drop-In Biofuels on Facebook Tweet about Alternative Fuels Data Center: Drop-In Biofuels on Twitter Bookmark Alternative Fuels Data Center: Drop-In Biofuels on Google Bookmark Alternative Fuels Data Center: Drop-In Biofuels on Delicious Rank Alternative Fuels Data Center: Drop-In Biofuels on Digg Find More places to share Alternative Fuels Data Center: Drop-In Biofuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Drop-In Biofuels Drop-in biofuels are hydrocarbon fuels substantially similar to gasoline, diesel, or jet fuels. These fuels can be made from a variety of biomass feedstocks including crop residues, woody biomass, dedicated energy crops,

275

Alternative Fuels Data Center: Emerging Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative Fuels Data Center: Emerging Fuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Emerging Alternative Fuels Several emerging alternative fuels are under development or already developed and may be available in the United States. These fuels may

276

Fuel Preprocessor (FPP) for a Solid Oxide Fuel Cell Auxiliary Power Unit  

SciTech Connect

Auxiliary Power Units (APUs), driven by truck engines, consume over 800 million gallon of diesel fuel while idling. Use of separate SOFC based APUs are an excellent choice to reduce the cost and pollution associated with producing auxiliary power. However, diesel fuel is a challenging fuel to use in fuel cell systems because it has heavy hydrocarbons that can transform into carbon deposits and gums that can block passages and deactivate fuel reformer and fuel cell reactor elements. The work reported herein addresses the challenges associated with the diesel fuel sulfur and carbon producing contaminants in a Fuel Preprocessor (FPP). FPP processes the diesel fuel onboard and ahead of the reformer to reduce its carbon deposition tendency and its sulfur content, thus producing a fuel suitable for SOFC APU systems. The goal of this DOE supported Invention and Innovation program was to design, develop and test a prototype Fuel Preprocessor (FPP) that efficiently and safely converts the diesel fuel into a clean fuel suitable for a SOFC APU system. The goals were achieved. A 5 kWe FPP was designed, developed and tested. It was demonstrated that FPP removes over 80% of the fuel sulfur and over 90% of its carbon residues and it was demonstrated that FPP performance exceeds the original project goals.

M. Namazian, S. Sethuraman and G. Venkataraman

2004-12-31T23:59:59.000Z

277

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

278

Studies of the refining of crude cottonseed oil and its solutions in commercial hexane  

E-Print Network (OSTI)

with Different Concentrations of Caustic Soda................ 55 17. Refining of Diluted Cottonseed Oil-Hexane Fiscellas with 24? Re' Caustic Soda................................. 5^ Page LIST OF FIGURES (Continued) 18. Refining of FFOHR Cottonseed Oil.................................................... .65 21. Refining Cottonseed Oil Kiscellas with Ammonia Gas Followed by Caustic Re-refining......................... 67 22. Ammonium Hydroxide Refining of Cottonseed Oil-Hexane Kiscellas and Re-refining with 2.5$ of 20? Be' Caustic Soda...

Zeitoun, Mohamed Ali

2013-10-04T23:59:59.000Z

279

Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels  

SciTech Connect

Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear fuels are critical to understand the burnup, and thus the fuel efficiency.

Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

2014-01-09T23:59:59.000Z

280

Optimal Fractionation of Products of Refining Straight-run Gasoline on Zeolite Catalyst with Account of its Deactivation  

Science Journals Connector (OSTI)

Abstract Flowsheet of industrial refining straight-run gasoline on zeolite catalyst includes the necessary stage of fractionation of conversion products to produce commercial gasoline, gas and heavy residue. Changes in qualitative and quantitative compositions of the catalytic conversion products under catalyst deactivation require current parametrical optimization of this stage. Objective functions that take into account catalyst deactivation and the constrains depending on the requirements for product quality and equipment specifications were developed. Optimal conditions were found to differ significantly from those designed for fresh catalyst.

M.A. Samborskaya; E.A. Laktionova; A.V. Wolf; V.V. Mashina; A.A. Syskina

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Developing Refined Products Storage in the Strategic Petroleum Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refined Products Storage in the Strategic Petroleum Refined Products Storage in the Strategic Petroleum Reserve Developing Refined Products Storage in the Strategic Petroleum Reserve May 12, 2009 - 3:14pm Addthis Statement of David F. Johnson, Deputy Assistant Secretary for Petroleum Reserves before the Committee on Energy and Natural Resources, United States Senate. Mr. Chairman and members of the Committee, I am pleased to be here today to discuss the issue of developing refined products storage in the Strategic Petroleum Reserve. As you know, the SPR was established by Congress through passage of the Energy Policy and Conservation Act in 1975 in response to the Arab oil embargoes. The primary policy of the U.S. petroleum stockpiling program has been to store crude oil. The SPR has served to protect our Nation from crude oil supply interruptions for over three

282

Secretary Bodman Tours Refinery and Calls for More Domestic Refining  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tours Refinery and Calls for More Domestic Tours Refinery and Calls for More Domestic Refining Capacity Secretary Bodman Tours Refinery and Calls for More Domestic Refining Capacity May 18, 2006 - 10:43am Addthis Highlights President Bush's Four-Point Plan to Combat High Energy Prices PORT ARTHUR, TX - Secretary of Energy Samuel W. Bodman today renewed the call for expanded oil refining capacity in the United States and discussed additional steps the Department of Energy (DOE) is taking to prepare for the upcoming hurricane season. Secretary Bodman made the statements after touring the Motiva Refinery in Port Arthur, Texas. "We need a more robust energy sector; and one way to do that is to strengthen and expand our domestic oil refining capacity. We're hopeful that Motiva will continue to work to expand their capacity to 600,000

283

,"U.S. Refiner Acquisition Cost of Crude Oil"  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisition Cost of Crude Oil" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Refiner...

284

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Annual Energy Outlook 2012 (EIA)

133.6 - 276.4 See footnotes at end of table. 220 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

285

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Annual Energy Outlook 2012 (EIA)

201.3 - 453.3 See footnotes at end of table. 262 Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

286

Wind Simulation Refinement: Some New Challenges for Particle Methods  

Science Journals Connector (OSTI)

We present two new challenges related to the stochastic downscaling method (SDM) that we applied to wind simulation refinement in Bernardin et al. (Stoch....Particle in Cell methods. Then we turn to the uniform d...

C. Chauvin; F. Bernardin; M. Bossy…

2010-01-01T23:59:59.000Z

287

Gulf Coast refiners gain access to more California crudes  

SciTech Connect

Refiners east of the Rockies, particularly Gulf Coast refiners, have gained access to easter and central California crudes with the opening of Celeron Corp.'s All American Pipeline (AAPL). Currently, AAPL is carrying a blend of California crudes with properties similar to Alaskan North Slope (ANS). Although the blend is moderate gravity and sulfur content, it is comprised of crudes from several fields in California that display wide variations in quality. Future deliveries east from California will be from regions with even more extremes of quality. To familiarize refiners with the crudes that will become available, some of the properties of these California crudes are discussed, along with some of the problems refiners may encounter in processing these materials.

Vautrain, J.H.; Sanderson, W.J.

1988-07-11T23:59:59.000Z

288

,"U.S. Total Refiner Acquisition Cost of Crude Oil"  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil" "Sourcekey","R00003","R12003","R13003" "Date","U.S. Crude Oil Composite Acquisition Cost by Refiners (Dollars per Barrel)","U.S. Crude Oil Domestic...

289

Error estimation and adaptive mesh refinement for aerodynamic flows  

E-Print Network (OSTI)

Error estimation and adaptive mesh refinement for aerodynamic flows Ralf Hartmann1 and Paul Houston2 1 Institute of Aerodynamics and Flow Technology DLR (German Aerospace Center) Lilienthalplatz 7

Hartmann, Ralf

290

May 28 Webinar to Focus on Tribal Energy Project Refinement  

Energy.gov (U.S. Department of Energy (DOE))

Register for the Tribal Renewable Energy Project Refinement webinar, which will be held on Wednesday, May 28, 2014, from 11 a.m. to 12:30 p.m. Mountain time.

291

Efficient Parallel Refinement for Hierarchical Radiosity on a DSM computer  

E-Print Network (OSTI)

Efficient Parallel Refinement for Hierarchical Radiosity on a DSM computer François X. Sillion memory (DSM) parallel architecture. Our task definition is based on a very fine grain decompo- sition

Paris-Sud XI, Université de

292

CATALYTIC CONVERSION OF SOLVENT REFINED COAL TO LIQUID PRODUCTS  

E-Print Network (OSTI)

I. Solvent Refined Coal II. Catalysts III. Purpose andSondreal, E.A. , "Viscosity of Coal Liquids - The Effect ofAnthraxylon - Kinetics of Coal Hydrogenation," Ind. and Eng.

Tanner, K.I.

2010-01-01T23:59:59.000Z

293

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

2,026.7 W W 234.5 161.7 - 396.3 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

294

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

2,222.4 W W 206.4 134.3 - 340.7 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

295

Polygons in Buildings and their Refined Side Lengths  

E-Print Network (OSTI)

1999. [Bro] K. Brown, Buildings, Springer, 1989. [BuBI] D.AMS, 2001. [D] M. Davis, Buildings are CAT(0), in “Geometryat Springerlink.com POLYGONS IN BUILDINGS AND THEIR REFINED

Kapovich, Michael; Leeb, Bernhard; Millson, John J.

2009-01-01T23:59:59.000Z

296

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Former Corporation/Refiner Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2012 Antelope Refining LLC Garco Energy LLC 3/12 Douglas, WY 3,800 Delta Air Lines/Monroe Energy LLC ConocoPhillips Company 4/12 Trainer, PA 185,000 Phillips 66 Company ConocoPhillips Company 5/12 Belle Chasse, LA 252,000 Billings, MT 59,000 Ferndale, WA 101,000 Linden, NJ 238,000 Ponca City, OK 198,400 Rodeo, CA 120,200 Sweeny, TX 247,000 Westlake, LA 239,400 Wilmington, CA 139,000 Nustar Asphalt LLC (50% Nustar Energy LP and 50% Lindsay Goldberg LLC) Nustar Energy LP/Nustar Asphalt Refining LLC 9/12 Paulsboro, NJ 70,000 Savannah, GA 28,000 Carlyle Group/Philadelphia Energy Solutions Refining and Marketing LLC Sunoco Inc./Sunoco Inc. R&M

297

Hanford Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - ~27 million gallons of waste* - 149 SSTs located in 12 SST Farms - Grouped into 7 Waste Management Areas (WMAs) for RCRA closure purposes: 200 West Area S/SX T TX/TY U 200 East Area A/AX B/BX/BY C * Double-Shell Tanks (DSTs) - ~26 million gallons of waste* - 28 DSTs located in 6 DST Farms (1 West/5 East) * 17 Misc Underground Storage Tanks (MUST) * 43 Inactive MUST (IMUST) 200 East Area A/AX B/BX/BY C * Volumes fluctuate as SST retrievals and 242-A Evaporator runs occur. Major Regulatory Drivers * Radioactive Tank Waste Materials - Atomic Energy Act - DOE M 435.1-1, Ch II, HLW - Other DOE Orders * Hazardous/Dangerous Tank Wastes - Hanford Federal Facility Agreement and Consent Order (TPA) - Retrieval/Closure under State's implementation

298

Alternative Fuels Data Center: Biofuel Blending Contract Regulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Blending Biofuel Blending Contract Regulation to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Google Bookmark Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Delicious Rank Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blending Contract Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blending Contract Regulation Any provision in a contract between a fuel wholesaler and a refiner or

299

Pyroprocessing of fast flux test facility nuclear fuel  

SciTech Connect

Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)

Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.; Galbreth, G.G.; Vaden, D.; Elliott, M.D.; Price, J.C.; Honeyfield, E.M.; Patterson, M.N. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415 (United States)

2013-07-01T23:59:59.000Z

300

U.S. Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama Arkansas Louisiana Mississippi New Mexico Texas Rocky Mountain (PADD 4) Colorado Idaho Montana Utah Wyoming West Coast (PADD 5) Alaska Arizona California Hawaii Nevada Oregon Washington Period: Monthly Annual

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Residual Fuel Oil Sales for Oil Company Use  

Gasoline and Diesel Fuel Update (EIA)

43,972 57,914 25,166 20,783 19,759 17,031 1984-2012 43,972 57,914 25,166 20,783 19,759 17,031 1984-2012 East Coast (PADD 1) 21,290 7,593 5,726 3,827 2,793 2,205 1984-2012 New England (PADD 1A) 705 178 413 953 36 0 1984-2012 Connecticut 150 178 413 146 36 0 1984-2012 Maine 532 0 0 668 0 0 1984-2012 Massachusetts 0 0 0 0 0 0 1984-2012 New Hampshire 23 0 0 139 0 0 1984-2012 Rhode Island 0 0 0 0 0 0 1984-2012 Vermont 0 0 0 0 0 0 1984-2012 Central Atlantic (PADD 1B) 20,584 7,113 5,017 2,622 2,540 2,115 1984-2012 Delaware 0 0 0 0 0 0 1984-2012 District of Columbia 0 0 0 0 0 0 1984-2012 Maryland 873 669 549 479 598 377 1984-2012 New Jersey 1,409 1,420 1,407 1,344 1,200 1,082 1984-2012 New York 614 467 477 748 742 656 1984-2012 Pennsylvania

302

Prime Supplier Sales Volumes of Residual Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

1,074.1 10,679.4 10,602.6 10,945.6 10,686.8 12,334.3 1983-2014 East Coast (PADD 1) 4,258.9 4,087.0 4,152.1 4,730.2 4,524.6 4,500.2 1983-2014 New England (PADD 1A) 193.5 145.7 121.5...

303

Residual Fuel Oil Prices, Average - Sales to End Users  

Annual Energy Outlook 2012 (EIA)

2008 2009 2010 2011 2012 2013 View History U.S. 1.944 1.340 1.729 - - - 1983-2013 East Coast (PADD 1) 1.897 1.374 1.809 - - - 1983-2013 New England (PADD 1A) 1.841 1.426 1.900 - -...

304

U.S. Total Imports of Residual Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. Total PAD District 1 Connecticut Delaware Florida Georgia Maine Maryland Massachusetts New Hampshire New Jersey New York North Carolina Pennsylvania Rhode Island South Carolina Vermont Virginia PAD District 2 Illinois Indiana Michigan Minnesota North Dakota Ohio PAD District 3 Alabama Louisiana Mississippi Texas PAD District 4 Idaho Montana PAD District 5 Alaska California Hawaii Oregon Washington Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Area: U.S. Total PAD District 1 Connecticut Delaware Florida Georgia Maine Maryland Massachusetts New Hampshire New Jersey New York North Carolina Pennsylvania Rhode Island South Carolina Vermont Virginia PAD District 2 Illinois Indiana Michigan Minnesota North Dakota Ohio PAD District 3 Alabama Louisiana Mississippi Texas PAD District 4 Idaho Montana PAD District 5 Alaska California Hawaii Oregon Washington Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

305

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

306

Alternative Fuels Data Center: Fuel Prices  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel Prices on AddThis.com... Fuel Prices As gasoline prices increase, alternative fuels appeal more to vehicle fleet managers and consumers. Like gasoline, alternative fuel prices can fluctuate based on location, time of year, and political climate. Alternative Fuel Price Report

307

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Any person acting as an alternative fuels dealer must hold a valid alternative fuel license and certificate from the Wisconsin Department of Administration. Except for alternative fuels that a dealer delivers into a

308

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Alternative fuel providers, bulk users, and retailers, or any person who fuels an alternative fuel vehicle from a private source that does not pay

309

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

310

Alternative fuels  

SciTech Connect

This paper presents the preliminary results of a review, of the experiences of Brazil, Canada, and New Zealand, which have implemented programs to encourage the use of alternative motor fuels. It will also discuss the results of a separate completed review of the Department of Energy's (DOE) progress in implementing the Alternative Motor Fuels Act of 1988. The act calls for, among other things, the federal government to use alternative-fueled vehicles in its fleet. The Persian Gulf War, environmental concerns, and the administration's National Energy Strategy have greatly heightened interest in the use of alternative fuels in this country.

Not Available

1991-07-01T23:59:59.000Z

311

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust...

312

Marine fuels. (Latest citations from Information Services in Mechanical Engineering database). Published Search  

SciTech Connect

The bibliography contains citations concerning research and experimentation, fuel system design, future demands, contrast and comparisons, and applications of various marine engine fuels and lubricants. Residual fuel oils, coal powered steam propulsion, homogenizing and treating fuels, coal liquefication, diesel fuel power, electrical power, gas turbines, waste exhaust heat-energy recovery systems, exhaust emissions, water-emulsified fuels, conservation, and nuclear fuels are among the topics discussed. Developments in fuels and their effects on power plant wear are included. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-07-01T23:59:59.000Z

313

Fuel oil and kerosene sales 1994  

SciTech Connect

This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

NONE

1995-09-27T23:59:59.000Z

314

GRAIN REFINEMENT OF PERMANENT MOLD CAST COPPER BASE ALLOYS  

SciTech Connect

Grain refinement behavior of copper alloys cast in permanent molds was investigated. This is one of the least studied subjects in copper alloy castings. Grain refinement is not widely practiced for leaded copper alloys cast in sand molds. Aluminum bronzes and high strength yellow brasses, cast in sand and permanent molds, were usually fine grained due to the presence of more than 2% iron. Grain refinement of the most common permanent mold casting alloys, leaded yellow brass and its lead-free replacement EnviroBrass III, is not universally accepted due to the perceived problem of hard spots in finished castings and for the same reason these alloys contain very low amounts of iron. The yellow brasses and Cu-Si alloys are gaining popularity in North America due to their low lead content and amenability for permanent mold casting. These alloys are prone to hot tearing in permanent mold casting. Grain refinement is one of the solutions for reducing this problem. However, to use this technique it is necessary to understand the mechanism of grain refinement and other issues involved in the process. The following issues were studied during this three year project funded by the US Department of Energy and the copper casting industry: (1) Effect of alloying additions on the grain size of Cu-Zn alloys and their interaction with grain refiners; (2) Effect of two grain refining elements, boron and zirconium, on the grain size of four copper alloys, yellow brass, EnviroBrass II, silicon brass and silicon bronze and the duration of their effect (fading); (3) Prediction of grain refinement using cooling curve analysis and use of this method as an on-line quality control tool; (4) Hard spot formation in yellow brass and EnviroBrass due to grain refinement; (5) Corrosion resistance of the grain refined alloys; (6) Transfer the technology to permanent mold casting foundries; It was found that alloying elements such as tin and zinc do not change the grain size of Cu-Zn alloys. Aluminum promoted b phase formation and modified the grain structure from dendritic to equiaxed. Lead or bismuth reduces the size of grains, but not change the morphology of the structure in Cu-Zn alloys. The grain size of the Cu-Zn-alloy can be reduced from 3000 mm to 300 mm after the addition of aluminum and lead. Similar effects were observed in EnviroBrass III after the addition of aluminum and bismuth. Boron refined the structure of yellow brasses in the presence of iron. At least 50 ppm of iron and 3 ppm of boron are necessary to cause grain refinement in these alloys. Precipitation of iron from the melt is identified as the cause of grain refinement. Boron initiates the precipitation of iron which could not be explained at this time. On the other hand zirconium causes some reduction in grain size in all four alloys investigated. The critical limit for the zirconium was found to be around 100 ppm below which not much refinement could be observed. The mechanism of grain refinement in the presence of zirconium could not be explained. Grain refinement by boron and iron can remain over a long period of time, at least for 72 hours of holding or after remelting few times. It is necessary to have the iron and boron contents above the critical limits mentioned earlier. On the other hand, refinement by zirconium is lost quite rapidly, some times within one hour of holding, mostly due to the loss of zirconium, most probably by oxidation, from the melt. In all the cases it is possible to revive the refinement by adding more of the appropriate refining element. Cooling curve analysis (thermal analysis) can be used successfully to predict the grain refinement in yellow brasses. The precipitation of iron in the liquid metal causes the metal to solidify without undercooling. Absence of this reaction, as indicated by the time-temperature (t-T) and its first derivative (dt/dT) curves, proved to be an indicator of refinement. The viability of the technique as an on-line quality control tool was proved in two foundries. The method can also correctly predict the onset of fading. Th

M. SADAYAPPAN, J.P. THOMSON, M.ELBOUJDAINI, G. PING GU, M. SAHOO

2004-04-29T23:59:59.000Z

315

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

316

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

317

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax A state excise tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The current tax rates are as

318

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the U.S. to contain a minimum volume of

319

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Tax Alternative Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Excise taxes on alternative fuels are imposed on a gasoline gallon equivalent basis. The tax rate for each alternative fuel type is based on the number of motor vehicles licensed in the state that use the specific

320

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels are subject to an excise tax at a rate of $0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale price of the fuel. (Reference Senate Bill 454,

322

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax The excise tax imposed on an alternative fuel distributed in New Mexico is $0.12 per gallon. Alternative fuels subject to the excise tax include liquefied petroleum gas (or propane), compressed natural gas, and liquefied

323

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The Minnesota Department of Revenue imposes an excise tax on the first licensed distributor that receives E85 fuel products in the state and on distributors, special fuel dealers, or bulk purchasers of other alternative

324

The National Nuclear Laboratory's Approach to Processing Mixed Wastes and Residues - 13080  

SciTech Connect

The National Nuclear Laboratory (NNL) treats a wide variety of materials produced as by-products of the nuclear fuel cycle, mostly from uranium purification and fuel manufacture but also including materials from uranium enrichment and from the decommissioning of obsolete plants. In the context of this paper, treatment is defined as recovery of uranium or other activity from residues, the recycle of uranium to the fuel cycle or preparation for long term storage and the final disposal or discharge to the environment of the remainder of the material. NNL's systematic but flexible approach to residue assessment and treatment is described in this paper. The approach typically comprises up to five main phases. The benefits of a systematic approach to waste and residue assessments and processing are described in this paper with examples used to illustrate each phase of work. Benefits include early identification of processing routes or processing issues and the avoidance of investment in inappropriate and costly plant or processes. (authors)

Greenwood, Howard; Docrat, Tahera; Allinson, Sarah J.; Coppersthwaite, Duncan P.; Sultan, Ruqayyah; May, Sarah [National Nuclear Laboratory, Springfields, Preston, UK, PR4 0XJ (United Kingdom)] [National Nuclear Laboratory, Springfields, Preston, UK, PR4 0XJ (United Kingdom)

2013-07-01T23:59:59.000Z

325

Adaptive mesh refinement for shocks and material interfaces  

SciTech Connect

There are three kinds of adaptive mesh refinement (AMR) in structured meshes. Block-based AMR sometimes over refines meshes. Cell-based AMR treats cells cell by cell and thus loses the advantage of the nature of structured meshes. Patch-based AMR is intended to combine advantages of block- and cell-based AMR, i.e., the nature of structured meshes and sharp regions of refinement. But, patch-based AMR has its own difficulties. For example, patch-based AMR typically cannot preserve symmetries of physics problems. In this paper, we will present an approach for a patch-based AMR for hydrodynamics simulations. The approach consists of clustering, symmetry preserving, mesh continuity, flux correction, communications, management of patches, and load balance. The special features of this patch-based AMR include symmetry preserving, efficiency of refinement across shock fronts and material interfaces, special implementation of flux correction, and patch management in parallel computing environments. To demonstrate the capability of the AMR framework, we will show both two- and three-dimensional hydrodynamics simulations with many levels of refinement.

Dai, William Wenlong [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

326

Fuel Research  

Science Journals Connector (OSTI)

... FUEL research was discussed by Sir Harry McGowan, who succeeds Sir William Larke as president of the Institute of Fuel, in ... has a ragged front, and new knowledge is continually changing relative national positions. Sir Harry McGowan referred to the domestic use of raw coal, which is still preferred to ...

1934-11-24T23:59:59.000Z

327

Contaminants in Used Lubricating Oils and Their Fate during Distillation/Hydrotreatment Re-Refining  

Science Journals Connector (OSTI)

Contaminants in Used Lubricating Oils and Their Fate during Distillation/Hydrotreatment Re-Refining ...

Dennis W. Brinkman; John R. Dickson

1995-01-01T23:59:59.000Z

328

Alternative Fuels Data Center: Renewable Fuels Assessment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Assessment to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Assessment on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Assessment on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Assessment on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Assessment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Assessment The U.S. Department of Defense (DOD) prepared a report, Opportunities for DOD Use of Alternative and Renewable Fuels, on the use and potential use of

329

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

330

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard At least 2% of all diesel fuel sold in Washington must be biodiesel or renewable diesel. This requirement will increase to 5% 180 days after the

331

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Fuel Use to Biodiesel Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The Iowa Department of Transportation (IDOT) may purchase biodiesel for use in IDOT vehicles through the biodiesel fuel revolving fund created in the state treasury. The fund consists of money received from the sale of Energy

332

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

333

Alternative Fuels Data Center: Special Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Special Fuel Tax to Special Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Special Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Special Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Special Fuel Tax on Google Bookmark Alternative Fuels Data Center: Special Fuel Tax on Delicious Rank Alternative Fuels Data Center: Special Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Special Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Special Fuel Tax Effective January 1, 2014, certain special fuels sold or used to propel motor vehicles are subject to a license tax. Liquefied natural gas is subject to a tax of $0.16 per diesel gallon equivalent. Compressed natural

334

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

335

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use to Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The South Dakota Department of Transportation and employees using state diesel vehicles must stock and use fuel blends containing a minimum of 2% biodiesel (B2) that meets or exceeds the most current ASTM specification

336

Alternative Fuels Data Center: Hydrogen Fuel Specifications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Hydrogen Fuel Specifications to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Specifications on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Specifications on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Specifications on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) established interim specifications for hydrogen fuels for

337

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

338

Alternative Fuels Data Center: Alternative Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Use All state employees operating flexible fuel or diesel vehicles as part of the state fleet must use E85 or biodiesel blends whenever reasonably available. Additionally, the Nebraska Transportation Services Bureau and

339

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels used to propel vehicles of any kind on public highways are taxed at a rate determined on a gasoline gallon equivalent basis. The tax rates are posted in the Pennsylvania Bulletin. (Reference Title 75

340

Refining Crude Oil - Energy Explained, Your Guide To Understanding Energy -  

Gasoline and Diesel Fuel Update (EIA)

Oil and Petroleum Products > Refining Crude Oil Oil and Petroleum Products > Refining Crude Oil Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Emissions Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products Refining Crude Oil Where Our Oil Comes From Imports and Exports Offshore Oil and Gas Use of Oil Prices and Outlook Oil and the Environment Gasoline Where Our Gasoline Comes From Use of Gasoline Prices and Outlook

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

California Fuel Cell Partnership: Alternative Fuels Research  

Energy.gov (U.S. Department of Energy (DOE))

This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research.

342

Essential Substrate Residues for Action of Endopeptidases  

Science Journals Connector (OSTI)

Endopeptidases, which are influenced in their specificity primarily by basic residues of arginine or lysine are treated in seven sections, according to the position of the essential residue: ...

Prof. Dr. Borivoj Keil

1992-01-01T23:59:59.000Z

343

Fuel Processing Valri Lightner  

E-Print Network (OSTI)

, ORNL, NETL #12;Accomplishments · Demonstrated in the lab an advanced fuel flexible fuel processor

344

Shipboard investigations with selected fuels of tomorrow  

SciTech Connect

This paper describes a 2 1/2 year project to investigate both short and long term effects that extreme marine residual fuel qualities could have on shipboard handling, preparation and engine performance. The investigations were carried out on a 44800 T deadweight ''LASH'' vessel, powered by a Sulzer 9RND90 two-stroke crosshead diesel engine. 15 refs.

Hellingman, G.J.; Barrow, S.

1982-03-01T23:59:59.000Z

345

Chapter 1 - Refining Heavy Oil and Extra-heavy Oil  

Science Journals Connector (OSTI)

The definitions of heavy oil, extra-heavy oil, and tar sand bitumen are inadequate insofar as the definitions rely upon a single physical property to define a complex feedstock. This chapter presents viable options to the antiquated definitions of the heavy feedstocks (heavy oil, extra-heavy oil, and tar sand bitumen) as well as an introduction to the various aspects of heavy feedstock refining in order for the reader to place each feedstock in the correct context of properties, behavior, and refining needs.

James G. Speight

2013-01-01T23:59:59.000Z

346

Petroleum Refining Operations: Key Issues, Advances, and Opportunities  

Science Journals Connector (OSTI)

A typical petroleum industry supply chain is composed of an exploration phase at the wellhead, crude procurement and storage logistics, transportation to the refineries, refinery operations, and distribution and delivery of its products (Figure 1). ... This network is used to transport crude from wellhead to refinery for processing, to transport intermediates between multisite refining facilities, and to transport finished products from product storage tanks to distribution centers and finally to the customers. ... In common-carrier pipelines, however, several refineries located at different sites use the same trunk line for shipping refined petroleum products to downstream output terminals. ...

Nikisha K. Shah; Zukui Li; Marianthi G. Ierapetritou

2010-12-10T23:59:59.000Z

347

National oil companies' presence to hike US refining competition  

SciTech Connect

This paper reports that the downstream segment of the U.S. petroleum business is virtually certain to become more competitive because of the growing presence of national oil companies in the country's refining industry. That's a forecast by New York investment firm Kidder Peabody. It cites a plan by Mexico's Petroleos Mexicanos (Pemex) to form a joint venture with Shell Oil Co. covering Shell's 225,000 b/d Deer Park, Tex., refinery as the latest example of national oil companies' movement into U.S. refining.

Not Available

1992-09-21T23:59:59.000Z

348

DISSOLUTION OF NEPTUNIUM OXIDE RESIDUES  

SciTech Connect

This report describes the development of a dissolution flowsheet for neptunium (Np) oxide (NpO{sub 2}) residues (i.e., various NpO{sub 2} sources, HB-Line glovebox sweepings, and Savannah River National Laboratory (SRNL) thermogravimetric analysis samples). Samples of each type of materials proposed for processing were dissolved in a closed laboratory apparatus and the rate and total quantity of off-gas were measured. Samples of the off-gas were also analyzed. The quantity and type of solids remaining (when visible) were determined after post-dissolution filtration of the solution. Recommended conditions for dissolution of the NpO{sub 2} residues are: Solution Matrix and Loading: {approx}50 g Np/L (750 g Np in 15 L of dissolver solution), using 8 M nitric acid (HNO{sub 3}), 0.025 M potassium fluoride (KF) at greater than 100 C for at least 3 hours. Off-gas: Analysis of the off-gas indicated nitric oxide (NO), nitrogen dioxide (NO{sub 2}) and nitrous oxide (N{sub 2}O) as the only identified components. No hydrogen (H{sub 2}) was detected. The molar ratio of off-gas produced per mole of Np dissolved ranged from 0.25 to 0.4 moles of gas per mole of Np dissolved. A peak off-gas rate of {approx}0.1 scfm/kg bulk oxide was observed. Residual Solids: Pure NpO{sub 2} dissolved with little or no residue with the proposed flowsheet but the NpCo and both sweepings samples left visible solid residue after dissolution. For the NpCo and Part II Sweepings samples the residue amounted to {approx}1% of the initial material, but for the Part I Sweepings sample, the residue amounted to {approx}8 % of the initial material. These residues contained primarily aluminum (Al) and silicon (Si) compounds that did not completely dissolve under the flowsheet conditions. The residues from both sweepings samples contained minor amounts of plutonium (Pu) particles. Overall, the undissolved Np and Pu particles in the residues were a very small fraction of the total solids.

Kyser, E

2009-01-12T23:59:59.000Z

349

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

350

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

351

Alternative Fuels Data Center: Fuel Quality Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Quality Standards Fuel Quality Standards to someone by E-mail Share Alternative Fuels Data Center: Fuel Quality Standards on Facebook Tweet about Alternative Fuels Data Center: Fuel Quality Standards on Twitter Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Google Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Delicious Rank Alternative Fuels Data Center: Fuel Quality Standards on Digg Find More places to share Alternative Fuels Data Center: Fuel Quality Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Quality Standards The South Dakota Department of Public Safety may promulgate rules establishing: Standards for the maximum volume percentages of ethanol and methanol

352

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

353

Alternative Fuels Data Center: Alternative Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Alternative Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion The state of Hawaii has signed a memorandum of understanding (MOU) with the U.S. Department of Energy to collaborate to produce 70% of the state's

354

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the

355

Alternative Fuels Data Center: Renewable Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a

356

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

357

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The state road tax for vehicles that operate on propane (liquefied petroleum gas, or LPG) or natural gas is paid through the purchase of an annual flat fee sticker, and the amount is based on the vehicle's gross

358

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

359

Alternative Fuels Data Center: Alternative Fuel Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Study Alternative Fuel Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Study As directed by the Nevada Legislature, the Legislative Commission (Commission) conducted an interim study in 2011 concerning the production and use of energy in the state. The study included information on the use

360

CO2 Sequestration by Direct Gas?Solid Carbonation of Air Pollution Control (APC) Residues  

Science Journals Connector (OSTI)

CO2 Sequestration by Direct Gas?Solid Carbonation of Air Pollution Control (APC) Residues ... Furthermore, because fossil fuels are projected to be a dominant energy resource in the 21st century,1 technologies for sequestering emissions from fossil fuel combustion in a safe and definitive manner are being developed and implemented. ... According to these authors, the solution containing free calcium could then be used in a carbonation process for capturing CO2 directly from air. ...

Renato Baciocchi; Alessandra Polettini; Raffaella Pomi; Valentina Prigiobbe; Viktoria Nikulshina Von Zedwitz; Aldo Steinfeld

2006-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

untitled  

Annual Energy Outlook 2012 (EIA)

per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil Figure 5. U.S. Refiner Wholesale Petroleum Product Volumes Motor Gasoline 58% Other 1% Residual Fuel Oil 2% Propane...

362

X:\\L6046\\Data_Publication\\Pma\\current\\ventura\\pma.vp  

Gasoline and Diesel Fuel Update (EIA)

per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil Figure 5. U.S. Refiner Wholesale Petroleum Product Volumes Propane 7.1% Kero-jet 2.9% Residual Fuel Oil 2.1% Other...

363

untitled  

Gasoline and Diesel Fuel Update (EIA)

per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil Figure 5. U.S. Refiner Wholesale Petroleum Product Volumes Motor Gasoline 58% Other 0% Residual Fuel Oil 2% Propane...

364

Fuels - Biodiesel  

NLE Websites -- All DOE Office Websites (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

365

Nuclear Fuels  

Science Journals Connector (OSTI)

The core of a nuclear reactor is composed of a controlled critical configuration of a fissile material, which in strict a sense is the fuel. This fissile material is contained in a matrix, normally a ceramic c...

Rudy J. M. Konings; Thierry Wiss…

2011-01-01T23:59:59.000Z

366

Fuel economizer  

SciTech Connect

A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

Zwierzelewski, V.F.

1984-06-26T23:59:59.000Z

367

Auto shredder residue recycling: Mechanical separation and pyrolysis  

Science Journals Connector (OSTI)

Directive 2000/53/EC sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a “waste-to-chemicals” perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.

Alessandro Santini; Fabrizio Passarini; Ivano Vassura; David Serrano; Javier Dufour; Luciano Morselli

2012-01-01T23:59:59.000Z

368

Performance testing and Bayesian Reliability Analysis of small diameter, high power electric heaters for the simulation of nuclear fuel rod temperatures.  

E-Print Network (OSTI)

??The conversion of plutonium from a nuclear weapon to nuclear reactor fuel requires an evaluation of the residual gallium as a potential corrosive material within… (more)

O'Kelly, David Sean

2012-01-01T23:59:59.000Z

369

Department of Computing Stepwise Refinement in Event-B||CSP  

E-Print Network (OSTI)

in Event-B||CSP Part 1: Safety Steve Schneider, Helen Treharne and Heike Wehrheim March 12th 2011 #12;Stepwise Refinement in Event-B CSP Part 1: Safety Steve Schneider1 Helen Treharne1 Heike Wehrheim2 1, 2011 Contents 1 Introduction 3 2 CSP 3 2.1 Notation

Doran, Simon J.

370

Source: Energy Information Administration, Form EIA-782A, "Refiners...  

Annual Energy Outlook 2012 (EIA)

4. U.S. Refiner Wholesale Petroleum Product Prices Figure J F M A M J J A S O N D 0 20 40 60 80 100 120 1996 Cents per Gallon Excluding Taxes Kero-jet Propane No. 1 Distillate No....

371

Source: Energy Information Administration, Form EIA-782A, "Refiners...  

Gasoline and Diesel Fuel Update (EIA)

4. U.S. Refiner Wholesale Petroleum Product Prices Figure J F M A M J J A S O N D 0 20 40 60 80 100 120 1997 Cents per Gallon Excluding Taxes Kero-jet Propane No. 1 Distillate No....

372

Source: Energy Information Administration, Form EIA-782A, "Refiners...  

Gasoline and Diesel Fuel Update (EIA)

4. U.S. Refiner Wholesale Petroleum Product Prices Figure J F M A M J J A S O N D 0 20 40 60 80 100 120 1995 Cents per Gallon Excluding Taxes Kero-jet Propane No. 1 Distillate No....

373

Delaunay Refinement for Piecewise Smooth Complexes Siu-Wing Cheng  

E-Print Network (OSTI)

a Lipschitz-like property. A Delaunay refinement algo- rithm using the weighted Voronoi diagram is shown]. However, an algorithm that handles input as general as piecewise smooth complexes (PSC) is still lacking. There is a need in solid modeling to represent objects that are dimensionally or materially inhomogeneous [22

Cheng, Siu-Wing

374

Kenney: The USSOCOM Trinity The USSOCOM Trinity: Refining Special Operations  

E-Print Network (OSTI)

was that the American military would plan, train, and equip to conduct major combat operations on opposite sidesKenney: The USSOCOM Trinity 1 The USSOCOM Trinity: Refining Special Operations Commitment to 21st on the United States Special Operations Command and recommends means and methods to capitalize on current

375

Liver vasculature refinement with multiple 3D structuring element shapes  

Science Journals Connector (OSTI)

Delineating anatomical structures and other regions of interest is an important component of assisting and automating specific diagnostic, radiological, and surgical tasks. In this paper, a segmentation approach for liver region delineation is proposed, ... Keywords: 3D structuring element, Hysteresis thresholding, Mathematical morphology, Region growing, Texture analysis, Vessel tree refinement

Do-Yeon Kim

2014-08-01T23:59:59.000Z

376

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

W W 78.6 W 85.7 81.8 W 69.3 73.8 See footnotes at end of table. 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District and State 176 Energy Information...

377

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

W 70.5 78.9 W 76.0 83.6 W 69.2 75.2 See footnotes at end of table. 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District and State 176 Energy Information...

378

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition Alternative fuel is defined as compressed natural gas, propane, ethanol, or any mixture containing 85% or more ethanol (E85) with gasoline or other

379

Study of the Evolution of Soot from Various Fuels Shihong Yan, Yi-Jin Jiang, Nathan D. Marsh, Eric G. Eddings,  

E-Print Network (OSTI)

were studied with GC, GC-MS, and 13C NMR. The residue of each aerosol sample was studied with Raman transportation fuels, such as diesel and jet fuels, are more limited due to difficulty in vaporization

Utah, University of

380

Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. 40,136.3 39,913.9 37,954.6 34,775.2 33,272.0 32,545.7 1983-2012 East Coast (PADD 1) 9,039.8 9,693.3 9,041.1 8,730.4 7,785.9 6,813.2 1983-2012 New England (PADD 1A) 606.3 930.0 766.0 790.7 679.4 373.7 1983-2012 Connecticut 171.1 W W W W W 1983-2012 Maine W W W W W W 1983-2012 Massachusetts W W W W 495.6 189.3 1983-2012 New Hampshire W W W W W - 1983-2012 Rhode Island W W W W W W 1983-2012 Vermont W W - - - W 1983-2012 Central Atlantic (PADD 1B) 4,645.2 4,946.6 5,127.5 4,696.7 3,983.7 3,569.8 1983-2012 Delaware W - - W - - 1983-2012 District of Columbia - - - - - - 1983-2012 Maryland W 209.8 210.3 190.8 177.5 W 1983-2012 New Jersey 1,463.5 1,555.6 2,006.2 1,922.4 1,913.2 1,646.2 1983-2012

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1 Distillate,  

Gasoline and Diesel Fuel Update (EIA)

34.7 34.7 428.4 46,539.7 12,728.4 790.3 6,200.2 648.4 4,283.7 3,323.4 44,204.9 February ......................... 151.1 456.7 46,811.8 13,168.9 661.0 5,865.0 639.0 3,498.4 4,030.8 40,811.0 March .............................. 155.1 534.1 47,764.0 11,796.0 685.4 3,081.1 347.2 1,274.9 2,912.8 32,094.6 April ................................ 181.4 632.9 48,092.4 12,418.7 309.0 1,382.4 162.4 425.7 2,671.8 27,292.6 May ................................. 194.0 730.2 48,978.1 11,174.4 288.0 868.9 122.3 240.3 2,628.8 22,213.6 June ................................ 184.4 739.6 50,091.3 10,034.5 424.7 571.0 151.7 314.2 2,237.4 23,117.3 July ................................. 205.9 830.4 50,287.4 11,139.2 226.4 714.5 145.1 261.5 2,057.6 25,037.3 August ............................ 200.2 854.8 50,327.4 11,706.4 202.7 1,112.1

382

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane, and Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

PAD District I 1983 ...................................... 127.8 123.0 87.0 87.8 91.3 52.8 94.5 90.1 1984 ...................................... 124.7 119.5 83.5 85.0 93.3 50.9 106.0 92.2 1985 ...................................... 121.4 115.3 78.5 82.2 91.5 44.9 104.9 88.1 1986 ...................................... 100.6 91.8 52.8 52.2 86.0 32.7 81.0 61.6 1987 ...................................... 90.9 85.0 54.1 55.6 82.3 31.0 78.1 58.9 1988 ...................................... 89.5 82.9 51.2 51.3 84.8 29.8 73.3 55.3 1989 ...................................... 99.2 92.2 59.1 60.1 75.8 29.2 69.3 67.2 1990 ...................................... 112.3 105.3 75.9 78.3 91.8 45.0 86.4 84.4 1991 ...................................... 105.6 100.3 65.3 67.2 W 40.5 81.0 74.0 1992 ......................................

383

Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1 Distillate,  

Gasoline and Diesel Fuel Update (EIA)

4.2 4.2 406.0 45,968.1 11,079.0 534.5 5,366.3 833.9 4,675.6 3,248.9 44,872.7 February ......................... 146.6 499.8 47,800.3 10,256.4 357.8 3,591.8 621.7 2,731.9 3,684.2 38,357.8 March .............................. 150.3 518.6 48,152.6 10,316.6 365.5 2,056.1 336.2 1,114.2 3,284.7 28,091.6 April ................................ 171.8 592.8 49,135.3 9,493.8 287.9 1,335.2 199.7 438.4 3,352.9 25,786.2 May ................................. 172.2 665.1 49,770.4 9,886.7 249.2 1,017.4 176.2 314.9 2,935.6 24,783.5 June ................................ 175.3 759.4 52,048.3 10,834.1 192.7 754.0 194.4 360.2 2,313.9 24,285.6 July ................................. 239.2 853.3 51,725.7 10,840.4 136.7 1,348.8 199.7 362.4 2,083.2 26,581.1 August ............................ 201.6 810.9 52,026.8 12,609.7 241.1 1,226.9

384

No. 2 Diesel Fuel Sales to End Users Refiner Sales Volumes  

Gasoline and Diesel Fuel Update (EIA)

NA NA NA NA NA NA 1994-2013 NA NA NA NA NA NA 1994-2013 East Coast (PADD 1) NA NA NA NA NA NA 1994-2013 New England (PADD 1A) NA NA NA NA NA NA 1994-2013 Connecticut NA NA NA NA NA NA 1994-2013 Maine NA NA NA NA NA NA 1994-2013 Massachusetts NA NA NA NA NA NA 1994-2013 New Hampshire NA NA NA NA NA NA 1994-2013 Rhode Island NA NA NA NA NA NA 1994-2013 Vermont NA NA NA NA NA NA 1994-2013 Central Atlantic (PADD 1B) NA NA NA NA NA NA 1994-2013 Delaware NA NA NA NA NA NA 1994-2013 District of Columbia NA NA NA NA NA NA 1994-2013 Maryland NA NA NA NA NA NA 1994-2013 New Jersey NA NA NA NA NA NA 1994-2013 New York NA NA NA NA NA NA 1994-2013 Pennsylvania NA NA NA NA NA NA 1994-2013 Lower Atlantic (PADD 1C) NA NA NA NA NA NA 1994-2013

385

Prices of Refiner Kerosene-Type Jet Fuel Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

2.922 2.787 2.813 2.908 3.002 3.040 1975-2013 2.922 2.787 2.813 2.908 3.002 3.040 1975-2013 East Coast (PADD 1) 2.907 2.783 2.825 2.919 3.028 3.055 1983-2013 New England (PADD 1A) W W W 2.973 3.085 3.129 1983-2013 Connecticut W W W W W W 1984-2013 Maine W W W W W W 1984-2013 Massachusetts W W W W W W 1984-2013 New Hampshire - - - W - - 1984-2013 Rhode Island W W W W W W 1984-2013 Vermont - - - - - - 1984-2013 Central Atlantic (PADD 1B) 2.899 2.763 2.816 2.904 3.011 3.043 1983-2013 Delaware - - - - - - 1984-2013 District of Columbia - - - - - - 1984-2013 Maryland W W W W W W 1984-2013 New Jersey 2.881 2.748 2.805 2.895 3.003 3.038 1984-2013 New York 2.930 2.788 2.830 W W W 1984-2013 Pennsylvania 2.906 2.766 2.852 2.908 3.018 3.020 1984-2013

386

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane, and Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

PAD District I 1983 ...................................... 127.8 123.0 87.0 87.8 91.3 52.8 94.5 90.1 1984 ...................................... 124.7 119.5 83.5 85.0 93.3 50.9 106.0 92.2 1985 ...................................... 121.4 115.3 78.5 82.2 91.5 44.9 104.9 88.1 1986 ...................................... 100.6 91.8 52.8 52.2 86.0 32.7 81.0 61.6 1987 ...................................... 90.9 85.0 54.1 55.6 82.3 31.0 78.1 58.9 1988 ...................................... 89.5 82.9 51.2 51.3 84.8 29.8 73.3 55.3 1989 ...................................... 99.2 92.2 59.1 60.1 75.8 29.2 69.3 67.2 1990 ...................................... 112.3 105.3 75.9 78.3 91.8 45.0 86.4 84.4 1991 ...................................... 105.6 100.3 65.3 67.2 W 40.5 81.0 74.0 1992 ......................................

387

Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

33,033.1 32,893.1 32,452.7 33,281.4 32,532.8 30,000.3 1983-2013 33,033.1 32,893.1 32,452.7 33,281.4 32,532.8 30,000.3 1983-2013 East Coast (PADD 1) 8,170.7 7,484.8 7,317.4 7,494.1 7,085.1 5,550.5 1983-2013 New England (PADD 1A) W W W 337.4 390.2 279.7 1983-2013 Connecticut W W W W W W 1984-2013 Maine W W W W W W 1984-2013 Massachusetts W W W W W W 1984-2013 New Hampshire - - - W - - 1984-2013 Rhode Island W W W W W W 1984-2013 Vermont - - - - - - 1984-2013 Central Atlantic (PADD 1B) 4,254.7 4,171.6 4,469.2 4,834.6 4,713.8 3,787.7 1983-2013 Delaware - - - - - - 1984-2013 District of Columbia - - - - - - 1984-2013 Maryland W W W W W W 1984-2013 New Jersey 2,477.5 2,444.1 2,660.1 2,524.8 2,448.5 1,789.9 1984-2013 New York 1,435.8 1,430.6 1,480.5 W W W 1984-2013

388

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane, and Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

PAD District I 1983 ...................................... 127.8 123.0 87.0 87.8 91.3 52.8 94.5 90.1 1984 ...................................... 124.7 119.5 83.5 85.0 93.3 50.9 106.0 92.2 1985 ...................................... 121.4 115.3 78.5 82.2 91.5 44.9 104.9 88.1 1986 ...................................... 100.6 91.8 52.8 52.2 86.0 32.7 81.0 61.6 1987 ...................................... 90.9 85.0 54.1 55.6 82.3 31.0 78.1 58.9 1988 ...................................... 89.5 82.9 51.2 51.3 84.8 29.8 73.3 55.3 1989 ...................................... 99.2 92.2 59.1 60.1 75.8 29.2 69.3 67.2 1990 ...................................... 112.3 105.3 75.9 78.3 91.8 45.0 86.4 84.4 1991 ...................................... 105.6 100.3 65.3 67.2 W 40.5 81.0 74.0 1992 ......................................

389

Prices of Refiner Kerosene-Type Jet Fuel Sales to End Users  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. 2.165 3.052 1.704 2.201 3.054 3.104 1978-2012 East Coast (PADD 1) 2.161 3.068 1.707 2.201 3.064 3.126 1983-2012 New England (PADD 1A) 2.224 3.113 1.737 2.216 3.098 3.179 1983-2012 Connecticut 2.222 W W W W W 1983-2012 Maine W W W W W W 1983-2012 Massachusetts W W W W 3.088 3.154 1983-2012 New Hampshire W W W W W - 1983-2012 Rhode Island W W W W W W 1983-2012 Vermont W W - - - W 1983-2012 Central Atlantic (PADD 1B) 2.158 3.080 1.694 2.192 3.060 3.116 1983-2012 Delaware W - - W - - 1983-2012 District of Columbia - - - - - - 1983-2012 Maryland 2.151 2.962 1.645 2.198 3.039 W 1983-2012 New Jersey 2.106 3.014 1.684 2.182 3.050 3.105 1983-2012

390

Electrolysis cell for reprocessing plutonium reactor fuel  

DOE Patents (OSTI)

An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals is claimed. The cell includes a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket. The anode basket is extendable into the lower pool to dissolve at least some metallic contaminants; the anode basket contains the spent fuel acting as a second anode when in the electrolyte.

Miller, W.E.; Steindler, M.J.; Burris, L.

1985-01-04T23:59:59.000Z

391

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Presentation covers stationary fuel cells...

392

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November...

393

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview: 2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November 1, 2011. Fuel Cell...

394

Fuel Processing Valri Lightner  

E-Print Network (OSTI)

of Hydrogen · Fuel Processors for PEM Fuel Cells Nuvera Fuel Cells, Inc. GE Catalytica ANL PNNL University-Board Fuel Processing Barriers $35/kW Fuel Processor $10/kW Fuel Cell Power Systems $45/kW by 2010 BARRIERS · Fuel processor start-up/ transient operation · Durability · Cost · Emissions and environmental issues

395

Automotive shredder residue (ASR) characterization for a valuable management  

Science Journals Connector (OSTI)

Car fluff is the waste produced after end-of-life-vehicles (ELVs) shredding and metal recovery. It is made of plastics, rubber, glass, textiles and residual metals and it accounts for almost one-third of a vehicle mass. Due to the approaching of Directive 2000/53/EC recycling targets, 85% recycling rate and 95% recovery rate in 2015, the implementation of automotive shredder residue (ASR) sorting and recycling technologies appears strategic. The present work deals with the characterization of the shredder residue coming from an industrial plant, representative of the Italian situation, as for annual fluxes and technologies involved. The aim of this study is to characterize ASR in order to study and develop a cost effective and environmentally sustainable recycling system. Results show that almost half of the residue is made of fines and the remaining part is mainly composed of polymers. Fine fraction is the most contaminated by mineral oils and heavy metals. This fraction produces also up to 40% ashes and its LHV is lower than the plastic-rich one. Foam rubber represents around half of the polymers share in car fluff. Moreover, some chemical–physical parameters exceed the limits of some parameters fixed by law to be considered refuse derived fuel (RDF). As a consequence, ASR needs to be pre-treated in order to follow the energy recovery route.

Luciano Morselli; Alessandro Santini; Fabrizio Passarini; Ivano Vassura

2010-01-01T23:59:59.000Z

396

Petroleum Refining Sector (NAICS 324110) Energy and GHG Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the manufactured products are energy commodities that are often measured in terms of energy content, separate from the energy content of purchased fuels and electricity. Most...

397

Inspection of integrated two-stage liquefaction products as petroleum refining feedstocks  

SciTech Connect

Regardless of the specific technology used to produce transportation fuels from coal, the net product of the liquefaction process will have to undergo additional refining to make finished products. Consequently, there is a need to characterize the material that exits the liquefaction plant as net product and enters the refinery as feed. The net product of the Integrated Two-Stage Liquefaction (ITSL) process, as practiced at the 6 ton/day (5.5 tonne/day) Wilsonville, Alabama (USA) plant, is a distillable liquid boiling predominantly below 650{degrees}F (343{degrees}C). Products from ITSL operations at the Wilsonville plant were evaluated through the use of standard petroleum tests on several occasions. However, those evaluations were performed on materials generated much earlier in the ITSL campaign and, thus, may not be representative of products generated from the process as it is currently configured. For this work, net products were obtained for analysis from ITSL operations during fully lined-out material balance operating periods.Samples were taken fro Run 259G, which was operated with Ireland Mine coal (hvAb, Pittsburgh seam, West Virginia, USA) and from Run 260D, which was operated with Black Thunder Mine coal (subbituminous, Powder River Basin, Wyoming, USA). A complete suite of light crude oil assay tests was performed on each sample. These assays included tests on the whole coal liquid, and the separated naphtha (<380{degrees}F/193{degrees}C), jet fuel or kerosene (380{degrees}F/193{degrees}C {times} 510{degrees}F/266{degrees}C), and diesel fuel (>510{degrees}F/266{degrees}C) fractions. The results of the assays were compared against typical petroleum product specifications. The discussion will concentrate on the test results of the bituminous coal product.

Winschel, R.A.; Burke, F.P. [Consolidation Coal Co., Library, PA (United States); Zhou, P. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1991-12-31T23:59:59.000Z

398

Price relationships and market integration in the Swedish wood fuel market  

Science Journals Connector (OSTI)

Cointegration analysis is applied to the prices of three different wood fuel assortments in the Swedish market: refined wood fuels, forest chips and industrial by-products. For the latter two, the price series are separated according to two consumer categories: district heating (DH) plants and industrial consumers. Two types of analyses are performed. The first concerns whether the fuels within each consumer group can be bundled together as belonging to the same market in terms of product homogeneity. The second involves analysis of the prices of homogeneous fuels in the two consumer categories. It is found that in the DH sector, refined wood fuels should be observed as a separate market because their prices do not share a common trend with the prices of any of the other fuels. This lack of a common trend is likely due to the highly internationalized nature of the wood pellet market. The DH prices of forest chips and industrial by-products follow a common trend, as do the prices paid for industrial by-products by DH plants and industrial consumers. The prices of forest chips paid by industrial consumers and DH plants do not share a common trend. The prices paid by industrial consumers for industrial by-products and forest chips also do not share a common trend. These results highlight both the differences between the markets for unrefined and refined wood fuels and the presence of inefficiencies in the Swedish wood fuel market.

Olle Olsson; Bengt Hillring

2013-01-01T23:59:59.000Z

399

Fuel Oil and Kerosene Sales - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Petrolem Reports Petrolem Reports Fuel Oil and Kerosene Sales With Data for 2012 | Release Date: November 15, 2013 | Next Release Date: November 2014 Previous Issues Year: 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go The Fuel Oil and Kerosene Sales 2012 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales

400

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

Grimble, Ralph E. (Finleyville, PA)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

motor fuel containing at least 10% alcohol) or alternative fuels whenever feasible and cost effective. DOA must place a list of gasohol and alternative fueling station locations...

402

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

special fuels. Special fuels include compressed and liquefied natural gas, liquefied petroleum gas (propane), hydrogen, and fuel suitable for use in diesel engines. In addition,...

403

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

alternative fuel vehicles (AFVs) capable of operating on natural gas or liquefied petroleum gas (propane), or bi-fuel vehicles capable of operating on conventional fuel or...

404

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Use and Fuel-Efficient Vehicle Requirements State-owned vehicle fleets must implement petroleum displacement plans to increase the use of alternative fuels and fuel-efficient...

405

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Special Fuel Definitions The definition of alternative fuel includes liquefied petroleum gas (propane). Special fuel is defined as all combustible gases and liquids that are...

406

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Labeling Requirement Biodiesel, biobutanol, and ethanol blend dispensers must be affixed with decals identifying the type of fuel blend. If fuel blends containing...

407

Saving Fuel, Reducing Emissions  

E-Print Network (OSTI)

would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

408

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and alternative fuel vehicles; promotes the development, sale, distribution, and consumption of alternative fuels; promotes the development and use of alternative fuel vehicles...

409

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

providers to install biofuel fueling facilities. Fueling facilities include storage tanks and fuel pumps dedicated to dispensing E85 and biodiesel blends of 20% (B20). TDOT...

410

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

interest in the qualified property. Renewable fuel is defined as a fuel produced from biomass that is used to replace or reduce conventional fuel use. (Reference Florida Statutes...

411

Alternative Fuel Vehicle Resources  

Energy.gov (U.S. Department of Energy (DOE))

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

412

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Grants and Rebates The Arkansas Alternative Fuels Development Program (Program) provides grants to alternative fuel producers, feedstock processors, and...

413

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Exclusivity Contract Regulation Motor fuel franchise dealers may obtain alternative fuels from a supplier other than a franchise distributor. Any franchise provision that...

414

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Production and Retail Requirements All hydrogen fuel produced and sold in Michigan must meet state fuel quality requirements. Any retailer offering hydrogen fuel for sale...

415

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

that operate using at least 90% alternative fuel. Eligible alternative fuels include electricity, propane, natural gas, or hydrogen fuel. Medium-duty hybrid electric vehicles also...

416

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Promotion and Information The Center for Alternative Fuels (Center) promotes alternative fuels as viable energy sources in the state. The Center must assess the...

417

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of 85%...

418

Low Carbon Fuel Standards  

E-Print Network (OSTI)

in 1990. These many alternative-fuel initiatives failed tolow-cost, low-carbon alternative fuels would thrive. Theto introduce low-carbon alternative fuels. Former Federal

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

419

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Labeling Requirement Retailers must display ratings on fueling pumps that are consistent with the percentage by volume of the alternative fuel being dispensed....

420

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

is defined as a renewable transportation fuel, transportation fuel additive, heating oil, or jet fuel that meets the definition of either biodiesel or non-ester renewable...

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

FUEL ASSEMBLY SHAKER TEST SIMULATION  

SciTech Connect

This report describes the modeling of a PWR fuel assembly under dynamic shock loading in support of the Sandia National Laboratories (SNL) shaker test campaign. The focus of the test campaign is on evaluating the response of used fuel to shock and vibration loads that a can occur during highway transport. Modeling began in 2012 using an LS-DYNA fuel assembly model that was first created for modeling impact scenarios. SNL’s proposed test scenario was simulated through analysis and the calculated results helped guide the instrumentation and other aspects of the testing. During FY 2013, the fuel assembly model was refined to better represent the test surrogate. Analysis of the proposed loads suggested the frequency band needed to be lowered to attempt to excite the lower natural frequencies of the fuel assembly. Despite SNL’s expansion of lower frequency components in their five shock realizations, pretest predictions suggested a very mild dynamic response to the test loading. After testing was completed, one specific shock case was modeled, using recorded accelerometer data to excite the model. Direct comparison of predicted strain in the cladding was made to the recorded strain gauge data. The magnitude of both sets of strain (calculated and recorded) are very low, compared to the expected yield strength of the Zircaloy-4 material. The model was accurate enough to predict that no yielding of the cladding was expected, but its precision at predicting micro strains is questionable. The SNL test data offers some opportunity for validation of the finite element model, but the specific loading conditions of the testing only excite the fuel assembly to respond in a limited manner. For example, the test accelerations were not strong enough to substantially drive the fuel assembly out of contact with the basket. Under this test scenario, the fuel assembly model does a reasonable job of approximating actual fuel assembly response, a claim that can be verified through direct comparison of model results to recorded test results. This does not offer validation for the fuel assembly model in all conceivable cases, such as high kinetic energy shock cases where the fuel assembly might lift off the basket floor to strike to basket ceiling. This type of nonlinear behavior was not witnessed in testing, so the model does not have test data to be validated against.a basis for validation in cases that substantially alter the fuel assembly response range. This leads to a gap in knowledge that is identified through this modeling study. The SNL shaker testing loaded a surrogate fuel assembly with a certain set of artificially-generated time histories. One thing all the shock cases had in common was an elimination of low frequency components, which reduces the rigid body dynamic response of the system. It is not known if the SNL test cases effectively bound all highway transportation scenarios, or if significantly greater rigid body motion than was tested is credible. This knowledge gap could be filled through modeling the vehicle dynamics of a used fuel conveyance, or by collecting acceleration time history data from an actual conveyance under highway conditions.

Klymyshyn, Nicholas A.; Sanborn, Scott E.; Adkins, Harold E.; Hanson, Brady D.

2013-05-30T23:59:59.000Z

422

Residual stresses in annealed zircaloy  

SciTech Connect

Neutron diffraction has been used to measure the lattice constants of single crystal and rod-textured polycrystalline Zircaloy-2 in the temperature range 300-900 K. While the single crystal remains strain-free during heating or cooling, large residual grain-interaction strains occur in the polycrystalline sample as the result of compatibility being maintained among grains with anisotropic thermal expansion coefficients. These residual thermal strains have been determined as a function of temperature from the difference between the single and polycrystal lattice constants. Analysis of the data has been done using a polycrystalline deformation model, QUEST, which accounts for anisotropic elasticity, plasticity and thermal expansion, and for crystallographic texture of the sample. It is found that slow cooling from 900 K introduces residual stresses of the order of 100 MPa in the polycrystalline sample. The calculations demonstrate that these residual stresses can explain not only the difference in the proportional limits in tension and compression (strength differential) but also differences in the initial work hardening behaviour when Zircaloy-2 is deformed in tension or compression.

Tome, C.; Faber, J.; MacEwen, S.R.

1989-03-01T23:59:59.000Z

423

Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor  

SciTech Connect

In this study, cofiring of high ash and sulfur content lignite with hazelnut shell and cotton residue was investigated in 0.3 MWt METU Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig in terms of combustion and emission performance of different fuel blends. The results reveal that cofiring of hazelnut shell and cotton residue with lignite increases the combustion efficiency and freeboard temperatures compared to those of lignite firing with limestone addition only. CO{sub 2} emission is not found sensitive to increase in hazelnut shell and cotton residue share in fuel blend. Cofiring lowers SO{sub 2} emissions considerably. Cofiring of hazelnut shell reduces NO and N{sub 2}O emissions; on the contrary, cofiring cotton residue results in higher NO and N{sub 2}O emissions. Higher share of biomass in the fuel blend results in coarser cyclone ash particles. Hazelnut shell and cotton residue can be cofired with high ash and sulfur-containing lignite without operational problems. 32 refs., 12 figs., 11 tabs.

Zuhal Gogebakan; Nevin Selcuk [Middle East Technical University, Ankara (Turkey). Department of Chemical Engineering

2008-05-15T23:59:59.000Z

424

Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle Acquisition and Alternative Fuel Use Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

425

Hydrodesulfurization and hydrodemetallization of different origin vacuum residues: New modeling approach  

E-Print Network (OSTI)

, such as sulfur or metals. Residue hydrotreatment in fixed beds, under high hydrogen pressure can achieve high,version1-13Jun2014 Author manuscript, published in "Fuel 129 (2014) 267-277" #12;2 hydrotreatment kinetic Model, Hydrodesulfurization, Hydrodemetallization, reactor modeling 1. INTRODUCTION Upgrading petroleum

Boyer, Edmond

426

Atlantic Basin Refining Dynamics from U.S. Perspective  

Gasoline and Diesel Fuel Update (EIA)

“This presentation focuses on the current refining situation in the Atlantic Basin, “This presentation focuses on the current refining situation in the Atlantic Basin, Page 1 including some discussion on how we got here, and on drivers that will influence the next 5 years. I will focus on three topics today that are critical to the petroleum product dynamics of Page 2 the Atlantic Basin over the next several years. The first is product demand growth - something that has been affected both by the recession and legislation. Next I will cover the supply situation for gasoline and distillates in the Atlantic Basin, since Europe and the U.S. are closely entwined in these markets. Last, we will visit the outlook for those drivers affecting profitability - an area of large uncertainty. I will begin today with a short discussion of important underlying long-term trends in U.S.

427

,"U.S. Sales for Resale, Total Refiner Motor Gasoline Sales Volumes...  

U.S. Energy Information Administration (EIA) Indexed Site

for Refiner Gasoline Volumes" "Sourcekey","A103700001" "Date","U.S. Total Gasoline WholesaleResale Volume by Refiners (Thousand Gallons per Day)" 30331,217871.4 30362,217946.8...

428

Development of miscella refining process for cottonseed oil-isopropyl alcohol system: laboratory-scale evaluations  

E-Print Network (OSTI)

A technologically feasible cottonseed oil-isopropyl alcohol (IPA) miscella refining process was developed to produce high quality cottonseed oil. Individual steps necessary to refine cottonseed oil-IPA miscella were determined and improved...

Chau, Chi-Fai

1994-01-01T23:59:59.000Z

429

The Extraction?Flocculation Re-refining Lubricating Oil Process Using Ternary Organic Solvents  

Science Journals Connector (OSTI)

The Extraction?Flocculation Re-refining Lubricating Oil Process Using Ternary Organic Solvents ... Res., 1997, 36 (9), ... Waste lubricating oils may be re-refined with organic solvents that dissolve base oil and segregate the additives and solid particles. ...

J. P. Martins

1997-09-02T23:59:59.000Z

430

Life cycle and matrix analyses for re-refined Oil in Japan  

Science Journals Connector (OSTI)

Unstable market systems and consumer preferences for virgin oil have inhibited the development of waste oil re-refining in Japan. In this papery comparative life cycle inventories were developed for re-refining w...

Chie Nakaniwa; Thomas E. Graedel

2002-03-01T23:59:59.000Z

431

On the limits of refinement-testing for model-checking CSP  

Science Journals Connector (OSTI)

Refinement-checking, as embodied in tools like FDR, PAT and ProB, is a popular approach for model-checking refinement-closed predicates of CSP processes. We consider the limits of this ... denotational predicate ...

Toby Murray

2013-03-01T23:59:59.000Z

432

RFA-14-0001 - In the Matter of Commonwealth Oil Refining Company...  

Office of Environmental Management (EM)

RFA-14-0001 - In the Matter of Commonwealth Oil Refining Company, Inc.Commonwealth of Puerto Rico RFA-14-0001 - In the Matter of Commonwealth Oil Refining Company, Inc....

433

Fact #676: May 23, 2011 U.S. Refiners Produce about 19 Gallons...  

Energy Savers (EERE)

6: May 23, 2011 U.S. Refiners Produce about 19 Gallons of Gasoline from a Barrel of Oil Fact 676: May 23, 2011 U.S. Refiners Produce about 19 Gallons of Gasoline from a Barrel of...

434

Fuel Cells & Alternative Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cells & Alternative Fuels Fuel Cells & Alternative Fuels Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and...

435

REFINING AND END USE STUDY OF COAL LIQUIDS  

SciTech Connect

This document summarizes all of the work conducted as part of the Refining and End Use Study of Coal Liquids. There were several distinct objectives set, as the study developed over time: (1) Demonstration of a Refinery Accepting Coal Liquids; (2) Emissions Screening of Indirect Diesel; (3) Biomass Gasification F-T Modeling; and (4) Updated Gas to Liquids (GTL) Baseline Design/Economic Study.

Unknown

2002-01-01T23:59:59.000Z

436

Table 5.2 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010; 2 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733 3 72 -- CHP and/or Cogeneration Process -- 0 26 15 1,401 7 500 -- Direct Uses-Total Process -- 1,912 26 54 2,623 29 289 -- Process Heating -- 297 25 14 2,362 24 280

437

Table 5.1 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5.1 End Uses of Fuel Consumption, 2010; 5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process

438

Table 5.7 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2010; 7 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 845,727 13 22 5,064 18 39 Indirect Uses-Boiler Fuel 12,979 7 3 2,074 3 26 Conventional Boiler Use 12,979 3 1 712 1 3 CHP and/or Cogeneration Process -- 4 3 1,362 2 23 Direct Uses-Total Process 675,152 4 9 2,549 7 13 Process Heating

439

Table 5.5 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010; 5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process -- 0 4 3 1,362 2 23 -- Direct Uses-Total Process

440

Table 5.6 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010; 6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733 3 72 -- CHP and/or Cogeneration Process -- 0 26 15 1,401 7 500 -- Direct Uses-Total Process -- 1,912 26 54 2,623 29 289 -- Process Heating -- 297 25 14 2,362 24 280 -- Process Cooling and Refrigeration -- 182 * Q 25

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Table 5.4 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2010; 4 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP and/or Cogeneration Process -- 26 15 1,401 7 500 Direct Uses-Total Process 2,304 26 54 2,623 29 289 Process Heating 318 25 14 2,362 24 280 Process Cooling and Refrigeration

442

Evolutions in 3D numerical relativity using fixed mesh refinement  

E-Print Network (OSTI)

We present results of 3D numerical simulations using a finite difference code featuring fixed mesh refinement (FMR), in which a subset of the computational domain is refined in space and time. We apply this code to a series of test cases including a robust stability test, a nonlinear gauge wave and an excised Schwarzschild black hole in an evolving gauge. We find that the mesh refinement results are comparable in accuracy, stability and convergence to unigrid simulations with the same effective resolution. At the same time, the use of FMR reduces the computational resources needed to obtain a given accuracy. Particular care must be taken at the interfaces between coarse and fine grids to avoid a loss of convergence at higher resolutions, and we introduce the use of "buffer zones" as one resolution of this issue. We also introduce a new method for initial data generation, which enables higher-order interpolation in time even from the initial time slice. This FMR system, "Carpet", is a driver module in the freely available Cactus computational infrastructure, and is able to endow generic existing Cactus simulation modules ("thorns") with FMR with little or no extra effort.

Erik Schnetter; Scott H. Hawley; Ian Hawke

2004-03-02T23:59:59.000Z

443

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel is exempt from the diesel fuel tax. The biodiesel or ethanol fuel blend...

444

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

fuels include liquid non-petroleum based fuel that can be placed in motor vehicle fuel tanks and used to operate on-road vehicles, including all forms of fuel commonly or...

445

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

fuel blends of at least 20% biodiesel fuel or that mix fuel from separate storage tanks and allow the user to select the percentage of renewable fuel. The maximum credit...

446

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

License Alternative fuel providers, bulk users, and retailers, or any person who fuels an alternative fuel vehicle from a private source that does not pay the alternative fuels tax...

447

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition,  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Digg

448

Fuel reforming for fuel cell application.  

E-Print Network (OSTI)

??Fossil fuels, such as natural gas, petroleum, and coal are currently the primary source of energy that drives the world economy. However, fossil fuel is… (more)

Hung, Tak Cheong

2006-01-01T23:59:59.000Z

449

Refinement and verification of concurrent systems specified in ObjectZ and CSP  

E-Print Network (OSTI)

Refinement and verification of concurrent systems specified in Object­Z and CSP Graeme Smith­Z and CSP. A common semantic basis for the two languages enables a unified method of refinement to be used, based upon CSP refinement. To enable state­based techniques to be used for the Object­Z components

Smith, Graeme

450

A Multi-Tiered Genetic Algorithm for Data Mining and Hypothesis Refinement  

E-Print Network (OSTI)

. The second stage of testing was on the ability to take results from a previous algorithm and perform refinement on the data model. Initially, Arcanum was used to refine its own data models. Of the six data models used for hypothesis refinement, Arcanum...

Taylor, Christopher M.

2009-01-01T23:59:59.000Z

451

Evaluation of residue drum storage safety risks  

SciTech Connect

A study was conducted to determine if any potential safety problems exist in the residue drum backlog at the Rocky Flats Plant. Plutonium residues stored in 55-gallon drums were packaged for short-term storage until the residues could be processed for plutonium recovery. These residues have now been determined by the Department of Energy to be waste materials, and the residues will remain in storage until plans for disposal of the material can be developed. The packaging configurations which were safe for short-term storage may not be safe for long-term storage. Interviews with Rocky Flats personnel involved with packaging the residues reveal that more than one packaging configuration was used for some of the residues. A tabulation of packaging configurations was developed based on the information obtained from the interviews. A number of potential safety problems were identified during this study, including hydrogen generation from some residues and residue packaging materials, contamination containment loss, metal residue packaging container corrosion, and pyrophoric plutonium compound formation. Risk factors were developed for evaluating the risk potential of the various residue categories, and the residues in storage at Rocky Flats were ranked by risk potential. Preliminary drum head space gas sampling studies have demonstrated the potential for formation of flammable hydrogen-oxygen mixtures in some residue drums.

Conner, W.V.

1994-06-17T23:59:59.000Z

452

Technical support to the Solvent Refined Coal (SRC) demonstration projects: assessment of current research and development  

SciTech Connect

A program to demonstrate Solvent Refined Coal (SRC) technology has been initiated by the US Department of Energy (DOE) in partnership with two industrial groups. Project management responsibility has been assigned to the Oak Ridge Operations Office (ORO) of DOE. ORO requested that the Oak Ridge National Laboratory assess current research and development (R and D) activities and develop recommendations for those activities that might contribute to successful completion of the SRC demonstration plant projects. The objectives of this final report are to discuss in detail the problem areas in SRC; to discuss the current and planned R and D investigations relevant to the problems identified; and to suggest appropriate R and D activities in support of designs for the SRC demonstration plants. Four types of R and D activities are suggested: continuation of present and planned activities; coordination of activities and results, present and proposed; extension/redirection of activities not involving major equipment purchase or modifications; and new activities. Important examples of the first type of activity include continuation of fired heater, slurry rheology, and slurry mixing studies at Ft. Lewis. Among the second type of activity, coordination of data acquisition and interpretation is recommended in the areas of heat transfer, vapor/liquid equilibria, and physical properties. Principal examples of recommendations for extension/redirection include screening studies at laboratory scale on the use of carbonaceous precoat (e.g., anthracite) infiltration, and 15- to 30-day continuous tests of the Texaco gasifier at the Texaco Montebello facility (using SRC residues).

Edwards, M.S.; Rodgers, B.R.; Brown, C.H.; Carlson, P.K.; Gambill, W.R.; Gilliam, T.M.; Holmes, J.M.; Krishnan, R.P.; Parsly, L.F.

1980-12-01T23:59:59.000Z

453

Table 3.1 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010; 1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99 3112 Grain and Oilseed Milling 350 16,479 * * 118 * 6 0 45 311221 Wet Corn Milling 214 7,467 * * 51 * 5 0 25 31131 Sugar Manufacturing 107 1,218 * * 15 * 2 * 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 9,203

454

Residue management at Rocky Flats  

SciTech Connect

Past plutonium production and manufacturing operations conducted at the Rocky Flats Environmental Technology Site (RFETS) produced a variety of plutonium-contaminated by-product materials. Residues are a category of these materials and were categorized as {open_quotes}materials in-process{close_quotes} to be recovered due to their inherent plutonium concentrations. In 1989 all RFETS plutonium production and manufacturing operations were curtailed. This report describes the management of plutonium bearing liquid and solid wastes.

Olencz, J.

1995-12-31T23:59:59.000Z

455

Transforms for prediction residuals in video coding  

E-Print Network (OSTI)

Typically the same transform, the 2-D Discrete Cosine Transform (DCT), is used to compress both image intensities in image coding and prediction residuals in video coding. Major prediction residuals include the motion ...

Kam??l?, Fatih

2010-01-01T23:59:59.000Z

456

,"U.S. Total Adjusted Distillate Fuel Oil and Kerosene Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

"KD0VABNUS1","KPRVABNUS1" "Date","U.S. Total Distillate Adj SalesDeliveries to Vessel Bunker Consumers (Thousand Gallons)","U.S. Residual Fuel Oil Adj SalesDeliveries to Vessel...

457

Environmental and economic tradeoffs of feedstock usage for liquid fuels and power production  

E-Print Network (OSTI)

The thesis is divided into two parts - 1) assessing the energy return on investment for alternative jet fuels, and 2) quantifying the tradeoffs associated with the aviation and non-aviation use of agricultural residues. ...

Trivedi, Parthsarathi

2014-01-01T23:59:59.000Z

458

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and a refiner or supplier that limits or restricts the wholesaler's ability to blend petroleum products with ethanol or biodiesel is null and void. This regulation applies to...

459

Diesel Fuel Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

Diesel Fuel Price Pass-through Diesel Fuel Price Pass-through EIA Home > Petroleum > Petroleum Feature Articles Diesel Fuel Price Pass-through Printer-Friendly PDF Diesel Fuel Price Pass-through by Michael Burdette and John Zyren* Over the past several years, the Energy Information Administration (EIA) has extensively studied the relationships between wholesale and retail markets for petroleum products. Beginning with gasoline, we looked at the two ends of the pricing structure in the U.S. market: daily spot prices, which capture sales of large quantities of product between refiners, importers/exporters, and traders; and weekly retail prices, measured at local gasoline outlets nationwide. In the course of this analysis, EIA has found that the relationships between spot and retail prices are consistent and predictable, to the extent that changes in spot prices can be used to forecast subsequent changes in retail prices for the appropriate regions. This article represents the extension of this type of analysis and modeling into the diesel fuel markets.

460

A Characterization and Evaluation of Coal Liquefaction Process Streams. Results of Inspection Tests on Nine Coal-Derived Distillation Cuts in the Jet Fuel Boiling Range  

SciTech Connect

This report describes the assessment of the physical and chemical properties of the jet fuel (180-300 C) distillation fraction of nine direct coal liquefaction products and compares those properties to the corresponding specifications for aviation turbine fuels. These crude coal liquids were compared with finished fuel specifications specifically to learn what the refining requirements for these crudes will be to make them into finished fuels. The properties of the jet fuel fractions were shown in this work to require extensive hydrotreating to meet Jet A-1 specifications. However, these materials have a number of desirable qualities as feedstocks for the production of high energy-density jet fuels.

S. D. Brandes; R. A. Winschel

1999-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart comparing fuel properties and characteristics for multiple fuels. Select the fuel and properties of interest. Select Fuels Clear all All Fuels Gasoline Diesel (No. 2) Biodiesel Compressed Natural Gas (CNG) Electricity Ethanol Hydrogen Liquefied Natural Gas (LNG) Propane (LPG)

462

Fuel cell generating plant  

SciTech Connect

This paper discusses a fuel cell generating plant. It comprises a compressed fuel supply; a fuel cell system including fuel conditioning apparatus and fuel cells; a main fuel conduit for conveying fuel from the fuel supply to the fuel cell system; a turbo compressor having a turbine receiving exhaust products from the fuel cell system and a compressor for compressing air; a main air conduit for conveying air from the compressor to the fuel cell system; an auxiliary burner having a primary burner and a pilot; an auxiliary air conduit for conveying air from the compressed fuel supply to the auxiliary burner; an auxiliary exhaust conduit for conveying exhaust products from the auxiliary burner to the turbine; a check valve located between the fuel supply and the pilot; and a gas accumulator in the auxiliary fuel conduit located between the check valve and the pilot.

Sanderson, R.A.

1990-11-27T23:59:59.000Z

463

Cogeneration handbook for the petroleum refining industry. [Contains glossary  

SciTech Connect

The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the petroleum refining industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

1984-03-01T23:59:59.000Z

464

Nanosized molecular sieves as petroleum refining and petrochemical catalysts  

Science Journals Connector (OSTI)

Abstract Nanosized ZSM-5 was synthesized and used for straight run gasoline reforming. Nanosized ? was synthesized and used for the alkylation of benzene and ethylene in ethylbenzene production. Nanosized titanosilicate molecular sieve with a hollow structure (HTS) was synthesized and used for the oximation of cyclohexanone. Nanosized silicalite-1 was synthesized and used for the gas phase Beckmann rearrangement of cyclohexanone oxime in caprolactam production. Recent progress in the synthesis and application of nanosized ZSM-5, ?, TS-1, and silicalite-1 were reviewed. The catalyst lifetimes were prolonged when nanosized molecular sieves were used as petroleum refining and petrochemical catalysts.

Xuhong MU; Dianzhong WANG; Yongrui WANG; Min LIN; Shibiao CHENG; Xingtian SHU

2013-01-01T23:59:59.000Z

465

LMFBR fuel component costs  

SciTech Connect

A significant portion of the cost of fabricating LMFBR fuels is in the non-fuel components such as fuel pin cladding, fuel assembly ducts and end fittings. The contribution of these to fuel fabrication costs, based on FFTF experience and extrapolated to large LMFBR fuel loadings, is discussed. The extrapolation considers the expected effects of LMFBR development programs in progress on non-fuel component costs.

Epperson, E.M.; Borisch, R.R.; Rice, L.H.

1981-10-29T23:59:59.000Z

466

Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversions to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle...

467

Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B:...

468

Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology...

469

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department...

470

Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by...

471

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

472

DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition Overview of DOE's...

473

DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 This program record from the...

474

Decontamination and decarburization of stainless and carbon steel by melt refining  

SciTech Connect

With many nuclear reactors and facilities being decommissioned in the next ten to twenty years the concern for handling and storing Radioactive Scrap Metal (RSM) is growing. Upon direction of the DOE Office of Environmental Restoration and Waste Management, Lockheed Idaho Technology Company (LITCO) is developing technologies for the conditioning of spent fuels and high-level wastes for interim storage and repository acceptance, including the recycling of Radioactive Scrap Metals (RSM) for beneficial reuse with the DOE complex. In February 1993, Montana Tech of the University of Montana was contracted to develop and demonstrate technologies for the decontamination of stainless steel RSM. The general objectives of the Montana Tech research program included conducting a literature survey, performing laboratory scale melt refining experiments to optimize decontaminating slag compositions, performing an analysis of preferred melting techniques, coordinating pilot scale and commercial scale demonstrations, and producing sufficient quantities of surrogate-containing material for all of the laboratory, pilot and commercial scale test programs. Later on, the program was expanded to include decontamination of carbon steel RSM. Each research program has been completed, and results are presented in this report.

Mizia, R.E.; Worcester, S.A.; Twidwell, L.G.; Webber, D.; Paolini, D.J.; Weldon, T.A.

1996-09-05T23:59:59.000Z

475

Process to recycle shredder residue  

DOE Patents (OSTI)

A system and process for recycling shredder residue, in which separating any polyurethane foam materials are first separated. Then separate a fines fraction of less than about 1/4 inch leaving a plastics-rich fraction. Thereafter, the plastics rich fraction is sequentially contacted with a series of solvents beginning with one or more of hexane or an alcohol to remove automotive fluids; acetone to remove ABS; one or more of EDC, THF or a ketone having a boiling point of not greater than about 125.degree. C. to remove PVC; and one or more of xylene or toluene to remove polypropylene and polyethylene. The solvents are recovered and recycled.

Jody, Bassam J. (Chicago, IL); Daniels, Edward J. (Oak Lawn, IL); Bonsignore, Patrick V. (Channahon, IL)

2001-01-01T23:59:59.000Z

476

Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry  

E-Print Network (OSTI)

fuel and associated electricity), and costs per measure arecombined fuel and electricity savings and costs are shown inof 68  Combined  Cost of  Electricity  Fuel and  Conserved 

Morrow III, William R.

2014-01-01T23:59:59.000Z

477

Chemical Kinetic Modeling of Fuels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

petroleum based fuels * Non-petroleum based fuels: - Biodiesel and new generation biofuels - Fischer-Tropsch (F-T) fuels - Oil sand derived fuels Reduce mechanisms for...

478

Fuel Cell Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Links Fuel Cell Links The links below are provided as additional resources for fuel-cell-related information. Most of the linked sites are not part of, nor affiliated with, fueleconomy.gov. We do not endorse or vouch for the accuracy of the information found on such sites. Fuel Cell Vehicles and Manufacturers Chevrolet General Motors press release about the Chevrolet Fuel Cell Equinox Ford Ford overview of their hydrogen fuel cell vehicles Honda FCX Clarity official site Hyundai Hyundai press release announcing the upcoming Tucson Fuel Cell Mercedes-Benz Ener-G-Force Fuel-cell-powered concept SUV Nissan Nissan TeRRA concept SUV Toyota Overview of Toyota fuel cell technology Hydrogen- and Fuel-Cell-Related Information and Tools Fuel Cell Vehicles Brief overview of fuel cell vehicles provided by DOE's Alternative Fuels Data Center (AFDC)

479

Fuel Guide Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 MODEL YEAR 2000 FUEL ECONOMY LEADERS IN POPULAR VEHICLE CLASSES Listed below are the vehicles with the highest fuel economy for the most popular classes, including both automatic and manual transmissions and gasoline and diesel vehicles. Please be aware that many of these vehicles come in a range of engine sizes and trim lines, resulting in different fuel economy values. Check the fuel economy guide or the fuel economy sticker on new vehicles to find the values for a particular version of a vehicle. CONTENTS MODEL YEAR 2000 FUEL ECONOMY LEADERS ................. 1 HOW TO USE THIS GUIDE ..................................................... 2 FUEL ECONOMY AND YOUR ANNUAL FUEL COSTS .......... 3 WHY FUEL ECONOMY IS IMPORTANT .................................

480

Irradiated test fuel shipment plan for the LWR MOX fuel irradiation test project  

SciTech Connect

This document outlines the responsibilities of DOE, DOE contractors, the commercial carrier, and other organizations participating in a shipping campaign of irradiated test specimen capsules containing mixed-oxide (MOX) fuel from the Idaho National Engineering and Environmental Laboratory (INEEL) to the Oak Ridge National Laboratory (ORNL). The shipments described here will be conducted according to applicable regulations of the US Department of Transportation (DOT), US Nuclear Regulatory Commission (NRC), and all applicable DOE Orders. This Irradiated Test Fuel Shipment Plan for the LWR MOX Fuel Irradiation Test Project addresses the shipments of a small number of irradiated test specimen capsules and has been reviewed and agreed to by INEEL and ORNL (as participants in the shipment campaign). Minor refinements to data entries in this plan, such as actual shipment dates, exact quantities and characteristics of materials to be shipped, and final approved shipment routing, will be communicated between the shipper, receiver, and carrier, as needed, using faxes, e-mail, official shipping papers, or other backup documents (e.g., shipment safety evaluations). Any major changes in responsibilities or data beyond refinements of dates and quantities of material will be prepared as additional revisions to this document and will undergo a full review and approval cycle.

Shappert, L.B.; Dickerson, L.S.; Ludwig, S.B.

1998-10-16T23:59:59.000Z

Note: This page contains sample records for the topic "refiner residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Marine fuels. January 1973-February 1988 (Citations from Information Services in Mechanical Engineering data base). Report for January 1973-February 1988  

SciTech Connect

This bibliography contains citations concerning research and experimentation, fuel-system design, future demands, contrast and comparisons, and applications of various marine-engine fuels and lubricants. Residual fuel oils, coal-powered steam propulsion, homogenizing and treating fuels, coal liquefication, diesel-fuel power, electrical power, gas turbines, waste-exhaust heat-energy recovery systems, exhaust emissions, water-emulsified fuels, conservation, and nuclear fuels are among the topics discussed. Developments in fuels and their effects on power-plant wear are included. (This updated bibliography contains 260 citations, 73 of which are new entries to the previous edition.)

Not Available

1988-03-01T23:59:59.000Z

482

Marine fuels. January, 1973-October, 1981 (citations from Information Services in Mechanical Engineering Data Base). Report for Jan 73-Oct 81  

SciTech Connect

Citations in this bibliography cover research and experimentation, fuel system design, future demands, contrast and comparisons, and applications of various marine engine fuels and lubricants. Residual fuel oils, coal powered steam propulsion, homogenizing and treating fuels, electrical power, gas turbines, waste exhaust heat-energy recovery systems, exhaust emissions, conservation, and nuclear fuels are among the topics discussed relevant to marine engine fuels and fuel systems. Developments in fuels and their effects on power plant wear are included. (Contains 74 citations fully indexed and including a title list.)

Not Available

1981-10-01T23:59:59.000Z

483

A summary of truck fuel-saving measures developed with industry participation  

SciTech Connect

This report describes the third project undertaken by the Center for Transportation Research, Argonne National Laboratory (ANL), in a US Department of Energy program designed to develop and distribute compendiums of measures for saving transportation fuel. A matrix, or chart, of more than 60 fuel-saving measures was developed by ANL and refined with the assistance of trucking industry operators and researchers at an industry coordination meeting held in August 1982. The first two projects used similar meetings to refine matrices developed for the international maritime and US railroad industries. The consensus reached by those at the meeting was that the single most important element in a truck fuel-efficiency improvement program is the human element -- namely the development of strong motivation among truck drivers to save fuel. The role of the driver is crucial to the successful use of fuel-saving equipment and operating procedures. Identical conclusions were reached in the earlier maritime and rail meetings, thus providing a strong indication of the pervasive importance of the human element in energy-efficient transportation systems. The number and variety of changes made to the matrix are also delineated, including addition and deletion of various options and revisions of fuel-saving estimates, payback period estimates, and remarks concerning items such as the advantages, disadvantages, and cautions associated with various measures. The quality and quantity of the suggested changes demonstrate the considerable value of using a forum of industry operators and researchers to refine research data that are intended for practical application.

Bertram, K.M.; Saricks, C.L. [Argonne National Lab., IL (United States); Gregory, E.W. II [USDOE, Washington, DC (United States); Moore, A.J. [Northwestern Univ., Evanston, IL (United States)

1983-09-01T23:59:59.000Z

484

Fuels options conference  

SciTech Connect

The proceedings of the Fuels Options Conference held May 9-10, 1995 in Atlanta, Georgia are presented. Twenty-three papers were presented at the conference that dealt with fuels outlook; unconventional fuels; fuel specification, purchasing, and contracting; and waste fuels applications. A separate abstract was prepared for each paper for inclusion in the Energy Science and Technology Database.

NONE

1995-09-01T23:59:59.000Z

485

Chapter 3 - Fuels for Fuel Cells  

Science Journals Connector (OSTI)

Publisher Summary This chapter deals with various types of liquid fuels and the relevant chemical and physical properties of these fuels as a means of comparison to the fuels of the future. It gives an overview of the manufacture and properties of the common fuels as well as a description of various biofuels. A fuel mixture usually contains a wide range of organic compounds (usually hydrocarbons). The specific mixture of hydrocarbons gives a fuel its characteristic properties, such as boiling point, melting point, density, viscosity, and a host of other properties. Depending on the application (stationary, central power, remote, auxiliary, transportation, military, etc.), there are a wide range of conventional fuels, such as natural gas, liquefied petroleum gas, light distillates, methanol, ethanol, dimethyl ether, naphtha, gasoline, kerosene, jet fuels, diesel, and biodiesel, that could be used in reforming processes to produce hydrogen (or hydrogen-rich synthesis gas) to power fuel cells. Fossils fuels include gaseous fuels, gasoline, kerosene, diesel fuel, and jet fuels. Gaseous fuels include natural gas and liquefied petroleum gas. Types of gasoline include automotive gasoline, aviation gasoline, and gasohol. Some additives added into gasoline are antioxidants, corrosion inhibitors, demulsifiers, anti-icing, dyes and markers, drag reducers, and oxygenates.

James G. Speight

2011-01-01T23:59:59.000Z

486

Effects of moisture on wear of components lubricated with diesel fuel. Interim report, May 1996--September 1997  

SciTech Connect

The durability of some fuel injection systems on compression-ignition engines will be adversely affected by fuels of significantly low lubricity. Previous work has shown that fuel-lubricated wear is sensitive to the availability of moisture, particularly in severely refined fuels, which are designed to minimize exhaust emissions. The effects of moisture may be particularly relevant in a marine environment in which sea water is used as ballast in the fuel tanks. Traditional, less-refined fuels contain natural corrosion inhibitors that reduce oxidative wear, although alternate wear mechanisms may still affect long-term durability. However, no detailed study bas been performed to define the effects of water contamination and its relationship to fuel composition. Standardized laboratory-scale tests that show good correlation with wear in full-scale fuel injection systems for ground vehicles are available. In the present work, the standard procedures for the HFRR and BOCLE/SLBOCLE apparatus were modified to show the effects of both dissolved and emulsified water on fuel-lubricated wear. The results indicate that the lubricity of all but the most severely hydrotreated fuels are insensitive to contamination by either deionized or salt water. Moreover, the relatively short aeration period used in the ASTM D 5001 and D 6078 BOCLE test procedures has no measurable effect on water concentration in the test fuel sample.

Lacey, P.I.; Erwin, J.

1999-03-01T23:59:59.000Z

487

Determination of liquid and solid phase composition in partially frozen middle distillate fuels  

SciTech Connect

One of the tasks of the United States Navy Mobility Fuels program at the Naval Research Laboratory is to determine the effect of composition on the freezing properties of liquid fuels. The combination of requirements for ship and jet aircraft fuels of a low freezing point (to permit cold temperature operations around the world) and a flash point minimum (to reduce the hazard of storage and transport of liquid fuels on board ship) leads to opposing compositional needs. This is because many components of a fuel that tend to lower the freezing point (small hydrocarbons with higher vapor pressures) will also reduce the flash point. Because of these constraints, it is not always practical to produce fuels meeting these requirements from available crudes. This limits the amount of crudes and hence the amount of JP-5, the Navy fuel for carrier based aircraft, which can be produced from ''a barrel of crude.'' With increased knowledge and understanding of the components that first crystallize out of a cold fuel, it may be possible to modify refining techniques to increase the yield of Navy liquid fuels per barrel of crude without compromising either the freezing point or the flash point restrictions. This paper deals with the method used to separate the liquid filtrate from the precipitate in fuels cooled to predetermined temperatures below their freezing points, the method of analyzing the fuel and fuel fractions, and the results obtained from a study of one particular jet fuel.

Van Winkle, T.L.; Affens, W.A.; Beal, E.J.; Mushrush, G.W.; Hazlett, R.N.; DeGuzman, J.

1986-04-01T23:59:59.000Z

488

Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Grants

489

Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle Replacement Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle Replacement Grants

490

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Conversion

491

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

492

Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle Labeling Requirement

493

Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Fueling Biofuel Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Fueling Infrastructure Tax Credit

494

Alternative Fuels Data Center: Alternative Fuels Promotion and Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Fuels Promotion and Information to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion and Information on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion and Information

495

Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Ethanol Fuel Blend Dispensing Regulations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Dispensing Regulations

496

Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Fuels Taxation Study Commission to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Taxation Study Commission

497

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

498

Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Conversion Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Conversion Definitions

499

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Flexible Fuel Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on AddThis.com... Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly

500

Alternative Fuels Data Center: Alternative Fuel Production Subsidy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Production Subsidy Prohibition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Production Subsidy Prohibition