Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance  

SciTech Connect (OSTI)

As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

Dunn, L.; Gostein, M.; Emery, K.

2012-09-01T23:59:59.000Z

2

Pyranometers and Reference Cells: Part 2: What Makes the Most Sense for PV Power Plants?; Preprint  

SciTech Connect (OSTI)

As described in Part 1 of this two-part series, thermopile pyranometers and photovoltaic (PV) reference cells can both be used to measure irradiance; however, there are subtle differences between the data that are obtained. This two-part article explores some implications of uncertainty and subtleties of accurately measuring PV efficiency in the field. Part 2 of the series shows how reference cells can be used to more confidently predict PV performance, but how this could best be accomplished if historic irradiance data could be available in PV-technology-specific formats.

Meydbray, J.; Riley, E.; Dunn, L.; Emery, K.; Kurtz, S.

2012-10-01T23:59:59.000Z

3

reference case | OpenEI  

Open Energy Info (EERE)

reference case reference case Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

4

Appendix A. Reference case projections  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

U.S. Energy Information Administration | International Energy Outlook 2014 26 Appendix A Table A2. World liquids consumption by region, Reference case, 2009-40 (million barrels per...

5

Sunshine PV | Open Energy Information  

Open Energy Info (EERE)

PV Jump to: navigation, search Name: Sunshine PV Place: Taiwan Sector: Solar Product: Taiwan-based subsidiary of Solartech Energy and thin-film PV module supplier. References:...

6

Generic Argillite/Shale Disposal Reference Case  

E-Print Network [OSTI]

of eastern Devonian gas shale: Society of PetroleumShale Disposal Reference Case August 2014 Borehole activity: Oil and gas

Zheng, Liange

2014-01-01T23:59:59.000Z

7

Appendix A. Reference case projections  

Gasoline and Diesel Fuel Update (EIA)

6 Appendix C Table C5. World crude and lease condensate a production by region and country, Low Oil Price case, 2009-40 (million barrels per day) Region History Projections Average...

8

Appendix A. Reference case projections  

Gasoline and Diesel Fuel Update (EIA)

44 Appendix B Table B5. World crude and lease condensate a production by region and country, High Oil Price case, 2009-40 (million barrels per day) Region History Projections...

9

Sandia National Laboratories: PV Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Reference Model 5...

10

PV World Co Ltd | Open Energy Information  

Open Energy Info (EERE)

PV World Co Ltd Place: Singapore Product: Singapore-based PV module manufacturer. References: PV World Co Ltd1 This article is a stub. You can help OpenEI by expanding it. PV...

11

EIA - Appendix A - Reference Case Projection Tables  

Gasoline and Diesel Fuel Update (EIA)

Tables (2005-2035) Tables (2005-2035) International Energy Outlook 2010 Reference Case Projections Tables (2005-2035) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Appendix A. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region Table A1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel Table A2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

12

Solar For Schools: A Case Study in Identifying and Implementing Solar Photovoltaic (PV) Projects in Three California School Districts: Preprint  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Solar America Showcase program seeks to accelerate demand for solar technologies among key end use market sectors. As part of this activity the DOE provides Technical Assistance through its national laboratories to large-scale, high-visibility solar installation projects. The Solar Schools Assessment and Implementation Project (SSAIP) in the San Francisco Bay area was selected for a 2009 DOE Solar American Showcase award. SSAIP was formed through the efforts of the nonprofit Sequoia Foundation and includes three school districts: Berkeley, West Contra Costa, and Oakland Unified School Districts. This paper summarizes the technical assistance efforts that resulted from this technical assistance support. It serves as a case study and reference document detailing the steps and processes that could be used to successfully identify, fund, and implement solar PV projects in school districts across the country.

Kandt, A.

2011-04-01T23:59:59.000Z

13

Beijing Sunpu Solar PV Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Municipality, China Zip: 100083 Sector: Solar Product: Manufacturers of PV-powered street lights, inverters and other solar PV systems. References: Beijing Sunpu Solar PV...

14

Annual Energy Outlook 2011 Reference Case  

Gasoline and Diesel Fuel Update (EIA)

AEO2012 Early Release Rollout Presentation AEO2012 Early Release Rollout Presentation Paul H. Nitze School of Advanced International Studies John Hopkins University January 23, 2012 | Washington, DC Howard Gruenspecht, Acting Administrator Annual Energy Outlook 2012 Early Release Reference Case Key results from the AEO2012 Reference case, which assumes current laws remain unchanged 2 Howard Gruenspecht AEO2012, January 23, 2012 * Projected growth of energy use slows over the projection period reflecting an extended economic recovery and increasing energy efficiency in end-use applications * Domestic crude oil production increases, reaching levels not experienced since 1994 by 2020 * With modest economic growth, increased efficiency, growing domestic production, and continued adoption of nonpetroleum liquids, net

15

Generic Argillite/Shale Disposal Reference Case  

SciTech Connect (OSTI)

Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactive waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jové Colon et al. (2014).

Zheng, Liange; Jov& #233; Colon, Carlos; Bianchi, Marco; Birkholzer, Jens

2014-08-08T23:59:59.000Z

16

EIA - Reference Case Projection Tables 1990-2030  

Gasoline and Diesel Fuel Update (EIA)

Tables (1990-2030) Tables (1990-2030) International Energy Outlook 2006 Reference Case Projections Tables (1990-2030) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region, Reference Case Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel, Reference Case Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800.

17

Annual Energy Outlook 2011 Reference Case  

Gasoline and Diesel Fuel Update (EIA)

Center for Strategic and International Studies Center for Strategic and International Studies Howard Gruenspecht, Acting Administrator September 19, 2011 | Washington, DC International Energy Outlook 2011 Key findings in the IEO2011 Reference case 2 Howard Gruenspecht CSIS, September 19, 2011 * World energy consumption increases by 53% between 2008 and 2035 with half of the increase attributed to China and India * Renewables are the world's fastest-growing energy source, at 2.8% per year; renewables share of world energy grows to roughly 15% in 2035 * Fossil fuels continue to supply almost 80% of world energy use in 2035 * Liquid fuels remain the largest energy source worldwide through 2035, but the oil share of total energy declines to 28% in 2035, as sustained high oil prices dampen demand and encourage fuel

18

PV Basics  

Science Journals Connector (OSTI)

PV systems work by converting sunlight directly into electricity. The conversion process takes place in a solar or PV cell, usually made of silicon, although new materials are being developed. PV cells need to...

2009-01-01T23:59:59.000Z

19

Validation of PV performance models using satellite-based irradiance measurements : a case study.  

SciTech Connect (OSTI)

Photovoltaic (PV) system performance models are relied upon to provide accurate predictions of energy production for proposed and existing PV systems under a wide variety of environmental conditions. Ground based meteorological measurements are only available from a relatively small number of locations. In contrast, satellite-based radiation and weather data (e.g., SUNY database) are becoming increasingly available for most locations in North America, Europe, and Asia on a 10 x 10 km grid or better. This paper presents a study of how PV performance model results are affected when satellite-based weather data is used in place of ground-based measurements.

Stein, Joshua S.; Parkins, Andrew (Clean Power Research); Perez, Richard (University at Albany)

2010-05-01T23:59:59.000Z

20

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) International Energy Outlook 2008 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) Formats Data Table Titles (1 to 12 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EIA - Appendix A - Reference Case Projection Tables 1990-2030  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections Tables (1990-2030) Reference Case Projections Tables (1990-2030) International Energy Outlook 2008 Reference Case Projections Tables (1990-2030) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region Table A1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel Table A2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

22

EIA - International Energy Outlook 2007-Reference Case Projection Tables  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections Tables (1990-2030) Reference Case Projections Tables (1990-2030) International Energy Outlook 2007 Reference Case Projections Tables (1990-2030) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region Table A1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel Table A2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

23

EIA - International Energy Outlook 2007 - Reference Case Projections for  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2004-2030) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2004-2030) International Energy Outlook 2007 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2004-2030) Formats Data Table Titles (1 to 12 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

24

Ambiental PV | Open Energy Information  

Open Energy Info (EERE)

Ambiental PV Ambiental PV Jump to: navigation, search Name Ambiental PV Place Bahia, Brazil Zip 40140-380 Sector Carbon Product Bahia-based carbon consultancy firm. References Ambiental PV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ambiental PV is a company located in Bahia, Brazil . References ↑ "Ambiental PV" Retrieved from "http://en.openei.org/w/index.php?title=Ambiental_PV&oldid=342095" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 186306960

25

Annual Energy Outlook 2013 Early Release Reference Case  

Gasoline and Diesel Fuel Update (EIA)

Early Release Reference Case Early Release Reference Case AEO2013 Early Release Rollout Presentation Paul H. Nitze School of Advanced International Studies Johns Hopkins University December 5, 2012 | Washington, D.C. by Adam Sieminski, Administrator Key results from the AEO2013 Reference case: 2 * Growth in energy production outstrips consumption growth * Crude oil production, particularly from tight oil plays, rises sharply over the next decade * Natural gas production is higher throughout the Reference case projection than it was in AEO2012, serving the industrial and power sectors and an expanding export market * Motor gasoline consumption reflects the introduction of more stringent fuel economy standards, while diesel fuel consumption is moderated by increased natural gas use in heavy-duty vehicles

26

IRRADIANCE MAPS APPLIED FOR THE PERFORMANCE ASSESSMENT OF PV SYSTEMS -A CASE STUDY FOR THE GERMAN FEDERAL STATE OF SAXONY  

E-Print Network [OSTI]

in Germany given by a guaranteed feed-in tariff, carefully prepared and controlled PV projects offer

Heinemann, Detlev

27

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel Tables (2006-2030) for Electricity Capacity and Generation by Fuel Tables (2006-2030) International Energy Outlook 2009 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2006-2030) Formats Data Table Titles (1 to 18 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

28

EIA - Appendix A - Reference Case Projection Tables 1990-2030  

Gasoline and Diesel Fuel Update (EIA)

Tables (1990-2030) Tables (1990-2030) International Energy Outlook 2009 Reference Case Projections Tables (1990-2030) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region Table A1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel Table A2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

29

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel Tables (2007-2035) for Electricity Capacity and Generation by Fuel Tables (2007-2035) International Energy Outlook 2010 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2007-2035) Formats Data Table Titles (1 to 18 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Appendix H. Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

30

Annual Energy Outlook 2013 Early Release Reference Case  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Energy Outlook 2014 Annual Energy Outlook 2014 Early Release Reference Case AEO2014 Early Release Rollout Presentation Paul J. Nitze School of Advanced International Studies Johns Hopkins University December 16, 2013 | Washington, DC by Adam Sieminski, Administrator Key results from the AEO2014 Reference case 2 * Growing domestic production of natural gas and oil continues to reshape the U.S. energy economy, with crude oil approaching the 1970 all-time high of 9.6 million barrels per day * Light-duty vehicle energy use declines sharply reflecting slowing growth in vehicle miles traveled and accelerated improvement in vehicle efficiency * With continued growth in shale gas production, natural gas becomes the largest source of U.S. electric power generation, surpassing coal by 2035,

31

Economics Comparison of Building Integrated PV in Different Policy Environments: The Cases of New York and Beijing  

Science Journals Connector (OSTI)

U.S. and China are the world’s two biggest CO2...emitters. Solar PV technology could be an alternative that meets energy needs while reducing environmental impacts in both ... (BIPV) application on typical commer...

John Byrne; Xilin Zhang; Aiming Zhou

2009-01-01T23:59:59.000Z

32

Sandia National Laboratories: PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia's solar photovoltaic (PV) work is focused on developing cost-effective, reliable photovoltaic energy systems and accelerating the integration of PV technology in the...

33

Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open Energy  

Open Energy Info (EERE)

Photovoltaics Cooperative aka PV Squared Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place New Britain, Connecticut Zip 6051 Sector Solar Product Solar PV system installer. References Pioneer Valley Photovoltaics Cooperative (aka PV Squared)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Pioneer Valley Photovoltaics Cooperative (aka PV Squared) is a company located in New Britain, Connecticut . References ↑ "Pioneer Valley Photovoltaics Cooperative (aka PV Squared)" Retrieved from "http://en.openei.org/w/index.php?title=Pioneer_Valley_Photovoltaics_Cooperative_aka_PV_Squared&oldid=349764"

34

EIA-Annual Energy Outlook 2009 -Year-by-Year Reference Case Tables  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Tables (2006-2030) Reference Case Tables (2006-2030) Annual Energy Outlook 2009 with Projections to 2030 Year-by-Year Reference Case Tables (2006-2030) Table Title Formats Summary Reference Case Tables PDF GIF Year-by-Year Reference Case Tables Year-by-Year Reference Case Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 1. Total Energy Supply and Disposition Summary XLS GIF Table 2. Energy Consumption by Sector and Source XLS GIF Table 3. Energy Prices by Sector and Source XLS GIF Table 4. Residential Sector Key Indicators and Consumption XLS GIF Table 5. Commercial Sector Indicators and Consumption XLS GIF Table 6. Industrial Sector Key Indicators and Consumption XLS GIF Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption

35

References  

Science Journals Connector (OSTI)

......dosimeter: An improved cathode ray determination...Stopping Powers of Materials (1989) Gaithersburg...of the physically active ultraviolet (which...Standard Reference Materials: Accuracy in Analytical...dosimeter: An improved cathode ray determination...Stopping Powers of Materials, NIST Standard......

References

2008-12-01T23:59:59.000Z

36

Is Germany?s energy transition a case of successful green industrial policy? Contrasting wind and solar PV  

Science Journals Connector (OSTI)

Abstract In this paper, we address the challenge of Germany?s energy transition (Energiewende) as the centrepiece of the country?s green industrial policy. In addition to contributing to global climate change objectives, the Energiewende is intended to create a leading position for German industry in renewable energy technologies, boost innovative capabilities and create employment opportunities in future growth markets at the least possible cost. The success in reaching these aims, and indeed the future of the entire concept, is hotly debated. The paper aims to provide an up-to-date assessment of what has become a fierce controversy by comparing solar photovoltaic (PV) and wind energy along five policy objectives: (1) competitiveness, (2) innovation, (3) job creation, (4) climate change mitigation, and (5) cost. We find mixed evidence that Germany reaches its green industrial policy aims at reasonable costs. Wind energy seems to perform better against all policy objectives, while the solar PV sector has come under intense pressure from international competition. However, this is only a snapshot of current performance, and the long term and systemic perspective required for the energy sector transformation suggests a need for a balanced mix of a variety of clean energy sources.

Anna Pegels; Wilfried Lütkenhorst

2014-01-01T23:59:59.000Z

37

References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis Analysis Analysis - Home Analytical Dashboards Computerized Accident Incident Reporting and Recordkeeping System (CAIRS) Corporate Safety Analysis Trends Daily Occurrence Reports Electrical Safety Occurrences Final Occurrence Reports Access System Login Lessons Learned and Best Practices Occurrence Reporting and Processing System (ORPS) Operating Experience Committee Operating Experience Level 1, 2, and 3 Documents Operating Experience Summaries Radiation Exposure Monitoring Systems (REMS) Safety Bulletins Safety and Health Alerts Safety Basis Information System (SBIS) Suspect/Counterfeit Items and Defective Items (SCI/DI) References HSS Logo References DOE O 210.2A, DOE Corporate Operating Experience Program (Apr 08, 2011) DOE O 210.2 Crosswalk DOE O 231.1B, Environment, Safety and Health Reporting (Jun 27, 2011)

38

INTEGRATION OF PV IN DEMAND RESPONSE  

E-Print Network [OSTI]

INTEGRATION OF PV IN DEMAND RESPONSE PROGRAMS Prepared by Richard Perez et al. NREL subcontract response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing by solid evidence from three utility case studies. BACKGROUND Demand Response: demand response (DR

Perez, Richard R.

39

REFERENCES  

Broader source: Energy.gov (indexed) [DOE]

205.1B 205.1B Approved 05-16-2011 Page 1 REFERENCES 1. INTRODUCTION 2. . Includes a list of sources cited in the directive and additional information sources to assist in implementing DOE Order 205.1B, Cyber Security Program. FEDERAL LAWS AND REGULATIONS a. Public Law (P.L.) 93-579, Privacy Act of 1974, as amended [Title 5 United States Code (U.S.C.) Section 552a]. . b. P.L. 104-106, Division E, Clinger Cohen Act (CCA) (formerly Information Technology Management Reform Act of 1996. c. P.L. 106-65, "National Defense Authorization Act [Section 3212(d)], enacted October 1999. d. P.L. 107-347, Title III, Federal Information Security Management Act of 2002 (FISMA), enacted December 2002. 3. OFFICE OF MANAGEMENT AND BUDGET (OMB) CIRCULARS. Located at http://www.whitehouse.gov/omb/circulars_default/.

40

Energy 101: Solar PV  

ScienceCinema (OSTI)

Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

None

2013-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Sandia National Laboratories: PV Value®  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and PV industry sales staff. For appraisers, the inputs specific to PV in the Residential Green and Energy Efficient Addendum can be used as inputs to PV Value. Valuing a PV...

42

PV Value | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PV Value PV Value PV Value is a web-based tool that calculates the energy production value for a residential or commercial photovoltaic (PV) system. The tool is Uniform Standards...

43

EIA - Reference Case Projections by End-Use Sector and Region Tables  

Gasoline and Diesel Fuel Update (EIA)

6 > Reference Case Projections by End-Use Sector and Region Tables (2003-2030) 6 > Reference Case Projections by End-Use Sector and Region Tables (2003-2030) International Energy Outlook 2006 Reference Case Projections by End-Use Sector and Region Tables (2003-2030) Formats Data Table Titles (1 to 19 complete) Reference Case Projections by End-Use Sector and Region Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections by End-Use Sector and Region Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table D1 Total World Delivered Energy Consumption Reference Case Projections by End-Use Sector and Region Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections by End-Use Sector and Region Data Tables. Need help, contact the National Energy Information Center at 202-586-8800.

44

Distributed PV Permitting and Inspection Processes  

Broader source: Energy.gov [DOE]

This presentation summarizes case studies of the time and cost involved in the distributed PV permitting and inspection process in three Solar America Cities, Austin, Portland, and Salt Lake City.

45

Annual Energy Outlook 2013 Early Release Reference Case  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Choice Modeling and Vehicle Choice Modeling and Projections for the Annual Energy Outlook John Maples Office of Energy Analysis, Energy Efficiency and End Use January 25, 2013 | Detroit, MI Outline John Maples, Vehicle Choice Models and Markets Detroit, MI, January 25, 2013 2 * Overview of model structure and inputs * Battery electric vehicles and current state of the market * Projections of battery electric vehicles in the Annual Energy Outlook 2013 * High Battery Technology case in the Annual Energy Outlook 2012 Overview of model structure and inputs 3 John Maples, Vehicle Choice Models and Markets Detroit, MI, January 25, 2013 Light duty vehicle technology market penetration John Maples, Vehicle Choice Models and Markets Detroit, MI, January 25, 2013 4 * Technologies affecting light-duty vehicle fuel economy are

46

EIA - Appendix F-Reference Case Projections by End-Use Sector and Country  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections by End-Use Sector and Country Grouping Data Tables (2005-2030) Reference Case Projections by End-Use Sector and Country Grouping Data Tables (2005-2030) International Energy Outlook 2008 Reference Case Projections by End-Use Sector and Country Grouping Data Tables (2005-2030) Formats Data Table Titles (1 to 19 complete) Reference Case Projections by End-Use Sector and Country Gruping Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Projections of Nuclear Generating Capacity Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. F1 Total World Delivered Energy Consumption by End-Use Sector and Fuel Table F1. Total World Delivered Energy Consumption by End-Use Sector and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

47

Sandia National Laboratories: PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

48

PV Policies and Markets  

Science Journals Connector (OSTI)

The market explosion for PV started actually in 2004 with the introduction of the “feed-in tariff , the FiT” in Germany. Elsewhere...

Dr. Wolfgang Palz Ph.D.

2013-01-01T23:59:59.000Z

49

PV Policies and Markets  

Science Journals Connector (OSTI)

The market explosion for PV started actually in 2004 with the introduction of the “feed-in tariff , the FiT” in Germany. Elsewhere...

Dr. Wolfgang Palz Ph.D.

2012-01-01T23:59:59.000Z

50

Annual Energy Outlook with Projections to 2025-Appendix A Reference Case  

Gasoline and Diesel Fuel Update (EIA)

A Reference Case Forecast Tables A Reference Case Forecast Tables Annual Energy Outlook 2004 with Projections to 2025 Appendix A Reference Case Forecast (2001-2025) Tables Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format. MS Excel Viewer Spreadsheets are provided in excel Table Title Formats Summary Tables PDF Year by Year Tables PDF Table 1. Total Energy Supply and Disposition Summary Excel PDF Table 2. Energy Consumption by Sector and Source Excel PDF Table 3. Energy Prices by Sector and Source Excel PDF Table 4. Residential Sector Key Indicators and Consumption Excel PDF Table 5. Commercial Sector Indicators and Consumption Excel PDF Table 6. Industrial Key Indicators and Consumption Excel PDF Table 7. Transportation Sector Key Indicators and Delivered Energy Indicators

51

Training on PV Systems: Design, Construction, Operation and Maintenance |  

Open Energy Info (EERE)

Training on PV Systems: Design, Construction, Operation and Maintenance Training on PV Systems: Design, Construction, Operation and Maintenance Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Training on PV Systems: Design, Construction, Operation and Maintenance Agency/Company /Organization: Leonardo Energy Sector: Energy Focus Area: Renewable Energy, Solar Website: www.leonardo-energy.org/node/5948 Training on PV Systems: Design, Construction, Operation and Maintenance Screenshot References: PV Training [1] Overview "A free series of six webinars will be delivered to provide the required knowledge to design a high performance photovoltaic (PV) installation, entering into economic evaluation and project cash-flow. Additionally, very practical aspects such as the construction, start-up, quality management and testing will be reviewed. Plant operation is described in detail, with

52

PV Solar Site Assessment (Milwaukee High School)  

Broader source: Energy.gov [DOE]

The purpose of this assessment is to provide site-specific information on how a solar electric (also referred to as a photovoltaic, or PV) system would perform at your location, including information on estimated physical size, rated output, energy production, costs, financial incentives and mounting options. Site assessors are required to present unbiased information and may not recommend contractors or products.

53

Grid integrated distributed PV (GridPV).  

SciTech Connect (OSTI)

This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

Reno, Matthew J.; Coogan, Kyle [Georgia Institute of Technology, Atlanta, GA

2013-08-01T23:59:59.000Z

54

Annual Energy Outlook Retrospective Review: Evaluation of 2011 and Prior Reference Case Projections  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Annual Energy Outlook Retrospective Review: Evaluation of 2011 and Prior Reference Case Projections March 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | AEO Retrospective Review: Evaluation of 2011 and Prior Reference Case Projections i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

55

PV | OpenEI  

Open Energy Info (EERE)

PV PV Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 77.7 KiB)

56

Open PV Project: Unlocking PV Installation Data (Brochure)  

SciTech Connect (OSTI)

This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

Not Available

2012-04-01T23:59:59.000Z

57

PV PLANNER A DESIGN AND  

E-Print Network [OSTI]

PV PLANNER A DESIGN AND ANALYSIS TOOL FOR BUILDING INTEGRATED SOLAR ELECTRIC SYSTEMS FINAL PLANNER A DESIGN AND ANALYSIS TOOL FOR BUILDING INTEGRATED SOLAR ELECTRIC SYSTEMS Final Report A Renewable............................................................................................................................................26 3. ILLUSTRATIVE OUTPUTS FROM PV PLANNER FOR A BUILDING INTEGRATED (BIPV) PV APPLICATION

Delaware, University of

58

Testing for PV Reliability (Presentation)  

SciTech Connect (OSTI)

The DOE SUNSHOT workshop is seeking input from the community about PV reliability and how the DOE might address gaps in understanding. This presentation describes the types of testing that are needed for PV reliability and introduces a discussion to identify gaps in our understanding of PV reliability testing.

Kurtz, S.; Bansal, S.

2014-09-01T23:59:59.000Z

59

PV Installation Labor Market Analysis and PV JEDI Tool Developments (Presentation), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PV Installation Labor Market Analysis PV Installation Labor Market Analysis and PV JEDI Tool Developments Barry Friedman NREL Strategic Energy Analysis Center May 16, 2012 World Renewable Energy Forum Denver, Colorado NREL/PR-6A20-55130 NATIONAL RENEWABLE ENERGY LABORATORY Disclaimer 2 DISCLAIMER AGREEMENT These information ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy LLC ("Alliance") for the U.S. Department of Energy (the "DOE"). It is recognized that disclosure of these Data is provided under the following conditions and warnings: (1) these Data have been prepared for reference purposes only; (2) these Data consist of forecasts, estimates or assumptions made on a best-

60

U.S. Department of Energy PV Roadmaps | Open Energy Information  

Open Energy Info (EERE)

PV Roadmaps PV Roadmaps Jump to: navigation, search Logo: U.S. Department of Energy PV Roadmaps Name U.S. Department of Energy PV Roadmaps Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Solar Resource Type Publications, Guide/manual Website http://www1.eere.energy.gov/so References U.S. Department of Energy PV Roadmaps[1] Abstract Ten photovoltaic (PV) technology roadmaps were developed in 2007 by staff at the National Renewable Energy Laboratory (NREL), Sandia National Laboratories, U.S. Department of Energy (DOE), and experts from universities and private industry. "Ten photovoltaic (PV) technology roadmaps were developed in 2007 by staff at the National Renewable Energy Laboratory (NREL), Sandia National Laboratories, U.S. Department of Energy (DOE), and experts from

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sandia National Laboratories: PV Value  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

62

Sandia National Laboratories: PV evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

63

Outdoor PV Degradation Comparison  

SciTech Connect (OSTI)

As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output; may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined; accurately. At the Performance and Energy Rating Testbed (PERT) at the Outdoor Test Facility (OTF) at the; National Renewable Energy Laboratory (NREL) more than 40 modules from more than 10 different manufacturers; were compared for their long-term outdoor stability. Because it can accommodate a large variety of modules in a; limited footprint the PERT system is ideally suited to compare modules side-by-side under the same conditions.

Jordan, D. C.; Smith, R. M.; Osterwald, C. R.; Gelak, E.; Kurtz, S. R.

2011-02-01T23:59:59.000Z

64

Integrating Solar PV in Utility System Operations  

E-Print Network [OSTI]

PV into Utility System Operations System Scheduling APSSolar PV into Utility System Operations and occurs at 5 p.m.Solar PV in Utility System Operations A. Mills 1 , A.

Mills, A.

2014-01-01T23:59:59.000Z

65

Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint  

SciTech Connect (OSTI)

Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a limited set of advanced inverter functions.

Mather, B.; Neal, R.

2012-08-01T23:59:59.000Z

66

Sandia National Laboratories: Photovoltaic (PV) Regional Test...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyPhotovoltaic (PV) Regional Test Center (RTC) Website Goes Live Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live Hope Michelsen named to Alameda County...

67

Solar PV Incentive Programs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PV Incentive Programs Solar PV Incentive Programs This presentation summarizes the information discussed by NYSERDA during the Best Practices in the Design of Utility Solar...

68

PV Cell and Module Calibration Activities at NREL  

SciTech Connect (OSTI)

The performance of PV cells and modules with respect to standard reference conditions is a key indicator of progress of a given technology. This task provides the U.S. terrestrial PV community with the most accurate measurements that are technically possible in a timely fashion. The international module certification and accreditation program PVGap requires certification laboratories to maintain their calibration traceability path to groups like this one. The politics of a "world record" efficiency requires that an independent laboratory perform these measurements for credibility. Most manufacturers base their module peak watt rating upon standards and reference cells calibrated under this task. This task has been involved in reconciling disputes between manufacturers and their cell suppliers in terms of expected versus actual performance. This task has also served as a resource to the PV community for consultation on solar simulation, current versus voltage measurement instrumentation, measurement procedures and measurement artifacts.

Emery, K.; Anderberg, A.; Kiehl, J.; Mack, C.; Moriarty, T.; Ottoson, L.; Rummel, S.

2005-11-01T23:59:59.000Z

69

Kenmos PV | Open Energy Information  

Open Energy Info (EERE)

Kenmos PV Kenmos PV Jump to: navigation, search Name Kenmos PV Place Tainan, Taiwan Sector Solar Product Solar business unit of Kenmos Technology which was set up in Sep 2007, to produce thin film PV cells. Coordinates 22.99721°, 120.180862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.99721,"lon":120.180862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

70

Sandia National Laboratories: PV bankability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Testing Center (PV RTC), Renewable Energy, Solar, Solar Newsletter, SunShot U.S. Senator Bernie Sanders (I-VT) joined representatives of Sandia, IBM, and the DOE...

71

PSCAD Modules Representing PV Generator  

SciTech Connect (OSTI)

Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

Muljadi, E.; Singh, M.; Gevorgian, V.

2013-08-01T23:59:59.000Z

72

Enterprise Microblogging for Advanced Knowledge Sharing: The References@BT Case Study  

E-Print Network [OSTI]

of innovative tools and applications within the intranet. References@BT is such a web- based application research has yet been conducted on microblogging. [Naaman et al, 2010] have explored the characteristics

Hammerton, James

73

Incorporating Aggregated PV Systems into the Power Grid | Open Energy  

Open Energy Info (EERE)

Incorporating Aggregated PV Systems into the Power Grid Incorporating Aggregated PV Systems into the Power Grid Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook. References Retrieved from "http://en.openei.org/w/index.php?title=Incorporating_Aggregated_PV_Systems_into_the_Power_Grid&oldid=514463

74

Exploring the Economic Value of EPAct 2005's PV Tax Credits  

SciTech Connect (OSTI)

This CESA - LBNL Case Study examines how much economic value do new and expanded federal tax credits really provide to PV system purchasers, and what implications might they hold for state/utility PV grant programs. The report begins with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. The report concludes with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs. The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or 'buy-down' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). Since the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government has begun to play a much more significant role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, for an initial period of two years, and in late 2006 were extended for an additional year. Unless extended further, the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2009. How much economic value do these new and expanded federal tax credits really provide to PV system purchasers? And what implications might they hold for state/utility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report explores these questions.1 We begin with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. We conclude with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs.

Bolinger, Mark A; Wiser, Ryan; Ing, Edwin

2009-08-01T23:59:59.000Z

75

Sandia National Laboratories: European PV Solar Energy Conference...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

European PV Solar Energy Conference and Exhibition Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) On December 15, 2014, in...

76

NREL: Photovoltaics Research - PV News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PV News PV News The National Renewable Energy Laboratory Photovoltaic (PV) Research Program highlights latest research and news accomplishments from the laboratory on this page. Subscribe to the RSS feed RSS . Learn about RSS. November 8, 2013 New Solar Cell Is More Efficient, Less Costly Innovation by NREL and First Solar acquisition TetraSun wins a 2013 R&D 100 Award. November 6, 2013 NREL's Energy Systems Integration Facility Garners LEED® Platinum The Energy Systems Integration Facility (ESIF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colo., has earned a LEED® Platinum designation for new construction from the U.S. Green Building Council (USGBC), a non-profit organization dedicated to sustainable building design and construction.

77

solar PV | OpenEI  

Open Energy Info (EERE)

PV PV Dataset Summary Description This dataset highlights trends in financing terms for U.S. renewable energy projects that closed financing between Q3 2009 and Q3 2010. Information tracked includes debt interest rates, equity returns, financial structure applied, PPA duration, and other information. NREL's Renewable Energy Finance Tracking Initiative (REFTI) tracks renewable energy project financing terms by technology and project size. The intelligence gathered is intended to reveal industry trends and to inform input assumptions for models. Source NREL Date Released March 27th, 2011 (3 years ago) Date Updated Unknown Keywords biomass financial geothermal project finance solar PV wind onshore Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon RE Project Finance Trends Q3 2009 - Q3 2010 (xlsx, 309.2 KiB)

78

Energy 101: Solar PV | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar PV Solar PV Energy 101: Solar PV Addthis Below is the text version for the Energy 101: Solar PV video. The video opens with "Energy 101: Solar PV." This is followed by a timelapse shot of a city skyline as day turns to night. All right, we all know that the sun's energy creates heat and light, but it can also be converted to make electricity...and lots of it. The video shows images of building roofs, with and without solar photovoltaic panels. The words "Solar Photovoltaics (PV) appear onscreen over an image of a photovoltaic panel. One technology is called solar photovoltaics, or PV for short. Various images of solar panels appear onscreen, followed by images of photovoltaic manufacturing processes. You've probably seen PV panels around for years... but recent advancements

79

November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity  

E-Print Network [OSTI]

November 21, 2000 PV Lesson Plan 3 ­ PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

Oregon, University of

80

Analysis and Design of Smart PV Module  

E-Print Network [OSTI]

This thesis explores the design of a smart photovoltaic (PV) module- a PV module in which PV cells in close proximity are electrically grouped to form a pixel and are connected to dc-dc converter blocks which reside embedded in the back pane...

Mazumdar, Poornima

2012-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Solar Resource and PV Systems Performance  

E-Print Network [OSTI]

Solar Resource and PV Systems Performance at Selected Test Sites Prepared for the U.S. Department Subtask 11.1 Deliverables 2 and 4: Report on Solar Resource and PV Systems Performance at Selected Test agency thereof. #12;1 Solar Resource and PV Systems Performance at Selected Test Sites Contents 1

82

Integrating Solar PV in Utility System Operations  

SciTech Connect (OSTI)

This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved relative to DA forecasts, but still imperfect. Finally, we represent decisions within the operating hour by schedulers and transmission system operators as real-time (RT) balancing. We simulate the DA and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch (ED) optimization model. This model creates a least-cost dispatch and commitment plan for the conventional generating units using forecasts and reserve requirements as inputs. We consider only the generation units and load of the utility in this analysis; we do not consider opportunities to trade power with neighboring utilities. We also do not consider provision of reserves from renewables or from demand-side options. We estimate dynamic reserve requirements in order to meet reliability requirements in the RT operations, considering the uncertainty and variability in load, solar PV, and wind resources. Balancing reserve requirements are based on the 2.5th and 97.5th percentile of 1-min deviations from the HA schedule in a previous year. We then simulate RT deployment of balancing reserves using a separate minute-by-minute simulation of deviations from the HA schedules in the operating year. In the simulations we assume that balancing reserves can be fully deployed in 10 min. The minute-by-minute deviations account for HA forecasting errors and the actual variability of the load, wind, and solar generation. Using these minute-by-minute deviations and deployment of balancing reserves, we evaluate the impact of PV on system reliability through the calculation of the standard reliability metric called Control Performance Standard 2 (CPS2). Broadly speaking, the CPS2 score measures the percentage of 10-min periods in which a balancing area is able to balance supply and demand within a specific threshold. Compliance with the North American Electric Reliability Corporation (NERC) reliability standards requires that the CPS2 score must exceed 90% (i.e., the balancing area must maintain adequate balance for 90% of the 10-min periods). The combination of representing DA forecast errors in the

Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

2013-10-31T23:59:59.000Z

83

Grid Integrated Distributed PV (GridPV) Version 2.  

SciTech Connect (OSTI)

This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

Reno, Matthew J.; Coogan, Kyle

2014-12-01T23:59:59.000Z

84

Energy 101: Solar PV | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar PV Solar PV Energy 101: Solar PV Addthis Description Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses. Duration 2:01 Topic Solar Energy Economy Credit Energy Department Video MR. : All right, we all know that the sun's energy creates heat and light. But it can also be converted to make electricity, and lots of it. One technology is called solar photovoltaics or PV for short. You've probably seen PV panels around for years, but recent advancements have greatly improved their efficiency and electrical output. Enough energy from the sun hits the earth every hour to power the planet for an

85

Time series power flow analysis for distribution connected PV generation.  

SciTech Connect (OSTI)

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

2013-01-01T23:59:59.000Z

86

Definition: PV array | Open Energy Information  

Open Energy Info (EERE)

PV array PV array Jump to: navigation, search Dictionary.png PV array An interconnected system of PV modules that function as a single electricity-producing unit. In smaller systems, an array can consist of a single module.[1][2] View on Wikipedia Wikipedia Definition A Photovoltaic system (informally, PV system) is an arrangement of components designed to supply usable electric power for a variety of purposes, using the Sun (or, less commonly, other light sources) as the power source. PV systems may be built in various configurations: Off-grid without battery (Array-direct) Off-grid with battery storage for DC-only appliances Off-grid with battery storage for AC & DC appliances Grid-tie without battery Grid-tie with battery storage A photovoltaic array (also called a solar array) consists of multiple photovoltaic modules, casually

87

PV output smoothing with energy storage.  

SciTech Connect (OSTI)

This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

Ellis, Abraham; Schoenwald, David Alan

2012-03-01T23:59:59.000Z

88

NRELs PV Tools on the Web: Open PV Project  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL's PV Tools on the Web: The OpenPV Project NREL TAP Webinar Ted Quinby March 24, 2010 National Renewable Energy Laboratory Innovation for Our Energy Future Overview National...

89

Sandia National Laboratories: increase PV deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

increase PV deployment ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities,...

90

Sandia National Laboratories: PV Performance Modeling Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

being pursued in this collaborative include: PVPMC Website: (http:pvpmc.org) Matlab(tm) PV Performance Modeling Toolbox (PVLIB Toolbox can be downloaded on http:...

91

CPS Energy- Solar PV Rebate Program  

Broader source: Energy.gov [DOE]

CPS Energy, San Antonio's municipal utility, offers rebates to customers who install solar photovoltaic (PV) systems on their homes, schools, or businesses. There are four rebate "tiers" available...

92

Sandia National Laboratories: flexible PV substrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Partnership, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, SunShot Sandia scientists have developed glitter-sized photovoltaic (PV) cells that have the...

93

Sandia National Laboratories: integrate PV into clothing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Partnership, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, SunShot Sandia scientists have developed glitter-sized photovoltaic (PV) cells that have the...

94

Integrating Solar PV in Utility System Operations  

E-Print Network [OSTI]

of Renewable Energy Note that total costs increasedemand and renewable energy to minimize production cost. TheCost of PV . 54 Renewable Energy

Mills, A.

2014-01-01T23:59:59.000Z

95

Updating Interconnection Screens for PV System Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Abraham Ellis, Roger Hill Sandia National Laboratories Tom Key, Kristen Nicole, Jeff Smith Electric Power Research Institute Updating Interconnection Screens for PV System...

96

OFF-SHORE WIND AND GRID-CONNECTED PV: HIGH PENETRATION PEAK SHAVING FOR NEW YORK CITY  

E-Print Network [OSTI]

OFF-SHORE WIND AND GRID-CONNECTED PV: HIGH PENETRATION PEAK SHAVING FOR NEW YORK CITY Richard Perez-shore wind and PV generation using the city of New York as a test case. While wind generation is not known the source of the energy that can meet the demand. While the peak-time availability of wind generation

Perez, Richard R.

97

Modelling PV Deployment: A Tool Developed at CEEP to  

E-Print Network [OSTI]

..............................................................................................................................2 3. CEEP's Solar PV Diffusion Model Overview ..............................................................................................................12 4. Comparison of the CEEP's Solar PV Diffusion Model with Other Models ..................................................................................................................................................18 i #12;List of Figures Figure 1: Overview of CEEP's Bottom-Up Solar PV Diffusion Model

Delaware, University of

98

Draft Transcript on Municipal PV Systems  

Broader source: Energy.gov [DOE]

Webinar on navigating the legal, tax, and finance issues associated with the installation of Municipal PV Systems. The following agenda was developed based on Pat Boylston's experience assisting municipalities with their PV projects and the requests for information that the Solar America City technical team leads have received from many of the 25 Solar America Cities since the April 2008 meeting in Tucson.

99

Raising the Bar for Quality PV Modules  

Office of Energy Efficiency and Renewable Energy (EERE)

Since the development and codification of testing standards for PV modules requires a lengthy multiyear process, Department of Energy’s SunShot Initiative and National Renewable Energy Laboratory worked together on an accelerated schedule for nine months in 2013 to develop a voluntary standard that goes beyond current test protocols to qualify superior PV modules.

100

Distributed and Steady Modeling of the Pv Evaporator in a Pv/T Solar Assisted Heat Pump  

Science Journals Connector (OSTI)

A specially designed direct-expansion evaporator (PV evaporator), which is laminated with PV cells on the front surface is adopted in a photovoltaic/thermal solar assisted heat pump (PV/T SAHP) to obtain both the...

Jie Ji; Hanfeng He; Wei He; Gang Pei…

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Agenda for the PV Module Reliability Workshop, February 26 -...  

Broader source: Energy.gov (indexed) [DOE]

Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado This...

102

Arima Photovoltaic And Optical Corp Arima PV | Open Energy Information  

Open Energy Info (EERE)

Optical Corp Arima PV Jump to: navigation, search Name: Arima Photovoltaic And Optical Corp (Arima PV) Place: Taipei, Taiwan Product: Once a maker of computers, the company now...

103

Full Steam Ahead for PV in US Homes?  

E-Print Network [OSTI]

state, local, and utility rebate programs targeting solar –implications for PV rebate program administrators, PV systemReduce the Size of the Rebates They Provide Without

Bolinger, Mark A

2009-01-01T23:59:59.000Z

104

Integrating Solar PV into Energy Services Performance Contracts...  

Energy Savers [EERE]

Integrating Solar PV into Energy Services Performance Contracts: Options for Local Governments Nationwide Integrating Solar PV into Energy Services Performance Contracts: Options...

105

Sandia National Laboratories: Sandia Will Host PV Bankability...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ateECEnergyComputational Modeling & SimulationSandia Will Host PV Bankability Workshop at Solar Power International (SPI) 2013 Sandia Will Host PV Bankability Workshop at Solar...

106

BIOHAUS PV Handels GmbH | Open Energy Information  

Open Energy Info (EERE)

GmbH Jump to: navigation, search Name: BIOHAUS PV Handels GmbH Place: Paderborn, Germany Zip: 33100 Product: Distributor of Isofoton PV products in Germany. Coordinates:...

107

SunShot Presentation PV Module Reliabity Workshop Opening Session...  

Broader source: Energy.gov (indexed) [DOE]

SunShot Presentation PV Module Reliabity Workshop Opening Session SunShot Presentation PV Module Reliabity Workshop Opening Session This PowerPoint slide deck was originally...

108

SunShot Presentation PV Module Reliabity Workshop Opening Session  

Broader source: Energy.gov (indexed) [DOE]

2013 PV Module Reliability Workshop Feb 26- 27, 2013, Golden, CO * The SunShot Initiative * Systems Integration Technology Validation Activities * 2013 PV Module Reliability...

109

Statistical and Domain Analytics Applied to PV Module Lifetime...  

Broader source: Energy.gov (indexed) [DOE]

on PV Modules Failure Rates from Certification Testing to UL and IEC Standards for Flat Plate PV Modules Accelerated Stress Testing, Qualification Testing, HAST, Field Experience...

110

PV Strom | Open Energy Information  

Open Energy Info (EERE)

Strom Strom Jump to: navigation, search Name PV Strom Place Kirchheim, Germany Zip 74366 Sector Biomass, Hydro, Renewable Energy, Solar, Wind energy Product Germany-based renewable energy project developer, focused mainly on solar, but also active in wind, hydro and biomass generation. Coordinates 50.881988°, 11.019413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.881988,"lon":11.019413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Shaking Up the Residential PV Market: Implications of Recent Changes to the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shaking Up the Residential PV Market: Implications of Recent Changes to the Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC Title Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC Publication Type Case Study Year of Publication 2008 Authors Bolinger, Mark, Galen L. Barbose, and Ryan H. Wiser Secondary Title Case Studies of State Support for Renewable Energy Publisher LBNL Place Published Berkeley Pagination 12 Date Published 11/2008 Abstract In early 2006, Berkeley Lab published an LBNL/CESA case study that examined the financial impact of EPAct 2005's solar tax credits on PV system owners, in light of the $2,000 cap on the residential credit, as well as the fact that most PV systems in the U.S. also receive cash incentives from state-, local-, or utility-administered PV programs, and that these cash incentives may reduce the value of federal tax credits in certain situations. That case study was subsequently revised in February 2007 to reflect new Internal Revenue Service (IRS) guidance. The findings of that case study, which are briefly recapped in the next section, remained relevant up until October 2008, when the Energy Improvement and Extension Act of 2008 extended both solar credits for an unprecedented eight years, removed the $2,000 cap on the residential credit, and eliminated restrictions on the use of both credits in conjunction with the Alternative Minimum Tax (AMT). These significant changes, which apply to systems placed in service on or after January 1, 2009, will increase the value of the solar credits for residential system owners in particular, and are likely to spur significant growth in residential, commercial, and utility-scale PV installations in the years ahead. In light of these substantial changes to the solar ITC, this report takes a fresh look at the value of these revised credits, focusing specifically on the Section 25D residential credit. After first setting the stage by briefly reviewing our previous findings, the document proceeds to cover four specific areas in which the removal of the $2,000 cap on the residential ITC will have significant implications for PV program administrators, PV system owners, and the PV industry that go beyond the obvious market growth potential created by these more-lucrative federal incentives. These four areas include:

112

Jiangxi Solar PV Corp JSPV aka Solar PV Corporation | Open Energy  

Open Energy Info (EERE)

Solar PV Corp JSPV aka Solar PV Corporation Solar PV Corp JSPV aka Solar PV Corporation Jump to: navigation, search Name Jiangxi Solar PV Corp (JSPV, aka Solar PV Corporation ) Place Xinyu, Jiangxi Province, China Zip 338004 Sector Solar Product Xinyu-based producer of solar cells Coordinates 27.804001°, 114.923317° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.804001,"lon":114.923317,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

113

Changing quantum reference frames  

E-Print Network [OSTI]

We consider the process of changing reference frames in the case where the reference frames are quantum systems. We find that, as part of this process, decoherence is necessarily induced on any quantum system described relative to these frames. We explore this process with examples involving reference frames for phase and orientation. Quantifying the effect of changing quantum reference frames serves as a first step in developing a relativity principle for theories in which all objects including reference frames are necessarily quantum.

Matthew C. Palmer; Florian Girelli; Stephen D. Bartlett

2014-05-21T23:59:59.000Z

114

Solar Works! In Seattle: Introduction to Solar Electric (PV)  

Broader source: Energy.gov [DOE]

Presentation slides from residential PV workshop. Also covers general solar resource assessment, siting and financial incentives.

115

NanoPV Corporation | Open Energy Information  

Open Energy Info (EERE)

NanoPV Corporation NanoPV Corporation Jump to: navigation, search Name NanoPV Corporation Place Ewing, New Jersey Zip 8618 Product A New Jersey-based thin film PV cell producer and technology provider. Coordinates 36.638474°, -83.428453° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.638474,"lon":-83.428453,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Definition: PV module | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: PV module Jump to: navigation, search Dictionary.png PV module A unit comprised of several PV cells, and the principal unit of a PV array; it is intended to generate direct current power under un-concentrated sunlight.[1][2] View on Wikipedia Wikipedia Definition A solar panel is a set of solar photovoltaic modules electrically connected and mounted on a supporting structure. A photovoltaic module is a packaged, connected assembly of photovoltaic cells. The solar module can be used as a component of a larger photovoltaic system to generate and supply electricity in commercial and residential applications. Each module is rated by its DC output power under standard test conditions (STC), and

117

Generation PV Inc | Open Energy Information  

Open Energy Info (EERE)

Generation PV Inc. Generation PV Inc. Place Markham, Ontario, Canada Zip L6E 1A9 Sector Wind energy Product Ontario-based Generation PV distributes and installs PV modules and wind turbines made by outside equipment makers, for industrial, residental and wholesale customers. Coordinates 38.9028°, -78.001804° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9028,"lon":-78.001804,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Solar Energy International Solar PV 101 Training  

Office of Energy Efficiency and Renewable Energy (EERE)

Solar Energy International is offering a five-day training that provides an overview of the three basic PV system applications, primarily focusing on grid-direct systems. The goal of the course is...

119

pv land use | OpenEI Community  

Open Energy Info (EERE)

pv land use pv land use Home Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 pv land use Solar solar land use Solar Power The Shreveport Airport Authority intends to issue a Request for Proposal (RFP) at some future time for renewable energy generation opportunities on Shreveport Airport property. Files: application/pdf icon solar_rfi_complete.pdf Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv land use solar land use square miles I'm happy to announce that a new report on Solar+Land+Use was just released by the National+Renewable+Energy+Laboratory. You can find a brief summary

120

PV array simulator development and validation.  

SciTech Connect (OSTI)

The ability to harvest all available energy from a photovoltaic (PV) array is essential if new system developments are to meet levelized cost of energy targets and achieve grid parity with conventional centralized utility power. Therefore, exercising maximum power point tracking (MPPT) algorithms, dynamic irradiance condition operation and startup and shutdown routines and evaluating inverter performance with various PV module fill-factor characteristics must be performed with a repeatable, reliable PV source. Sandia National Laboratories is collaborating with Ametek Programmable Power to develop and demonstrate a multi-port TerraSAS PV array simulator. The simulator will replicate challenging PV module profiles, enabling the evaluation of inverter performance through analyses of the parameters listed above. Energy harvest algorithms have traditionally implemented methods that successfully utilize available energy. However, the quantification of energy capture has always been difficult to conduct, specifically when characterizing the inverter performance under non-reproducible dynamic irradiance conditions. Theoretical models of the MPPT algorithms can simulate capture effectiveness, but full validation requires a DC source with representative field effects. The DC source being developed by Ametek and validated by Sandia is a fully integrated system that can simulate an IV curve from the Solar Advisor Model (SAM) module data base. The PV simulator allows the user to change the fill factor by programming the maximum power point voltage and current parameters and the open circuit voltage and short circuit current. The integrated PV simulator can incorporate captured irradiance and module temperature data files for playback, and scripted profiles can be generated to validate new emerging hardware embedded with existing and evolving MPPT algorithms. Since the simulator has multiple independent outputs, it also has the flexibility to evaluate an inverter with multiple MPPT DC inputs. The flexibility of the PV simulator enables the validation of the inverter's capability to handle vastly different array configurations.

Kuszmaul, Scott S.; Gonzalez, Sigifredo; Lucca, Roberto (Ametek Programmable Power, San Diego, CA); Deuel, Don (Ametek Programmable Power, San Diego, CA)

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Updating Technical Screens for PV Interconnection: Preprint  

SciTech Connect (OSTI)

Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

2012-08-01T23:59:59.000Z

122

China and India PV Reliability-NREL Cooperation | Open Energy Information  

Open Energy Info (EERE)

Reliability-NREL Cooperation Reliability-NREL Cooperation Jump to: navigation, search Logo: China and India PV Reliability under the Asia Pacific Partnership Name China and India PV Reliability under the Asia Pacific Partnership Agency/Company /Organization National Renewable Energy Laboratory Partner Chinese and Indian PV manufacturers and qualification/certification experts Sector Energy Focus Area Solar Topics Background analysis Country India, China Southern Asia, Eastern Asia References NREL International Program Overview Abstract Over a period of two years, U.S. partners will engage with Chinese and Indian manufacturers and qualification/certification experts in a phased project that emphasizes quality control through the value chain, as well as, reliability R&D. The National Renewable Energy Laboratory (NREL) and Sandia National Laboratory (SNL) will take the lead to provide technical assistance and training.

123

The Open PV Project | Open Energy Information  

Open Energy Info (EERE)

The Open PV Project The Open PV Project (Redirected from OpenPV) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Open PV Project Agency/Company /Organization: NREL Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online calculator, Software/modeling tools User Interface: Website Website: openpv.nrel.gov/about Country: United States Web Application Link: openpv.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

124

Teksun PV Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

Teksun PV Manufacturing Inc Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name Teksun PV Manufacturing Inc Address 401 Congress Ave Place Austin, Texas Zip 78701 Sector Solar Product Plan to manufacture large scale PV panels for utility scale solar power parks Website http://www.teksunpv.com/ Coordinates 30.266402°, -97.742959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.266402,"lon":-97.742959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

The Open PV Project | Open Energy Information  

Open Energy Info (EERE)

The Open PV Project The Open PV Project (Redirected from Open PV) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Open PV Project Agency/Company /Organization: NREL Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online calculator, Software/modeling tools User Interface: Website Website: openpv.nrel.gov/about Country: United States Web Application Link: openpv.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

An efficient method for visualization and growth of fluorescent Xanthomonas oryzae pv. oryzae in planta.  

E-Print Network [OSTI]

strains, plants and growth conditions Xanthomonas oryzae pv.Xanthomonas oryzae pv. oryzae. Mol Plant Microbe InteractOryzae sativa L. ) plants. X. oryzae pv. oryzae infection

Han, Sang-Wook; Park, Chang-Jin; Lee, Sang-Won; Ronald, Pamela C

2008-01-01T23:59:59.000Z

127

Holdover inoculum of Pseudomonas syringae pv. alisalensis from broccoli raab causes disease in subsequent plantings  

E-Print Network [OSTI]

about P. syringae pv. Plant Disease / August 2006 ABSTRACTsyringae pv. lachrymans in soil, plant debris, and thesyringae pv. tomato populations on field tomato plants.

Cintas, N A; Koike, S T; Bunch, R A; Bull, C T

2006-01-01T23:59:59.000Z

128

Solar Thermal/PV | OpenEI  

Open Energy Info (EERE)

Thermal/PV Thermal/PV Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

129

PV Powered Inc | Open Energy Information  

Open Energy Info (EERE)

PV Powered Inc PV Powered Inc Place Bend, Oregon Zip 97702 Product Oregon-based manufacturer of inverters for PV systems. Coordinates 44.05766°, -121.315549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.05766,"lon":-121.315549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Evaluation of Encapsulant Materials for PV Applications  

SciTech Connect (OSTI)

Encapsulant materials used in PV modules serve multiple purposes. They physically hold components in place, provide electrical insulation, optically couple superstrate materials (e.g., glass) to PV cells, protect components from mechanical stress by mechanically de-coupling components via strain relief, and protect materials from corrosion. To do this, encapsulants must adhere well to all surfaces, remain compliant, and transmit light after exposure to temperature, humidity, and UV radiation histories. Encapsulant materials by themselves do not completely prevent water vapour ingress [1-3], but if they are well adhered, they will prevent the accumulation of liquid water providing protection against corrosion as well as electrical shock. Here, a brief review of some of the polymeric materials under consideration for PV applications is provided, with an explanation of some of their advantages and disadvantages.

Kempe, M.

2010-01-01T23:59:59.000Z

131

Emissions through solar PV systems - a review  

Science Journals Connector (OSTI)

Photovoltaic (PV) system has been quoted for wide range of green house gas (GHG) emissions through life cycle assessment (LCA) studies. There are a variety of solar cell materials available, which vary in conversion efficiency and emission of CO2. This paper is based on the LCA analysis of PV system which starts from the production of these solar cells and goes through the stages known as transportation, installation, operational period to their disposal or recycling and tried to find out the GHG emission in all the stages separately and the environmental impact of this emission. In this paper, different improvement techniques were also suggested to reduce the impact of GHG through solar PV system.

Mohammad Ziaur Rahman

2014-01-01T23:59:59.000Z

132

Gansu PV Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Gansu PV Co Ltd Gansu PV Co Ltd Place Lanzhou, Gansu Province, China Zip 730000 Sector Solar Product Gansu PV Co Ltd is active in manufacturing, installing and servicing SHS and small portable solar lighting systems. Coordinates 36.059299°, 103.756279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.059299,"lon":103.756279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

Updating Interconnection Screens for PV System Integration  

SciTech Connect (OSTI)

This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

2012-02-01T23:59:59.000Z

134

Reference Material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Materials There are a variety of reference materials the NSSAB utilizes and have been made available on its website. Documents Fact Sheets - links to Department of Energy...

135

International PV QA Task Force's Proposed Comparative Rating System for PV Modules: Preprint  

SciTech Connect (OSTI)

The International PV Quality Assurance Task Force is developing a rating system that provides comparative information about the relative durability of PV modules. Development of accelerated stress tests that can provide such comparative information is seen as a major step toward being able to predict PV module service life. This paper will provide details of the ongoing effort to determine the format of such an overall module rating system. The latest proposal is based on using three distinct climate zones as defined in IEC 60721-2-1 for two different mounting systems. Specific stresses beyond those used in the qualification tests are being developed for each of the selected climate zones.

Wohlgemuth, J.; Kurtz, S.

2014-10-01T23:59:59.000Z

136

Agenda for the PV Module Reliability Workshop, February 26 -...  

Broader source: Energy.gov (indexed) [DOE]

"Preliminary Analysis of Modules Deployed at PV- USA for 18-24 Years" 13. D.C. Jordan and B. Sekulic of NREL, "Impact and Detection of Pyranometer Failure on PV...

137

Impact of Solar PV Laminate Membrane Systems on Roofs | Department...  

Office of Environmental Management (EM)

Information Resources Impact of Solar PV Laminate Membrane Systems on Roofs Impact of Solar PV Laminate Membrane Systems on Roofs In 2008, CH2M HILL performed a solar site...

138

Sandia National Laboratories: help U.S. PV industry expand  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

help U.S. PV industry expand Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live On February 26, 2013, in Energy, National Solar Thermal Test Facility, News, News &...

139

Breakout Session: Getting in the Loop: PV Hardware Recycling...  

Broader source: Energy.gov (indexed) [DOE]

Getting in the Loop: PV Hardware Recycling and Sustainability Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability May 21, 2014 6:30PM to 7:30PM PDT...

140

A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants  

E-Print Network [OSTI]

power fluctuations: the pv plant as a low pass filter,"point sensor to the entire PV plant at each timescale isWVM Inputs WVM Outputs PV Plant Footprint Density of PV

Lave, Matthew; Kleissl, Jan; Stein, Joshua S

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

in the design of larger PV plants. Chapter 2 will discussEdison central station PV plant at Hesperia, California,PV components. When a PV plant or installation is proposed

Hill, Steven Craig

2013-01-01T23:59:59.000Z

142

PV Performance and Reliability Validation Capabilities at Sandia National Laboratories  

Broader source: Energy.gov [DOE]

This presenation summarizes the information discussed by Sandia National Laboratories at the PV Manufacturing Workshop, March 25, 2011.

143

Capacity Value of PV and Wind Generation in the NV Energy System  

SciTech Connect (OSTI)

Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

2014-03-21T23:59:59.000Z

144

TEMPERATURE COEFFICIENTS FOR PV MODULES AND ARRAYS: MEASUREMENT METHODS, DIFFICULTIES, AND RESULTS  

Office of Scientific and Technical Information (OSTI)

TEMPERATURE COEFFICIENTS FOR PV MODULES AND ARRAYS: TEMPERATURE COEFFICIENTS FOR PV MODULES AND ARRAYS: MEASUREMENT METHODS, DIFFICULTIES, AND RESULTS David L. King, Jay A. Kratochvil, and William E. Boyson Sandia National Laboratories, Albuquerque, NM 0 ABSTRACT The term "temperature coefficient" has been applied to several different photovoltaic performance parameters, including voltage, current, and power. The procedures for measuring the coefficient(s) for modules and arrays are not yet standardized, and systematic influences are common in the test methods used to measure them. There are also misconceptions regarding their application. Yet, temperature coefficients, however obtained, play an important role in PV system design and sizing, where often the worst case operating condition dictates the array

145

The Open PV Project | Open Energy Information  

Open Energy Info (EERE)

The Open PV Project The Open PV Project Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Open PV Project Agency/Company /Organization: NREL Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online calculator, Software/modeling tools User Interface: Website Website: openpv.nrel.gov/about Country: United States Web Application Link: openpv.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

(Eigen Phoneme Space (Phoneme Vector : PV)  

E-Print Network [OSTI]

PCA , , ( ) 1 MFCC [1] PCA 2 2.1 [3] (Eigen Phoneme Space : EPS) PCA [2] PCA [3] PCA (EPS) (EPS) (Phoneme Vector : PV) Fig. 1 (EPS) /a/ /i/ · · · PCA (EPS) 2.2 PCA PCA i Si Si = 1 N N t=1 (xi t - ¯xi )(xi

Takiguchi, Tetsuya

147

All Solar PV | Open Energy Information  

Open Energy Info (EERE)

All Solar PV All Solar PV Jump to: navigation, search Logo: All Solar PV Name All Solar PV Address 1407-4-105 Century East,Daliushu Road Place Beijing, China Sector Solar Product Solar Energy Products Year founded 2004 Phone number 86-010-52006592 Website http://www.allsolarpv.com/ Coordinates 39.904667°, 116.408198° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.904667,"lon":116.408198,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

148

Results from measurements on the PV-VENT systems  

E-Print Network [OSTI]

Results from measurements on the PV-VENT systems at Lundebjerg Solar Energy Centre Denmark Danish from measurements on the PV-VENT systems at Lundebjerg Søren �stergaard Jensen Solar Energy Centre with (Jensen, 2000a) Solar Energy Centre Denmark's (Danish Technological Institute) measuring work in the PV

149

High Resolution PV Power Modeling for Distribution Circuit Analysis  

SciTech Connect (OSTI)

NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

Norris, B. L.; Dise, J. H.

2013-09-01T23:59:59.000Z

150

Determination of Parameters of PV Concentrating System With Heliostat  

Science Journals Connector (OSTI)

The structure of PV concentrating system with heliostat is analyzed. The mathematical model of system consisting of PV concentrating module and heliostat is developed. With the use of developed mathematical model the optimal parameters of the system are determined. The results of this work can be used during the design of PV concentrating systems with heliostats.

R. Vardanyan; A. Norsoyan; V. Dallakyan

2010-01-01T23:59:59.000Z

151

Direct power control of grid connected PV systems with three level NPC inverter  

SciTech Connect (OSTI)

This paper presents the control of a three-level Neutral Point Clamped (NPC) voltage source inverter for grid connected photovoltaic (PV) systems. The control method used is the Extended Direct Power Control (EDPC), which is a generic approach for Direct Power Control (DPC) of multilevel inverters based on geometrical considerations. Maximum Power Point Tracking (MPPT) algorithms, that allow maximal power conversion into the grid, have been included. These methods are capable of extracting maximum power from each of the independent PV arrays connected to each DC link voltage level. The first one is a conventional MPPT which outputs DC link voltage references to EDPC. The second one is based on DPC concept. This new MPPT outputs power increment references to EDPC, thus avoiding the use of a DC link voltage regulator. The whole control system has been tested on a three-level NPC voltage source inverter connected to the grid and results confirm the validity of the method. (author)

Alonso-Martinez, Jaime; Eloy-Garcia, Joaquin; Arnaltes, Santiago [Dept. of Electrical Engineering, University Carlos III of Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain)

2010-07-15T23:59:59.000Z

152

PV Crystalox Solar AG formerly PV Silicon AG | Open Energy Information  

Open Energy Info (EERE)

PV Crystalox Solar AG formerly PV Silicon AG PV Crystalox Solar AG formerly PV Silicon AG Jump to: navigation, search Name PV Crystalox Solar AG (formerly PV Silicon AG) Place Abingdon, England, United Kingdom Zip OX14 4SE Sector Solar Product UK-based manufacturer of multicrystalline ingots and wafers to the solar industry; as of early 2009, to output solar-grade polysilicon. Coordinates 36.71049°, -81.975194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.71049,"lon":-81.975194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

153

PV Solar Planet | Open Energy Information  

Open Energy Info (EERE)

Planet Planet Jump to: navigation, search Logo: PV Solar Planet Name PV Solar Planet Address 5856 S. Garland Way Place Littleton, Colorado Zip 80123 Sector Solar Product Sales of solar laminate Website http://www.pvsolarplanet.com/ Coordinates 39.610743°, -105.105245° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.610743,"lon":-105.105245,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

Microsoft Word - PV Report v20.doc  

Gasoline and Diesel Fuel Update (EIA)

A A EIA Task Order No. DE-DT0000804, Subtask 3 Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications Final Report August 2010 Prepared for: Office of Integrated Analysis and Forecasting U.S. Energy Information Administration Prepared by: ICF International Contact: Robert Kwartin T: (703) 934-3586 E: rkwartin@icfi.com ii Table of Contents Executive Summary ...................................................................................................................... v 1. Introduction ...........................................................................................................................1 1.1 Objective ....................................................................................................................1

155

PV Manufacturing R&D Project -- Trends in the U.S. PV Industry  

SciTech Connect (OSTI)

To foster continued growth in the U.S. photovoltaic (PV) industry, the U.S. Department of Energy initiated the PV Manufacturing R&D (PVMR&D) Project--a partnership with U.S. PV industry participants to perform cost-shared manufacturing research and development. Throughout FY 2004, PVMR&D managed fourteen subcontracts across the industry. The impact of PVMR&D is quantified by reductions in direct module manufacturing costs, scale-up of existing PV production capacity, and accrual of cost savings to the public and industry. An analysis of public and industry investment shows that both recaptured funds by mid-1998 based on estimated manufacturing cost savings from PVMR&D participation. Since project inception, total PV manufacturing capacity has increased from 14 MW to 201 MW at the close of 2003, while direct manufacturing costs declined from $5.55/W to $2.49/W. These results demonstrate continued progress toward the overriding goals of the PVMR&D project.

Brown, K. E.; Mitchell, R. L.; Bower, W. I.; King, R.

2005-01-01T23:59:59.000Z

156

Building America Zero Energy Ready Home Case Study: Near Zero Maine Home II, Vassalboro, Maine  

Broader source: Energy.gov [DOE]

Case study describing a single-story, 1,200-sq. ft. home in Maine with double shell walls, triple-pane windows, ductless heat pump, solar hot water, HERS 35 eithout PV, HERS 11 with PV

157

DOE Zero Energy Ready Home Case Study: One Sky Homes, San Jose, CA  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home in San Jose, CA, that achieved a HERS 69 on the California HERS score without PV, or HERS -1 with 6.4 kW of PV.

158

DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham, WA  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home in Bellingham, WA, that achieves HERS 43 without PV or HERS 13 with 3.2 kW of PV.

159

Real Power and Reactive Power Control of a Three-Phase Single-Stage-PV System and PV voltage Stability  

SciTech Connect (OSTI)

Grid-connected photovoltaic (PV) systems with power electronic interfaces can provide both real and reactive power to meet power system needs with appropriate control algorithms. This paper presents the control algorithm design for a three-phase single-stage grid-connected PV inverter to achieve either maximum power point tracking (MPPT) or a certain amount of real power injection, as well as the voltage/var control. The switching between MPPT control mode and a certain amount of real power control mode is automatic and seamless. Without the DC-to-DC booster stage, PV DC voltage stability is an important issue in the control design especially when the PV inverter is operating at maximum power point (MPP) with voltage/var control. The PV DC voltage collapse phenomenon and its reason are discussed. The method based on dynamic correction of the PV inverter output is proposed to ensure PV DC voltage stability. Simulation results of the single-stage PV system during system disturbances and fast solar irradiation changes confirm that the proposed control algorithm for single-stage PV inverters can provide appropriate real and reactive power services and ensure PV DC voltage stability during dynamic system operation and atmospheric conditions.

Li, Huijuan [ORNL] [ORNL; Xu, Yan [ORNL] [ORNL; Adhikari, Sarina [ORNL] [ORNL; Rizy, D Tom [ORNL] [ORNL; Li, Fangxing [ORNL] [ORNL; Irminger, Philip [ORNL] [ORNL

2012-01-01T23:59:59.000Z

160

Simulator Developed to Drastically Reduce Time of Multijunction PV Device Efficiency Measurements (Fact Sheet), NREL Highlights, Research & Development  

SciTech Connect (OSTI)

NREL's new simulator helps speed up research in the race to improve photovoltaic efficiency. Scientists at the National Renewable Energy Laboratory (NREL) needed a quick and accurate method to predict energy generated from multijunction photovoltaic (PV) test devices. This method had to take into account the nonlinear behavior of multijunction PV. NREL achieved this by developing the One-Sun Multi-Source Simulator (OSMSS), which reduces the time for this type of reference spectrum efficiency measurement from hours or days to minutes. The OSMSS is an automated, spectrally adjustable light source that builds a unique simulator spectrum that causes a multijunction PV device to behave as it would under a reference spectrum. This new simulator consists of four light sources separated into nine wavelength bands between 350 and 2,000 nm. The irradiance in each band is adjustable from zero to about 1.5 suns. All bands are recombined via optical fibers and integrating optics to produce a nearly 10 cm x 10 cm uniform spot. The operator simply links the OSMSS to the quantum efficiency data for the test device, and the OSMSS does the rest. The OSMSS can also determine the power as a function of the spectral irradiance (beyond the reference spectra), total irradiance, and temperature. Major components of the system were built to NREL specification by LabSphere, Inc. NREL developed a new, fully automated tool that rapidly builds a spectrum under which all junctions of a multijunction PV device behave as they would under a reference spectrum. Such a spectrum is essential to properly characterize multijunction devices. The OSMSS reduces the time for building spectra for current vs. voltage measurements from hours or days to minutes. This makes it possible to quickly characterize a multijunction device under many different conditions. The OSMSS will be an important tool to help predict the yearly energy output of a multijunction PV device in a particular environment when provided with a range of spectra and temperatures for that location.

Not Available

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Gulf Power - Solar PV Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gulf Power - Solar PV Program Gulf Power - Solar PV Program Gulf Power - Solar PV Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $10,000/installation Program Info State Florida Program Type Utility Rebate Program Rebate Amount $2/watt Provider Energy Efficiency '''''All funding has currently been reserved and new applications are no longer being accepted. See Gulf Power's [http://www.gulfpower.com/renewable/solarElectricity.asp Solar PV] web site for more information.''''' Gulf Power offers a Solar PV rebate to residential and commercial customers. Gulf Power will provide a $2/watt rebate with a $10,000 per system maximum. In addition, Gulf Power has a Solar for Schools program, providing capital funding for PV systems. Gulf Power has worked with the Florida Solar Energy

162

Community Renewable Energy Webinar: Developing PV Projects | Department of  

Broader source: Energy.gov (indexed) [DOE]

Community Renewable Energy Webinar: Developing PV Projects Community Renewable Energy Webinar: Developing PV Projects Community Renewable Energy Webinar: Developing PV Projects January 15, 2013 1:00PM MST Webinar This webinar will take place from 1-2:15 p.m. Mountain Standard Time. It will provide information on how the cities of Tucson, Arizona, and Minneapolis, Minnesota, utilized requests for proposals (RFPs) and power purchase agreements (PPAs) to develop photovoltaic (PV) projects. The webinar will feature two presentations, highlighted below. RFIs, RFPs, and RFQs for PV: Finding the Right Solar Contractors for Your Community Choosing vendors for solar projects requires a careful look since you may well be dealing with them for 20 years ... or more. The City of Tucson will highlight its experiences with city-owned PV projects as well as a PPA

163

Simulation and analysis of a solar assisted heat pump system with two different storage types for high levels of PV electricity self-consumption  

Science Journals Connector (OSTI)

Abstract The incentives for PV-systems in Europe is being gradually lowered or ended. This makes a higher level of self-consumption interesting for owners of PV-systems. Sweden has an incentive of 35% of the investment cost for PV-systems. Unfortunately not all consumers can get this incentive. Therefore a high level of self-consumption will be necessary if the PV-systems are to be profitable in Sweden. A reference system with two different energy storage technologies is investigated in this paper. One system with 48 kW h of batteries and one system with a hot water storage tank where the electricity is stored as heat. The research questions in this paper are: Which storage system gives the highest level of PV electricity self-consumption? Are the storage systems profitable with the assumptions made in this paper? What are the levelized costs of electricity (LCOE) for the reference system with different storage system? The system with batteries has a self-consumption of 89% of the annual PV-electricity output and the system with a hot water storage tank has 88%. The system with batteries has a levelized cost of electricity two times higher than the system with a hot water storage tank.

Richard Thygesen; Björn Karlsson

2014-01-01T23:59:59.000Z

164

Impact of Utility Rates on PV Economics - Digital Appendix | Open Energy  

Open Energy Info (EERE)

Impact of Utility Rates on PV Economics - Digital Appendix Impact of Utility Rates on PV Economics - Digital Appendix Jump to: navigation, search Welcome to the Digital Appendix for The Impacts of Utility Rates and Building Type on the Economics of Commercial Photovoltaic Systems. This digital appendix contains supplement material for the NREL technical report, The Impacts of Utility Rates and Building Type on the Economics of Commercial Photovoltaic Systems. Detailed results for each building type, location, and rate structure are provided in this appendix. Users may browse either by building type, or location using one of the two links in the "Detailed Charts and Data" section. Summary tables are also provided for reference. Summary Results Tables The summary tables provide overview results for all locations and building

165

NREL: Performance and Reliability R&D - PV Module Reliability...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reliability R and D Printable Version PV Module Reliability Workshop NREL hosts an annual Photovoltaic Module Reliability Workshop (PVMRW) so that solar technology experts can...

166

Sandia National Laboratories: Sandian Presents on PV Failure...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) On December 15, 2014, in Computational Modeling & Simulation, Energy, Facilities, News, News & Events,...

167

PV integration in the Bonneville Power Administration balancing authority area.  

E-Print Network [OSTI]

??In this study I investigate the accuracy and necessity of the Bonneville Power Administration (BPA) PV integration tariff, which was instituted in 2011. Note that,… (more)

Schumaker, Adam

2012-01-01T23:59:59.000Z

168

Novel Control and Harmonics Impact of PV Solar Farms.  

E-Print Network [OSTI]

??This thesis presents a novel application of Photovoltaic (PV) solar system inverter, both during night and day, as a dynamic reactive power compensator STATCOM. This… (more)

Das, Byomakesh

2012-01-01T23:59:59.000Z

169

Overview of the PV Module Model in PVWatts (Presentation)  

SciTech Connect (OSTI)

Overview of the PV module model. PVWatts module power estimates were compared with those using the Sandia model for three modules and data sets.

Marion, B.

2010-09-22T23:59:59.000Z

170

EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Glass Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Characterization of Dynamic Loads on Solar Modules with Respect to Fracture of Solar Cells...

171

Inner Mongolia Dunan PV power | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name: Inner Mongolia Dunan PV power Place: Inner Mongolia Autonomous Region, China Sector: Solar Product: Inner Mongolia-based solar project developer...

172

Sandia National Laboratories: PV Paper Published in IEEE Transactions...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECAbout ECFacilitiesDETLPV Paper Published in IEEE Transactions on Sustainable Energy PV Paper Published in IEEE Transactions on Sustainable Energy CRF Researchers Measure...

173

Ultra Accelerated Testing of PV Module Components  

SciTech Connect (OSTI)

Using concentrated natural sunlight at the NREL High Flux Solar Furnace, we have exposed several materials to acceleration factors of up to 400 times the normal outdoor UV exposure dose. This accelerated rate allows the exposure of materials such that a year of outdoor exposure can be simulated in about 5 hours. We have studied the solarization of cerium containing glass, the degradation of ethylene vinyl acetate laminated between borosilicate glass, and the yellowing of standard polystyrene test coupons. The first two candidates are of interest to the photovoltaics (PV) program, and the last candidate material is a widely used dosimeter for ultra violet (UV) exposure in accelerated weathering chambers

Pitts, J. R.; King, D. E.; Bingham, C.; Czanderna, A. W.

1998-10-28T23:59:59.000Z

174

Development of a Dispatchable PV Peak Shainv System. PV: Bonus Program - Phase 1 Report. Volume 1  

SciTech Connect (OSTI)

This report summarizes the work performed by Delmarva Power and Light and its subcontractors in Phase 1 of the US Department of Energy's PV:BONUS Program. The purpose of the program is to develop products and systems for buildings which utilize photovoltaic (N) technology. Beginning with a cooperative research effort with the University of Delaware's Center for Energy and Environmental Policy Research Delmarva Power developed and demonstrated the concept of Dispatchable PV Peak Shaving. This concept and the system which resulted horn the development work are unique from other grid-connected PV systems because it combines a PV, battery energy storage, power conversion and control technologies into an integrated package. Phase 1 began in July 1993 with the installation of a test and demonstration system at Delmarva's Northern Division General Office building near Newark, Delaware. Following initial testing throughout the summer and fall of 1993, significant modifications were made under an amendment to the DOE contract. Work on Phase 1 concluded in the early spring of 1995. Significant progress towards the goal of commercializing the system was made during Phase 1, and is summarized. Based on progress in Phase 1, a proposal to continue the work in Phase 2 was submitted to the US DOE in May 1995. A contract amendment and providing funds for the Phase 2 work is expected in July 1995.

None

1995-10-01T23:59:59.000Z

175

AC PV Modules Take a standard DC PV module and connect a microinverter  

E-Print Network [OSTI]

modules. These inverters range in power from 700 watts up to 1 megawatt. DC maximum system voltages can and up to 13 inverters for the 210 W version to be installed on the same AC output cable. home power 136, and secure a listing to UL1741 for a pre-assembled module/inverter device, and you have an AC PV module

Johnson, Eric E.

176

Appendix A. Reference case projections  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Zealand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - China 0.0 0.0 0.0 0.2 0.7 0.7 1.3 2.0 19.4 Germany 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 India 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 - South...

177

Appendix A. Reference case projections  

Gasoline and Diesel Fuel Update (EIA)

Zealand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - China 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 8.6 Germany 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 India 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - South...

178

Appendix A. Reference case projections  

Gasoline and Diesel Fuel Update (EIA)

48.7 54.6 59.9 65.3 2.1 Middle East 23.2 24.3 25.9 30.4 34.5 38.9 43.0 47.3 2.2 North Africa 3.8 3.7 2.4 3.7 4.0 4.3 4.7 4.9 0.9 West Africa 4.1 4.5 4.4 5.5 6.2 6.8 7.2 7.5 1.7...

179

Appendix A. Reference case projections  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

34.5 37.8 41.0 43.7 0.7 Middle East 23.2 24.3 25.9 22.6 23.6 26.6 29.4 31.8 0.9 North Africa 3.8 3.7 2.4 3.2 3.3 3.4 3.6 3.7 0.0 West Africa 4.1 4.5 4.4 4.4 4.7 4.8 5.0 5.0 0.4...

180

Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Shelf Reference Shelf Reference Shelf Find reference sources Questions? 505-667-5809 Email Biography Biographies of Women in Science Biography.com Marquis Who's Who NobelPrize.org Nobel Prize Internet Archive Calculators Currency Converter OnlineConversion.com Wolfram|Alpha Computational Knowledge Engine Dictionaries Oxford English Dictionary Merriam-Webster Dictionary DOD Dictionary of Military Terms Encyclopedias Britannica Online Columbia Encyclopedia Wikipedia Grants & Funding DOE Office of Science Grants & Contracts National Science Foundation National Institutes of Health Grants.Gov FedBizOpps.gov Los Alamos Info Los Alamos County Los Alamos Historical Society University of New Mexico - Los Alamos Campus Maps Atlapedia Online Perry-Casteneda Library Map Collection U.S. Gazetteer

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Economic Value of PV and Net Metering to Residential Customers in California  

E-Print Network [OSTI]

combination of: PV penetration rate (25%, 50%, and 75%); PVfor which TOU Rate is Least Cost PV Penetration Level PG&E (Least-Cost Rate Choice at Varying PV Penetration Levels 5.2.

Darghouth, Naim

2010-01-01T23:59:59.000Z

182

PID-free C-Si PV Module Using Novel Chemically-Tempered Glass...  

Broader source: Energy.gov (indexed) [DOE]

PID-free C-Si PV Module Using Novel Chemically-Tempered Glass PID-free C-Si PV Module Using Novel Chemically-Tempered Glass Presented at the PV Module Reliability Workshop,...

183

U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks: Cash Purchase, Fair Market Value, and Prepaid Lease Transaction Prices  

SciTech Connect (OSTI)

The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. This report provides a Q4 2013 update for residential PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variation in business models, labor rates, and module choice. We estimate a weighted-average cash purchase price of $3.29/W for modeled standard-efficiency, polycrystalline-silicon residential PV systems installed in the United States. This is a 46% decline from the 2013-dollar-adjusted price reported in the Q4 2010 benchmark report. In addition, this report frames the cash purchase price in the context of key price metrics relevant to the continually evolving landscape of third-party-owned PV systems by benchmarking the minimum sustainable lease price and the fair market value of residential PV systems.

Davidson, C.; James, T. L.; Margolis, R.; Fu, R.; Feldman, D.

2014-10-01T23:59:59.000Z

184

A Web-Based Interactive Questionnaire for PV Application  

Science Journals Connector (OSTI)

Questionnaire is a fundamental method for investigation and research, but participants get tired about it, because of the impression of being long and boring, which causes low quality of research. The authors developed an interactive questionnaire as ... Keywords: Building Integrated Photo-Voltaic BIPV, Interactive Questionnaire, Participatory Design, Photovoltaic PV System, Sunrise-PV

Zheng Dai; Kasper Paasch

2013-04-01T23:59:59.000Z

185

Summary Review of Advanced Inverter Technologies for Residential PV Systems  

E-Print Network [OSTI]

Summary Review of Advanced Inverter Technologies for Residential PV Systems This report summarizes current and emerging standards for residential PV systems and identifies the status of emerging inverter of Hawai`i at Manoa #12;Summary of Inverter Technologies Prepared for the U.S. Department of Energy Office

186

Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC  

SciTech Connect (OSTI)

On August 8, 2005, the Energy Policy Act of 2005 (EPAct 2005) increased the Section 48 investment tax credit (ITC) for commercial photovoltaic (PV) systems from 10% to 30% of the project's 'tax credit basis' (i.e., the dollar amount to which the ITC applies), and also created in Section 25D of the Internal Revenue Code a new 30% ITC (capped at $2,000) for residential solar systems. Both changes went into effect on January 1, 2006, for an initial period of two years, and in late 2006 both credits were extended 'as is' for an additional year (through 2008). In early 2006, Berkeley Lab published an LBNL/CESA case study that examined the financial impact of EPAct 2005's solar tax credits on PV system owners, in light of the $2,000 cap on the residential credit, as well as the fact that most PV systems in the U.S. also receive cash incentives from state-, local-, or utility-administered PV programs, and that these cash incentives may reduce the value of federal tax credits in certain situations. That case study was subsequently revised in February 2007 to reflect new Internal Revenue Service (IRS) guidance. The findings of that case study, which are briefly recapped in the next section, remained relevant up until October 2008, when the Energy Improvement and Extension Act of 2008 extended both solar credits for an unprecedented eight years, removed the $2,000 cap on the residential credit, and eliminated restrictions on the use of both credits in conjunction with the Alternative Minimum Tax (AMT). These significant changes, which apply to systems placed in service on or after January 1, 2009, will increase the value of the solar credits for residential system owners in particular, and are likely to spur significant growth in residential, commercial, and utility-scale PV installations in the years ahead. In light of these substantial changes to the solar ITC, this report takes a fresh look at the value of these revised credits, focusing specifically on the Section 25D residential credit. After first setting the stage by briefly reviewing our previous findings, the document proceeds to cover four specific areas in which the removal of the $2,000 cap on the residential ITC will have significant implications for PV program administrators, PV system owners, and the PV industry that go beyond the obvious market growth potential created by these more-lucrative federal incentives. These four areas include: (1) The financial implications of whether or not residential cash rebates are considered to be taxable income; (2) The role of low-interest loan programs and other forms of 'subsidized energy financing' under an uncapped ITC; (3) The degree to which taxable and nontaxable rebate levels might be reduced in response to the extra value provided by an uncapped ITC; and (4) The impact of an uncapped ITC on third-party financing and ownership models that are just beginning to emerge in the residential sector. The document concludes by highlighting a common thread that runs throughout: the need for PV program managers to understand whether or not their rebates are considered to be taxable income before they can react in an appropriate manner to the recent changes in federal solar policy and, if financing programs are offered, the need to understand whether the IRS considers these programs to be 'subsidized'. Finally, we note that this paper is based on current law; future legislative changes to the ITC could, of course, alter the conclusions reached here.

Bolinger, Mark; Barbose, Galen; Wiser, Ryan

2008-11-12T23:59:59.000Z

187

TekSun PV Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

TekSun PV Manufacturing Inc TekSun PV Manufacturing Inc Jump to: navigation, search Name TekSun PV Manufacturing Inc Place Austin, Texas Zip 78701 Product US-based installer of PV systems; rportedly planning to buy a 120MW amorphous silicon PV manufacturing line from Applied Materials. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

188

NREL: Jobs and Economic Competitiveness - Solar PV Manufacturing Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar PV Manufacturing Cost Analysis Solar PV Manufacturing Cost Analysis Between 2000 and 2010 global shipments of PV cells/modules grew 53% (compound annual growth rate [CAGR]). At the same time, the U.S. market share has slipped from 30% to 7% (30% CAGR) while China/Taiwan has grown from <2% to 54% (115% CAGR) to become the leader in global production. NREL's manufacturing cost analysis has focused on understanding the regional competitiveness of solar PV manufacturing specifically: What factors have led to China's dramatic growth in PV? Is it sustainable? Can the US compete? NREL's manufacturing cost analysis studies show that: U.S. incentives to strengthen access to capital for investment in innovative solar technologies could offset China's current advantage U.S. incentives are dwarfed by the scale of Chinese incentives

189

City of Healdsburg - PV Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Healdsburg - PV Incentive Program Healdsburg - PV Incentive Program City of Healdsburg - PV Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $3,280 Commercial: $15,600 Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $0.82/watt AC Commercial: $0.78/watt AC Provider City of Healdsburg Through the City of Healdsburg's PV Buy-down Program, residential and commercial customers are eligible for rebate on qualifying grid-connected PV systems. In keeping with SB1, (the California Solar Initiative mandating that utilities put into place programs to assure that 3000 megawatts (MW) of solar installations on homes is in place within 10 years) the incentive level will decrease annually over the 10 year life of the program. The

190

IID Energy - PV Solutions Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PV Solutions Rebate Program PV Solutions Rebate Program IID Energy - PV Solutions Rebate Program < Back Eligibility Commercial Industrial Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Maximum Rebate PBI Incentive max: 550,000 for the 5-year period (110,000/year) Program Info State California Program Type Utility Rebate Program Rebate Amount 2013 program is closed Provider Imperial Irrigation District '''''IID accepted applications for the 2013 PV Solutions Program from Jan. 2, 2013 - Jan. 31, 2013. Winners were determined via lottery. The program is now closed for the remainder of 2013, but another funding round is expected in 2014. ''''' Through the PV Solutions Rebate Program, Imperial Irrigation District (IID) provides rebates to its residential and commercial customers who install

191

City of Palo Alto Utilities - PV Partners | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PV Partners PV Partners City of Palo Alto Utilities - PV Partners < Back Eligibility Commercial Local Government Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Maximum Rebate Incentives available for first 1 MW Program Info Start Date July 2007 State California Program Type Utility Rebate Program Rebate Amount Systems Systems 30 kW and larger: Performance-based incentive (PBI), based on actual monthly energy produced (kWh) for 60 month term. For current rebate levels, visit the program website below. Provider City of Palo Alto Utilities The City of Palo Alto Utilities (CPAU) PV Partners Program offers incentives to customers that install qualifying PV systems. The program, which has a budget of approximately $13 million over 10 years, is divided

192

AEP Texas Central Company - SMART Source Solar PV Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Central Company - SMART Source Solar PV Rebate Program Central Company - SMART Source Solar PV Rebate Program AEP Texas Central Company - SMART Source Solar PV Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $31,2500 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/W DC Non-residential: $1.25/W DC Provider Smart Source PV Program American Electric Power Texas Central Company (AEP-TCC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes are eligible to participate in the

193

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $5,000 Program Info Start Date 10/1/2010 State Florida Program Type Utility Rebate Program Rebate Amount Solar window of 80% or more: $1.00/watt Provider Gainesville Regional Utilities '''''NOTE: Application targets for fiscal year 2013 have been met for the GRU Solar PV Rebate Program. The next round of applications are scheduled to open on October 1, 2013 pending approval of the GRU budget by the Gainesville City Commission.''''' Gainesville Regional Utilities (GRU) offers its customers a rebate to install photovoltaic (PV) systems. Systems with solar windows of 80% or

194

AEP SWEPCO - SMART Source Solar PV Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AEP SWEPCO - SMART Source Solar PV Program AEP SWEPCO - SMART Source Solar PV Program AEP SWEPCO - SMART Source Solar PV Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $30,000 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/watt DC Non-residential: $1.20/watt DC Provider Smart Source PV Program Southwestern Electric Power Company (SWEPCO) offers rebates to customers that install photovoltaic (PV) systems on homes. Rebates may be assigned to the customer, a service provider, or a third party. Rebates are offered at a rate of $1.50 per watt (DC) for residential installations and $1.20 per watt (DC) for non-residential installations. The maximum per project and per customer rebate for residential systems is

195

Ukiah Utilities - PV Buydown Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ukiah Utilities - PV Buydown Program Ukiah Utilities - PV Buydown Program Ukiah Utilities - PV Buydown Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: 7,000; Commercial: 20,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Incentive Rate for systems installed between 7/1/12 and 6/30/13: $1.40/watt AC; incentive may be reduced based on expected performance Provider City of Ukiah Through Ukiah Utilities' PV Buydown Program, residential and commercial customers are eligible for a $1.40-per-watt AC rebate on qualifying grid-connected PV systems up to a maximum system size of 1 MW. In keeping with SB1, the incentive level will decrease annually on July 1 over the 10 year life of the program. Rebates are available on a first come, first

196

Building Energy Software Tools Directory: PV*SOL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PV*SOL PV*SOL PV*SOL logo. PV*SOL Pro is a program for the design and simulation of grid-connected and off-grid photovoltaic systems. You can create your system using a wide range of modules (including thin-film and crystalline) and the program determines the size of the system with the roof layout tool. After testing all the relevant physical parameters, the program automatically selects the inverter and PV array configuration. This dynamic simulation program was developed for engineers, designers, installers, roofing specialists, and electrical contractors or building technicians. Screen Shots Keywords photovoltaic systems simulation, planning and design software, grid-connected systems, stand-alone systems Validation/Testing N/A Expertise Required No special expertise or training needed.

197

Financing Solar PV at Government Sites with PPAs and Public Debt...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar PV at Government Sites with PPAs and Public Debt Financing Solar PV at Government Sites with PPAs and Public Debt Overview of financing solar photovoltaics at government...

198

U.S. Aims for Zero-Energy: Support for PV on New Homes  

E-Print Network [OSTI]

installations on new multi-family buildings Standard PV Buy-multi-family residential construction projects with PV and other green building

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

199

Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A.  

E-Print Network [OSTI]

pathovar; pv. ), which demonstrate distinct host plantcampestris pv. malvacearum avr genes. Mol Plant Microbepv. vesicatoria, which is responsible for bacterial spot in tomato and pepper plants.

2008-01-01T23:59:59.000Z

200

A Comparison of Key PV Backsheet and Module Properties from Fielded...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Key PV Backsheet and Module Properties from Fielded Module Exposures and Accelerated Test Conditions A Comparison of Key PV Backsheet and Module Properties from Fielded Module...

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems  

E-Print Network [OSTI]

Wh. INTRODUCTION A diesel hybrid system, incorporating a battery and inverter, can often provide power at a lower profile used for this study Fixed Power System Parameters The diesel and inverter were both sizedThe Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS

202

Mathematical Modeling for CostMathematical Modeling for Cost Optimization of PV RecyclingOptimization of PV Recycling  

E-Print Network [OSTI]

Mathematical Modeling for CostMathematical Modeling for Cost Optimization of PV RecyclingOptimization of PV Recycling InfrastructureInfrastructure JunJun--Ki ChoiKi Choi & Vasilis Fthenakis& Vasilis Recycling ­Cost Optimization 1. Where is the optimized location? · Centralized/decentralized collection

203

Analytical Improvements in PV Degradation Rate Determination  

SciTech Connect (OSTI)

As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

Jordan, D. C.; Kurtz, S. R.

2011-02-01T23:59:59.000Z

204

Electrochemical Approaches to PV Busbar Application  

SciTech Connect (OSTI)

Busbars are an integral component of any thin-film photovoltaic module and must be easy and quick to apply by PV manufacturers, as well as provide long-term reliability in deployed modules. Potential reliability issues include loss of adhesion and delamination, chemical instability under current collection conditions (electromigration or corrosion), compatibility of material and application method with subsequent encapsulation steps. Several new and novel busbar materials and application methods have been explored, including adhering metal busbars with various one- and two-part conductive epoxies or conductive adhesive films, ultrasonic bonding of metal busbar strips, and bonding of busbar strips using low-temperature solders. The most promising approach to date has been the direct application of metal busbars via various electrochemical techniques, which offers a variety of distinct advantages.

Pankow, J. W.

2005-01-01T23:59:59.000Z

205

"Table 1. Aeo Reference Case Projection Results" "Variable","Average Absolute Percent Differences","Percent of Projections Over- Estimated"  

U.S. Energy Information Administration (EIA) Indexed Site

Aeo Reference Case Projection Results" Aeo Reference Case Projection Results" "Variable","Average Absolute Percent Differences","Percent of Projections Over- Estimated" "Gross Domestic Product" "Real Gross Domestic Product (Average Cumulative Growth)* (Table 2)",0.9772689079,42.55319149 "Petroleum" "Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a)",35.19047501,18.61702128 "Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b)",34.68652106,19.68085106 "Total Petroleum Consumption (Table 4)",6.150682783,66.4893617 "Crude Oil Production (Table 5)",5.99969572,59.57446809 "Petroleum Net Imports (Table 6)",13.27260615,67.0212766 "Natural Gas"

206

Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin Film PV Partnership Projects  

SciTech Connect (OSTI)

As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program initiates new cost-shared solar energy R&D under the Solar America Initiative (SAI), it is useful to analyze the experience gained from cost-shared R&D projects that have been funded through the program to date. This report summarizes lessons learned from two DOE-sponsored photovoltaic (PV) projects: the Photovoltaic Manufacturing Technology/PV Manufacturing R&D (PVMaT/PVMR&D) project and the Thin-Film PV Partnership project. During the past 10-15 years, these two projects have invested roughly $330 million of government resources in cost-shared R&D and leveraged another $190 million in private-sector PV R&D investments. Following a description of key findings and brief descriptions of the PVMaT/PVMR&D and Thin-Film PV Partnership projects, this report presents lessons learned from the projects.

Margolis, R.; Mitchell, R.; Zweibel, K.

2006-09-01T23:59:59.000Z

207

Poroelastic references  

SciTech Connect (OSTI)

This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

Christina Morency

2014-12-12T23:59:59.000Z

208

Poroelastic references  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

Christina Morency

209

Kauai Island Utility Co-op (KIUC) PV integration study.  

SciTech Connect (OSTI)

This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

Ellis, Abraham; Mousseau, Tom (Knoxville, TN)

2011-08-01T23:59:59.000Z

210

3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems  

SciTech Connect (OSTI)

Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PV’s inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switching™ topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topology’s capability for the industry’s first single-stage multi-port hybrid power converter. This unique low cost approach eliminates the hybrid power conversion bottlenecks when integrating batteries into PV systems. As result this product will significantly accelerate market adoption of these systems.

Bundschuh, Paul [Ideal Power

2013-03-23T23:59:59.000Z

211

PV Validation and Bankability Workshop: San Jose, California  

SciTech Connect (OSTI)

This report is a collaboration between Sandia National Laboratories, the National Renewable Energy Laboratory, and the Florida Solar Energy Center (FSEC). The report provides feedback from the U.S. Department of Energy's (DOE) Solar Program PV Validation and Bankability Workshop in San Jose, California on August 31, 2011. It focuses on the current state of PV in the United States, private funding to fund U.S. PV industry growth, roles and functions of the regional test center program, and ways to improve the current validation and bankability practices.

Granata, J.; Howard, J.

2011-12-01T23:59:59.000Z

212

Progress Energy Florida - SunSense Commercial PV Incentive Program |  

Broader source: Energy.gov (indexed) [DOE]

Progress Energy Florida - SunSense Commercial PV Incentive Program Progress Energy Florida - SunSense Commercial PV Incentive Program Progress Energy Florida - SunSense Commercial PV Incentive Program < Back Eligibility Commercial Savings Category Solar Buying & Making Electricity Maximum Rebate 130,000 per participant Program Info Start Date 03/15/2011 State Florida Program Type Utility Rebate Program Rebate Amount First 10 kW: 2/watt 11 kW - 50 kW: 1.50/watt 51 kW - 100 kW: 1/watt Provider Business Customer Service '''''Progress Energy Florida will begin accepting applications at 10:00 a.m. October 1, 2012, for customers to apply for the 2013 rebates.''''' In March 2011, Progress Energy Florida began offering incentives to commercial customers who install photovoltaic (PV) systems. Incentive rates are based on a tiered structure:

213

PvXchange GmbH | Open Energy Information  

Open Energy Info (EERE)

PvXchange GmbH PvXchange GmbH Jump to: navigation, search Name pvXchange GmbH Place Berlin, Germany Zip 10963 Sector Services Product A German platform for PV module spot trades. Also provides data on spot prices and offers consulting services. Coordinates 52.516074°, 13.376987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.516074,"lon":13.376987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

214

Lassen Municipal Utility District - PV Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Lassen Municipal Utility District - PV Rebate Program Lassen Municipal Utility District - PV Rebate Program Lassen Municipal Utility District - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $5,000 or 50% of system cost, whichever is less Commercial: $23,000 or 50% of system cost, whichever is less. Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $3.00/W-AC Commercial: $2.10/W-AC Provider Lassen Municipal Utility District Lassen Municipal Utility District (LMUD) is providing incentives for its customers to purchase solar electric photovoltaic (PV) systems. Rebate levels will decrease annually over the life of the program. Through June 30, 2014, rebates of $3.00 per watt-AC up to $5,000 are available for

215

Pacific Power - PV Rebate Program (California) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pacific Power - PV Rebate Program (California) Pacific Power - PV Rebate Program (California) Pacific Power - PV Rebate Program (California) < Back Eligibility Agricultural Commercial Fed. Government Industrial Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Commercial: $90,000 Tax-exempt Entities: $277,500 Program Info Start Date 07/01/2011 Expiration Date 07/1/2015 State California Program Type Utility Rebate Program Rebate Amount Incentives may be adjusted based on expected performance. Incentive amounts below are current as of 12/14/12. See program website for current status. Residential: $1.13/W CEC-AC Commercial: $0.36/W CEC-AC Tax-exempt Entities: $1.11/W CEC-AC Pacific Power is providing rebates to their customers who install photovoltaic (PV) systems on their homes and facilities. These rebates step

216

Merced Irrigation District - PV Buydown Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Merced Irrigation District - PV Buydown Program Merced Irrigation District - PV Buydown Program Merced Irrigation District - PV Buydown Program < Back Eligibility Commercial Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: 8,400 Commercial: $70,000 Program Info State California Program Type Utility Rebate Program Rebate Amount 2.80/W AC, adjusted based on expected performance Provider Merced Irrigation District Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. The rebate is $2.80 per watt (adjusted based on the expected performance of the system) with a maximum of $8,400 for residential systems and $70,000 for non-residential systems.

217

Riverside Public Utilities - Non-Residential PV Incentive Program |  

Broader source: Energy.gov (indexed) [DOE]

Non-Residential PV Incentive Program Non-Residential PV Incentive Program Riverside Public Utilities - Non-Residential PV Incentive Program < Back Eligibility Commercial Savings Category Solar Buying & Making Electricity Maximum Rebate Whichever is less: 50% of project cost or specific dollar limits which vary according to the rate schedule of the applicant Program Info State California Program Type Utility Rebate Program Rebate Amount Program is currently on hold. See below for more information. Provider Riverside Public Utilities '''''Note: Funding for this program has been exhausted for the remainder of the fiscal year. The program is scheduled to reopen on July 1, 2014.''''' The non-residential photovoltaic (PV) rebate program provides financial incentives for Riverside Public Utilities' business customers to install

218

Community Renewable Energy Success Stories Webinar: Developing PV Projects  

Broader source: Energy.gov (indexed) [DOE]

Developing PV Developing PV Projects with RFPs and PPAs (text version) Community Renewable Energy Success Stories Webinar: Developing PV Projects with RFPs and PPAs (text version) Below is the text version of the webinar titled "Developing PV Projects with RFPS and PPAS," originally presented on January 15, 2013. Operator: The broadcast is now starting. All attendees are in listen-only mode. Sarah Busche: Good afternoon, everyone, and welcome to today's webinar sponsored by the U.S. Department of Energy (DOE). I'm Sarah Busche and here with me is Devin Egan. We're broadcasting live from the National Renewable Energy Laboratory (NREL) just outside of Denver, Colorado, in Golden, and we're going to give everyone a few more minutes to call in and log on, but during that time

219

Lodi Electric Utility - PV Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lodi Electric Utility - PV Rebate Program Lodi Electric Utility - PV Rebate Program Lodi Electric Utility - PV Rebate Program < Back Eligibility Commercial Industrial Local Government Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $7,000 Non-residential: $40,000 Program Info Expiration Date January 1, 2018 State California Program Type Utility Rebate Program Rebate Amount 2013 Program Year: $1.94/W AC Incentives will be adjusted based on expected performance Provider Customer Programs Lodi Electric Utility offers rebates to its residential, commercial, industrial and municipal customers who install photovoltaic (PV) systems. The rebate program is funded with approximately $6 million to support systems installed between January 1, 2008 and January 1, 2018. The total

220

Hercules Municipal Utility - PV Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hercules Municipal Utility - PV Rebate Program Hercules Municipal Utility - PV Rebate Program Hercules Municipal Utility - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Systems 10 kW or less: 10,000 Program Info State California Program Type Utility Rebate Program Rebate Amount '''2012:''' Systems up to 10 kW: 2.25/watt AC Systems larger than 10 kW: 0.17/kWh for 5 years'''''' Provider Hercules Municipal Utility '''''Note: This program has been temporarily suspended. Contact the utility for more information.''''' Hercules Municipal Utility offers a $2.25-per-watt AC rebate (2012 rebate level) to its residential and commercial customers who purchase and install solar photovoltaic (PV) systems smaller than 10 kilowatts (kW). Systems 10

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

SMUD - PV Residential Retrofit Buy-Down | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PV Residential Retrofit Buy-Down PV Residential Retrofit Buy-Down SMUD - PV Residential Retrofit Buy-Down < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate No maximum limit Program Info State California Program Type Utility Rebate Program Rebate Amount $0.20/watt AC. Incentive is adjusted based on expected performance. The incentive can be paid directly to the customer or to the installer. Provider Sacramento Municipal Utility District SMUD offers an incentive of $0.20 per watt (W) AC to residential customers who install grid-connected photovoltaic (PV) systems. Customers do not have to contract directly with SMUD-approved contractors for the purchase and installation of the system, however this is recommended. All systems must be permitted and installed by B, C-10, or C-46 contractors. The incentive

222

SMUD - Non-Residential PV Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Non-Residential PV Incentive Program Non-Residential PV Incentive Program SMUD - Non-Residential PV Incentive Program < Back Eligibility Commercial Industrial Nonprofit Savings Category Solar Buying & Making Electricity Maximum Rebate $650,000 for up-front incentives at current $0.65/W incentive level. Program Info State California Program Type Utility Rebate Program Rebate Amount Expected Performance Based Incentive (for systems up to 1 MW): 0.65/watt AC; incentive adjusted based on expected performance Performance Based Incentive: 0.10/kWh for 5 years or 0.06/kWh for 10 years Incentives are decreased for systems > 1 MW Provider Sacramento Municipal Utility District SMUD offers cash incentives to commercial, industrial, and non-profit customers who install solar photovoltaic (PV) systems. Customers have the

223

City of Lompoc Utilities - PV Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PV Rebate Program PV Rebate Program City of Lompoc Utilities - PV Rebate Program < Back Eligibility Commercial Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate 50% the system cost, up to $50,000 Program Info Funding Source utility surcharge State California Program Type Utility Rebate Program Rebate Amount $2.00 per watt Provider Customer Service City of Lompoc Utilities provides rebates to its electric customers who purchase and install photovoltaic (PV) systems. The rebate is $2.00 per watt-AC. The incentive amount may not exceed 50% the cost of the system, up to a maximum of $50,000. To qualify for the rebate the system must meet all the criteria as defined by the Lompoc City Electric interconnection agreement for self-generating electric systems and the requirements set forth by the California Energy

224

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating  

Broader source: Energy.gov (indexed) [DOE]

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Arizona Program Type Solar/Wind Permitting Standards Provider Maricopa Association of Governments In an effort to promote uniformity, the Maricopa Association of Governments (MAG) approved standard procedures for securing necessary electrical/building permits for residential (single-family) and commercial PV systems. These procedures are a part of the MAG Building Code Standards. The standards address requirements for the solar installation, plans,

225

Full Steam Ahead for PV in US Homes?  

SciTech Connect (OSTI)

In October 2008, the United States Congress extended both the residential and commercial solar investment tax credits (ITCs) for an unprecedented eight years, lifted the $2,000 cap on the residential credit, removed the prohibition on utility use of the commercial credit, and eliminated restrictions on the use of both credits in conjunction with the Alternative Minimum Tax. These significant changes, which apply to systems placed in service on or after January 1, 2009, will increase the value of the solar credits for residential system owners in particular, and are likely--in conjunction with state, local, and utility rebate programs targeting solar--to spur significant growth in residential, commercial, and utility-scale photovoltaic (PV) installations in the years ahead. This article focuses specifically on the residential credit, describing three areas in which removal of the $2,000 cap on the residential ITC will have significant implications for PV rebate program administrators, PV system owners, and the PV industry.

Bolinger, Mark A; Barbose, Galen; Wiser, Ryan

2009-01-15T23:59:59.000Z

226

Tucson's Solar Experience: Developing PV with RFPs and PPAs  

Office of Energy Efficiency and Renewable Energy (EERE)

This presentation was given January 15, 2013, by Bruce Plenk, Solar Coordinator for the City of Tucson, Arizona, as part of the CommRE Developing PV Projects With RFPs and PPAs webinar.

227

Impact of Soiling and Pollution on PV Generation Performance  

Broader source: Energy.gov [DOE]

This 5-page technical letter addresses air pollution effects on PV performance by quantifying, based on a literature search, the average annual loss due to soiling, the impact of cleaning, and a recommended cleaning schedule.

228

The Impact of PV on the German Power Market  

Science Journals Connector (OSTI)

During the last months, the discussion on feed-in tariffs (FiT) for photovoltaic (PV) installations ... that module prices have been decreasing faster than feed-in tariffs was discussed. On the other hand,...

Sven Bode; Helmuth-M. Groscurth

2011-06-01T23:59:59.000Z

229

Solar PV Jobs and Economic Development Impact Model Webinar  

Broader source: Energy.gov [DOE]

Join the DOE SunShot Initiative, in conjunction with the National Renewable Energy Laboratory, for a webinar on August 21, 2013, at 2-3 p.m. EST highlighting the Scenario Solar PV Jobs and Economic...

230

Taunton Municipal Lighting Plant- Residential PV Rebate Program  

Broader source: Energy.gov [DOE]

Customers of Taunton Municipal Lighting Plant (TMLP) may be eligible for $2.00/watt rebate on solar photovoltaic (PV) installations. The minimum system size eligible for this rebate is 1 kilowatt ...

231

Interconnecting PV on New York City's Secondary Network Distribution System  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to ���¢��������networks���¢������� in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1���¢��������PV Deployment Analysis for New York City���¢��������we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2���¢��������A Briefing for Policy Makers on Connecting PV to a Network Grid���¢��������presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3���¢��������Technical Review of Concerns and Solutions to PV Interconnection in New Y

K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

2009-11-30T23:59:59.000Z

232

Breakout Session: A Look Ahead: PV Manufacturing in 10 Years...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in 10 Years May 21, 2014 5:15PM to 6:15PM PDT Pacific B The global PV manufacturing landscape has undergone significant changes in the past decade, from geographic and economic...

233

Plumas-Sierra REC - PV Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PV Rebate Program PV Rebate Program Plumas-Sierra REC - PV Rebate Program < Back Eligibility Agricultural Commercial Industrial Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $6,000 for residential; $12,000 for small commercial, agricultural and non-profit applications; $20,000 for large commercial and industrial applications Program Info State California Program Type Utility Rebate Program Rebate Amount 2012 rebate level: $2.09/watt (AC) Incentives will be adjusted based on expected performance. Provider Plumas-Sierra REC Plumas-Sierra REC offers an incentive for its customers to install photovoltaic (PV) systems on homes and businesses. Rebates are available for qualifying systems between one kilowatt (kW) and 25 kW; the rebate amount is based on the installed capacity. The rebate level will decreases

234

Riverside Public Utilities - Residential PV Incentive Program | Department  

Broader source: Energy.gov (indexed) [DOE]

PV Incentive Program PV Incentive Program Riverside Public Utilities - Residential PV Incentive Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate 13,000 or 50% of project cost, whichever is less Program Info State California Program Type Utility Rebate Program Rebate Amount Program is on hold Provider Riverside Public Utilities '''''Note: Funding for this program has been exhausted for the remainder of the fiscal year. The program is scheduled to reopen on July 1, 2014. ''''' The Residential Photovoltaic (PV) System rebate program provides incentives to Riverside Public Utilities customers who purchase and install qualifying photovoltaic systems on their homes. For Fiscal Year 2013, the rebate amount was $2.00 per watt AC and cannot exceed 50% of the total system cost

235

An optimization-based approach to scheduling residential battery storage with solar PV: Assessing customer benefit  

Science Journals Connector (OSTI)

Abstract Several studies have suggested that battery storage co-located with solar photovoltaics (PV) benefits electricity distributors in maintaining system voltages within acceptable limits. However, without careful coordination, these potential benefits might not be realized. In this paper we propose an optimization-based algorithm for the scheduling of residential battery storage co-located with solar PV, in the context of PV incentives such as feed-in tariffs. Our objective is to maximize the daily operational savings that accrue to customers, while penalizing large voltage swings stemming from reverse power flow and peak load. To achieve this objective we present a quadratic program (QP)-based algorithm. To complete our assessment of the customer benefit, the QP-based scheduling algorithm is applied to measured load and generation data from 145 residential customers located in an Australian distribution network. The results of this case study confirm the QP-based scheduling algorithm significantly penalizes reverse power flow and peak loads corresponding to peak time-of-use billing. In the context of feed-in tariffs, the majority of customers exhibited operational savings when QP energy-shifting.

Elizabeth L. Ratnam; Steven R. Weller; Christopher M. Kellett

2015-01-01T23:59:59.000Z

236

Time-dependent first-principles approaches to PV materials  

SciTech Connect (OSTI)

Computational scheme for designing photovoltaic (PV) materials is presented. First-principles electron dynamics of photo-excitation and subsequent electron-hole splitting is performed based on the time-dependent density functional theory. Photo-induced enhancement of dipole moment was observed in a polar crystal and a donor-acceptor molecular pair. These experiences will pave a way to design PV material from first-principles simulations.

Miyamoto, Yoshiyuki [Nanosystem Research Institute, AIST, Central 2, 1-1-1, Umezono, Tsukuba, 305-8568 (Japan)

2013-12-10T23:59:59.000Z

237

Continuing Developments in PV Risk Management: Strategies, Solutions, and Implications  

SciTech Connect (OSTI)

As the PV industry matures, successful risk management practices will become more imperative to ensure investor confidence, control costs, and facilitate further growth. This report discusses several key aspects of risk management during the commercial- and utility-scale project life cycle, from identification of risks, to the process of mitigating and allocating those risks among project parties, to transferring those risks through insurance. The report also explores novel techniques in PV risk management, options to offload risks onto the capital markets, and innovative insurance policies (namely warranty policies) that address risks unique to the PV sector. One of the major justifications for robust risk management in the PV industry is the cost-reduction opportunities it affords. If the PV industry can demonstrate the capability to successfully manage its risks, thereby inspiring confidence in financiers, it may be able to obtain a lower cost of capital in future transactions. A lower cost of capital translates to a lower cost of energy, which will in turn enhance PV?s competitiveness at a time when it will have to rely less on subsidies to support its market penetration.

Lowder, T.; Mendelsohn, M.; Speer, B.; Hill, R.

2013-02-01T23:59:59.000Z

238

How Can We Make PV Modules Safer?: Preprint  

SciTech Connect (OSTI)

Safety is a prime concern for the photovoltaics (PV) industry. As a technology deployed on residential and commercial buildings, it is critical that PV not cause damage to the buildings nor harm the occupants. Many of the PV systems on buildings are of sufficiently high voltage (300 to 600 Volts dc) that they may present potential hazards. These PV systems must be safe in terms of mechanical damage (nothing falls on someone), shock hazard (no risk of electrical shock when touching an exposed circuit element), and fire (the modules neither cause nor promote a fire). The present safety standards (IEC 61730 and UL 1703) do a good job of providing for design rules and test requirements for mechanical, shock, and spread of flame dangers. However, neither standard addresses the issue of electrical arcing within a module that can cause a fire. To make PV modules, they must be designed, built, and installed with an emphasis on minimizing the potential for open circuits and ground faults. This paper provides recommendations on redundant connection designs, robust mounting methods, and changes to the safety standards to yield safer PV modules.

Wohlgemuth, J. H.; Kurtz, S. R.

2012-06-01T23:59:59.000Z

239

Review of PV Inverter Technology Cost and Performance Projections  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

Navigant Consulting Inc.

2006-01-01T23:59:59.000Z

240

Lightweight PV Inverters: Dual Bi-Directional IGBTs Modules Enables Breakthrough PV Inverter Using Current Modulation Topology  

SciTech Connect (OSTI)

Solar ADEPT Project: PV inverters convert DC power generated by modules into usable AC power. IPC’s initial 30kW 94lb. PV inverter reduces the weight of comparable 30kW PV inverters by 90%—reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in IPC’s next-generation PV inverter. With these components, IPC will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new power switches will cut IPC’s $/W manufacturing cost in half, as well as further reduce indirect shipping and installation costs.

None

2012-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Subject: References:  

Broader source: Energy.gov (indexed) [DOE]

Subject: Subject: References: DEAR 970.3102-2 Compensation for personal services DEAR 970.5204-13 Allowable costs and fixed-fee (Management and operating contracts) DEAR 970.5204-14 Allowable costs and fixed-fee (support contracts) When is this ~\.cquisition Letter (AL) Effective? This AL is effective 10 days from the date of issuance. This gui~ce supersedes any previous statutory cap on executive compensation. Existing contracts need to be reviewed to determine whether contract terms and conditions are consistent with the guidance in this AL, or whether contract modifications are necessary. When Does this AL Expire? This AL remain;; in effect until superseded or canceled. Whom do you Contact for More Information? Contact the Office of Procurement and Assistance Policy, for questions pertaining to the

242

Property Tax Assessments as a Finance Vehicle for Residential PV Installations: Opportunities and Potential Limitations  

SciTech Connect (OSTI)

Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy efficiency improvements, and often featuring low interest rates, longer terms, and no-hassle application requirements. Historically, these loan programs have met with mixed success (particularly for PV), for a variety of reasons, including: (1) historical lack of homeowner interest in PV, (2) lack of program awareness, (3) reduced appeal in a low-interest-rate environment, and (4) a tendency for early PV adopters to be wealthy, and not in need of financing. Although some of these barriers have begun to fade--most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates--the passage of the Energy Policy Act of 2005 (EPAct 2005) introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from several U.S cities concerning a new type of PV financing program. Led by the City of Berkeley, California, these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather than a more-traditional credit vehicle, to recover both system and administrative costs. As discussed in more detail later, this seemingly innovative approach has a number of features that should appeal to PV owners, including: long-term, fixed-cost, attractive financing; loans that are tied to the tax capacity of the property rather than to the owner's credit standing; a repayment obligation that transfers along with the sale of the property; and a potential ability to deduct the repayment obligation from Federal taxable income, as part of the local property tax deduction. For these reasons, Berkeley's program--which was first announced on October 23, 2007--has received considerable nationwide attention in both the trade and general press. Since the announcement, cities from throughout California and the broader U.S. have expressed keen interest in the possibility of replicating this type of program. In California alone, the cities of Santa Cruz, Santa Monica, and Palm Desert are all reportedly considering similar programs, while the city of San Francisco has recently announced its own program, portions of which closely parallel Berkeley's approach. Berkeley's Proposed PV Program In addition, a bill (AB 811) that would authorize all cities (not just 'charter cities' like Berkeley) in California to create this type of program was approved by the California General Assembly on January 29, 2008 and passed on to the State Senate for consideration. That local governments from across California and the broader US are so genuinely excited about the prospect of supporting the installation of residential PV in their communities through this type of program is no doubt an interesting development. Given, however, the potential for such programs to negatively interact with the residential solar ITC, it is important to evaluate the financial attractiveness of this specific type of loan program, particularly in advance of any broader state- or nation-wide 'rollout'. This case study presents such an evaluation. Because Berkeley appears to have the most-well-developed proposa

Bolinger, Mark A; Bolinger, Mark

2008-02-01T23:59:59.000Z

243

Integrating Solar PV in Utility System Operations  

E-Print Network [OSTI]

Fuel Prices .24 Generator Capacity and Fuel Price byIntegration Costs in Fuel Price Sensitivity Cases of the

Mills, A.

2014-01-01T23:59:59.000Z

244

Renewable Energy Economic and Financial Analysis Terms of Reference | Open  

Open Energy Info (EERE)

Renewable Energy Economic and Financial Analysis Terms of Reference Renewable Energy Economic and Financial Analysis Terms of Reference Jump to: navigation, search Tool Summary Name: Renewable Energy Economic and Financial Analysis Terms of Reference Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy Topics: Finance, Implementation, Market analysis Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: Renewable Energy Economic and Financial Analysis Terms of Reference[1] Resources Techno-Economic Comparison of Off-grid Options -- Assessment of Household, Battery Charging and Isolated Micro-Grid Systems Economic Analysis of Solar PV Systems Component References ↑ "Renewable Energy Economic and Financial Analysis Terms of Reference" Retrieved from

245

Solar PV Manufacturing Cost Analysis: U.S. Competitiveness in a Global Industry (Presentation), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar PV Manufacturing Cost Analysis: Solar PV Manufacturing Cost Analysis: U.S. Competitiveness in a Global Industry Stanford University: Precourt Institute for Energy Alan Goodrich † , Ted James † , and Michael Woodhouse October 10, 2011 † Corresponding authors: alan.goodrich@nrel.gov, ted.james@nrel.gov NREL/PR-6A20-53938 2 Analysis Disclaimer DISCLAIMER AGREEMENT These manufacturing cost model results ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy LLC ("Alliance") for the U.S. Department of Energy (the "DOE"). It is recognized that disclosure of these Data is provided under the following conditions and warnings: (1) these Data have been prepared for reference purposes only; (2) these Data consist of forecasts, estimates or assumptions made on a best-

246

Do feed-in tariffs drive PV cost or viceversa?  

Science Journals Connector (OSTI)

Abstract A survey of the PV market in Italy was done studying a number of installations of different sizes whose economic data were known and assessed. The Italian market has experienced a boom in the PV market after the first mechanism of feed-in tariffs was promoted in 2005. The variations of the tariff structure in the following years have caused significant changes in the market structure in terms of average size and technical characteristics of installed plants. However, an Italian PV industry was not stimulated by the incentives and only companies involved in installation and maintenance were created. At the same time, the cost of the PV plants components, design and commissioning have followed quite a particular trend, which is more determined by the tariffs than by the market development and structure. It is quite clear that the costs of PV plants component are not driven by the amount of installations but by the tariffs, with a trend that follows the decreases in the incentives and not the global installed power. It is therefore very important to study the right tariff mechanisms and benefits to avoid financial disturbances on the market and to promote a real competitive market instead of a simple financial operation under a fake façade of green economy.

Marco Antonelli; Umberto Desideri

2014-01-01T23:59:59.000Z

247

Viability analysis of PV power plants in Egypt  

Science Journals Connector (OSTI)

This paper investigates, from techno-economical and environmental points of view, the feasible sites in Egypt to build a 10 MW PV-grid connected power plant. Available PV-modules are assessed and a module is selected for this study. The long-term meteorological parameters for each of the 29 considered sites in Egypt from NASA renewable energy resource website (Surface meteorology and Solar Energy) are collected and analyzed in order to study the behaviors of solar radiations, sunshine duration, air temperature, and humidity over Egypt, and also to determine the compatibility of the meteorological parameters in Egypt with the safety operating conditions (SOC) of PV-modules. The project viability analysis is performed using \\{RETScreen\\} version 4.0 software through electric energy production analysis, financial analysis, and GHG emission analysis. The study show that placement of the proposed 10 MW PV-grid connected power plant at Wahat Kharga site offers the highest profitability, energy production, and GHG emission reduction. The lowest profitability and energy production values are offered at Safaga site. Therefore, it is recommended to start building large-scale PV power plants projects at Wahat Kharga site.

M. EL-Shimy

2009-01-01T23:59:59.000Z

248

Purification of soluble and active RaxH, a transmembrane histidine protein kinase from Xanthomonas oryzae pv. oryzae required for AvrXa21 activity.  

E-Print Network [OSTI]

of the plant pathogenic bacterium Xanthomonas campestris pv.oryzae pv. oryzae isolates in transgenic plants. Mol. Plant–Xanthomonas oryzae pv. oryzae. Mol. Plant–Microbe Interact.

Stolov, Avital; Valverde, Angel; Ronald, Pamela; Burdman, Saul

2007-01-01T23:59:59.000Z

249

Shanghai JTU PV Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

JTU PV Technology Co Ltd JTU PV Technology Co Ltd Jump to: navigation, search Name Shanghai JTU PV Technology Co Ltd Place Shanghai, Shanghai Municipality, China Zip 200240 Sector Solar Product Spun off from Shanghai Jiaotong University, the company manufactures control systems and testing equipments for solar water heaters. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

City of San Diego RFP for Power Purchase (PV)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

City of San Diego City of San Diego Environmental Services Department Energy Conservation and Management Division Request for Proposal For Power Purchase of Renewable Energy (Photovoltaics) For City Facilities The City of San Diego is seeking a firm, or a team of firms, to provide cost effective solar photovoltaic electric generating systems at eight City sites. The City intends to enter into power purchase agreement(s) for terms up to twenty years with solar PV developer(s) at these sites. The developers may also be asked to assist the City with identifying implementing solar PV projects at other sites depending upon the success of the initial program. The City evaluated twenty four facilities that appear to have potential of accommodating solar PV systems ranging in size from 30 kilowatts to 1

251

CPS Energy - Solar PV Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CPS Energy - Solar PV Rebate Program CPS Energy - Solar PV Rebate Program CPS Energy - Solar PV Rebate Program < Back Eligibility Commercial Industrial Institutional Multi-Family Residential Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Maximum Rebate $25,000 for Residential $80,000 for Schools and Commercial using local installer $100,000 for Commercial not using local installer Program Info Expiration Date STEP extends through 2020, annual program year expiration dates may apply State Texas Program Type Utility Rebate Program Rebate Amount Schools (public and private): $2.00/W for first 25 kW; $1.30/W for any additional capacity Residential using local installer: $1.60/W for first 25 kW Residential not using local installer:$1.30/W for first 25 kW Commercial using local installer: $1.60/W for first 25 kW; $1.30/W for any

252

Tucson's Solar Experience: Developing PV with RFPs and PPAs  

Broader source: Energy.gov (indexed) [DOE]

Tucson's Solar Experience: Tucson's Solar Experience: Developing PV with RFPs and PPAs Bruce Plenk Solar Coordinator City of Tucson Office of Conservation and Sustainable Development DOE EERE- January 15, 2013 Developing PV Projects with RFPs and PPAs Tucson's Solar Investment (1999- 2008) * $960,000 cumulative solar investment with City general funds. * Over $200,000 leveraged from solar grants & utility rebates. * Bus shelter solar funded through advertising. * System size range: 3 kW- 64 kW (plus some solar hot water systems). * 220 kW total installed on 8 City sites. DOE EERE- January 15, 2013 Developing PV Projects with RFPs and PPAs Pre-RFP Decisions: site selection Plan A * Property owner selects sites; vendor determines details and

253

Zhejiang Cineng PV Science Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Cineng PV Science Technology Co Ltd Cineng PV Science Technology Co Ltd Jump to: navigation, search Name Zhejiang Cineng PV Science & Technology Co Ltd Place Cixi, Zhejiang Province, China Sector Solar Product A Chinese tandem thin-film solar cell manufacturer Coordinates 30.168501°, 121.235023° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.168501,"lon":121.235023,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

Progress Energy Carolinas - SunSense Residential PV Incentive Program |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Progress Energy Carolinas - SunSense Residential PV Incentive Program Progress Energy Carolinas - SunSense Residential PV Incentive Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Program is fully subscribed for 2013 $500 per kilowatt AC, plus a monthly bill credit of $4.50 per kW Provider Progress Energy Carolinas '''''Note: This program is budgeted to support a total of 1 MW of residential systems per year. The program is now fully subscribed for 2013. New applications will be accepted starting January 1, 2014. ''''' Progress Energy is offering incentives for their residential customers to install photovoltaics (PV) systems on their homes through their SunSense

255

Long Island Power Authority - PV Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PV Rebate Program PV Rebate Program Long Island Power Authority - PV Rebate Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential (general customer-owned): Lesser of 50% of installed cost or $18,600; Residential (third-party owned): Lesser of 50% of installed cost or $17,200; Residential (non-profit owned): Lesser of 50% of installed costs or $22,500; Commercial: Lesser of 50% of installed cost or $145,000; Gov't, Schools, Nonprofits: Lesser of 65% of installed cost or $225,000 Program Info Funding Source LIPA Efficiency Long Island Program Start Date 2000 State New York Program Type Utility Rebate Program Rebate Amount

256

New York City - Property Tax Abatement for Photovoltaic (PV) Equipment  

Broader source: Energy.gov (indexed) [DOE]

Property Tax Abatement for Photovoltaic (PV) Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures New York City - Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures < Back Eligibility Commercial Industrial Institutional Multi-Family Residential Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Maximum Rebate $62,500 annually or the amount of real property taxes owed during a year Program Info Start Date 08/05/2008 State New York Program Type Property Tax Incentive Rebate Amount Installed from August 5, 2008 to December 31, 2010: 8.75% of system expenditures per year for 4 years (total of 35%); Installed from January 1, 2011 to December 31, 2012: 5% of system expenditures per year for 4 years (total of 20%); Installed from January 1, 2013 to December 31, 2014: 2.5% of system

257

Massachusetts Middle School Goes Local for PV Solar Energy System |  

Broader source: Energy.gov (indexed) [DOE]

Middle School Goes Local for PV Solar Energy System Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System August 13, 2010 - 11:00am Addthis New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools Lindsay Gsell What are the key facts? Using Recovery Act Funding, Norton Middle School installed a 126 panel solar system. The school expects to save $6,000 in energy costs each year. Materials for solar system came from local Massachusetts companies. When the school buses pull up to Norton Middle School this year, students will see more than just their friends and teachers, they'll get a view of

258

Anaheim Public Utilities - PV Buydown Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Anaheim Public Utilities - PV Buydown Program Anaheim Public Utilities - PV Buydown Program Anaheim Public Utilities - PV Buydown Program < Back Eligibility Commercial Low-Income Residential Residential Savings Category Solar Buying & Making Electricity Maximum Rebate The incentives are based on the customer's most recent 12-month electricity usage. Program Info State California Program Type Utility Rebate Program Rebate Amount Program is currently closed. Rebate reservation period will reopen in January 2014. Provider Anaheim Public Utilities '''''This Program is currently closed. Rebate reservation period will reopen in January 2014. The summary below describes the program as it existed for Fiscal Year 2012 - 2013. See the web site above for more information. ''''' Anaheim Public Utilities offers a rebate to its residential and business

259

Tianfu PV Guangxian Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Tianfu PV Guangxian Co Ltd Tianfu PV Guangxian Co Ltd Jump to: navigation, search Name Tianfu PV Guangxian Co Ltd Place Shihezi, Xinjiang Autonomous Region, China Sector Solar Product Chinese company who planned to produce flexiable a-Si thin-film solar cells but the project finanly abandoned. Coordinates 44.299709°, 86.03791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.299709,"lon":86.03791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Massachusetts Middle School Goes Local for PV Solar Energy System |  

Broader source: Energy.gov (indexed) [DOE]

Massachusetts Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System August 13, 2010 - 11:00am Addthis New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools Lindsay Gsell What are the key facts? Using Recovery Act Funding, Norton Middle School installed a 126 panel solar system. The school expects to save $6,000 in energy costs each year. Materials for solar system came from local Massachusetts companies. When the school buses pull up to Norton Middle School this year, students will see more than just their friends and teachers, they'll get a view of

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Outdoor PV Module Degradation of Current-Voltage Parameters: Preprint  

SciTech Connect (OSTI)

Photovoltaic (PV) module degradation rate analysis quantifies the loss of PV power output over time and is useful for estimating the impact of degradation on the cost of energy. An understanding of the degradation of all current-voltage (I-V) parameters helps to determine the cause of the degradation and also gives useful information for the design of the system. This study reports on data collected from 12 distinct mono- and poly-crystalline modules deployed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Most modules investigated showed < 0.5%/year decrease in maximum power due to short-circuit current decline.

Smith, R. M.; Jordan, D. C.; Kurtz, S. R.

2012-04-01T23:59:59.000Z

262

Integrating Solar PV in Utility System Operations  

E-Print Network [OSTI]

to $4.00/MMBtu and coal price increases from $1.96/MMBtu togas prices and higher coal prices, while the highest is $by the assumed increase in coal price in that case. Perfect

Mills, A.

2014-01-01T23:59:59.000Z

263

The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants.  

E-Print Network [OSTI]

Tl progeny plants were inoculated with X.oryzae pv. oryzae.oryzae pv. oryzae in transgenic plants. The resistanceoryzae pv. oryzae Isolates in Transgenic Plants Guo-Liang

Wang, G L; Song, W Y; Ruan, D L; Sideris, S; Ronald, P C

1996-01-01T23:59:59.000Z

264

Climatically Diverse Data Set for Flat-Plate PV Module Model Validations (Presentation)  

SciTech Connect (OSTI)

Photovoltaic (PV) module I-V curves were measured at Florida, Colorado, and Oregon locations to provide data for the validation and development of models used for predicting the performance of PV modules.

Marion, B.

2013-05-01T23:59:59.000Z

265

U.S. Aims for Zero-Energy: Support for PV on New Homes  

E-Print Network [OSTI]

n Program: Cost of PV on New Homes Compared to Retrofits ofSingle or Small Clusters of New Homes Completed Completed orof PV on New, Market-Rate Homes Compared to Retrofits in the

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

266

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

PV on WWT plant ponds can be a valuable energy efficiencyPV application for Waste Water Treatment (WWT) plants and its potential role in meeting California’s RPS and energy efficiency

Hill, Steven Craig

2013-01-01T23:59:59.000Z

267

Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability  

Broader source: Energy.gov [DOE]

As PV system installations continue to ramp up across the United States, the process for handling used and expired PV modules in the next  20-30 years would benefit from serious planning and...

268

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network [OSTI]

Utility District (SMUD) Xcel Energy Connecticut Clean EnergyCA – LADWP CA – SMUD CO – Xcel CT – CCEF Small PV ProgramCA – LADWP CA – SMUD CO – Xcel CT – CCEF Small PV Program

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

269

Achieving Rapid Transformation of Utility Resource Portfolios by Developing Markets for Utility Strategic PV  

Science Journals Connector (OSTI)

When solar PV is strategically deployed by utilities, considering issues of location, scale, orientation ... PV can play a key role in driving utilities to design strong, mixed resource portfolios, ... s potentia...

Jill K. Cliburn

2009-01-01T23:59:59.000Z

270

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

with the growth of wind power and PV. TenneT is one ofApril 2011 has shown that wind power alone would extend thethe actual combination of wind power and PV has doubled the

Hill, Steven Craig

2013-01-01T23:59:59.000Z

271

Exploring the Economic Value of EPAct 2005's PV Tax Credits  

E-Print Network [OSTI]

Exploring the Economic Value of EPAct 2005’s PV Tax CreditsValue of EPAct 2005’s PV Tax Credits Mark Bolinger and RyanGrants and Interaction with Federal Tax Credits.. 2

Bolinger, Mark; Wiser, Ryan; Ing, Edwin

2006-01-01T23:59:59.000Z

272

Exploring the Economic Value of EPAct 2005's PV Tax Credits  

E-Print Network [OSTI]

Value of EPAct 2005’s PV Tax Credits Mark Bolinger and Ryanenergy investment tax credit (ITC). Since the signing of thenew and expanded federal tax credits really provide to PV

Bolinger, Mark A

2010-01-01T23:59:59.000Z

273

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

the DC electric energy from the solar panels or modules intosolar energy available is subject to change with irradiance, temperature, and aging of PV panelsrooftop solar panels. While the renewable energy PV

Hill, Steven Craig

2013-01-01T23:59:59.000Z

274

Can Solar PV Rebates Be Funded with Utility Cost Savings? | Department...  

Broader source: Energy.gov (indexed) [DOE]

Can Solar PV Rebates Be Funded with Utility Cost Savings? Can Solar PV Rebates Be Funded with Utility Cost Savings? This presentation was given by Jan Aceti of Concord Light at the...

275

Analysis of maximizing the Synergy between PHEVs/EVs and PV ...  

Office of Environmental Management (EM)

PV Analysis of maximizing the Synergy between PHEVsEVs and PV 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

276

PID-free C-Si PV Module Using Novel Chemically-Tempered Glass  

Broader source: Energy.gov (indexed) [DOE]

PID-free c-Si PV module using novel chemically-tempered glass We have developed a PID free c-Si PV module using novel glass that is chemically tempered by substitution of Na ions...

277

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

SciTech Connect (OSTI)

Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

2011-06-01T23:59:59.000Z

278

Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)  

SciTech Connect (OSTI)

Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

Gessert, T. A.

2010-09-01T23:59:59.000Z

279

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

increasing levels of renewable energy production will resultpanels. While the renewable energy PV production that is on

Hill, Steven Craig

2013-01-01T23:59:59.000Z

280

Optimum Operating Conditions for Alkaline Water Electrolysis Coupled with Solar PV Energy System  

Science Journals Connector (OSTI)

This paper investigates theoretically and experimentally the optimum operating conditions for alkaline water electrolysis coupled with a solar photovoltaic (PV)...

Ashraf Balabel; Mohamed S. Zaky; Ismail Sakr

2014-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Comparative Studies on Temperature Dependent I-V Characteristics of Al/(p)CdTe and Ni/(n)CdS Schottky Junctions and Their PV Effect  

SciTech Connect (OSTI)

Temperature dependent I-V characteristics of vacuum evaporated Al/(p)CdTe and Ni/(n)CdS Schottky junctions and their photovoltaic effects have been studied and compared. Different junction parameters such as ideality factors, barrier heights, Richardson's constant, short-circuit current density, fill factor, PV efficiency etc. were determined from their I-V characteristics. These parameters were found to change significantly on variation of temperature. The structures showed the change of PV effect. Efficiency found were 2.84% for Al/(p)CdTe and 4.44% for Ni hydro/(n)CdS. Polycrystalline nature, and continuous and ordered structure with bigger grain sizes of the CdS film shows more PV conversion efficiency in making Ni/(n)CdS junction as compare to Al/(p)CdTe junction. However these values were found to vary with doping concentration, and in hydrogen treated samples in both cases.

Wary, G. [Department of Physics, Cotton College, Guwahati-781001 (India); Kachari, T.; Rahman, A. [Department of Physics, Gauhati University, Guwahati-781014 (India)

2010-06-29T23:59:59.000Z

282

Stichting Triodos PV Partners defunct | Open Energy Information  

Open Energy Info (EERE)

Stichting Triodos PV Partners defunct Stichting Triodos PV Partners defunct Jump to: navigation, search Name Stichting Triodos PV Partners - defunct Place Arlington, Virginia Zip 22209 Product Stichting Triodos PV Partners, a JV Triodos Bank Group, Environmental Enterprises Assistance Fund, & Global Transition Consulting, was wound up and the management of the SDC fund was transferred back to Triodos. Coordinates 43.337585°, -89.379449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.337585,"lon":-89.379449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Performance and Analysis of Photovoltaic (PV)Technologies  

E-Print Network [OSTI]

Performance and Analysis of Photovoltaic (PV)Technologies at Selected Sites This report presents As part of Cooperative Agreement No. DE-EE0003507 Under Task 3.1: Photovoltaic Systems September 2014`i at Manoa #12;Performance and Analysis of Different Photovoltaic Technologies at Selected Sites Prepared

284

SunShot Presentation PV Module Reliabity Workshop Opening Session  

Broader source: Energy.gov [DOE]

This PowerPoint slide deck was originally presented at the opening session of the 2013 NREL PV Module Reliability Workshop on Feb. 26-27, 2013 in Golden, CO. It provides an overview of the DOE SunShot initiative, discusses systems integration and technology validation activities, and highlighted the goals and key agenda items for the workshop.

285

November 21, 2000 PV Lesson Plan 2 Sample Questions & Answers  

E-Print Network [OSTI]

November 21, 2000 PV Lesson Plan 2 ­ Sample Questions & Answers Prepared for the Oregon Million Solar Roofs Coalition By Frank Vignola ­ University of Oregon Solar Radiation Monitoring Lab John Hocken your understanding: 1. The typical voltage of a silicon solar cell is about 0.5 volts; where does

Oregon, University of

286

Rural electrification cooperative model (Solar-PV) in Madhya Pradesh  

Science Journals Connector (OSTI)

In order to speed up the development of energy supply, involving the local population can be one of the main drivers for the success story of rural electrification. The local community involvement could be crystallised in the form of a cooperative model, ... Keywords: cooperative, electrification, model, renewable energy sources, rural, solar-PV, town

Najib Altawell; Tariq Muneer

2011-12-01T23:59:59.000Z

287

Fault Current Contribution from Single-Phase PV Inverters  

SciTech Connect (OSTI)

A significant increase in photovoltaic (PV) system installations is expected to come on line in the near future and as the penetration level of PV increases, the effect of PV may no longer be considered minimal. One of the most important attributions of additional PV is what effect this may have on protection systems. Protection engineers design protection systems to safely eliminate faults from the electric power system. One of the new technologies recently introduced into the electric power system are distributed energy resources (DER). Currently, inverter-based DER contributes very little to the power balance on all but a few utility distribution systems. As DER become prevalent in the distribution system, equipment rating capability and coordination of protection systems merit a closer investigation. A collaborative research effort between the National Renewable Energy Laboratory (NREL) and Southern California Edison (SCE) involved laboratory short-circuit testing single-phase (240 VAC) residential type (between 1.5 and 7kW) inverters. This paper will reveal test results obtained from these short-circuit tests.

Keller, J.; Kroposki, B.; Bravo, R.; Robles, S.

2011-01-01T23:59:59.000Z

288

Opportunities and Challenges for Power Electronics in PV Modules (Presentation)  

SciTech Connect (OSTI)

The presentation describes the value of adding DC converters and other power electronics to modules to improve their output even when shading or bad cells would otherwise decrease the module output. The presentation was part of a workshop sponsored by ARPA-E exploring the opportunities for power electronics to support PV applications.

Kurtz, S.; Deline, C.; Wohlgemuth, J.; Marion, B.; Granata, J.

2011-02-01T23:59:59.000Z

289

Utility Scale Solar PV Cost Steven SimmonsSteven Simmons  

E-Print Network [OSTI]

Nuclear Generating Station. 4 #12;6/19/2013 3 EVEN MORE SUNNY HEADLINES New solar panels glisten6/19/2013 1 Utility Scale Solar PV Cost Steven SimmonsSteven Simmons Northwest Power Cost Forecast 5. Levelized Costs 1 SOLAR POWER SYSTEM HAS BRIGHT FUTURE 1. Modest environmental impacts

290

EPJ Photovoltaics 2, 20301 (2011) www.epj-pv.org  

E-Print Network [OSTI]

EPJ Photovoltaics 2, 20301 (2011) www.epj-pv.org DOI: 10.1051/epjpv/2011001 c Owned by the authors, published by EDP Sciences, 2011 EPJ PhotovoltaicsEPJ Photovoltaics Geometrical optimization and electrical online: 1 April 2011 Abstract This article investigates the optimal efficiency of a photovoltaic system

Paris-Sud XI, Université de

291

PV output smoothing using a battery and natural gas engine-generator.  

SciTech Connect (OSTI)

In some situations involving weak grids or high penetration scenarios, the variability of photovoltaic systems can affect the local electrical grid. In order to mitigate destabilizing effects of power fluctuations, an energy storage device or other controllable generation or load can be used. This paper describes the development of a controller for coordinated operation of a small gas engine-generator set (genset) and a battery for smoothing PV plant output. There are a number of benefits derived from using a traditional generation resource in combination with the battery; the variability of the photovoltaic system can be reduced to a specific level with a smaller battery and Power Conditioning System (PCS) and the lifetime of the battery can be extended. The controller was designed specifically for a PV/energy storage project (Prosperity) and a gas engine-generator (Mesa Del Sol) currently operating on the same feeder in Albuquerque, New Mexico. A number of smoothing simulations of the Prosperity PV were conducted using power data collected from the site. By adjusting the control parameters, tradeoffs between battery use and ramp rates could be tuned. A cost function was created to optimize the control in order to balance, in this example, the need to have low ramp rates with reducing battery size and operation. Simulations were performed for cases with only a genset or battery, and with and without coordinated control between the genset and battery, e.g., without the communication link between sites or during a communication failure. The degree of smoothing without coordinated control did not change significantly because the battery dominated the smoothing response. It is anticipated that this work will be followed by a field demonstration in the near future.

Johnson, Jay; Ellis, Abraham; Denda, Atsushi [Shimizu Corporation; Morino, Kimio [Shimizu Corporation; Shinji, Takao [Tokyo Gas Co., Ltd.; Ogata, Takao [Tokyo Gas Co., Ltd.; Tadokoro, Masayuki [Tokyo Gas Co., Ltd.

2013-02-01T23:59:59.000Z

292

The following contribution was presented at the 28. European PV Solar Energy Conference and Exhibition  

E-Print Network [OSTI]

The following contribution was presented at the 28. European PV Solar Energy Conference in photovoltaic (PV) modules [1, 2]. This cell cracking may reduce the reliability of the solar modules [3, 4 for the cracking of solar cells in a PV module. Subsequently we create a test to simulate the transport stress

293

INTEGRATION OF HELIOCLIM-1 DATABASE INTO PV-GIS TO ESTIMATE SOLAR ELECTRICITY POTENTIAL IN AFRICA  

E-Print Network [OSTI]

INTEGRATION OF HELIOCLIM-1 DATABASE INTO PV-GIS TO ESTIMATE SOLAR ELECTRICITY POTENTIAL IN AFRICA T, the proper configuration of a PV system depends on the knowledge of solar resource, which, although generally service. The PV-GIS approach makes it possible to enhance the spatial resolution of the solar radiation

Paris-Sud XI, Université de

294

Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)  

SciTech Connect (OSTI)

Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

Not Available

2014-11-01T23:59:59.000Z

295

Renewable Energy Pipeline Development Terms of Reference | Open Energy  

Open Energy Info (EERE)

Renewable Energy Pipeline Development Terms of Reference Renewable Energy Pipeline Development Terms of Reference Jump to: navigation, search Tool Summary Name: Renewable Energy Pipeline Development Terms of Reference Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy, Biomass, Hydro, Solar, Wind Topics: Implementation Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: Renewable Energy Pipeline Development Terms of Reference[1] Resources Preparation of Mini-hydro Private Power Projects Off-Grid Village Hydro Subproject Preparation Off-Grid Subprojects Pipeline Development Development of Wind Farm Projects - Local Consultants Bagasse/Rice Husk Co-generation Project Preparation Biomass Cogeneration Projects Preparation Design of a PV Pilot Concession

296

Case Studies Comparing System Advisor Model (SAM) Results to Real Performance Data: Preprint  

SciTech Connect (OSTI)

NREL has completed a series of detailed case studies comparing the simulations of the System Advisor Model (SAM) and measured performance data or published performance expectations. These case studies compare PV measured performance data with simulated performance data using appropriate weather data. The measured data sets were primarily taken from NREL onsite PV systems and weather monitoring stations.

Blair, N.; Dobos, A.; Sather, N.

2012-06-01T23:59:59.000Z

297

Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions  

SciTech Connect (OSTI)

The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

Drury, E.; Denholm, P.; Margolis, R.

2013-01-01T23:59:59.000Z

298

Technical and economical assessment of the utilization of photovoltaic systems in residential buildings: The case of Jordan  

Science Journals Connector (OSTI)

This paper studies the feasibility of utilizing photovoltaic systems in a standard residential apartment in Amman city in Jordan. Data on solar radiation, sunshine duration and the ambient temperature has been recorded in Amman city. An apartment in Amman was chosen as a case study to conduct energy and economic calculations. The electrical power needs and cost were calculated for the apartment. The component design and cost of PV system required to supply required energy was calculated and the payback period for the suggested stand-alone PV system in this paper was estimated in a constant inflation rate in electricity price similar to that of interest rate. The calculated payback period was high in a stand-alone system, to decrease payback period a grid-connected PV system is suggested. Considering an annual increase of 3% in electricity price, 15% of payback period was decreased in a stand-alone PV system and 21% in a grid-connected PV system. The output results of this study show that installation of PV system in a residential flat in Jordan may not be economically rewarding owing to the high cost of PV system compared to the cost of grid electricity. A feed-in tariff law of solar electricity may help to reduce PV system cost like the case of Germany. Additional conclusions are PV systems may be economically rewarding in Jordan if applied in locations far from electrical grid or in remote large scale PV power installations to overcome economical limitations of PV technology.

A. Al-Salaymeh; Z. Al-Hamamre; F. Sharaf; M.R. Abdelkader

2010-01-01T23:59:59.000Z

299

Going Solar in Record Time with Plug-and-Play PV | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV April 24, 2012 - 6:10pm Addthis A plug-and-play PV system is envisioned as a consumer friendly solar technology that uses an automatic detection system to initiate communication between the solar energy system and the utility when plugged into a PV-ready circuit. | Photo by iStock. A plug-and-play PV system is envisioned as a consumer friendly solar technology that uses an automatic detection system to initiate communication between the solar energy system and the utility when plugged into a PV-ready circuit. | Photo by iStock. Kevin Lynn Systems Integration Lead, SunShot Initiative What does this project do? The Energy Department is investing up to $5 million this year to

300

PG&E Plans for 500 MW of PV  

Broader source: Energy.gov [DOE]

PG&E has developed a plan to install 500 MW of PV by the year 2015. The plan calls for 250 MW to be acquired through Power Purchase Agreements (PPA) and the other 250 MW to be purchased and owned by the utility. PG&E presented the plan at a public forum on April 27, 2009. A copy of the power point presentation is attached.

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DOE Zero Energy Ready Home Case Study, Mandalay Homes, Phoenix, AZ, Affordable  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready Home in Phoenix, AZ that scored HERS 58 without PV or HERS 38 with PV. This 1,700 ft2 affordable home has R-21 framed walls, a sealed closed-cell spray foamed attic, an air-source heat pump with forced air, and a solar combo system that provides PV, hot water, and space heating.

302

PNM - Performance-Based Solar PV Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PNM - Performance-Based Solar PV Program PNM - Performance-Based Solar PV Program PNM - Performance-Based Solar PV Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate None specified Program Info Start Date 3/1/2006 State New Mexico Program Type Performance-Based Incentive Rebate Amount ''These prices will step down over time as certain MW goals are met Prices below are current as of 09/19/2012; see program website for current prices'' Systems up to 10 kW: $0.04/kWh for RECs >10 kW up to 100 kW: $0.05/kWh for RECs >100 kW up to 1 MW: $0.02/kWh for RECs 1 MW+: Fully subscribed Provider PNM In March 2006, PNM initiated a renewable energy credit (REC) purchase program as part of its plan to comply with [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N...

303

NREL Mesa Top PV System | Open Energy Information  

Open Energy Info (EERE)

NREL Mesa Top PV System NREL Mesa Top PV System Jump to: navigation, search Name NREL Mesa Top PV System Facility National Renewable Energy Laboratory Sector Solar Facility Type Photovoltaic Owner SunEdison Solar Developer SunEdison Solar Energy Purchaser National Renewable Energy Laboratory Address 15500 Denver West Parkway Location Golden, CO Coordinates 39.744550202°, -105.174608231° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.744550202,"lon":-105.174608231,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Living on PV power in comfort and style  

SciTech Connect (OSTI)

The Solectrogen House near San Francisco was conceived, designed and built by Solar Depot as an off-grid renewable energy house. It is powered by a Solectrogen Hybrid Power System consisting of a 3 kW PV array, two 1 kW wind powered generators, a 50 kWh storage battery bank and a 6.5 kW LP-fueled engine generator for back-up. Two 4kW sinewave DC to AC inverters are utilized, with 24 VDC input and 120/240 VAC 60 Hz output. The inverters are equipped with built-in battery chargers and microprocessors for controlling the engine generator operation. The water supply of the house is a well pumped by a PV powered submersible DC pump. The swimming pool filtration system utilizes a 3/4 HP DC pump powered by a separate dedicated PV array of 640 Watts at 90 V. Energy efficient lighting and refrigeration used in the house minimize the power requirements of the house. The house also utilizes a solar thermal system consisting of 640 sq. ft. of glazed solar collectors and a 500 gallon storage tank. The thermal system is utilized for heating water year round, for space heating in the winter and for swimming pool heating in the summer.

Mizany, A. [Solar Depot Inc., San Rafael, CA (United States)

1994-12-31T23:59:59.000Z

305

Sandia National Laboratories: Sandia to host PV Bankability workshop...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

306

January 15, 2013: Developing PV Projects with RFPs and PPAs | Department of  

Broader source: Energy.gov (indexed) [DOE]

January 15, 2013: Developing PV Projects with RFPs and PPAs January 15, 2013: Developing PV Projects with RFPs and PPAs January 15, 2013: Developing PV Projects with RFPs and PPAs This webinar was held January 15, 2013, and provided information on how the cities of Tucson, Arizona, and Minneapolis, Minnesota, utilized requests for proposals (RFPs) and power purchase agreements (PPAs) to develop photovoltaic (PV) projects. Download the presentations below, watch the webinar (WMV 200 MB), or view the text version. RFIs, RFPs, and RFQs for PV: Finding the Right Solar Contractors for Your Community Choosing vendors for solar projects requires a careful look since you may well be dealing with them for 20 years ... or more. The City of Tucson highlighted its experiences with city-owned PV projects as well as a PPA project while discussing some potential pitfalls along the way.

307

NREL PV Projects - FUPWG Meeting: "Going Coastal for Energy Efficiency"  

Broader source: Energy.gov (indexed) [DOE]

PV Projects PV Projects FUPWG Meeting: "Going Costal for Energy Efficiency" Bob Westby, NREL FEMP Program Manager and Sustainable NREL Lead April 14-16, 2008 Contents * Mesa Top PV project - CO/utility incentive program - Deal structure/agreements * NREL Phase II proposed projects * Proposal evaluation considerations * Evaluation tools Mesa Top PV Project Mesa Top PV Project * 750 kWdc (1,200,000 kWh) one-axis tracking PV system - Grid connected (NREL "side of the meter") - Milestones  Agreements: January 2008  Operation: August 2008 Solar Rewards Program * CO statute requires solar resource acquisitions by IOU of 20% renewables by 2020 (4% solar "carve out") * Xcel acquisitions made through RFP (bid) process - Selection based on SO-REC* price

308

PV Analyst: Coupling ArcGIS with TRNSYS to assess distributed photovoltaic potential in urban areas  

Science Journals Connector (OSTI)

This study presents a means to extend the functionality of Geographic Information Systems (GIS) in assessing distributed photovoltaic (PV) potential in urban areas, via the new ArcGIS extension: PV Analyst. A methodology is proposed for coupling ArcGIS with TRNSYS that enables the PV Analyst extension to use the capabilities of 4 and 5-parameter PV array performance models and the irradiance components in TRNSYS for solar energy simulations in geospatial contexts. Because PV Analyst is embedded within the ArcMap environment, part of ArcGIS software package, the strong capabilities of ArcGIS and other ArcGIS extensions such as 3D Analyst, Spatial Analyst and Tracking Analyst can be fully utilized with PV Analyst’s functionalities. This paper describes the concept and details of the extension development, as well as its application to the Pollock Commons area at the Pennsylvania State University.

Yosoon Choi; Jeffrey Rayl; Charith Tammineedi; Jeffrey R.S. Brownson

2011-01-01T23:59:59.000Z

309

Materials from 2014 SunShot Summit Breakout Session: Looking Ahead: PV Manufacturing in 10 Years  

Broader source: Energy.gov [DOE]

This was a breakout session at the 2014 SunShot Grand Challenge Summit and Peer Review. The global PV manufacturing landscape has undergone significant changes in the past decade, from geographic and economic changes in the supply chain to a significant increase in PV module production by fewer manufacturers. The lessons learned over the last decade will guide the future of this growing industry. This session explored the future of PV manufacturing over the next 5 to 10 years, both domestic and abroad. Expert panelists provided their insights and perspectives across three thematic areas: a vision of PV manufacturing, including the level of integration and the factory of the future; value-adding attributes of PV products; and the geographic concentration of PV manufacturing.

310

New York Sun Competitive PV Program (New York) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sun Competitive PV Program (New York) Sun Competitive PV Program (New York) New York Sun Competitive PV Program (New York) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools Systems Integrator Tribal Government Utility Savings Category Solar Buying & Making Electricity Program Info State New York Program Type Renewables Portfolio Standards and Goals Provider New York State Energy Research and Development Authority The New York Sun Competitive Photovoltaic (PV) Program is an expansion of the Renewable Portfolio Standard (RPS) Customer-Sited Tier Regional Program

311

U.S. Aims for Zero-Energy: Support for PV on New Homes  

E-Print Network [OSTI]

Investigation of Photovoltaic Cost Trends in California. ”photovoltaic (PV) adoption, new homes have a number of attractive attributes. Homebuyers can easily roll the cost

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

312

Defining a Technical Basis for Confidence in PV Investments - A Pathway to Service Life Prediction (Presentation)  

SciTech Connect (OSTI)

Four levels of accelerated test standards for PV modules are described in the context of how the community can most quickly begin using these.

Kurtz, S.; Wohlgemuth, J.; Kempe, M.; Bosco, N.; Hacke, P.; Jordan, D.; Miller, D.

2013-09-01T23:59:59.000Z

313

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network [OSTI]

of PV Energy Production System Conversion Solar EnergySolar & Small Wind Incentive Program Washington Renewable Energy Productionof actual energy production. Two programs, LADWP’s Solar

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

314

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network [OSTI]

communication with New York State Energy Research andSolar Pioneer Program New York Energy $mart PV IncentivePower Authority (LIPA) New York State Energy Research and

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

315

Enabling Broad Adoption of Distributed PV-storage systems Via Supervisory Planning & Control  

E-Print Network [OSTI]

N, Goodrich A. US DOE SunShot. Photovoltaic (PV) pricingU.S. Department of Energy SunShot Initiative (Feldman et al

DeForest, Nicholas

2014-01-01T23:59:59.000Z

316

Community Renewable Energy Success Stories Webinar: Developing PV Projects with RFPs and PPAs (text version)  

Office of Energy Efficiency and Renewable Energy (EERE)

Below is the text version of the webinar titled "Developing PV Projects with RFPS and PPAS," originally presented on January 15, 2013.

317

Concentrating Photovoltaics: Collaborative Opportunities within DOEs CSP and PV Programs; Preprint  

SciTech Connect (OSTI)

Presented at the 2001 NCPV Program Review Meeting: DOEs Concentrating Solar Power program is investigating the viability of concentrating PV converters as an alternative to thermal conversion devices.

Mehos, M.; Lewandowski, A.; Symko-Davies, M.; Kurtz, S.

2001-10-01T23:59:59.000Z

318

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network [OSTI]

T.L. Gibson, Improved photovoltaic energy output for cloudyphotovoltaic panels in Sanliurfa, Turkey, Renewable Energy,to substantial energy production. Solar photovoltaic (PV)

Lave, Matthew S.

2012-01-01T23:59:59.000Z

319

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

54  Solar photovoltaic Distributed Energy Resources (DER) Clearly, solar energy is a sustainable resource, with energyof distributed energy resources such as solar PV, treating

Hill, Steven Craig

2013-01-01T23:59:59.000Z

320

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

FERC) and the National Electrical Regulatory Corporation (Of Solar PV and CPV Onto The Electrical Grid By Steven Craig24  Electrical, Controls & 

Hill, Steven Craig

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Economic Value of PV and Net Metering to Residential Customers in California  

E-Print Network [OSTI]

incentives under the California Solar Initiative takeRates Undermine California’s Solar Photovoltaic Subsidies? ”Solar PV and Retail Rate Design”, Unpublished draft report for the California

Darghouth, Naim

2010-01-01T23:59:59.000Z

322

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

adopted a program- the California Solar Initiative (CSI) -of the impact of the California Solar Initiative (CSI), andissues with rooftop solar PV in California are: 1) Utility

Hill, Steven Craig

2013-01-01T23:59:59.000Z

323

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network [OSTI]

solar photovoltaics (PV) in traditional electric power systems, Energy Policy,solar, and renewable electricity generators: Technical barrier or rhetorical excuse? , Utilities Policy,

Lave, Matthew S.

2012-01-01T23:59:59.000Z

324

Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC  

E-Print Network [OSTI]

changes in federal solar policy and, if financing programsto the new federal solar policy landscape, PV programchanges in federal solar policy: • Most obviously, program

Bolinger, Mark

2008-01-01T23:59:59.000Z

325

Delamination Failures in Long-Term Field Aged PV Modules from...  

Office of Environmental Management (EM)

More Documents & Publications Thermal Cycling Combined with Dynamic Mechanical Load: Preliminary Report Failure and Degradation Modes of PV Modules in a Hot Dry...

326

Failure and Degradation Modes of PV Modules in a Hot Dry Climate...  

Office of Environmental Management (EM)

More Documents & Publications Thermal Cycling Combined with Dynamic Mechanical Load: Preliminary Report Delamination Failures in Long-Term Field Aged PV Modules...

327

Precursor Report of Data Needs and Recommended Practices for PV Plant Availability Operations and Maintenance Reporting.  

SciTech Connect (OSTI)

Characterizing the factors that affect reliability of a photovoltaic (PV) power plant is an important aspect of optimal asset management. This document describes the many factors that affect operation and maintenance (O&M) of a PV plant, identifies the data necessary to quantify those factors, and describes how data might be used by O&M service providers and others in the PV industry. This document lays out data needs from perspectives of reliability, availability, and key performance indicators and is intended to be a precursor for standardizing terminology and data reporting, which will improve data sharing, analysis, and ultimately PV plant performance.

Hill, Roger R.; Klise, Geoffrey Taylor; John Balfour, John R Balfour, High Performance PV

2015-01-01T23:59:59.000Z

328

Property Tax Assessments as a Finance Vehicle for Residential PV Installations: Opportunities and Potential Limitations  

E-Print Network [OSTI]

interest PV loan programs: a residential solar investmentsolar ITC, it is important to evaluate the financial attractiveness of this specific type of loan

Bolinger, Mark

2008-01-01T23:59:59.000Z

329

Designing PV Incentive Programs to Promote Performance: A Review of Current Practice  

E-Print Network [OSTI]

based on the actual energy production of the PV system overof estimated annual energy production, expressed either onto maximize annual energy production. Although some programs

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

330

Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential  

SciTech Connect (OSTI)

Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

Helm, C.; Burman, K.

2010-04-01T23:59:59.000Z

331

PV vs. Solar Water Heating- Simple Solar Payback  

Broader source: Energy.gov [DOE]

Solar energy systems hang their hats on payback. Financial payback is as tangible as money in your bank account, while other types of payback—like environmental externalities—are not usually calculated in dollars. There’s no doubt that photovoltaic (PV) and solar hot water (SHW) systems will pay you back. Maybe not as quickly as you’d like, but all systems will significantly offset their cost over their lifetimes. Here we’ll try to answer: Which system will give the quickest return on investment (ROI)?

332

Geothermal, Energy Efficiency, and Solar PV Opportunities at Nissan USE  

E-Print Network [OSTI]

Geothermal, Energy Efficiency, and Solar PV Opportunities at Nissan USA May 21st, 2014 Robinson Ford Justin Ong Jake Reeder Vikram Sridar Rica Zhang ESL-IE-14-05-04 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New... Orleans, LA. May 20-23, 2014 Carbon Goal is Driving Innovation ESL-IE-14-05-04 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Research Areas Geothermal Solar Photovoltaics EE Verification ESL...

Ford, R.; Ong, J.; Reeder, J.; Sridar, V.; Zhang, R.

2014-01-01T23:59:59.000Z

333

Annual Energy Outlook 2011 Reference Case  

Gasoline and Diesel Fuel Update (EIA)

For For U.S. Senate Briefing August 12, 2013 | Washington, DC by Adam Sieminski, Administrator Key findings of the International Energy Outlook 2013 2 Adam Sieminski, IEO2013 August 12, 2013 * With world GDP rising by 3.6 percent per year, world energy use will grow by 56 percent between 2010 and 2040. Half of the increase is attributed to China and India. * Renewable energy and nuclear power are the world's fastest-growing energy sources, each increasing by 2.5 percent per year; however, fossil fuels continue to supply almost 80 percent of world energy use through 2040. * Natural gas is the fastest growing fossil fuel in the outlook, supported by increasing supplies of shale gas, particularly in the United States. * Coal grows faster than petroleum consumption until after 2030, mostly due to

334

Annual Energy Outlook 2011 Reference Case  

U.S. Energy Information Administration (EIA) Indexed Site

International Energy Outlook 2013 International Energy Outlook 2013 for Center for Strategic and International Studies July 25, 2013 | Washington, DC by Adam Sieminski, Administrator Key findings of the International Energy Outlook 2013 2 Adam Sieminski, IEO2013 July 25, 2013 * With world GDP rising by 3.6 percent per year, world energy use will grow by 56 percent between 2010 and 2040. Half of the increase is attributed to China and India. * Renewable energy and nuclear power are the world's fastest-growing energy sources, each increasing by 2.5 percent per year; however, fossil fuels continue to supply almost 80 percent of world energy use through 2040. * Natural gas is the fastest growing fossil fuel in the outlook, supported by increasing supplies of shale gas, particularly in the United States.

335

Annual Energy Outlook 2011 Reference Case  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Preliminary Regulatory Impact Analysis - Joint Rulemaking to Establish CAFE and GHG Emissions Standards, MY 2012-2016 - Average Fuel Economy Standards, Passenger Cars and...

336

Annual Energy Outlook 2011 Reference Case  

Gasoline and Diesel Fuel Update (EIA)

Standards * Additional information taken from: - Joint Rulemaking to Establish CAFE and GHG Emissions Standards, MY 2012-2016 - Average Fuel Economy Standards, Passenger Cars and...

337

Annual Energy Outlook 2011 Reference Case  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal and Nuclear Electricity Generation for 2013 EIA Energy Conference June 18, 2013 | Washington, DC by Jim Diefenderfer, Office of Electricity, Coal, Nuclear & Renewables...

338

Annual Energy Outlook 2011 Reference Case  

Gasoline and Diesel Fuel Update (EIA)

etc.) * Statutory and Regulatory requirements (RFS2, for example) * Prices of primary energy (crude oil, etc.) LP * Minimize cost to meet fuel demands and legal requirements *...

339

Annual Energy Outlook 2011 Reference Case  

Gasoline and Diesel Fuel Update (EIA)

of Clean Air Interstate Rule (CAIR) after U.S. Court of Appeals vacated Cross-State Air Pollution Rule (CSAPR) * Continued to coordinate with Survey Team and Statistics Group...

340

DOE Zero Energy Ready Home Case Study: Clifton View Homes, Whidbey Island, WA  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home on Whidbey Island, WA, that scores HERS 37 without PV or HERS -13 with 10 kW PV, enough to power the home and an electric car. The two-story custom home...

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland, MI  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home in Midland, MI, that scored HERS 49 without PV or HERS 44 with 1.4 kW of PV. The custom home served as a prototype and energy efficiency demonstration...

342

DOE Zero Energy Ready Home Case Study: KB Home, Lancaster, CA  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home in Lancaster, CA, that achieved a HERS 43 without PV 43 or HERS 0 with 6.9-kW PV. The two-story, 2,537ft2 home serves as a model for the production...

343

DOE Zero Energy Ready Home Case Study, KB Home, San Marcos, CA, Production Home  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready Home in San Marcos, CA that scored HERS 52 without PV, -4 with PV. This 52,778 ft2 production home has R-20 advanced framed walls with batts plus rigid foam sheathing, an air-source heat pump for central air in sealed attic, solar water heating and 100% LED lighting.

344

DOE Zero Energy Ready Home Case Study: Amerisips Homes, Charleston, SC  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home on Johns Island in Charleston, SC, that scored HERS 30 without PV, or HERS 1 with 6-kW of PV. This custom 2-story, 2,085 ft2, home is constructed of...

345

DOE Zero Energy Ready Home Case Study, Garbett Homes, Herriman, UT, Production Home  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready Home in Herriman, UT, that scored HERS 40 without PV, -1 with PV. This 4,111 ft2 production home has R-23 advanced framed walls, and a vented attic with R-60 blown fiberglass.

346

DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott Valley, AZ  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home in northern AZ that achieved a HERS score of 48 without PV or 25 if 3.5 kW PV were added. The two-story, 2,469-ft2 production home has 2x4 walls filled...

347

DOE Zero Energy Ready Home Case Study: AquaZephyr, Ithaca, NY  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home in Ithaca, NY, that achieves a HERS 56 without PV or HERS 15 with 4-kW of PV. The two-story, 1,664-ft2 home is one of 17 single-family and 4 duplex homes...

348

DOE Zero Energy Ready Home Case Study: John Hubert Associates, North Cape May, NJ  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home in North Cape May, NJ, that scored a HERS 46 without PV or HERS 9 with 6.5 kW of PV. The two-story, 1,871-ft2 home has advanced-framed above-grade walls...

349

DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home in Houston, TX, that achieves a HERS 45 without PV or HERS 32 with 1.2 kW PV. The three-story, 4,507-ft2 custom home is powered by a unique tri-generation...

350

DOE Zero Energy Ready Home Case Study: The Imery Group, Serenbe, GA  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home in Serenbe, GA, that scored a HERS 40 without PV or HERS -10 with PV. The 2,811-ft2, two-story custom home has 2x6, advanced framed walls filled with R-20...

351

DOE Zero Energy Ready Home Case Study, New Town Builders, Denver, CO, Production Home  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready Home in Denver, CO that scored HERS 41 without PV, HERS 3 with PV. This 3,560 ft2 production home has R-36 double-stud walls, a vented attic with R-50 blown fiberglass, and a 97% efficient gas furnace with ducts in conditioned space.

352

DOE Zero Energy Ready Home Case Study: Greenhill Contracting, New Paltz, NY  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home in New Paltz, NY, that achieved a HERS score of 37 without PV or 7 with 7.5-kW PV. The two-story 2,288-ft2 home is one of 9 certified homes. All of the...

353

DOE Zero Energy Ready Home Case Study: Brookside Development, Derby, CT  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home in Derby, CT, that achieves a HERS score of 45 without PV or HERS 26 with PV. The production home is one of a development of 7 two-story, 4,000+-ft2...

354

DOE Zero Energy Ready Home Case Study, Manatee County Habitat for Humanity, Ellenton, FL, Affordable  

Broader source: Energy.gov [DOE]

Case-study of a DOE Zero Energy Ready Home in Ellenton, FL that scored HERS 53 without PV, HERS 23 with PV. This 1,143 ft2 affordable home has R-23 ICF walls, a spray-foamed sealed attic, solar hot water, and a ducted mini-split heat pump.

355

DOE Zero Energy Ready Home Case Study: New Town Builders, Denver, CO  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home in Denver, CO, that achieves HERS 38 without PV or HERS -3 with 8.0 kW of PV. The 2,115-ft2 two-story production home has 9.5-in.-thick double-stud walls...

356

DOE Zero Energy Ready Home Case Study, e2Homes, Winterpark, FL, Custom Homes  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready Home in Winter Park, FL that scored HERS 57 without PV or HERS -7 with PV. This 4,305 ft2 custom home has autoclaved aerated concrete walls, a sealed attic with R-20 spray foam, and ductless mini-split heat pumps.

357

Analysis of off-grid hybrid wind turbine/solar PV water pumping systems  

Science Journals Connector (OSTI)

While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic, wind-electric, diesel powered), few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) and solar photovoltaic (PV) array water pumping systems were analyzed individually and combined as a hybrid system. The objectives were to determine: (1) advantages or disadvantages of using a hybrid system over using a WT or a solar PV array alone; (2) if the WT or solar PV array interfered with the output of the other; and (3) which hybrid system was the most efficient for the location. The WT used in the analysis was rated at 900 W alternating current (AC). There were three different solar PV arrays analyzed, and they were rated at 320, 480, and 640 W direct current (DC). A rectifier converted the 3-phase variable voltage AC output from the WT to DC before combining it with the solar PV array DC output. The combined renewable energies powered a single helical pump. The independent variable used in the hybrid WT/PV array analysis was in units of W/m2. The peak pump efficiency of the hybrid systems at Bushland, TX occurred for the 900 W WT combined with the 640 W PV array. The peak pump efficiencies at a 75 m pumping depth of the hybrid systems were: 47% (WT/320 W PV array), 51% (WT/480 W PV array), and 55% (WT/640 W PV array). Interference occurred between the WT and the different PV arrays (likely due to voltage mismatch between WT and PV array), but the least interference occurred for the WT/320 W PV array. This hybrid system pumped 28% more water during the greatest water demand month than the WT and PV systems would have pumped individually. An additional controller with a buck/boost converter is discussed at end of paper for improvement of the hybrid WT/PV array water pumping system.

Brian D. Vick; Byron A. Neal

2012-01-01T23:59:59.000Z

358

Future of Grid-Tied PV Business Models: What Will Happen When PV Penetration on the Distribution Grid is Significant? Preprint  

SciTech Connect (OSTI)

Eventually, distributed PV will become a more significant part of the generation mix. When this happens, it is expected that utilities will have to take on a more active role in the placement, operation and control of these systems. There are operational complexities and concerns of revenue erosion that will drive utilities into greater involvement of distributed PV and will create new business models. This report summarizes work done by Navigant Consulting Inc. for the National Renewable Energy Laboratory as part of the Department of Energy's work on Renewable System Integration. The objective of the work was to better understand the structure of these future business models and the research, development and demonstration (RD&D) required to support their deployment. This report describes potential future PV business models in terms of combinations of utility ownership and control of the PV assets, and the various relationships between end-users and third-party owners.

Graham, S.; Katofsky, R.; Frantzis, L.; Sawyer, H.; Margolis, R.

2008-05-01T23:59:59.000Z

359

Characterization of interim reference shales  

SciTech Connect (OSTI)

Measurements have been made on the chemical and physical properties of two oil shales designated as interim reference oil shales by the Department of Energy. One oil shale is a Green River Formation, Parachute Creek Member, Mahogany Zone Colorado oil shale from the Anvil Points mine and the other is a Clegg Creek Member, New Albany shale from Kentucky. Material balance Fischer assays, kerogen concentrates, carbon aromaticities, thermal properties, and bulk mineralogic properties have been determined for the oil shales. The measured properties of the interim reference shales are comparable to results obtained from previous studies on similar shales. The western interim reference shale has a low carbon aromaticity, high Fischer assay conversion to oil, and a dominant carbonate mineralogy. The eastern interim reference shale has a high carbon aromaticity, low Fischer assay conversion to oil, and a dominant silicate mineralogy. Chemical and physical properties, including ASTM distillations, have been determined for shale oils produced from the interim reference shales. The distillation data were used in conjunction with API correlations to calculate a large number of shale oil properties that are required for computer models such as ASPEN. The experimental determination of many of the shale oil properties was beyond the scope of this study. Therefore, direct comparison between calculated and measured values of many properties could not be made. However, molecular weights of the shale oils were measured. In this case, there was poor agreement between measured molecular weights and those calculated from API and other published correlations. 23 refs., 12 figs., 15 tabs.

Miknis, F.P.; Sullivan, S.; Mason, G.

1986-03-01T23:59:59.000Z

360

Potential residential PV development in Chile: The effect of Net Metering and Net Billing schemes for grid-connected PV systems  

Science Journals Connector (OSTI)

Abstract In recent years the global photovoltaic (PV) market has expanded rapidly due to a sharp decline in PV prices and increased attention to the importance of sustainable energy. Northern Chile has one of the highest irradiance levels in the world as well as one the highest electricity rates in Latin America. Because of these conditions, Chile is one of very few countries where several PV projects are being developed without government subsidies and consequently, the PV industry is experiencing rapid growth. This paper reviews the opportunity to take advantage of these market conditions within the residential sector, modeling PV arrays across 10 cities in Chile. A detailed modeling of PV systems is performed to achieve an accurate analysis of energy production and electricity cost, using local resource data, optimal array orientation and inclination, and production losses. A review of how Net Metering and Net Billing affect the value of the PV production is applied and a comparison using levelized cost of electricity (LCOE) is conducted. Net Metering is found to be a better policy choice to promote PV systems than Net Billing because energy injected into the electrical network is paid at the complete retail rate. However, in developed countries this kind of policy is unlikely to be supported because of it?s economic unfeasibility. Under a Net Billing scheme a consumer will see an advantage when energy is recorded over longer time intervals and when installing a system with smaller capacity relative to household electricity consumption. This prevents excess generation from being injected into the network which would be bought by the utility at lower prices than the retail rate. Payback periods are found to be low, between 6 years in northern areas with high retail rates and 13 years in other areas with lower radiation and retail rates.

David Watts; Marcelo F. Valdés; Danilo Jara; Andrea Watson

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Literature Review of the Effects of UV Exposure on PV Modules  

Broader source: Energy.gov [DOE]

This PowerPoint presentation, originally presented at the NREL 2013 PV Module Reliability Workshop on Feb. 26-27, 2013 in Denver, CO, presents the literature review of the effects of prolonged UV exposure of PV modules, with a particular emphasis on UV exposure testing using artificial light sources, including fluorescent, Xenon, and metal halide lamps.

362

A 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS  

E-Print Network [OSTI]

A 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS D Walter-mounted system couples the benefits of distributed PV electricity generation with the on-site generation of thermal energy in a temperature range of 60 to 220 ºC. This is ideal for applications ranging from

363

Battery Management for Grid-Connected PV Systems with a Battery  

E-Print Network [OSTI]

}@usc.edu ABSTRACT Photovoltaic (PV) power generation systems are one of the most promising renewable power sources-connected systems, Photovoltaic power, Electricity bill 1. INTRODUCTION The number and capacity of photovoltaic (PV for customers to save enough money with lower monthly electricity bills to compensate the initial cost

Pedram, Massoud

364

A single-phase grid-connected PV system with active power filter  

Science Journals Connector (OSTI)

In this paper a single-phase active power filter based in a two stages grid-connected photovoltaic system is presented. The proposed system can not only inject PV power into utility but can act always as an active power filter to compensate the load ... Keywords: THD, grid-connected PV systems, power factor and active power filter, single-phase systems

Kleber C. A. De Souza; Denizar C. Martins

2008-07-01T23:59:59.000Z

365

SOLAR ENERGY (conditionally accepted 1/2010) QUANTIFYING PV POWER OUTPUT VARIABILITY  

E-Print Network [OSTI]

SOLAR ENERGY (conditionally accepted 1/2010) QUANTIFYING PV POWER OUTPUT VARIABILITY Thomas E create major problems that will require major mitigation efforts. #12;SOLAR ENERGY (conditionally industry believe it could constrain the penetration of gridconnected PV. The U.S. Department of Energy

Perez, Richard R.

366

FEMP Webcast: O&M Best Practices for Small-Scale PV Systems  

Broader source: Energy.gov [DOE]

Hosted by the Federal Energy Management Program (FEMP), this seminar covers operations and maintenance (O&M) best practices for photovoltaic (PV) systems of 100 kilowatt or less, including planning for a PV O&M scope of work and maintenance procedures to keep the system operating at optimal capacity.

367

Why Are Residential PV Prices in Germany So Much Lower Than in the United States?  

E-Print Network [OSTI]

Why Are Residential PV Prices in Germany So Much Lower Than in the United States? A Scoping is significantly lower in Germany than in the U.S., due primarily to differences in "soft" costs ­ But relatively consultant data relevant to the cost structure of residential PV in Germany · Focus is the pre

368

2 IAEI NEWS September . October 2011 www.iaei.org perspectives on pv  

E-Print Network [OSTI]

- or 240-volt alternating current (ac) circuits on the roof. Standards written by Underwriters Laboratories their PV modules. Also, workers on the roof repairing the roof, gutters, HVAC equipment and the like could UL Standard 1703 (Flat Plate PV modules) is written with respect to grounding the module. In late

Johnson, Eric E.

369

Genome-Wide Identification of Transcriptional Start Sites in the Plant Pathogen Pseudomonas syringae pv. tomato  

E-Print Network [OSTI]

identified 59-ends of transcripts for the plant pathogen Pseudomonas syringae pv. tomato str. DC3000-Wide Identification of Transcriptional Start Sites in the Plant Pathogen Pseudomonas syringae pv. tomato str. DC3000Genome-Wide Identification of Transcriptional Start Sites in the Plant Pathogen Pseudomonas

Myers, Chris

370

November 18 PSERC Webinar: Quantifying and Mitigating the Impacts of PV in Distribution Systems  

Broader source: Energy.gov [DOE]

The DOE-funded Power Systems Engineering Research Center (PSERC) is offering a free public webinar presenting a simulation-based investigation of PV impacts on distribution systems and discussing a new approach for volt-VAR optimization with reactive power capabilities of PV inverters.

371

2 IAEI NEWS November. December 2012 www.iaei.org pv systems in unusual locations  

E-Print Network [OSTI]

the circulating pump. The combination of a PV- powered pump with a solar collector works well since bright sun they be permit- ted and inspected? Here are some examples of such systems. Electric Gate Openers PV-powered at night and during cloudy weather. Normally the prod- ucts are sold as a kit and installed by the building

Johnson, Eric E.

372

Environmental impacts of large-scale grid-connected ground-mounted PV installations  

E-Print Network [OSTI]

deployment and solar energy use are developing rapidly in Europe. In particular, Austria, Switzerland the higher external environmental costs of PV compared to those of nuclear energy and natural-gas-fuel power,6]. They highlighted the photovoltaic potential for a low carbon energy supply and the environmental benefits of PV

Paris-Sud XI, Université de

373

Chapter III-2: Standards, Calibration and Testing of PV Modules and Solar Cells  

SciTech Connect (OSTI)

This chapter covers common PV measurement techniques and shows how potential problems and sources of error are minimized through the development and use of common standards. Measurement uncertainty, however, remains a problem for some types of PV cells, and tests continue to be developed to address these issues.

Osterwald, C. R.

2012-01-01T23:59:59.000Z

374

Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.  

SciTech Connect (OSTI)

Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

2011-06-01T23:59:59.000Z

375

Moving to a Higher Level for PV Reliability through Comprehensive Standards Based on Solid Science (Presentation)  

SciTech Connect (OSTI)

PV reliability is a challenging topic because of the desired long life of PV modules, the diversity of use environments and the pressure on companies to rapidly reduce their costs. This presentation describes the challenges, examples of failure mechanisms that we know or don't know how to test for, and how a scientific approach is being used to establish international standards.

Kurtz, S.

2014-11-01T23:59:59.000Z

376

Fraunhofer-Center fr Silizium-Photovoltaik CSP INTERPRETATION OF CELL FRACTURE IN PV  

E-Print Network [OSTI]

© Fraunhofer-Center für Silizium-Photovoltaik CSP INTERPRETATION OF CELL FRACTURE IN PV MODULES stability of PV modules" #12;© Fraunhofer-Center für Silizium-Photovoltaik CSP Agenda Motivation #12;© Fraunhofer-Center für Silizium-Photovoltaik CSP Motivation & Background Thermo

377

OPTIMIZATION WITH ENERGY MANAGEMENT OF PV BATTERY STAND-ALONE SYSTEMS OVER THE ENTIRE LIFE CYCLE  

E-Print Network [OSTI]

of both the installed PV power and storage capacity (lead-acid battery technology for purposes). Keywords: Battery storage and control, Lifetime simulation, PV system. 1. INTRODUCTION Given the sizable-averaged renewable output. The battery state of charge (SOC), which determines the efficiency during charging

Paris-Sud XI, Université de

378

Response to Xanthomonas campestris pv. vesicatoria in Tomato Involves Regulation of Ethylene Receptor  

E-Print Network [OSTI]

Response to Xanthomonas campestris pv. vesicatoria in Tomato Involves Regulation of Ethylene, Gainesville, Florida 32611­0680 (J.B.J., R.E.S.) Although ethylene regulates a wide range of defense ethylene's role in plant response to virulent and avirulent strains of Xanthomonas campestris pv

Klee, Harry J.

379

World Renewable Energy Congress 2011 Sweden Photovoltaic Technology (PV) 8-11 May 2011, Linkping, Sweden  

E-Print Network [OSTI]

World Renewable Energy Congress 2011 ­ Sweden Photovoltaic Technology (PV) 8-11 May 2011, Linköping with the improvements in PV systems [5,6]. They highlighted the photovoltaic potential for a low carbon energy supply potential with respect to human health, climate change and energy consumption. The climate change impact

Paris-Sud XI, Université de

380

Hawaii Natural Energy Institute installs PV systems at public schools Pacific Business News  

E-Print Network [OSTI]

of the inverters, which convert direct current or DC power generated by the PV panels into alternating current in Ewa Beach and at Kawaikini New Century Public Charter School in Lihue on Kauai. "These installations the performance of traditional and emerging PV materials and inverter technologies," Institute Director Richard

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ePOWER Seminar AC solar cells: A new breed of PV power generation  

E-Print Network [OSTI]

ePOWER Seminar AC solar cells: A new breed of PV power generation Professor Faisal Khan Assistant dc output which needs to be processed and inverted for ac applications. Using a modern manufacturing facility, PV panels could be mass produced without any apparent issues. Unfortunately, power converters

Abolmaesumi, Purang

382

Modeling and Simulation of Solar PV Arrays under Changing Illumination Conditions  

E-Print Network [OSTI]

the amount of electric power that may be generated from the solar panel at time of use. To be specificModeling and Simulation of Solar PV Arrays under Changing Illumination Conditions Dzung D Nguyen shadows (a passing cloud) on the output power of solar PV arrays. Each solar array is composed of a matrix

Lehman, Brad

383

Life-cycle assessment of multi-crystalline photovoltaic (PV) systems in China  

Science Journals Connector (OSTI)

Abstract This study performs a life-cycle assessment for a photovoltaic (PV) system with multi-crystalline silicon (multi-Si) modules in China. It considers the primary energy demand, energy payback time (EPBT), and environmental impacts, such as global warming potential and eutrophication, over the entire life cycle of the PV system, including the upstream process, ranging from silica extraction to the multi-Si purification, the midstream process, involving crystalline silicon ingot growth and wafering; and the downstream process, consisting of cell and module fabrication. The data were collected with recommendations provided by the ISO norms and acquired from typical PV companies in China. The results show that the most critical phase of life cycle of Chinese PV system was the transformation of metallic silicon into solar silicon, which was characterized by high electricity consumption, representing most of the environmental impact. The other electricity generation systems were compared to PV. Considering that Chinese electricity is mainly produced by coal-fired power plants, the installation of multi-Si PV systems is recommended over exporting them from China. Furthermore, being higher solar radiation areas, areas in western China, such as the Tibet Autonomous Region, northeastern Qinghai, and the western borders of Gansu, are best suited for the installation of the PV systems even if the long distance of transportation. Finally, recommendations were provided with respect to the sustainable development of the Chinese PV industry and environmental protection.

Yinyin Fu; Xin Liu; Zengwei Yuan

2014-01-01T23:59:59.000Z

384

Designing PV Incentive Programs to Promote Performance: A Review of Current Practice in the U.S.  

E-Print Network [OSTI]

D. Best Practices in PV Rebate Programs: Helping Customersin the form of an up-front rebate paid to the customer, andin the U.S. have provided rebates for PV systems based on

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2008-01-01T23:59:59.000Z

385

Introduction of Break-Out Session 2 of the 2011 International PV Module Quality Assurance Forum(Presentation)  

SciTech Connect (OSTI)

This presentation outlines the goals and specific tasks of break-out session 2 of the 2011 International PV Module Quality Assurance Forum, along with a review of accelerated stress tests used for photovoltaics (PV).

Wohlgemuth, J.; Kurtz, S.; Sample, T.; Yamamichi, M.

2011-07-01T23:59:59.000Z

386

El Paso Electric Company - Solar PV Pilot Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

El Paso Electric Company - Solar PV Pilot Program El Paso Electric Company - Solar PV Pilot Program El Paso Electric Company - Solar PV Pilot Program < Back Eligibility Commercial Construction Fed. Government Industrial Installer/Contractor Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $7,500 Non-Residential: $50,000 Per Customer with Multiple Projects: 25% of 2013 incentive budget Per Service Provider with Multiple Projects: 50% of 2013 incentive budget in each category Program Info Start Date March 2010 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $0.75/W DC Non-Residential: $1.00/W DC Provider El Paso Electric Solar PV Pilot Program '''''El Paso Electric's 2013 Solar PV Rebate program will reopen at 12:00

387

Pallets of PV: Communities Purchase Solar and Drive Down Costs Together |  

Open Energy Info (EERE)

Pallets of PV: Communities Purchase Solar and Drive Down Costs Together Pallets of PV: Communities Purchase Solar and Drive Down Costs Together Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2002) Super contributor 5 July, 2012 - 13:20 imported OpenEI Article originally published at NREL's Renewable Energy Project Finance website Think of it like Costco or Sam's Club for purchasing solar photovolatics (PV). Some savvy folks in Oregon thought it would be a great idea to buy PV in bulk for their neighborhood to get a big volume discount and share the savings with neighbors. So they created the Solarize campaign, which over the last three years has helped Portland add "[more than] 1.7 MW of distributed PV and [establish] a strong, steady solar installation economy" [1]. In fact, so successful was the Portland model that several other

388

AEP Texas North Company - SMART Source Solar PV Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

North Company - SMART Source Solar PV Rebate Program North Company - SMART Source Solar PV Rebate Program AEP Texas North Company - SMART Source Solar PV Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $30,000 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/watt DC Non-residential: $1.20/watt DC Provider Smart Source PV Program American Electric Power Texas North Company (AEP-TNC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes (e.g., residential, commercial)

389

The California Solar Initiative: Cost Trends in Customer-Sited PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The California Solar Initiative: Cost Trends in Customer-Sited PV The California Solar Initiative: Cost Trends in Customer-Sited PV Installations and the Impact of Retail Rate Design on the Economics of PV Systems Speaker(s): Ryan Wiser Date: January 9, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner California's new solar initiative will dedicate over $3 billion of public funds to support the installation of customer-sited solar installations in the state over the next 10 years, principally in the form of residential and commercial photovoltaic (PV) systems. These efforts build from historical programs that have made California the third largest PV market in the world, behind Germany and Japan. This talk will summarize recent efforts at Berkeley Lab to advise the state's energy agencies in the design

390

September 16 ESTAP Webinar: Optimizing the Benefits of a PV with Battery  

Broader source: Energy.gov (indexed) [DOE]

September 16 ESTAP Webinar: Optimizing the Benefits of a PV with September 16 ESTAP Webinar: Optimizing the Benefits of a PV with Battery Storage System September 16 ESTAP Webinar: Optimizing the Benefits of a PV with Battery Storage System August 30, 2013 - 12:34pm Addthis On Monday, September 16 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on optimizing the benefits of a photovoltaic (PV) storage system with a battery. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. The webinar will discuss PNM's Prosperity Energy Storage Project, which is partly funded through DOE's Recovery Act Smart Grid Storage Demonstration Program. The project has successfully demonstrated optimizing the storage and delivery of energy using a PV with battery system. The

391

An empirical model for ramp analysis of utility-scale solar PV power  

Science Journals Connector (OSTI)

Abstract Short-term variability in the power generated by utility-scale solar photovoltaic (PV) plants is a cause for concern for power system operators. Without quantitative insights into such variability, system operators will have difficulty in exploiting grid integrated solar power without negatively impacting power quality and grid reliability. In this paper, we describe a statistical method to empirically model the ramping behavior of utility-scale solar PV power output for short time-scales. The general validity of the model is confirmed through the analysis of power output data from a MW-scale solar PV plant located in the state of Karnataka, India. The empirical parameters of the model are investigated for different time-intervals and solar datasets. The proposed model is able to satisfactorily approximate the actual distribution of PV ramp events and can be an effective tool in smartly planning additional resources for PV ramp control.

Bishal Madhab Mazumdar; Mohd. Saquib; Abhik Kumar Das

2014-01-01T23:59:59.000Z

392

Low Cost High Concentration PV Systems for Utility Power Generation Amonix,  

Broader source: Energy.gov (indexed) [DOE]

Amonix, Inc. Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief fact sheet on various topics including:Low Cost High Concentration PV Systems for Utility Power Generation,High Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity Using BP Solar Crystalline Silicon Technology, Fully Integrated Building Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain Partnership to Accelerate U.S. Photovoltaic Industry Growth,AC Module PV System,Flexible Organic Polymer-Based PV For Building Integrated Commercial Applications,Flexable Integrated PV System,Delivering Grid-Parity Solar Electricity On Flat Commercial Rooftops,Fully Automated Systems Technology, Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to

393

Blanc, I., Beloin-Saint-Pierre, D., Payet, J., Jacquin, P., Adra, N., Mayer, D., Espace-PV: key sensitive parameters for environmental impacts of grid-connected PV systems with LCA , In Proceedings of the 23rd  

E-Print Network [OSTI]

sensitive parameters for environmental impacts of grid-connected PV systems with LCA », In Proceedings FOR ENVIRONMENTAL IMPACTS OF GRID-CONNECTED PV SYSTEMS WITH LCA I. BLANC1 , D. BELOIN-SAINT-PIERRE1 , J. PAYET2 , P of sensitive parameters for the life cycle analysis (LCA) of PV system showed that irradiation intensity

Paris-Sud XI, Université de

394

Development of Large High-Voltage PV Modules with Improved Reliability and Lower Cost: Final Subcontract Report, 1 April 2006--31 August 2007  

SciTech Connect (OSTI)

The overall objective was to provide NREL with technical results that enhance its capability to improve PV manufacturing technology by developing a PV module with specified characteristics.

Wohlgemuth, J.

2009-05-01T23:59:59.000Z

395

Encouraging PV Adoption in New Market-Rate Residential Construction: A Critical Review of Program Experiences to Date  

E-Print Network [OSTI]

on new multi-family buildings State Organization Standard PVmulti- family residential construction projects with PV and other green building

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

396

Measurement and Modeling of Solar and PV Output Variability: Preprint  

Broader source: Energy.gov (indexed) [DOE]

Measurement and Modeling of Measurement and Modeling of Solar and PV Output Variability Preprint M. Sengupta To be presented at SOLAR 2011 Raleigh, North Carolina May 17-21, 2011 Conference Paper NREL/CP-5500-51105 April 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,

397

Performance Parameters for Grid-Connected PV Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 B. Marion, J. Adelstein, and K. Boyle National Renewable Energy Laboratory H. Hayden, B. Hammond, T. Fletcher, B. Canada, and D. Narang Arizona Public Service Co. D. Shugar, H. Wenger, A. Kimber, and L. Mitchell PowerLight Corporation G. Rich and T. Townsend First Solar Prepared for the 31 st IEEE Photovoltaics Specialists Conference and Exhibition Lake Buena Vista, Florida January 3-7, 2005 February 2005 * NREL/CP-520-37358 Performance Parameters for Grid-Connected PV Systems

398

Fundamentals of PV Efficiency: Limits for Light Absorption  

E-Print Network [OSTI]

A simple thermodynamic argument related to a (weakly absorbing) finite dielectric slab illuminated by sunlight- originally suggested by Yablonovich- leads to the conclusion that the absorption in a dielectric can at best be increased by a factor 4n2. Therefore, the absorption in these materials is always imperfect; the Shockley-Queisser limit can be achieved only asymptotically. In this paper, we make the connection between the degradation in efficiency and the Yablonovich limit explicit and re-derive the 4n2 limit by intuitive geometrical arguments based on Snell's law and elementary rules of probability. Remarkably, the re-derivation suggests strategies of breaking the traditional limit and improving PV efficiency by enhanced light absorption.

M. Ryyan Khan; Xufeng Wang; Muhammad A. Alam

2012-12-11T23:59:59.000Z

399

High frequency reference electrode  

DOE Patents [OSTI]

A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

Kronberg, J.W.

1994-05-31T23:59:59.000Z

400

Literature Review of Uncertainty of Analysis Methods (PV F-Chart Program), Report to the Texas Commission on Environmental Quality  

E-Print Network [OSTI]

TRNSYS simulations. This report begins with a review of the history of the PV F-Chart method, and includes an example PV F-Chart calculation. In summary, from the literature it was found that hourly PV F-Chart analysis versus measured data were shown...

Haberl, J. S.; Cho, S.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Optical voltage reference  

DOE Patents [OSTI]

An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

Rankin, R.; Kotter, D.

1994-04-26T23:59:59.000Z

402

Policy target, feed-in tariff, and technological progress of PV in Taiwan  

Science Journals Connector (OSTI)

Abstract It is widely recognized that solar energy, a major renewable energy source, can strengthen a country?s energy security and reduce CO2 emissions. For this reason, Taiwan aims to develop its solar power industry by promoting photovoltaic (PV) applications. To meet its PV installation targets, the government is considering adopting feed-in tariffs (FITs), offering subsidies on capital expenditures, and funding research and development. At present, there is a wide gap between the country?s installed capacity and the long-term government targets. Therefore, this study constructs a PV supply curve to demonstrate the potential contribution of PV power to Taiwan?s electricity requirements. Based on this curve, an assessment tool is developed to show the relationship between PV installed capacity and energy cost reductions under a FIT scheme. Using this assessment model, policymakers can simulate the adoption of PV projects at the county level and anticipate possible challenges. Furthermore, the model will also measure the level of cost reductions required for PV technology to reach specific targets under the FIT scheme.

Jin-Xu Lin; Pei-Ling Wen; Chun-Chiang Feng; Shih-Mo Lin; Fu-Kuang Ko

2014-01-01T23:59:59.000Z

403

A hybrid life-cycle inventory for multi-crystalline silicon PV module manufacturing in China  

Science Journals Connector (OSTI)

China is the world's largest manufacturer of multi-crystalline silicon photovoltaic (mc-Si PV) modules, which is a key enabling technology in the global transition to renewable electric power systems. This study presents a hybrid life-cycle inventory (LCI) of Chinese mc-Si PV modules, which fills a critical knowledge gap on the environmental implications of mc-Si PV module manufacturing in China. The hybrid LCI approach combines process-based LCI data for module and poly-silicon manufacturing plants with a 2007 China IO-LCI model for production of raw material and fuel inputs to estimate 'cradle to gate' primary energy use, water consumption, and major air pollutant emissions (carbon dioxide, methane, sulfur dioxide, nitrous oxide, and nitrogen oxides). Results suggest that mc-Si PV modules from China may come with higher environmental burdens that one might estimate if one were using LCI results for mc-Si PV modules manufactured elsewhere. These higher burdens can be reasonably explained by the efficiency differences in China's poly-silicon manufacturing processes, the country's dependence on highly polluting coal-fired electricity, and the expanded system boundaries associated with the hybrid LCI modeling framework. The results should be useful for establishing more conservative ranges on the potential 'cradle to gate' impacts of mc-Si PV module manufacturing for more robust LCAs of PV deployment scenarios.

Yuan Yao; Yuan Chang; Eric Masanet

2014-01-01T23:59:59.000Z

404

Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems  

SciTech Connect (OSTI)

This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

Schauder, C.

2014-03-01T23:59:59.000Z

405

Sample References Business Student  

E-Print Network [OSTI]

and provide them with the job description/your resume Brand Yourself- the heading should be the same as your resume and cover letter Be Consistent- use the same fonts/sizes as your resume and cover letter Pay/advice-tools/resume-cover-letter/how-to-make-the-best-use-of-references Obtaining References http

406

Wilderness Preservation : a Reference Handbook  

E-Print Network [OSTI]

Preservation: A Reference Handbook By Kenneth A. RossenbergPreservation: A Reference Handbook. Santa Barbara: ABC-CLIO,Preservation: A Reference Handbook is a comprehensive

Zimmer, Peter

1996-01-01T23:59:59.000Z

407

Application Protocol Reference Architecture Application Protocol Reference Architecture  

E-Print Network [OSTI]

Application Protocol Reference Architecture 165 Chapter 7 Application Protocol Reference Architecture This chapter proposes an alternative reference architecture for application protocols. The proposed reference architecture consists of the set of possible architectures for application protocols

van Sinderen, Marten

408

NEWTON's Botany References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Botany References Botany References Do you have a great botany reference link? Please click our Ideas page. Featured Reference Links: Dave's Garden - Plant Database Dave's Garden - Plant Database Visit Dave's Garden with information and photos for 185,359 different plants! United States Department of Agriculture Plant Database USDA PLANTS Database The PLANTS Database provides standardized information about the vascular plants, mosses, liverworts, hornworts, and lichens of the U.S. and its territories. Search over 40,000 plant images of US plants. Botany.com Botany.com Botany.com offers an encyclopedia of flowers and plants and resources to help people learn how to identify any different kinds of plants. Plant Kingdom This is a good reference for looking at the plant kingdom.

409

NEWTON's General Science References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

General Science References General Science References Do you have a great general science reference link? Please click our Ideas page. Featured Reference Links: First.gov Science and Technology First.gov Science and Technology This site, sponsered by the US Government provides reference links to topics on science, telecommunications, computers, research agencies, and news. NASA Science NASA Science NASA Science, is a website sponsered by NASA, that supplies resources for understanding our world and the world above. Topics include earth science, heliophysics, the planets, astrophysics and much more. There is also an educator page! Nobel Laueate Listings and Stories Nobel Laueate Listings and Stories See the official site for the Nobel Prize, and read biographies about all of the Nobel Laureates, and there life changing discoveries and accomplishments.

410

Overview of Scientific Issues Involved in Selection of Polymers for PV Applications  

SciTech Connect (OSTI)

Encapsulant materials used in photovoltaic (PV) modules serve multiple purposes. They physically hold components in place, provide electrical insulation, reduce moisture ingress, optically couple superstrate materials (e.g., glass) to PV cells, protect components from mechanical stress by mechanically decoupling components via strain relief, and protect materials from corrosion. To do this, encapsulants must adhere well to all surfaces, remain compliant, and transmit light after exposure to temperature, humidity, and UV radiation histories. Here, a brief review of some of the polymeric materials under consideration for PV applications is provided, with an explanation of some of their advantages and disadvantages.

Kempe, M.

2011-01-01T23:59:59.000Z

411

Tucson Request for Proposal for 1-5 MW PV PPA  

Broader source: Energy.gov [DOE]

The mission of Tucson Water, a Department of the City of Tucson (the City), is to ensure that its customers receive high quality water and excellent service in a cost efficient, safe and environmentally responsible manner. In the interest of furthering Tucson Waters mission, the City is seeking a Contractor to finance, design, build, commission, own, operate and maintain up to a 1 megawatt (MW) DCSTC hotovoltaic (PV) system. The City also seeks an option for expanding the PV system up to a total of 5 MW DCSTC PV.

412

User's Manual for Data for Validating Models for PV Module Performance  

SciTech Connect (OSTI)

This user's manual describes performance data measured for flat-plate photovoltaic (PV) modules installed in Cocoa, Florida, Eugene, Oregon, and Golden, Colorado. The data include PV module current-voltage curves and associated meteorological data for approximately one-year periods. These publicly available data are intended to facilitate the validation of existing models for predicting the performance of PV modules, and for the development of new and improved models. For comparing different modeling approaches, using these public data will provide transparency and more meaningful comparisons of the relative benefits.

Marion, W.; Anderberg, A.; Deline, C.; Glick, S.; Muller, M.; Perrin, G.; Rodriguez, J.; Rummel, S.; Terwilliger, K.; Silverman, T. J.

2014-04-01T23:59:59.000Z

413

NREL/SCE High-Penetration PV Integration Project: Report on Field Demonstration of Advanced Inverter Functionality in Fontana, CA  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory/Southern California Edison High-Penetration PV Integration Project is (1) researching the distribution system level impacts of high-penetration photovoltaic (PV) integration, (2) determining mitigation methods to reduce or eliminate those impacts, and (3) seeking to demonstrate these mitigation methods on actual high-penetration PV distribution circuits. This report describes a field demonstration completed during the fall of 2013 on the Fontana, California, study circuit, which includes a total of 4.5 MW of interconnected utility-scale rooftop PV systems. The demonstration included operating a 2-MW PV system at an off-unity power factor that had been determined during previously completed distribution system modeling and PV impact assessment analyses. Data on the distribution circuit and PV system operations were collected during the 2-week demonstration period. This demonstration reinforces the findings of previous laboratory testing that showed that utility-scale PV inverters are capable of operating at off-unity power factor to mitigate PV impacts; however, because of difficulties setting and retaining PV inverter power factor set points during the field demonstration, it was not possible to demonstrate the effectiveness of off-unity power factor operation to mitigate the voltage impacts of high-penetration PV integration. Lessons learned from this field demonstration are presented to inform future field demonstration efforts.

Mather, B.

2014-08-01T23:59:59.000Z

414

DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home in Danbury, CT, that scored HERS 35 without PV. This 2-story, 1,650-ft2 cabin built by a custom home builder for his own family meets Passive House...

415

DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Albuquerque, NM  

Broader source: Energy.gov [DOE]

Case study of a New Mexico-based home builder who has built more DOE Zero Energy Ready certified homes than any builder in the nation. One example home achieved a HERS score of HERS 55 without PV...

416

DOE Zero Energy Ready Home Case Study: Southern Homes, Russellville, AL  

Broader source: Energy.gov [DOE]

Case study of the first manufactured home built to the DOE Zero Energy Ready Home standard. This manufactured home achieved a HERS score of 57 without PV. The home has been set up for side-by-side...

417

DOE Zero Energy Ready Home Case Study: Promethean Homes, Charlottesville, VA  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home in Charlottesville, VA, that achieves a HERS 33 without PV. The 2,572-ft2 custom home with daylight basement, has 2x6 advanced framed walls filled with R...

418

DOE Zero Energy Ready Home Case Study: Southern Energy Homes, Russellville, AL  

Broader source: Energy.gov [DOE]

Case study of the first manufactured home built to the DOE Zero Energy Ready Home standard. This manufactured home achieved a HERS score of 57 without PV. The home has been set up for side-by-side...

419

Building America Zero Energy Ready Home Case Study: Southeast Volusia Habitat for Humanity, Edgewater, Florida  

Broader source: Energy.gov [DOE]

Case study describing a Habitat for Humanity home in coastal Florida with ICF walls, ducts in the thermal envelope in a furred-up ceiling chase, and HERS 49 without PV.

420

References to Astrophysics Papers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

References to Astrophysics Papers References to Astrophysics Papers References to Astrophysics Papers Edward Tufte claims the most common number of references to scientific papers is zero. My five papers in astrophysics published from 1992 to 1996 continue to receive citations. Major ones are listed below. Mineo, S.; Rappaport, S.; Steinhorn, B.; Levine, A.; Gilfanov, M.; Pooley, D., 2013, The Astrophysical Journal, Volume 771, Issue 2, article id. 133, 12 pp. Spatially Resolved Star Formation Image and the Ultraluminous X-Ray Source Population in NGC 2207/IC 2163 Junqueira, T. C.; Lépine, J. R. D.; Braga, C. A. S.; Barros, D. A 2013, Astronomy & Astrophysics, Volume 550, id.A91. A new model for gravitational potential perturbations in disks of spiral galaxies. An application to our Galaxy.

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NEWTON's References About Mathematics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Math References Math References Do you have a great math reference link? Please click our Ideas page. Featured Reference Links: Steve Marsden's Chemistry Resources Discovery Education's Mathematics Guide Discovery Educators have provided a Mathematics Guide for Educators. Included are numerous links to sites that touch on almost every mathematic topic that you are interested in. The Ultimate Math Portal The Ultimate Math Portal Whether you are confused by multiplication, need extra practice with geometry proofs, find yourself struggling to understand logarithms, or you just want to know more about pi, you are sure to find what you need with this great list of math facts and resources. MathIsFun.com MathIsFun.com Here, math is explained in easy language, for your students to understand. Plus, there are puzzles, games, quizzes, worksheets and a forum for more exploration. This site is designed for K-12 kids, teachers and parents to enjoy.

422

NEWTON's Material Science References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Science References Material Science References Do you have a great material science reference link? Please click our Ideas page. Featured Reference Links: Materials Research Society Materials Research Society The Materials Research Society has assembled many resources in its Materials Science Enthusiasts site. This site has information for the K-12 audience, general public, and materials science professionals. Material Science nanoHUB nanHUB.org is the place for nanotechnology research, education, and collaboration. There are Simulation Programs, Online Presentations, Courses, Learning Modules, Podcasts, Animations, Teaching Materials, and more. (Intened for high school and up) Materials Science Resources on the Web Materials Science Resources on the Web This site gives a good general introduction into material science. Sponsered by Iowa State, it talks about what material science is, ceramics and composites, and other topics.

423

NEWTON's Molecular Biology References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molecular Biology References Molecular Biology References Do you have a great reference link? Please click our Ideas page. Featured Reference Links: The Vitual Museum of Bacteria The Vitual Museum of Bacteria Visit the virtual museum of bacteria to learn more about bacteria and germs! This site brings together many links on bacteria, bacteriology, and related topics available on the web. It also provides crystal-clear information about many aspects of bacteria. The American Society of Cell Biology Cell Biology Educational Resources This site, sponsered by the American Society of Cell Biology, provides additional web links to everything from, general educational sites, to biology course materials, to teaching tools and more. National Center for Biotechnology Information National Center for Biotechnology Information

424

REFERENCES Baines, W. D.  

Office of Scientific and Technical Information (OSTI)

was performed at Sandia National Laboratories, supported by the U. S. Department of Energy under contract number DE-AC04-76DP00789. REFERENCES Baines, W. D. a, Jd Peterson,...

425

Value of Information References  

SciTech Connect (OSTI)

This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

Morency, Christina

2014-12-12T23:59:59.000Z

426

Value of Information References  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

Morency, Christina

427

City of Gridley Utilities - PV Buy Down Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gridley Utilities - PV Buy Down Program Gridley Utilities - PV Buy Down Program City of Gridley Utilities - PV Buy Down Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Program is currently on hold Program Info State California Program Type Utility Rebate Program Rebate Amount Program is currently on hold Provider City of Gridley Utilities '''''Funding for this program is currently exhausted. The summary below describes incentives as they were in 2010 and 2011. Incentive levels for the next funding round are still unknown.''''' City of Gridley is providing rebates of $2.80/W for their customers installing PV systems. Individual rebates are limited to $5,600 per system, and the utility will award a total of $41,700 in rebates per year. Systems

428

Wind and Solar-Electric (PV) Systems Exemption | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Wind and Solar-Electric (PV) Systems Exemption Wind and Solar-Electric (PV) Systems Exemption < Back Eligibility Commercial Industrial Residential Savings Category Solar Buying & Making Electricity Wind Maximum Rebate None Program Info State Minnesota Program Type Property Tax Incentive Rebate Amount Solar: 100% exemption from real property taxes Wind: 100% exemption from real and personal property taxes Provider Minnesota Department of Commerce Minnesota excludes the value added by solar-electric (PV) systems installed after January 1, 1992 from real property taxation. In addition all real and personal property of wind-energy systems is exempt from the state's property tax.* However, the land on which a PV or wind system is located remains taxable.

429

Loan Guarantees for Three California PV Solar Plants Expected to Create  

Broader source: Energy.gov (indexed) [DOE]

Loan Guarantees for Three California PV Solar Plants Expected to Loan Guarantees for Three California PV Solar Plants Expected to Create 1,400 Jobs Loan Guarantees for Three California PV Solar Plants Expected to Create 1,400 Jobs June 30, 2011 - 2:29pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What will these projects produce? These projects are expected to create 1,400 jobs in California and hundreds along the PV module supply chain across the country. Combined, the projects will produce 1330 Megawatts of installed solar power -- enough electricity to power about 275,000 homes. Building on the momentum of our SunShot Initiative, Secretary Chu announced nearly $4.5 billion in conditional loan guarantees to three California photovoltaic solar power plants today. These projects are expected to

430

Why Are Residential PV Prices in Germany So Much Lower Than in the United  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why Are Residential PV Prices in Germany So Much Lower Than in the United Why Are Residential PV Prices in Germany So Much Lower Than in the United States? Speaker(s): Joachim Seel Date: April 11, 2013 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ryan Wiser The installed price of residential PV is significantly lower in Germany than in the United States - in Q3 2012 German systems were priced on average at $2.50/W while U.S. systems were priced nearly twice as high around $5.20/W. These pricing differences accumulate to about $13,500 for a 5kW residential system and stem primarily from differences in "soft" costs, but little detail is known about how soft cost components differ between the two countries, or why. In order to better characterize the nature of these differences, LBNL fielded surveys of German PV installers,

431

New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology  

Broader source: Energy.gov (indexed) [DOE]

New GE Plant to Produce Thin Film PV Solar Panels Based on NREL New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology April 22, 2011 - 10:17am Addthis Photo courtesy of General Electric Photo courtesy of General Electric Minh Le Minh Le Program Manager, Solar Program Earlier this month, General Electric announced plans to enter the global marketplace for solar photovoltaic (PV) panels in a big way - and to do it, they will be using technology pioneered at the Department of Energy's National Renewable Energy Lab (NREL). The record-breaking Cadmium-Telluride (CdTe) thin film photovoltaic technology GE has chosen for its solar panels was originally developed more than a decade ago by a team of scientists led by NREL's Xuanzhi Wu, and

432

City of Shasta Lake Electric Utility - PV Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

City of Shasta Lake Electric Utility - PV Rebate Program City of Shasta Lake Electric Utility - PV Rebate Program City of Shasta Lake Electric Utility - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $9,050 Commercial: $192,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $1.81/W Commercial: $1.92/W Provider City of Shasta Lake Electric Utility '''''Note: This program is currently not accepting applications. Check the program web site for information regarding future solicitations. ''''' City of Shasta Lake Electric Utility is providing rebates to their customers for the purchase of photovoltaic (PV) systems. The rebate levels will decrease annually over the life of the program. For fiscal year

433

Exploring the Economic Value of EPAct 2005's PV Tax Credits  

E-Print Network [OSTI]

Energy Commission’s PV Rebate Levels” (forthcoming from theHerig. 2004. “Are Solar Rebates and Grants for Homeownersa manufacturer or dealer rebate of the purchase price; (3) a

Bolinger, Mark; Wiser, Ryan; Ing, Edwin

2006-01-01T23:59:59.000Z

434

Multi-Objective Capacity Planning of a Pv-Wind-Diesel-Battery Hybrid Power System  

E-Print Network [OSTI]

A new solution methodology of the capacity design problem of a PV-Wind-Diesel-Battery Hybrid Power System (HPS) is presented. The problem is formulated as a Linear Programming (LP) model with two objectives: minimizing ...

Saif, A.

435

Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pv. tomato confer cultivar specificity on soybean  

Science Journals Connector (OSTI)

...restriction digests, ligations, Southern DNA transfers, and nick-trans- lations were performed as described by Maniatis et...cultivar Strain Acme Chippewa Flambeau Hardee Harosoy Linderin Merit Norchief Peking P. syringae pv. glycinea Race 4...

Donald Y. Kobayashi; Stanley J. Tamaki; Noel T. Keen

1989-01-01T23:59:59.000Z

436

The Solar PV Market Today and the Need for Non-polluting Solar Energy  

Science Journals Connector (OSTI)

In Chap.  1 , it was noted that installed solar PV systems prices have now dropped to approximately $4 per W in the US. What does that mean in terms of cents per kWh and h...

Lewis M. Fraas

2014-01-01T23:59:59.000Z

437

Why Are Resiential PV Prices in Germany So Much Lower Than in the United States?  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) SunShot Initiative, in conjunction with the Lawrence Berkeley National Laboratory (LBNL) discusses the installed price of residential PV being significantly lower in Germany than in the United States.

438

The Economic Value of PV and Net Metering to Residential Customers in California  

E-Print Network [OSTI]

metering than with a feed-in tariff where all PV generationnet metering, MPR- based feed-in tariff, hourly netting, and1) An MPR-based feed-in tariff, under which the customer is

Darghouth, Naim

2010-01-01T23:59:59.000Z

439

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network [OSTI]

dispersion of solar energy production sites could mitigatesolar radiation can lead to substantial energy production.production of 100 grid connected PV systems distributed over the area of Germany, Solar Energy,

Lave, Matthew S.

2012-01-01T23:59:59.000Z

440

Net PV Value by location and building type | Open Energy Information  

Open Energy Info (EERE)

location and building type Jump to: navigation, search Impact of Utility Rates on PV Economics Solar value table: The following table shows the solar value (in kWh) found for...

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Improving grid reliability through integration of distributed PV and energy storage  

Science Journals Connector (OSTI)

Several emerging technologies, namely, high penetration grid-connected distributed photovoltaics (PV), energy storage, and smart grid have seen tremendous growth in recent years. Because of their interconnected nature, the deployed systems are fairly ...

Guohui Yuan

2012-01-01T23:59:59.000Z

442

Economic feasibility of a PV system for grid-connected semiconductor facilities in South Korea  

Science Journals Connector (OSTI)

In this study, a cost optimization and sensitivity analysis were carried out for the deployment of a photovoltaic (PV) system in a semiconductor facility in South Korea. The Microgrid software (HOMER) was used...

Hyung Jong Choi; Gwon Deok Han…

2013-11-01T23:59:59.000Z

443

Influence of Different Revenue Structures on the Economy of PV Plants in Selected Countries  

Science Journals Connector (OSTI)

The rentability of PV plants depends not only on cost, but also on revenues. Revenues are gained if electricity is fed into a grid or if tariff costs for non-delivered electricity can be taken into account. Un...

G. Hille; F. Staiß; F. Steinborn

1991-01-01T23:59:59.000Z

444

Diffusion of environmentally-friendly energy technologies: buy versus lease differences in residential PV markets  

Science Journals Connector (OSTI)

Diffusion of microgeneration technologies, particularly rooftop photovoltaic (PV), represents a key option in reducing emissions in the residential sector. We use a uniquely rich dataset from the burgeoning residential PV market in Texas to study the nature of the consumer's decision-making process in the adoption of these technologies. In particular, focusing on the financial metrics and the information decision-makers use to base their decisions upon, we study how the leasing and buying models affect individual choices and, thereby, the adoption of capital-intensive energy technologies. Overall, our findings suggest that the leasing model more effectively addresses consumers' informational requirements and that, contrary to some other studies, buyers and lessees of PV do not necessarily differ significantly along socio-demographic variables. Instead, we find that the leasing model has opened up the residential PV market to a new, and potentially very large, consumer segment—those with a tight cash-flow situation.

Varun Rai; Benjamin Sigrin

2013-01-01T23:59:59.000Z

445

Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC  

E-Print Network [OSTI]

the Section 48 investment tax credit (ITC) for commercial30% of the project’s “tax credit basis” (i.e. , the dollarof EPAct 2005’s solar tax credits on PV system owners, in

Bolinger, Mark

2008-01-01T23:59:59.000Z

446

On the Co-Occurrence of Warm Conveyor Belt Outflows and PV Streamers  

Science Journals Connector (OSTI)

The co-occurrence of warm conveyor belts (WCBs), strongly ascending moist airstreams in extratropical cyclones, and stratospheric potential vorticity (PV) streamers, indicators for breaking Rossby waves on the tropopause, is investigated for a 21-...

Erica Madonna; Sebastian Limbach; Christine Aebi; Hanna Joos; Heini Wernli; Olivia Martius

2014-10-01T23:59:59.000Z

447

Introduction of Break-Out Session at the International PV Module Quality Assurance Forum (Presentation)  

SciTech Connect (OSTI)

This presentation outlines review requirements for quality assurance (QA) rating systems, logical design of QA systems, and specific tasks for break-out session 1 of the 2011 International PV Module Quality Assurance Forum.

Kurtz, S.; Wohlgemuth, J.; Yamamichi, M.; Sample, T.

2011-07-01T23:59:59.000Z

448

Performance of Solar Assisted Heat Pump Using Pv Evaporator Under ` Different Compressor Frequency  

Science Journals Connector (OSTI)

A novel photovoltaic solar assisted heat pump (PV-SAHP) system was ... -collector plate. So a portion of the solar energy received was converted to electricity and ... pump was also substantially improved because...

Gang Pei; Jie Ji; Chongwei Han; Wen Fan

2009-01-01T23:59:59.000Z

449

Third Party Financing and Power Purchasing Agreements for Public Sector PV Projects  

Broader source: Energy.gov [DOE]

Provides information on third-party financing and Power Purchase Agreements for public sector PV projects presented at the TAP Web Seminar on May 27, 2009, includes economic and legal information.

450

User Guide for PV Dynamic Model Simulation Written on PSCAD Platform  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with a discussion of the basic PV inverter and the control philosophy adapted for a power electronics-based generator, which we then contrast to the control philosophy for a...

451

Loan Guarantees for Three California PV Solar Plants Expected to Create  

Broader source: Energy.gov (indexed) [DOE]

Loan Guarantees for Three California PV Solar Plants Expected to Loan Guarantees for Three California PV Solar Plants Expected to Create 1,400 Jobs Loan Guarantees for Three California PV Solar Plants Expected to Create 1,400 Jobs June 30, 2011 - 2:29pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What will these projects produce? These projects are expected to create 1,400 jobs in California and hundreds along the PV module supply chain across the country. Combined, the projects will produce 1330 Megawatts of installed solar power -- enough electricity to power about 275,000 homes. Building on the momentum of our SunShot Initiative, Secretary Chu announced nearly $4.5 billion in conditional loan guarantees to three California photovoltaic solar power plants today. These projects are expected to

452

September 16 ESTAP Webinar: Optimizing the Benefits of a PV with...  

Office of Environmental Management (EM)

- 12:34pm Addthis On Monday, September 16 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on optimizing the benefits of a photovoltaic (PV) storage system...

453

Precision displacement reference system  

DOE Patents [OSTI]

A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

Bieg, Lothar F. (Albuquerque, NM); Dubois, Robert R. (Albuquerque, NM); Strother, Jerry D. (Edgewood, NM)

2000-02-22T23:59:59.000Z

454

Comparison of two techniques for the simulation of PV systems  

SciTech Connect (OSTI)

For several years, MIT Lincoln Laboratory has conducted computer simulations of the performance of photovoltaic solar energy systems in order to size system components, to define designs of potential economic feasibility, to test various control schemes, and to monitor the performance of working systems in the field. When used as an aid-to-design, these hourly simulations step through a full year's worth of insolation and weather data at a specific geographical site. These data are available on computer tapes in the SOLMET format from the National Climatic Center. More recently, a simulation technique has been developed that does not require marching through time but instead works with probability-density functions of daily values of insolation and load as inputs while still providing estimates of the usual measures of system performance (e.g., auxiliary energy required, surplus energy thrown away, fraction of load displaced). Results obtained compare well with results previously obtained from an hourly simulation of a daytime radio station. This technique may be used to study the effect on system performance of varying degrees of correlation of load with insolation and to test the sensitivity of economic analyses to variations in utility escalation rate (discounted for inflation), PV module and balance-of-system costs.

Bucciarelli, L.L.; Grossman, B.L.

1980-01-01T23:59:59.000Z

455

FTIR Laboratory in Support of the PV Program  

SciTech Connect (OSTI)

The Fourier Transform Infrared Spectroscopy (FTIR) Laboratory supports the Solar Energy Technologies Program through the measurement and characterization of solar energy-related materials and devices. The FTIR technique is a fast, accurate, and reliable method for studying molecular structure and composition. This ability to identify atomic species and their bonding environment is a powerful combination that finds use in many research and development efforts. A brief overview of the technical approach used is contained in Section 2 of this report. Because of its versatility and accessibility, the FTIR Laboratory is a valuable contributor to the Solar Energy Technologies Program. The laboratory provides support for, and collaborates with, several in-house programs as well as our industry and university partners. By the end of FY 2004, the FTIR Laboratory performed over 1100 measurements on PV-related materials. These contributions resulted in conference and workshop presentations and several peer-reviewed publications. A brief summary of a few of these efforts is contained in Section 3 of this report.

Keyes, B. M.; Gedvilas, L. M.; Bhattacharya, R.; Xu, Y.; Li, X.; Wang, Q.

2005-01-01T23:59:59.000Z

456

Esthetically Designed Municipal PV System Maximizes Energy Production and Revenue Return  

Broader source: Energy.gov [DOE]

In late 2008, the City of Sebastopol, CA installed a unique 42 kW grid-interactive photovoltaic (PV) system to provide electricity for pumps of the Sebastopol municipal water system. The resulting innovative Sun Dragon PV system, located in a public park, includes design elements that provide optimized electrical performance and revenue generation for the energy produced while also presenting an artistic and unique appearance to park visitors.

457

A Case Study on a GQM-Based Quality Model for a Domain-Specific Reference Model Catalogue to Support Requirements Analysis within Information Systems Development in the German Energy Market  

Science Journals Connector (OSTI)

Within this contribution, an approach on a goal-question-metric (GQM) based quality model for a domain-specific reference model catalogue is introduced. First of all, we motivate and present an ontology-based ref...

José M. González; Peter Fettke…

2011-01-01T23:59:59.000Z

458

Quality Assurance REFERENCE GUIDE  

Broader source: Energy.gov (indexed) [DOE]

Quality Assurance Quality Assurance Qualification Standard DOE-STD-1150-2002 July 2012 Reference Guide The Functional Area Qualification Standard References Guides are developed to assist operators, maintenance personnel, and the technical staff in the acquisition of technical competence and qualification within the Technical Qualification Program. Please direct your questions or comments related to this document to the Office of Leadership and Career Management, Technical Qualification Program (TQP) Manager, Albuquerque Complex. This page is intentionally blank. Table of Contents i FIGURES ....................................................................................................................................... ii TABLES ........................................................................................................................................ iii

459

Flat Plate PV Module Eligibility Listing Procedure Updated 6/2/14 Senate Bill 1 (SB1) defines the solar incentive programs for California, and flat plate PV  

E-Print Network [OSTI]

programs for investor owned utility (IOU) territories, the California Solar Initiative (CSI) and the New the solar incentive programs for California, and flat plate PV modules 1 must be listed on the SB1 Solar Homes Partnership (NSHP), as well as solar incentive programs administered by publicly owned

460

High Penetration Photovoltaic Case Study Report  

SciTech Connect (OSTI)

Technical concerns with integrating higher penetrations of photovoltaic (PV) systems include grid stability, voltage regulation, power quality (voltage rise, sags, flicker, and frequency fluctuations), and protection and coordination. The current utility grid was designed to accommodate power flows from the central generation source to the transmission system and eventually to the distribution feeders. At the distribution level, the system was designed to carry power from the substation toward the load. Renewable distributed generation, particularly solar PV, provides power at the distribution level challenging this classical paradigm. As these resources become more commonplace the nature of the distribution network and its operation is changing to handle power flow in both directions. This report is focused on large PV installations in which penetration is significantly greater than 15% of maximum daytime feeder load. These case studies are intended to demonstrate success stories with integration of large PV plants at the distribution level as well as some of the solutions used by the utility to ensure safe, reliable operation of both the PV system and the distribution network.

Bank, J.; Mather, B.; Keller, J.; Coddington, M.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Nonresident Alien Reference Guide  

E-Print Network [OSTI]

- 1 - Nonresident Alien Reference Guide #12;- 2 - Definition Nonresident Alien (NRA) is defined as any employee who is NOT a United States Citizen or a Permanent Resident (Resident Alien or Green Card status. These are NOT Immigration categories. United States Citizen Permanent Resident Alien Resident

Adali, Tulay

462

(Nonresident Alien) Reference Guide  

E-Print Network [OSTI]

- 1 - NRA (Nonresident Alien) Reference Guide #12;- 2 - UMBC'S OFFICES ASSISTING THE NONRESIDENT ALIEN (NRA) Office of International Education Administration Building 2nd floor Arlene Wergin Ext: 5 - Definition Nonresident Alien (NRA) is defined as any employee who is NOT a United States Citizen

Adali, Tulay

463

Grant Reference Lead / Sole  

E-Print Network [OSTI]

Rank Overall Score Grant Reference Lead / Sole Grant Grant Holder Research Organisation Project sediment-concentration and velocity data for submarine turbidity currents Standard Grant DEC12 1 9 NE-concentration and velocity data for submarine turbidity currents Standard Grant DEC12 2 8 NE/K015184/1 Y Alistair Pike

464

References: Elmasri/Navathe  

E-Print Network [OSTI]

2. Disks and the Bu#er Cache 2­1 Part 2: Disks and Caching References: . Elmasri Implementierung. . Mark Gurry , Peter Corrigan: Oracle Performance Tuning, 2nd Edition (with disk). . Oracle 8i.com/] . Wikipedia (RAID systems): [http://en.wikipedia.org/wiki/Redundant Array of Independent Disks] . The PC Guide

Brass, Stefan

465

Diesel engine reference book  

SciTech Connect (OSTI)

This book is a reference on the design, operation, and maintenance of all types of diesel engines, ranging from the smallest automotive and ancillary engines to the largest marine diesels. Nearly 900 line drawings, graphs and photos illustrate the book. Major Sections: Theory; Engine Design Practice; Lubrication; Environmental Pollution; Crankcase Explosions; Engine Types; Engine Testing; Maintenance; Index.

Lilly, I.R.C.

1984-01-01T23:59:59.000Z

466

Building America BEopt-CA (Ex): A Tool for Optimal Integration of EE, DR and PV in Existing California Homes  

Broader source: Energy.gov [DOE]

This project targeted the development of a software tool, BEopt-CA (Ex) (Building Energy Optimization Tool for California Existing Homes), that aims to facilitate balanced integration of energy efficiency (EE), demand response (DR), and photovoltaics (PV) in the residential retrofit1 market. The intent is to provide utility program managers and contractors in the EE/DR/PV marketplace with a means of balancing the integration of EE, DR, and PV.

467

BEopt-CA (Ex): A Tool for Optimal Integration of EE, DR and PV in Existing California Homes  

SciTech Connect (OSTI)

Opportunities for combining energy efficiency, demand response, and energy storage with PV are often missed, because the required knowledge and expertise for these different technologies exist in separate organizations or individuals. Furthermore, there is a lack of quantitative tools to optimize energy efficiency, demand response and energy storage with PV, especially for existing buildings. As technology costs evolve (e.g., the ongoing reduction in the cost of PV), design strategies need to be adjusted accordingly based on quantitative analysis.

Christensen, C.; Horowitz, S.; Maguire, J.; Tabares-Velasco, P.; Springer, D.; Coates, P.; Bell, C.; Price, S.; Sreedharan, P.; Pickrell, K.

2014-04-01T23:59:59.000Z

468

Approaches for identifying consumer preferences for the design of technology products : a case study of residential solar panels  

E-Print Network [OSTI]

This thesis investigates ways to obtain consumer preferences for technology products to help designers identify the key attributes that contribute to a product's market success. A case study of residential solar PV panels ...

Chen, Heidi Qianyi

2012-01-01T23:59:59.000Z

469

High Penetration of Photovoltaic (PV) Systems into the Distribution Grid, Workshop Report, February 24-25, 2009  

SciTech Connect (OSTI)

Outcomes from the EERE Solar Energy Technologies Program workshop on high penetration of photovoltaic (PV) systems into the distribution grid, Feb. 24-25, 2009, Ontario, Calif.

Not Available

2009-06-01T23:59:59.000Z

470

Novel Control of PV Solar and Wind Farm Inverters as STATCOM for Increasing Connectivity of Distributed Generators.  

E-Print Network [OSTI]

??The integration of distributed generators (DGs) such as wind farms and PV solar farms in distribution networks is getting severely constrained due to problems of… (more)

AC, Mahendra

2013-01-01T23:59:59.000Z

471

Indirect Benefits (Increased Roof Life and HVAC Savings) from a Solar PV System at the San José Convention Center  

Broader source: Energy.gov [DOE]

The City of San José is considering the installation of a solar photovoltaic (PV) system on the roof of the San José Convention Center. The installation would be on a lower section of the roof covering approximately 21,000 ft2. To assist city staff in making a decision on the PV installation, the Department of Energy Tiger Team has investigated potential indirect benefits of installing a solar PV system on the Convention Center roof. The indirect benefits include potential increase in roof life, as well as potential reduced heating and cooling load in the building due to roof shading from the PV system.

472

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network [OSTI]

net metering, and policies for supporting solar deployment.Policy 36 (9), 3266-3277. MRW and Associates, 2007. Solar PV

Darghouth, Naim R.

2012-01-01T23:59:59.000Z

473

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network [OSTI]

net metering, and policies for supporting solar deployment.net metering, and policies for supporting solar deployment.Energy Policy, 36: MRW & Associates. 2007. Solar PV and

Darghouth, Naim

2010-01-01T23:59:59.000Z

474

MATLAB Reference Sheet If you want to...  

E-Print Network [OSTI]

MATLAB Reference Sheet Variables If you want to... MATLAB Command Comment Create a variable called a and set it equal to 1 a = 1 Anytime you use a from now on, unless you change its value or clear it, MATLAB knows you mean 1. Note that MATLAB is case sensitive, so the variables a and A are not the same. Find

Crawford, T. Daniel

475

Ota City : characterizing output variability from 553 homes with residential PV systems on a distribution feeder.  

SciTech Connect (OSTI)

This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.

Stein, Joshua S.; Miyamoto, Yusuke (Kandenko, Ibaraki, Japan); Nakashima, Eichi (Kandenko, Ibaraki, Japan); Lave, Matthew

2011-11-01T23:59:59.000Z

476

Progress of the PV Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base  

SciTech Connect (OSTI)

In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubator Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment total nearly $ 1.3 billion.

Ullal, H.; Mitchell, R.; Keyes, B.; VanSant, K.; Von Roedern, B.; Symko-Davies, M.; Kane, V.

2011-01-01T23:59:59.000Z

477

Installation of PV systems in Greece—Reliability improvement in the transmission and distribution system  

Science Journals Connector (OSTI)

Photovoltaic (PV) power systems are becoming one of the most developing investment areas in the field of Renewable Energy Sources (RES). A statement of the status quo of PV power systems in Greece, and their contribution towards the improvement of power system reliability, is the scope of the present paper. Siting and installation of PV power systems is performed according to a recent Greek law, along with environmental and geographical constraints. Meteorological data are computed, formulated and imported to appropriate software in order to simulate the PV units and generate their power output. Data for unserved loads, resulting from load shedding during peak hours, are compared to the above estimated power production. Assuming that a proportion of the eventually unsupplied power could be provided by the accessed power generation of the PV units, the reliability of both transmission and distribution system is improved. The impact on the transmission system is shown by an improvement of LOLP and LOEP indices, whereas peak shaving for the Interconnected Greek Transmission System (IGTS) is also illustrated. For the distribution system the impact is quantified using the distribution system reliability indices SAIDI, SAIFI, and CAIDI. Finally, the resulting improvement is also expressed in financial terms.

Aggelos S. Bouhouras; Antonios G. Marinopoulos; Dimitris P. Labridis; Petros S. Dokopoulos

2010-01-01T23:59:59.000Z

478

Standards for PV Modules and Components -- Recent Developments and Challenges: Preprint  

SciTech Connect (OSTI)

International standards play an important role in the Photovoltaic industry. Since PV is such a global industry it is critical that PV products be measured and qualified the same way everywhere in the world. IEC TC82 has developed and published a number of module and component measurement and qualification standards. These are continually being updated to take advantage of new techniques and equipment as well as better understanding of test requirements. Standards presently being updated include the third edition of IEC 61215, Crystalline Silicon Qualification and the second edition of IEC 61730, PV Module Safety Requirements. New standards under development include qualification of junction boxes, connectors, PV cables, and module integrated electronics as well as for testing the packaging used during transport of modules. After many years of effort, a draft standard on Module Energy Rating should be circulated for review soon. New activities have been undertaken to develop standards for the materials within a module and to develop tests that evaluate modules for wear-out in the field (International PV Module QA Task Force). This paper will discuss these efforts and indicate how the audience can participate in development of international standards.

Wohlgemuth, J. H.

2012-10-01T23:59:59.000Z

479

NEWTON's Botany References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Botany References Botany References Do you have a great botany video? Please click our Ideas page. Featured Videos: AOL News AOL News - Botany Videos AOL news provides hundreds of botany videos from around the world. View informational and instructional videos as well as interviews about the latest botany topics and discoveries. NeoK12 Plant Videos NeoK12 - Every Plant Topic Imaginable Explore videos encompassing every category dealing with plants. Learn about photosynthesis, plant evolution, reproduction, and many more plant related videos. Fungus Image Fungi Videos BBC Nature provides informational videos about fugni and other organisms. Learn and explore a wide variety of topics concerning the fungus kingdom. Other Botany Videos: Botany Videos for Kids Look at various botany videos geared towards a younger audience.

480

OSH technical reference manual  

SciTech Connect (OSTI)

In an evaluation of the Department of Energy (DOE) Occupational Safety and Health programs for government-owned contractor-operated (GOCO) activities, the Department of Labor`s Occupational Safety and Health Administration (OSHA) recommended a technical information exchange program. The intent was to share written safety and health programs, plans, training manuals, and materials within the entire DOE community. The OSH Technical Reference (OTR) helps support the secretary`s response to the OSHA finding by providing a one-stop resource and referral for technical information that relates to safe operations and practice. It also serves as a technical information exchange tool to reference DOE-wide materials pertinent to specific safety topics and, with some modification, as a training aid. The OTR bridges the gap between general safety documents and very specific requirements documents. It is tailored to the DOE community and incorporates DOE field experience.

Not Available

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "reference case pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

VALIDATION OF PV PERFORMANCE MODELS USING SATELLITE-BASED IRRADIANCE MEASUREMENTS: A CASE STUDY  

E-Print Network [OSTI]

performance model results are affected when satellite- based weather data is used in place of ground from a relatively small number of locations. In contrast, satellite-based radiation and weather data (e performance models using both ground and satellite-based weather inputs and compare model results

Perez, Richard R.

482

Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study  

Science Journals Connector (OSTI)

The purpose of this article is to determine the tilt angle and azimuth for a photovoltaic panel in Ontario (Canada) at which revenue is maximised. Measured and modelled solar radiation data, simulated photovoltaic panel performance, hourly electricity market data and details regarding pricing regimes from 2003 to 2008 are used to study two different locations. In all instances, the desired tilt angle is slightly less than latitude (depending upon the particular pricing regime, between 36° and 38° for Ottawa, which is at a latitude of 45°N, and between 32° and 35° for Toronto, which is at a latitude of 44°N), and the desired azimuth is close to due south (depending upon the particular pricing regime, between 4° west of due south and 6° east of due south for Ottawa, and between 1° west of due south and 2° east of due south for Toronto). In conclusion, the importance of solar electricity – particularly valuable because of when it is produced and where it can be produced – is highlighted, as are future priorities for research.

Ian H. Rowlands; Briana Paige Kemery; Ian Beausoleil-Morrison

2011-01-01T23:59:59.000Z

483

Managing solar-PV variability with geographical dispersion: An Ontario (Canada) case-study  

Science Journals Connector (OSTI)

Abstract The purpose of this article is to determine whether the geographic dispersion of solar-photovoltaic panels reduces variability in energy production. Following this, three questions are posed: 1) If geographic dispersion reduces variability, how dispersed should the panels be?; 2) What happens during peak price periods?; and 3) How are these insights affected by consideration of system-wide demand? Using measured and modelled weather data on an hourly basis from 16 locations across Ontario (Canada), hourly energy production figures for 1000 kW of solar-photovoltaic panels are generated for 2003, 2004, and 2005. Geographical dispersion of panels across multiple locations (as compared to the deployment of all panels in one location, namely, Toronto, Ontario) leads to, in particular instances, energy production profiles that have lower variability, greater total energy production, and a higher correlation value with the Ontario-wide system. Further research is needed both to isolate particularly-advantageous combinations and to broaden the investigation to consider alternative performance metrics, additional analytical techniques and land-use implications.

Ian H. Rowlands; Briana Paige Kemery; Ian Beausoleil-Morrison

2014-01-01T23:59:59.000Z

484

Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform  

SciTech Connect (OSTI)

High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been proposed that have the potential to mitigate many power quality concerns. However, closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. In order to enable the study of the performance of advanced control schemes in a detailed distribution system environment, a Hardware-in-the-Loop (HIL) platform has been developed. In the HIL system, GridLAB-D, a distribution system simulation tool, runs in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling to hardware located at the National Renewable Energy Laboratory (NREL). Hardware inverters interact with grid and PV simulators emulating an operational distribution system and power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of controls applied to inverters that are integrated into a simulation of the IEEE 8500-node test feeder, with inverters in either constant power factor control or active volt/VAR control. We demonstrate that this HIL platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, the results from HIL are used to validate GridLAB-D simulations of advanced inverter controls. ?

Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.; Palmintier, Bryan; Lundstrom, Blake; Chakraborty, Sudipta

2014-10-11T23:59:59.000Z

485

Headquarters Security Quick Reference Book  

Broader source: Energy.gov [DOE]

This quick reference book provides an overview of Department of Energy (DOE) Headquarters (HQ) security programs.

486

Xcel Energy - Solar*Rewards Program and MN Made PV Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Xcel Energy - Solar*Rewards Program and MN Made PV Rebate Program Xcel Energy - Solar*Rewards Program and MN Made PV Rebate Program Xcel Energy - Solar*Rewards Program and MN Made PV Rebate Program < Back Eligibility Commercial Local Government Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $90,000 (as determined by the incentive level and maximum system size) Program Info Start Date 03/01/2010 State Minnesota Program Type Utility Rebate Program Rebate Amount REC Rebate Program 2010-2012:$2.25/W DC REC Rebate Program 2013:$1.50/W DC Minnesota Made Bonus 2010-2012:Up to an additional $2.75/W DC (paired with REC Rebate) Provider Xcel Energy '''''Note: All 2012 funding for the Solar*Rewards program and Minnesota Made Bonus has been reserved as of July 11, 2012. On October 1, 2012, the

487

Category:Utility Rate Impacts on PV Economics By Location | Open Energy  

Open Energy Info (EERE)

Utility Rate Impacts on PV Economics By Location Utility Rate Impacts on PV Economics By Location Jump to: navigation, search Impact of Utility Rates on PV Economics Montgomery, AL Little Rock, AR Flagstaff, AZ Phoenix, AZ Tucson, AZ Arcata, CA LA, CA San Francisco, CA Boulder, CO Eagle County, CO Pueblo, CO Bridgeport, CT Wilmington, DE Miami, FL Tampa, FL Atlanta, GA Savannah, GA Des Moines, IA Mason, IA Boise, ID Chicago, IL Springfield, IL Indianapolis, IN Goodland, KS Wichita, KS Lexington, KY New Orleans, LA Shreveport, LA Boston, MA Baltimore, MD Caribou, ME Portland, ME Detroit, MI Houghton-Lake, MI Traverse City, MI International Falls, MN Minneapolis, MN Kansas City, MO Jackson, MS Billings, MT Greensboro, NC Wilmington, NC Bismarck, ND Minot, ND Omaha, NE Concord, NH Atlantic City, NJ Albuquerque, NM Las Vegas, NV Reno, NV New York, NY

488

Geek-Up[6.3.2011]: Inked PV, Diagnostic Tools and Tough Microscopes |  

Broader source: Energy.gov (indexed) [DOE]

3.2011]: Inked PV, Diagnostic Tools and Tough Microscopes 3.2011]: Inked PV, Diagnostic Tools and Tough Microscopes Geek-Up[6.3.2011]: Inked PV, Diagnostic Tools and Tough Microscopes June 3, 2011 - 2:04pm Addthis Novartis Diagnostics scientist Cleo Salisbury and Biological Nanostructures Facility director Ron Zuckermann discuss their collaboration to discover new therapies for Alzheimer's. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? Researchers have developed new inorganic nanocrystal arrays created by spraying a new type of colloidal "ink." Scientists have engineered a technique to help doctors identify Alzheimer's in its early stages and discover new therapies for this disease. Scientists have developed a new type of atomic force microscope that

489

NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken |  

Broader source: Energy.gov (indexed) [DOE]

NREL's PV Incubator: Where Solar Photovoltaic Records Go to be NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken June 28, 2011 - 11:44am Addthis NREL Principal Engineer Keith Emery prepares to load three-junction concentrator cells into NREL's
 High-Intensity Pulse Solar Simulator to test for efficiency. | Department of Energy Photo | Courtesy of National Renewable Energy Laboratory | Photo by Dennis Schroeder | Public Domain | NREL Principal Engineer Keith Emery prepares to load three-junction concentrator cells into NREL's
 High-Intensity Pulse Solar Simulator to test for efficiency. | Department of Energy Photo | Courtesy of National Renewable Energy Laboratory | Photo by Dennis Schroeder | Public Domain | Minh Le Minh Le

490

Category:Utility Rate Impacts on PV Economics By Building Type | Open  

Open Energy Info (EERE)

Rate Impacts on PV Economics By Building Type Rate Impacts on PV Economics By Building Type Jump to: navigation, search Impact of Utility Rates on PV Economics Full Service Restaurant Hospital Large Hotel Large Office Medium Office Midrise Apartment Outpatient Primary School Quick Service Restaurant Secondary School Small Hotel Small Office Stand-alone Retail Strip Mall Supermarket Warehouse Subcategories This category has the following 16 subcategories, out of 16 total. F [×] FullServiceRestaurant‎ 1 pages H [×] Hospital‎ L [×] LargeHotel‎ [×] LargeOffice‎ M [×] MediumOffice‎ [×] MidriseApartment‎ O [×] OutPatient‎ P [×] PrimarySchool‎ Q [×] QuickServiceRestaurant‎ S [×] SecondarySchool‎ [×] SmallHotel‎ [×] SmallOffice‎ S cont. [×] StandAloneRetail‎ [×] StripMall‎ [×] Supermarket‎ W [×] Warehouse‎

491

Sundance, Skiing and Solar: Park City to Install New PV System | Department  

Broader source: Energy.gov (indexed) [DOE]

Sundance, Skiing and Solar: Park City to Install New PV System Sundance, Skiing and Solar: Park City to Install New PV System Sundance, Skiing and Solar: Park City to Install New PV System October 25, 2010 - 10:49am Addthis Park City, UT has completed several green projects recently. The town is installing a solar energy system on top of the Marsac Building at the end of the month. | Photo courtesy of Park City | Park City, UT has completed several green projects recently. The town is installing a solar energy system on top of the Marsac Building at the end of the month. | Photo courtesy of Park City | Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy What does this project do? 80-panel solar energy system to be installed at Park City's Marsac Building. Recovery Act-funded system to generate up to 15% of the building's

492

Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort Detrick, Maryland December 2013 The Army, on Friday November 29, announced a notice of intent to award a contract to build an 18.6-megawatt solar photovoltaic (PV) facility at Fort Detrick, in Frederick, Maryland. This action will help the service meet its goal of deploying one gigawatt of renewable energy by 2025. The selected contractor is Framingham, Mass.-based Ameresco. Lawrence Berkeley National Laboratory (Berkeley Lab), through its Environmental Energy Technologies Division, provided essential technical services, over a span of two years, to make this project happen. Supported by the Federal Energy Management Program, Berkeley Lab renewable power expert Gerald Robinson provided the Army, Fort Detrick staff, its Energy

493

Estimating Rooftop Suitability for PV: A Review of Methods, Patents, and Validation Techniques  

SciTech Connect (OSTI)

A number of methods have been developed using remote sensing data to estimate rooftop area suitable for the installation of photovoltaics (PV) at various geospatial resolutions. This report reviews the literature and patents on methods for estimating rooftop-area appropriate for PV, including constant-value methods, manual selection methods, and GIS-based methods. This report also presents NREL's proposed method for estimating suitable rooftop area for PV using Light Detection and Ranging (LiDAR) data in conjunction with a GIS model to predict areas with appropriate slope, orientation, and sunlight. NREL's method is validated against solar installation data from New Jersey, Colorado, and California to compare modeled results to actual on-the-ground measurements.

Melius, J.; Margolis, R.; Ong, S.

2013-12-01T23:59:59.000Z

494

Public Response to Residential Grid-Tied PV Systems in Colorado: A Qualitative Market Assessment  

SciTech Connect (OSTI)

The early adopters of residential grid-tied photovoltaics (PV) have complex motivations to pay today's costs, including altruistic, environmental, and financial reasons. Focused interviews were conducted with a self-selected purposive sample interested in purchasing 2-kW or 3-kW PV systems with an installed cost of $8,000 to $12,000. The sample tended to be men or married couples ranging in age from their early thirties to their mid-eighties; professionals, managers, or small business owners; relatively financially secure, with experience with energy efficiency and renewable energy. Product attributes they preferred were net metering, warranties, guarantees, utility financing, maintenance, an option to own or lease, a battery option, and an aesthetically pleasing system. Potential PV customers needed more information before making a purchase decision.

Farhar, B. C.; Buhrmann, J.

1998-07-01T23:59:59.000Z

495

Efficient Power Converters for PV Arrays : Scalable Submodule Power Conversion for Utility-Scale Photovoltaics  

SciTech Connect (OSTI)

Solar ADEPT Project: SolarBridge is developing a new power conversion technique to improve the energy output of PV power plants. This new technique is specifically aimed at large plants where many solar panels are connected together. SolarBridge is correcting for the inefficiencies that occur when two solar panels that encounter different amounts of sun are connected together. In most conventional PV system, the weakest panel limits the energy production of the entire system. That’s because all of the energy collected by the PV system feeds into a single collection point where a central inverter then converts it into useable energy for the grid. SolarBridge has found a more efficient and cost-effective way to convert solar energy, correcting these power differences before they reach the grid.

None

2012-02-23T23:59:59.000Z

496

Minnesota Power - Solar-Electric (PV) Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Minnesota Power - Solar-Electric (PV) Rebate Program Minnesota Power - Solar-Electric (PV) Rebate Program Minnesota Power - Solar-Electric (PV) Rebate Program < Back Eligibility Commercial Industrial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $20,000 or 60% of installed costs, including Minnesota Made, NABCEP, and Nonprofit bonuses Energy Efficiency Bonus: $5,000 or or 15% of installed costs One rebate per customer per year Program Info Start Date 2004 Expiration Date 12/31/2013 State Minnesota Program Type Utility Rebate Program Rebate Amount Base Rebate: $1,000/kilowatt DC Minnesota Made Bonus: $800/kilowatt NABCEP Bonus: $800/kilowatt Nonprofit Bonus: $500/kilowatt Energy Efficiency Bonus: $800/kilowatt Provider Minnesota Power Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for

497

ASSERT-PV 3.2: Advanced subchannel thermalhydraulics code for CANDU fuel bundles  

Science Journals Connector (OSTI)

Abstract Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The most recent release version, ASSERT-PV 3.2 has enhanced phenomenon models for improved predictions of flow distribution, dryout power and CHF location, and post-dryout (PDO) sheath temperature in horizontal CANDU fuel bundles. The focus of the improvements is mainly on modeling considerations for the unique features of CANDU bundles such as horizontal flows, small pitch to diameter ratios, high mass fluxes, and mixed and irregular subchannel geometries, compared to PWR/BWR fuel assemblies. This paper provides a general introduction to ASSERT-PV 3.2, and describes the model changes or additions in the new version to improve predictions of flow distribution, dryout power and CHF location, and PDO sheath temperatures in CANDU fuel bundles.

Y.F. Rao; Z. Cheng; G.M. Waddington; A. Nava-Dominguez

2014-01-01T23:59:59.000Z

498

On-grid PV implementation program. Phase I report, August 1994--January 1995  

SciTech Connect (OSTI)

Southern California Edison Company (Edison) is finalizing a Cooperative Agreement with the U.S. Department of Energy (DOE) to develop high value On-Grid applications for electricity from Photovoltaics (PV). Edison`s efforts are the result of Edison`s long-standing commitment to the pursuit of Renewable Energy. Edison has been a world leader in the development and use of PV. As the technology becomes more commercial, Edison has been actively seeking more applications for PV. After strenuous effort, Edison has now received approval to offer off-grid PV packages within its service territory. In addition, Edison has been very interested in finding high-value on-grid PV applications that may have the potential to become cost effective as PV applications increase and prices decline. Such high-value applications at Edison and other utilities will accelerate the price reductions, which in turn will increase the number of cost-effective applications, driving towards a market competitive with traditional sources of energy. Edison`s efforts build upon the work done by Pacific Gas & Electric (PG&E) at their Kerman substation, but goes much further than that effort. Edison submitted its original proposal to the DOE on June 30, 1993. A revised proposal was submitted on February 1, 1994, in response to a letter from the DOE`s Director of Solar Energy, Robert H. Annan. In a letter dated March 30, 1994, from Paul K. Kearns, Head of Contracting Activity for the DOE`s Golden Field Office, the DOE conditionally approved certain pre-award contract costs. The Cooperative Agreement with DOE was executed on August 16, 1994.

NONE

1994-11-29T23:59:59.000Z

499

The Use of Triangular-Shaped PV Arrays to Better Blend into Historical Structures  

Broader source: Energy.gov [DOE]

When considering the installation of a solar PV array on a designated historical structure, placement of each solar panel requires extra attention to aesthetic considerations. If the solar array cannot be installed behind the structure or “hidden” on a roof plane that is not visible from the public street or sidewalk, it can sometimes be installed as an architectural feature that blends into the historical structure. One way to do this is to utilize triangular-shaped PV panels that conform with the building’s roof lines.

500

DOE Zero Energy Ready Home Case Study, Transformation, Inc., Production House, Devens, MA  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready Home in Devens, MA that scored HERS 35 without PV or HERS -37 with PV. This 2,508 ft2 custom home has R-46 double-stud walls with open–cell spray foam, a vented attic with R-67 blown cellulose, plus R-10 rigid XPS under the slab, R-20 closed-cell spray foam on basement walls, triple-pane windows, and one mini-split ductless heat pump.