National Library of Energy BETA

Sample records for reference case focus

  1. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4 Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Energy Information Administration Annual Energy Outlook 2014...

  2. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reference case Energy Information Administration Annual Energy Outlook 2014 Table A17. Renewable energy consumption by sector and source (quadrillion Btu) Sector and source...

  3. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    I Reference case projections for natural gas production This page inTenTionally lefT blank 121 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for natural gas production Table I1. World total natural gas production by region, Reference case, 2012-40 (trillion cubic feet) Region/country Projections Average annual percent change, 2012-40 2012 2020 2025 2030 2035 2040 OECD OECD Americas 31.8 35.7 38.6 42.1 44.6 47.3 1.4 United States a 24.0 28.7

  4. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections Table A14. World population by region, Reference case, 2011-40 (millions) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 484 489 523 544 564 581 597 0.7 United States a 312 315 334 347 359 370 380 0.7 Canada 34 35 38 39 41 43 44 0.8 Mexico and Chile 137 139 151 158 164 169 173 0.8 OECD Europe 548 550 565 571 576 579 581

  5. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    3 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections Table A8. World nuclear energy consumption by region, Reference case, 2011-40 (billion kilowatthours) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 888 867 902 891 901 900 924 0.2 United States a 790 769 804 808 808 812 833 0.3 Canada 88 89 86 72 72 67 62 -1.3 Mexico and Chile 9 8 12 12 20 20 29 4.5 OECD Europe 861 837

  6. Appendix A: Reference case projections

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections Table A1. World total primary energy consumption by region, Reference case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 125.7 128.1 130.7 133.8 138.1 0.6 United States a 96.8 94.4 100.8 102.0 102.9 103.8 105.7 0.4 Canada 14.5 14.5 15.1 15.6 16.3 17.1 18.1 0.8 Mexico and Chile 9.3

  7. Appendix A: Reference case projections

    U.S. Energy Information Administration (EIA) Indexed Site

    International Energy Outlook 2016 Reference case projections Table A4. World gross domestic product (GDP) by region expressed in market exchange rates, Reference case, 2011-40 (billion 2010 dollars) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 18,006 18,440 22,566 25,585 28,757 32,166 36,120 2.4 United States a 15,021 15,369 18,801 21,295 23,894 26,659 29,898 2.4 Canada 1,662 1,694 2,024 2,240 2,470 2,730 3,012 2.1 Mexico

  8. Appendix A: Reference case projections

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections Table A6. World natural gas consumption by region, Reference case, 2011-40 (trillion cubic feet) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 30.8 31.8 32.8 34.3 36.5 38.2 40.1 0.8 United States a 24.5 25.5 26.1 26.9 28.1 28.8 29.7 0.5 Canada 3.7 3.7 3.9 4.2 4.7 5.2 5.6 1.5 Mexico and Chile 2.6 2.6 2.8 3.2 3.6 4.2 4.8

  9. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for natural gas production Table I1. World total natural gas production by region, Reference case, 2012-40 (trillion cubic feet) Region/country Projections Average annual percent change, 2012-40 2012 2020 2025 2030 2035 2040 OECD OECD Americas 31.8 35.7 38.6 42.1 44.6 47.3 1.4 United States a 24.0 28.7 30.4 32.9 34.0 35.3 1.4 Canada 6.1 5.8 6.6 7.2 7.9 8.6 1.2 Mexico 1.7 1.2 1.5 2.0 2.6 3.3

  10. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    3 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for natural gas production Table I3. World other natural gas production by region, Reference case, 2012-40 (trillion cubic feet) Region/country Projections Average annual percent change, 2012-40 2012 2020 2025 2030 2035 2040 OECD OECD Americas 12.0 9.8 9.5 10.7 10.3 10.3 -0.5 United States a 7.5 6.6 6.5 7.8 7.5 7.5 0.0 Canada 2.8 2.0 1.8 1.7 1.6 1.5 -2.2 Mexico 1.7 1.2 1.2 1.2 1.2 1.2 -1.2

  11. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    5 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections Table A10. World carbon dioxide emissions by region, Reference case, 2011-40 (million metric tons carbon dioxide) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 6,558 6,343 6,569 6,620 6,675 6,769 6,887 0.3 United States a 5,483 5,272 5,499 5,511 5,514 5,521 5,549 0.2 Canada 562 563 557 577 587 621 647 0.5 Mexico and

  12. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    Reference case projections Table A12. World carbon dioxide emissions from natural gas use by region, Reference case, 2011-40 (million metric tons carbon dioxide) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 1,666 1,715 1,766 1,849 1,965 2,063 2,167 0.8 United States a 1,305 1,363 1,394 1,432 1,497 1,538 1,586 0.5 Canada 205 205 213 234 261 287 310 1.5 Mexico and Chile 156 147 158 184 207 238 271 2.2 OECD Europe 1,016 970

  13. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    5 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G1. World petroleum and other liquids production by region and country, Reference case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC a 36.0 37.4 39.2 41.4 44.6 48.7 52.2 1.2 Middle East 26.2 26.6 29.8

  14. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G3. International other liquid fuels a production by region and country, Reference case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC b 3.7 3.8 4.3 4.6 4.8 5.2 5.6 1.3 Natural gas plant liquids 3.6 3.7

  15. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | International Energy Outlook 2016 Kaya Identity factor projections Table J3. World gross domestic product (GDP) per capita by region expressed in purchasing power parity, Reference case, 2011-40 (2010 dollars per person) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 38,441 39,055 44,716 48,842 53,114 57,747 63,278 1.7 United States a 48,094 48,865 56,285 61,453 66,639 72,107

  16. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H1. World total installed generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 1,258 1,278 1,330 1,371 1,436 1,517 1,622 0.9 United States a 1,046 1,063 1,079 1,091 1,133 1,187 1,261 0.6 Canada 133 135

  17. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H11. World installed other renewable generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 41 42 45 49 52 57 59 1.2 United States a 36 37 39 39 39 40 41 0.4 Canada 4 4 5 8 12 15 16 4.9 Mexico and Chile 1 1

  18. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H13. World net liquids-fred electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 88 88 66 37 36 35 35 -3.3 United States a 30 23 18 18 18 18 18 -0.9 Canada 6 7 6 6 6 5 5 -1.0 Mexico and

  19. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H15. World net coal-fred electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 1,857 1,630 1,808 1,820 1,786 1,778 1,769 0.3 United States a 1,733 1,514 1,709 1,724 1,713 1,704 1,702 0.4

  20. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    Reference case projections for electricity capacity and generation by fuel Table H17. World net hydroelectric and other renewable electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 1,004 987 1,278 1,376 1,472 1,598 1,763 2.1 United States a 535 520 704 741 781 848 934 2.1 Canada 398 397 459 491 524 557 606 1.5 Mexico and Chile 71 69 115 144

  1. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    5 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H19. World net wind-powered electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 142 156 295 327 354 404 460 3.9 United States a 120 141 232 235 245 278 319 3.0 Canada 20 11 39 46 53 60 66

  2. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H21. World net solar electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 6 12 57 65 79 96 120 8.7 United States a 6 11 51 59 71 88 110 8.5 Canada 0 0 3 3 4 5 5 10.3 Mexico and Chile 0 0 3

  3. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H3. World installed natural-gas-fred generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 410 420 455 488 534 584 640 1.5 United States a 358 367 393 409 444 481 525 1.3 Canada 20 20 25 30 36 41 46 3.0

  4. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H5. World installed nuclear generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 115 117 115 113 115 114 118 0.0 United States a 102 102 101 101 102 102 105 0.1 Canada 13 14 12 10 10 10 9 -1.5 Mexico and

  5. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    3 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H7. World installed hydroelectric generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 171 171 183 187 192 198 210 0.7 United States a 78 78 80 80 80 80 80 0.1 Canada 75 75 83 85 88 90 99 1.0 Mexico and

  6. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    5 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H9. World installed geothermal generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 3 3 5 7 9 10 11 4.3 United States a 3 3 4 5 7 8 9 4.6 Canada 0 0 0 0 0 0 0 - Mexico and Chile 1 1 1 1 2 2 2 3.3 OECD

  7. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Kaya Identity factor projections Table J1. World carbon dioxide intensity of energy use by region, Reference case, 2011-40 (metric tons per billion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 53.6 53.0 52.3 51.7 51.1 50.6 49.9 -0.2 United States a 55.7 55.0 54.5 54.0 53.6 53.2 52.5 -0.2 Canada 38.8 38.9 37.0 37.0 36.1 36.2 35.8 -0.3 Mexico

  8. Appendix A: Reference case projections

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Appendix A Table A3. World gross domestic product (GDP) by region expressed in purchasing power parity, Reference case, 2011-40 (billion 2010 dollars) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 18,616 19,080 23,390 26,577 29,942 33,569 37,770 2.5 United States a 15,021 15,369 18,801 21,295 23,894 26,659 29,898 2.4 Canada 1,396 1,422 1,700 1,881 2,074 2,293 2,529 2.1 Mexico and Chile 2,200 2,288 2,890 3,400 3,974 4,618

  9. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    6 Appendix A Table A11. World carbon dioxide emissions from liquids use by region, Reference case, 2011-40 (million metric tons carbon dioxide) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 2,881 2,838 2,861 2,812 2,785 2,794 2,812 0.0 United States a 2,291 2,240 2,269 2,227 2,182 2,163 2,147 -0.2 Canada 289 291 291 289 290 295 304 0.2 Mexico and Chile 301 307 301 296 313 335 361 0.6 OECD Europe 1,969 1,903 1,823 1,804

  10. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    8 Appendix A Table A13. World carbon dioxide emissions from coal use by region, Reference case, 2011-40 (million metric tons carbon dioxide) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 2,000 1,779 1,931 1,947 1,912 1,901 1,896 0.2 United States a 1,876 1,657 1,824 1,840 1,822 1,808 1,804 0.3 Canada 68 68 53 54 36 38 33 -2.5 Mexico and Chile 56 54 53 53 54 55 58 0.3 OECD Europe 1,208 1,251 1,228 1,244 1,219 1,195 1,178

  11. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    8 Appendix J Table J2. World energy intensity by region, Reference case, 2011-40 (thousand Btu per 2010 dollar of GDP) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 6.5 6.2 5.4 4.8 4.4 4.0 3.7 -1.9 United States a 6.4 6.1 5.4 4.8 4.3 3.9 3.5 -2.0 Canada 10.4 10.2 8.9 8.3 7.8 7.5 7.1 -1.3 Mexico and Chile 4.2 4.0 3.4 3.1 2.9 2.8 2.7 -1.4 OECD Europe 4.4 4.4 3.9 3.7 3.5 3.3 3.2 -1.1 OECD Asia 5.7 5.5 5.4 5.3 5.1 4.9 4.8 -0.5

  12. Appendix A: Reference case projections

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Appendix A Table A2. World total energy consumption by region and fuel, Reference case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas Liquids 45.3 44.6 46.4 46.1 46.0 46.2 46.7 0.2 Natural gas 31.8 32.8 33.9 35.5 37.7 39.5 41.4 0.8 Coal 21.0 18.7 20.3 20.5 20.1 20.0 20.0 0.2 Nuclear 9.4 9.2 9.5 9.4 9.5 9.5 9.7 0.2 Other 13.1 12.9 15.6 16.6 17.5 18.6 20.3 1.6 Total 120.6 118.1 125.7 128.1 130.7

  13. Appendix A: Reference case projections

    U.S. Energy Information Administration (EIA) Indexed Site

    30 Appendix A Table A5. World liquids consumption by region, Reference case, 2011-40 (million barrels per day) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 23.6 23.2 24.4 24.4 24.3 24.4 24.6 0.2 United States a 18.9 18.5 19.6 19.6 19.4 19.3 19.3 0.2 Canada 2.3 2.4 2.4 2.4 2.4 2.4 2.5 0.2 Mexico and Chile 2.4 2.4 2.4 2.4 2.5 2.7 2.9 0.6 OECD Europe 14.5 14.1 13.7 13.6 13.7 13.8 14.0 0.0 OECD Asia 7.9 8.2 7.7 7.5 7.5 7.5

  14. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    86 Appendix G Table G2. World crude oil a production by region and country, Reference case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC b 32.2 33.4 34.9 36.8 39.7 43.4 46.6 1.2 Middle East 22.9 23.2 26.2 27.9 30.3 33.4 35.6 1.5 North Africa 2.0 2.9 1.6 1.7 1.8 2.0 2.2 -1.0 West Africa 4.3 4.3 4.3 4.3 4.5 4.7 5.1 0.6 South America 3.0 3.0 2.8 2.9 3.1 3.4 3.6

  15. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    2 Appendix I Table I2. World tight gas, shale gas and coalbed methane production by region, Reference case, 2012-40 (trillion cubic feet) Region/country Projections Average annual percent change, 2012-40 2012 2020 2025 2030 2035 2040 OECD OECD Americas 19.8 26.0 29.0 31.4 34.3 37.0 2.3 United States a 16.6 22.1 23.9 25.1 26.5 27.8 1.9 Canada 3.3 3.8 4.9 5.5 6.3 7.0 2.8 Mexico 0.0 0.1 0.3 0.8 1.4 2.2 - Chile 0.0 0.0 0.0 0.0 0.0 0.0 - OECD Europe 0.0 0.5 1.7 3.3 4.6 5.5 21.8 North Europe 0.0 0.5

  16. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    4 Appendix I Table I4. World net trade in natural gas by region, Reference case, 2012-40 (trillion cubic feet) Region/country Projections Average annual percent change, 2012-40 2012 2020 2025 2030 2035 2040 OECD OECD Americas 0.3 -2.6 -4.0 -5.4 -6.2 -6.9 - United States a 1.5 -2.6 -3.5 -4.8 -5.2 -5.6 - Canada -2.3 -1.9 -2.3 -2.4 -2.7 -2.8 0.7 Mexico 1.0 1.7 1.7 1.6 1.5 1.3 1.1 Chile 0.1 0.1 0.1 0.2 0.2 0.2 1.7 OECD Europe 7.8 10.9 11.9 12.7 13.0 14.0 2.1 North Europe 2.4 5.2 5.9 6.1 6.1 6.3 3.5

  17. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    2 Appendix A Table A7. World coal consumption by region, Reference case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 21.0 18.7 20.3 20.5 20.1 20.0 20.0 0.2 United States a 19.6 17.3 19.2 19.3 19.2 19.0 19.0 0.3 Canada 0.7 0.7 0.6 0.6 0.4 0.4 0.4 -2.5 Mexico and Chile 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.3 OECD Europe 12.9 13.4 13.2 13.3 13.1 12.8 12.6 -0.2 OECD Asia 9.7 9.7 10.2 10.1 10.1 10.1 10.1 0.1

  18. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    4 Appendix A Table A9. World consumption of hydroelectricity and other renewable energy by region, Reference case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 13.1 12.9 15.6 16.6 17.5 18.6 20.3 1.6 United States a 7.9 7.7 9.3 9.7 9.9 10.4 11.3 1.4 Canada 4.3 4.2 4.8 5.1 5.5 5.8 6.3 1.4 Mexico and Chile 0.9 1.0 1.5 1.8 2.1 2.4 2.7 3.7 OECD Europe 10.7 11.5 15.7 16.7 17.3 18.5 19.6 1.9 OECD Asia

  19. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    C Low Economic Growth case projections This page inTenTionally lefT blank 47 U.S. Energy Information Administration | International Energy Outlook 2016 Low Economic Growth case projections Table C1. World total primary energy consumption by region, Low Economic Growth case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 123.3 123.9 124.7 126.3 128.8 0.3 United States a 96.8 94.4 98.7

  20. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    D High Oil Price case projections This page inTenTionally lefT blank 51 U.S. Energy Information Administration | International Energy Outlook 2016 High Oil Price case projections Table D1. World total primary energy consumption by region, High Oil Price case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 125.3 127.9 130.8 135.5 142.1 0.7 United States a 96.8 94.4 100.8 102.2 103.3

  1. Appendix A. Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    by region and country, Low Oil Price case, 2009-40 (million barrels per day) Region History Projections Average annual percent change, 2010-40 2009 2010 2011 2020 2025 2030...

  2. Appendix A. Reference case projections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by region and end-use sector, High Oil Price case, 2010-40 (quadrillion Btu) Region History Projections Average annual percent change, 2010-40 2010 2020 2025 2030 2035 2040 OECD...

  3. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    E Low Oil Price case projections This page inTenTionally lefT blank 57 U.S. Energy Information Administration | International Energy Outlook 2016 Low Oil Price case projections Table E1. World total primary energy consumption by region, Low Oil Price case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-s40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 126.5 129.2 131.8 135.0 138.9 0.6 United States a 96.8 94.4 101.2 102.7 103.6 104.6

  4. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G7. World petroleum and other liquids production by region and country, Low Oil Price case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC a 36.0 37.4 43.2 45.6 49.9 54.7 59.4 1.7 Middle East 26.2 26.6 31.1

  5. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    3 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G9. World other liquid fuels a production by region and country, Low Oil Price case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC b 3.7 3.8 4.3 4.5 4.5 4.9 4.8 0.8 Natural gas plant liquids 3.6 3.7 4.0

  6. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Low Oil Price case projections Table E1. World total primary energy consumption by region, Low Oil Price case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-s40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 126.5 129.2 131.8 135.0 138.9 0.6 United States a 96.8 94.4 101.2 102.7 103.6 104.6 106.1 0.4 Canada 14.5 14.5 15.3 15.8 16.5 17.4 18.3 0.8 Mexico and

  7. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | International Energy Outlook 2016 Low Oil Price case projections Table E3. World liquids consumption by region, Low Oil Price case, 2011-40 (million barrels per day) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 23.6 23.2 24.9 25.0 25.2 25.5 26.1 0.4 United States a 18.9 18.5 20.0 20.1 20.1 20.2 20.4 0.4 Canada 2.3 2.4 2.4 2.4 2.5 2.6 2.6 0.4 Mexico and Chile 2.4 2.4 2.5 2.5 2.6

  8. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Low Economic Growth case projections Table C1. World total primary energy consumption by region, Low Economic Growth case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 123.3 123.9 124.7 126.3 128.8 0.3 United States a 96.8 94.4 98.7 98.1 97.5 97.4 98.0 0.1 Canada 14.5 14.5 15.0 15.4 15.9 16.6 17.3 0.6 Mexico

  9. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G5. World crude oil a production by region and country, High Oil Price case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC b 32.2 33.4 30.7 30.9 32.4 33.4 34.4 0.1 Middle East 22.9 23.2 22.7 23.0 24.4 25.2

  10. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    58 Appendix E Table E2. World gross domestic product (GDP) by region expressed in purchasing power parity, Low Oil Price case, 2011-40 (billion 2010 dollars) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 18,616 19,080 23,330 26,574 29,998 33,626 37,702 2.5 United States a 15,021 15,369 18,742 21,299 23,963 26,735 29,885 2.4 Canada 1,396 1,422 1,700 1,881 2,073 2,290 2,521 2.1 Mexico and Chile 2,200 2,288 2,889 3,394 3,962

  11. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    8 Appendix C Table C2. World gross domestic product (GDP) by region expressed in purchasing power parity, Low Economic Growth case, 2011-40 (billion 2010 dollars) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 18,616 19,080 22,285 24,599 27,041 29,850 33,088 2.0 United States a 15,021 15,369 17,747 19,441 21,224 23,305 25,763 1.9 Canada 1,396 1,422 1,682 1,841 2,005 2,186 2,375 1.8 Mexico and Chile 2,200 2,288 2,856 3,317

  12. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    8 Appendix G Table G4. World petroleum and other liquids production by region and country, High Oil Price case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC a 36.0 37.4 35.3 35.8 37.7 39.3 40.4 0.3 Middle East 26.2 26.6 26.5 27.0 28.6 29.8 30.6 0.5 North Africa 2.4 3.3 2.1 1.9 2.1 2.2 2.3 -1.4 West Africa 4.3 4.3 4.0 4.0 4.0 4.0 4.0 -0.2 South America 3.2 3.2

  13. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    0 Appendix G Table G6. World other liquid fuels a production by region and country, High Oil Price case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC b 3.7 3.8 4.6 4.9 5.3 5.8 5.9 1.6 Natural gas plant liquids 3.6 3.7 4.3 4.6 4.9 5.3 5.3 1.3 Liquids from renewable sources c 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - Liquids from coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - Liquids

  14. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    2 Appendix G Table G8. World crude oil a production by region and country, Low Oil Price case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC b 32.2 33.4 38.9 41.1 45.3 49.7 54.5 1.8 Middle East 22.9 23.2 27.8 28.9 32.2 35.6 38.5 1.8 North Africa 2.0 2.9 2.9 3.0 3.0 3.0 3.3 0.5 West Africa 4.3 4.3 4.4 4.5 4.9 5.5 6.3 1.3 South America 3.0 3.0 3.8 4.7 5.1 5.6

  15. Generic Argillite/Shale Disposal Reference Case

    SciTech Connect (OSTI)

    Zheng, Liange; Colon, Carlos Jové; Bianchi, Marco; Birkholzer, Jens

    2014-08-08

    properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jové Colon et al. (2014).

  16. Annual Energy Outlook 2011 Reference Case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Case CO 2 Fee 10ton CO 2 Fee 25ton Coal plant retirements 8 gigawatts Source: EIA, ... gas combined-cycle plants to coal-fired steam turbines in five cases, 2008-2040 9 ...

  17. Annual Energy Outlook 2013 Early Release Reference Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    emission intensity index, 20051 Source: EIA, Annual Energy Outlook 2015 Reference case History Projections 2013 Carbon dioxide emissions per 2009 dollar GDP Energy use per 2009...

  18. The case for unified linear reference system

    SciTech Connect (OSTI)

    Espinoza, J. Jr.; Mackoy, R.D.; Fletcher, D.R.

    1997-06-01

    The transportation industry distinguishes its activities and data into three functionally and institutionally distinct domains. Transportation infrastructure management activities make transport links (e.g., roads, rail lines, transit routes) available for travel. In contrast, civilian and military transport operations focus on finding and using the best transport links. Each of these three transportation interest groups - transportation facility operators, civilian and military transportation users - currently collects and maintains separate, often redundant or inconsistent information concerning the location and status of the transportation system, the vehicles using the system, and the passengers and freight (or material) being conveyed. Although there has been some progress made in integrating data within each domain, little emphasis has been placed on identifying and improving the flow of information between them. Because activities initiated in one domain affect conditions in the others, defining these flows is crucial to the next generation of planners, traffic managers and customers of transportation services. For example, construction and maintenance activities affect civilian and military route choices and travel times; large scale military movements disrupt civilian travel and have potentially major effects on the infrastructure and so on. This intertwined interest in the transportation system implies the need for data integration not only within each sphere of interest but among the spheres as well. Although recent policy statements by the U.S. Departments of Transportation and Defense and ITS America indicate a desire to combine and share information resources, there are enormous technical and institutional barriers that need to be overcome.

  19. REFERENCE CASES FOR USE IN THE CEMENTITOUS PARTNERSHIP PROJECT

    SciTech Connect (OSTI)

    Langton, C.; Kosson, D.; Garrabrants, A.

    2010-08-31

    The Cementitious Barriers Partnership Project (CBP) is a multi-disciplinary, multi-institution cross cutting collaborative effort supported by the US Department of Energy (DOE) to develop a reasonable and credible set of tools to improve understanding and prediction of the structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. The period of performance is >100 years for operating facilities and > 1000 years for waste management. The CBP has defined a set of reference cases to provide the following functions: (i) a common set of system configurations to illustrate the methods and tools developed by the CBP, (ii) a common basis for evaluating methodology for uncertainty characterization, (iii) a common set of cases to develop a complete set of parameter and changes in parameters as a function of time and changing conditions, (iv) a basis for experiments and model validation, and (v) a basis for improving conceptual models and reducing model uncertainties. These reference cases include the following two reference disposal units and a reference storage unit: (i) a cementitious low activity waste form in a reinforced concrete disposal vault, (ii) a concrete vault containing a steel high-level waste tank filled with grout (closed high-level waste tank), and (iii) a spent nuclear fuel basin during operation. Each case provides a different set of desired performance characteristics and interfaces between materials and with the environment. Examples of concretes, grout fills and a cementitious waste form are identified for the relevant reference case configurations.

  20. REFERENCE CASES FOR USE IN THE CEMENTITIOUS BARRIERS PARTNERSHIP

    SciTech Connect (OSTI)

    Langton, C

    2009-01-06

    The Cementitious Barriers Project (CBP) is a multidisciplinary cross cutting project initiated by the US Department of Energy (DOE) to develop a reasonable and credible set of tools to improve understanding and prediction of the structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. The period of performance is >100 years for operating facilities and > 1000 years for waste management. The CBP has defined a set of reference cases to provide the following functions: (1) a common set of system configurations to illustrate the methods and tools developed by the CBP, (2) a common basis for evaluating methodology for uncertainty characterization, (3) a common set of cases to develop a complete set of parameter and changes in parameters as a function of time and changing conditions, and (4) a basis for experiments and model validation, and (5) a basis for improving conceptual models and reducing model uncertainties. These reference cases include the following two reference disposal units and a reference storage unit: (1) a cementitious low activity waste form in a reinforced concrete disposal vault, (2) a concrete vault containing a steel high-level waste tank filled with grout (closed high-level waste tank), and (3) a spent nuclear fuel basin during operation. Each case provides a different set of desired performance characteristics and interfaces between materials and with the environment. Examples of concretes, grout fills and a cementitious waste form are identified for the relevant reference case configurations.

  1. Preliminary Reference Case Results for Oil and Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Preliminary Reference Case Results for Oil and Natural Gas AEO2014 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis September 26, 2013 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE AEO2014P uses ref2014.d092413a AEO2013 uses ref2013.d102312a Changes for AEO2014 2 * Revised shale & tight play resources (EURs, type curves) * Updated classification of shale gas, tight gas, &

  2. Coal-by-Rail: A Business-as-Usual Reference Case | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal-by-Rail: A Business-as-Usual Reference Case Title Coal-by-Rail: A Business-as-Usual Reference Case Publication Type Report Year of Publication 2015 Authors Mintz, MM, Saricks,...

  3. Annual Energy Outlook 2013 Early Release Reference Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Focus on the Electricity Supply Mix for Natural Gas Power Generation US May 18, 2015 | Philadelphia, Pennsylvania by Howard Gruenspecht, Deputy Administrator U.S. Energy...

  4. Annual Energy Outlook Retrospective Review: Evaluation of 2014 and Prior Reference Case Projections

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Energy Outlook Retrospective Review: Evaluation of 2014 and Prior Reference Case Projections March 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | AEO Retrospective Review: Evaluation of 2014 and Prior Reference Case Projections i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's

  5. Nondestructive Waste Assay Using Gamma-Ray Active & Passive Computed Tomography. Mixed Waste Focus Area. OST Reference Number 2123

    SciTech Connect (OSTI)

    None, None

    1999-09-01

    This project was supported by the Mixed Waste Focus Area (MWFA) and the Federal Environmental Technology Center (FETC) to develop an improved nondestructive assay (NDA) capability that uses gamma-ray computed tomography and gamma-energy spectral analysis techniques to perform waste assay measurements. It was the intent of the Gamma-Ray Active & Passive Computed Tomography (A&PCT) development and demonstration project to enhance the overall utility of waste assay through the implementation of techniques that can accommodate known measurement complications, e.g., waste matrix and radioactive material distribution heterogeneities. This technology can measure the radionuclide content in all types of waste regardless of their classification as low level (LLW), transuranic (TRU) or mixed (MLLW or MTRU). The nondestructive waste assay capability needed to support Department of Energy (DOE) mixed waste characterization needs is necessarily a function of the waste form configurations in inventory. These waste form configurations exhibit a number of variables impacting assay system response that must be accounted for to ensure valid measurement data. Such variables include: matrix density, matrix elemental composition, matrix density distribution, radioactive material radionuclidic/isotopic composition, radioactive material physical/chemical form, and physical distribution in the waste matrix. Existing nondestructive assay technologies have identified capability limits with respect to these variables. Certain combinations of these variables result in waste configurations within the capability of one or more of the existing systems. Other combinations that are prevalent in the inventory are outside of the capability of such systems.

  6. Economics at the FTC: Cases and research, with a focus on petroleum

    SciTech Connect (OSTI)

    Froeb, L.; Cooper, J.; Frankena, M.; Pautler, P.; Silvia, L.

    2005-11-01

    Economics at the Federal Trade Commission (FTC) covers both the antitrust and consumer protection missions. In this year's essay, we focus mainly on the competition-side of the agency. Drawing on a wealth of recent research, we provide descriptive and analytical information about the petroleum industry. Mergers, as always, were a major preoccupation of the FTC, and we discuss a few oil industry mergers as well as one leading litigated case - Arch Coal's acquisition of Triton Coal. Finally, we review the empirical literature on the effects of vertical restraints, noting that the literature supporting an animus toward such restraints is surprisingly weak.

  7. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research January 5-6, 2011 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  8. An Updated Annual Energy Outlook 2009 Reference Case Reflecting Provisions of the American Recovery and Reinvestment Act and Recent Changes in the Economic Outlook

    Reports and Publications (EIA)

    2009-01-01

    This report updates the Reference Case presented in the Annual Energy Outlook 2009 based on recently enacted legislation and the changing macroeconomic environment.

  9. Technical basis for cases N-629 and N-631 as an alternative for RTNDT reference temperature

    SciTech Connect (OSTI)

    Merkle, John Graham; Server, W. L.

    2007-01-01

    ASME Code Cases N-629/N-631, published in 1999, provided an important new approach to allow material specific, measured fracture toughness curves for ferritic steels in the code applications. This has enabled some of the nuclear power plants whose reactor pressure vessel materials reached a certain threshold level based on overly conservative rules to use an alternative RTNDT to justify continued operation of their plants. These code cases have been approved by the US Nuclear Regulatory Commission and these have been proposed to be codified in Appendix A and Appendix G of the ASME Boiler and Pressure Vessel Code. This paper summarizes the basis of this approach for the record.

  10. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Fusion Energy Sciences August 3-4, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors [not available] NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion

  11. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for High Energy Physics November 12-13, 2009 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  12. Mechanism reduction for multicomponent surrogates: A case study using toluene reference fuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Niemeyer, Kyle E.; Sung, Chih-Jen

    2014-11-01

    Strategies and recommendations for performing skeletal reductions of multicomponent surrogate fuels are presented, through the generation and validation of skeletal mechanisms for a three-component toluene reference fuel. Using the directed relation graph with error propagation and sensitivity analysis method followed by a further unimportant reaction elimination stage, skeletal mechanisms valid over comprehensive and high-temperature ranges of conditions were developed at varying levels of detail. These skeletal mechanisms were generated based on autoignition simulations, and validation using ignition delay predictions showed good agreement with the detailed mechanism in the target range of conditions. When validated using phenomena other than autoignition, suchmore » as perfectly stirred reactor and laminar flame propagation, tight error control or more restrictions on the reduction during the sensitivity analysis stage were needed to ensure good agreement. In addition, tight error limits were needed for close prediction of ignition delay when varying the mixture composition away from that used for the reduction. In homogeneous compression-ignition engine simulations, the skeletal mechanisms closely matched the point of ignition and accurately predicted species profiles for lean to stoichiometric conditions. Furthermore, the efficacy of generating a multicomponent skeletal mechanism was compared to combining skeletal mechanisms produced separately for neat fuel components; using the same error limits, the latter resulted in a larger skeletal mechanism size that also lacked important cross reactions between fuel components. Based on the present results, general guidelines for reducing detailed mechanisms for multicomponent fuels are discussed.« less

  13. Mechanism reduction for multicomponent surrogates: A case study using toluene reference fuels

    SciTech Connect (OSTI)

    Niemeyer, Kyle E.; Sung, Chih-Jen

    2014-11-01

    Strategies and recommendations for performing skeletal reductions of multicomponent surrogate fuels are presented, through the generation and validation of skeletal mechanisms for a three-component toluene reference fuel. Using the directed relation graph with error propagation and sensitivity analysis method followed by a further unimportant reaction elimination stage, skeletal mechanisms valid over comprehensive and high-temperature ranges of conditions were developed at varying levels of detail. These skeletal mechanisms were generated based on autoignition simulations, and validation using ignition delay predictions showed good agreement with the detailed mechanism in the target range of conditions. When validated using phenomena other than autoignition, such as perfectly stirred reactor and laminar flame propagation, tight error control or more restrictions on the reduction during the sensitivity analysis stage were needed to ensure good agreement. In addition, tight error limits were needed for close prediction of ignition delay when varying the mixture composition away from that used for the reduction. In homogeneous compression-ignition engine simulations, the skeletal mechanisms closely matched the point of ignition and accurately predicted species profiles for lean to stoichiometric conditions. Furthermore, the efficacy of generating a multicomponent skeletal mechanism was compared to combining skeletal mechanisms produced separately for neat fuel components; using the same error limits, the latter resulted in a larger skeletal mechanism size that also lacked important cross reactions between fuel components. Based on the present results, general guidelines for reducing detailed mechanisms for multicomponent fuels are discussed.

  14. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and related equipment 2 ... 0.33 0.33 0.33 0.33 0.35 0.37 0.39 0.5% Computers and related equipment 3 ... 0.13 0.12 0.10 0.08 0.07 0.06 0.05...

  15. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    district services. 2 Includes (but is not limited to) miscellaneous uses such as transformers, medical imaging and other medical equipment, elevators, escalators, off-road...

  16. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 1,096 1,016 1,077 1,114 1,127 1,126 1,121 0.3% Waste coal supplied 2 ... 13 11 14 14 15 17 19...

  17. Appendix A: Reference case

    Gasoline and Diesel Fuel Update (EIA)

    Sources: 2011 and 2012 interregional firm electricity trade data: 2012 seasonal reliability assessments from North American Electric Reliability Council regional entities and...

  18. Appendix A: Reference case

    Gasoline and Diesel Fuel Update (EIA)

    ... 29.52 28.85 29.72 29.67 30.56 31.49 32.63 0.4% Non-renewable energy expenditures by sector (billion 2012 dollars) Residential...

  19. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    523.3 1.5% 1 Does not include water heating portion of load. 2 Includes televisions, set-top boxes, home theater systems, DVD players, and video game consoles. 3 Includes desktop...

  20. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    12.92 12.90 13.09 -0.2% 1 Commercial trucks 8,501 to 10,000 pounds gross vehicle weight rating. 2 CAFE standard based on projected new vehicle sales. 3 Includes CAFE credits for...

  1. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information Administration Annual Energy Outlook 2014 Table A18. Energy-related carbon dioxide emissions by sector and source (million metric tons, unless otherwise noted)...

  2. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2012-2040 (percent) 2011 2012 2020 2025 2030 2035 2040 Energy consumption Residential Propane ... 0.51 0.51 0.42 0.40...

  3. Appendix A: Reference case

    Gasoline and Diesel Fuel Update (EIA)

    ... 4,370 4,525 5,735 6,467 7,148 7,784 8,443 2.3% Agriculture, mining, and construction ... 1,556 1,623 2,226 2,311 2,389 2,457...

  4. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    supplies. 2 Includes lease condensate. 3 Tight oil represents resources in low-permeability reservoirs, including shale and chalk formations. The specific plays included in...

  5. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    DC, September 2013). 2011 and 2012 natural gas spot price at Henry Hub: Thomson Reuters. 2011 and 2012 electric power prices: EIA, Electric Power Monthly, DOEEIA-0226,...

  6. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2011 and 2012 Brent and West Texas Intermediate crude oil spot prices: Thomson Reuters. 2011 and 2012 average imported crude oil cost: U.S. Energy Information...

  7. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 9,429 9,603 11,592 12,773 14,220 15,828 17,635 2.2% Real investment ... 1,744 1,914 2,876 3,269 3,740...

  8. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    road oil, still gas, special naphthas, petroleum coke, crude oil product supplied, methanol, and miscellaneous petroleum products. 14 Includes energy for combined heat and...

  9. Appendix A: Reference case

    Gasoline and Diesel Fuel Update (EIA)

    energy. See Table A17 for selected nonmarketed residential and commercial renewable energy data. 5 Includes non-biogenic municipal waste, liquid hydrogen, methanol, and some...

  10. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, and the United Kingdom. 3 Other Europe and Eurasia Albania, Armenia, Azerbaijan,...

  11. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 133.0 147.6 173.1 175.0 178.2 184.2 199.2 1.1% Distributed generation (natural gas) 7 ... 0.0 0.0 1.6 3.3 4.6 6.2 8.9 - -...

  12. Appendix A: Reference case

    Gasoline and Diesel Fuel Update (EIA)

    sources 5 ... 476 459 600 634 660 686 735 1.7% Distributed generation (natural gas) ... 0 0 1 2 2 3 4 - - Total...

  13. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter...

  14. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation...

  15. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors Last edited: 2016-04-29 11:35:05

  16. NETL Focused Standards List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1/6/14 Contact: Janet Lambert Reviewed: 3/5/14 Page 1 of 17 The National Energy Technology Laboratory (NETL) Focused Standards List is primarily derived from standard references contained in the requirements section of NETL's environment, safety, security, and health (ESS&H) and cyber security directives. All standards shall reference the most current edition/version of that standard. 1. DEPARTMENT OF ENERGY (DOE) AND OTHER GOVERNMENT STANDARDS AND REQUIREMENTS a. DOE Directives The

  17. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter from DOE Associate Directors Workshop Invitation Letter from DOE ASCR Program Manager Yukiko Sekine Last edited: 2016-04-29 11:34:54

  18. In Focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Focus Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Amazing Science Images Take a look at some incredible images from the science we conduct at Berkeley Lab. 10 On the Way At Berkeley Lab, our goal is to bring science solutions to the world. Here are 10 entries in our 2015 "On the Way" list that are either starting up, moving along, or getting ready to

  19. Ion focusing

    DOE Patents [OSTI]

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  20. LANSCE Focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus Nuclear science observations and opportunities at the Los Alamos Neutron Science Center Colleagues, This special Focus issue highlights a set of nuclear physics capabilities at the Los Alamos Neutron Science Center (LANSCE) serving Los Alamos National Laboratory's national security mis- sion and the global scientific user community. With a total of 10 flight paths, LANSCE pro- vides the opportunity to perform experiments with low- to high-energy neutron sources and high-energy proton

  1. Quick Reference

    Broader source: Energy.gov (indexed) [DOE]

    Reference 2015 Annual Planning Summary (APS) User's Guide 1, 2 PART 1 OFFICE Enter the office preparing this APS. NEPA REVIEWS Select one of two responses. SITE-WIDE EISs Select...

  2. Reference Material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials There are a variety of reference materials the NSSAB utilizes and have been made available on its website. Documents Fact Sheets - links to Department of Energy Nevada Field Office webpage Public Reading Room NTA Public Reading Facility Open Monday through Friday, 7:30 am to 4:30 pm (except holidays) 755C East Flamingo Road Las Vegas, Nevada 89119 Phone (702) 794-5106 http://www.nv.doe.gov/library/testingarchive.aspx DOE Electronic Database Also available to the public is an

  3. The NEPA reference guide

    SciTech Connect (OSTI)

    Swartz, L.L.; Reinke, D.C.

    1999-10-01

    The NEPA Reference Guide conveniently organizes and indexes National Environmental Policy Act (NEPA) and Council on Environmental Quality (CEQ) regulations and guidance, along with relevant federal case law, all in one place. It allows the user to quickly learn the statutory, regulatory, and case law authority for a large number of NEPA subjects. A unique feature of The NEPA Reference Guide is its detailed index that includes a large number of diverse NEPA subjects. The index enables users to find and compile any statutory, regulatory (including CEQ guidance), and case law original source material and references on virtually any NEPA subject. This will be an especially useful tool for new NEPA practitioners who need to become immersed in a particular subject quickly.

  4. Appendix A. Reference case projections

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4.3 4.5 4.8 5.1 5.0 1.4 Natural gas plant liquids 3.1 3.3 3.4 4.0 4.2 4.4 4.8 4.7 1.2 Biofuels c 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - Coal-to-liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -...

  5. Appendix A. Reference case projections

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4.6 4.9 5.3 5.8 5.9 1.9 Natural gas plant liquids 3.1 3.3 3.4 4.3 4.6 4.9 5.3 5.3 1.6 Biofuels c 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - Coal-to-liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -...

  6. Appendix A: Reference case projections

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table F1. Total world delivered energy consumption by end-use sector and fuel, 2011-40 ... 4.7 4.8 4.5 4.3 4.1 4.1 4.0 -0.6 Electricity 18.0 18.4 22.5 25.5 28.6 32.0 35.8 ...

  7. Appendix A. Reference case projections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9.7 15.3 15.2 14.2 13.8 13.5 1.2 Canada 3.4 3.6 3.7 5.4 6.4 7.3 7.8 8.0 2.7 Mexico and Chile 3.0 3.0 3.0 3.1 3.4 3.7 3.9 4.2 1.1 OECD Europe 4.9 4.6 4.3 3.3 3.2 3.2 3.2 3.4 -1.0...

  8. Appendix A. Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    9.7 13.6 12.9 11.7 11.2 10.6 0.4 Canada 3.4 3.6 3.7 4.7 5.1 5.5 5.7 5.8 1.6 Mexico and Chile 3.0 3.0 3.0 2.4 2.0 2.0 2.1 2.2 -1.0 OECD Europe 4.9 4.6 4.3 3.1 2.9 2.5 2.4 2.5 -2.0...

  9. Appendix A. Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    Persian Gulf Share of World Production 29% 29% 31% 32% 35% 38% 40% 42% a Crude and lease condensate includes tight oil, shale oil, extra-heavy oil, field condensate, and bitumen. b ...

  10. Appendix A. Reference case projections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Persian Gulf Share of World Production 29% 29% 31% 24% 24% 26% 27% 28% a Crude and lease condensate includes tight oil, shale oil, extra-heavy oil, field condensate, and bitumen. b ...

  11. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    Non-OECD Asia 168.2 175.9 222.7 246.4 269.9 295.1 322.1 2.2 China 109.4 115.0 147.3 159.4 ... Non-OECD Asia 26,261 27,914 44,139 56,222 69,542 84,680 102,015 4.7 China 13,286 14,309 ...

  12. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    1,708 2,383 2,612 2,840 3,079 3,332 2.4 China 1,065 1,153 1,657 1,808 1,937 2,066 2,194 ... Non-OECD Asia 56 56 55 53 50 48 46 -0.7 China 8 8 8 7 7 7 6 -0.9 India 8 7 7 7 7 7 6 ...

  13. Appendix A: Reference case projections

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Asia 8.2 8.3 8.9 9.1 9.2 9.6 9.9 0.6 China 4.4 4.4 4.9 5.2 5.5 6.0 6.3 1.2 India 1.0 ... Asia 7.2 7.2 7.4 7.2 7.0 7.1 6.9 -0.2 China 4.1 4.1 4.3 4.5 4.4 4.7 4.7 0.5 India 0.8 ...

  14. Appendix A: Reference case projections

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... OECD Asia 5.7 5.5 5.4 5.3 5.1 4.9 4.8 -0.5 Japan 4.9 4.7 4.7 4.6 4.4 4.3 4.1 -0.5 South ... Non-OECD Asia 6.4 6.3 5.0 4.4 3.9 3.5 3.2 -2.4 China 8.2 8.0 6.4 5.4 4.7 4.1 3.7 -2.8 ...

  15. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    OECD Asia 203 204 207 208 208 207 206 0.0 Japan 127 127 125 123 120 117 114 -0.4 South ... Non-OECD Asia 3,691 3,730 4,013 4,159 4,278 4,373 4,443 0.6 China 1,373 1,381 1,435 1,450 ...

  16. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    6 Appendix H Table H10. World installed solar generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 5 8 32 36 44 54 67 7.7 United States a 4 8 28 32 39 48 61 7.7 Canada 1 1 2 3 3 4 4 5.9 Mexico and Chile 0 0 2 2 2 2 3 14.4 OECD Europe 52 70 93 93 93 94 98 1.2 OECD Asia 7 9 45 51 57 59 60 6.9 Japan 5 7 38 43 48 49 49 7.4 South Korea 1 1 2 3 4 4 4 5.1 Australia

  17. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    8 Appendix H Table H12. World total net electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 5,071 5,017 5,449 5,724 6,036 6,359 6,727 1.1 United States a 4,102 4,055 4,351 4,513 4,691 4,860 5,056 0.8 Canada 627 616 692 748 809 880 958 1.6 Mexico and Chile 342 346 406 463 535 618 713 2.6 OECD Europe 3,455 3,483 3,858 4,090 4,328 4,590 4,889 1.2

  18. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    0 Appendix H Table H14. World net natural gas-fred electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 1,234 1,446 1,396 1,600 1,840 2,048 2,237 1.6 United States a 1,014 1,228 1,117 1,223 1,371 1,478 1,569 0.9 Canada 61 63 97 136 187 230 272 5.3 Mexico and Chile 160 154 182 240 282 340 396 3.4 OECD Europe 766 645 655 746 905 1,056 1,321 2.6

  19. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    2 Appendix H Table H16. World net nuclear electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 888 867 902 891 901 900 924 0.2 United States a 790 769 804 808 808 812 833 0.3 Canada 88 89 86 72 72 67 62 -1.3 Mexico and Chile 9 8 12 12 20 20 29 4.5 OECD Europe 861 837 845 879 930 948 896 0.2 OECD Asia 304 161 381 437 457 450 427 3.5 Japan 156 17

  20. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    4 Appendix H Table H18. World net hydroelectric electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 747 703 764 784 806 831 887 0.8 United States a 319 275 292 294 295 295 297 0.3 Canada 372 377 403 414 425 437 475 0.8 Mexico and Chile 57 51 68 76 86 99 114 2.9 OECD Europe 498 556 592 617 617 617 657 0.6 OECD Asia 128 115 127 131 135 143 153

  1. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    8 Appendix H Table H2. World installed liquids-fred generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 125 121 108 98 92 87 85 -1.2 United States a 105 101 89 80 75 71 70 -1.3 Canada 4 4 4 4 4 4 3 -1.0 Mexico and Chile 16 16 14 14 13 12 12 -1.0 OECD Europe 50 50 47 45 43 41 39 -0.9 OECD Asia 58 59 54 52 49 47 45 -1.0 Japan 52 52 49 46 44 42 40 -1.0 South

  2. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    6 Appendix H Table H20. World net geothermal electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 22 21 37 49 64 75 85 5.0 United States a 15 16 27 39 52 62 70 5.5 Canada 0 0 0 0 0 0 0 - Mexico and Chile 7 6 10 10 11 13 15 3.5 OECD Europe 11 12 21 23 23 23 25 2.7 OECD Asia 9 9 17 18 20 22 25 3.9 Japan 3 3 3 3 3 3 3 0.1 South Korea 0 0 1 1 2 2 2

  3. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    8 Appendix H Table H22. World net other renewable electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 87 94 125 151 169 191 210 2.9 United States a 75 77 103 115 119 125 138 2.1 Canada 6 9 14 28 41 55 60 7.0 Mexico and Chile 6 8 8 8 9 11 13 1.8 OECD Europe 155 149 201 210 210 210 224 1.5 OECD Asia 28 37 60 71 80 84 87 3.1 Japan 23 33 38 44 50

  4. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    0 Appendix H Table H4. World installed coal-fred generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 333 327 279 276 272 272 271 -0.7 United States a 314 308 263 260 260 260 260 -0.6 Canada 10 10 7 7 3 3 2 -5.2 Mexico and Chile 9 9 9 9 9 9 9 -0.2 OECD Europe 197 198 207 200 194 188 183 -0.3 OECD Asia 109 112 117 113 111 109 110 -0.1 Japan 50 50 49 47 46 44 43

  5. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    2 Appendix H Table H6. World installed hydroelectric and other renewable generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 273 293 372 396 424 460 507 2.0 United States a 168 185 233 240 252 273 301 1.8 Canada 85 87 106 114 123 132 144 1.8 Mexico and Chile 20 21 34 42 48 55 62 3.9 OECD Europe 337 372 514 534 553 594 626 1.9 OECD Asia 54 57 115 129 145 153

  6. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    4 Appendix H Table H8. World installed wind-powered generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 53 67 107 117 127 141 159 3.1 United States a 47 59 83 84 87 97 110 2.2 Canada 5 6 15 18 20 22 24 5.0 Mexico and Chile 1 2 9 16 19 22 25 10.1 OECD Europe 94 107 189 203 222 263 277 3.5 OECD Asia 6 6 24 29 37 40 44 7.2 Japan 2 3 3 5 8 8 8 4.1 South Korea 0 0

  7. Poroelastic references

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Christina Morency

    This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

  8. Poroelastic references

    SciTech Connect (OSTI)

    Christina Morency

    2014-12-12

    This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

  9. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and...

  10. NETL Focused Standards List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6/12 Contact: Janet Lambert Reviewed: 10/4/12 Page 1 of 17 This Focused Standards List has been primarily derived from selected standard references contained in NETL issued directives. All standards shall reference the most current edition/ version of that standard. DOE and other Government Standards and Requirements DOE DIRECTIVES Note: The following DOE directives can be found at http://www.directives.doe.gov: DOE Policy 141.1, DOE Management of Cultural Resources DOE Order 142.1, Classified

  11. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ID 412- 11/16/2012 - Page 1 Log No 2012-263 Reference Materials * Transporting Radioactive Waste to the Nevada National Security Site fact sheet (ww.nv.energy.gov/library/factsheets/DOENV_990.pdf) - Generators contract with commercial carriers - U.S. Department of Transportation regulations require carriers to select routes which minimize radiological risk * Drivers Route and Shipment Information Questionnaire completed by drivers to document routes taken to the NNSS upon entry into Nevada -

  12. Quick Reference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quick Reference 2016 Annual Planning Summary (APS) User's Guide 1, 2 PART 1 OFFICE Enter the office preparing this APS. NEPA REVIEWS Select one of two responses. SITE-WIDE Select one of three responses. DOCUMENT NUMBER & TITLE Enter the DOE NEPA identification number if available, e.g., DOE/EIS-XXXX. If no document number has been assigned, enter N/A. Also enter the document title. Text is limited to 350 characters. PART 2 TYPE Select the type of document using the dropdown menu. STATUS

  13. Aluminum reference electrode

    DOE Patents [OSTI]

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  14. Aluminum reference electrode

    DOE Patents [OSTI]

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  15. Subsurface contaminants focus area

    SciTech Connect (OSTI)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  16. Subsurface Knowledge Reference Page

    Broader source: Energy.gov [DOE]

    The below listing provides additional references related to Subsurface & Groundwater Remediation.  The references are categorized by documents types (e.g., Strategic Plans, Groundwater Plume...

  17. SolFocus Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: California Zip: 94043 Product: California-based developer of high concentration PV (CPV) technology using triple junction GaAs cells. References: SolFocus Inc1...

  18. HelioFocus | Open Energy Information

    Open Energy Info (EERE)

    Israel-based firm engaged in the development of modular, high efficiency concentrated solar power (CSP)systems. References: HelioFocus1 This article is a stub. You can help...

  19. Strong focus space charge

    DOE Patents [OSTI]

    Booth, Rex

    1981-01-01

    Strong focus space charge lens wherein a combination of current-carrying coils and charged electrodes form crossed magnetic and electric fields to focus charged particle beams.

  20. Strategic Focus Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Focus Areas Lockheed Martin on behalf of Sandia National Laboratories will consider grant requests that best support the Corporation's strategic focus areas and reflect ...

  1. Energy Focus Inc formerly Fiberstars | Open Energy Information

    Open Energy Info (EERE)

    "","title":"","link":null,"lat":41.38712,"lon":-81.434401,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map References: Energy Focus Inc...

  2. Annual Energy Outlook 2011 Reference Case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (RFS2, for example) * Prices of primary energy (crude oil, etc.) LP * Minimize cost to ... Biomass- based diesel FAME biodiesel Green Diesel Cellulosic Drop-in For use as motor ...

  3. Annual Energy Outlook 2011 Reference Case

    U.S. Energy Information Administration (EIA) Indexed Site

    ... and engineering notes: - Fuel economy (Final Rule 2017-2025 and Lumped Parameter Model) - Cost (derived from Final Rule ... Gaseous and fuel cell AEO2013 Transportation ...

  4. Annual Energy Outlook 2011 Reference Case

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquid Fuels Markets Working Group Meeting Office of Petroleum, Natural Gas & Biofuels Analysis October 4, 2012 | Washington, DC Preliminary AEO2013: Biofuels and Petroleum WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Overview 2 Office of Petroleum, Natural Gas, & Biofuels Analysis Working Group Presentation for Discussion Purposes Washington DC, October 4, 2012 DO NOT QUOTE OR CITE as results are subject to change * World oil

  5. Annual Energy Outlook 2011 Reference Case

    U.S. Energy Information Administration (EIA) Indexed Site

    August 14, 2012 | Washington, DC Annual Energy Outlook 2013: Modeling Updates in the Transportation Sector WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Overview 2 AEO2013 Transportation Model Updates Washington, D.C., August 2012 Discussion purposes only - Do not cite or circulate * Light-duty vehicle - Light-duty vehicle technology update based on EPA/NHTSA Notice of Proposed Rule for model years 2017 through 2025 * Heavy-duty vehicle

  6. Annual Energy Outlook 2011 Reference Case

    U.S. Energy Information Administration (EIA) Indexed Site

    of Clean Air Interstate Rule (CAIR) after U.S. Court of Appeals vacated Cross-State Air Pollution Rule (CSAPR) * Continued to coordinate with Survey Team and Statistics Group to: - ...

  7. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on July 17, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Robert Elkins, Scot Fitzgerald, Larry Markel, Cindy Taylor, Sam Vega, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the June 12, 2012 meeting. No HASQARD Focus Group members present stated any

  8. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on June 18, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Scot Fitzgerald, Joan Kessner, Larry Markel, Karl Pool, Chris Sutton, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the May 21, 2013 meeting. No HASQARD Focus Group members present

  9. Tritium Focus Group- INEL

    Broader source: Energy.gov [DOE]

    Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014.

  10. Alternating phase focused linacs

    DOE Patents [OSTI]

    Swenson, Donald A. (Los Alamos, NM)

    1980-01-01

    A heavy particle linear accelerator employing rf fields for transverse and ongitudinal focusing as well as acceleration. Drift tube length and gap positions in a standing wave drift tube loaded structure are arranged so that particles are subject to acceleration and succession of focusing and defocusing forces which contain the beam without additional magnetic or electric focusing fields.

  11. High frequency reference electrode

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  12. High frequency reference electrode

    DOE Patents [OSTI]

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  13. Optical voltage reference

    DOE Patents [OSTI]

    Rankin, Richard; Kotter, Dale

    1994-01-01

    An optical voltage reference for providing an alternative to a battery source. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function.

  14. Optical voltage reference

    DOE Patents [OSTI]

    Rankin, R.; Kotter, D.

    1994-04-26

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  15. Reference Model Project (RMP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Reference Model 5: Oscillating Surge Wave Energy Converter. NRELTP-5000-62861. Golden, CO, National Renewable Energy Laboratory (NREL). January 2015. Power Conversion Chain Design ...

  16. EFRC Management Reference Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EFRC management reference document Energy Frontier Research Centers Acknowledgments of Support (v.1, October 2009) Office of Basic Energy Sciences Office of Science US Department ...

  17. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 15, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:02 PM on January 15, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Scot Fitzgerald, Larry Markel, Karl Pool, Dave St. John, Chris Sutton, Chris Thompson, Steve Trent, Amanda Tuttle and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the December 18, 2012 meeting. One issue

  18. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:09 PM on December 17, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Taffy Almeida, Joe Archuleta, Jeff Cheadle, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Karl Pool, Chris Sutton, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the

  19. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22, 2015 The meeting was called to order by Cliff Watkins, HASQARD Focus Group Secretary at 2:05 PM on October 22, 2015 in Conference Room 328 at 2420 Stevens. Those attending were: Jonathan Sanwald (Mission Support Alliance (MSA), Focus Group Chair), Cliff Watkins (Corporate Allocation Services, DOE-RL Support Contractor, Focus Group Secretary), Glen Clark (Washington River Protection Solution (WRPS)), Fred Dunhour (DOE-ORP), Joan Kessner (Washington Closure Hanford (WCH)), Karl Pool (Pacific

  20. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2016 The meeting was called to order by Jonathan Sanwald, HASQARD Focus Group Chair at 2:05 PM on January 26, 2016 in Conference Room 308 at 2420 Stevens. Those attending were: Jonathan Sanwald (Mission Support Alliance (MSA), Focus Group Chair), Cliff Watkins (Corporate Allocation Services, DOE-RL Support Contractor, Focus Group Secretary), Taffy Almeida (Pacific Northwest National Laboratory (PNNL)), Jeff Cheadle (DOE-ORP), Glen Clark (Washington River Protection Solution (WRPS)), Fred

  1. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 The meeting was called to order by Jonathan Sanwald, HASQARD Focus Group Chair at 2:10 PM on April 19, 2016 in Conference Room 308 at 2420 Stevens. Those attending were: Jonathan Sanwald (Mission Support Alliance (Mission Support Alliance (MSA)), Focus Group Chair), Cliff Watkins (Corporate Allocation Services, DOE-RL Support Contractor, Focus Group Secretary), Marcus Aranda (Wastren Advantage Inc. Wastren Hanford Laboratory (WHL)), Joe Archuleta (CH2M HILL Plateau Remediation Company

  2. Tritium Focus Group Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting Information Tritium Focus Group Charter (pdf) Hotel Information Classified Session Information Los Alamos Restaurants (pdf) LANL Information Visiting Los Alamos Area Map ...

  3. FEMP Focus - June 2001

    SciTech Connect (OSTI)

    2001-06-01

    FEMP Focus is FEMP's bimonthly newsletter that promotes energy awareness, recognizes successes, and communicates information about saving energy and dollars to the federal community.

  4. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on October 16, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Robert Elkins, Larry Markel, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Steve Trent, Amanda Tuttle, Sam Vega, Rich Weiss and Eric Wyse. New personnel have joined the Focus Group since the last

  5. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:09 PM on November 27, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Robert Elkins, Joan Kessner, Larry Markel, Mary McCormick-Barger, Steve Trent, and Rich Weiss. I. Huei Meznarich requested comments on the minutes from the October 16, 2012 meeting. No HASQARD Focus Group members present stated any

  6. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on August 20, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Taffy Almeida, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Steve Smith, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the July 23, 2013 meeting. No Focus Group members stated they had

  7. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:10 PM on April 15, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Robert Elkins, Scot Fitzgerald, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the March 18, 2014 meeting. No Focus Group members stated they

  8. Focus on Energy Program

    Broader source: Energy.gov [DOE]

    Focus on Energy provides information, financial assistance, technical assistance and other services to residents, businesses, schools, institutions and local governments on energy efficiency and...

  9. Microfabricated particle focusing device

    DOE Patents [OSTI]

    Ravula, Surendra K.; Arrington, Christian L.; Sigman, Jennifer K.; Branch, Darren W.; Brener, Igal; Clem, Paul G.; James, Conrad D.; Hill, Martyn; Boltryk, Rosemary June

    2013-04-23

    A microfabricated particle focusing device comprises an acoustic portion to preconcentrate particles over large spatial dimensions into particle streams and a dielectrophoretic portion for finer particle focusing into single-file columns. The device can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.

  10. Reference Documents | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Reference Documents Summary References Main Draft SEIS References Additional SEIS References Appendix C References Appendix D References Appendix E References Appendix F References Learn More Summary References Main Draft SEIS References Appendix C References Appendix D References Appendix E References Appendix F References Additional SEIS references

  11. Sandia Energy - Reference Model Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents Home Stationary Power Energy Conversion Efficiency Water Power Reference Model Project (RMP) Reference Model Documents Reference Model DocumentsTara Camacho-Lopez2015-05-...

  12. Multifunctional reference electrode (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Multifunctional reference electrode Title: Multifunctional reference electrode A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the ...

  13. reference | OpenEI Community

    Open Energy Info (EERE)

    reference Home Jweers's picture Submitted by Jweers(88) Contributor 7 August, 2013 - 18:23 New Robust References citation citing developer formatting reference Semantic Mediawiki...

  14. Uranium reference materials

    SciTech Connect (OSTI)

    Donivan, S.; Chessmore, R.

    1987-07-01

    The Technical Measurements Center has prepared uranium mill tailings reference materials for use by remedial action contractors and cognizant federal and state agencies. Four materials were prepared with varying concentrations of radionuclides, using three tailings materials and a river-bottom soil diluent. All materials were ground, dried, and blended thoroughly to ensure homogeneity. The analyses on which the recommended values for nuclides in the reference materials are based were performed, using independent methods, by the UNC Geotech (UNC) Chemistry Laboratory, Grand Junction, Colorado, and by C.W. Sill (Sill), Idaho National Engineering Laboratory, Idaho Falls, Idaho. Several statistical tests were performed on the analytical data to characterize the reference materials. Results of these tests reveal that the four reference materials are homogeneous and that no large systematic bias exists between the analytical methods used by Sill and those used by TMC. The average values for radionuclides of the two data sets, representing an unbiased estimate, were used as the recommended values for concentrations of nuclides in the reference materials. The recommended concentrations of radionuclides in the four reference materials are provided. Use of these reference materials will aid in providing uniform standardization among measurements made by remedial action contractors. 11 refs., 9 tabs.

  15. Microgrid cyber security reference architecture.

    SciTech Connect (OSTI)

    Veitch, Cynthia K.; Henry, Jordan M.; Richardson, Bryan T.; Hart, Derek H.

    2013-07-01

    This document describes a microgrid cyber security reference architecture. First, we present a high-level concept of operations for a microgrid, including operational modes, necessary power actors, and the communication protocols typically employed. We then describe our motivation for designing a secure microgrid; in particular, we provide general network and industrial control system (ICS)-speci c vulnerabilities, a threat model, information assurance compliance concerns, and design criteria for a microgrid control system network. Our design approach addresses these concerns by segmenting the microgrid control system network into enclaves, grouping enclaves into functional domains, and describing actor communication using data exchange attributes. We describe cyber actors that can help mitigate potential vulnerabilities, in addition to performance bene ts and vulnerability mitigation that may be realized using this reference architecture. To illustrate our design approach, we present a notional a microgrid control system network implementation, including types of communica- tion occurring on that network, example data exchange attributes for actors in the network, an example of how the network can be segmented to create enclaves and functional domains, and how cyber actors can be used to enforce network segmentation and provide the neces- sary level of security. Finally, we describe areas of focus for the further development of the reference architecture.

  16. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:06 PM on June 12, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Shannan Johnson, Joan Kessner, Larry Markel, Karl Pool, Steve Smith, Noe'l Smith-Jackson, Chris Sutton, Cindy Taylor, Chris Thomson, Amanda Tuttle, Sam Vega, Rick Warriner and Eric Wyse. I. Huei Meznarich requested comments on the

  17. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:10 PM on August 21, 2012 in an alternate Conference Room in 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Lynn Albin, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Larry Markel, Steve Smith, Chris Sutton. Chris Thompson, Amanda Tuttle, and Rich Weiss. I. Because the meeting was scheduled to take place in Room 308 and a glitch in

  18. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2013 The beginning of the meeting was delayed due to an unannounced loss of the conference room scheduled for the meeting. After securing another meeting location, the meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:18 PM on April 16, 2013 in Conference Room 156 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Joan Kessner, Larry Markel, Mary McCormick-Barger, Karl Pool,

  19. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on November 19, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Taffy Almeida, Joe Archuleta, Mike Barnes, Jeff Cheadle, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Mary McCormick-Barger, Noe'l Smith-Jackson, Chris Sutton, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if

  20. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 28, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on January 28, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on

  1. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:07 PM on February 25, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Lynn Albin, Taffy Almeida, Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson, and Eric Wyse. I. Huei Meznarich asked if there were any

  2. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on March 18, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Rich Weiss, and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the February 25, 2014

  3. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on May 20, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Lynn Albin, Taffy Almeida, Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Shannan Johnson, Joan Kessner, Mary McCormick-Barger, Craig Perkins, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson and Eric Wyse. I. Acknowledging the

  4. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:07 PM on June 12, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Joe Archuleta, Sara Champoux, Glen Clark, Jim Douglas, Robert Elkins, Scot Fitzgerald, Joan Kessner, Jan McCallum, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Rich Weiss and Eric Wyse. I. Acknowledging the presence of new and/or infrequent

  5. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:10 PM on June 17, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Robert Elkins, Shannan Johnson, Joan Kessner, Jan McCallum, Craig Perkins, Karl Pool, Chris Sutton and Rich Weiss. I. Because of the short time since the last meeting, Huei Meznarich stated that the minutes from the June 12, 2014 meeting have not yet

  6. Value of Information References

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Morency, Christina

    This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

  7. REFERENCES Baines, W. D.

    Office of Scientific and Technical Information (OSTI)

    REFERENCES Baines, W. D. aud Peterson, E. G., 1951, "An Investigation of Flow Through ... D 50.8 m. A flow facility has been constructed for experiments with these screens. Air ...

  8. Value of Information References

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Morency, Christina

    2014-12-12

    This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

  9. Membrane reference electrode

    DOE Patents [OSTI]

    Redey, Laszlo; Bloom, Ira D.

    1989-01-01

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured with high spatial resolution.

  10. Precision displacement reference system

    DOE Patents [OSTI]

    Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  11. Membrane reference electrode

    DOE Patents [OSTI]

    Redey, L.; Bloom, I.D.

    1988-01-21

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

  12. Tritium Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    matters related to tritium. Contacts Mike Rogers (505) 665-2513 Email Chandra Savage Marsden (505) 664-0183 Email The Tritium Focus Group consists of participants from member...

  13. Focusing corner cube

    DOE Patents [OSTI]

    Monjes, J.A.

    1985-09-12

    This invention retortreflects and focuses a beam of light. The invention comprises a modified corner cube reflector wherein one reflective surface is planar, a second reflective surface is spherical, and the third reflective surface may be planar or convex cylindrical.

  14. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    been distributed to the Focus Group prior to the meeting. The comments that required editorial changes to the document were made in the working electronic version. b. At the June...

  15. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Elkins, Mary McCormick-Barger, Noe'l Smith-Jackson, Chris Sutton, Amanda Tuttle, Rick ... Noe'l Smith-Jackson stated that the HASQARD document is the work of the Focus Group not ...

  16. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2010 The meeting was called to order by Dave Crawford, Focus Group Chairman at 2:03 PM on November 16, 2010 in Conference Room 208 at 2425 Stevens. Those attending were: Dave Crawford (Chair), Cliff Watkins (Secretary), Lynn Albin, Heather Anastos, Paula Ciszak, Glen Clark, Doug Duvon, Kathi Dunbar, Robert Elkins, Scot Fitzgerald, Joan Kessner, Larry Markel, Huei Meznarich, Steve Smith, Chris Sutton, Noe'l Smith-Jackson, Chris Thompson, Eric Wyse. New members to the Focus Group were

  17. Planar-focusing cathodes.

    SciTech Connect (OSTI)

    Lewellen, J. W.; Noonan, J.; Accelerator Systems Division

    2005-01-01

    Conventional {pi}-mode rf photoinjectors typically use magnetic solenoids for emittance compensation. This provides independent focusing strength but can complicate rf power feed placement, introduce asymmetries (due to coil crossovers), and greatly increase the cost of the photoinjector. Cathode-region focusing can also provide for a form of emittance compensation. Typically this method strongly couples focusing strength to the field gradient on the cathode, however, and usually requires altering the longitudinal position of the cathode to change the focusing. We propose a new method for achieving cathode-region variable-strength focusing for emittance compensation. The new method reduces the coupling to the gradient on the cathode and does not require a change in the longitudinal position of the cathode. Expected performance for an S-band system is similar to conventional solenoid-based designs. This paper presents the results of rf cavity and beam dynamics simulations of the new design. We have proposed a method for performing emittance compensation using a cathode-region focusing scheme. This technique allows the focusing strength to be adjusted somewhat independently of the on-axis field strength. Beam dynamics calculations indicate performance should be comparable to presently in-use emittance compensation schemes, with a simpler configuration and fewer possibilities for emittance degradation due to the focusing optics. There are several potential difficulties with this approach, including cathode material selection, cathode heating, and peak fields in the gun. We hope to begin experimenting with a cathode of this type in the near future, and several possibilities exist for reducing the peak gradients to more acceptable levels.

  18. Plutonium focus area

    SciTech Connect (OSTI)

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  19. One in five online scholarly articles affected by 'reference rot'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scholarly articles affected by 'reference rot' One in five online scholarly articles affected by 'reference rot' Los Alamos authors focus on reference rot, the combination of link rot and content drift to which references to web resources included in STM articles are subject. January 26, 2015 From left, Los Alamos National Laboratory authors Lyudmila Balakireva, Herbert Van De Sompel and Harihar Shankar, and Martin Klein and Robert Sanderson (on computer screens). Their work was published in the

  20. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  1. Sagittal focusing Laue monochromator

    DOE Patents [OSTI]

    Zhong; Zhong , Hanson; Jonathan , Hastings; Jerome , Kao; Chi-Chang , Lenhard; Anthony , Siddons; David Peter , Zhong; Hui

    2009-03-24

    An x-ray focusing device generally includes a slide pivotable about a pivot point defined at a forward end thereof, a rail unit fixed with respect to the pivotable slide, a forward crystal for focusing x-rays disposed at the forward end of the pivotable slide and a rearward crystal for focusing x-rays movably coupled to the pivotable slide and the fixed rail unit at a distance rearward from the forward crystal. The forward and rearward crystals define reciprocal angles of incidence with respect to the pivot point, wherein pivoting of the slide about the pivot point changes the incidence angles of the forward and rearward crystals while simultaneously changing the distance between the forward and rearward crystals.

  2. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on March 20, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Jeff Cheadle, Glen Clark, Scot Fitzgerald, Larry Markel, Noe'l Smith-Jackson, Chris Sutton, Amanda Tuttle, Sam Vega, Rick Warriner and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the February 21, 2012 meeting. No HASQARD Focus Group members present

  3. Bringing Clouds into Focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bringing Clouds into Focus Bringing Clouds into Focus A New Global Climate Model May Reduce the Uncertainty of Climate Forecasting May 11, 2010 Contact: John Hules, JAHules@lbl.gov , +1 510 486 6008 Randall-fig4.png The large data sets generated by the GCRM require new analysis and visualization capabilities. This 3D plot of vorticity isosurfaces was developed using VisIt, a 3D visualization tool with a parallel distributed architecture, which is being extended to support the geodesic grid used

  4. Multifunctional reference electrode

    DOE Patents [OSTI]

    Redey, Laszlo; Vissers, Donald R.

    1983-01-01

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  5. Multifunctional reference electrode

    DOE Patents [OSTI]

    Redey, L.; Vissers, D.R.

    1981-12-30

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell are described. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  6. FEMP Focus - Fall 2003

    SciTech Connect (OSTI)

    2003-10-01

    Features information about technical assistance, energy security, laboratory efficiency, wood waste, coping with drought, energy-efficient purchasing, federal green power purchasing, Labs21 Case Studies, sustainable design, and more for federal agencies.

  7. Reference Model Development

    SciTech Connect (OSTI)

    Jepsen, Richard

    2011-11-02

    Presentation from the 2011 Water Peer Review in which principal investigator discusses project progress to develop a representative set of Reference Models (RM) for the MHK industry to develop baseline cost of energy (COE) and evaluate key cost component/system reduction pathways.

  8. Alignment and focus of mirrored facets of a heliosat

    DOE Patents [OSTI]

    Yellowhair, Julius E; Ho, Clifford Kuofei; Diver, Richard B; Moss, Timothy A

    2013-11-12

    Various technologies pertaining to aligning and focusing mirrored facets of a heliostat are described herein. Updating alignment and/or focus of mirrored facets is undertaken through generation of a theoretical image, wherein the theoretical image is indicative of a reflection of the target via the mirrored facets when the mirrored facets are properly aligned. This theoretical image includes reference points that are overlaid on an image of the target as reflected by the mirrored facets of the heliostat. A technician adjusts alignment/focus of a mirrored facet by causing reflected reference markings to become aligned with the reference points in the theoretical image.

  9. Focused ion beam system

    DOE Patents [OSTI]

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  10. Focused ion beam system

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  11. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2011 The meeting was called to order by Dave Crawford, Focus Group Chairman at 2:08 PM on January 18, 2011 in Conference Room 208 at 2425 Stevens. Those attending were: Dave Crawford (Chair), Cliff Watkins (Secretary), Heather Anastos, Paula Ciszak, Jim Conca, Scott Conley, Glen Clark, Scott Conley, Jim Douglas, Scot Fitzgerald, Stewart Huggins, Jim Jewett, Joan Kessner, Larry Markel, Huei Meznarich, Karl Pool, Dave Shea, Steve Smith, Chris Sutton, Amanda Tuttle, Rich Weiss, Eric Wyse. Dave

  12. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 The meeting was called to order by Huei Meznarich who was acting for the absent Dave Crawford, Focus Group Chairman at 2:04 PM on April 19, 2011 in Conference Room 208 at 2425 Stevens. Those attending were: Huei Meznarich (Acting Chair), Cliff Watkins (Secretary), Taffy Almeida, Heather Anastos, Courtney Blanchard, Jeff Cheadle, Glen Clark, Kathie Dunbar, Robert Elkins, Scot Fitzgerald, Greg Holte, Joan Kessner, Noe'l Smith- Jackson, Chris Sutton, Cindy Taylor, Chris Thompson, Amanda Tuttle,

  13. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2011 The meeting was called to order by Dave Crawford, Focus Group Chairman at 2:03 PM on May 17, 2011 in Conference Room 208 at 2425 Stevens. Those attending were: Dave Crawford (Chair), Cliff Watkins (Secretary), Taffy Almeida, Courtney Blanchard, Jeff Cheadle, Glen Clark, Robert Elkins, Scot Fitzgerald, Al Hawkins, Greg Holte, Kris Kuhl-Klinger, Larry Markel, Huei Meznarich, Noe'l Smith-Jackson, Chris Sutton, Cindy Taylor, Chris Thompson, Amanda Tuttle, Eric Wyse. I. Dave Crawford

  14. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2011 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on November 8, 2011 in Conference Room 126 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Lynn Albin, Heather Anastos, Courtney Blanchard, Jeff Cheadle, Scot Fitzgerald, Jim Jewett, Shannan Johnson, Kris Kuhl-Klinger, Joan Kessner, Larry Markel, Karl Pool, Noe'l Smith-Jackson, Steve Smith, Chris Sutton, Cindy Taylor, Chris Thompson, Amanda Tuttle and Eric

  15. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on January 17, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Mike Barnes, Jeff Cheadle, Glen Clark, Scot Fitzgerald, Shannan Johnson, Joan Kessner, Larry Markel, Cindy Taylor, Chris Thompson, Amanda Tuttle, Sam Vega, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the December 13, 2011 meeting.

  16. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:02 PM on February 21, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Lynn Albin, Taffy Almeida, Courtney Blanchard, Glen Clark, Scot Fitzgerald, Shannan Johnson, Kris Kuhl-Klinger, Larry Markel, Karl Pool, Steve Smith, Cindy Taylor, Amanda Tuttle, Sam Vega, Rick Warriner, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on

  17. Strategic Focus Points

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Focus Points June 2011 1. Establish the human capital and organizational foundation to create a high-performing organization. 2. Implement a cyber risk-management and incident response program that ensures effective security of Federal and M&O networks, provides appropriate flexibility, and meets legal requirements and OMB expectations. 3. Improve IT Services (EITS) into a best-in-class provider from both a technical and business perspective. 4. Implement and institutionalize a reformed,

  18. Tritium Focus Group Meeting:

    Office of Environmental Management (EM)

    32 nd Tritium Focus Group Meeting: Tritium research activities in Safety and Tritium Applied Research (STAR) facility, Idaho National Laboratory Masashi Shimada Fusion Safety Program, Idaho National Laboratory April 25 th 2013, Germantown, MD STI #: INL/MIS-13-28975 Outlines 1. Motivation of tritium research activity in STAR facility 2. Unique capabilities in STAR facility 3. Research highlights from tritium retention in HFIR neutron- irradiated tungsten April 25th 2013 Germantown, MD STAR

  19. OSH technical reference manual

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    In an evaluation of the Department of Energy (DOE) Occupational Safety and Health programs for government-owned contractor-operated (GOCO) activities, the Department of Labor`s Occupational Safety and Health Administration (OSHA) recommended a technical information exchange program. The intent was to share written safety and health programs, plans, training manuals, and materials within the entire DOE community. The OSH Technical Reference (OTR) helps support the secretary`s response to the OSHA finding by providing a one-stop resource and referral for technical information that relates to safe operations and practice. It also serves as a technical information exchange tool to reference DOE-wide materials pertinent to specific safety topics and, with some modification, as a training aid. The OTR bridges the gap between general safety documents and very specific requirements documents. It is tailored to the DOE community and incorporates DOE field experience.

  20. Reference Model Project (RMP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Model Project (RMP) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  1. Alignment reference device

    DOE Patents [OSTI]

    Patton, Gail Y.; Torgerson, Darrel D.

    1987-01-01

    An alignment reference device provides a collimated laser beam that minimizes angular deviations therein. A laser beam source outputs the beam into a single mode optical fiber. The output end of the optical fiber acts as a source of radiant energy and is positioned at the focal point of a lens system where the focal point is positioned within the lens. The output beam reflects off a mirror back to the lens that produces a collimated beam.

  2. Chapter 6 - References

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-1 CHAPTER 6 REFERENCES BLS (Bureau of Labor Statistics), 2002. Bureau of Labor Statistics Data, <http://www.bls.gov/data>, accessed January 25. CAIRS (Computerized Accident/Incident Reporting System), 2002. Statistics, <http://www.eh.doe.gov/cairs/stats.html>, accessed January 30. CEMRC (Carlsbad Environmental Monitoring & Research Center), 2000. Actinide Chemistry and Repository Science Laboratory Initiative, New Mexico State University, Carlsbad, New Mexico, December 15. CEQ

  3. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18, 2010 The meeting was called to order by Don Hart, Focus Group Chairman, at 2:00 PM on February 18, 2010 in Conference Room 199 at 2430 Stevens. Those attending were: Lynn Albin, Taffy Almeida, Heather Anastos, Glen Clark, Doug Duvon, Kathi Dunbar, Robert Elkins, Cindy English, Kris Kuhl-Klinger, Joan Kessner, Larry Markel, Huei Meznarich, Karl Pool, Steve Smith, Noe'l Smith-Jackson, Andrew Stevens, Chris Sutton, Chris Thompson, Wendy Thompson, Rich Weis, and Cliff Watkins. I. Because new

  4. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 The meeting was called to order by Dave Crawford, Focus Group Chairman at 2:10 PM on December 13, 2010 in Conference Room 199 at 2430 Stevens. Those attending were: Dave Crawford (Chair), Cliff Watkins (Secretary), Jeff Cheadle, Glen Clark, Robert Elkins, Scot Fitzgerald, Kris Kuhl-Klinger, Larry Markel, Huei Meznarich, Noe'l Smith-Jackson, Dave Shea, Chris Sutton, Cindy Taylor, Chris Thompson, Rich Weiss, Eric Wyse. I. Dave Crawford requested approval of the minutes from the November 16

  5. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16, 2011 The meeting was called to order by Dave Crawford, HASQARD Focus Group Chairman at 2:07 PM on August 16, 2011 in Conference Room 208 at 2425 Stevens. Those attending were: (Chair), Cliff Watkins (Secretary), Lynn Albin, Heather Anastos, Jeff Cheadle, Kathi Dunbar, Robert Elkins, Scot Fitzgerald, Jim Jewett, Kris Kuhl-Klinger, Joan Kessner, Larry Markel, Huei Meznarich, Noe'l Smith-Jackson, Cindy Taylor, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Dave Crawford requested comments on the

  6. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2011 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on October 4, 2011 in Conference Room 208 at 2425 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Lynn Albin, Heather Anastos, Jeff Cheadle, Glen Clark, Scot Fitzgerald, Shannan Johnson, Kris Kuhl-Klinger, Joan Kessner, Larry Markel, Karl Pool, Noe'l Smith-Jackson, Dave Shea, Cindy Taylor, Amanda Tuttle, Mary Ryan, Rich Weiss and Eric Wyse. I. Huei Meznarich requested

  7. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on December 13, 2011 in Conference Room 126 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Lynn Albin, Heather Anastos, Jeff Cheadle, Glen Clark, Scot Fitzgerald, Shannan Johnson, Kris Kuhl-Klinger, Joan Kessner, Karl Pool, Dave St. John, Noe'l Smith-Jackson, Chris Sutton, Cindy Taylor, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments

  8. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:06 PM on April 17, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Lynn Albin, Taffy Almeida, Jeff Cheadle, Glen Clark, Scot Fitzgerald, Kris Kuhl-Klinger, Joan Kessner, Larry Markel, Noe'l Smith-Jackson, Cindy Taylor, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the March 20, 2012

  9. Transverse field focused system

    DOE Patents [OSTI]

    Anderson, Oscar A.

    1986-01-01

    A transverse field focused (TFF) system for transport or acceleration of an intense sheet beam of negative ions in which a serial arrangement of a plurality of pairs of concentric cylindrical-arc electrodes is provided. Acceleration of the sheet beam can be achieved by progressively increasing the mean electrode voltage of successive electrode pairs. Because the beam is curved by the electrodes, the system can be designed to transport the beam through a maze passage which is baffled to prevent line of sight therethrough. Edge containment of the beam can be achieved by shaping the side edges of the electrodes to produce an electric force vector directed inwardly from the electrode edges.

  10. Dielectrophoretic columnar focusing device

    DOE Patents [OSTI]

    James, Conrad D. (Albuquerque, NM); Galambos, Paul C. (Albuquerque, NM); Derzon, Mark S. (Tijeras, NM)

    2010-05-11

    A dielectrophoretic columnar focusing device uses interdigitated microelectrodes to provide a spatially non-uniform electric field in a fluid that generates a dipole within particles in the fluid. The electric field causes the particles to either be attracted to or repelled from regions where the electric field gradient is large, depending on whether the particles are more or less polarizable than the fluid. The particles can thereby be forced into well defined stable paths along the interdigitated microelectrodes. The device can be used for flow cytometry, particle control, and other process applications, including cell counting or other types of particle counting, and for separations in material control.

  11. Coal Data: A reference

    SciTech Connect (OSTI)

    Not Available

    1991-11-26

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  12. Non-focusing active warhead

    DOE Patents [OSTI]

    Hornig, H.C.

    1998-12-22

    A non-nuclear, non-focusing, active warhead that comprises a high explosive charge contained within a casing of reactive metal is disclosed. When the high explosive is detonated, the reactive metal is dispersed and reacts with the air, which significantly increases the explosive yield of the warhead. The active warhead produces therefore much higher blast effects with significantly reduced weight compared to conventional munitions. The warhead is highly effective against such targets as aircraft which typically have thin fuselages, for example. The explosiveness of this warhead can be enhanced further by elevating the temperature and therefore the reactivity of the reactive metal before or during the explosion. New methods of enhancing the reactivity of the metal are also taught. 4 figs.

  13. Non-focusing active warhead

    DOE Patents [OSTI]

    Hornig, Howard C.

    1998-01-01

    A non-nuclear, non-focusing, active warhead that comprises a high explosive charge contained within a casing of reactive metal. When the high explosive is detonated, the reactive metal is dispersed and reacts with the air, which significantly increases the explosive yield of the warhead. The active warhead produces therefore much higher blast effects with significantly reduced weight compared to conventional munitions. The warhead is highly effective against such targets as aircraft which typically have thin fuselages, for example. The explosiveness of this warhead can be enhanced further by elevating the temperature and therefore the reactivity of the reactive metal before or during the explosion. New methods of enhancing the reactivity of the metal are also taught.

  14. Headquarters Security Quick Reference Book

    Office of Energy Efficiency and Renewable Energy (EERE)

    This quick reference book provides an overview of Department of Energy (DOE) Headquarters (HQ) security programs.

  15. STEP Intern Reference Check Sheet

    Broader source: Energy.gov [DOE]

    STEP Intern Reference Check Sheet, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  16. Coal data: A reference

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  17. Nuclear Science References Database

    SciTech Connect (OSTI)

    Pritychenko, B.; Běták, E.; Singh, B.; Totans, J.

    2014-06-15

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center (http://www.nndc.bnl.gov/nsr) and the International Atomic Energy Agency (http://www-nds.iaea.org/nsr)

  18. Long life reference electrode

    DOE Patents [OSTI]

    Yonco, Robert M.; Nagy, Zoltan

    1989-01-01

    An external, reference electrode is provided for long term use with a high temperature, high pressure system. The electrode is arranged in a vertical, electrically insulative tube with an upper portion serving as an electrolyte reservior and a lower portion in electrolytic communication with the system to be monitored. The lower end portion includes a flow restriction such as a porous plug to limit the electrolyte release into the system. A piston equalized to the system pressure is fitted into the upper portion of the tube to impart a small incremental pressure to the electrolyte. The piston is selected of suitable size and weight to cause only a slight flow of electrolyte through the porous plug into the high pressure system. This prevents contamination of the electrolyte but is of such small flow rate that operating intervals of a month or more can be achieved.

  19. Long life reference electrode

    DOE Patents [OSTI]

    Yonco, R.M.; Nagy, Z.

    1989-04-04

    An external, reference electrode is provided for long term use with a high temperature, high pressure system. The electrode is arranged in a vertical, electrically insulative tube with an upper portion serving as an electrolyte reservoir and a lower portion in electrolytic communication with the system to be monitored. The lower end portion includes a flow restriction such as a porous plug to limit the electrolyte release into the system. A piston equalized to the system pressure is fitted into the upper portion of the tube to impart a small incremental pressure to the electrolyte. The piston is selected of suitable size and weight to cause only a slight flow of electrolyte through the porous plug into the high pressure system. This prevents contamination of the electrolyte but is of such small flow rate that operating intervals of a month or more can be achieved. 2 figs.

  20. Long life reference electrode

    DOE Patents [OSTI]

    Yonco, R.M.; Nagy, Z.

    1987-07-30

    An external, reference electrode is provided for long term use with a high temperature, high pressure system. The electrode is arranged in a vertical, electrically insulative tube with an upper portion serving as an electrolyte reservoir and a lower portion in electrolytic communication with the system to be monitored. The lower end portion includes a flow restriction such as a porous plug to limit the electrolyte release into the system. A piston equalized to the system pressure is fitted into the upper portion of the tube to impart a small incremental pressure to the electrolyte. The piston is selected of suitable size and weight to cause only a slight flow of electrolyte through the porous plug into the high pressure system. This prevents contamination of the electrolyte but is of such small flow rate that operating intervals of a month or more can be achieved. 2 figs.

  1. Process Intensification - Chemical Sector Focus

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. Introduction ..................................................................................................................................................................... 1 4 2. Technology Assessment and Potential ................................................................................................................. 5 5 2.1 Chemical Industry Focus

  2. Sensor Characteristics Reference Guide

    SciTech Connect (OSTI)

    Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

    2013-04-01

    The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: • Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. • Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. • Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

  3. Focus Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outreach Forums » Focus Group and Work Group Activities » Focus Group Focus Group The Focus Group was formed in March 2007 to initiate dialogue and interface with labor unions, DOE Program Secretarial Offices, and stakeholders in areas of mutual interest and concern related to health, safety, security, and the environment. Meeting Documents Available for Download November 13, 2012 Work Group Leadership Meetings: Transition Elements This Focus Group Work Group telecom was held with the Work

  4. Apparatus for focusing flowing gas streams

    DOE Patents [OSTI]

    Nogar, N.S.; Keller, R.A.

    1985-05-20

    Apparatus for focusing gas streams. The principle of hydrodynamic focusing is applied to flowing gas streams in order to provide sample concentration for improved photon and sample utilization in resonance ionization mass spectrometric analysis. In a concentric nozzle system, gas samples introduced from the inner nozzle into the converging section of the outer nozzle are focused to streams 50-250-..mu..m in diameter. In some cases diameters of approximately 100-..mu..m are maintained over distances of several centimeters downstream from the exit orifice of the outer nozzle. The sheath gas employed has been observed to further provide a protective covering around the flowing gas sample, thereby isolating the flowing gas sample from possible unwanted reactions with nearby surfaces. A single nozzle variation of the apparatus for achieving hydrodynamic focusing of gas samples is also described.

  5. BrightPhase Energy Inc formerly Solar Focus | Open Energy Information

    Open Energy Info (EERE)

    Product: Solar Focus develops thermal and electric reflecting concentrator systems for water heating and electricity generation. References: BrightPhase Energy Inc (formerly...

  6. Capillary reference half-cell

    DOE Patents [OSTI]

    Hall, S.H.

    1996-02-13

    The present invention is a reference half-cell electrode wherein intermingling of test fluid with reference fluid does not affect the performance of the reference half-cell over a long time. This intermingling reference half-cell may be used as a single or double junction submersible or surface reference electrode. The intermingling reference half-cell relies on a capillary tube having a first end open to reference fluid and a second end open to test fluid wherein the small diameter of the capillary tube limits free motion of fluid within the capillary to diffusion. The electrode is placed near the first end of the capillary in contact with the reference fluid. The method of operation of the present invention begins with filling the capillary tube with a reference solution. After closing the first end of the capillary, the capillary tube may be fully submerged or partially submerged with the second open end inserted into test fluid. Since the electrode is placed near the first end of the capillary, and since the test fluid may intermingle with the reference fluid through the second open end only by diffusion, this intermingling capillary reference half-cell provides a stable voltage potential for long time periods. 11 figs.

  7. Capillary reference half-cell

    DOE Patents [OSTI]

    Hall, Stephen H.

    1996-01-01

    The present invention is a reference half-cell electrode wherein intermingling of test fluid with reference fluid does not affect the performance of the reference half-cell over a long time. This intermingling reference half-cell may be used as a single or double junction submersible or surface reference electrode. The intermingling reference half-cell relies on a capillary tube having a first end open to reference fluid and a second end open to test fluid wherein the small diameter of the capillary tube limits free motion of fluid within the capillary to diffusion. The electrode is placed near the first end of the capillary in contact with the reference fluid. The method of operation of the present invention begins with filling the capillary tube with a reference solution. After closing the first end of the capillary, the capillary tube may be fully submerged or partially submerged with the second open end inserted into test fluid. Since the electrode is placed near the first end of the capillary, and since the test fluid may intermingle with the reference fluid through the second open end only by diffusion, this intermingling capillary reference half-cell provides a stable voltage potential for long time periods.

  8. Focus Areas | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus Areas FA 1: Diversifying Supply FA 2: Developing Substitutes FA 3: Improving Reuse and Recycling FA 4: Crosscutting Research

  9. Mixed Waste Focus Area program management plan

    SciTech Connect (OSTI)

    Beitel, G.A.

    1996-10-01

    This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal.

  10. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect (OSTI)

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.