Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

U.S. Department of Energy Commercial Reference Building Models of the National Building Stock  

SciTech Connect

The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

2011-02-01T23:59:59.000Z

2

U.S. Department of Energy Commercial Reference Building Models of the National Building Stock  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy Department of Energy Commercial Reference Building Models of the National Building Stock Michael Deru, Kristin Field, Daniel Studer, Kyle Benne, Brent Griffith, and Paul Torcellini National Renewable Energy Laboratory Bing Liu, Mark Halverson, Dave Winiarski, and Michael Rosenberg Pacific Northwest National Laboratory Mehry Yazdanian Lawrence Berkeley National Laboratory Joe Huang Formerly of Lawrence Berkeley National Laboratory Drury Crawley Formerly of the U.S. Department of Energy Technical Report NREL/TP-5500-46861 February 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory

3

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

4

Commercial Reference Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings » Research Projects » Commercial Reference Buildings » Research Projects » Commercial Reference Buildings Commercial Reference Buildings The U.S. Department of Energy (DOE), in conjunction with three of its national laboratories, developed commercial reference buildings, formerly known as commercial building benchmark models. These reference buildings play a critical role in the program's energy modeling software research by providing complete descriptions for whole building energy analysis using EnergyPlus simulation software. There are 16 building types that represent approximately 70% of the commercial buildings in the U.S., according to the report published by the National Renewable Energy Laboratory titled U.S. Department of Energy Commercial Reference Building Models of the National Building Stock. These

5

Existing Commercial Reference Buildings Constructed Before 1980 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed Before 1980 Existing Commercial Reference Buildings Constructed Before 1980 Existing Commercial Reference Buildings Constructed Before 1980 The files on this page contain commercial reference building models for existing buildings constructed before 1980, organized by building type and location. These U.S. Department of Energy (DOE) reference buildings are complete descriptions for whole building energy analysis. You can also return to a summary of building types and climate zones and information about other building vintages. These files are updated regularly. There are two versions of these files on this page. Version 1.3_5.0 was updated September 27, 2010 and Version 1.4_7.2 was updated November 13, 2012. You can also view related resources: an archive of past reference buildings files

6

Archived Reference Building Type: Outpatient health care  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

7

Archived Reference Building Type: Outpatient health care  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zonesis available for reference.Current versionsare also available.

8

Commercial Reference Building: Hospital | OpenEI  

Open Energy Info (EERE)

09 09 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278309 Varnish cache server Commercial Reference Building: Hospital Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Hospital for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

9

Commercial Reference Building: Warehouse | OpenEI  

Open Energy Info (EERE)

Warehouse Warehouse Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Warehouse for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for three categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

10

Building Technologies Office: Existing Commercial Reference Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

You can also view related resources: an archive of past reference buildings files a ZIP file containing the TMY2 weather data that were used to generate the following...

11

Commercial Reference Building: Supermarket | OpenEI  

Open Energy Info (EERE)

Supermarket Supermarket Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Supermarket for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

12

DOE Commercial Reference Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Version 1.4_7.0 New Construction, ANSI/ASHRAE/IESNA 90.1-2004 Site Energy Use Intensities (EUIs) [kBtu/ft 2 /yr] August 2012 Miami Houston Phoenix Atlanta Los Angeles Las Vegas San Francisco Baltimore Albuquerque Seattle Chicago Denver Minneapolis Helena Duluth Fairbanks Weighted Average Climate Zone 1A 2A 2B 3A 3B 3B 3C 4A 4B 4C 5A 5B 6A 6B 7 8 Large Office 47 48 45 44 39 41 41 46 40 41 47 42 52 46 53 67 45 Medium Office 51 51 51 48 41 47 43 51 46 45 52 47 57 51 59 76 50 Small Office 52 51 53 47 41 46 41 51 47 47 54 49 59 54 61 83 51 Warehouse 29 23 24 27 19 24 23 32 29 28 38 34 46 41 53 78 30 Stand-alone Retail 60 63 62 63 46 58 53 74 64 68 84 72 96 87 107 150 72 Strip Mall 57 61 60 65 48 61 57 78 68 74 89 76 103 94 115 164 71 Primary School 57 57 57 55 46 54 52 62 56 55 66 59 75 67 80 103 60 Secondary School 60 61 59 60 44 56 51 71 59 63 78 66 91 79 99 135 67 Supermarket

13

Reference Buildings by Building Type: Small Hotel | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Publications Reference Buildings by Climate Zone and Representative City: 2A Houston, Texas Reference Buildings by Climate Zone and Representative City: 3B Los Angeles,...

14

Commercial Reference Buildings | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Commercial Reference Buildings Jump to: navigation, search DOE developed Commercial Reference Buildings which provide descriptions for whole building analysis using EnergyPlus. There are 16 building types and three categories that apply to all building types. The commercial reference buildings were developed across 16 reference locations. Contents 1 Building Types 2 Construction Categories 3 Climate Zones Used to Create Reference Buildings 4 References Building Types DOE developed 16 Commercial Reference Building Types[1] , which represent approximately 70% of the commercial buildings in the U.S. [2]. Whole

15

Existing Commercial Reference Buildings Constructed In or After 1980 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed In or After Existing Commercial Reference Buildings Constructed In or After 1980 Existing Commercial Reference Buildings Constructed In or After 1980 The files on this page contain commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. These U.S. Department of Energy (DOE) reference buildings are complete descriptions for whole building energy analysis. You can also return to a summary of building types and climate zones and information about other building vintages. These files are updated regularly. There are two versions of these files on this page. Version 1.3_5.0 was updated September 27, 2010 and Version 1.4_7.2 was updated November 13, 2012. You can also view related resources: an archive of past reference buildings files

16

Reference Buildings by Climate Zone and Representative City:...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Publications Reference Buildings by Climate Zone and Representative City: 2A Houston, Texas Reference Buildings by Building Type: Small Hotel Reference Buildings by Climate Zone...

17

Existing Commercial Reference Buildings Constructed In or After 1980 -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed In or After Existing Commercial Reference Buildings Constructed In or After 1980 - Archive Existing Commercial Reference Buildings Constructed In or After 1980 - Archive Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. Archived Reference Buildings Building Type Version 1.2_4.0 updated 3/12/10 Large office (ZIP 2.3 MB) Medium office (ZIP 2.2 MB) Small office (ZIP 1.4 MB) Warehouse (ZIP 980 KB) Stand-alone retail (ZIP 2 MB) Strip mall (ZIP 2.3 MB) Primary school (ZIP 2.7 MB) Secondary school (ZIP 3.9 MB) Supermarket (ZIP 2.2 MB) Quick service restaurant (ZIP 1.1 MB)

18

Existing Commercial Reference Buildings Constructed Before 1980 - Archive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed Before 1980 - Existing Commercial Reference Buildings Constructed Before 1980 - Archive Existing Commercial Reference Buildings Constructed Before 1980 - Archive Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. Archived Reference Buildings Building Type Version 1.2_4.0 updated 3/12/10 Large office (ZIP 2.3 MB) Medium office (ZIP 2.2 MB) Small office (ZIP 1.4 MB) Warehouse (ZIP 980 KB) Stand-alone retail (ZIP 2 MB) Strip mall (ZIP 2.3 MB) Primary school (ZIP 2.7 MB) Secondary school (ZIP 3.9 MB) Supermarket (ZIP 2.2 MB) Quick service restaurant (ZIP 1.1 MB) Full service restaurant

19

New Construction - Commercial Reference Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Construction - Commercial Reference Buildings New Construction - Commercial Reference Buildings New Construction - Commercial Reference Buildings The files on this page contain commercial reference building models for new construction, organized by building type and location. These U.S. Department of Energy (DOE) reference buildings are complete descriptions for whole building energy analysis. You can also return to a summary of building types and climate zones and information about other building vintages. These files are updated regularly and comply with ANSI/ASHRAE/IESNA Standard 90.1-2004. For more information about standards, visit the ASHRAE Web site. There are two versions of these files on this page. Version 1.3_5.0 was updated September 27, 2010 and Version 1.4_7.2 was updated November 13, 2012.

20

Commercial Reference Building: Medium Office | OpenEI  

Open Energy Info (EERE)

Medium Office Medium Office Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Medium Office for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings. The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for three categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Commercial Reference Building: Small Office | OpenEI  

Open Energy Info (EERE)

Office Office Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Small Office for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for three categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

22

Archive Reference Buildings by Building Type: Large Hotel | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large Hotel Large Hotel Archive Reference Buildings by Building Type: Large Hotel Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-large_hotel.zip benchmark-v1.1_3.1-large_hotel.zip benchmark-new-v1.2_4.0-large_hotel.zip More Documents & Publications Archive Reference Buildings by Building Type: Small Hotel

23

Archive Reference Buildings by Building Type: Large office | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large office Large office Archive Reference Buildings by Building Type: Large office Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-large_office.zip benchmark-v1.1_3.1-large_office.zip benchmark-new-v1.2_4.0-large_office.zip More Documents & Publications Archive Reference Buildings by Building Type: Large Hotel

24

Archive Reference Buildings by Building Type: Hospital | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hospital Hospital Archive Reference Buildings by Building Type: Hospital Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-hospital.zip benchmark-v1.1_3.1-hospital.zip benchmark-new-v1.2_4.0-hospital.zip More Documents & Publications Archive Reference Buildings by Building Type: Large office

25

Archive Reference Buildings by Building Type: Medium office | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Medium office Medium office Archive Reference Buildings by Building Type: Medium office Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-medium_office.zip benchmark-v1.1_3.1-medium_office.zip benchmark-new-v1.2_4.0-medium_office.zip More Documents & Publications Archive Reference Buildings by Building Type: Large office

26

Reference Buildings by Building Type: Small Hotel  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

27

Reference Buildings by Building Type: Large Hotel  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

28

Commercial Reference Building: Primary School | OpenEI  

Open Energy Info (EERE)

Primary School Primary School Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Primary School for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for the three categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

29

Commercial Reference Building: Secondary School | OpenEI  

Open Energy Info (EERE)

Secondary School Secondary School Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Secondary School for each of the 16 climate zones,and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

30

Commercial Reference Building: Full Service Restaurant | OpenEI  

Open Energy Info (EERE)

Full Service Restaurant Full Service Restaurant Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Full-Service Restaurant for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

31

Commercial Reference Building: Stand-alone Retail | OpenEI  

Open Energy Info (EERE)

Stand-alone Retail Stand-alone Retail Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Stand-alone Retail for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

32

Commercial Reference Building: Large Office | OpenEI  

Open Energy Info (EERE)

Office Office Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Large office for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

33

Commercial Reference Building: Quick Service Restaurant | OpenEI  

Open Energy Info (EERE)

Quick Service Restaurant Quick Service Restaurant Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Quick Service Restaurant for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

34

Commercial Reference Building: Midrise Apartment | OpenEI  

Open Energy Info (EERE)

Midrise Apartment Midrise Apartment Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Midrise Apartment, for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

35

Commercial Reference Building: Strip Mall | OpenEI  

Open Energy Info (EERE)

Strip Mall Strip Mall Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Strip Mall for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

36

Commercial Reference Building: Large Hotel | OpenEI  

Open Energy Info (EERE)

Hotel Hotel Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Large Hotel for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

37

Commercial Reference Building: Outpatient Health Care | OpenEI  

Open Energy Info (EERE)

Outpatient Health Care Outpatient Health Care Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Outpatient Health Care for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

38

Archive Reference Buildings by Building Type: Restaurant | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Restaurant Restaurant Archive Reference Buildings by Building Type: Restaurant Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-sit_down_restaurant.zip benchmark-v1.1_3.1-sit_down_restaurant.zip benchmark-new-v1.2_4.0-full_service_restaurant.zip More Documents & Publications

39

Commercial Reference Building: Small Hotel | OpenEI  

Open Energy Info (EERE)

60 60 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278160 Varnish cache server Commercial Reference Building: Small Hotel Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Small Hotel for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

40

Commercial Prototype Building Models | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototype Building Models Prototype Building Models The U.S. Department of Energy (DOE) supports the development of commercial building energy codes and standards by participating in review processes and providing analyses that are available for public review and use. To calculate the impact of ASHRAE Standard 90.1, researchers at Pacific Northwest National Laboratory (PNNL) created a suite of 16 prototype buildings covering 80% of the commercial building floor area in the United States for new construction, including both commercial buildings and mid- to high-rise buildings. These prototype buildings-derived from DOE's Commercial Reference Building Models-cover all the reference building types except supermarkets, and also add a new building prototype representing high-rise apartment buildings. As ASHRAE Standard 90.1

Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

90.1 Prototype Building Models Outpatient Healthcare | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Outpatient Healthcare Outpatient Healthcare The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

42

Reference Buildings by Climate Zone and Representative City:...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Houston, Texas Reference Buildings by Climate Zone and Representative City: 2A Houston, Texas In addition to the ZIP file for each building type, you can directly view the...

43

DOE Commercial Reference Buildings Summary of Changes Between Versions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Summary of Changes between Versions November 2012 1 Applicable Model(s) Change Changes from version 1.2_4.0 to 1.3_5.0 All Transitioned from EnergyPlus 4.0 to EnergyPlus 5.0 All For fan power calculations, fan nameplate horsepower corrected from 90% brake horsepower to 110% brake horsepower All Removed multipliers on roof surface infiltration because EnergyPlus now counts the roof surface in infiltration per exterior surface area calculations All Added parking lot exterior lighting All Updated headers to reflect new name for technical report reference All models with DX cooling Changed COP calculation to remove fan power at ARI conditions, not max. allowable fan power (see Ref. Bldgs. Technical Report for more info.) All models with DX cooling Changed cooling performance curves to reflect

47

Reference Buildings by Climate Zone and Representative City: 8 Fairbanks,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Zone and Representative City: 8 Climate Zone and Representative City: 8 Fairbanks, Alaska Reference Buildings by Climate Zone and Representative City: 8 Fairbanks, Alaska In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_8a_usa_ak_fairbanks_post1980_v1.3_5.0.zip refbldg_8a_usa_ak_fairbanks_post1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 3A Atlanta, Georgia Reference Buildings by Climate Zone and Representative City: 6B Helena, Montana Reference Buildings by Building Type: Secondary school

48

Autotune Building Energy Models  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Autotune Building Energy Models Autotune Building Energy Models Joshua New Oak Ridge National Laboratory newjr@ornl.gov, 865-241-8783 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * "All (building energy) models are wrong, but some are useful" - 22%-97% different from utility data for 3,349 buildings * More accurate models are more useful - Error from inputs and algorithms for practical reasons - Useful for cost-effective energy efficiency (EE) at speed and scale

49

Reference Buildings by Climate Zone and Representative City: 7 Duluth,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Duluth, Minnesota Reference Buildings by Climate Zone and Representative City: 7 Duluth, Minnesota In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_7a_usa_mn_duluth_pre1980_v1.3_5.0.zip refbldg_7a_usa_mn_duluth_pre1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 3B Los Angeles, California Reference Buildings by Climate Zone and Representative City: 3C San Francisco, California Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois

50

Reference Buildings by Climate Zone and Representative City: 6A  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A A Minneapolis, Minnesota Reference Buildings by Climate Zone and Representative City: 6A Minneapolis, Minnesota In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_6a_usa_mn_minneapolis_post1980_v1.3_5.0.zip refbldg_6a_usa_mn_minneapolis_post1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 7 Duluth, Minnesota Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois Reference Buildings by Climate Zone and Representative City: 5B Boulder,

51

Archive Reference Buildings by Climate Zone: 5B Boulder, Colorado |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B Boulder, Colorado B Boulder, Colorado Archive Reference Buildings by Climate Zone: 5B Boulder, Colorado Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-5b_co_boulder.zip benchmark-v1.1_3.1-5b_usa_co_boulder.zip benchmark-new-v1.2_4.0-5b_usa_co_boulder.zip More Documents & Publications

52

Archive Reference Buildings by Climate Zone: 6B Helena, Montana |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B Helena, Montana B Helena, Montana Archive Reference Buildings by Climate Zone: 6B Helena, Montana Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-6b_mt_helena.zip benchmark-v1.1_3.1-6b_usa_mt_helena.zip benchmark-new-v1.2_4.0-6b_usa_mt_helena.zip More Documents & Publications

53

Archive Reference Buildings by Climate Zone: 5A Chicago, Illinois |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Chicago, Illinois A Chicago, Illinois Archive Reference Buildings by Climate Zone: 5A Chicago, Illinois Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-5a_il_chicago.zip benchmark-v1.1_3.1-5a_usa_il_chicago-ohare.zip benchmark-new-v1.2_4.0-5a_usa_il_chicago-ohare.zip More Documents & Publications

54

Archive Reference Buildings by Climate Zone: 6A Minneapolis, Minnesota |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Minneapolis, A Minneapolis, Minnesota Archive Reference Buildings by Climate Zone: 6A Minneapolis, Minnesota Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-6a_mn_minneapolis.zip benchmark-v1.1_3.1-6a_usa_mn_minneapolis.zip benchmark-new-v1.2_4.0-6a_usa_mn_minneapolis.zip

55

Archive Reference Buildings by Climate Zone: 4A Baltimore, Maryland |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Baltimore, Maryland A Baltimore, Maryland Archive Reference Buildings by Climate Zone: 4A Baltimore, Maryland Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-4a_md_baltimore.zip benchmark-v1.1_3.1-4a_usa_md_baltimore.zip benchmark-new-v1.2_4.0-4a_usa_md_baltimore.zip More Documents & Publications

56

Archive Reference Buildings by Climate Zone: 7 Duluth, Minnesota |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Duluth, Minnesota 7 Duluth, Minnesota Archive Reference Buildings by Climate Zone: 7 Duluth, Minnesota Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-7a_mn_duluth.zip benchmark-v1.1_3.1-7a_usa_mn_duluth.zip benchmark-new-v1.2_4.0-7a_usa_mn_duluth.zip More Documents & Publications

57

Archive Reference Buildings by Climate Zone: 4C Seattle, Washington |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C Seattle, Washington C Seattle, Washington Archive Reference Buildings by Climate Zone: 4C Seattle, Washington Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-4c_wa_seattle.zip benchmark-v1.1_3.1-4c_usa_wa_seattle.zip benchmark-new-v1.2_4.0-4c_usa_wa_seattle.zip More Documents & Publications

58

Archive Reference Buildings by Climate Zone: 2B Phoenix, Arizona |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B Phoenix, Arizona B Phoenix, Arizona Archive Reference Buildings by Climate Zone: 2B Phoenix, Arizona Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-2b_az_phoenix.zip benchmark-v1.1_3.1-2b_usa_az_phoenix.zip benchmark-new-v1.2_4.0-2b_usa_az_phoenix.zip More Documents & Publications

59

Archive Reference Buildings by Climate Zone: 8 Fairbanks, Alaska |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Fairbanks, Alaska 8 Fairbanks, Alaska Archive Reference Buildings by Climate Zone: 8 Fairbanks, Alaska Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-8a_ak_fairbanks.zip benchmark-v1.1_3.1-8a_usa_ak_fairbanks.zip benchmark-new-v1.2_4.0-8a_usa_ak_fairbanks.zip More Documents & Publications

60

Reference Buildings by Building Type: Stand-alone retail  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Reference Buildings by Building Type: Outpatient health care  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

62

Building Energy Modeling Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling (BEM) Modeling (BEM) Library TDM - Amir Roth Ellen Franconi Rocky Mountain Institute Efranconi@rmi.org 303-567-8609 April 2, 2013 Photo by : Dennis Schroeder, NREL 23250 2 | Building Technologies Office eere.energy.gov Project Overview Building Energy Modeling (BEM) Library * Define and develop a best-practices BEM knowledge repository to improve modeling consistency and address training gaps * Raise energy modeling industry "techniques" to the same

63

Comparison of Building Energy Modeling Programs: Building Loads  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Building Energy Modeling Programs: Building Loads Title Comparison of Building Energy Modeling Programs: Building Loads Publication Type Report LBNL Report Number...

64

Complete 90.1 Prototype Building Model package | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Complete 90.1 Prototype Building Model package Complete 90.1 Prototype Building Model package The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each

65

90.1 Prototype Building Models Full Service Restaurant | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

90.1 Prototype Building Models Full Service Restaurant 90.1 Prototype Building Models Full Service Restaurant The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each

66

90.1 Prototype Building Models- Medium Office | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Models- Medium Office Models- Medium Office The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

67

90.1 Prototype Building Models Secondary School | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Secondary School Secondary School The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

68

90.1 Prototype Building Models Mid-rise Apartment | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mid-rise Apartment Mid-rise Apartment The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

69

90.1 Prototype Building Models Stand Alone Retail | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Stand Alone Retail Stand Alone Retail The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

70

90.1 Prototype Building Models Quick Service Restaurant | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Quick Service Restaurant Quick Service Restaurant The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

71

90.1 Prototype Building Models Large Hotel | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hotel Hotel The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

72

90.1 Prototype Building Models Warehouse (non-refrigerated) | Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Warehouse (non-refrigerated) Warehouse (non-refrigerated) The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

73

90.1 Prototype Building Models Large Office | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Office The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

74

90.1 Prototype Building Models Small Office | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Office The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

75

90.1 Prototype Building Models Strip Mall | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Strip Mall Strip Mall The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

76

90.1 Prototype Building Models Small Hotel | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hotel Hotel The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

77

90.1 Prototype Building Models Primary School | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Primary School Primary School The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

78

90.1 Prototype Building Models Hospital | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hospital Hospital The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

79

Using DOE Commercial Reference Buildings for Simulation Studies: Preprint  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy developed 256 EnergyPlus models for use in studies that aim to characterize about 70% of the U.S. commercial building stock. Sixteen building types - including restaurants, health care, schools, offices, supermarkets, retail, lodging, and warehouses - are modeled across 16 cities to represent the diversity of U.S. climate zones. Weighting factors have been developed to combine the models in proportions similar to those of the McGraw-Hill Construction Projects Starts Database for 2003-2007. This paper reviews the development and contents of these models and their applications in simulation studies.

Field, K.; Deru, M.; Studer, D.

2010-08-01T23:59:59.000Z

80

MHK Reference Model: Relevance to Computer Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

July 9 th , 2012 SAND Number: 2012-5508P MHK Reference Model: Relevance to Computer Simulation Reference Model Partners Oregon State University NNMREC University of...

Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Model Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

82

Commercial Buildings Sector Agent-Based Model | Open Energy Information  

Open Energy Info (EERE)

Commercial Buildings Sector Agent-Based Model Commercial Buildings Sector Agent-Based Model Jump to: navigation, search Tool Summary Name: Commercial Buildings Sector Agent-Based Model Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Buildings - Commercial Phase: Evaluate Options Topics: Implementation Resource Type: Technical report User Interface: Website Website: web.anl.gov/renewables/research/building_agent_based_model.html OpenEI Keyword(s): EERE tool, Commercial Buildings Sector Agent-Based Model Language: English References: Building Efficiency: Development of an Agent-based Model of the US Commercial Buildings Sector[1] Model the market-participants, dynamics, and constraints-help decide whether to adopt energy-efficient technologies to meet commercial building

83

Autotune Building Energy Models  

NLE Websites -- All DOE Office Websites (Extended Search)

service" within the BTO Strategic BEM Portfolio 5 | Building Technologies Office eere.energy.gov Approach Approach: * Multi-objective optimization algorithms to minimize error...

84

Reference Buildings by Climate Zone and Representative City: 4C Seattle,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reference Buildings by Climate Zone and Representative City: 4C Reference Buildings by Climate Zone and Representative City: 4C Seattle, Washington Reference Buildings by Climate Zone and Representative City: 4C Seattle, Washington In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_4c_usa_wa_seattle_new2004_v1.3_5.0.zip refbldg_4c_usa_wa_seattle_new2004_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 4C Seattle, Washington Reference Buildings by Climate Zone and Representative City: 4C Seattle, Washington Reference Buildings by Climate Zone and Representative City: 2B Phoenix,

85

Reference Buildings by Climate Zone and Representative City: 5A Chicago,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reference Buildings by Climate Zone and Representative City: 5A Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_5a_usa_il_chicago-ohare_post1980_v1.3_5.0.zip refbldg_5a_usa_il_chicago-ohare_post1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 5B Boulder, Colorado Reference Buildings by Climate Zone and Representative City: 6A Minneapolis, Minnesota Reference Buildings by Climate Zone and Representative City: 6B Helena,

86

Model interoperability in building information modelling  

Science Conference Proceedings (OSTI)

The exchange of design models in the design and construction industry is evolving away from 2-dimensional computer-aided design (CAD) and paper towards semantically-rich 3-dimensional digital models. This approach, known as Building Information Modelling ... Keywords: Building Information Modelling, Interoperability

Jim Steel; Robin Drogemuller; Bianca Toth

2012-02-01T23:59:59.000Z

87

Commercial Reference Building: Large Hotel

Open Energy Info (EERE)

descriptions for whole building energy analysis using

90

Commercial Reference Building: Hospital

Open Energy Info (EERE)

descriptions for whole building energy analysis using

91

Commercial Reference Building: Supermarket

Open Energy Info (EERE)

descriptions for whole building energy analysis using

92

Commercial Reference Building: Small Hotel

Open Energy Info (EERE)

descriptions for whole building energy analysis using

93

Reference Inflow Characterization for River Resource Reference Model (RM2)  

DOE Green Energy (OSTI)

Sandia National Laboratory (SNL) is leading an effort to develop reference models for marine and hydrokinetic technologies and wave and current energy resources. This effort will allow the refinement of technology design tools, accurate estimates of a baseline levelized cost of energy (LCoE), and the identification of the main cost drivers that need to be addressed to achieve a competitive LCoE. As part of this effort, Oak Ridge National Laboratory was charged with examining and reporting reference river inflow characteristics for reference model 2 (RM2). Published turbulent flow data from large rivers, a water supply canal and laboratory flumes, are reviewed to determine the range of velocities, turbulence intensities and turbulent stresses acting on hydrokinetic technologies, and also to evaluate the validity of classical models that describe the depth variation of the time-mean velocity and turbulent normal Reynolds stresses. The classical models are found to generally perform well in describing river inflow characteristics. A potential challenge in river inflow characterization, however, is the high variability of depth and flow over the design life of a hydrokinetic device. This variation can have significant effects on the inflow mean velocity and turbulence intensity experienced by stationary and bottom mounted hydrokinetic energy conversion devices, which requires further investigation, but are expected to have minimal effects on surface mounted devices like the vertical axis turbine device designed for RM2. A simple methodology for obtaining an approximate inflow characterization for surface deployed devices is developed using the relation umax=(7/6)V where V is the bulk velocity and umax is assumed to be the near-surface velocity. The application of this expression is recommended for deriving the local inflow velocity acting on the energy extraction planes of the RM2 vertical axis rotors, where V=Q/A can be calculated given a USGS gage flow time-series and stage vs. cross-section area rating relationship.

Neary, Vincent S [ORNL

2011-12-01T23:59:59.000Z

94

REFERENCE APPENDICES For the 2013 Building Energy Efficiency Standards  

E-Print Network (OSTI)

. ADDITION is any change to a building that increases conditioned floor area and conditioned volume. Addition is also any change that increases the floor area or volume of an unconditioned building of an occupancy group or type regulated by Part 6. Addition is also any change that increases the illuminated area

95

Building Technologies Office: Energy Modeling Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Software on Twitter Bookmark Building Technologies Office: Energy Modeling Software on Google Bookmark Building Technologies Office: Energy Modeling Software on Delicious Rank...

96

An expectation model of referring expressions  

E-Print Network (OSTI)

This thesis introduces EMRE, an expectation-based model of referring expressions. EMRE is proposed as a model of non-syntactic dependencies - in particular, discourse-level semantic dependencies that bridge sentence gaps. ...

Krmer, John, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

97

Modeling Distributed Electricity Generation in the NEMS Buildings Models  

Reports and Publications (EIA)

This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

Erin Boedecker

2011-01-25T23:59:59.000Z

98

Portfolio Manager Technical Reference: Green Power | ENERGY STAR Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Power Green Power Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

99

Autotune E+ Building Energy Models  

SciTech Connect

This paper introduces a novel Autotune methodology under development for calibrating building energy models (BEM). It is aimed at developing an automated BEM tuning methodology that enables models to reproduce measured data such as utility bills, sub-meter, and/or sensor data accurately and robustly by selecting best-match E+ input parameters in a systematic, automated, and repeatable fashion. The approach is applicable to a building retrofit scenario and aims to quantify the trade-offs between tuning accuracy and the minimal amount of ground truth data required to calibrate the model. Autotune will use a suite of machine-learning algorithms developed and run on supercomputers to generate calibration functions. Specifically, the project will begin with a de-tuned model and then perform Monte Carlo simulations on the model by perturbing the uncertain parameters within permitted ranges. Machine learning algorithms will then extract minimal perturbation combinations that result in modeled results that most closely track sensor data. A large database of parametric EnergyPlus (E+) simulations has been made publicly available. Autotune is currently being applied to a heavily instrumented residential building as well as three light commercial buildings in which a de-tuned model is autotuned using faux sensor data from the corresponding target E+ model.

New, Joshua Ryan [ORNL; Sanyal, Jibonananda [ORNL; Bhandari, Mahabir S [ORNL; Shrestha, Som S [ORNL

2012-01-01T23:59:59.000Z

100

Better Buildings Neighborhood Program: Business Model Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Business Model Business Model Resources to someone by E-mail Share Better Buildings Neighborhood Program: Business Model Resources on Facebook Tweet about Better Buildings Neighborhood Program: Business Model Resources on Twitter Bookmark Better Buildings Neighborhood Program: Business Model Resources on Google Bookmark Better Buildings Neighborhood Program: Business Model Resources on Delicious Rank Better Buildings Neighborhood Program: Business Model Resources on Digg Find More places to share Better Buildings Neighborhood Program: Business Model Resources on AddThis.com... Getting Started Assess the Market Establish Goals & Objectives Develop Plans of Action Business Model Resources Driving Demand Financing Workforce Development Business Model Resources Business Models Workshop and Materials

First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page
Index
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


Index
101

Property:Buildings/ModelBuildingType | Open Energy Information  

Open Energy Info (EERE)

Buildings/ModelBuildingType Buildings/ModelBuildingType Jump to: navigation, search This is a property of type Page. It links to pages that use the form Buildings Model. Education Food Sales Food Service Health Care (Inpatient) Health Care (Outpatient) Lodging Mercantile (Retail Other Than Mall) Mercantile (Enclosed and Strip Malls) Office Public Assembly Public Order and Safety Religious Worship Service Warehouse and Storage Other Vacant Pages using the property "Buildings/ModelBuildingType" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + Mercantile (Retail Other Than Mall) + General Merchandise 2009 TSD Chicago High Plug Load Baseline + Mercantile (Retail Other Than Mall) + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + Mercantile (Retail Other Than Mall) +

102

Darwinian Model Building  

SciTech Connect

We present a way to generate heuristic mathematical models based on the Darwinian principles of variation and selection in a pool of individuals over many generations. Each individual has a genotype (the hereditary properties) and a phenotype (the expression of these properties in the environment). Variation is achieved by cross-over and mutation operations on the genotype which consists in the present case of a single chromosome. The genotypes 'live' in the environment of the data. Nested Sampling is used to optimize the free parameters of the models given the data, thus giving rise to the phenotypes. Selection is based on the phenotypes.The evidences which naturally follow from the Nested Sampling Algorithm are used in a second level of Nested Sampling to find increasingly better models.The data in this paper originate from the Leiden Cytology and Pathology Laboratory (LCPL), which screens pap smears for cervical cancer. We have data for 1750 women who on average underwent 5 tests each. The data on individual women are treated as a small time series. We will try to estimate the next value of the prime cancer indicator from previous tests of the same woman.

Kester, Do [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands); Bontekoe, Romke [Bontekoe Research, Rooseveltstraat 4d, 2321 BM Leiden (Netherlands)

2011-03-14T23:59:59.000Z

103

Archive Reference Buildings by Climate Zone: 1A Miami, Florida | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1A Miami, Florida 1A Miami, Florida Archive Reference Buildings by Climate Zone: 1A Miami, Florida Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-1a_fl_miami.zip benchmark-v1.1_3.1-1a_usa_fl_miami.zip benchmark-new-v1.2_4.0-1a_usa_fl_miami.zip More Documents & Publications

104

Archive Reference Buildings by Climate Zone: 3B Las Vegas, Nevada |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Las Vegas, Nevada Las Vegas, Nevada Archive Reference Buildings by Climate Zone: 3B Las Vegas, Nevada Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-3b_nv_las_vegas.zip benchmark-v1.1_3.1-3b_usa_nv_las_vegas.zip benchmark-new-v1.2_4.0-3b_usa_nv_las_vegas.zip More Documents & Publications

105

Archive Reference Buildings by Climate Zone: 3C San Francisco, California |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C San Francisco, C San Francisco, California Archive Reference Buildings by Climate Zone: 3C San Francisco, California Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-3c_ca_san_francisco.zip benchmark-v1.1_3.1-3c_usa_ca_san_francisco.zip benchmark-new-v1.2_4.0-3c_usa_ca_san_francisco.zip

106

Archive Reference Buildings by Climate Zone: 4B Albuquerque, New Mexico |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B Albuquerque, New B Albuquerque, New Mexico Archive Reference Buildings by Climate Zone: 4B Albuquerque, New Mexico Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-4b_nm_albuquerque.zip benchmark-v1.1_3.1-4b_usa_nm_albuquerque.zip benchmark-new-v1.2_4.0-4b_usa_nm_albuquerque.zip

107

Archive Reference Buildings by Climate Zone: 2A Houston, Texas | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Houston, Texas A Houston, Texas Archive Reference Buildings by Climate Zone: 2A Houston, Texas Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-2a_tx_houston.zip benchmark-v1.1_3.1-2a_usa_tx_houston.zip benchmark-new-v1.2_4.0-2a_usa_tx_houston.zip More Documents & Publications

108

A View on Future Building System Modeling and Simulation  

SciTech Connect

This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

Wetter, Michael

2011-04-01T23:59:59.000Z

109

A View on Future Building System Modeling and Simulation  

SciTech Connect

This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

Wetter, Michael

2011-04-01T23:59:59.000Z

110

Form:Buildings Model | Open Energy Information  

Open Energy Info (EERE)

Buildings Model Jump to: navigation, search This is the 'Buildings Model' form. To add a page with this form, enter the page name below; if a page with that name already exists,...

111

Refining visualization reference model for context information  

Science Conference Proceedings (OSTI)

Context-awareness can be used to decrease the need for interaction with a mobile device. This is increasingly important since the functionality of mobile devices and personal digital assistants gets more and more complex while the input and output capabilities ... Keywords: Context awareness, Hand-held devices, Information visualization, Mobile phones, Visualization reference model

Antti Aaltonen; Juha Lehikoinen

2005-11-01T23:59:59.000Z

112

Residential Prototype Building Models | Building Energy Codes...  

NLE Websites -- All DOE Office Websites (Extended Search)

the 2006, 2009, and 2012 editions of the IECC are listed in Table 1. Each compressed (.zip) file includes EnergyPlus model input files (.idf) and corresponding output files...

113

Validation of building energy modeling tools: ecotect, green building studio and IES  

Science Conference Proceedings (OSTI)

Building energy modeling (BEM) helps architects, engineers and green building consultants in designing increasingly energy-efficient buildings. When used in conjunction with Building Information Modeling (BIM), integration of energy modeling into the ...

Thomas Reeves; Svetlana Olbina; Raymond Issa

2012-12-01T23:59:59.000Z

114

Virtual building environments (VBE) - Applying information modeling to buildings  

SciTech Connect

A Virtual Building Environment (VBE) is a ''place'' where building industry project staffs can get help in creating Building Information Models (BIM) and in the use of virtual buildings. It consists of a group of industry software that is operated by industry experts who are also experts in the use of that software. The purpose of a VBE is to facilitate expert use of appropriate software applications in conjunction with each other to efficiently support multidisciplinary work. This paper defines BIM and virtual buildings, and describes VBE objectives, set-up and characteristics of operation. It informs about the VBE Initiative and the benefits from a couple of early VBE projects.

Bazjanac, Vladimir

2004-06-21T23:59:59.000Z

115

Biomass Scenario Model Documentation: Data and References  

SciTech Connect

The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. The BSM is a complex model that has been used for extensive analyses; the model and its results can be better understood if input data used for initialization and calibration are well-characterized. It has been carefully validated and calibrated against the available data, with data gaps filled in using expert opinion and internally consistent assumed values. Most of the main data sources that feed into the model are recognized as baseline values by the industry. This report documents data sources and references in Version 2 of the BSM (BSM2), which only contains the ethanol pathway, although subsequent versions of the BSM contain multiple conversion pathways. The BSM2 contains over 12,000 total input values, with 506 distinct variables. Many of the variables are opportunities for the user to define scenarios, while others are simply used to initialize a stock, such as the initial number of biorefineries. However, around 35% of the distinct variables are defined by external sources, such as models or reports. The focus of this report is to provide insight into which sources are most influential in each area of the supply chain.

Lin, Y.; Newes, E.; Bush, B.; Peterson, S.; Stright, D.

2013-05-01T23:59:59.000Z

116

Building Technologies Office: Energy Modeling Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Software Modeling Software Information from energy simulation software is critical in the design of energy-efficient commercial buildings. The tools listed on this page are the product of Commercial Buildings Integration Program (CBI) research and are used in modeling current CBI projects. Modeling helps architects and building designers quickly identify the most cost-effective and energy-saving measures. Graphic of the EnergyPlus software logo. EnergyPlus - An award-winning new-generation building energy simulation program from the creators of BLAST and DOE-2. EnergyPlus models heating, cooling, lighting, ventilating, water, and other energy flows in buildings. OpenStudio - A free plugin for the SketchUp 3D drawing program. The plugin makes it easy to create and edit the building geometry in your EnergyPlus input files.

117

NREL's Building Component Library for Use with Energy Models  

DOE Data Explorer (OSTI)

The Building Component Library (BCL) is the U.S. Department of Energys comprehensive online searchable library of energy modeling building blocks and descriptive metadata. Novice users and seasoned practitioners can use the freely available and uniquely identifiable components to create energy models and cite the sources of input data, which will increase the credibility and reproducibility of their simulations. The BCL contains components which are the building blocks of an energy model. They can represent physical characteristics of the building such as roofs, walls, and windows, or can refer to related operational information such as occupancy and equipment schedules and weather information. Each component is identified through a set of attributes that are specific to its type, as well as other metadata such as provenance information and associated files. The BCL also contains energy conservation measures (ECM), referred to as measures, which describe a change to a building and its associated model. For the BCL, this description attempts to define a measure for reproducible application, either to compare it to a baseline model, to estimate potential energy savings, or to examine the effects of a particular implementation. The BCL currently contains more than 30,000 components and measures. A faceted search mechanism has been implemented on the BCL that allows users to filter through the search results using various facets. Facet categories include component and measure types, data source, and energy modeling software type. All attributes of a component or measure can also be used to filter the results.

118

Hawaii demand-side management resource assessment. Final report, Reference Volume 1: Building prototype analysis  

Science Conference Proceedings (OSTI)

This report provides a detailed description of, and the baseline assumptions and simulation results for, the building prototype simulations conducted for the building types designated in the Work Plan for Demand-side Management Assessment of Hawaii`s Demand-Side Resources (HES-4, Phase 2). This report represents the second revision to the initial building prototype description report provided to DBEDT early in the project. Modifications and revisions to the prototypes, based on further calibration efforts and on comments received from DBEDT Staff have been incorporated into this final version. These baseline prototypes form the basis upon which the DSM measure impact estimates and the DSM measure data base were developed for this project. This report presents detailed information for each of the 17 different building prototypes developed for use with the DOE-21E program (23 buildings in total, including resorts and hotels defined separately for each island) to estimate the impact of the building technologies and measures included in this project. The remainder of this section presents some nomenclature and terminology utilized in the reports, tables, and data bases developed from this project to denote building type and vintage. Section 2 contains a more detailed discussion of the data sources, the definition of the residential sector building prototypes, and results of the DOE-2 analysis. Section 3 provides a similar discussion for the commercial sector. The prototype and baseline simulation results are presented in a separate section for each building type. Where possible, comparison of the baseline simulation results with benchmark data from the ENERGY 2020 model or other demand forecasting models specific to Hawaii is included for each building. Appendix A contains a detailed listing of the commercial sector baseline indoor lighting technologies included in the existing and new prototypes by building type.

NONE

1995-04-01T23:59:59.000Z

119

DOE Commercial Building Benchmark Models: Preprint  

SciTech Connect

To provide a consistent baseline of comparison and save time conducting such simulations, the U.S. Department of Energy (DOE) has developed a set of standard benchmark building models. This paper will provide an executive summary overview of these benchmark buildings, and how they can save building analysts valuable time. Fully documented and implemented to use with the EnergyPlus energy simulation program, the benchmark models are publicly available and new versions will be created to maintain compatibility with new releases of EnergyPlus. The benchmark buildings will form the basis for research on specific building technologies, energy code development, appliance standards, and measurement of progress toward DOE energy goals. Having a common starting point allows us to better share and compare research results and move forward to make more energy efficient buildings.

Torcelini, P.; Deru, M.; Griffith, B.; Benne, K.; Halverson, M.; Winiarski, D.; Crawley, D. B.

2008-07-01T23:59:59.000Z

120

Simplified Building Energy Model (SBEM): A Tool to Analyse Building...  

Open Energy Info (EERE)

list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes,...

Index
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


Index
121

Thermal conductivity modeling of building faade materials  

Science Conference Proceedings (OSTI)

An experimental research has been conducted to assess the thermo-physical properties of three building materials in both dry and moist state: beech wood, autoclaved aerated concrete and brick. The objectives of the paper envisage the measurement of the ... Keywords: building materials, contact temperature, determining method, finite element, numerical modeling, thermal conductivity

Monica Chereches; Nelu-Cristian Chereches; Catalin Popovici

2010-04-01T23:59:59.000Z

122

Building Information Modeling - A Minimum Mathematical Configuration  

E-Print Network (OSTI)

In the current context, the standardization of building construction is not limited to a specific country or to a specific building code. Trade globalization has emphasized the need for standardization in the process of exchange of design information, whether it is in the form of drawings or documents. Building Information Modeling is the latest transformational technology that supports interactive development of design information for buildings. No single Building Information Modeling software package is used in the Architecture Engineering Construction and Facilities Management industries, which is strength as new ideas develop, but a hindrance as the new ideas flow at a different pace into the various programs. The standards divergence of various software results in a limited ability to exchange data between and within projects, especially one sees the difficulty in moving data from one program to another. The Document eXchange File format represents an early attempt to standardize the exchange of drawing information by Autodesk. However, the data was limited to geometric data required for the production of plotted drawings. Metadata in a Building Information Model provides a method to add information to the basic geometric configuration provided in a Document eXchange File. Building Information Model programs use data structures to define smart objects that encapsulate building data in a searchable and robust format. Due to the complexity of building designs eXtensible Markup Language schemas of three dimensional models are often large files that can contain considerable amounts of superfluous information. The aim of this research is to exclude all the superfluous information from the design information and determine the absolute minimum information required to execute the construction of a project. A plain concrete beam element was used as the case study for this research. The results show that a minimal information schema can be developed for a simple building element. Further research is required on more complex elements.

Bhandare, Ruchika

2012-08-01T23:59:59.000Z

123

Meteorological modeling applications in building energy simulations  

SciTech Connect

Researchers use sophisticated computer models to predict building energy use. These models require extensive input data including building characteristics and dimensions, load schedules, and weather data. The typical source for weather data is the weather station at the nearest airport. Specifically, hourly values of ambient air temperature are necessary. The data obtained from local airports, however, may be significantly different from the actual weather experienced by a nearby residential building. Thus, using local airport data when simulating a residential building may yield inaccurate results. Furthermore, researchers interested in evaluating the potential for heat island mitigation schemes (such as urban tree planting programs) to decrease building air-conditioning energy use need a method for modifying the local airport data accordingly.

Sailor, D.J.; Akbari, H.

1992-08-01T23:59:59.000Z

124

Use of building information models in simulations  

Science Conference Proceedings (OSTI)

The transition to Building Information Modeling (BIM) represents a substantial shift from existing business practices in the architecture, engineering, construction, and facility operations (AECO) arena. While the move from drafting to computer aided ...

Raja R. A. Issa; Patrick C. Suermann; Svetlana Olbina

2009-12-01T23:59:59.000Z

125

Model Predictive Control of Thermal Energy Storage in Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Predictive Control of Thermal Energy Storage in Building Cooling Systems Title Model Predictive Control of Thermal Energy Storage in Building Cooling Systems Publication Type...

126

Validation of the Window Model of the Modelica Buildings Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation of the Window Model of the Modelica Buildings Library Title Validation of the Window Model of the Modelica Buildings Library Publication Type Report LBNL Report Number...

127

Test Reference Year (TRY). Final report. [Weather data collection for building energy demand calculations  

SciTech Connect

The Test Reference Year (TRY) for a specified location is a data collection consisting of 8760 sets of hourly weather data. Its main objective is to provide data for computerized calculations regarding energy conservation, energy consumption in buildings, and indoor climate. This report recommends a suitable format for such a TRY, describes which weather data are mandatory for such a TRY to meet the main objective, and recommends how it can be published. The report does not recommend any specific procedure for generating or selecting a TRY for a given location.

1977-08-01T23:59:59.000Z

128

Building Energy Software Tools Directory: Building Energy Modelling...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

129

Modeling window optics for building energy analysis  

SciTech Connect

This report discusses modeling the optics of windows for the purposes of simulating building energy requirements or daylighting availability. The theory for calculating the optical performance of conventional windows is reviewed. The simplifications that might commonly be made in creating computational models are analyzed. Some of the possibilities for more complex windows are analyzed, and the type of model and data that would be necessary to simulate such windows in a building energy analysis program are determined. It is shown that the optical performance of different window types can be simulated with models which require varying amounts of memory or computing time. It is recommended that a building energy analysis program have all models available and use the most efficient for any given window.

Walton, G.N.

1986-07-01T23:59:59.000Z

130

Modeling distributed generation in the buildings sectors  

Gasoline and Diesel Fuel Update (EIA)

Modeling distributed generation Modeling distributed generation in the buildings sectors August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. July 2013 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors 1

131

Model Policies | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Center Site Map Printable Version Development Adoption Compliance Regulations Resource Center FAQs Publications Resource Guides eLearning Model Policies Glossary Related Links ACE Learning Series Utility Savings Estimators Model Policies States and local jurisdictions across the nation have demonstrated leadership in developing programs and policies that both encourage and require compliance with energy codes, stretch codes (e.g., above-minimum codes) and green building techniques, energy-efficiency practices, and environmentally-friendly procedures. The laws and regulations behind these programs and policies can help states and jurisdictions establish unique policies to address their particular needs. Model policies for residential and commercial building construction have

132

Model Predictive Control for Energy Efficient Buildings  

E-Print Network (OSTI)

Building thermal loadThe building thermal load predictor. . . . . . . .of Figures 1.1 Classification schematic for building MPC

Ma, Yudong

2012-01-01T23:59:59.000Z

133

Hybrid Model of Existing Buildings for Transient Thermal Performance Estimation  

E-Print Network (OSTI)

Building level energy models are important to provide accurate prediction of energy consumption for building performance diagnosis and energy efficiency assessment of retrofitting alternatives for building performance upgrading. Simplified but physically meaningful models for existing buildings are preferable for practical applications. In this study, a hybrid building model is developed to describe building system for thermal performance prediction at building level. The model includes two parts. One part is the detailed physical models, which are the CTF models of building envelopes based on the easily available coincident detailed physical properties. The other part is the simplified 2R2C model for building internal mass, whose parameters are estimated and optimized using short-term monitored operation data. A genetic algorithm estimator is developed to optimize these parameters. The parameter optimization of the simplified model and the hybrid building model are validated in a high-rise commercial office building under various weather conditions.

Xu, X.; Wang, S.

2006-01-01T23:59:59.000Z

134

A blood circulation model for reference man  

SciTech Connect

A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86.

Leggett, R.W.; Eckerman, K.F. [Oak Ridge National Lab., TN (United States); Williams, L.R. [Indiana Univ., South Bend, IN (United States). Div. of Liberal Arts and Sciences

1996-12-31T23:59:59.000Z

135

Towards a Reference Model for Surveying Mobile Agent Systems  

Science Conference Proceedings (OSTI)

There are increasing numbers of systems and research projects involving software agents and mobile agents. However, there is no reference model or conceptual framework to compare the resulting systems. In this paper, we propose a reference model to identify, ... Keywords: agent-based applications, mobile agent systems, mobile agents

Alberto Rodrigues Silva; Artur Romo; Dwight Deugo; Miguel Mira Da Silva

2001-09-01T23:59:59.000Z

136

Heterotic Model Building: 16 Special Manifolds  

E-Print Network (OSTI)

We study heterotic model building on 16 specific Calabi-Yau manifolds constructed as hypersurfaces in toric four-folds. These 16 manifolds are the only ones among the more than half a billion manifolds in the Kreuzer-Skarke list with a non-trivial first fundamental group. We classify the line bundle models on these manifolds, both for SU(5) and SO(10) GUTs, which lead to consistent supersymmetric string vacua and have three chiral families. A total of about 29000 models is found, most of them corresponding to SO(10) GUTs. These models constitute a starting point for detailed heterotic model building on Calabi-Yau manifolds in the Kreuzer-Skarke list. The data for these models can be downloaded here: http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/toricdata/index.html

Yang-Hui He; Seung-Joo Lee; Andre Lukas; Chuang Sun

2013-09-01T23:59:59.000Z

137

References  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Analysis Analysis - Home Analytical Dashboards Computerized Accident Incident Reporting and Recordkeeping System (CAIRS) Corporate Safety Analysis Trends Daily Occurrence Reports Electrical Safety Occurrences Final Occurrence Reports Access System Login Lessons Learned and Best Practices Occurrence Reporting and Processing System (ORPS) Operating Experience Committee Operating Experience Level 1, 2, and 3 Documents Operating Experience Summaries Radiation Exposure Monitoring Systems (REMS) Safety Bulletins Safety and Health Alerts Safety Basis Information System (SBIS) Suspect/Counterfeit Items and Defective Items (SCI/DI) References HSS Logo References DOE O 210.2A, DOE Corporate Operating Experience Program (Apr 08, 2011) DOE O 210.2 Crosswalk DOE O 231.1B, Environment, Safety and Health Reporting (Jun 27, 2011)

138

Property:Buildings/Models | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Buildings/Models Jump to: navigation, search This is a property of type Page. It links to pages that use the form Buildings Publication. Pages using the property "Buildings/Models" Showing 2 pages using this property. G General Merchandise 50% Energy Savings Technical Support Document 2009 + General Merchandise 2009 TSD Chicago High Plug Load Baseline +, General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings +, General Merchandise 2009 TSD Chicago Low Plug Load Baseline +, ... Grocery Store 50% Energy Savings Technical Support Document 2009 + Grocery 2009 TSD Chicago Baseline +, Grocery 2009 TSD Chicago 50% Energy Savings +, Grocery 2009 TSD Miami Baseline +, ...

139

References  

E-Print Network (OSTI)

Nowadays, lots of solar panels are installed. A major disadvantage of normal Si-based solar cells is that if one solar cell is shaded, the total energy produced by the string of solar cells is lost. Reducing the efficiency of the total system. In resent years, a new technology has been introduced, using thin film solar cells integrated into roofing. Although partial shading doesn't affect this technique as much as Si-based solar cells, the shaded solar cells do not contribute to the energy production. Some years ago a special kind of robot has been developed that automatically mows the lawn. The goal of this thesis is to build an automatic solar panel cleaning robot using a robomow or other robotic vehicle. This robot has to be adapted for use on solar panels, and of course, has its own solar

unknown authors

2007-01-01T23:59:59.000Z

140

Scripted Building Energy Modeling and Analysis (Presentation)  

SciTech Connect

Building energy analysis is often time-intensive, error-prone, and non-reproducible. Entire energy analyses can be scripted end-to-end using the OpenStudio Ruby API. Common tasks within an analysis can be automated using OpenStudio Measures. Graphical user interfaces (GUI's) and component libraries reduce time, decrease errors, and improve repeatability in energy modeling.

Macumber, D.

2012-10-01T23:59:59.000Z

Index
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


Index
141

Category:Building Models | Open Energy Information  

Open Energy Info (EERE)

Models Models Jump to: navigation, search This category uses the form Buildings Model. Pages in category "Building Models" The following 12 pages are in this category, out of 12 total. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings General Merchandise 2009 TSD Chicago High Plug Load Baseline General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings General Merchandise 2009 TSD Chicago Low Plug Load Baseline G cont. General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings General Merchandise 2009 TSD Miami High Plug Load Baseline General Merchandise 2009 TSD Miami Low Plug Load 50% Energy Savings General Merchandise 2009 TSD Miami Low Plug Load Baseline G cont. Grocery 2009 TSD Chicago 50% Energy Savings Grocery 2009 TSD Chicago Baseline

142

References  

Science Conference Proceedings (OSTI)

..., ASM International, 2009, p 625??658ASM Handbook, Vol 22A, Fundamentals of Modeling for Metals ProcessingHeat-Transfer Equations,...

143

Building the RHIC tracking lattice model  

SciTech Connect

In this note we outline the procedure to build a realistic lattice model for the RHIC beam-beam tracking simulation. We will install multipole field errors in the arc main dipoles, arc main quadrupols and interaction region magnets (DX, D0, and triplets) and introduce a residual closed orbit, tune ripples, and physical apertures in the tracking lattice model. Nonlinearities such as local IR multipoles, second order chromaticies and third order resonance driving terms are also corrected before tracking.

Luo, Y.; Fischer, W.; Tepikian, S.

2010-01-27T23:59:59.000Z

144

Evaluating Energy Performance and Improvement Potential of China Office Buildings in the Hot Humid Climate Against U.S. Reference Buildings: Preprint  

SciTech Connect

This study compares the building code standards for office buildings in hot humid climates of China and the USA. A benchmark office building model is developed for Guangzhou, China that meets China's minimum national and regional building codes with incorporation of common design and construction practices for the area. The Guangzhou office benchmark model is compared to the ASHRAE standard based US model for Houston, Texas which has similar climate conditions. The research further uses a building energy optimization tool to optimize the Chinese benchmark with existing US products to identify the primary areas for potential energy savings. The most significant energy-saving options are then presented as recommendations for potential improvements to current China building codes.

Herrman, L.; Deru, M.; Zhai, J.

2010-08-01T23:59:59.000Z

145

Evaluating Energy Performance and Improvement Potential of China Office Buildings in the Hot Humid Climate Against U.S. Reference Buildings: Preprint  

SciTech Connect

This study compares the building code standards for office buildings in hot humid climates of China and the USA. A benchmark office building model is developed for Guangzhou, China that meets China's minimum national and regional building codes with incorporation of common design and construction practices for the area. The Guangzhou office benchmark model is compared to the ASHRAE standard based US model for Houston, Texas which has similar climate conditions. The research further uses a building energy optimization tool to optimize the Chinese benchmark with existing US products to identify the primary areas for potential energy savings. The most significant energy-saving options are then presented as recommendations for potential improvements to current China building codes.

Herrman, L.; Deru, M.; Zhai, J.

2010-08-01T23:59:59.000Z

146

REFERENCES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

205.1B 205.1B Approved 05-16-2011 Page 1 REFERENCES 1. INTRODUCTION 2. . Includes a list of sources cited in the directive and additional information sources to assist in implementing DOE Order 205.1B, Cyber Security Program. FEDERAL LAWS AND REGULATIONS a. Public Law (P.L.) 93-579, Privacy Act of 1974, as amended [Title 5 United States Code (U.S.C.) Section 552a]. . b. P.L. 104-106, Division E, Clinger Cohen Act (CCA) (formerly Information Technology Management Reform Act of 1996. c. P.L. 106-65, "National Defense Authorization Act [Section 3212(d)], enacted October 1999. d. P.L. 107-347, Title III, Federal Information Security Management Act of 2002 (FISMA), enacted December 2002. 3. OFFICE OF MANAGEMENT AND BUDGET (OMB) CIRCULARS. Located at http://www.whitehouse.gov/omb/circulars_default/.

147

An application reference model for layered manufacturing  

SciTech Connect

The Intelligent Manufacturing Systems (IMS) Test Case 6 project (Rapid Product Development) was set up to demonstrate rapid product development and 3D measurement techniques where the agencies performing the work were distributed over different countries. Test Case 6 provided a unique opportunity to examine the process by which an application protocol (AP) of the Standard for Exchange of Product Data is prepared. The test case had a well defined scope, the production of simple parts by means of layered manufacturing techniques. The information concerned with this manufacture was similarly well defined, due to the requirement that the information be transmitted among the organizations participating in the test case. STEP is an international standard specifying the data content and format for storage and exchange of product data throughout the product`s life cycle. STEP has been under development since 1984 and is just now emerging as an International Standard. STEP is specified as a series of information models using the EXPRESS computer language. For purposes of data exchange, a mapping to a physical file format is specified. Informally, product data can be defined as all the data about a product which one might wish to save. This definition implies some variation in the amount of data to be saved in any one instance. In the case of Test Case 6, one would certainly wish to save the IGES files describing the part. One may or may not wish to save the manufacturing parameters. While there are many parts of STEP with different purposes, the important series of parts for the purposes of standardizing product data are those dealing with application protocols. An application protocol specifies the details of product data within the context of a single application (in this case, layered manufacturing). Other APs deal with such subjects as configuration-managed solid parts and associated drafting.

Kennicott, P.R.

1994-02-01T23:59:59.000Z

148

References  

E-Print Network (OSTI)

continuous speech recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-5(2), March 1983. [6] Doug Beeferman, Adam Berger, and John Lafferty. A model of lexical

Steven Abney Functional Elements; Licensing Presented To Glow; J. Bach; T. C. Bell; I. H. Witten; J. L. Bentley; D. D. Sleator; R. E. Tarjan

1989-01-01T23:59:59.000Z

149

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Department of Energy Commercial Reference Building Models ofthe National Building Stock. Golden, Colorado: Nationaland Renewable Energy, Building Technologies Program, of the

Feng, Wei

2013-01-01T23:59:59.000Z

150

World Oil Refining Logistics Demand Model "World" Reference Manual  

Reports and Publications (EIA)

This manual is intended primarily for use as a reference by analysts applying the WORLD model to regional studies. It also provides overview information on WORLD features of potential interest to managers and analysts.

Information Center

1994-03-01T23:59:59.000Z

151

A detailed loads comparison of three building energy modeling programs:  

NLE Websites -- All DOE Office Websites (Extended Search)

detailed loads comparison of three building energy modeling programs: detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E Title A detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E Publication Type Journal Year of Publication 2013 Authors Zhu, Dandan, Tianzhen Hong, Da Yan, and Chuang Wang Date Published 05/2013 Keywords building energy modeling program, building thermal loads, comparison, dest, DOE-2.1E, energyplus Abstract Building energy simulation is widely used to help design energy efficient building envelopes and HVAC systems, develop and demonstrate compliance of building energy codes, and implement building energy rating programs. However, large discrepancies exist between simulation results from different building energy modeling programs (BEMPs). This leads many users and stakeholders

152

Scripted Building Energy Modeling and Analysis: Preprint  

SciTech Connect

Building energy modeling and analysis is currently a time-intensive, error-prone, and nonreproducible process. This paper describes the scripting platform of the OpenStudio tool suite (http://openstudio.nrel.gov) and demonstrates its use in several contexts. Two classes of scripts are described and demonstrated: measures and free-form scripts. Measures are small, single-purpose scripts that conform to a predefined interface. Because measures are fairly simple, they can be written or modified by inexperienced programmers.

Hale, E.; Macumber, D.; Benne, K.; Goldwasser, D.

2012-08-01T23:59:59.000Z

153

Methodology for Modeling Building Energy Performance across the Commercial Sector  

Science Conference Proceedings (OSTI)

This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

2008-03-01T23:59:59.000Z

154

Honest Buildings | Open Energy Information  

Open Energy Info (EERE)

Honest Buildings Honest Buildings Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Honest Buildings Agency/Company /Organization: Honest Buildings Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Website Website: www.honestbuildings.com/ Web Application Link: www.honestbuildings.com/ Cost: Free Honest Buildings Screenshot References: Honest Buildings[1] Logo: Honest Buildings Honest Buildings is a software platform focused on buildings. It brings together building service providers, occupants, owners, and other stakeholders onto a single portal to exchange information, offerings, and needs. It provides a voice for everyone who occupies buildings, works with buildings, and owns buildings globally to comment, display projects, and

155

Toward a business model reference for interoperability services  

Science Conference Proceedings (OSTI)

The importance of interoperability for businesses is undoubted. After an evolution from electronic data interchange to interoperability in electronic business and enterprise interoperability both the scientific and the practitioners' community are today ... Keywords: Business model, Case study, Design artifact, Enterprise interoperability, Interoperability service utilities, Reference model

Boris Otto, Verena Ebner, Ehsan Baghi, Ran M. Bittmann

2013-10-01T23:59:59.000Z

156

Model Predictive Control for Energy Efficient Buildings  

E-Print Network (OSTI)

Energy Savings. In: Energy and Buildings 40.7 (2008), pp.Thermal Dynamics. In: Energy and Buildings 47 (Apr. 2011),Storage Systems. In: Energy and Buildings 35.2 (2003), pp.

Ma, Yudong

2012-01-01T23:59:59.000Z

157

JEDI Marine and Hydrokinetic Model: User Reference Guide  

SciTech Connect

The Jobs and Economic Development Impact Model (JEDI) for Marine and Hydrokinetics (MHK) is a user-friendly spreadsheet-based tool designed to demonstrate the economic impacts associated with developing and operating MHK power systems in the United States. The JEDI MHK User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the sources and parameters used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.

Goldberg, M.; Previsic, M.

2011-04-01T23:59:59.000Z

158

JEDI Marine and Hydrokinetic Model: User Reference Guide  

SciTech Connect

The Jobs and Economic Development Impact Model (JEDI) for Marine and Hydrokinetics (MHK) is a user-friendly spreadsheet-based tool designed to demonstrate the economic impacts associated with developing and operating MHK power systems in the United States. The JEDI MHK User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the sources and parameters used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.

Goldberg, M.; Previsic, M.

2011-04-01T23:59:59.000Z

159

Reference Model for Control and Automation Systems in Electrical Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reference Model Reference Model for Control and Automation Systems in Electrical Power Version 1.2 October 12, 2005 Prepared by: Sandia National Laboratories' Center for SCADA Security Jason Stamp, Technical Lead Michael Berg, Co-Technical Lead Michael Baca, Project Lead This work was conducted for the DOE Office of Electricity Delivery and Energy Reliability under Contract M64SCADSNL Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. 2 Contents 1 Executive Summary.................................................................................................3 2 Introduction..............................................................................................................4

160

Comparison of Building Energy Modeling Programs: HVAC Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Programs: HVAC Systems Title Comparison of Building Energy Modeling Programs: HVAC Systems Publication Type Report LBNL Report Number LBNL-6432E Year of Publication 2013...

Index
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


Index
161

Reference wind farm selection for regional wind power prediction models  

E-Print Network (OSTI)

1 Reference wind farm selection for regional wind power prediction models Nils Siebert George.siebert@ensmp.fr, georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting is recognized today as a major requirement for a secure and economic integration of wind generation in power systems. This paper deals

Paris-Sud XI, Université de

162

FORMS: a formal reference model for self-adaptation  

Science Conference Proceedings (OSTI)

Self-adaptive software systems are an emerging class of systems that adjust their behavior at runtime to achieve certain functional or quality of service objectives. The construction of such systems has shown to be significantly more challenging than ... Keywords: reference model, self-adaptive systems, z specification

Danny Weyns; Sam Malek; Jesper Andersson

2010-06-01T23:59:59.000Z

163

building | OpenEI  

Open Energy Info (EERE)

building building Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

164

Infiltration and Natural Ventilation Model for Whole-Building Energy Simulation of Residential Buildings: Preprint  

DOE Green Energy (OSTI)

The infiltration term in the building energy balance equation is one of the least understood and most difficult to model. For many residential buildings, which have an energy performance dominated by the envelope, it can be one of the most important terms. There are numerous airflow models; however, these are not combined with whole-building energy simulation programs that are in common use in North America. This paper describes a simple multizone nodal airflow model integrated with the SUNREL whole-building energy simulation program.

Deru, M.; Burns, P.

2003-03-01T23:59:59.000Z

165

Influence of two dynamic predictive clothing insulation models on building energy performance  

E-Print Network (OSTI)

Energy Consumption, Energy and Buildings, Vol. 26, 283-291.Insulation Models on Building Energy Use, HVAC sizing andClothing Model Impact on Building Energy Performance

Lee, Kwang Ho; Schiavon, Stefano

2013-01-01T23:59:59.000Z

166

Influence of two dynamic predictive clothing insulation models on building energy performance  

E-Print Network (OSTI)

Clothing Insulation Models on Building Energy Use, HVACClothing Insulation Models on Building Energy Performance K.insulation variation should be captured during the building

Lee, Kwang Ho; Schiavon, Stefano

2013-01-01T23:59:59.000Z

167

Development of discrete event system specification (DEVS) building performance models for building energy design  

Science Conference Proceedings (OSTI)

The discrete event system specification (DEVS) is a formalism for describing simulation models in a modular fashion. In this study, it is exploited by forming submodels that allow different professions involved in the building design process to work ... Keywords: DEVS, energy simulation in building design, modular BPS, stochastic occupant models

Huseyin Burak Gunay; Liam O'Brien; Rhys Goldstein; Simon Breslav; Azam Khan

2013-04-01T23:59:59.000Z

168

Supercomputer Assisted Generation of Machine Learning Agents for the Calibration of Building Energy Models  

SciTech Connect

Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrot pur- poses. EnergyPlus is the agship Department of Energy software that performs BEM for dierent types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters which have to be calibrated manu- ally by an expert for realistic energy modeling. This makes it challenging and expensive thereby making building en- ergy modeling unfeasible for smaller projects. In this paper, we describe the \\Autotune" research which employs machine learning algorithms to generate agents for the dierent kinds of standard reference buildings in the U.S. building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of En- ergyPlus simulations are run on supercomputers which are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost-eective cali- bration of building models.

Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL; Edwards, Richard [ORNL

2013-01-01T23:59:59.000Z

169

Nicaragua-Low-Carbon Energy for Central America: Building a Regional Model  

Open Energy Info (EERE)

Nicaragua-Low-Carbon Energy for Central America: Building a Regional Model Nicaragua-Low-Carbon Energy for Central America: Building a Regional Model Jump to: navigation, search Name Nicaragua-Low-Carbon Energy for Central America: Building a Regional Model Agency/Company /Organization World Watch Institute Sector Energy Focus Area Renewable Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.worldwatch.org/node Country Nicaragua Central America References Low-Carbon Energy for Central America: Building a Regional Model[1] Overview "This project will design a unified low-carbon development strategy for Central America through the use of renewable energy and energy efficiency maps, followed by technical, economic, and social feasibility studies for

170

Low-Carbon Energy for Central America: Building a Regional Model | Open  

Open Energy Info (EERE)

Low-Carbon Energy for Central America: Building a Regional Model Low-Carbon Energy for Central America: Building a Regional Model Jump to: navigation, search Name Low-Carbon Energy for Central America: Building a Regional Model Agency/Company /Organization World Watch Institute Sector Energy Focus Area Renewable Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.worldwatch.org/node Country Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama Central America, Central America, Central America, Central America, Central America, Central America, Central America References Low-Carbon Energy for Central America: Building a Regional Model[1] Overview "This project will design a unified low-carbon development strategy for

171

Honduras-Low-Carbon Energy for Central America: Building a Regional Model |  

Open Energy Info (EERE)

Honduras-Low-Carbon Energy for Central America: Building a Regional Model Honduras-Low-Carbon Energy for Central America: Building a Regional Model Jump to: navigation, search Name Honduras-Low-Carbon Energy for Central America: Building a Regional Model Agency/Company /Organization World Watch Institute Sector Energy Focus Area Renewable Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.worldwatch.org/node Country Honduras Central America References Low-Carbon Energy for Central America: Building a Regional Model[1] Overview "This project will design a unified low-carbon development strategy for Central America through the use of renewable energy and energy efficiency maps, followed by technical, economic, and social feasibility studies for

172

Belize-Low-Carbon Energy for Central America: Building a Regional Model |  

Open Energy Info (EERE)

Belize-Low-Carbon Energy for Central America: Building a Regional Model Belize-Low-Carbon Energy for Central America: Building a Regional Model Jump to: navigation, search Name Belize-Low-Carbon Energy for Central America: Building a Regional Model Agency/Company /Organization World Watch Institute Sector Energy Focus Area Renewable Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.worldwatch.org/node Country Belize Central America References Low-Carbon Energy for Central America: Building a Regional Model[1] Overview "This project will design a unified low-carbon development strategy for Central America through the use of renewable energy and energy efficiency maps, followed by technical, economic, and social feasibility studies for

173

Costa Rica-Low-Carbon Energy for Central America: Building a Regional Model  

Open Energy Info (EERE)

Costa Rica-Low-Carbon Energy for Central America: Building a Regional Model Costa Rica-Low-Carbon Energy for Central America: Building a Regional Model Jump to: navigation, search Name Costa-Rica-Low-Carbon Energy for Central America: Building a Regional Model Agency/Company /Organization World Watch Institute Sector Energy Focus Area Renewable Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.worldwatch.org/node Country Costa Rica Central America References Low-Carbon Energy for Central America: Building a Regional Model[1] Overview "This project will design a unified low-carbon development strategy for Central America through the use of renewable energy and energy efficiency maps, followed by technical, economic, and social feasibility studies for

174

Guatemala-Low-Carbon Energy for Central America: Building a Regional Model  

Open Energy Info (EERE)

Guatemala-Low-Carbon Energy for Central America: Building a Regional Model Guatemala-Low-Carbon Energy for Central America: Building a Regional Model Jump to: navigation, search Name Guatemala-Low-Carbon Energy for Central America: Building a Regional Model Agency/Company /Organization World Watch Institute Sector Energy Focus Area Renewable Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.worldwatch.org/node Country Guatemala Central America References Low-Carbon Energy for Central America: Building a Regional Model[1] Overview "This project will design a unified low-carbon development strategy for Central America through the use of renewable energy and energy efficiency maps, followed by technical, economic, and social feasibility studies for

175

Model Reduction for Control of Stratified Flows in Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

models, widely used in whole building simulation tools, are inadequate for capturing thermal stratification that typically arises while using passive, low-energy, heating and...

176

Modeling, Simulation and Analysis of Integrated Building Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Us Department Contacts Media Contacts Modeling, Simulation and Analysis of Integrated Building Energy and Control Systems Speaker(s): Michael Wetter Date: August 10, 2009 -...

177

Junior Solar Sprint - An Introduction to Building a Model Solar...  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Revised 82301 An Introduction to Building a Model Solar Car Student Guide for the Junior Solar Sprint Competition Produced by: Krisztina Holly and Akhil Madhani 2 Introduction...

178

Building Energy Models Can Be Automatically Adjusted To Fit Data  

NLE Websites -- All DOE Office Websites (Extended Search)

EETD Safety Program Development Contact Us Department Contacts Media Contacts Building Energy Models Can Be Automatically Adjusted To Fit Data Speaker(s): Douglas Black Nathan...

179

Building model reconstruction from lidar data and aerial photographs.  

E-Print Network (OSTI)

??The objective of this research is to reconstruct 3D building models from imagery and LIDAR data. The images used are stereo aerial photographs with known (more)

Ma, Ruijin

2005-01-01T23:59:59.000Z

180

DEVELOPMENT OF A FLEXIBLE, MULTIZONE, MULTIFAMILY BUILDING SIMULATION MODEL  

SciTech Connect

Weatherization of multifamily buildings is gaining increased attention in the U.S. Available energy audit tools for multifamily buildings were found to need desirable improvements. On the wish list of field experts for enhanced features was the basic ability to model multizone buildings (i.e., one thermal zone per dwelling unit) with simplified user inputs, which allows a better analysis of decentralized and centralized HVAC and domestic hot water systems of multifamily buildings without having to create detailed building models. To address the desired capabilities, development of an enhanced energy audit tool was begun in 2011. The tool is a strategically structured, flexible, one-zone-per-unit, DOE-2.1e model coupled with a simplified user interface to model small to large multifamily buildings with decentralized or centralized systems and associated energy measures. This paper describes the modeling concept and its implementation.

Malhotra, Mini [ORNL; Im, Piljae [ORNL

2012-01-01T23:59:59.000Z

Index
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


Index
181

Reference Model for Control and Automation Systems in Electrical Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Model for Control and Automation Systems in Electrical Model for Control and Automation Systems in Electrical Power Reference Model for Control and Automation Systems in Electrical Power Modern infrastructure automation systems are threatened by cyber attack. Their higher visibility in recent years and the increasing use of modern information technology (IT) components contribute to increased security risk. A means of analyzing these infrastructure automation systems is needed to help understand and study the many system relationships that affect the overall security of the system. Modeling these systems is a very cost effective means of addressing the problem of security from an overall system view. The model presented in the document below provides a structured, cost effective approach to address technical security in process control systems

182

Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

183

Reference Buildings by Climate Zone and Representative City: 2A Houston, Texas  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

184

Project: Whole Building Energy Modeling and Measurements  

Science Conference Proceedings (OSTI)

... buildings use approximately 22% of the total energy consumed in the US The objective of this project is to increase the energy efficiency of the ...

2012-12-27T23:59:59.000Z

185

Property:Buildings/ModelIdfFile | Open Energy Information  

Open Energy Info (EERE)

ModelIdfFile ModelIdfFile Jump to: navigation, search This is a property of type URL. Pages using the property "Buildings/ModelIdfFile" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + http://apps1.eere.energy.gov/buildings/energyplus/models/Chicago/2009_TSD_GeneralMerch_HPL_50percent.idf + General Merchandise 2009 TSD Chicago High Plug Load Baseline + http://apps1.eere.energy.gov/buildings/energyplus/models/Chicago/2009_TSD_GeneralMerch_HPL_Baseline.idf + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + http://apps1.eere.energy.gov/buildings/energyplus/models/Miami/2009_TSD_GeneralMerch_LPL_50percent.idf + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + http://apps1.eere.energy.gov/buildings/energyplus/models/Miami/2009_TSD_GeneralMerch_LPL_Baseline.idf +

186

Property:Buildings/ModelXmlFile | Open Energy Information  

Open Energy Info (EERE)

ModelXmlFile ModelXmlFile Jump to: navigation, search This is a property of type URL. Pages using the property "Buildings/ModelXmlFile" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + http://apps1.eere.energy.gov/buildings/energyplus/models/Chicago/2009_TSD_GeneralMerch_HPL_50percent.xml + General Merchandise 2009 TSD Chicago High Plug Load Baseline + http://apps1.eere.energy.gov/buildings/energyplus/models/Chicago/2009_TSD_GeneralMerch_HPL_Baseline.xml + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + http://apps1.eere.energy.gov/buildings/energyplus/models/Miami/2009_TSD_GeneralMerch_LPL_50percent.xml + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + http://apps1.eere.energy.gov/buildings/energyplus/models/Miami/2009_TSD_GeneralMerch_LPL_Baseline.xml +

187

DEVELOPMENT AND EVALUATION OF FLEXIBLE, MULTIZONE MULTIFAMILY BUILDING SIMULATION MODEL  

SciTech Connect

Since 2011, Oak Ridge National Laboratory (ORNL) has been developing a multifamily building energy audit tool sponsored by U.S. Department of Energy (DOE) Weatherization program. Although weatherization of multifamily buildings is gaining increased attention in the U.S, available energy audit tools for multifamily buildings were found to need desirable improvements. On the wish list of field experts was the basic ability to model multizone buildings (i.e., one thermal zone per dwelling unit) with simplified user inputs, which allows a better analysis of decentralized and centralized HVAC and domestic hot water systems of multifamily buildings without having to create detailed building models. This paper describes detailed procedure of evaluation of the tool to perform an energy analysis in an existing multifamily building.

Im, Piljae [ORNL; Malhotra, Mini [ORNL

2013-01-01T23:59:59.000Z

188

Water Rights Analysis Package (WRAP) Modeling System Reference Manual  

E-Print Network (OSTI)

The Texas Water Resources Institute (TWRI), and many other agencies and organizations, have worked with Ralph Wurbs over the years to develop WRAP (the Water Rights Analysis Package). The WRAP model simulates management of the water resources of a river basin, or multiple-basin region, under a priority-based water allocation system. The model facilitates assessment of hydrologic and institutional water availability/reliability for existing and proposed requirements for water use and management. Basin-wide impacts of water resources development projects and management strategies may be evaluated. The software package is generalized for application to any river/reservoir/use system, with input files being developed for the particular river basin of concern. The model is documented by reference and users manuals that may be downloaded from this site along with the software. WRAP is incorporated in the Texas Commission on Environmental Quality (TCEQ) Water Availability Modeling (WAM) System.

Wurbs, R.

2012-10-01T23:59:59.000Z

189

Building energy modeling programs comparison Research on HVAC systems  

NLE Websites -- All DOE Office Websites (Extended Search)

energy modeling programs comparison Research on HVAC systems energy modeling programs comparison Research on HVAC systems simulation part Title Building energy modeling programs comparison Research on HVAC systems simulation part Publication Type Journal Year of Publication 2013 Authors Zhou, Xin, Da Yan, Tianzhen Hong, and Dandan Zhu Keywords Building energy modeling programs, comparison tests, HVAC system simulation, theory analysis Abstract Building energy simulation programs are effective tools for the evaluation of building energy saving and optimization of design. The fact that large discrepancies exist in simulated results when different BEMPs are used to model the same building has caused wide concern. Urgent research is needed to identify the main elements that contribute towards the simulation results. This technical report summarizes methodologies, processes, and the main assumptions of three building energy modeling programs (BEMPs) for HVAC calculations: EnergyPlus, DeST, and DOE-2.1E, and test cases are designed to analyze the calculation process in detail. This will help users to get a better understanding of BEMPs and the research methodology of building simulation. This will also help build a foundation for building energy code development and energy labeling programs.

190

Building information modeling: the Web3D application for AEC  

Science Conference Proceedings (OSTI)

There is currently a dramatic shift in the Architecture, Engineering, and Construction (AEC) industry to embrace Building Information Modeling (BIM) as a tool that can assist in integrating the fragmented industry by eliminating inefficiencies and redundancies, ... Keywords: BIM, IFC, Web3D, X3D, architecture, building information modeling, construction, engineering, visualization

Dace A. Campbell

2007-04-01T23:59:59.000Z

191

Building Energy Model Development for Retrofit Homes  

SciTech Connect

Based on previous research conducted by Pacific Northwest National Laboratory and Florida Solar Energy Center providing technical assistance to implement 22 deep energy retrofits across the nation, 6 homes were selected in Florida and Texas for detailed post-retrofit energy modeling to assess realized energy savings (Chandra et al, 2012). However, assessing realized savings can be difficult for some homes where pre-retrofit occupancy and energy performance are unknown. Initially, savings had been estimated using a HERS Index comparison for these homes. However, this does not account for confounding factors such as occupancy and weather. This research addresses a method to more reliably assess energy savings achieved in deep energy retrofits for which pre-retrofit utility bills or occupancy information in not available. A metered home, Riverdale, was selected as a test case for development of a modeling procedure to account occupancy and weather factors, potentially creating more accurate estimates of energy savings. This true up procedure was developed using Energy Gauge USA software and post-retrofit homeowner information and utility bills. The 12 step process adjusts the post-retrofit modeling results to correlate with post-retrofit utility bills and known occupancy information. The trued post retrofit model is then used to estimate pre-retrofit energy consumption by changing the building efficiency characteristics to reflect the pre-retrofit condition, but keeping all weather and occupancy-related factors the same. This creates a pre-retrofit model that is more comparable to the post-retrofit energy use profile and can improve energy savings estimates. For this test case, a home for which pre- and post- retrofit utility bills were available was selected for comparison and assessment of the accuracy of the true up procedure. Based on the current method, this procedure is quite time intensive. However, streamlined processing spreadsheets or incorporation into existing software tools would improve the efficiency of the process. Retrofit activity appears to be gaining market share, and this would be a potentially valuable capability with relevance to marketing, program management, and retrofit success metrics.

Chasar, David; McIlvaine, Janet; Blanchard, Jeremy; Widder, Sarah H.; Baechler, Michael C.

2012-09-30T23:59:59.000Z

192

Building a semantic p2p scientific references sharing system with JXTA  

Science Conference Proceedings (OSTI)

A semantic Peer-to-Peer (P2P) scientific references sharing system, SemreX, is introduced in this paper. As a P2P application system based on JXTA, the implementation technologies of the P2P communication layer of SemreX are illustrated, including ...

Yijiao Yu; Hai Jin

2006-01-01T23:59:59.000Z

193

Towards a Very Low Energy Building Stock: Modeling the US Commercial...  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards a Very Low Energy Building Stock: Modeling the US Commercial Building Stock to Support Policy and Innovation Planning Title Towards a Very Low Energy Building Stock:...

194

Whole-Building Energy Simulation with a Three-Dimensional Ground-Coupled Heat Transfer Model: Preprint  

DOE Green Energy (OSTI)

A three-dimensional, finite-element, heat-transfer computer program was developed to study ground-coupled heat transfer from buildings. It was used in conjunction with the SUNREL whole-building energy simulation program to analyze ground-coupled heat transfer from buildings, and the results were compared with the simple ground-coupled heat transfer models used in whole-building energy simulation programs. The detailed model provides another method of testing and refining the simple models and analyzing complex problems. This work is part of an effort to improve the analysis of the ground-coupled heat transfer in building energy simulation programs. The output from this detailed model and several others will form a set of reference results for use with the BESTEST diagnostic procedure. We anticipate that the results from the work will be incorporated into ANSI/ASHRAE 140-2001, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs.

Deru, M.; Judkoff, R.; Neymark, J.

2002-08-01T23:59:59.000Z

195

A Model-Based Method For Building Reconstruction  

Science Conference Proceedings (OSTI)

In this paper model-based reconstruction methods are applied to the detailed reconstruction of buildings from close-range images. The 3D points obtained through image matching are segmented into a coarse polyhedral model with a robust regression ...

Konrad Schindler; Joachim Bauer

2003-10-01T23:59:59.000Z

196

Adaptive Construction Modelling Within Whole Building Dynamic Simulation  

E-Print Network (OSTI)

............................ vii List of Symbols .......................... ix Chapter 1: Introduction ....................... 1 1.1 The need for building energy simulation ............... 1 1.2 The evolution of building energy simulation tools ............ 2 1.3 The need for accurate building fabric modelling ............ 4 1.4 Objective and outline of the present work ............... 5 Chapter 2: Review of Heat and Moisture Transport within Building Materials ...... 8 2.1 Building energy simulation ................... 8 2.1.1 Heat conduction .................... 8 2.1.2 Mass diffusion .................... 16 2.2 Adaptive gridding ...................... 18 2.3 Thermophysical properties ................... 23 2.4 Combined heat and moisture transport ................ 27 2.4.1 Moisture transport in porous building materials .......... 29 2.4.2 Differential equations for combined heat and moisture transport ..... 33 Chapter 3: Adaptive Building Fabric Gridding ................ 37 3.1 Math...

Abdullatif Nakhi Degree; Abdullatif E. Nakhi; Wife Masoumah

1995-01-01T23:59:59.000Z

197

Modeling pollutant penetration across building envelopes  

E-Print Network (OSTI)

flows into buildings pass through insulation rather thanbuildings depends substantially on whether or not a large portion o f the airflow passes through fiberglass insulationbuilding envelope. W e considered three wall cavity configurations: uninsulated (Figure 3a), filled with insulation (

Liu, De-Ling

2011-01-01T23:59:59.000Z

198

Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria  

Science Conference Proceedings (OSTI)

This publication summarizes building energy simulation test for existing homes (BESTEST-EX): instructions for implementing the test procedure, calibration tests reference results, and example acceptance-range criteria.

Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.; Kennedy, M.

2011-08-01T23:59:59.000Z

199

Immersive Representation of Building Information Model  

E-Print Network (OSTI)

Building Information Modeling (BIM) is an emerging technology that utilizes 3D graphical representations to improve communication, collaboration, and data exchange. Immersive Visualization Environment (IVE) is another promising technology that enhances the 3D graphical representation to achieve a higher level of a sense of presence. The connection between the BIM technology that utilizes the 3D graphical representation and the IVE technology that enhances the 3D graphical representation has led many professionals to visualize BIM in immersive environments. This study is an attempt to overcome a systematic issue presented by available immersive visualization systems. The problem is that in order to visualize an information-rich BIM model from a commercial BIM application in an immersive visualization environment, the BIM model needs to pass through a tough conversion process and loss a large amount of its information. This research study utilizes the Application Programming Interface (API) of a commercially available BIM application to develop an immersive visualization environment. This approach was applied on Autodesk Navisworks software by developing a software program that utilizes Navisworks' API to control Navisworks' camera angle and generate an immersive visualization environment. A prototype of the approach was built in the Department of Construction Science at Texas A & M University and named BIM CAVE Prototype. The overall goal of this research was to prove that it is possible to transform a commercial BIM application into an immersive visualization system. A phenomenological study was utilized by interviewing subject matter experts from the construction industry. The intent of this effort was to explore and develop a phenomenological understanding of how research participants perceived the BIM CAVE system. The results show that the BIM CAVE can be considered an immersive visualization environment because it contains a majority of the immersive visualization environment features. However, a variety of technical limitations must be overcome before it can be called a fully immersive and functional visualization environment. Moreover, even though this investigation was to some extent successful, this research approach needs to be tested on other commercially available BIM applications before generalizations are made.

Nseir, Hussam

2011-05-01T23:59:59.000Z

200

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Speaker(s): James Axley Date: March 12, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro Developments in mathematical models for building air quality and ventilation analysis have changed the way we idealize buildings for purposes of analysis, the way we form system equations to effect the analysis, and the way we solve these equations to realize the analysis. While much has been achieved more is possible. This presentation will review the current state of the art - the building idealizations used, the system equations formed, and the solution methods applied - critically evaluate the completeness, complexity and utility of the most advanced models, and present proposals for future development

Index
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


Index
201

Hybrid Model for Building Performance Diagnosis and Optimal Control  

E-Print Network (OSTI)

Modern buildings require continuous performance monitoring, automatic diagnostics and optimal supervisory control. For these applications, simplified dynamic building models are needed to predict the cooling and heating requirement viewing the building as a whole system. This paper proposes a new hybrid model. Half of the model is represented by detailed physical parameters and another half is described by identified parameters. 3R2C thermal network model, which consists of three resistances and two capacitances, is used to simulate building envelope whose parameters are determined in frequency domain using the theoretical frequency characteristics of the envelope. Internal mass is represented by a 2R2C thermal network model, which consists of three resistances and two capacitances. The resistances and capacitances of the 2R2C model are assumed to be constant. A GA (genetic algorithm)-based method is developed for model parameter identification by searching the optimal parameters of 3R2C models of envelopes in frequency domain and that of the 2R2C model of the building internal mass in time domain. As the model is based on the physical characteristics, the hybrid model can be used to predict the cooling and heating energy consumption of buildings accurately in wide range of operation conditions.

Wang, S.; Xu, X.

2003-01-01T23:59:59.000Z

202

Energy Savings Modeling of Standard Commercial Building Re-tuning Measures: Large Office Buildings  

SciTech Connect

Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS's capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This report investigates the energy savings potential of several common HVAC system retuning measures on a typical large office building prototype model, using the Department of Energy's building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated - each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All of these measures and combinations were simulated in 16 cities representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for most cities for all measures). Combining many of the retuning measures revealed deep savings potential. Some of the more aggressive combinations revealed 35-75% reductions in annual HVAC energy consumption, depending on climate and building vintage.

Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

2012-06-01T23:59:59.000Z

203

Using Simulation Models for Building Commissioning  

E-Print Network (OSTI)

The International Energy Agency ECBCS Annex 40 Commissioning of Buildings and HVAC Systems for Improved Energy Performance task investigating Use of Whole Building Simulation in Commissioning has identified the following applications of whole simulation in the commissioning process: 1) during the design process; 2) in post-construction commissioning of new buildings; 3) design simulation for ongoing commissioning; 4) calibrated simulation for retro commissioning; 5) calibrated simulation for on-going commissioning; and 6) simulation to evaluate new control code. These applications are discussed and examples of each of these applications are provided. The only one of these which has been applied in routine commissioning projects is the use of calibrated simulation for retro commissioning. The other examples have been applied in a research setting, and costs must be lowered for routine application, but there appears to be potential for significant application of simulation in the commissioning process.

Claridge, D. E.

2004-01-01T23:59:59.000Z

204

Building Bayesian Network Models in Medicine: The MENTOR Experience  

Science Conference Proceedings (OSTI)

An experiment in Bayesian model building from a large medical dataset for Mental Retardation is discussed in this paper. We give a step by step description of the practical aspects of building a Bayesian Network from a dataset. We enumerate and briefly ... Keywords: Bayesian networks, artificial intelligence in medicine, machine learning

Subramani Mani; Marco Valtorta; Suzanne McDermott

2005-03-01T23:59:59.000Z

205

Building Component Library: An Online Repository to Facilitate Building Energy Model Creation; Preprint  

SciTech Connect

This paper describes the Building Component Library (BCL), the U.S. Department of Energy's (DOE) online repository of building components that can be directly used to create energy models. This comprehensive, searchable library consists of components and measures as well as the metadata which describes them. The library is also designed to allow contributors to easily add new components, providing a continuously growing, standardized list of components for users to draw upon.

Fleming, K.; Long, N.; Swindler, A.

2012-05-01T23:59:59.000Z

206

Building Component Library: An Online Repository to Facilitate Building Energy Model Creation; Preprint  

SciTech Connect

This paper describes the Building Component Library (BCL), the U.S. Department of Energy's (DOE) online repository of building components that can be directly used to create energy models. This comprehensive, searchable library consists of components and measures as well as the metadata which describes them. The library is also designed to allow contributors to easily add new components, providing a continuously growing, standardized list of components for users to draw upon.

Fleming, K.; Long, N.; Swindler, A.

2012-05-01T23:59:59.000Z

207

Model Predictive Control for Energy Efficient Buildings  

E-Print Network (OSTI)

P. Haves et al. Model Predictive Control of HVAC Systems:Bilinear Model Predictive Control of a HVAC System Usingof model predictive control algorithms for HVAC systems.

Ma, Yudong

2012-01-01T23:59:59.000Z

208

Economic model for height determination of high-rise buildings  

E-Print Network (OSTI)

At present, no clear concise method of optimal height determination for high-rise buildings is being practiced. The primary scope of this dissertation is to see if a practical model, decision making process and list of ...

Zafiris, Christopher

1984-01-01T23:59:59.000Z

209

A Statistical Approach for DeltaQ Modeling Concerning Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Statistical Approach for DeltaQ Modeling Concerning Building Envelope and HVAC Duct Leakage Behavior Prediction Speaker(s): Alexander Dimitrov Date: March 22, 2006 - 12:00pm...

210

Modeling and optimization of building HVAC systems.  

E-Print Network (OSTI)

??This thesis presents the development of hybrid modeling methodologies for HVAC component static/steady-state models and dynamic/transient models, and the development and implementation of a model-based (more)

Jin, Guang Yu.

2012-01-01T23:59:59.000Z

211

Influence Of Three Dynamic Predictive Clothing Insulation Models On Building Energy Use, HVAC Sizing And Thermal Comfort  

E-Print Network (OSTI)

CLOTHING INSULATION MODELS ON BUILDING ENERGY USE, HVACClothing Insulation Model; Clothing; Building Energy;clothing insulation models on the building simulation is

Schiavon, Stefano; Lee, Kwang Ho

2013-01-01T23:59:59.000Z

212

Fuzzy Comprehensive Evaluation Model and Influence Factors Analysis on Comprehensive Performance of Green Buildings  

E-Print Network (OSTI)

A green building involves complex system engineering including energy efficiency and energy utilization, water-saving and water utilization, material-saving and material utilization, and land-saving and indoor environment quality and operation management. In order to solve problems of subjectivity, uncertainty and impossibility of quantitative analysis when evaluating green building, this study establishes a multi-level fuzzy evaluation model by means of fuzzy mathematics method to analyze the comprehensive performance of green building according to the index system of Evaluation Standard for Green Building. Combined with the technique scheme of the first China green building demonstration project, the result proves to be in accordance with the pre-evaluation of experts. It shows that the fuzzy comprehensive evaluation method is reasonable and feasible to evaluate the comprehensive performance of green building. The evaluation result is the same as the pre-evaluation result. Factors with high weights have larger effects on the results. This proves that the guideline should be the first reference mode in the future engineering practice so as to realize optimization of green building performance.

Sun, J.; Wu, Y.; Dai, Z.; Hao, Y.

2006-01-01T23:59:59.000Z

213

Modeling and Analysis of Solar Radiation Potentials on Building Rooftops  

Science Conference Proceedings (OSTI)

The active application of photovoltaic for electricity generation could effectively transform neighborhoods and commercial districts into small, localized power plants. This application, however, relies heavily on an accurate estimation of the amount of solar radiation that is available on individual building rooftops. While many solar energy maps exist at higher spatial resolution for concentrated solar energy applications, the data from these maps are not suitable for roof-mounted photovoltaic for several reasons, including lack of data at the appropriate spatial resolution and lack of integration of building-specific characteristics into the models used to generate the maps. To address this problem, we have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specific characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic systems. The resulting data has helped us to identify the so-called solar panel sweet spots on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.

Omitaomu, Olufemi A [ORNL; Kodysh, Jeffrey B [ORNL; Bhaduri, Budhendra L [ORNL

2012-01-01T23:59:59.000Z

214

Object oriented modelling of variable envelope properties in buildings  

Science Conference Proceedings (OSTI)

The paper deals with some important aspects of continuous systems modelling approaches. Namely the traditional approach is based on block oriented schemes in which causal relations play an important role. However this causality is artificially generated ... Keywords: acausal modelling, intelligent building, object oriented modelling, simulation, thermal flows

Borut Zupan?i?; Anton Sodja

2008-12-01T23:59:59.000Z

215

Duct thermal performance models for large commercial buildings  

SciTech Connect

Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach, assess the impacts of duct system improvements in California large commercial buildings, over a range of building vintages and climates. This assessment will provide a solid foundation for future efforts that address the energy efficiency of large commercial duct systems in Title 24. This report describes our work to address Objective 1, which includes a review of past modeling efforts related to duct thermal performance, and recommends near- and long-term modeling approaches for analyzing duct thermal performance in large commercial buildings.

Wray, Craig P.

2003-10-01T23:59:59.000Z

216

THERM: Two-Dimensional Building Heat-Transfer Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 THERM: Two-Dimensional Building Heat-Transfer Modeling For more information and to download THERM, please visit our website: http://windows.lbl.gov/software/therm The Windows and Daylighting Group's two-year-old computer program THERM 1.0 is a state-of-the-art tool for modeling two-dimensional heat-transfer effects in building components. The thermal property information THERM provides is important for the design and application of building components such as windows, walls, foundations, roofs and doors. This Microsoft Windows-based program has great potential to users such as building component manufacturers, educators, students, architects, engineers and others who are interested in assessing the heat-transfer properties of single products, product interactions, or integrated systems. THERM

217

An Integrated Framework for Parametric Design Using Building Energy Models  

NLE Websites -- All DOE Office Websites (Extended Search)

An Integrated Framework for Parametric Design Using Building Energy Models An Integrated Framework for Parametric Design Using Building Energy Models Speaker(s): Bryan Eisenhower Date: September 22, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter In this talk we will present a framework for analyses of building energy models including uncertainty and sensitivity analysis, optimization, calibration, and failure mode effect analysis. The methodology begins with efficient uniformly ergodic numerical sampling and regression analysis based on machine learning to derive an analytic representation of the full energy model (e.g. EnergyPlus, TRNSYS, etc). Once these steps are taken, and an analytical representation of the dynamics is obtained, multiple avenues for analysis are opened that were previously impeded by the

218

Better Buildings Neighborhood Program: Business Model Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy Efficiency, October 24-26, 2011. Workshop participants learned about various energy efficiency market business models and discussed strategies for long-term program...

219

Impact of the U.S. National Building Information Model Standard (NBIMS) on Building Energy Performance Simulation  

SciTech Connect

The U.S. National Institute for Building Sciences (NIBS) started the development of the National Building Information Model Standard (NBIMS). Its goal is to define standard sets of data required to describe any given building in necessary detail so that any given AECO industry discipline application can find needed data at any point in the building lifecycle. This will include all data that are used in or are pertinent to building energy performance simulation and analysis. This paper describes the background that lead to the development of NBIMS, its goals and development methodology, its Part 1 (Version 1.0), and its probable impact on building energy performance simulation and analysis.

Bazjanac, Vladimir

2007-08-01T23:59:59.000Z

220

Property:Buildings/ModelYear | Open Energy Information  

Open Energy Info (EERE)

Buildings/ModelYear Buildings/ModelYear Jump to: navigation, search This is a property of type Date. Pages using the property "Buildings/ModelYear" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Chicago High Plug Load Baseline + 2009 + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + 2009 + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Miami High Plug Load Baseline + 2009 + General Merchandise 2009 TSD Miami Low Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Miami Low Plug Load Baseline + 2009 +

Index
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


Index
221

Evolutionary Tuning of Building Models to Monthly Electrical Consumption  

SciTech Connect

Building energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Calibrating models is costly because it is currently an art which requires significant manual effort by an experienced and skilled professional. An automated methodology could significantly decrease this cost and facilitate greater adoption of energy simulation capabilities into the marketplace. The Autotune project is a novel methodology which leverages supercomputing, large databases of simulation data, and machine learning to allow automatic calibration of simulations to match measured experimental data on commodity hardware. This paper shares initial results from the automated methodology applied to the calibration of building energy models (BEM) for EnergyPlus (E+) to reproduce measured monthly electrical data.

Garrett, Aaron [Jacksonville State University; New, Joshua Ryan [ORNL; Chandler, Theodore [Jacksonville State University

2013-01-01T23:59:59.000Z

222

building demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

223

building load | OpenEI  

Open Energy Info (EERE)

load load Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

224

Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) advances building energy performance through the development and promotion of efficient, affordable, and high impact technologies, systems, and practices. The...

225

Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program  

DOE Green Energy (OSTI)

EnergyPlus{trademark} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by semiannual updated versions over the ensuing seven-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the modeling capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features or enhancement of existing features: (1) A model for packaged terminal heat pumps; (2) A model for gas engine-driven heat pumps with waste heat recovery; (3) Proper modeling of window screens; (4) Integrating and streamlining EnergyPlus air flow modeling capabilities; (5) Comfort-based controls for cooling and heating systems; and (6) An improved model for microturbine power generation with heat recovery. UCF/FSEC located existing mathematical models or generated new model for these features and incorporated them into EnergyPlus. The existing or new models were (re)written using Fortran 90/95 programming language and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (e.g., Input Output Reference and Engineering Document) was updated with information describing the new or enhanced feature. Reference data sets were generated for several of the features to aid program users in selecting proper model inputs. An example input data file, suitable for distribution to EnergyPlus users, was created for each new or improved feature to illustrate the input requirements for the model.

Don Shirey

2008-02-28T23:59:59.000Z

226

Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program  

SciTech Connect

EnergyPlus{trademark} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by semiannual updated versions over the ensuing seven-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the modeling capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features or enhancement of existing features: (1) A model for packaged terminal heat pumps; (2) A model for gas engine-driven heat pumps with waste heat recovery; (3) Proper modeling of window screens; (4) Integrating and streamlining EnergyPlus air flow modeling capabilities; (5) Comfort-based controls for cooling and heating systems; and (6) An improved model for microturbine power generation with heat recovery. UCF/FSEC located existing mathematical models or generated new model for these features and incorporated them into EnergyPlus. The existing or new models were (re)written using Fortran 90/95 programming language and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (e.g., Input Output Reference and Engineering Document) was updated with information describing the new or enhanced feature. Reference data sets were generated for several of the features to aid program users in selecting proper model inputs. An example input data file, suitable for distribution to EnergyPlus users, was created for each new or improved feature to illustrate the input requirements for the model.

Don Shirey

2008-02-28T23:59:59.000Z

227

Evaluation study of building-resolved urban dispersion models  

SciTech Connect

For effective emergency response and recovery planning, it is critically important that building-resolved urban dispersion models be evaluated using field data. Several full-physics computational fluid dynamics (CFD) models and semi-empirical building-resolved (SEB) models are being advanced and applied to simulating flow and dispersion in urban areas. To obtain an estimate of the current state-of-readiness of these classes of models, the Department of Homeland Security (DHS) funded a study to compare five CFD models and one SEB model with tracer data from the extensive Midtown Manhattan field study (MID05) conducted during August 2005 as part of the DHS Urban Dispersion Program (UDP; Allwine and Flaherty 2007). Six days of tracer and meteorological experiments were conducted over an approximately 2-km-by-2-km area in Midtown Manhattan just south of Central Park in New York City. A subset of these data was used for model evaluations. The study was conducted such that an evaluation team, independent of the six modeling teams, provided all the input data (e.g., building data, meteorological data and tracer release rates) and run conditions for each of four experimental periods simulated. Tracer concentration data for two of the four experimental periods were provided to the modeling teams for their own evaluation of their respective models to ensure proper setup and operation. Tracer data were not provided for the second two experimental periods to provide for an independent evaluation of the models. The tracer concentrations resulting from the model simulations were provided to the evaluation team in a standard format for consistency in inter-comparing model results. An overview of the model evaluation approach will be given followed by a discussion on the qualitative comparison of the respective models with the field data. Future model developments efforts needed to address modeling gaps identified from this study will also be discussed.

Flaherty, Julia E.; Allwine, K Jerry; Brown, Mike J.; Coirier, WIlliam J.; Ericson, Shawn C.; Hansen, Olav R.; Huber, Alan H.; Kim, Sura; Leach, Martin J.; Mirocha, Jeff D.; Newsom, Rob K.; Patnaik, Gopal; Senocak, Inanc

2007-09-10T23:59:59.000Z

228

Model document for code officials on solar heating and cooling of buildings. First draft  

DOE Green Energy (OSTI)

The primary purpose of this document is to promote the use and further development of solar energy through a systematic categorizing of all the attributes in a solar energy system that may impact on those requirements in the nationally recognized model codes relating to the safeguard of life or limb, health, property, and public welfare. Administrative provisions have been included to integrate this document with presently adopted codes, so as to allow incorporation into traditional building, plumbing, mechanical, and electrical codes. In those areas where model codes are not used it is recommended that the requirements, references, and standards herein be adopted to regulate all solar energy systems. (MOW)

Not Available

1979-03-01T23:59:59.000Z

229

Case Study 12 - Airflow and Indoor Air Quality Models of DOE ...  

Science Conference Proceedings (OSTI)

... Air Quality Models of DOE Reference Commercial Buildings. ... are intended to simultaneously reduce building energy consumption while maintaining ...

230

Integrate Experiments and Models to Estimate Exposure - (1) Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrate Experiments and Models to Estimate Exposure - (1) Building Integrate Experiments and Models to Estimate Exposure - (1) Building Fumigation and (2) Elemental Mercury Spill Speaker(s): Wanyu Chan Date: February 22, 2010 - 12:00pm Location: 90-3075 Seminar Host/Point of Contact: Michael Sohn Models that predict exposure concentrations in the indoor and outdoor air can be improved by experiments designed to validate or calibrate the models. This presentation will showcase two examples where experiments and models are integrated to estimate exposure concentrations. One example is the use of methyl bromide as fumigant at food processing facilities. Field studies were conducted at three mill sites that are representative of typical industry practices in terms of size, operation, and fumigation protocol. Concentrations of methyl bromide inside the mills and outdoors

231

Supercomputer assisted generation of machine learning agents for the calibration of building energy models  

Science Conference Proceedings (OSTI)

Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrofit purposes. EnergyPlus is the flagship Department of Energy software that performs BEM for different types of buildings. The input to EnergyPlus ... Keywords: big data, building energy modeling, calibration, machine learning, parametric ensemble, supercomputer

Jibonananda Sanyal; Joshua New; Richard Edwards

2013-07-01T23:59:59.000Z

232

SimModel: A domain data model for whole building energy simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

SimModel: A domain data model for whole building energy simulation SimModel: A domain data model for whole building energy simulation Title SimModel: A domain data model for whole building energy simulation Publication Type Conference Paper LBNL Report Number LBNL-5566E Year of Publication 2011 Authors O'Donnell, James, Richard See, Cody Rose, Tobias Maile, Vladimir Bazjanac, and Philip Haves Conference Name IBPSA Building Simulation 2011 Date Published 10/2011 Abstract Many inadequacies exist within industry-standard data models as used by present-day whole-building energy simulation software. Tools such as EnergyPlus and DOE-2 use custom schema definitions (IDD and BDL respectively) as opposed to standardized schema definitions (defined in XSD, EXPRESS, etc.). Non-standard data modes lead to a requirement for application developers to develop bespoke interfaces. Such tools have proven to be error prone in their implementation - typically resulting in information loss.

233

State-based Modeling of Buildings and Facilities  

E-Print Network (OSTI)

Research on energy efficiency of today's buildings focuses on the monitoring of a building's behavior while in operation. But without a formalized description of the data measured, including their correlations and in particular the expected measurements, the full potential of the collected data can not necessarily be exploited. Who knows if a measured value is good or bad? This problem becomes more virulent as smart control systems sometimes exhibit intelligent, but unexpected behavior (e.g. starting heating at unconventional times). Therefore we defined a methodology starting already at the design of the building leading to a formalized specification of the implementation of a building's management system, which seamlessly integrates to an intelligent monitoring. DIN EN ISO 16484 proposes a method to describe functional requirements in an easy to understand way. We extended its use of state machines to our proposed concept of state based modeling. This proved to be a wholesome approach to easily model buildings and facilities according to the DIN EN ISO 16484 while providing the possibility to apply sophisticated and meaningful analysis methods during monitoring.

Fisch, M.N.; Pinkernell, C.; Look, M.; Plesser, S.; Rumpe, B.

2011-01-01T23:59:59.000Z

234

Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial...  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning Title Towards a Very Low Energy Building Stock:...

235

Integrated Modeling of Building Energy Requirements Incorporating Solar  

E-Print Network (OSTI)

and Renewable Energy, Distributed Energy Program of the U.S. Department of Energy under Contract No. DE-AC02 report LBNL-52753. February 2003. Site information and characteristics EIA (U.S. Energy InformationLBNL-58783 Integrated Modeling of Building Energy Requirements Incorporating Solar Assisted Cooling

236

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Simulation Tools Available from Energy Analysis and Environmental Impacts Department Tools header image January 2014 Tools and models to find the best way to save energy and reduce greenhouse gas emissions in cities and industries, to follow the transport of pollutants through the environment, and to calculate the cost of power interruptions are among those available on a new Lawrence Berkeley National Laboratory (Berkeley Lab) web site. The site brings together models and simulation tools developed by the Energy Analysis and Environmental Impacts (EAEI) Department of the Lab's Environmental Energy Technologies Division. "Our hope is that the site will facilitate greater technical awareness of

237

Gaussian Process Modeling: Applications to Building Systems and Algorithmic  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaussian Process Modeling: Applications to Building Systems and Algorithmic Gaussian Process Modeling: Applications to Building Systems and Algorithmic Challenges Speaker(s): Victor M. Zavala Date: November 5, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Mary Ann Piette Michael Sohn We review applications and algorithmic challenges of Gaussian Process (GP) modeling. GP is a powerful and flexible uncertainty quantification and data analysis technique that enables the construction of complex models without the need to specify algebraic relationships between variables. This is done by working directly in the space of the kernel or covariance matrix. In addition, it derives from a Bayesian framework and, as such, it naturally provides predictive probability distributions. We describe how these features can be exploited in Measurement and Verification (M&V) tasks and

238

Business Models for Code Compliance | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance Compliance Site Map Printable Version Development Adoption Compliance Basics Compliance Evaluation Software & Web Tools Regulations Resource Center Business Models for Code Compliance The U.S. Department of Energy is coordinating strategies and activities with companies, individuals, and government entities to demonstrate, quantify, and monetize energy code compliance and coordinate deployment at the local, state, and regional levels. Consumer Assurance through Code Compliance Energy efficiency measures in the buildings sector, if properly realized and captured, provide a tremendous opportunity to reduce energy consumption and expenditures. Yet currently there is a lack of assurance that buildings as designed realize the levels of energy efficiency established in the

239

Enterprise Data Model -- A Study with Reference to Technical Institution  

Science Conference Proceedings (OSTI)

Businesses of all sizes and in different industries, as well as government agencies, are finding that they can realize significant benefits by implementing a data warehouse. A data warehouse provides the base for the powerful data analysis techniques ... Keywords: Enterprise Data Model (EDM), Data warehouse, Data Modeling, Technical Institution Data Modeling (TIEDM)

Shashidhar Kini K.; D. H. Manjaiah

2010-10-01T23:59:59.000Z

240

Building Component Library: An Online Repository to Facilitate Building Energy Model Creation: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Component Library: Component Library: An Online Repository to Facilitate Building Energy Model Creation Preprint Katherine Fleming, Nicholas Long, and Alex Swindler To be presented at the ACEEE Summer Study on Energy Efficiency in Buildings Pacific Grove, California August 12-17, 2012 Conference Paper NREL/CP-5500-54710 May 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

Index
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


Index
241

Infiltration modeling guidelines for commercial building energy analysis  

SciTech Connect

This report presents a methodology for modeling air infiltration in EnergyPlus to account for envelope air barrier characteristics. Based on a review of various infiltration modeling options available in EnergyPlus and sensitivity analysis, the linear wind velocity coefficient based on DOE-2 infiltration model is recommended. The methodology described in this report can be used to calculate the EnergyPlus infiltration input for any given building level infiltration rate specified at known pressure difference. The sensitivity analysis shows that EnergyPlus calculates the wind speed based on zone altitude, and the linear wind velocity coefficient represents the variation in infiltration heat loss consistent with building location and weather data.

Gowri, Krishnan; Winiarski, David W.; Jarnagin, Ronald E.

2009-09-30T23:59:59.000Z

242

Reference genome sequence of the model plant Setaria  

SciTech Connect

We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ~400-Mb assembly covers ~80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

Bennetzen, Jeffrey L [ORNL; Schmutz, Jeremy [Hudson Alpha Institute of Biotechnology; Wang, Hao [University of Georgia, Athens, GA; Percifield, Ryan [University of Georgia, Athens, GA; Hawkins, Jennifer [University of Georgia, Athens, GA; Pontaroli, Ana C. [University of Georgia, Athens, GA; Estep, Matt [University of Georgia, Athens, GA; Feng, Liang [University of Georgia, Athens, GA; Vaughn, Justin N [ORNL; Grimwood, Jane [Hudson Alpha Institute of Biotechnology; Jenkins, Jerry [Hudson Alpha Institute of Biotechnology; Barry, Kerrie [U.S. Department of Energy, Joint Genome Institute; Lindquist, Erika [U.S. Department of Energy, Joint Genome Institute; Hellsten, Uffe [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Wang, Xuewen [University of Georgia, Athens, GA; Wu, Xiaomei [University of Georgia, Athens, GA; Mitros, Therese [University of California, Berkeley; Triplett, Jimmy [University of Missouri, St. Louis; Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Mauro-Herrera, Margarita [Oklahoma State University; Wang, Lin [Cornell University; Li, Pinghua [Cornell University; Sharma, Manoj [University of California, Davis; Sharma, Rita [University of California, Davis; Ronald, Pamela [University of California, Davis; Panaud, Olivier [Universite de Perpignan, Perpignan, France; Kellogg, Elizabeth A. [University of Missouri, St. Louis; Brutnell, Thomas P. [Cornell University; Doust, Andrew N. [Oklahoma State University; Tuskan, Gerald A [ORNL; Rokhsar, Daniel [U.S. Department of Energy, Joint Genome Institute; Devos, Katrien M [ORNL

2012-01-01T23:59:59.000Z

243

Validation of Building Energy Modeling Tools Under Idealized and Realistic Conditions  

Science Conference Proceedings (OSTI)

Building energy models provide valuable insight into the energy use of commercial and residential buildings based on the building architecture, materials and thermal loads. They are used in the design of new buildings and the retrofitting to increase the efficiency of older buildings. The accuracy of these models is crucial to reducing the energy use of the United States and building a sustainable energy future. In addition to the architecture and thermal loads of a building, building energy models also must account for the effects of the building's occupants on the energy use of the building. Traditionally simple schedule based methods have been used to account for the effects of the occupants. However, newer research has shown that these methods often result in large differences between the modeled and actual energy use of buildings. In this paper we discuss building energy models and their accuracy in predicting building energy use. In particular we focus on the different types of validation methods which have been used to investigate the accuracy of building energy models and how they account for (or do not account for) the effects of occupants. We also review some of the newer work on stochastic methods for estimating the effects of occupants on building energy use and discuss the improvements necessary to increase the accuracy of building energy models.

Ryan, Emily M.; Sanquist, Thomas F.

2012-04-02T23:59:59.000Z

244

Building 235-F Goldsim Fate And Transport Model  

Science Conference Proceedings (OSTI)

Savannah River National Laboratory (SRNL) personnel, at the request of Area Completion Projects (ACP), evaluated In-Situ Disposal (ISD) alternatives that are under consideration for deactivation and decommissioning (D&D) of Building 235-F and the Building 294-2F Sand Filter. SRNL personnel developed and used a GoldSim fate and transport model, which is consistent with Musall 2012, to evaluate relative to groundwater protection, ISD alternatives that involve either source removal and/or the grouting of portions or all of 235-F. This evaluation was conducted through the development and use of a Building 235-F GoldSim fate and transport model. The model simulates contaminant release from four 235-F process areas and the 294-2F Sand Filter. In addition, it simulates the fate and transport through the vadose zone, the Upper Three Runs (UTR) aquifer, and the Upper Three Runs (UTR) creek. The model is designed as a stochastic model, and as such it can provide both deterministic and stochastic (probabilistic) results. The results show that the median radium activity concentrations exceed the 5 ?Ci/L radium MCL at the edge of the building for all ISD alternatives after 10,000 years, except those with a sufficient amount of inventory removed. A very interesting result was that grouting was shown to basically have minimal effect on the radium activity concentration. During the first 1,000 years grouting may have some small positive benefit relative to radium, however after that it may have a slightly deleterious effect. The Pb-210 results, relative to its 0.06 ?Ci/L PRG, are essentially identical to the radium results, but the Pb-210 results exhibit a lesser degree of exceedance. In summary, some level of inventory removal will be required to ensure that groundwater standards are met.

Taylor, G. A.; Phifer, M. A.

2012-09-14T23:59:59.000Z

245

Building Energy Software Tools Directory: Energy Demand Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Demand Modeling Energy Demand Modeling The software is intended to be used for Energy Demand Modeling. This can be utilized from regional to national level. A Graphical User Interface of the software takes the input from the user in a quite logical and sequential manner. These input leads to output in two distinct form, first, it develops a Reference Energy System, which depicts the flow of energy from the source to sink with all the losses incorporated and second, it gives a MATLAB script file for advance post processing like graphs, visualization and optimizations to develop and evaluate the right energy mix policy frame work for a intended region. Keywords Reference Energy System, Software, GUI, Planning, Energy Demand Model EDM, Energy Policy Planning Validation/Testing

246

Simulation and Big Data Challenges in Tuning Building Energy Models  

Science Conference Proceedings (OSTI)

EnergyPlus is the flagship building energy simulation software used to model whole building energy consumption for residential and commercial establishments. A typical input to the program often has hundreds, sometimes thousands of parameters which are typically tweaked by a buildings expert to get it right . This process can sometimes take months. Autotune is an ongoing research effort employing machine learning techniques to automate the tuning of the input parameters for an EnergyPlus input description of a building. Even with automation, the computational challenge faced to run the tuning simulation ensemble is daunting and requires the use of supercomputers to make it tractable in time. In this proposal, we describe the scope of the problem, the technical challenges faced and overcome, the machine learning techniques developed and employed, and the software infrastructure developed/in development when taking the EnergyPlus engine, which was primarily designed to run on desktops, and scaling it to run on shared memory supercomputers (Nautilus) and distributed memory supercomputers (Frost and Titan). The parametric simulations produce data in the order of tens to a couple of hundred terabytes.We describe the approaches employed to streamline and reduce bottlenecks in the workflow for this data, which is subsequently being made available for the tuning effort as well as made available publicly for open-science.

Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL

2013-01-01T23:59:59.000Z

247

Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Simulation Test for Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria Ron Judkoff, Ben Polly, and Marcus Bianchi National Renewable Energy Laboratory Joel Neymark J. Neymark & Associates Mike Kennedy Mike D. Kennedy, Inc. Link to Accompanying Zipped Data Files (3.9 MB) This document is intended for use with the following documents: Building Energy Simulation Test for Existing Homes (BESTEST-EX), NREL/TP-550-47427 Example Procedures for Developing Acceptance-Range Criteria for BESTEST-EX, NREL/TP-550-47502 Technical Report NREL/TP-5500-52414 August 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy

248

Efficient 3D building model generation from 2D floor plans  

E-Print Network (OSTI)

3D building models are beneficial to architects, interior designers, and ordinary people in visualizing indoor space in three dimensions. 3D building models appear to be more aesthetic to ordinary people than architectural ...

Kashlev, Dmitry

2008-01-01T23:59:59.000Z

249

Map algebra and model algebra for integrated model building  

Science Conference Proceedings (OSTI)

Computer models are important tools for the assessment of environmental systems. A seamless workflow of construction and coupling of model components is essential for environmental scientists. However, currently available software packages are often ... Keywords: Biomass-harvest model, Component-based modelling, PCRaster, Python, Spatio-temporal simulation

Oliver Schmitz, Derek Karssenberg, Kor De Jong, Jean-Luc De Kok, Steven M. De Jong

2013-10-01T23:59:59.000Z

250

Junior Solar Sprint - So.. You Want To Build A Model Solar Car  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Revised 82301 So... You Want To Build A Model Solar Car 2 TABLE OF CONTENTS TOPIC PAGE SOLAR ENERGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

251

Modeling and visualization of lifecycle building performance assessment  

Science Conference Proceedings (OSTI)

Lifecycle building performance assessment (LBPA) ensures that buildings perform and operate as intended during building lifecycle. Such assessment activities are typically multi-phase and multi-disciplinary, and generate large amounts of information ...

Ipek Gursel; Sevil Sariyildiz; mer Akin; Rudi Stouffs

2009-10-01T23:59:59.000Z

252

Property:Buildings/ModelClimateZone | Open Energy Information  

Open Energy Info (EERE)

ModelClimateZone ModelClimateZone Jump to: navigation, search This is a property of type Page. It links to pages that use the form Buildings Model. The allowed values for this property are: Climate Zone 1A Climate Zone 1B Climate Zone 2A Climate Zone 2B Climate Zone 3A Climate Zone 3B Climate Zone 3C Climate Zone 4A Climate Zone 4B Climate Zone 4C Climate Zone 5A Climate Zone 5B Climate Zone 5C Climate Zone 6A Climate Zone 6B Climate Zone 7A Climate Zone 7B Climate Zone 8A Climate Zone 8B Pages using the property "Buildings/ModelClimateZone" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + Climate Zone 5A + General Merchandise 2009 TSD Chicago High Plug Load Baseline + Climate Zone 5A + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + Climate Zone 5A +

253

Building energy modeling programs comparison Research on HVAC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building energy simulation programs are effective tools for the evaluation of building energy saving and optimization of design. The fact that large discrepancies exist in...

254

Building Energy Software Tools Directory: Energy Demand Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

255

Product and Process Modeling for Functional Performance Testing in Low-Energy Building Embedded Commissioning Cases  

E-Print Network (OSTI)

Our work deals with creating information assistance for commissioning (Cx) low-energy buildings throughout their life-cycle. We call this Embedded Commissioning in reference to the integration of persistent and reliable Cx information. We have developed digital models of the Cx process and products. Currently, we are testing system inspection and functional performance test (FPT) protocols developed by others to verify their applicability to individual facilities and compatibility with our product models, as well as standards, such as IFC and aecXML. To date we have tested a fin-tube radiant heat system FPT. Our findings include lessons learned in several areas: (1) adapting standard FPTs to specific facilities and their design intent, (2) common performance retarding system defects, and (3) implications for data representation in product/process models for FPT implementation.

Akcamete, A.; Garrett, J.; Akinci, B.; Akin, O.; Lee, K. J.

2007-01-01T23:59:59.000Z

256

Building Component Library | Open Energy Information  

Open Energy Info (EERE)

Building Component Library Building Component Library Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Building Component Library Agency/Company /Organization: NREL Sector: Energy Focus Area: Buildings Phase: Create a Vision, Evaluate Options, Develop Goals, Prepare a Plan Topics: Resource assessment, Technology characterizations Resource Type: Dataset Website: bcl.nrel.gov Cost: Free OpenEI Keyword(s): buildings, nrel, data, component Language: English Building Component Library Screenshot References: Buildings Component Library[1] The Building Component Library is a repository of building data used to create building energy models. The Building Component Library is a repository of building data used to create building energy models. The data are broken down into separate

257

Property:Buildings/ModelType | Open Energy Information  

Open Energy Info (EERE)

ModelType ModelType Jump to: navigation, search This is a property of type String. The allowed values for this property are: Baseline Minimum Cost Max Tech PV Takeoff Cost Neutral 30% Energy Savings 50% Energy Savings 70% Energy Savings Other Pages using the property "Buildings/ModelType" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + 50% Energy Savings + General Merchandise 2009 TSD Chicago High Plug Load Baseline + Baseline + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + 50% Energy Savings + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + Baseline + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings + 50% Energy Savings + General Merchandise 2009 TSD Miami High Plug Load Baseline + Baseline +

258

Property:Buildings/ModelName | Open Energy Information  

Open Energy Info (EERE)

ModelName ModelName Jump to: navigation, search This is a property of type String. Pages using the property "Buildings/ModelName" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + General Merchandise 2009 TSD Chicago High Plug Load Baseline + General Merchandise 2009 TSD Chicago High Plug Load Baseline + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings +

259

Property:Buildings/ModelTargetType | Open Energy Information  

Open Energy Info (EERE)

ModelTargetType ModelTargetType Jump to: navigation, search This is a property of type String. The allowed values for this property are: ASHRAE 90.1 2007 ASHRAE 90.1 2004 ASHRAE 189.1 LEED Pages using the property "Buildings/ModelTargetType" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Chicago High Plug Load Baseline + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Miami High Plug Load Baseline + ASHRAE 90.1 2004 +

260

DOE Refers Two ENERGY STAR Models to EPA for Potential De-Listing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refers Two ENERGY STAR Models to EPA for Potential De-Listing Refers Two ENERGY STAR Models to EPA for Potential De-Listing DOE Refers Two ENERGY STAR Models to EPA for Potential De-Listing January 11, 2012 - 11:00am Addthis U.S. Department of Energy ("DOE") testing has identified one refrigerator-freezer that does not meet the ENERGY STAR program's energy efficiency requirement and one dishwasher that may not meet an ENERGY STAR requirement. Dayton-brand refrigerator-freezer model 5NTX1, imported by Grainger Global Sourcing ("Grainger"), and ASKO Appliances, Inc. ("ASKO") dishwasher model D5253XXL were selected for testing as part of the DOE ENERGY STAR Verification Testing Program. DOE testing revealed that Grainger's Dayton-brand model 5NTX1 does not meet the ENERGY STAR energy efficiency requirement. The four tested units

Index
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


Index
261

DOE Refers Two ENERGY STAR Models to EPA for Potential De-Listing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Refers Two ENERGY STAR Models to EPA for Potential De-Listing DOE Refers Two ENERGY STAR Models to EPA for Potential De-Listing DOE Refers Two ENERGY STAR Models to EPA for Potential De-Listing January 11, 2012 - 11:00am Addthis U.S. Department of Energy ("DOE") testing has identified one refrigerator-freezer that does not meet the ENERGY STAR program's energy efficiency requirement and one dishwasher that may not meet an ENERGY STAR requirement. Dayton-brand refrigerator-freezer model 5NTX1, imported by Grainger Global Sourcing ("Grainger"), and ASKO Appliances, Inc. ("ASKO") dishwasher model D5253XXL were selected for testing as part of the DOE ENERGY STAR Verification Testing Program. DOE testing revealed that Grainger's Dayton-brand model 5NTX1 does not meet the ENERGY STAR energy efficiency requirement. The four tested units

262

Towards a hypermedia approach of data organization in building-modeling CAD systems  

E-Print Network (OSTI)

The development of architectural CAD systems implies a trend of using a comprehensive building model as the storage space for all relevant data about one design project. Instead of a set of drawing files, a building is ...

Zhao, Jian, 1964-

1990-01-01T23:59:59.000Z

263

A three-story prototype commercial building model for energy standard development and assessment  

SciTech Connect

Annual hourly simulation programs are generally used in the development and assessment of the impacts of building energy standards. These simulation programs require the specification of a building model as input to the simulation. Results of the simulations are sensitive to the building model, so care must be taken in the choice of the model to ensure representative results. A three-story prototype commercial building model is being used in developing requirements for the revision of ASHRAE Standard 90.1. The prototype is generic but has the capability to represent a broad range of commercial building types, sizes, orientations, and aspect ratios.

Jarnagin, R.E.

1994-06-01T23:59:59.000Z

264

Computer Modeling VRF Heat Pumps in Commercial Buildings using EnergyPlus  

Science Conference Proceedings (OSTI)

Variable Refrigerant Flow (VRF) heat pumps are increasingly used in commercial buildings in the United States. Monitored energy use of field installations have shown, in some cases, savings exceeding 30% compared to conventional heating, ventilating, and air-conditioning (HVAC) systems. A simulation study was conducted to identify the installation or operational characteristics that lead to energy savings for VRF systems. The study used the Department of Energy EnergyPlus? building simulation software and four reference building models. Computer simulations were performed in eight U.S. climate zones. The baseline reference HVAC system incorporated packaged single-zone direct-expansion cooling with gas heating (PSZ-AC) or variable-air-volume systems (VAV with reheat). An alternate baseline HVAC system using a heat pump (PSZ-HP) was included for some buildings to directly compare gas and electric heating results. These baseline systems were compared to a VRF heat pump model to identify differences in energy use. VRF systems combine multiple indoor units with one or more outdoor unit(s). These systems move refrigerant between the outdoor and indoor units which eliminates the need for duct work in most cases. Since many applications install duct work in unconditioned spaces, this leads to installation differences between VRF systems and conventional HVAC systems. To characterize installation differences, a duct heat gain model was included to identify the energy impacts of installing ducts in unconditioned spaces. The configuration of variable refrigerant flow heat pumps will ultimately eliminate or significantly reduce energy use due to duct heat transfer. Fan energy is also studied to identify savings associated with non-ducted VRF terminal units. VRF systems incorporate a variable-speed compressor which may lead to operational differences compared to single-speed compression systems. To characterize operational differences, the computer model performance curves used to simulate cooling operation are also evaluated. The information in this paper is intended to provide a relative difference in system energy use and compare various installation practices that can impact performance. Comparative results of VRF versus conventional HVAC systems include energy use differences due to duct location, differences in fan energy when ducts are eliminated, and differences associated with electric versus fossil fuel type heating systems.

Raustad, Richard

2013-06-01T23:59:59.000Z

265

Modeling National Impacts for the Building America Program  

SciTech Connect

In this paper we present a model to estimate the nationalenergy and economic impacts of the Department of Energy Building Americaprogram. The program goal is to improve energy performance in newresidential construction, by working with builders to design andconstruct energy-efficient homes at minimal cost. The model is anadaptation of the method used to calculate the national energy savingsfor appliance energy efficiency standards. The main difference is thatthe key decision here is not the consumer decision to buy anefficienthouse, but rather the builder decision to offer such a house inthe market. The builder decision is treated by developing a number ofscenarios in which the relative importance of first costs vs. energysavings is varied.

Coughlin, Katie M.; McNeil, Michael A.

2006-06-15T23:59:59.000Z

266

A trigram hidden Markov model for metadata extraction from heterogeneous references  

Science Conference Proceedings (OSTI)

Our objective was to explore an efficient and accurate extraction of metadata such as author, title and institution from heterogeneous references, using hidden Markov models (HMMs). The major contributions of the research were the (i) development of ... Keywords: Bibliography, Hidden Markov models, Metadata extraction, Second order, Shrinkage

Bolanle Ojokoh; Ming Zhang; Jian Tang

2011-05-01T23:59:59.000Z

267

Design of model reference adaptive sliding mode tracking controllers for mismatched uncertain dynamic systems  

Science Conference Proceedings (OSTI)

Based on the Lyapunov stability theorem, a model reference adaptive sliding mode control scheme is proposed in this paper for a class of multi-input multi-output (MIMO) dynamic systems with mismatched model uncertainties and external disturbances in ... Keywords: Lyapunov stability theorem, adaptive control, mismatched perturbations, sliding mode control

Chih-Chiang Cheng; Hung-An Chen; Jia-Ming Hsiao

2009-06-01T23:59:59.000Z

268

Jobs and Economic Development Impact (JEDI) Model Geothermal User Reference Guide  

Science Conference Proceedings (OSTI)

The Geothermal Jobs and Economic Development Impact (JEDI) model, developed through the National Renewable Energy Laboratory (NREL), is an Excel-based user-friendly tools that estimates the economic impacts of constructing and operating hydrothermal and Enhanced Geothermal System (EGS) power generation projects at the local level for a range of conventional and renewable energy technologies. The JEDI Model Geothermal User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.

Johnson, C.; Augustine, C.; Goldberg, M.

2012-09-01T23:59:59.000Z

269

Buildings and corporate strategy : towards a management system model  

E-Print Network (OSTI)

This thesis focuses on buildings as a subject of attention and inquiry in a corporate setting. It attempts to draw implications for the design of a management system to deal with the special nature of buildings as a resource. ...

Brana, Rodrigo

1985-01-01T23:59:59.000Z

270

Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning  

E-Print Network (OSTI)

of implementation. References Architecture 2030 (2007)6.7 GtCO 2 eq/yr globally by 2030 (IPCC 2007). As advocates,commercial buildings by 2030 in the stated goals of the

Coffey, Brian

2010-01-01T23:59:59.000Z

271

Evidence-based calibration of a building energy simulation model: Application to an office building in Belgium  

E-Print Network (OSTI)

Energy services play a growing role in the control of energy consumption and the improvement of energy efficiency in non-residential buildings. This work consists in the application of a simulation-based approach dedicated to whole-building energy use analysis for use in the frame of an energy efficiency service process. Focus is given to the calibration of a simplified dynamic hourly building energy simulation model by means of available energy use data and to the integration of the calibration process into the Energy Service Process. The developed simulation tool and the associated calibration method are applied to a real case study building located in Brussels, Belgium. The use of an evidence-based method ensures sticking to reality and avoids bad representation and hazardous adjustment of the parameters. Moreover, it is shown that the use of a sensitivity analysis method is of a great help to orient data collection and parameters adjustment processes.

Bertagnolio, S.; Randaxhe, F.; Lemort, V.

2012-01-01T23:59:59.000Z

272

Studio Education for Integrated Practice Using Building Information Modeling  

E-Print Network (OSTI)

This research study posits that an altered educational approach to design studio can produce future professionals who apply Building Information Modeling (BIM) in the context of Integrated Project Delivery (IPD) to execute designs faster and produce designs that have demonstrably higher performance. The combination of new technologies and social/contractual constructs represents an alternative to the established order for how to design and how to teach designers. BIM emerges as the key technology for facilitating IPD by providing consistent, computable and interoperable information essential to all AEC teams. The increasing trend of BIM adoption is an opportunity for the profession to dramatically change its processes and may potentially impact patterns of responsibility and the paradigms of design. This study showcases a repeatable framework and a theoretical model for the integrated studio using BIM and provides answers to the pedagogical questions raised by BIM, integration, and performance-based design. Using a formative and exploratory action research design, the study proposes a comprehensive pedagogical framework using the established theories of design studio education, building integration, and BIM. The framework was refined and triangulated in a set of focus group studies that include academics, design firms and AEC industry representatives, as well as students. Instrumental case studies implementing the pedagogical framework were conducted as courses in a graduate architecture program. Students' design processes and collaboration schemes were observed using systematic methods that included a broad range of data in conformance with a multi-method research approach. Content analysis of the data provides qualitative evidence for the effectiveness and encountered challenges of BIM methods that is related to proposed studio framework. These findings are corroborated by descriptive statistics and numerical data from the surveys, simulations, reports, and BIM models. Findings of the study illustrate that a carefully designed set of course exercises that incorporate BIM can enhance design processes, increase the depth and the number of alternatives studied, catalyze an interoperable and integrated educational environment, and expand the scope of design learning. Case studies presented here suggest common patterns of collaboration between designers and consultants during the integrated design process using shared BIM models. The findings from the study are synthesized in two theoretical models for the BIM enabled integrated studio and collaborative processes.

O?zener, Ozan O?zener

2009-12-01T23:59:59.000Z

273

Assessment of methods for creating a national building statistics database for atmospheric dispersion modeling  

SciTech Connect

Mesoscale meteorological codes and transport and dispersion models are increasingly being applied in urban areas. Representing urban terrain characteristics in these models is critical for accurate predictions of air flow, heating and cooling, and airborne contaminant concentrations in cities. A key component of urban terrain characterization is the description of building morphology (e.g., height, plan area, frontal area) and derived properties (e.g., roughness length). Methods to determine building morphological statistics range from manual field surveys to automated processing of digital building databases. In order to improve the quality and consistency of mesoscale meteorological and atmospheric dispersion modeling, a national dataset of building morphological statistics is needed. Currently, due to the expense and logistics of conducting detailed field surveys, building statistics have been derived for only small sections of a few cities. In most other cities, modeling projects rely on building statistics estimated using intuition and best guesses. There has been increasing emphasis in recent years to derive building statistics using digital building data or other data sources as a proxy for those data. Although there is a current expansion in public and private sector development of digital building data, at present there is insufficient data to derive a national building statistics database using automated analysis tools. Too many cities lack digital data on building footprints and heights and many of the cities having such data do so for only small areas. Due to the lack of sufficient digital building data, other datasets are used to estimate building statistics. Land use often serves as means to provide building statistics for a model domain, but the strength and consistency of the relationship between land use and building morphology is largely uncertain. In this paper, we investigate whether building statistics can be correlated to the underlying land use. If a reasonable correlation exists, then a national building statistics database could be created since land use is available for the entire U.S. Digital datasets of building footprint and height information have been obtained, validated and analyzed for eight western U.S. cities covering areas ranging from 6 km{sup 2} to 1653 km{sup 2}. Building morphological statistics (including mean and standard deviation of building height, plan area fraction and density, rooftop area density, frontal area index and density, building-to-plan area ratio, complete aspect ratio, height-to-width ratio, roughness length, displacement height, and sky view factor) have been computed for each city at 250-m resolution and are being correlated to underlying land use type. This paper will summarize the building statistics from the eight cites focusing on the variability within each city and between cities as a function of land use.

Velugubantla, S. P. (Srinivas, P.); Burian, S. J. (Steven J.); Brown, M. J. (Michael J.); McKinnon, A. T. (Andrew T.); McPherson, T. N. (Timothy N.); Han, W. S. (Woo Suk)

2004-01-01T23:59:59.000Z

274

90.1 Prototype Building Models High-rise Apartment | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building type. Publication Date: Tuesday, April 26, 2011 ApartmentHighRise.zip ApartmentHighRiseSTD2004.zip ApartmentHighRiseSTD2007.zip ApartmentHighRiseSTD2010.z...

275

Modeling and simulation of building energy performance for portfolios of public buildings  

Science Conference Proceedings (OSTI)

In the U.S., commercial and residential buildings and their occupants consume more than 40% of total energy and are responsible for 45% of total greenhouse gas (GHG) emissions. Therefore, saving energy and costs, improving energy efficiency and reducing ...

Young M. Lee; Fei Liu; Lianjun An; Huijing Jiang; Chandra Reddy; Raya Horesh; Paul Nevill; Estepan Meliksetian; Pawan Chowdhary; Nat Mills; Young Tae Chae; Jane Snowdon; Jayant Kalagnanam; Joe Emberson; Al Paskevicous; Elliott Jeyaseelan; Robert Forest; Chris Cuthbert; Tony Cupido; Michael Bobker; Janine Belfast

2011-12-01T23:59:59.000Z

276

Transmission Line Jobs and Economic Development Impact (JEDI) Model User Reference Guide  

SciTech Connect

The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are freely available, user-friendly tools that estimate the potential economic impacts of constructing and operating power generation projects for a range of conventional and renewable energy technologies. The Transmission Line JEDI model can be used to field questions about the economic impacts of transmission lines in a given state, region, or local community. This Transmission Line JEDI User Reference Guide was developed to provide basic instruction on operating the model and understanding the results. This guide also provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data contained in the model.

Goldberg, M.; Keyser, D.

2013-10-01T23:59:59.000Z

277

ASSESSING THE MINIMUM INSTRUMENTATION TO WELL TUNE EXISTING MEDIUM SIZED OFFICE BUILDING ENERGY MODELS.  

E-Print Network (OSTI)

??Dynamic whole building energy models (BEMs) are created for various reasons: to evaluate alternative design strategies; compliance checks with energy codes; apply certifications at the (more)

Xu, Ke

2012-01-01T23:59:59.000Z

278

Influence of two dynamic predictive clothing insulation models on building energy performance  

E-Print Network (OSTI)

Predictive Clothing Insulation Models on Building Energyunnecessarily higher clothing insulation and lower heatingthat the constant clothing insulation assumption lead to the

Lee, Kwang Ho; Schiavon, Stefano

2013-01-01T23:59:59.000Z

279

Development of whole-building energy performance models as benchmarks for retrofit projects  

Science Conference Proceedings (OSTI)

This paper presents a systematic development process of whole-building energy models as performance benchmarks for retrofit projects. Statistical regression-based models and computational performance models are being used for retrofit projects in industry ...

Omer Tugrul Karaguzel; Khee Poh Lam

2011-12-01T23:59:59.000Z

280

Data Analysis and Modeling of Lighting Energy Use in Large Office Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Analysis and Modeling of Lighting Energy Use in Large Office Buildings Data Analysis and Modeling of Lighting Energy Use in Large Office Buildings Title Data Analysis and Modeling of Lighting Energy Use in Large Office Buildings Publication Type Conference Paper Year of Publication 2013 Authors Zhou, Xin, Da Yan, Xiaoxin Ren, and Tianzhen Hong Keywords building simulation, energy use, lighting, modeling, occupant beh building, occupant beh building simulation, occupant behbuilding simulation Abstract Lighting consumes about 20 to 40% of total electricity use in large office buildings in the U.S. and China. In order to develop better lighting simulation models it is crucial to understand the characteristics of lighting energy use. This paper analyzes the main characteristics of lighting energy use over various time scales, based on the statistical analysis of measured lighting energy use of 17 large office buildings in Beijing and Hong Kong. It was found that the daily 24-hour variations of lighting energy use were mainly driven by the schedule of the building occupants. Outdoor illumination levels have little impact on lighting energy use in large office buildings due to the lack of automatic daylighting controls and relatively small perimeter areas. A stochastic lighting energy use model was developed based on different occupant activities during six time periods throughout a day, and the annual distribution of lighting power across those periods. The model was verified using measured lighting energy use of one selected building. This study demonstrates how statistical analysis and stochastic modeling can be applied to lighting energy use. The developed lighting model can be adopted by building energy modeling programs to improve the simulation accuracy of lighting energy use.

Index
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


Index
281

A survey of model reference adaptive techniques-Theory and applications  

Science Conference Proceedings (OSTI)

Model Reference Adaptive Systems have been used more and more widely in the last few years to solve various control, parameter identification and state estimation problems. This survey paper tries to present in a systematic way the ''state of the art'' ...

I. D. Landau

1974-01-01T23:59:59.000Z

282

Z .Chemical Geology 145 1998 153159 z /Geochemical Earth Reference Model GERM  

E-Print Network (OSTI)

Z .Chemical Geology 145 1998 153­159 z /Geochemical Earth Reference Model GERM : description on a chemical characterization of the Earth, its major reservoirs, and the fluxes between them. The Z .GERM chemical Z . Z .reservoirs of the present-day Earth, from core to atmosphere; 2 present-day fluxes between

Mcdonough, William F.

283

Model reference adaptive temperature control of the electromagnetic oven process in manufacturing process  

Science Conference Proceedings (OSTI)

Nowadays, the electromagnetic ovens are used for heating the component assembly of electronic manufacturing. The control systems of the electromagnetic ovens are feedback control system and PID controller are used to control their temperature. This process ... Keywords: control theory, response optimization and model reference adaptive system

Jiraphon Srisertpol; Supot Phungphimai

2010-02-01T23:59:59.000Z

284

Model Predictive Control for the Operation of Building Cooling Systems  

E-Print Network (OSTI)

of the chillers and cooling towers, the thermal storage tankthe chillers and cooling towers, the thermal storage tank,of thermal energy storage in building cooling systems.

Ma, Yudong

2010-01-01T23:59:59.000Z

285

Comparison of the Seismic Provisions of Model Building ...  

Science Conference Proceedings (OSTI)

... 3.2.2:* An aallition that is not structurally independent porn an twisting buifding shall be designed and constructed such that the entire building ...

1997-09-03T23:59:59.000Z

286

Model Predictive Control for the Operation of Building Cooling Systems  

E-Print Network (OSTI)

predictive control of thermal energy storage in buildingsystems which use thermal energy storage. In particular thepredictive control of thermal energy storage in building

Ma, Yudong

2010-01-01T23:59:59.000Z

287

Economic model predictive control for building energy systems.  

E-Print Network (OSTI)

??In the United States, buildings account for nearly three quarters of electricity consumption and about 40% of greenhouse gas emissions. The heating, ventilation and air-conditioning (more)

Ma, Jingran

2012-01-01T23:59:59.000Z

288

Building an Efficient Model for Afterburn Energy Release  

Science Conference Proceedings (OSTI)

Many explosives will release additional energy after detonation as the detonation products mix with the ambient environment. This additional energy release, referred to as afterburn, is due to combustion of undetonated fuel with ambient oxygen. While the detonation energy release occurs on a time scale of microseconds, the afterburn energy release occurs on a time scale of milliseconds with a potentially varying energy release rate depending upon the local temperature and pressure. This afterburn energy release is not accounted for in typical equations of state, such as the Jones-Wilkins-Lee (JWL) model, used for modeling the detonation of explosives. Here we construct a straightforward and efficient approach, based on experiments and theory, to account for this additional energy release in a way that is tractable for large finite element fluid-structure problems. Barometric calorimeter experiments have been executed in both nitrogen and air environments to investigate the characteristics of afterburn for C-4 and other materials. These tests, which provide pressure time histories, along with theoretical and analytical solutions provide an engineering basis for modeling afterburn with numerical hydrocodes. It is toward this end that we have constructed a modified JWL equation of state to account for afterburn effects on the response of structures to blast. The modified equation of state includes a two phase afterburn energy release to represent variations in the energy release rate and an afterburn energy cutoff to account for partial reaction of the undetonated fuel.

Alves, S; Kuhl, A; Najjar, F; Tringe, J; McMichael, L; Glascoe, L

2012-02-03T23:59:59.000Z

289

Reference modeling for higher education budgeting: applying the H2 toolset for conceptual modeling of performance-based funding systems  

Science Conference Proceedings (OSTI)

The Higher Education (HE) sector has gained remarkable economic importance worldwide. There is a huge amount of institutions competing in this dynamically evolving market. Emerging concepts like new public management advise to organize HE institutions ... Keywords: H2, budgeting, higher education (HE), incentive system, indicator system, information model, performance-based funding, reference modeling

Jan vom Brocke; Christian Buddendick; Alexander Simons

2007-09-01T23:59:59.000Z

290

ORNL Residential Reference House Energy Demand model (ORNL-RRHED). Volume 4. Case studies  

Science Conference Proceedings (OSTI)

This report describes the use and structure of the ORNL Residential Reference House Energy Demand Model (RRHED). RRHED is a computer-based engineering-economic end-use simulation model which forecasts energy demand based on a detailed evaluation of how households use energy for particular appliances. The report is organized into four volumes. The first volume provides an overview of the modeling approach and gives a short summary of the material presented in the other three volumes. The second volume is a user reference guide which provides the details necessary for users of the model to run the code and make changes to fit their particular application. Volume 3 presents the basic theoretical rationale for the RRHED model structure. The last volume reports on the application of the model to the analysis of two different kinds of issues: one is the examination of conservation policy impacts and the other is the forecasting of electricity demand in a need for power assessment. The report has two major objectives. The first is to provide a reader with little background in end-use modeling with an introduction to how the RRHED model works. The second is to provide the details needed by a user of the model to understand not only the theory behind the model specification, but also the structure of the code. This information will allow for the modification of subroutines to fit particular applications.

Hamblin, D.M.; Thomas, B. Jr.; Maddigan, R.J.; Forman, C.W. Jr.; Bibo, L.J.; McKeehan, K.M.

1986-02-01T23:59:59.000Z

291

The effect of simplifying the building description on the numerical modeling of its thermal performance  

SciTech Connect

A thermal building simulation program is a numerical model that calculates the response of the building envelopes to weather and human activity, simulates dynamic heating and cooling loads, and heating and cooling distribution systems, and models building equipment operation. The scope of the research is to supply the users of such programs with information about the dangers and benefits of simplifying the input to their models. The Introduction describes the advantages of modeling the heat transfer mechanisms in a building. The programs that perform this type of modeling have, however, limitations. The user is therefore often put in the situation of simplifying the floor plans of the building under study, but not being able to check the effects that this approximation introduces in the results of the simulation. Chapter 1 is a description of methods. It also introduces the floor plans for the office building under study and the ``reasonable`` floor plans simplifications. Chapter 2 presents DOE-2, the thermal building simulation program used in the sensitivity study. The evaluation of the accuracy of the DOE-2 program itself is also presented. Chapter 3 contains the sensitivity study. The complicated nature of the process of interpreting the temperature profile inside a space leads to the necessity of defining different building modes. The study compares the results from the model of the detailed building description with the results from the models of the same building having simplified floor plans. The conclusion is reached that a study of the effects of simplifying the floor plans of a building is important mainly for defining the cases in which this approximation is acceptable. Different results are obtained for different air conditioning/load regimes of the building. 9 refs., 24 figs.

Stetiu, C.

1993-07-01T23:59:59.000Z

292

Model for Naturally Ventilated Cavities on the Exteriors of Opaque Building Thermal Envelopes  

SciTech Connect

This paper describes a model for naturally ventilated cavities on the exterior of opaque building thermal envelopes that are formed by the presence of a lightweight baffle. The model can be used for building components that are slightly detached from the main envelope (but do not connect to the interior).

Griffith, B.

2006-11-01T23:59:59.000Z

293

Study of Multifamily Energy Retrofit Using Flexible Multizone Building Simulation Model  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study of Multifamily Study of Multifamily Energy Retrofit using Flexible, Multizone Building Simulation Model Piljae Im, Ph.D. Mini Malhotra, Ph.D. R&D Staff Oak Ridge National Laboratory Presented at Building America Technical Update Meeting April 29-30, 2013 Outline * Multifamily Energy Audit Tool - Background - Needs for MF Audit Tool - Existing MF Tools - Modeling Approach - Development Status * Case Study - Background - Pre/Post Retrofit Building characteristics - Whole Building Energy Analysis * Summary Managed by UT-Battelle for the U.S. Department of Energy Study of Multifamily Energy Retrofit using Flexible, Multizone Building Simulation Model 2 Background * New MF Building Energy Audit Tool sponsored by U.S. DOE * Collaboration of ORNL and LBNL * National web-based

294

Energy Modeling of a High Performance Building in the U.A.E. for Sustainability Certification  

E-Print Network (OSTI)

The Sheikh Zayed Desert Learning Centre (SZDLC) is a high performance sustainable exhibition center under construction in the U.A.E, aiming for the highest achievable sustainability ratings within the LEED and Estidama sustainability building rating programs. The Leadership in Energy and Environmental Design (LEED) sustainable building program provides a set of criteria for rating sustainable buildings (U.S. Green Building Council 2009). The Estidama rating program, currently in its pilot phase, is an upcoming sustainable building guideline for the Emirate of Abu Dhabi (Urban Planning Council, Abu Dhabi 2008). The Estidama program is similar to LEED in many ways, with a focus on the integrative design process for sustainable building projects. Both of these rating programs assign a large share of points to reducing energy usage which is related to CO2 production. To demonstrate that a design has improved performance, the rating programs encourage the use of whole building energy simulation. The building as it is designed is simulated and compared to a baseline building, where the building envelope and systems are replaced with materials and components meeting minimum acceptable standards. The percentage improvement of the As-Designed building over the Baseline building dictates the number of points awarded in the respective categories. Innovative solutions in managing the simulation complexity and visualizing energy performance were necessitated by the complexity of performing the building simulations. Improved decision support during the design phase and a better understanding of energy usage in the building are expected to improve the energy efficiency, operating costs, and environmental impact of the building. The detail available from an ambitious modeling approach is presented, demonstrating the usefulness of building energy performance simulation for sustainability ratings as well as design decision support.

Jones, M.; Ledinger, S.

2010-01-01T23:59:59.000Z

295

Convective Building of a Pycnocline: A Two-Dimensional Nonhydrostatic Numerical Model  

Science Conference Proceedings (OSTI)

The convective building of a pycnocline is examined using a two-dimensional nonhydrostatic numerical model forced by a balanced salinity dipole (source and sink). Although the forcing fields are steady, the model develops oscillations that renew ...

David W. Pierce; Peter B. Rhines

1997-06-01T23:59:59.000Z

296

A simplified software architecture for self-updating Building Information Models (BIM)  

E-Print Network (OSTI)

Building Information Modeling (BIM) is an emerging software technology that is revolutionizing the architecture, engineering, and construction (A/E/C) industry. BIM technology employs "object-based 3D models-containing the ...

Fuller, Pierre (Pierre Henri)

2009-01-01T23:59:59.000Z

297

Creative agencies : a model for building community capacity  

E-Print Network (OSTI)

This research investigates how existing initiatives based in artistic and non-artistic disciplines build indigenous capacity for leadership in disenfranchised communities through the application of the creative process. ...

Ramaccia, Elizabeth M. (Elizabeth Marie)

2011-01-01T23:59:59.000Z

298

Design and thermal modeling of a residential building  

E-Print Network (OSTI)

Recent trends of green energy upgrade in commercial buildings show promise for application to residential houses as well, where there are potential energy-saving benefits of retrofitting the residential heating system from ...

Yeh, Alice Su-Chin

2009-01-01T23:59:59.000Z

299

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

300

Occupancy Modeling and Prediction for Building Energy Varick L. Erickson, University of California, Merced  

E-Print Network (OSTI)

response HVAC control strategy," in proceedings of the 2nd ACM Workshop on Embedded Sensing SystemsA Occupancy Modeling and Prediction for Building Energy Management Varick L. Erickson, University into building conditioning system for usage based demand control conditioning strategies. Using strategies based

Cerpa, Alberto E.

Index
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


Index
301

Building Outline Extraction from Digital Elevation Models Using Marked Point Processes  

Science Conference Proceedings (OSTI)

This work presents an automatic algorithm for extracting vectorial land registers from altimetric data in dense urban areas. We focus on elementary shape extraction and propose a method that extracts rectangular buildings. The result is a vectorial land ... Keywords: MCMC, RJMCMC, building detection, dense urban area, digital elevation models, image processing, inhomogeneous Poisson point process, land register, laser data, simulated annealing, stochastic geometry

Mathias Ortner; Xavier Descombes; Josiane Zerubia

2007-04-01T23:59:59.000Z

302

Proceedings of ASHRAE-DOE-BTECC Conference on Building Thermal Envelopes Simplified Modeling for  

E-Print Network (OSTI)

in the envelopes of residential buildings is the primary mechanism to pro- vide ventilation to those buildings. For radon the same mechanisms that drive the ven- tilation, drive the radon entry from soil gas. This paper leakage, air flow, energy conservation, energy calculation, environment, health, modeling. #12

303

Object-Oriented Database for Managing Building Modeling Components and Metadata: Preprint  

SciTech Connect

Building simulation enables users to explore and evaluate multiple building designs. When tools for optimization, parametrics, and uncertainty analysis are combined with analysis engines, the sheer number of discrete simulation datasets makes it difficult to keep track of the inputs. The integrity of the input data is critical to designers, engineers, and researchers for code compliance, validation, and building commissioning long after the simulations are finished. This paper discusses an application that stores inputs needed for building energy modeling in a searchable, indexable, flexible, and scalable database to help address the problem of managing simulation input data.

Long, N.; Fleming, K.; Brackney, L.

2011-12-01T23:59:59.000Z

304

Model-Based Control: Development of a software tool for responsive building  

NLE Websites -- All DOE Office Websites (Extended Search)

Model-Based Control: Development of a software tool for responsive building Model-Based Control: Development of a software tool for responsive building research, design and operation Speaker(s): Brian Coffey Date: June 28, 2006 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Peng Xu Model-based control approaches the problem of optimal supervisory control for complex building systems by using discrete timesteps and searching for an optimal control configuration at each timestep, using a detailed building model and an optimization algorithm. Although the approach itself is not new (it was proposed at least as early as 1988), it is only during the past five to ten years that readily-available computation power has allowed researchers to consider this approach with complex system models. Recent research has developed and tested this approach for active solar

305

Revisiting Naur's programming as theory building for enterprise architecture modelling  

Science Conference Proceedings (OSTI)

The recent burgeoning interest in Enterprise Architecture and its focus on artifact driven methods is taken as a motivation for the re-appraisal of Peter Naur's notion of "programming as theory building". Naur strongly disputes the value of the role ...

Balbir S. Barn; Tony Clark

2011-06-01T23:59:59.000Z

306

Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings  

SciTech Connect

This study examines the effective moisture penetration depth (EMPD) model, and its suitability for building simulations. The EMPD model is a compromise between the simple, inaccurate effective capacitance approach and the complex, yet accurate, finite-difference approach. Two formulations of the EMPD model were examined, including the model used in the EnergyPlus building simulation software. An error in the EMPD model we uncovered was fixed with the release of EnergyPlus version 7.2, and the EMPD model in earlier versions of EnergyPlus should not be used.

Woods, J.; Winkler, J.; Christensen, D.

2013-01-01T23:59:59.000Z

307

A Model for Flow and Dispersion Around Buildings and Its Validation Using Laboratory Measurements  

DOE Green Energy (OSTI)

Numerical modeling of airflow and pollutant dispersion around buildings is a challenging task due to the geometrical variations of buildings and the extremely complex flow created by such surface-mounted obstacles. The airflow around buildings inevitably involves impingement and separation regions, a multiple vortex system with building wakes, and jetting effects in street canyons. The interference from adjacent buildings further complicates the flow and dispersion patterns. Thus accurate simulations of such flow and pollutant transport require not only appropriate physics submodels but also accurate numerics and significant computing resources. We have developed an efficient, high resolution CFD model for such purposes, with a primary goal to support incident response and preparedness in emergency response planning, vulnerability analysis, and the development of mitigation techniques.

Chan, S.T.; Stevens, D.; Lee, R.

2000-05-17T23:59:59.000Z

308

Buildings Performance Metrics Terminology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy's Commercial Building Initiative Page 1 Energy's Commercial Building Initiative Page 1 January 2009 Buildings Performance Metrics Terminology To clarify how the terms are used in the Department of Energy's Performance Metrics Research Project, a list of terms related to performance metrics are defined and include examples and comments. Visit www.commercialbuildings.energy.gov/performance_metrics.html to learn more. Baseline - a standard reference case used as a basis for comparison Examples: a simulation model of an ASHRAE 90.1 compliant building, control building, measurement of energy consumption prior to application of an energy conservation measure Comments: Establishing a clearly defined baseline very important and is often the most difficult task. Defining a repeatable baseline is essential if the work is to be compared to results of other

309

Validation and Application of the Room Model of the Modelica Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation and Application of the Room Model of the Modelica Buildings Validation and Application of the Room Model of the Modelica Buildings Library Title Validation and Application of the Room Model of the Modelica Buildings Library Publication Type Conference Proceedings LBNL Report Number LBNL-5932E Year of Publication 2012 Authors Nouidui, Thierry Stephane, Kaustubh Phalak, Wangda Zuo, and Michael Wetter Conference Name Proc. of the 9th International Modelica Conference Date Published 09/2012 Conference Location Munich, Germany Abstract The Modelica Buildings library contains a package with a model for a thermal zone that computes heat transfer through the building envelope and within a room. It considers various heat transfer phenomena of a room, including conduction, convection, short-wave and long-wave radiation. The first part of this paper describes the physical phenomena considered in the room model. The second part validates the room model by using a standard test suite provided by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). The third part focuses on an application where the room model is used for simulation-based controls of a window shading device to reduce building energy consumption.

310

Micrometeorological Modeling of Radiative and Convective Effects with a Building-Resolving Code  

Science Conference Proceedings (OSTI)

In many micrometeorological studies with computational fluid dynamics, building-resolving models usually assume a neutral atmosphere. Nevertheless, urban radiative transfers play an important role because of their influence on the energy budget. ...

Yongfeng Qu; Maya Milliez; Luc Musson-Genon; Bertrand Carissimo

2011-08-01T23:59:59.000Z

311

Critical Simulation Based Evaluation of Thermally Activated Building Systems (TABS) Design Models  

E-Print Network (OSTI)

Building index YOC Climate zone Use and loads Envelope CAin California CZ03 climate zone. The design models wereinvestigated the California climate zones CZ03, CZ04, CZ05,

Basu, Chandrayee

2012-01-01T23:59:59.000Z

312

Fire modeling for Building 221-T - T Plant Canyon Deck and Railroad Tunnel  

Science Conference Proceedings (OSTI)

This report was prepared by Hughes Associates, Inc. to document the results of fire models for building 221-T Canyon Deck and Railroad Tunnel. Backup data is contained in document No. WHC-SD-CP-ANAL-010, Rev. 0.

Oar, D.L.

1994-09-29T23:59:59.000Z

313

Comparing EM Models to RCS Measurements for Building-Penetration Radar  

SciTech Connect

For the DARPA VisiBuilding program, SRI International and Lawrence Livermore National Laboratory are using a variety of electromagnetic (EM) simulation codes and measurement techniques to analyze how radar pulses interact with building structures and materials. Of primary interest is how interior wall and corner reflections are delayed, attenuated, and dispersed by the exterior wall materials. In this paper, we compare microwave frequency-domain radar cross section (RCS) chamber measurements of scale models of simple buildings to finite-element and finite-difference full-wave time-domain and ray-tracing models. The ability to accurately reconstruct the building from these models is compared with the reconstruction from chamber measurements. We observe that careful attention to the spatial sampling in the EM models is essential to achieving good reconstruction at the higher frequencies.

Fasenfest, B; Ueberschaer, R

2007-05-18T23:59:59.000Z

314

Distributed Energy Resources at Naval Base Ventura County Building 1512: A Sensitivity Analysis  

E-Print Network (OSTI)

Adoption Model distributed generation building energyand fuel costs of the distributed generation (DG) equipment,refers to clean distributed generation technologies, such

Bailey, Owen C.; Marnay, Chris

2005-01-01T23:59:59.000Z

315

Tips for Planning, Building, and Testing a Model Car  

NLE Websites -- All DOE Office Websites (Extended Search)

Tips for Planning, Building, and Testing Your Lithium- Ion Battery Powered Car CONTENTS:  Teacher Overview  What Teachers Can Do To Help  Student Design Plan  Brainstorming  Materials  Chassis Design  Transmission  Gear Ratio  Wheels and Bearings  Battery  Testing  Trouble Shooting TEACHER OVERVIEW  The Lithium-ion battery powered car competition is designed to be an engineering challenge for middle school students.  Students will be exploring the following concepts while planning, building and testing their cars:  Alternative energy sources  Engineering design  Aerodynamics  Force and motion  Teamwork  Problem solving  Teams who do not have a completed car at the

316

Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning  

SciTech Connect

This paper describes the origin, structure and continuing development of a model of time varying energy consumption in the US commercial building stock. The model is based on a flexible structure that disaggregates the stock into various categories (e.g. by building type, climate, vintage and life-cycle stage) and assigns attributes to each of these (e.g. floor area and energy use intensity by fuel type and end use), based on historical data and user-defined scenarios for future projections. In addition to supporting the interactive exploration of building stock dynamics, the model has been used to study the likely outcomes of specific policy and innovation scenarios targeting very low future energy consumption in the building stock. Model use has highlighted the scale of the challenge of meeting targets stated by various government and professional bodies, and the importance of considering both new construction and existing buildings.

Coffey, Brian; Borgeson, Sam; Selkowitz, Stephen; Apte, Josh; Mathew, Paul; Haves, Philip

2009-07-01T23:59:59.000Z

317

230Th-234U Model-Ages of Some Uranium Standard Reference Materials  

SciTech Connect

The 'age' of a sample of uranium is an important aspect of a nuclear forensic investigation and of the attribution of the material to its source. To the extent that the sample obeys the standard rules of radiochronometry, then the production ages of even very recent material can be determined using the {sup 230}Th-{sup 234}U chronometer. These standard rules may be summarized as (a) the daughter/parent ratio at time=zero must be known, and (b) there has been no daughter/parent fractionation since production. For most samples of uranium, the 'ages' determined using this chronometer are semantically 'model-ages' because (a) some assumption of the initial {sup 230}Th content in the sample is required and (b) closed-system behavior is assumed. The uranium standard reference materials originally prepared and distributed by the former US National Bureau of Standards and now distributed by New Brunswick Laboratory as certified reference materials (NBS SRM = NBL CRM) are good candidates for samples where both rules are met. The U isotopic standards have known purification and production dates, and closed-system behavior in the solid form (U{sub 3}O{sub 8}) may be assumed with confidence. We present here {sup 230}Th-{sup 234}U model-ages for several of these standards, determined by isotope dilution mass spectrometry using a multicollector ICP-MS, and compare these ages with their known production history.

Williams, R W; Gaffney, A M; Kristo, M J; Hutcheon, I D

2009-05-28T23:59:59.000Z

318

DATA ANALYSIS AND MODELING OF LIGHTING ENERGY USE IN LARGE OFFICE BUILDINGS  

NLE Websites -- All DOE Office Websites (Extended Search)

DATA ANALYSIS AND MODELING OF LIGHTING ENERGY USE IN DATA ANALYSIS AND MODELING OF LIGHTING ENERGY USE IN LARGE OFFICE BUILDINGS Xin Zhou 1 , Da Yan 1, , Xiaoxin Ren 1 , Tianzhen Hong 2 1 Department of Building Science, School of Architecture, Tsinghua University, Beijing, China 2 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA ABSTRACT Lighting consumes about 20 to 40% of total electricity use in large office buildings in the U.S. and China. In order to develop better lighting simulation models it is crucial to understand the characteristics of lighting energy use. This paper analyzes the main characteristics of lighting energy use over various time scales, based on the statistical analysis of measured lighting energy use of 17 large office buildings in Beijing and Hong Kong. It was found that the daily 24-hour

319

Influence Of Three Dynamic Predictive Clothing Insulation Models On Building Energy Use, HVAC Sizing And Thermal Comfort  

E-Print Network (OSTI)

Predictive Clothing Insulation Models based on Outdoor AirPREDICTIVE CLOTHING INSULATION MODELS ON BUILDING ENERGYthat the clothing insulation is equal to a constant value of

Schiavon, Stefano; Lee, Kwang Ho

2013-01-01T23:59:59.000Z

320

Urban Dispersion Modeling: Comparison with Single-Building Measurements  

Science Conference Proceedings (OSTI)

Two models have been developed to predict airflow and dispersion in urban environments. The first model, the Realistic Urban Spread and Transport of Intrusive Contaminants (RUSTIC) model, is a fast-running urban airflow code that rapidly ...

Steve R. Diehl; Donald A. Burrows; Eric A. Hendricks; Robert Keith

2007-12-01T23:59:59.000Z

Index
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


Index
321

North Atlantic Simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the Vertical Coordinate Choice, Reference Pressure, and Thermobaricity  

Science Conference Proceedings (OSTI)

The viability of a generalized (Hybrid) Coordinate Ocean Model (HYCOM), together with the importance of thermobaricity and the choice of reference pressure, is demonstrated by analyzing simulations carried out using the World Ocean Circulation ...

Eric P. Chassignet; Linda T. Smith; George R. Halliwell; Rainer Bleck

2003-12-01T23:59:59.000Z

322

Building reliable activity models using hierarchical shrinkage and mined ontology  

Science Conference Proceedings (OSTI)

Activity inference based on object use has received considerable recent attention. Such inference requires statistical models that map activities to the objects used in performing them. Proposed techniques for constructing these models (hand definition, ...

Emmanuel Munguia Tapia; Tanzeem Choudhury; Matthai Philipose

2006-05-01T23:59:59.000Z

323

Automatic Building of Structured Geological Models Sylvain Brandel1  

E-Print Network (OSTI)

geological models used for oil and gas exploration. We present a prototype of a "geological pilot" which Modeling for oil and gas exploration Hydrocarbon reservoir models are a major tool currently used involved in oil and gas exploration have acquired a huge amount of seismic data, which are neither

Brandel, Sylvain

324

EIA model documentation: World oil refining logistics demand model,``WORLD`` reference manual. Version 1.1  

SciTech Connect

This manual is intended primarily for use as a reference by analysts applying the WORLD model to regional studies. It also provides overview information on WORLD features of potential interest to managers and analysts. Broadly, the manual covers WORLD model features in progressively increasing detail. Section 2 provides an overview of the WORLD model, how it has evolved, what its design goals are, what it produces, and where it can be taken with further enhancements. Section 3 reviews model management covering data sources, managing over-optimization, calibration and seasonality, check-points for case construction and common errors. Section 4 describes in detail the WORLD system, including: data and program systems in overview; details of mainframe and PC program control and files;model generation, size management, debugging and error analysis; use with different optimizers; and reporting and results analysis. Section 5 provides a detailed description of every WORLD model data table, covering model controls, case and technology data. Section 6 goes into the details of WORLD matrix structure. It provides an overview, describes how regional definitions are controlled and defines the naming conventions for-all model rows, columns, right-hand sides, and bounds. It also includes a discussion of the formulation of product blending and specifications in WORLD. Several Appendices supplement the main sections.

Not Available

1994-04-11T23:59:59.000Z

325

DOE Commercial Building Asset Rating: An Application of Centralized Modeling Tools  

SciTech Connect

This paper presents a novel approach used to develop the U.S. Department of Energy (DOE) Commercial Building Asset Rating, which is intended to help building owners better understand the installed system performance and the total energy use. A simplified data collection and energy-modeling method is employed to disaggregate building energy information. Furthermore, the approach outlined will also include a mechanism for identifying energy improvement opportunities. A detailed modeling approach to formulate an Asset Rating would most likely provide the greatest flexibility and accuracy. Such an approach would, however, require a substantial amount of user investment for collecting the energy audit, data and hiring a professional to perform energy modeling and analysis. A simplified model approach requires fewer input combinations, which could reduce opportunities for error and allow an inexperienced user to quickly develop energy models. However, the accuracy of the results is often questionable. To address the above issue, the method presented in this paper separates model inputs into categories based on overall energy impact, difficulty to obtain, and variability among buildings. We outline an approach that will allow great flexibility in terms of how many and which of the different categories of variables must be found to produce an accurate energy model. The approach will allow all key variables to be inferred from some minimum set of variables while at the same time allowing a user to enter many more variables if he or she has reliable values for them. The approach outlined will also provide constant values for some variables and algorithms for finding those which are very difficult to determine in the field. The whole of this approach will reduce modeling time and expertise required while maintaining accuracy and the ability to support the variability and complexity that exist in buildings. Therefore, the goals of facilitating cost-effective investment in energy efficiency and reducing energy use in the commercial building sector are met.

Wang, Na; Gorrissen, Willy J.; Srivastava, Viraj; Taylor, Cody

2012-06-26T23:59:59.000Z

326

Tips: References | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

References References Tips: References April 11, 2012 - 9:03am Addthis Tips: References The following resources were used to develop the Energy Savers Guide: Tips on Saving Money and Energy at Home: Alternative Fuels and Advanced Vehicles Data Center American Council for an Energy-Efficient Economy Cool Roof Rating Council Database of State Incentives for Renewables & Efficiency (DSIRE) DOE Building America DOE Building Technologies Program DOE Building Technologies Program, 2010 Buildings Energy Databook DOE Energy Information Administration Residential Energy Consumption Survey DOE/EPA Fuel Economy Guide DOE Federal Energy Management Program DOE Office of Electricity Delivery and Energy Reliability ENERGY STAR® Green Roofs for Healthy Cities National Renewable Energy Laboratory

327

Semantic Building Blocks for 21st Century Building Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Semantic Building Blocks for 21st Century Building Engineering Semantic Building Blocks for 21st Century Building Engineering Speaker(s): Mark Palmer Date: October 2, 2009 - 12:00pm Location: 90-3122 The Building and Fire Research Laboratory (BFRL) of the National Institute of Standards and Technology (NIST) works to advance innovation and competitiveness of the U.S. building and fire safety industries. This presentation will introduce some of the work at BFRL to improve the design, construction and operation of the built environment and to advance the semantic infrastructure for integrated project design and delivery. With this context established, the presentation will examine research challenges and next steps for developing reference information models, industry data dictionaries and rule libraries for multidisciplinary collaboration to

328

Building Energy Software Tools Directory: Heat Pump Design Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Pump Design Model Heat Pump Design Model Heat Pump Design Model logo. Research tool for use in the steady-state simulation and design analysis of air-to-air heat pumps and air conditioners. The program can be used with most of the newer HFC refrigerants as well as with HCFCs and CFCs. The standard vapor-compression cycle is modeled with empirical representations for compressor performance and first-principle region-by-region modeling of the heat exchangers. An online Web version is available that can be used with default configurations or with user-specified component and operating parameters for analyzing the performance of single-speed, air-to-air equipment. User configurations can be saved for later use. Parametric analyses can be made and performance trends plotted online.

329

A Reference-Dependent Regret Model for Deterministic Trade-off Studies  

SciTech Connect

Today's typical multi-criteria decision analysis is based on classical expected utility theory that assumes a mythical ''Rational Individual'' immune to psychological influences such as anticipated regret. It is therefore in conflict with rational individuals who trade-off some benefits and forgo the alternative with the highest total classical utility for a more balanced alternative in order to reduce their levels of anticipated regret. This paper focuses on decision making under certainty. It presents a reference-dependent regret model (RDRM) in which the level of regret that an individual experiences depends on the absolute values rather than the differences of the utilities of the chosen and forgone alternatives. The RDRM best choice may differ from the conventional linear additive utility model, the analytic hierarchy process, and the regret theory of Bell and Loomes and Sugden. Examples are presented that indicate that RDRM is the better predictive descriptor for decision making under certainty. RDRM satisfies transitivity of the alternatives under pairwise comparisons and models rank reversal consistent with observed reasonable choices under dynamic or distinct situations. Like regret theory, the RDRM utilities of all the alternatives under consideration are interrelated. For complex trade-off studies regret is incorporated as an element of a cost-utility-regret analysis that characterizes each alternative in terms of its monetary cost, an aggregate performance utility, and a regret value. This provides decision makers adequate information to compare the alternatives and depending on their values they may trade-off some performance and/or cost to avoid high levels of regret. The result is a well-balanced alternative often preferred by reasonable decision makers to the optimal choice of classical multi-attribute utility analysis. The model can readily be extended to incorporate rejoicing to suit decision makers who seek it. The approach is illustrated using a hypothetical but realistic aircraft selection problem.

Kujawski, Edouard

2005-02-25T23:59:59.000Z

330

Development of a Model Specification for Performance MonitoringSystems for Commercial Buildings  

SciTech Connect

The paper describes the development of a model specification for performance monitoring systems for commercial buildings. The specification focuses on four key aspects of performance monitoring: (1) performance metrics; (2) measurement system requirements; (3) data acquisition and archiving; and (4) data visualization and reporting. The aim is to assist building owners in specifying the extensions to their control systems that are required to provide building operators with the information needed to operate their buildings more efficiently and to provide automated diagnostic tools with the information required to detect and diagnose faults and problems that degrade energy performance. The paper reviews the potential benefits of performance monitoring, describes the specification guide and discusses briefly the ways in which it could be implemented. A prototype advanced visualization tool is also described, along with its application to performance monitoring. The paper concludes with a description of the ways in which the specification and the visualization tool are being disseminated and deployed.

Haves, Philip; Hitchcock, Robert J.; Gillespie, Kenneth L.; Brook, Martha; Shockman, Christine; Deringer, Joseph J.; Kinney,Kristopher L.

2006-08-01T23:59:59.000Z

331

An automated vision-based method for rapid 3D energy performance modeling of existing buildings using thermal and digital imagery  

Science Conference Proceedings (OSTI)

Modeling the energy performance of existing buildings enables quick identification and reporting of potential areas for building retrofit. However, current modeling practices of using energy simulation tools do not model the energy performance of buildings ... Keywords: 3D reconstruction, Building retrofit, Energy performance modeling, Structure-from-Motion, Thermography

Youngjib Ham, Mani Golparvar-Fard

2013-08-01T23:59:59.000Z

332

Model-based chiller energy tracking for performance assurance at a university building  

SciTech Connect

Buildings and their various subsystems often do not perform as well as intended at the design stage. Building energy performance suffers from insufficient documentation of design intent, inadequate building commissioning, and a lack of robust methods for short term and continuous performance tracking. This paper discusses how calibrated models can be used to track building systems and component performance from design, through commissioning, and into operations. Models of the chillers energy use and efficiency were developed and used to evaluate energy performance and control changes to minimize energy use. The example discussed is based on an actual university building. A detailed discussion of the extrapolation and associated uncertainty of using six months of data to develop annual energy use scenarios from various chiller models is included. An important lesson concerning the design is that there was significant oversizing of the chillers resulting in poor part load performance and over $3,000 year of annual energy cost increases. The oversizing is related to extremely high estimates of office equipment loads. The oversizing also causes frequent cycling of chillers, which shortens chiller life. Due to the lack of careful start-up procedures, it appears construction debris fouled one of the new chillers, resulting in about $5,200 year in energy increases. Additional comments on design and commissioning issues are included. The monitoring, modeling, and software development efforts were developed to demonstrate the value of collecting and organizing information regarding design, commissioning, and ongoing performance. This case study is part of a larger effort to examine methods and technologies to improve buildings performance and develop interoperable Building Life-Cycle Information Systems (BLISS).

Piette, M.A.; Carter, G.; Meyers, S.; Sezgen, O.; Selkowoitz, S.

1997-09-01T23:59:59.000Z

333

A Review of Ground Coupled Heat Pump Models Used in Whole-Building Computer Simulation Programs  

E-Print Network (OSTI)

Increasingly, building owners are turning to ground source heat pump (GSHP) systems to improve energy efficiency. Ground-coupled heat pump (GCHP) systems with a vertical closed ground loop heat exchanger are one of the more widely used systems. Over the last thirty years, a number of simulation models have been developed to calculate the performance of the ground heat exchanger (GHX). The several computer programs can evaluate the GCHP systems as a part of the whole-building energy simulation. This paper briefly presents a general introduction to GSHP systems and the GCHP system, and reviews the currently developed GCHP models and compares computer programs for a GCHP design. In addition, GHX models which play an important role on the GCHP performance are reviewed. Finally, several widely recognized computer simulation programs for building energy analysis are compared regarding their GCHP simulation capability.

Do, S. L.; Haberl, J. S.

2010-08-01T23:59:59.000Z

334

Modelling Residential-Scale Combustion-Based Cogeneration in Building Simulation  

SciTech Connect

This article describes the development, calibration and validation of a combustion-cogeneration model for whole-building simulation. As part of IEA Annex 42, we proposed a parametric model for studying residentialscale cogeneration systems based on both Stirling and internal combustion engines. The model can predict the fuel use, thermal output and electrical generation of a cogeneration device in response to changing loads, coolant temperatures and flow rates, and control strategies. The model is now implemented in the publicly-available EnergyPlus, ESP-r and TRNSYS building simulation programs. We vetted all three implementations using a comprehensive comparative testing suite, and validated the model's theoretical basis through comparison to measured data. The results demonstrate acceptable-to-excellent agreement, and suggest the model can be used with confidence when studying the energy performance of cogeneration equipment in non-condensing operation.

Ferguson, A.; Kelly, N.; Weber, A.; Griffith, B.

2009-03-01T23:59:59.000Z

335

An expandable software model for collaborative decision making during the whole building life cycle  

SciTech Connect

Decisions throughout the life cycle of a building, from design through construction and commissioning to operation and demolition, require the involvement of multiple interested parties (e.g., architects, engineers, owners, occupants and facility managers). The performance of alternative designs and courses of action must be assessed with respect to multiple performance criteria, such as comfort, aesthetics, energy, cost and environmental impact. Several stand-alone computer tools are currently available that address specific performance issues during various stages of a building's life cycle. Some of these tools support collaboration by providing means for synchronous and asynchronous communications, performance simulations, and monitoring of a variety of performance parameters involved in decisions about a building during building operation. However, these tools are not linked in any way, so significant work is required to maintain and distribute information to all parties. In this paper we describe a software model that provides the data management and process control required for collaborative decision making throughout a building's life cycle. The requirements for the model are delineated addressing data and process needs for decision making at different stages of a building's life cycle. The software model meets these requirements and allows addition of any number of processes and support databases over time. What makes the model infinitely expandable is that it is a very generic conceptualization (or abstraction) of processes as relations among data. The software model supports multiple concurrent users, and facilitates discussion and debate leading to decision making. The software allows users to define rules and functions for automating tasks and alerting all participants to issues that need attention. It supports management of simulated as well as real data and continuously generates information useful for improving performance prediction and understanding of the effects of proposed technologies and strategies.

Papamichael, K.; Pal, V.; Bourassa, N.; Loffeld, J.; Capeluto, G.

2000-04-01T23:59:59.000Z

336

Influence Of Three Dynamic Predictive Clothing Insulation Models On Building Energy Use, HVAC Sizing And Thermal Comfort  

E-Print Network (OSTI)

Weather, Clothing and Thermal Adaptation to Indoor Climate,of Determining Acceptable Thermal Conditions, Building andan Adaptive Model of Thermal Comfort and Preference, Final

Schiavon, Stefano; Lee, Kwang Ho

2013-01-01T23:59:59.000Z

337

Application of the Software as a Service Model to the Control of Complex Building Systems  

Science Conference Proceedings (OSTI)

In an effort to create broad access to its optimization software, Lawrence Berkeley National Laboratory (LBNL), in collaboration with the University of California at Davis (UC Davis) and OSISoft, has recently developed a Software as a Service (SaaS) Model for reducing energy costs, cutting peak power demand, and reducing carbon emissions for multipurpose buildings. UC Davis currently collects and stores energy usage data from buildings on its campus. Researchers at LBNL sought to demonstrate that a SaaS application architecture could be built on top of this data system to optimize the scheduling of electricity and heat delivery in the building. The SaaS interface, known as WebOpt, consists of two major parts: a) the investment& planning and b) the operations module, which builds on the investment& planning module. The operational scheduling and load shifting optimization models within the operations module use data from load prediction and electrical grid emissions models to create an optimal operating schedule for the next week, reducing peak electricity consumption while maintaining quality of energy services. LBNL's application also provides facility managers with suggested energy infrastructure investments for achieving their energy cost and emission goals based on historical data collected with OSISoft's system. This paper describes these models as well as the SaaS architecture employed by LBNL researchers to provide asset scheduling services to UC Davis. The peak demand, emissions, and cost implications of the asset operation schedule and investments suggested by this optimization model are analysed.

Stadler, Michael; Donadee, Jonathan; Marnay, Chris; Mendes, Goncalo; Appen, Jan von; Megel, Oliver; Bhattacharya, Prajesh; DeForest, Nicholas; Lai, Judy

2011-03-17T23:59:59.000Z

338

Application of the Software as a Service Model to the Control of Complex Building Systems  

Science Conference Proceedings (OSTI)

In an effort to create broad access to its optimization software, Lawrence Berkeley National Laboratory (LBNL), in collaboration with the University of California at Davis (UC Davis) and OSISoft, has recently developed a Software as a Service (SaaS) Model for reducing energy costs, cutting peak power demand, and reducing carbon emissions for multipurpose buildings. UC Davis currently collects and stores energy usage data from buildings on its campus. Researchers at LBNL sought to demonstrate that a SaaS application architecture could be built on top of this data system to optimize the scheduling of electricity and heat delivery in the building. The SaaS interface, known as WebOpt, consists of two major parts: a) the investment& planning and b) the operations module, which builds on the investment& planning module. The operational scheduling and load shifting optimization models within the operations module use data from load prediction and electrical grid emissions models to create an optimal operating schedule for the next week, reducing peak electricity consumption while maintaining quality of energy services. LBNL's application also provides facility managers with suggested energy infrastructure investments for achieving their energy cost and emission goals based on historical data collected with OSISoft's system. This paper describes these models as well as the SaaS architecture employed by LBNL researchers to provide asset scheduling services to UC Davis. The peak demand, emissions, and cost implications of the asset operation schedule and investments suggested by this optimization model are analyzed.

Stadler, Michael; Donadee, Jon; Marnay, Chris; Lai, Judy; Mendes, Goncalo; Appen, Jan von; M& #233; gel, Oliver; Bhattacharya, Prajesh; DeForest, Nicholas; Lai, Judy

2011-03-18T23:59:59.000Z

339

Use of whole building simulation in on-line performance assessment: Modeling and implementation issues  

SciTech Connect

The application of model-based performance assessment at the whole building level is explored. The information requirements for a simulation to predict the actual performance of a particular real building, as opposed to estimating the impact of design options, are addressed with particular attention to common sources of input error and important deficiencies in most simulation models. The role of calibrated simulations is discussed. The communication requirements for passive monitoring and active testing are identified and the possibilities for using control system communications protocols to link on-line simulation and energy management and control systems are discussed. The potential of simulation programs to act as ''plug-and-play'' components on building control networks is discussed.

Haves, Philip; Salsbury, Tim; Claridge, David; Liu, Mingsheng

2001-06-15T23:59:59.000Z

340

Use of whole building simulation in on-line performance assessment: Modeling and implementation issues  

SciTech Connect

The application of model-based performance assessment at the whole building level is explored. The information requirements for a simulation to predict the actual performance of a particular real building, as opposed to estimating the impact of design options, are addressed with particular attention to common sources of input error and important deficiencies in most simulation models. The role of calibrated simulations is discussed. The communication requirements for passive monitoring and active testing are identified and the possibilities for using control system communications protocols to link on-line simulation and energy management and control systems are discussed. The potential of simulation programs to act as ''plug-and-play'' components on building control networks is discussed.

Haves, Philip; Salsbury, Tim; Claridge, David; Liu, Mingsheng

2001-06-15T23:59:59.000Z

Index
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


Index
341

Some analytic models of passive solar building performance: a theoretical approach to the design of energy-conserving buildings  

DOE Green Energy (OSTI)

This paper describes an application of the fundamental methods of physics to solve a problem of environmental and economic interest: the description of the thermal performance of passive solar buildings. Such a description is of great practical interest to building designers; however, this paper is not intended to be of use to architects and engineers in its present form. Its intention is to provide a theoretical basis for understanding passive solar buildings; further effort is needed to develop rules of solar engineering.

Goldstein, D.B.

1978-11-01T23:59:59.000Z

342

Integrating window pyranometer for beam daylighting measurements in scale-model buildings  

SciTech Connect

An experimental device has been developed to measure the total amount of solar radiation transmitted through glazed apertures in scale-model buildings. The device, an integrating window pyranometer (IWP), has two distinguishing characteristics: (1) it provides a measure of transmitted solar radiation integrated over a representative portion of the model glazing, accounting for nonuniform radiation distributions; and (2) it is spectrally independent. In applications to scale-model daylighting experiments, the IWP, together with photometric sensors mounted in the model, allows the direct measurement of the fraction of transmitted solar gains reaching the work plane as useful illumination, a convenient measure of the daylighting system performance. The IWP has been developed as part of an outdoor experimental facility to perform beam daylighting measurements in scale-model buildings. In this paper, the integrating window pyranometer is described; the results of calibration tests are presented and evaluated; the advantages and limitations of the device are discussed.

Bauman, F.; Place, W.; Thornton, J.; Howard, T.C.

1985-12-01T23:59:59.000Z

343

From the Building to the Grid: An Energy Revolution and Modeling Challenge; Workshop Proceedings  

SciTech Connect

This report summarizes the workshop entitled: From the Building to the Grid: An Energy Revolution and Modeling Challenge. The first workshop was held May 1-2, 2012 on NREL's campus in Golden, Colorado. The second was held June 6-7, 2012 at the University College Dublin, in Dublin, Ireland.

Kroposki, B.; Komomua, C.; O'Malley, M.

2013-01-01T23:59:59.000Z

344

An iterative approach to build relevant ontology-aware data-driven models  

Science Conference Proceedings (OSTI)

In many fields involving complex environments or living organisms, data-driven models are useful to make simulations in order to extrapolate costly experiments and to design decision-support tools. Learning methods can be used to build interpretable ... Keywords: Classification tree, Expert knowledge, Knowledge integration, Machine learning, Ontology

Rallou Thomopoulos; SBastien Destercke; Brigitte Charnomordic; Iyan Johnson; JoL AbCassis

2013-02-01T23:59:59.000Z

345

From the Building to the Grid: An Energy Revolution and Modeling Challenge; Workshop Proceedings  

SciTech Connect

This report summarizes the workshop entitled: From the Building to the Grid: An Energy Revolution and Modeling Challenge. The first workshop was held May 1-2, 2012 on NREL's campus in Golden, Colorado. The second was held June 6-7, 2012 at the University College Dublin, in Dublin, Ireland.

Kroposki, B.; Komomua, C.; O' Malley, M.

2013-01-01T23:59:59.000Z

346

Systematic time-based study for quantifying the uncertainty of uncalibrated models in building energy simulations  

E-Print Network (OSTI)

This thesis documents the usefulness and accuracy of uncalibrated simulations to determine for what end-uses these simulations should be used. The study was divided into three segments 1)comparison of the accuracy of two simulation models, massless and advanced, against measured data 2) comparison of the results from two simulations models, simplistic and massless, to determine the sensitivity of envelope shape and details for two weather conditions 3) identification of the parameters that have a significant impact on the simulation output. Five buildings were selected as the test sample. Four of the buildings were multi story commercial buildings. The fifth was a single-family residential house. For the first segment of the study two simulation models were created for all the buildings; the massless model with emphasis on the envelope using massless construction and typical values for system parameters and the advanced model with the inclusion of thermal mass and extensive as-built details of the systems. For the second part of the research the simplistic model was created having a single floor one-zone with glazing and conditioned areas equivalent to the massless model. The sensitivity analysis was done using the massless model and selected variables from the loads and systems as sensitivity parameters. By following the procedure mentioned, it was found that uncalibrated simulation models do not depict the real operating conditions of a building. For some cases the simulated values are higher than the measured data while for others they are significantly lower. The CV (RMSE) between the measured and simulated values ranges from 30 to 150%. From the comparison of the simplistic and massless model, it was concluded that the outer envelope shape and details have an impact on the heating and cooling energy use irrespective of the weather conditions. For internally load dominated buildings this impact is more on the heating loads than on the cooling loads. The conclusions from the sensitivity analysis were that outside air fraction and the total supply air have the most significant impact on the simulation output while thermal mass has a small impact.

Ahmad, Mushtaq

2003-08-01T23:59:59.000Z

347

FIERAsystem: A Fire Risk Assessment Model for Light Industrial Building Fire Safety Evaluation  

E-Print Network (OSTI)

this report. The current report describes the framework for the new model, individual submodels used for calculations, and the information that the model provides to the design engineer or building official. The framework that FIERAsystem uses to conduct a hazard analysis and the process used to perform a risk analysis are also discussed in the report. 2. FRAMEWORK OF FIERAsystemMODEL The FIERAsystem model allows the user to perform a number of fire protection engineering calculations in order to evaluate fire protection systems in industrial buildings. At start-up, FIERAsystem provides several calculation options, which allow the user to: use standard engineering correlations, run individual submodels, conduct a hazard analysis, or conduct a risk analysis

N. Kashef; A. Torvi; G. Reid; Noureddine Benichou; Ahmed Kashef; David Torvi; George Hadjisophocleous; Irene Reid

2002-01-01T23:59:59.000Z

348

Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions  

DOE Green Energy (OSTI)

This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code enacted in Section 1331 of the 2005 Energy Policy Act and noted in Internal Revenue Service Notice 2006-52. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning; and service hot water systems.

Deru, M.

2007-02-01T23:59:59.000Z

349

Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions  

SciTech Connect

This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code enacted in Section 1331 of the 2005 Energy Policy Act and noted in Internal Revenue Service Notice 2006-52. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning; and service hot water systems.

Deru, M.

2007-02-01T23:59:59.000Z

350

Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions, Second Edition  

SciTech Connect

This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code enacted in Section 1331 of the 2005 Energy Policy Act and noted in Internal Revenue Service Notice 2006-52. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning; and service hot water systems.

Deru, M.

2007-05-01T23:59:59.000Z

351

Automatic Calibration of a Building Energy Simulation Model Using a Global Optimization Program  

E-Print Network (OSTI)

A simulation model used to analyze the energy performance of an existing building should be calibrated to measured consumption data from the building so the simulation output closely follows the measured time series energy consumption data and shows the same temperature dependence. This paper has used optimization software to show that a simple simulation program which is a coding of the ASHRAE 'Simplified Energy Analysis Procedure' can be automatically calibrated to measured data. The measured data used in this case study was simulation data to which a small amount of white noise had been added.

Lee, S. U.; Claridge, D.

2002-01-01T23:59:59.000Z

352

Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions, Second Edition  

SciTech Connect

This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code enacted in Section 1331 of the 2005 Energy Policy Act and noted in Internal Revenue Service Notice 2006-52. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning; and service hot water systems.

Deru, M.

2007-05-01T23:59:59.000Z

353

Analysis of the differences in energy simulation results between building information modeling (BIM)-based simulation method and the detailed simulation method  

Science Conference Proceedings (OSTI)

Building Information Modeling (BIM)-based simulation models have been used to automate lengthy building energy modeling processes and it enable fast acquisition of results. Recent improvements of simulation programs have continued to the increase in ...

Seongchan Kim; Jeong-Han Woo

2011-12-01T23:59:59.000Z

354

Building Energy Software Tools Directory: EnergyGauge Summit Premier  

NLE Websites -- All DOE Office Websites (Extended Search)

EnergyGauge Summit Premier EnergyGauge Summit Premier EnergyGauge Summit Premier logo EnergyGauge Summit Premier offers automatic reference building generation allowing considerable time savings for analyzing buildings for code compliance and green building certification. After entering a building, the software can automatically compare the building to ASHRAE Standard 90.1 2001, 2004 or 2007 reference building models, and for the appropriate building types, the ASHRAE Advanced design guidelines. Additional capabilities include the ability to run a whole building simulation as per ASHRAE Standard 90.1 Appendix G guidelines for LEED New Construction 2.2, and for computing Federal Tax Deductions as per EPACT 2005 guidelines from the Internal Revenue Service (IRS) and DOE. The software also offers the

355

A Modelica-based Model Library for Building Energy and Control Systems  

SciTech Connect

This paper describes an open-source library with component models for building energy and control systems that is based on Modelica, an equation-based objectoriented language that is well positioned to become the standard for modeling of dynamic systems in various industrial sectors. The library is currently developed to support computational science and engineering for innovative building energy and control systems. Early applications will include controls design and analysis, rapid prototyping to support innovation of new building systems and the use of models during operation for controls, fault detection and diagnostics. This paper discusses the motivation for selecting an equation-based object-oriented language. It presents the architecture of the library and explains how base models can be used to rapidly implement new models. To demonstrate the capability of analyzing novel energy and control systems, the paper closes with an example where we compare the dynamic performance of a conventional hydronic heating system with thermostatic radiator valves to an innovative heating system. In the new system, instead of a centralized circulation pump, each of the 18 radiators has a pump whose speed is controlled using a room temperature feedback loop, and the temperature of the boiler is controlled based on the speed of the radiator pump. All flows are computed by solving for the pressure distribution in the piping network, and the controls include continuous and discrete time controls.

Wetter, Michael

2009-04-07T23:59:59.000Z

356

CSP 586: Software Modeling and Development with UML Jim Conallen. Building Web Applications with UML, Addison-Wesley  

E-Print Network (OSTI)

CSP 586: Software Modeling and Development with UML Texts Jim Conallen. Building Web Applications · UML for Web Design 3 hours Total 45 hours CSP 586: Software Modeling and Development with UML 1 of 1

Heller, Barbara

357

SOME ANALYTIC MODELS OF PASSIVE SOLAR BUILDING PERFORMANCE: A THEORETICAL APPROACH TO THE DESIGN OF ENERGY-CONSERVING BUILDINGS  

E-Print Network (OSTI)

to response to weather-varying solar amplitude is delayed 1-expansion for the weather-varying solar gain function; wea simple passive solar building to idealized weather. Such a

Goldstein, David Baird

2011-01-01T23:59:59.000Z

358

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail to someone by E-mail Share Building Technologies Office: Commercial Building Research on Facebook Tweet about Building Technologies Office: Commercial Building Research on Twitter Bookmark Building Technologies Office: Commercial Building Research on Google Bookmark Building Technologies Office: Commercial Building Research on Delicious Rank Building Technologies Office: Commercial Building Research on Digg Find More places to share Building Technologies Office: Commercial Building Research on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software Global Superior Energy Performance Partnership

359

Influence of Air-Conditioning Waste Heat on Air Temperature in Tokyo during Summer: Numerical Experiments Using an Urban Canopy Model Coupled with a Building Energy Model  

Science Conference Proceedings (OSTI)

A coupled model consisting of a multilayer urban canopy model and a building energy analysis model has been developed to investigate the diurnal variations of outdoor air temperature in the office areas of Tokyo, Japan. Observations and numerical ...

Yukitaka Ohashi; Yutaka Genchi; Hiroaki Kondo; Yukihiro Kikegawa; Hiroshi Yoshikado; Yujiro Hirano

2007-01-01T23:59:59.000Z

360

AUTOMATIC GENERATION OF DIGITAL BUILDING MODELS FOR COMPLEX STRUCTURES FROM LIDAR DATA  

E-Print Network (OSTI)

Automated and reliable 3D reconstruction of man-made structures is important for various applications in virtual reality, city modeling, military training, etc. This paper is concerned with the automated generation of Digital Building Models (DBM) associated with complex structures comprised of small parts with different slopes, sizes, and shapes, from a LiDAR point cloud. The proposed methodology consists of a sequence of four steps: ground/non-ground point separation; building hypothesis generation; segmentation of planar patches and intermediate boundary generation; and boundary refinement and 3D wire frame generation. First, a novel ground/non-ground point classification technique is proposed based on the visibility analysis among ground and non-ground points in a synthesized perspective view. Once the LiDAR point cloud has been classified into ground and non-ground points, the non-ground points are analyzed and used to generate hypotheses of building instances based on the point attributes and the spatial relationships among the points. The third step of the proposed methodology segments each building hypothesis into a group of planar patches while simultaneously considering the attribute similarity and the spatial proximity among the points. The intermediate boundaries for segmented clusters are produced by using a modified convex hull algorithm. These boundaries are used as initial approximations of the planar surfaces comprising the building model of a given hypothesis. The last step of the proposed methodology utilizes these initial boundaries to come up with a refined set of boundaries, which are connected to produce a wire frame representing the DBM. The performance of the proposed methodology has been evaluated using experimental results from real data.

Changjae Kim; Ayman Habib; Yu-chuan Chang

2008-01-01T23:59:59.000Z

Index
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


Index
361

Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the Effective Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings J. Woods, J. Winkler, and D. Christensen National Renewable Energy Laboratory Technical Report NREL/TP-5500-57441 January 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings J. Woods, J. Winkler, and D. Christensen National Renewable Energy Laboratory Prepared under Task No. BE12.0201

362

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... thermal insulation; building technology; guarded hot plate; thermal conductivity; thermal resistance; uncertainty; transmission; mathematical models ...

363

Daily radiation model for use in the simulation of passive solar buildings  

DOE Green Energy (OSTI)

A model is presented to characterize solar radiation with just three input parameters for each day. This compressed daily radiation data may be used in place of hourly data in simulations of passive solar buildings. This method is tested with the SUNCAT passive simulation. Global horizontal and direct normal radiation data are input using the compressed daily form instead of by hour. Simulation results are found to be comparable to results based on hourly radiation data.

Sillman, S.; Wortman, D.

1981-04-01T23:59:59.000Z

364

Assessing the Potential of Developing a Tool for Residential Facility Management Using Building Information Modeling Software  

E-Print Network (OSTI)

Building Information Modeling (BIM) has changed the ways buildings are designed and constructed. Along with design and construction, operation and maintenance of the built facility is also gaining importance in the Architecture-Engineering-Construction industry. Facility management (FM) is widely adopted by industrial, healthcare and other types of commercial facilities for better maintenance and management of assets. BIM is being adopted in the field of Facility management and has become one of the most important tools for better application of operation and maintenance. Facility management is performed by professionals with training and experience in the related fields of building operation, maintenance, upgrade and repair. BIM is a professional tool which requires intense training and knowledge. This tool cannot be used and is hard to understand for non-professionals and people who do not have training to use it. Management of residences is as important as management of commercial, industrial and healthcare facilities for the life and smooth running of such facilities. Residential facilities are properties with one or more residential units or buildings. These buildings could be low rise, high rise or individual units. This thesis will help in analyzing the scope of using BIM and Application Programming Interface (API) for management of maintenance in residences by the owner who are not professionally trained. The research analyzes a single, basic function of a BIM tool to determine the potential for such a tool to help non-expert, first time user to be able to understand their residential facilities maintenance requirements. It is an attempt to propose a system which provides alerts to the owners regarding required maintenance and which shows the location of the work in a 3D model. The system was designed and tested in Microsoft Windows 7 operating system by using Autodesk Revit building information software to make the 3D model, a Revit API plug-in to craft the alerts and show the location of work and Open Database Connectivity (ODBC) to export the model to a web browser. The system worked through Revit program, but the concept of applying the system to work through web browser failed.

Madhani, Himanshu 1986-

2012-12-01T23:59:59.000Z

365

Statistical Analysis of Baseline Load Models for Non-Residential Buildings  

SciTech Connect

Policymakers are encouraging the development of standardized and consistent methods to quantify the electric load impacts of demand response programs. For load impacts, an essential part of the analysis is the estimation of the baseline load profile. In this paper, we present a statistical evaluation of the performance of several different models used to calculate baselines for commercial buildings participating in a demand response program in California. In our approach, we use the model to estimate baseline loads for a large set of proxy event days for which the actual load data are also available. Measures of the accuracy and bias of different models, the importance of weather effects, and the effect of applying morning adjustment factors (which use data from the day of the event to adjust the estimated baseline) are presented. Our results suggest that (1) the accuracy of baseline load models can be improved substantially by applying a morning adjustment, (2) the characterization of building loads by variability and weather sensitivity is a useful indicator of which types of baseline models will perform well, and (3) models that incorporate temperature either improve the accuracy of the model fit or do not change it.

Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote, Sila

2008-11-10T23:59:59.000Z

366

DOE Refers Four ENERGY STAR Models to EPA for Potential De-Listing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Avanti Products ("Avanti") refrigerator basic model BCA4560W-2 and three Friedrich Air Conditioning Company ("Friedrich") room air conditioner basic models (WS12C10,...

367

Research utilization in the building industry: decision model and preliminary assessment  

Science Conference Proceedings (OSTI)

The Research Utilization Program was conceived as a far-reaching means for managing the interactions of the private sector and the federal research sector as they deal with energy conservation in buildings. The program emphasizes a private-public partnership in planning a research agenda and in applying the results of ongoing and completed research. The results of this task support the hypothesis that the transfer of R and D results to the buildings industry can be accomplished more efficiently and quickly by a systematic approach to technology transfer. This systematic approach involves targeting decision makers, assessing research and information needs, properly formating information, and then transmitting the information through trusted channels. The purpose of this report is to introduce elements of a market-oriented knowledge base, which would be useful to the Building Systems Division, the Office of Buildings and Community Systems and their associated laboratories in managing a private-public research partnership on a rational systematic basis. This report presents conceptual models and data bases that can be used in formulating a technology transfer strategy and in planning technology transfer programs.

Watts, R.L.; Johnson, D.R.; Smith, S.A.; Westergard, E.J.

1985-10-01T23:59:59.000Z

368

Modeling attic humidity as a function of weather, building construction, and ventilation rates  

Science Conference Proceedings (OSTI)

A dynamic model for predicting attic relative humidity (RH) and roof-sheathing moisture content (MC) was developed for microcomputer application. The model accepts standard hourly weather data and building-design parameters as input. Model predictions gave good agreement with measured data from a house located in Madison, Wisconsin. Solar radiation varies with roof orientation and plays an important role in determining moisture transfer to and from the roof sheathing. Opposing roof surfaces must be differentiated in attic humidity models to account for the effect of solar radiation. The model described in this paper is capable of such differentiation. Snow accumulation on a roof can significantly alter the temperature and moisture conditions in an attic, but further research is needed to understand the effect of a snow layer on attic temperatures. Various scenarios were simulated with this model to determine the effect of building practice and ventilation strategies on roof sheathing MC. Direct control of RH in the living space by ventilation is very effective in lowering attic moisture conditions. Where natural ventilation is not adequate, a timer-controlled attic fan shows great promise for ensuring efficient and economical attic ventilation.

Gorman, T.M.

1987-01-01T23:59:59.000Z

369

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of this building in two challenging North American climates. ... building in its native climate were performed ... were formulated-a single-zone model with ...

370

Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning  

E-Print Network (OSTI)

for Achieving Net Zero-Energy Buildings in the Commercialand Renewable Energy, Building Technologies Program, of theconvert these very low energy buildings to a net zero energy

Coffey, Brian

2010-01-01T23:59:59.000Z

371

Formal Calibration Methodology for CFD Model Development to Support the Operation of Energy Efficient Buildings  

E-Print Network (OSTI)

Computational Fluid Dynamics (CFD) is a robust tool for modeling interactions within and between fluids and solids. CFD can help understand and predict phenomena that are difficult to test experimentally leading to cleaner, healthier, and better controlled internal environments. In this research a CFD model of the internal environment of an office space will be developed. The CFD model will then be calibrated using real data taken from a well-positioned wireless sensor network and weather station. The work focuses on developing systematically calibrated CFD models for controlled environments that include clean rooms, health environments, pharmaceutical storage rooms and information and communication technology locations, utilizing wireless sensor networks. The calibrated CFD model will be used to optimize the positions of the physical sensors for the control of energy efficient internal environments by building operators. This could result in significant energy and economic savings and lead to more accurately controlled internal environments.

Hajdukiewicz, M.; Keane, M.; O'Flynn, B.; O'Grady, W.

2010-01-01T23:59:59.000Z

372

Comprehensive Evaluation Model of Building Energy Efficiency Based on Rough Sets Theory  

E-Print Network (OSTI)

In order to improve the objectivity of building energy efficiency evaluation, this paper uses a new method to evaluate building energy efficiency on the basis of rough sets theory. The contribution of different subentry evaluation indicators to comprehensive evaluation is calculated with the conception of attribute-significance, and then their weights are decided by using weighted normalization. According to characteristics of subentry evaluation indicators, their scores are conformed, in the end their comprehensive evaluation is calculated depending on sums of weight normalization. The model is validated by the swatches that are given on base of the software "DeST". It is concluded that the comprehensive evaluation on base of the model coincides with the result of the software " DeST ". The contribution of shape coefficient is most important among the different factors, and building orientation is next. The method by which weight can be decided with the conception "attribute- significance from RS cuts down man-made factors interfere., and objective results can be obtained.

Ding, L.; Ruan, X.; Huang, J.; Li, Y.

2006-01-01T23:59:59.000Z

373

Building Energy Tools Software Directory | Open Energy Information  

Open Energy Info (EERE)

Building Energy Tools Software Directory Building Energy Tools Software Directory Jump to: navigation, search Tool Summary Name: Building Energy Tools Software Directory Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Energy Efficiency, Buildings Phase: Create a Vision, Determine Baseline, Develop Goals Topics: Technology characterizations Resource Type: Dataset, Software/modeling tools User Interface: Website Website: apps1.eere.energy.gov/buildings/tools_directory/ References: http://apps1.eere.energy.gov/buildings/tools_directory/ Logo: Building Energy Tools Software Directory This directory provides information on 388 building software tools for evaluating energy efficiency, renewable energy, and sustainability in buildings. The energy tools listed in this directory include databases,

374

Modeling Building Energy Use and HVAC Efficiency Improvements in Extreme Hot and Humid Regions  

E-Print Network (OSTI)

An energy analysis was performed on the Texas A & M University at Qatar building in Doha, Qatar. The building and its HVAC systems were modeled using EnergyPlus. Building chilled water and electrical data were collected to validate the computer simulation. The simulated monthly electricity consumption was within plus/minus 5 percent of the metered building data. Ninety-five percent of simulated hourly electricity data in a day were within plus/minus 10 percent of metered data. Monthly chilled water demand was within plus/minus 18 percent of measurements, and simulated monthly demand was correlated to metered monthly values with an R-squared correlation coefficient of 0.95. Once the simulation was verified with the metered data, an optimization of the building's HVAC systems was performed. Better utilizing the building's variable speed fans at part loads showed potential annual electricity savings of 16 percent over the base case, with another 22 percent savings in chilled water energy. After converting chilled water savings to equivalent chiller electricity savings, the potential utility cost savings over the base case were found to be $90,000/yr at local utility rates. Reducing outdoor air intake to ASHRAE indoor air quality minimums yielded an additional 17 percent in potential chilled water savings and brought total monetary savings over the base case to $110,000/yr. Using a dedicated outside air system to precisely control individual zone ventilation showed potential for an additional 12 percent chilled water savings and $14,000 in yearly utility savings, while also eliminating cases of under-ventilation. A hypothetical retrofit of fan powered terminal units (FPTU's) resulted in energy savings only at very low minimum flow rates, below ventilation standards. Savings were never more than 20 percent over the no-fan case. Series FPTU's showed no savings at any flow setting and negligible difference was found between ECM and SCR motor control. Finally, the dependence on climate of each improvement was studied. Simulations were run in the relatively milder climates of Houston and Phoenix and compared to those found for Doha. It was found that variable speed fan operation is a more cost effective option for milder climates, while outside air control is more cost effective in extreme hot and humid climates such as Doha. Future study is needed to make the FPTU model valid for different climates and flow ranges.

Bible, Mitchell

2011-08-01T23:59:59.000Z

375

Building America Top Innovations Hall of Fame Profile … Model Simulating Real Domestic Hot Water Use  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and the Davis Energy Group used the and the Davis Energy Group used the Domestic Hot Water Event Schedule Generator to accurately quantify effects of low and high water usage on distribution system measures such as pipe insulation, home run plumbing, and demand-controlled recirculation loops. As progress continues with high-R, tightly sealed thermal enclosures, domestic hot water becomes an increasingly important energy use in high-performance homes. Building America research has improved our ability to model hot water use so new hot water technologies can be more accurately assessed and more readily integrated into high-performance homes. Energy savings for certain residential building technologies depend greatly on occupant behavior. Domestic hot water use is a good example. Simulating

376

Role of Modeling When Designing for Absolute Energy Use Intensity Requirements in a Design-Build Framework: Preprint  

SciTech Connect

The Research Support Facility was designed to use half the energy of an equivalent minimally code-compliant building, and to produce as much renewable energy as it consumes on an annual basis. These energy goals and their substantiation through simulation were explicitly included in the project's fixed firm price design-build contract. The energy model had to be continuously updated during the design process and to match the final building as-built to the greatest degree possible. Computer modeling played a key role throughout the design process and in verifying that the contractual energy goals would be met within the specified budget. The main tool was a whole building energy simulation program. Other models were used to provide more detail or to complement the whole building simulation tool. Results from these specialized models were fed back into the main whole building simulation tool to provide the most accurate possible inputs for annual simulations. This paper will detail the models used in the design process and how they informed important program and design decisions on the path from preliminary design to the completed building.

Hirsch, A.; Pless, S.; Guglielmetti, R.; Torcellini, P. A.; Okada, D.; Antia, P.

2011-03-01T23:59:59.000Z

377

Role of Modeling When Designing for Absolute Energy Use Intensity Requirements in a Design-Build Framework: Preprint  

SciTech Connect

The Research Support Facility was designed to use half the energy of an equivalent minimally code-compliant building, and to produce as much renewable energy as it consumes on an annual basis. These energy goals and their substantiation through simulation were explicitly included in the project's fixed firm price design-build contract. The energy model had to be continuously updated during the design process and to match the final building as-built to the greatest degree possible. Computer modeling played a key role throughout the design process and in verifying that the contractual energy goals would be met within the specified budget. The main tool was a whole building energy simulation program. Other models were used to provide more detail or to complement the whole building simulation tool. Results from these specialized models were fed back into the main whole building simulation tool to provide the most accurate possible inputs for annual simulations. This paper will detail the models used in the design process and how they informed important program and design decisions on the path from preliminary design to the completed building.

Hirsch, A.; Pless, S.; Guglielmetti, R.; Torcellini, P. A.; Okada, D.; Antia, P.

2011-03-01T23:59:59.000Z

378

Beyond Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

without compromising future generations SUSTAINABLE INL Buildings Beyond Buildings Sustainability Beyond Buildings INL is taking sustainability efforts "beyond buildings" by...

379

Seismic Performance, Modeling, and Failure Assessment of Reinforced Concrete Shear Wall Buildings  

E-Print Network (OSTI)

Post- Tensioned Concrete Buildings, PEER Report 2011/104,RC shear walls in high-rise buildings, The Young ResearcherExtended 3D Analysis of Building Structures, Computers and

Tuna, Zeynep

2012-01-01T23:59:59.000Z

380

Residential building energy analysis : development and uncertainty assessment of a simplified model  

E-Print Network (OSTI)

Effective design of energy-efficient buildings requires attention to energy issues during the preliminary stages of design. To aid in the early consideration of a building's future energy usage, a simplified building energy ...

Spindler, Henry C. (Henry Carlton), 1970-

1998-01-01T23:59:59.000Z

Index
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


Index
381

Comparison of simplified models of urban climate for improved prediction of building energy use in cities  

E-Print Network (OSTI)

Thermal simulation of buildings is a requisite tool in the design of low-energy buildings, yet, definition of weather boundary conditions during simulation of urban buildings suffers from a lack of data that accounts for ...

Street, Michael A. (Michael Anthony)

2013-01-01T23:59:59.000Z

382

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Buildings Hub Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and techniques. The goal is to enable the nation to cut energy use in the commercial buildings sector by 20% by 2020.

383

Whole Building Energy Simulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Simulation Energy Simulation Whole Building Energy Simulation October 16, 2013 - 4:39pm Addthis Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations may be pursued. Whole building energy simulation software adequately assesses the interactions between complex building systems and equally complex schedules and utility rates structures for projects in specific locations throughout the world. Energy models incorporate actual building construction, internal load sources, and associated schedules using annual hourly weather data specific to the project location. These models can be used early in the design process when little information is known and updated, continually

384

References - CECM  

E-Print Network (OSTI)

help annotate Contents Next: About this document Up: RamanujanModular Equations, Previous: Sources [Annotate] [Shownotes]. References.

385

Solar radiation and daylight illuminance modelling and implications for building integrated photovoltaic system designs.  

E-Print Network (OSTI)

???Recently, there has been an increasing awareness of building energy conservation. Renewable energy can produce energy without emitting pollutant and requires no fuel. Energy-efficient building (more)

Lam, Ngan Tung Tony (???)

2008-01-01T23:59:59.000Z

386

Tips: References | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: References Tips: References Tips: References April 11, 2012 - 9:03am Addthis Tips: References The following resources were used to develop the Energy Savers Guide: Tips on Saving Money and Energy at Home: Alternative Fuels and Advanced Vehicles Data Center American Council for an Energy-Efficient Economy Cool Roof Rating Council Database of State Incentives for Renewables & Efficiency (DSIRE) DOE Building America DOE Building Technologies Program DOE Building Technologies Program, 2010 Buildings Energy Databook DOE Energy Information Administration Residential Energy Consumption Survey DOE/EPA Fuel Economy Guide DOE Federal Energy Management Program DOE Office of Electricity Delivery and Energy Reliability ENERGY STAR® Green Roofs for Healthy Cities National Renewable Energy Laboratory

387

IAEA Planning and Economic Studies Section (PESS) Capacity Building | Open  

Open Energy Info (EERE)

IAEA Planning and Economic Studies Section (PESS) Capacity Building IAEA Planning and Economic Studies Section (PESS) Capacity Building Jump to: navigation, search Tool Summary Name: IAEA Planning and Economic Studies Section (PESS) Capacity Building Agency/Company /Organization: International Atomic Energy Agency Sector: Energy Focus Area: Non-renewable Energy, Energy Efficiency, Renewable Energy Topics: Pathways analysis Resource Type: Software/modeling tools, Training materials References: IAEA PESS capacity building[1] Logo: IAEA Planning and Economic Studies Section (PESS) Capacity Building "PESS offers assistance to Member States, particularly from developing regions, to improve their energy system analysis & planning capabilities. Assistance can include: transferring modern planning methods, tools and databanks

388

Jobs and Economic Development Impact (JEDI) Model: Offshore Wind User Reference Guide  

DOE Green Energy (OSTI)

The Offshore Wind Jobs and Economic Development Impact (JEDI) model, developed by NREL and MRG & Associates, is a spreadsheet based input-output tool. JEDI is meant to be a user friendly and transparent tool to estimate potential economic impacts supported by the development and operation of offshore wind projects. This guide describes how to use the model as well as technical information such as methodology, limitations, and data sources.

Lantz, E.; Goldberg, M.; Keyser, D.

2013-06-01T23:59:59.000Z

389

Attachments for fire modeling for Building 221-T, T Plant canyon deck and railroad tunnel  

SciTech Connect

The purpose of this attachment is to provide historical information and documentation for Document No. WHC-SD-CP-ANAL-008 Rev 0, ``Fire Modeling for Building 221-T--T Plant Canyon Deck and Railroad Tunnel``, dated September 29, 1994. This data compilation contains the following: Resumes of the Technical Director, Senior Engineer and Junior Engineer; Review and Comment Record; Software Files; CFAST Input and Output Files; Calculation Control Sheets; and Estimating Sprinkler Actuation Time in the Canyon and Railroad Tunnel. The T Plant was originally a fuel reprocessing facility. It was modified later to decontaminate and repair PuRex process equipment.

Oar, D.L. [Westinghouse Hanford Co., Richland, WA (United States)

1995-01-23T23:59:59.000Z

390

Architectures and languages for model building and reuse: organization and selection of reconfigurable models  

Science Conference Proceedings (OSTI)

This paper introduces the concept of reconfigurable simulation models and describes how these models can be used to support simulation-based design. As in object-oriented programming, a reconfigurable model consists of a separate interface and multiple ...

Antonio Diaz-Calderon; Christiaan J. J. Paredis; Pradeep K. Khosla

2000-12-01T23:59:59.000Z

391

Mobile Building Energy Audit and Modeling Tools: Cooperative Research and Development Final Report, CRADA Number CRD-11-00441  

SciTech Connect

Broadly accessible, low cost, accurate, and easy-to-use energy auditing tools remain out of reach for managers of the aging U.S. building population (over 80% of U.S. commercial buildings are more than 10 years old*). concept3D and NREL's commercial buildings group will work to translate and extend NREL's existing spreadsheet-based energy auditing tool for a browser-friendly and mobile-computing platform. NREL will also work with concept3D to further develop a prototype geometry capture and materials inference tool operable on a smart phone/pad platform. These tools will be developed to interoperate with NREL's Building Component Library and OpenStudio energy modeling platforms, and will be marketed by concept3D to commercial developers, academic institutions and governmental agencies. concept3D is NREL's lead developer and subcontractor of the Building Component Library.

Brackney, L.

2013-04-01T23:59:59.000Z

392

Mobile Building Energy Audit and Modeling Tools: Cooperative Research and Development Final Report, CRADA Number CRD-11-00441  

SciTech Connect

Broadly accessible, low cost, accurate, and easy-to-use energy auditing tools remain out of reach for managers of the aging U.S. building population (over 80% of U.S. commercial buildings are more than 10 years old*). concept3D and NREL's commercial buildings group will work to translate and extend NREL's existing spreadsheet-based energy auditing tool for a browser-friendly and mobile-computing platform. NREL will also work with concept3D to further develop a prototype geometry capture and materials inference tool operable on a smart phone/pad platform. These tools will be developed to interoperate with NREL's Building Component Library and OpenStudio energy modeling platforms, and will be marketed by concept3D to commercial developers, academic institutions and governmental agencies. concept3D is NREL's lead developer and subcontractor of the Building Component Library.

Brackney, L.

2013-04-01T23:59:59.000Z

393

Digital buildings - Challenges and opportunities  

Science Conference Proceedings (OSTI)

This paper considers the wider implications of digital buildings (as currently exemplified by building information models) becoming the norm within the building construction sector. Current deployment is reviewed and the growing opportunity to better ... Keywords: BIM, Building, Digital, Futures, Sustainability

Alastair Watson

2011-10-01T23:59:59.000Z

394

Solid Waste Projection Model: Database (Version 1.3). Technical reference manual  

SciTech Connect

The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.3 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement.

Blackburn, C.L.

1991-11-01T23:59:59.000Z

395

Reference architecture, metamodel, and modeling principles for architectural knowledge management in information technology services  

Science Conference Proceedings (OSTI)

Capturing and sharing design knowledge such as architectural decisions is becoming increasingly important in firms providing professional Information Technology (IT) services such as enterprise application development and strategic outsourcing. Methods, ... Keywords: Architectural decisions, Architectural principles, DSL, Knowledge management, Model-driven engineering, Outsourcing, SOA, Workflow

Olaf Zimmermann; Christoph Miksovic; Jochen M. KSter

2012-09-01T23:59:59.000Z

396

Reference Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Tools Current Greenhouse Gas Concentrations Name that compound: The numbers game for CFCs, HFCs, HCFCs, and Halons Conversion Tables and More Glossary Acronyms CDIAC's...

397

Portfolio Manager Technical Reference: Canadian National Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Buildings & Plants Portfolio Manager Technical Reference: Canadian National Energy Use Intensity Secondary menu About us Press room Contact Us Portfolio Manager Login...

398

Property:ReferenceGenre | Open Energy Information  

Open Energy Info (EERE)

genre or subcategory label of reference material. Allows Values Buildings;Geothermal;Hydrogen;Smart Grid;Solar;Utilities;Water;Wind Retrieved from "http:en.openei.orgw...

399

Hawaii demand-side management resource assessment. Final report, Reference Volume 2: Final residential and commercial building prototypes and DOE-2.1E developed UECs and EUIs; Part 2  

SciTech Connect

This section contains the detailed measured impact results and market segment data for each DSM case examined for this building type. A complete index of all base and measure cases defined for this building type is shown first. This index represents an expansion of the base and measure matrix presented in Table 1 (residential) or Table 2 (commercial) for the applicable sector. Following this index, a summary report sheet is provided for each DSM measure case in the order shown in the index. The summary report sheet contains a host of information and selected graphs which define and depict the measure impacts and outline the market segment data assumptions utilized for each case in the DBEDT DSM Forecasting models. The variables and figures included in the summary report sheet are described. Numerous tables and figures are included.

NONE

1995-04-01T23:59:59.000Z

400

Towards an Automated Digital Data Forensic Model with specific reference to Investigation Processes  

E-Print Network (OSTI)

Existing digital forensics frameworks do not provide clear guidelines for conducting digital forensics investigation. However, had a framework existed, investigations based on known procedures and processes would follow strict prescribed standardisation. This should direct investigations following a set method for comparisons; ensuring future investigation is following one standard. Digital forensics lack confirmed and tested methods; this became obvious when we consider varied interpretations of the same case by participants using different investigation methods. Previous research covered several approaches to setting a forensics framework, which are mere adaptations of previous models. We found that only a few models present a framework that defines or delivers qualified likeness between the different disciplines. From this, possible pattern analysis from different disciplines is possible (Kohn, 2007). This underlines the need to standardise processes, to ensure proven and consistent results. Digital Forensics Science needs a new approach, defining and standardising investigation processes by affirming an investigation framework. Present research does not enough cover how existing forensic frameworks are used as guideline while conduct investigations. As a result, wide general interpretations are possible instead of following a set standard. Investigation processes and in particular how data confirmation is conducted during and after

Australian Digital; Forensics Conference; Johan Scholtz; Ajit Narayanan; Johan Scholtz; Professor Ajit Narayanan

2010-01-01T23:59:59.000Z

Index
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


Index
401

Sensor Characteristics Reference Guide  

Science Conference Proceedings (OSTI)

The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

2013-04-01T23:59:59.000Z

402

Proposed Methodology for LEED Baseline Refrigeration Modeling (Presentation)  

SciTech Connect

This PowerPoint presentation summarizes a proposed methodology for LEED baseline refrigeration modeling. The presentation discusses why refrigeration modeling is important, the inputs of energy models, resources, reference building model cases, baseline model highlights, example savings calculations and results.

Deru, M.

2011-02-01T23:59:59.000Z

403

Original article: Power flow Petri Net modelling for building integrated multi-source power system with smart grid interaction  

Science Conference Proceedings (OSTI)

This paper presents an energy management modelling of a multi-source power system composed of photovoltaic (PV) array, storage and power grid connection, and taking into account messages from smart grid. The designed system can supply a tertiary building ... Keywords: Energy management, Petri Net modelling, Photovoltaic, Smart grid, Stateflow

B. C. Wang, M. Sechilariu, F. Locment

2013-05-01T23:59:59.000Z

404

Building a predictive model of indoor concentrations of outdoor PM-2.5 for  

NLE Websites -- All DOE Office Websites (Extended Search)

Building a predictive model of indoor concentrations of outdoor PM-2.5 for Building a predictive model of indoor concentrations of outdoor PM-2.5 for a residential research house in Clovis, California Title Building a predictive model of indoor concentrations of outdoor PM-2.5 for a residential research house in Clovis, California Publication Type Report Year of Publication 2002 Authors Fischer, Marc L., Melissa M. Lunden, Tracy L. Thatcher, David Littlejohn, Thomas W. Kirchstetter, Susanne V. Hering, Richard G. Sextro, and Nancy J. Brown Abstract The prevalence of relocatable classrooms (RCs) at schools is rising due to federal and state initiatives to reduce K-3 class size, and limited capital resources. Concerns regarding inadequate ventilation and indoor air and environmental quality (IEQ) in RCs have been raised. Adequate ventilation is an important link between improved IEQ and energy efficiency for schools. Since students and teachers spend the majority of a 7-8 hour school day inside classrooms, indoor contaminant concentrations are assumed to drive personal school-day exposures. We conducted a demonstration project in new relocatable classrooms (RCs) during the 2001-02 school year to address these issues. Four new 24' x 40' (960 ft2) RCs were constructed and sited in pairs at an elementary school campus in each of two participant school districts (SD) in Northern California. Each RC was equipped with two heating, ventilation, and air conditioning (HVAC) systems, one per module. The two HVAC systems were a standard heat pump with intermittent 25-50% outdoor air ventilation and an energy-efficient advanced system, based on indirect-direct evaporative cooling with an integrated natural gas-fired hydronic heating loop and improved particle filtration, providing continuous 100% outdoor air ventilation at = 15 ft3 min-1 occupant-1. Alternate carpets, wall panels, and ceiling panels were installed in two classrooms -- one in each pair -- based on the results of a laboratory study of VOC emissions from standard and alternate materials. Numerous IEQ and outdoor air quality and meteorological parameters were measured either continuously over the school year or as integrated school day samples during the fall cooling and winter heating seasons. Details of the RC designs, the field monitoring methodology including handling, storage, transport and management of chemical samples and data, and analyses to be conducted are presented

405

Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Reference Shelf Reference Shelf Find reference sources Questions? 505-667-5809 Email Biography Biographies of Women in Science Biography.com Marquis Who's Who NobelPrize.org Nobel Prize Internet Archive Calculators Currency Converter OnlineConversion.com Wolfram|Alpha Computational Knowledge Engine Dictionaries Oxford English Dictionary Merriam-Webster Dictionary DOD Dictionary of Military Terms Encyclopedias Britannica Online Columbia Encyclopedia Wikipedia Grants & Funding DOE Office of Science Grants & Contracts National Science Foundation National Institutes of Health Grants.Gov FedBizOpps.gov Los Alamos Info Los Alamos County Los Alamos Historical Society University of New Mexico - Los Alamos Campus Maps Atlapedia Online Perry-Casteneda Library Map Collection U.S. Gazetteer

406

Los Alamos Waste Management Cost Estimation Model; Final report: Documentation of waste management process, development of Cost Estimation Model, and model reference manual  

Science Conference Proceedings (OSTI)

This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs.

Matysiak, L.M.; Burns, M.L.

1994-03-01T23:59:59.000Z

407

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... energy management system. Friend or Foe? ... Bushby, ST; Information Model for Building Automation Systems. Automation in Construction, Vol. ...

408

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... sprinklers; egress; fire spread; fire models; polyurethane foams; pyrotechnics; smoke; insulation; death; fire fatalities; building codes; fire codes ...

409

Performance and Modeling of Amorphous Silicon Photovoltaics for Building-Integrated Applications (Preprint prepared for Solar 99)  

Science Conference Proceedings (OSTI)

Amorphous silicon photovoltaic (PV) modules offer several advantages for building-integrated applications. The material can be deposited on glass or flexible substrates, which allows for products like roofing shingles and integrated PV/building glass. The material also has a uniform surface, which is ideal for many architectural applications. Amorphous silicon modules perform well in warm weather and have a small temperature coefficient for power. Depending on the building load, this may be beneficial when compared to crystalline systems. At the National Renewable Energy Laboratory, we are monitoring the performance of a triple-junction a-Si system. The system consists of 72 roofing shingles mounted directly to simulated roofing structures. This paper examines the performance of the building-integrated amorphous silicon PV system and applicability for covering residential loads. A simple model of system performance is also developed and is presented.

Kroposki, B.; Hansen, R.

1998-06-07T23:59:59.000Z

410

Building a Model Patient Room to Test Design Innovations With Actual Patients  

E-Print Network (OSTI)

comfortable hospital environment SUMMARY Designing and constructing a new hospital is a complex and costly undertaking that involves experts from many disciplines both inside and outside the health care arena. But despite expending funds and time, hospital leaders often discover significant flaws once a hospital opens that can undermine the quality of patient care and staff effectiveness and efficiency. From 2010 to 2012, a team at the Princeton HealthCare System worked to devise an optimal design for inpatient rooms at a new hospital: the University Medical Center of Princeton at Plainsboro. The project entailed building a functional model patient room. This was a unique and innovative method to allow the team to test design innovations with actual patients, according to project director Susan Lorenz, DrNP, RN, vice president of patient care services and chief nursing officer for the Princeton HealthCare System. The project helped support the emerging field of evidence-based hospital design.

A Princeton; More Efficient; Key Results

2013-01-01T23:59:59.000Z

411

DOE-2 Building Energy Use and Cost Analysis Software | Open Energy  

Open Energy Info (EERE)

DOE-2 Building Energy Use and Cost Analysis Software DOE-2 Building Energy Use and Cost Analysis Software Jump to: navigation, search Tool Summary LAUNCH TOOL Name: DOE-2 Building Energy Use and Cost Analysis Software Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Buildings Phase: Create a Vision Topics: Implementation Resource Type: Software/modeling tools User Interface: Desktop Application Website: doe2.com/ Cost: Free OpenEI Keyword(s): EERE tool, DOE-2 Building Energy Use and Cost Analysis Software References: DOE2 Home Page[1] Perform detailed comparative analysis of building designs and technologies by applying sophisticated building energy use simulation techniques; does not require extensive experience in building performance modeling. DOE-2 is a freeware building energy analysis program that can predict the

412

Incremental reference resolution: the task, metrics for evaluation, and a Bayesian filtering model that is sensitive to disfluencies  

Science Conference Proceedings (OSTI)

In this paper we do two things: a) we discuss in general terms the task of incremental reference resolution (IRR), in particular resolution of exophoric reference, and specify metrics for measuring the performance of dialogue system components tackling ...

David Schlangen; Timo Baumann; Michaela Atterer

2009-09-01T23:59:59.000Z

413

Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation  

SciTech Connect

This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

Robertson, J.; Polly, B.; Collis, J.

2013-09-01T23:59:59.000Z

414

OpenEI - commercial building  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm4040 en Commercial Reference Building: Quick Service Restaurant http:en.openei.orgdatasetsnode441

415

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

416

Building Life-Cycle Cost (BLCC) Program | Open Energy Information  

Open Energy Info (EERE)

Building Life-Cycle Cost (BLCC) Program Building Life-Cycle Cost (BLCC) Program Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Building Life-Cycle Cost (BLCC) Program Agency/Company /Organization: United States Department of Energy Partner: National Institute of Standards and Technology Sector: Energy Focus Area: Buildings, Energy Efficiency Phase: Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan Topics: Finance, Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Website: www1.eere.energy.gov/femp/information/download_blcc.html Cost: Free OpenEI Keyword(s): EERE tool, Building Life-Cycle Cost, BLCC References: Building Life-Cycle Cost (BLCC) Programs[1] Building Energy Software Tools Directory: BLCC[2]

417

STANDARD REFERENCE  

E-Print Network (OSTI)

The profession is strongly urged to use the standard reference on the financial framework in the EU, concerning endorsed IFRS in order to give a clear message to the market and to users of financial statements in and outside the EU.

unknown authors

2005-01-01T23:59:59.000Z

418

Succinic Acid-A Model Building Block for Chemical Production from Renewable Resources  

Science Conference Proceedings (OSTI)

One of the major considerations for the development of new technologies that can be utilized in a corn wet mill for the production of new chemical products is the concept of platform building blocks. This concept is based on the fact that a single building block has the potential to create a significant number of final products. Succinic acid represents a building block that can be used as a starting material for producing a large number of commodity and specialty chemicals.

Werpy, Todd A.; Frye, John G.; Holladay, John E.

2006-04-01T23:59:59.000Z

419

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

420

Facilities management: the development of a model for building condition assessment surveys conducted at Fort Riley, Kansas  

E-Print Network (OSTI)

The purpose of this study is to document the research and design of a condition assessment system for buildings by utilizing case study methods for the facilities located at Fort Riley, Kansas, an Army military installation. The design of the assessment or auditing system incorporates the following procedures: (1) identification of building components, (2) identification of building sub-components, (3) utilization of decision-tree logic diagrams to manage the information, and (4) production of inspection condition criteria and scoring for each sub-component (by visual inspection techniques) . The system was used by multiple inspectors to assess the buildings at Fort Riley. The inspectors received training in the system scoring and methodology. To verify the system's accuracy, ten percent (10%) of the buildings were re-inspected by the developers of the system (quality control) . The analysis of the system included a random sample of 20 buildings from the data collected. The data were analyzed for accuracy and consistency on the component and sub-component recognition and the inspection condition score (as compared to the quality control results) The actual inspection time was monitored to record the inspection efficiency. Statistical testing was conducted which did the following: (1) analyzed the data pair means for any significant differences, and (2) analyzed the strength of the pair relationships. From the data analysis the following was found: (1) the components and sub-components were recognized accurately and consistently, (2) the actual scores seemed to be accurate and consistent (after conducting the statistical test (T-Test) some of the means did indicate that there were some significant differences, while others indicated there were no significant differences) , (3) the data indicated that there was correlation between the data pairs. Also, it was found that this system provides reasonable inspection time and cost restraints. The building assessments are incorporated into an information system that assists the user in establishing priorities. The cost factors for each sub-component are based on building models that relate the quantities of the different sub-components to the actual floor area of the buildings. From these building models conceptual estimates can be generated and used as a tool to budget, justify, and anticipate maintenance and repair costs.

Riblett, Carl Olin

1993-01-01T23:59:59.000Z

Index
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


Index
421

Automated Continuous Commissioning of Commercial Buildings  

E-Print Network (OSTI)

P. Real Time Model-based Energy Diagnostics in Buildings. Proc. Building Simulation 11, Sydney, Australia, Novemberhttp://www.eere.energy.gov/buildings/energyplus/. 7. http://

Bailey, Trevor

2013-01-01T23:59:59.000Z

422

Development of 20 IEER Rooftop Units System Modeling and Building Energy Simulations  

Science Conference Proceedings (OSTI)

Based on detailed steady-state system and component modeling, we developed a rooftop unit system design, which is able to achieve IEER (Integrated Energy Efficiency Ratio) higher than 20. We modeled fin-&-tube and micro-channel heat exchangers using segment-to-segment approach, and use AHRI 10-coefficient compressor map to simulate compressor performance. The system modeling is based on a component-based modeling approach, which facilitates flexible simulation of complicated system configurations. Starting with a baseline system having IEER of 16.6, we extensively investigated numerous technical options, i.e. varying compressor sizes, heat exchanger fin densities, fin-&-tube or micro-channel heat exchanger, suction line heat exchanger, desiccant wheel, tandem compressor, variable-speed compressor, and condenser evaporative pre-cooling; and developed an innovative system configuration combining a tandem compression system with a variable-speed compression system. The combined system can achieve high IEER as well as process the outdoor ventilation air over an extensive range. We successfully evaluated the design concept for a 20-ton (70.4 kW) unit as well as a 10-ton (35.2 kW) unit. All the selected components are readily accessible on the market, and we validated the performance predictions against existing Rooftop Unit (RTU) products at the rating condition. This paper illustrates a potentially cost-effective high IEER RTU design. In addtion, we conducted extensive building energy simulations using EnergyPlus to predict seasonal energy saving potentials and peak power reductions using the High IEER RTU in sixteen US cities, in comparison to a RTU with a minimum efficiency.

Shen, Bo [ORNL; Rice, C Keith [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

2013-01-01T23:59:59.000Z

423

Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems  

SciTech Connect

Traditional building simulation programs possess attributes that make them difficult to use for the design and analysis of building energy and control systems and for the support of model-based research and development of systems that may not already be implemented in these programs. This article presents characteristic features of such applications, and it shows how equation-based object-oriented modelling can meet requirements that arise in such applications. Next, the implementation of an open-source component model library for building energy systems is presented. The library has been developed using the equation-based object-oriented Modelica modelling language. Technical challenges of modelling and simulating such systems are discussed. Research needs are presented to make this technology accessible to user groups that have more stringent requirements with respect to the numerical robustness of simulation than a research community may have. Two examples are presented in which models from the here described library were used. The first example describes the design of a controller for a nonlinear model of a heating coil using model reduction and frequency domain analysis. The second example describes the tuning of control parameters for a static pressure reset controller of a variable air volume flow system. The tuning has been done by solving a non-convex optimization problem that minimizes fan energy subject to state constraints.

Wetter, Michael

2009-02-12T23:59:59.000Z

424

Design-Build-Operate Energy Information Modeling (DBO-EIM) for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Sustainable Landscapes in Pittsburgh, PA, targeted to achieve the "Living Building Challenge" certification, is used as a demonstrative case study. The...

425

Establishing the Clear-Sky Diffuse Reference for BORCAL Using EPLAB Model 8-48 Pyranometers at the National Renewable Energ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Establishing the Clear-Sky Diffuse Reference for BORCAL Establishing the Clear-Sky Diffuse Reference for BORCAL Using EPLAB Model 8-48 Pyranometers at the National Renewable Energy Laboratory I. Reda, T. L. Stoffel, and D. Myers National Renewable Energy Laboratory Golden, Colorado Abstract Precision pyranometer calibrations are important to the quality of Atmospheric Radiation Measurement's (ARM's) shortwave solar irradiance measurements. Calibrations at the National Renewable Energy Laboratory (NREL) and Southern Great Plains (SGP) are under clear-sky conditions. G = I * COS(2) + D, is used to establish the reference global during the calibration. The references for the beam irradiance, I, and the solar zenith angle, 2, are internationally recognized. There is no recognized reference for the diffuse irradiance, D. Our research goal is to establish a consistent diffuse

426

Model Code for the Prevention of Residential HAC Distribution System Leakage and HAC-Induced Building Leakage, 1994 Edition  

E-Print Network (OSTI)

This model code is the 1994 revision of an earlier code published in the Proceedings Of The Seventh Annual Symposium On Improving Building Systems In Hot And Humid Climates, Texas A&M University, Department of Mechanical Engineering in 1990. It contains additional closure systems, application practices, and definitions, and it addresses systems unique to mobile homes.

Wemhoff, P.

1994-01-01T23:59:59.000Z

427

Abstract--We present new approaches for building yearly and seasonal models for 5-minute ahead electricity load  

E-Print Network (OSTI)

electricity load forecasting. They are evaluated using two full years of Australian electricity load data. We first analyze the cyclic nature of the electricity load and show that the autocorrelation function to building a single yearly model. I. INTRODUCTION PREDICTING the future electricity demand, also called

Koprinska, Irena

428

Modeling and Optimization of Commercial Buildings and Stationary Fuel Cell Systems (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the Distributed Generation Building Energy Assessment Tool (DG-BEAT) developed by the National Renewable Energy Laboratory and the University of California Irvine. DG-BEAT is designed to allow stakeholders to assess the economics of installing stationary fuel cell systems in a variety of building types in the United States.

Ainscough, C.; McLarty, D.; Sullivan, R.; Brouwer, J.

2013-10-01T23:59:59.000Z

429

Exploiting Generalized Additive Models for Diagnosing Abnormal Energy Use in Buildings  

Science Conference Proceedings (OSTI)

Buildings consume 40% of the energy in industrialized countries. Thus detecting and diagnosing anomalies in the building's energy use is an important problem. The existing approaches either retrieve limited information about the anomaly causes, or are ... Keywords: Fault Detection & Diagnosis, GAM, Prediction

Joern Ploennigs, Bei Chen, Anika Schumann, Niall Brady

2013-11-01T23:59:59.000Z

430

A System Level Model of Possible Integration of Building Management System in SmartGrid  

Science Conference Proceedings (OSTI)

Building Management Systems (BMS) could be seen as a kind of module inside wider SmartGrid system. The incorporation of BMS must consider both technical as well as commercial issues. Hence, the efficient integration will require standards' harmonization ... Keywords: Building Management System, SmartGrid, HVAC, UML

Slobodan Lukovic; Velimir Congradac; Filip Kulic

2010-02-01T23:59:59.000Z

431

Effective and Comfortable Power Control Model Using Kalman Filter for Building Energy Management  

Science Conference Proceedings (OSTI)

In building environment energy management is a big problem in recent years. Several methods and proposals exist in the literature for energy management, but the trade-off between occupants comfort level and energy usage is still a major challenge and ... Keywords: Comfort index, Energy management in buildings, Energy savings Kalman filter, Fuzzy logic

Safdar Ali, Do-Hyeun Kim

2013-12-01T23:59:59.000Z

432

Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) | Open  

Open Energy Info (EERE)

Media, Inc. (Du Pont) (Building America Retrofit Alliance) Media, Inc. (Du Pont) (Building America Retrofit Alliance) Jump to: navigation, search Name Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) Place Wilmington, DE Website http://www.prweb.com/releases/ References Building America Retrofit Alliance Press Release[1] BMI Website[2] DuPont Website[3] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) is a company located in Wilmington, DE. References ↑ "Building America Retrofit Alliance Press Release" ↑ "BMI Website"

433

DOE - Better Building  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy | Energy Efficiency & Renewable Energy logo U.S. Department of Energy | Energy Efficiency & Renewable Energy logo EERE Home | Programs & Offices | Consumer Information Better Buildings Logo Better Buildings Update July 2013 Inside this edition: Highlights from the 2013 Efficiency Forum Recap: Better Buildings Summit for State & Local Communities Launching the Better Buildings Webinar Series Better Buildings Challenge Implementation Models and Showcase Projects Updated Better Buildings Websites New Members Highlights from the 2013 Efficiency Forum More than 170 people attended the second annual Better Buildings Efficiency Forum for commercial and higher education Partners in May at the National Renewable Energy Laboratory (NREL) in Golden, Colorado-the nation's largest net-zero energy office building. DOE thanks all Better Buildings Alliance Members and Better Buildings Challenge Partners that participated in the Efficiency Forum.

434

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings...

435

Real-Time Forcast Model Analysis of Daily Average Building Load for a Thermal Storage System Control  

E-Print Network (OSTI)

Thermal storage systems were originally designed to shift the on-peak cooling production to off-peak cooling production to reduce the on-peak demand. Based on the current electricity charging structure, the reduction of both on-peak and off-peak demands is becoming an exceedingly important issue. Reduction of both on-peak and off-peak demands can also extend the life span and defer or eliminate the replacement of power transformers due to potential shortage of building power capacity with anticipated equipment load increases. The next day daily average electricity demand is a critical set point to operate chillers and associated pumps at the appropriate time. For this paper, a mathematic analysis was conducted for annual daily average cooling of a building and three real-time building load forecasting models were developed. They are first-order autogressive model, random walk model and linear regression model. Finally, the comparison of results show the random walk model provides the best forecast.

Song, L.; Joo, I. S.; Guwana, S.

2009-11-01T23:59:59.000Z

436

An improved procedure for developing a calibrated hourly simulation model of an electrically heated and cooled commercial building  

E-Print Network (OSTI)

With the increased use of building energy simulation programs, calibration of simulated data to measured data has been recognized as an important factor in substantiating how well the model fits a real building. Model calibration to measured monthly utility data has been utilized for many years. Recently, efforts have reported calibrated models at the hourly level. Most of the previous methods have relied on very simple comparisons including bar charts, monthly percent difference time-series graphs, and x-y scatter plots. A few advanced methods have been proposed as well which include carpet plots and comparative 3-D time-series plots. Unfortunately, at hourly levels of calibration, many of the traditional graphical calibration techniques become overwhelmed with data and suffer from data overlap. In order to improve upon previously established techniques, this thesis presents new calibration methods including temperature binned box-whisker-mean analysis to improve x-y scatter plots, 24-hour weather-daytype box-whisker-mean graphs to show hourly temperature-dependent energy use profiles, and 52-week box-whisker-mean plots to display long-term trends. In addition to the graphical calibration techniques, other methods are also used including indoor temperature calibration to improve thermostat schedules and architectural rendering as a means of verifying the building envelope dimensions and shading placement. Several statistical methods are also reviewed for their appropriateness including percent difference, mean bias error (MBE), and the coefficient of variation of the root mean squared error. Results are presented using a case study building located in Washington, D.C. In the case study building, nine months of hourly whole-building electricity data and site-specific weather data were measured and used with the DOE-2. 1D building simulation program to test the new techniques. Use of the new calibration procedures were able to produce a MBE of-0.7% and a CV(RMSE) of 23. 1 % which compare favorably with the most accurate hourly neural network models.

Bou-Saada, Tarek Edmond

1994-01-01T23:59:59.000Z

437

A conceptual framework to energy estimation in buildings using agent based modeling  

Science Conference Proceedings (OSTI)

Actual energy consumption in buildings is typically different from predictions during the design phase. While differences in occupant energy usage characteristics play an important role in this variation, actual energy estimation software do not account ...

Elie Azar; Carol Menassa

2010-12-01T23:59:59.000Z

438

Methodology for the evaluation of natural ventilation in buildings using a reduced-scale air model  

E-Print Network (OSTI)

Commercial office buildings predominantly are designed to be ventilated and cooled using mechanical systems. In temperate climates, passive ventilation and cooling techniques can be utilized to reduce energy consumption ...

Walker, Christine E. (Christine Elaine)

2006-01-01T23:59:59.000Z

439

Development and evaluation of a building energy model integrated in the TEB scheme  

E-Print Network (OSTI)

The use of air-conditioning systems is expected to increase as a consequence of global-scale and urban-scale climate warming. In order to represent future scenarios of urban climate and building energy consumption, the ...

Bueno Unzeta, Bruno

440

Selected References  

Science Conference Proceedings (OSTI)

..., ASM International, 2009, p 625??658ASM Handbook, Vol 22A, Fundamentals of Modeling for Metals ProcessingHeat-Transfer Equations,...

Index
Note: This page contains sample records for the topic "reference building models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


Index
441

Subject: References:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Subject: Subject: References: DEAR 970.3102-2 Compensation for personal services DEAR 970.5204-13 Allowable costs and fixed-fee (Management and operating contracts) DEAR 970.5204-14 Allowable costs and fixed-fee (support contracts) When is this ~\.cquisition Letter (AL) Effective? This AL is effective 10 days from the date of issuance. This gui~ce supersedes any previous statutory cap on executive compensation. Existing contracts need to be reviewed to determine whether contract terms and conditions are consistent with the guidance in this AL, or whether contract modifications are necessary. When Does this AL Expire? This AL remain;; in effect until superseded or canceled. Whom do you Contact for More Information? Contact the Office of Procurement and Assistance Policy, for questions pertaining to the

442

Building an advanced climate model: Program plan for the CHAMMP (Computer Hardware, Advanced Mathematics, and Model Physics) Climate Modeling Program  

SciTech Connect

The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.

1990-12-01T23:59:59.000Z

443

Building Energy Software Tools Directory: Tools by Subject - Whole Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability Sustainability A B E G K L S U Tool Applications Free Recently Updated Athena Model life cycle assessment, environment, building materials, buildings Free software. BEES environmental performance, green buildings, life cycle assessment, life cycle costing, sustainable development Free software. Software has been updated. Building Greenhouse Rating operational energy, greenhouse performance, national benchmark Free software. Building Performance Compass Commercial Buildings, Multi-family Residence, Benchmarking, Energy Tracking, Improvement Tracking, Weather Normalization BuildingAdvice Whole building analysis, energy simulation, renewable energy, retrofit analysis, sustainability/green buildings Software has been updated. ECO-BAT environmental performance, life cycle assessment, sustainable development Software has been updated.

444

Estimating Demand Response Load Impacts: Evaluation of BaselineLoad Models for Non-Residential Buildings in California  

SciTech Connect

Both Federal and California state policymakers areincreasingly interested in developing more standardized and consistentapproaches to estimate and verify the load impacts of demand responseprograms and dynamic pricing tariffs. This study describes a statisticalanalysis of the performance of different models used to calculate thebaseline electric load for commercial buildings participating in ademand-response (DR) program, with emphasis onthe importance of weathereffects. During a DR event, a variety of adjustments may be made tobuilding operation, with the goal of reducing the building peak electricload. In order to determine the actual peak load reduction, an estimateof what the load would have been on the day of the event without any DRactions is needed. This baseline load profile (BLP) is key to accuratelyassessing the load impacts from event-based DR programs and may alsoimpact payment settlements for certain types of DR programs. We testedseven baseline models on a sample of 33 buildings located in California.These models can be loosely categorized into two groups: (1) averagingmethods, which use some linear combination of hourly load values fromprevious days to predict the load on the event, and (2) explicit weathermodels, which use a formula based on local hourly temperature to predictthe load. The models were tested both with and without morningadjustments, which use data from the day of the event to adjust theestimated BLP up or down.Key findings from this study are: - The accuracyof the BLP model currently used by California utilities to estimate loadreductions in several DR programs (i.e., hourly usage in highest 3 out of10 previous days) could be improved substantially if a morning adjustmentfactor were applied for weather-sensitive commercial and institutionalbuildings. - Applying a morning adjustment factor significantly reducesthe bias and improves the accuracy of all BLP models examined in oursample of buildings. - For buildings with low load variability, all BLPmodels perform reasonably well in accuracy. - For customer accounts withhighly variable loads, we found that no BLP model produced satisfactoryresults, although averaging methods perform best in accuracy (but notbias). These types of customers are difficult to characterize withstandard BLP models that rely on historic loads and weather data.Implications of these results for DR program administrators andpolicymakersare: - Most DR programs apply similar DR BLP methods tocommercial and industrial sector customers. The results of our study whencombined with other recent studies (Quantum 2004 and 2006, Buege et al.,2006) suggests that DR program administrators should have flexibility andmultiple options for suggesting the most appropriate BLP method forspecific types of customers.

Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote,Sila

2008-01-01T23:59:59.000Z

445

DOE Building Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview Overview September 2013 Buildings.energy.gov/BPD BuildingsPerformanceDatabase@ee.doe.gov 2 * The BPD statistically analyzes trends in the energy performance and physical & operational characteristics of real commercial and residential buildings. The Buildings Performance Database 3 Design Principles * The BPD contains actual data on existing buildings - not modeled data or anecdotal evidence. * The BPD enables statistical analysis without revealing information about individual buildings. * The BPD cleanses and validates data from many sources and translates it into a standard format. * In addition to the BPD's analysis tools, third parties will be able to create applications using the

446

Methodology for Analyzing the Technical Potential for Energy Performance in the U.S. Commercial Buildings Sector with Detailed Energy Modeling: Preprint  

SciTech Connect

This paper summarizes a methodology for developing quantitative answers to the question, ''How low can energy use go within the commercial buildings sector''? The basic process is to take each building in the 1999 CBECS public use data files and create a baseline building energy model for it as if it were being built new in 2005 with code-minimum energy performance.

Griffith, B.; Crawley, D.

2006-11-01T23:59:59.000Z