National Library of Energy BETA

Sample records for reek overf ield

  1. CANTON LAKESHORE CANTON E BEST CON NEAUT GIDD INGS EAST N ELLSWORT

    U.S. Energy Information Administration (EIA) Indexed Site

    MCKEESPORT COR AOPOLIS-MOON REDHAW ST. CLAIR SC ROGGSFIELD FRANKLIN -OAK FOREST RIMERSBURG RENNERD AL E GREENVILL E PAT MOS CRABTR EE BLAC K ASH ROYALT ON N BAKERSTOWN QUEEN ROU GH RUN LUCAS BLAC K H ILL CRESTON WAT TSVILLE WADSWORTH -NORT H OAKLAN D HOM EWORT H UNIT Y ESSELBRUN ALAMED A PAR K-CROOKED RU CHERRY GROVE FRENC HTOWN ST EWART RUN MILL C REEK GLENF IELD-MOU NT NEBO HICKORY E HARRISVILLE E LEST ER GRIGGS CORNERS EN GLAN D WEST VIL LE LAKE BAILEY LAKE OAKFORD BR UNSWICK N HOR ACE

  2. CAPTAIN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MCKEESPORT COR AOPOLIS-MOON REDHAW ST. CLAIR SC ROGGSFIELD FRANKLIN -OAK FOREST RIMERSBURG RENNERD AL E GREENVILL E PAT MOS CRABTR EE BLAC K ASH ROYALT ON N BAKERSTOWN QUEEN ROU GH RUN LUCAS BLAC K H ILL CRESTON WAT TSVILLE WADSWORTH -NORT H OAKLAN D HOM EWORT H UNIT Y ESSELBRUN ALAMED A PAR K-CROOKED RU CHERRY GROVE FRENC HTOWN ST EWART RUN MILL C REEK GLENF IELD-MOU NT NEBO HICKORY E HARRISVILLE E LEST ER GRIGGS CORNERS EN GLAN D WEST VIL LE LAKE BAILEY LAKE OAKFORD BR UNSWICK N HOR ACE

  3. LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON

    U.S. Energy Information Administration (EIA) Indexed Site

    81 81 LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON CALEDONIA HURON C REEK LEIC EST ER COL DEN ASH FORD INDIAN FALLS LAWTONS SAR DINIA RPD-037 -2 ...

  4. BIG SANDY IDA ONEID A WILL IAM SBU RG BU RNIN G SPRIN GS WIN

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... ASH BU RN C REEK HUNT ING CREEK RED BIRD C OALBED GREEN GROVE RPD-WAYNE-3 LOC UST HILL BU ... Division, Office of Oil and Gas, Energy Information Administration pursuant to ...

  5. Behavioral Opportunities for Energy Savings in Office Buildings...

    Broader source: Energy.gov (indexed) [DOE]

    ... a nd g rowing s ource o f e nergy c onsumption a nd c arbon d ioxide ( CO 2 ) e missions. ... u se a nd r elated g reenhouse g as e missions, a c ontrolled f ield e xperiment ...

  6. Microsoft Word - PA_Viewing_Your_Position_Description_QRG.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I f y ou a re u nsure o f y our usernamepassword, p lease c ontact t he S olution C enter ... 5. Enter y our e mail a ddress password i n t he password f ield. 6. Click L ogin. ...

  7. Lawrence Co. Scioto Co. Greenup Co. Jack

    U.S. Energy Information Administration (EIA) Indexed Site

    LYNAM CR EEK MCGRAW-CBM TEAYS VALLEY DOT Y BRANCH ISLAN D CREEK RITC HIE GREEN GROVE WILL IAM SBU RG BEECH Y C REEK YELLOW CR EEK GROUN DHOG CREEK ST FK-BLST N CK SLAB F OR K-CBM ...

  8. No I .+,o L

    Office of Legacy Management (LM)

    pf- ,'46-G 1 No I .+,o L ---+-~"~----* ARMY SERVICE FORCES UNITED STATES ENGINEER OFFICE if?GFERGaD L~'Z EID.u CGA 3ll MANHATTAN DISTRJCT D0uMm-l CHlMOO AllU orncz P. 0. BOX 6140 A CHICAGO 80. tLLlNOlS 17 October 1945 Subject: The l24th F'ield Artillery Anmy Building, Chicago, Illinois '1 \ To: The District Zugiaeer, U. S. Engineer Office, b&n&tan District, Oak Eidge, Tennessee . "-2 -\, - Attention: Contract Section Q? ( sip ( Uhder date of 15 September 1943, The University,of

  9. TITLE

    Office of Legacy Management (LM)

    Bechtel Inferoffice Memorandum TO G. L. Palau Subject Scoping Notice:' Former Associate Aircraft Tool and Manufacturing., Inc . Site, Fairf ield, Ohio copies to T. E. Morris G. R. Gale W & J. S. Allison File No. 7440/124 Date November 1, 1994 Frcm D. D. Sexton MS of ES &H ~t Oak Ridge ~ x t . 4-3643 SCOPING NOTICE INTRODUCTION The purpose of this scoping notice is to formalize the identification and application of federal and state rules and regulations that may apply to the cleanup of

  10. GNU Bug Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GLADY CASSIT Y VANDALIA MURPHY CR EEK BU CKHN-CENT URY CLAY GLENVILLE N MINNORA JARVISVILLE FAR MINGTON PH ILIPPI BELIN GT ON WAYN ESBUR G PR UNT Y GLENVILLE S CAVE RUN TAYLOR DRAIN ROSEDALE ST MPT-N RMNT-SHK WESTON-JAN E LEW SWN DL-WID EN VADIS STANL EY DEKALB UNION TALLM AN SVILL E ASPINALL-FIN ST ER ZOLLARSVILLE WILBU R RAMSEY HEATER S BR IDGEPORT-PRUNT YTOWN ALEXAND ER LILLY FORK SH ERMAN HIRAM ST FK-BLST N CK BU RNS CH APEL S BR WN -LUM BER PORT CON INGS PR ATT BOSWELL REVEL ELK C REEK

  11. BIG RU N INDIANA LAKESHORE RUN E LUMBER CIT Y WARSAW JOHNST

    U.S. Energy Information Administration (EIA) Indexed Site

    RU N INDIANA LAKESHORE RUN E LUMBER CIT Y WARSAW JOHNST OWN BU RNSIDE MILLSTONE FROSTBUR G JUN EAU PLU MVILLE CHERRY HILL KAN E BOSWELL MAR ION CENT ER CREEKSIDE SALTSBUR G POINT N BLAIR SVILL E COU NCIL RU N SIGEL LEWISVILLE BEAR C REEK AR MBRUST OHIOPYLE HALLT ON BR OOKVILLE MAR KTON NOL O RAT HMEL COR SICA MAR CHAND SMIC KSBU RG HOWE APOLLO SEVEN SPRIN GS YAT ESBORO MCNEES LUCIND A GEORGE PIN EY LEEPER TIMBLIN WILL ET FERGUSON CLIMAX PANIC DAVY HILL TIDIOUT E GRAMPIAN SLIGO ROC KVI LLE

  12. GLADY CASSIT Y VANDALIA MURPHY CR EEK BU CKHN-CENT URY CLAY

    U.S. Energy Information Administration (EIA) Indexed Site

    GLADY CASSIT Y VANDALIA MURPHY CR EEK BU CKHN-CENT URY CLAY GLENVILLE N MINNORA JARVISVILLE FAR MINGTON PH ILIPPI BELIN GT ON WAYN ESBUR G PR UNT Y GLENVILLE S CAVE RUN TAYLOR DRAIN ROSEDALE ST MPT-N RMNT-SHK WESTON-JAN E LEW SWN DL-WID EN VADIS STANL EY DEKALB UNION TALLM AN SVILL E ASPINALL-FIN ST ER ZOLLARSVILLE WILBU R RAMSEY HEATER S BR IDGEPORT-PRUNT YTOWN ALEXAND ER LILLY FORK SH ERMAN HIRAM ST FK-BLST N CK BU RNS CH APEL S BR WN -LUM BER PORT CON INGS PR ATT BOSWELL REVEL ELK C REEK

  13. LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON

    U.S. Energy Information Administration (EIA) Indexed Site

    81 § ¨ ¦ 81 LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON CALEDONIA HURON C REEK LEIC EST ER COL DEN ASH FORD INDIAN FALLS LAWTONS SAR DINIA RPD-037 -2 GLENWOOD PU LASKI PAVILION CON CORD COL LINS N ELM A ORC HARD PARK-H AMBU RG DANLEY CORNERS ST ILLWAT ER CHAFF EE-ARCAD E FAYETT E-WATERLOO LAKEVIEW JAVA SEN EC A W ELLER Y AU RORA E ZOAR BU FFALO TIOGA SILVER LAKE AKR ON ROM E RAT HBON E ALM A BET HANY WYOMING ULYSSES BR ANCH W SAN DY CREEK COL LINS BLOOMFIELD E LEBANON

  14. NERSC_Brower_v3.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rich B rower B oston University SciDAC Software Co---ordinator f or USQCD NERSC HEP Requirements Review Rockville, MD November 27-18, 2012  There i s g eneral a greement t hat t he Standard M odel is l ikely t o b e a l ow e nergy a pproximation t o n ew (strong) d ynamics.  But e xperiment* h as y et t o g ive s ubstantial c lues t o guide t heorist a nd t here a re a h uge n umber o f possible e xtensions t o t he t he Standard M odel.  Still L attice F ield Theory d oes p rovide a p

  15. WIPP Update 7_18_14

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J uly 1 8, 2014 WIPP t o r educe t ransportation c ontract d rivers Visionary S olutions, a c arrier c ontracted t o t ransport w aste t o W IPP, w ill r educe i ts d river t eams a s a r esult o f t he February e vents t hat s uspended w aste d isposal o perations a t t he f acility. T he t emporary h alt i n s hipments t o WIPP h as s ignificantly r educed t he n eed f or t ransportation s ervices i n t he n ear---term. In a nticipation o f t he d ecline i n s hipments, t he C arlsbad F ield O

  16. LAMMPS | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1000 MBOE 1000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Appalachian Basin Boundary C a n a d a N Y P A N Y U S A Appalachian Basin, NY Area (Panel 1 of 7) Oil and Gas Fields By 2001 BOE

    81 § ¨ ¦ 81 LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON CALEDONIA HURON C REEK LEIC EST ER COL DEN ASH FORD INDIAN FALLS LAWTONS SAR DINIA RPD-037 -2 GLENWOOD PU LASKI PAVILION CON CORD COL LINS N

  17. A User's Manual for MASH V1.5 - A Monte Carlo Adjoint Shielding Code System

    SciTech Connect (OSTI)

    C. O. Slater; J. M. Barnes; J. O. Johnson; J.D. Drischler

    1998-10-01

    The Monte Carlo ~djoint ~ielding Code System, MASH, calculates neutron and gamma- ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air- over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system includes the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. The current version, MASH v 1.5, is the successor to the original MASH v 1.0 code system initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the "dose importance" of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response as a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user's manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem.

  18. Extending the radial diffusion model of Falthammar to non-dipole background field

    SciTech Connect (OSTI)

    Cunningham, Gregory Scott

    2015-05-26

    A model for radial diffusion caused by electromagnetic disturbances was published by Falthammar (1965) using a two-parameter model of the disturbance perturbing a background dipole magnetic field. Schulz and Lanzerotti (1974) extended this model by recognizing the two parameter perturbation as the leading (non--dipole) terms of the Mead Williams magnetic field model. They emphasized that the magnetic perturbation in such a model induces an electric ield that can be calculated from the motion of field lines on which the particles are ‘frozen’. Roederer and Zhang (2014) describe how the field lines on which the particles are frozen can be calculated by tracing the unperturbed field lines from the minimum-B location to the ionospheric footpoint, and then tracing the perturbed field (which shares the same ionospheric footpoint due to the frozen -in condition) from the ionospheric footpoint back to a perturbed minimum B location. The instantaneous change n Roederer L*, dL*/dt, can then be computed as the product (dL*/dphi)*(dphi/dt). dL*/Dphi is linearly dependent on the perturbation parameters (to first order) and is obtained by computing the drift across L*-labeled perturbed field lines, while dphi/dt is related to the bounce-averaged gradient-curvature drift velocity. The advantage of assuming a dipole background magnetic field, as in these previous studies, is that the instantaneous dL*/dt can be computed analytically (with some approximations), as can the DLL that results from integrating dL*/dt over time and computing the expected value of (dL*)^2. The approach can also be applied to complex background magnetic field models like T89 or TS04, on top of which the small perturbations are added, but an analytical solution is not possible and so a numerical solution must be implemented. In this talk, I discuss our progress in implementing a numerical solution to the calculation of DL*L* using arbitrary background field models with simple electromagnetic

  19. Finding Balance Between Biological Groundwater Treatment and Treated Injection Water

    SciTech Connect (OSTI)

    Carlson, Mark A.; Nielsen, Kellin R.; Byrnes, Mark E.; Simmons, Sally A.; Morse, John J.; Geiger, James B.; Watkins, Louis E.; McFee, Phillip M.; Martins, K.

    2015-01-14

    At the U.S. Department of Energy’s Hanford Site, CH2M HILL Plateau Remediation Company operates the 200 West Pump and Treat which was engineered to treat radiological and chemical contaminants in groundwater as a result of the site’s former plutonium production years. Fluidized bed bioreactors (FBRs) are used to remove nitrate, metals, and volatile organic compounds. Increasing nitrate concentrations in the treatment plant effluent and the presence of a slimy biomass (a typical microorganism response to stress) in the FBRs triggered an investigation of nutrient levels in the system. Little, if any, micronutrient feed was coming into the bioreactors. Additionally, carbon substrate (used to promote biological growth) was passing through to the injection wells, causing biological fouling of the wells and reduced specific injectivity. Adjustments to the micronutrient feed improved microorganism health, but the micronutrients were being overfed (particularly manganese) plugging the injection wells further. Injection well rehabilitation to restore specific injectivity required repeated treatments to remove the biological fouling and precipitated metal oxides. A combination of sulfamic and citric acids worked well to dissolve metal oxides and sodium hypochlorite effectively removed the biological growth. Intensive surging and development techniques successfully removed clogging material from the injection wells. Ultimately, the investigation and nutrient adjustments took months to restore proper balance to the microbial system and over a year to stabilize injection well capacities. Carefully tracking and managing the FBRs and well performance monitoring are critical to balancing the needs of the treatment system while reducing fouling mechanisms in the injection wells.