Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NETL: Turbine Projects - Emissions Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Reduction Turbine Projects Emissions Reduction Pre-Mixer Design for High Hydrogen Fuels DataFact Sheets Low-NOX Emissions in a Fuel Flexible Gas Turbine Combustor Design...

2

Project Title: VIscosity Reduction Date:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4t 3 4t 3 l I Project lnfonnatlon Project Title: VIscosity Reduction Date: 11-22-2010 DOE Code: 673()-()20-51141 Contractor Code: 8067-778 Project Lead: Frank Ingham Project Overview 1. The purpose of the project is to test a tool that temporarily reduces the viscosity of oil which allows it to be 1. Brief project description ~nclude pumped through pipelines easier. The test will require about 4 miles of line to pump the oil through after anything that could impact the treatment (hence the need to connect the 31oops together), a holding volume for recovery, then repeat. environmenJ] There will be tanks to hold the original volume, tanks to receive the volume after treatment and pumping 2. Legal location through the line, possible transfer between tanks, transport (trucking) of the oil to the site (by the COC) and

3

NETL: Turbine Projects - Cost Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Reduction Cost Reduction Turbine Projects Cost Reduction Single Crystal Turbine Blades Enhancing Gas Turbine Efficiency Data/Fact Sheets Enabling and Information Technologies to Increase RAM of Advanced Powerplants Data/Fact Sheets Development of NDE Technology for Environmental Barrier Coating and Residual Life Estimation Data/Fact Sheets Welding and Weld Repair of Single Crystal Gas Turbine Alloy Data/Fact Sheets Combustion Turbine Hot Section Coating Life Management Data/Fact Sheets On-Line Thermal Barrier Coating Monitor for Real-Time Failure Protection and Life Maximization Data/Fact Sheets On-Line Thermal Barrier Coating [PDF] Advanced Monitoring to Improve Combustion Turbine/Combined Cycle RAM Data/Fact Sheets Advanced Monitoring to Improve Combustion Turbine [PDF]

4

Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greenhouse Gas Reduction Projects Grant Program (Delaware) Greenhouse Gas Reduction Projects Grant Program (Delaware) Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info Funding Source Greenhouse Gas Reduction Projects Fund State Delaware Program Type Grant Program Provider Delaware Department of Natural Resources and Environmental Control The Delaware Greenhouse Gas Reduction Projects Grant Program is funded by the Greenhouse Gas Reduction Projects Fund, established by the Act to Amend Title 7 of the Delaware Code Relating to a Regional Greenhouse Gas

5

An Improved Type Reduction Algorithm for Type-2 Fuzzy Sets.  

E-Print Network (OSTI)

??Type reduction does the work of computing the centroid of a type-2 fuzzy set. The result is a type-1 fuzzy set from which a corresponding (more)

Su, Yao-Lung

2011-01-01T23:59:59.000Z

6

Milestone Project Demonstrates Innovative Mercury Emissions Reduction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milestone Project Demonstrates Innovative Mercury Emissions Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology January 12, 2010 - 12:00pm Addthis Washington, DC - An innovative technology that could potentially help some coal-based power generation facilities comply with anticipated new mercury emissions standards was successfully demonstrated in a recently concluded milestone project at a Michigan power plant. Under a cooperative agreement with the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), WE Energies demonstrated the TOXECON(TM) process in a $52.9million project at the Presque Isle Power Plant in Marquette, Mich. TOXECON is a relatively cost-effective option for achieving significant reductions in mercury emissions and increasing the

7

NREL: Vehicle Ancillary Loads Reduction - Air Conditioner Reduction Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Conditioner Reduction Project to Reduce Vehicle Fuel Use by 30% Conditioner Reduction Project to Reduce Vehicle Fuel Use by 30% United States map depicting number of millions of gallons of cooling and dehumidification by state: Alabama 167, Alaska 1, Arizona 43, Arkansas 86, California 730, Colorado 76, Connecticut 61, Delaware 19, Florida 753, Georgia 251, Hawaii 68, Idaho 26, Illinois 242, Indiana 142, Iowa 68, Kansas 75, Kentucky 95, Louisiana 176, Maine 21, Maryland 118, Massachusetts 86, Michigan 186, Minnesota 86, Mississippi 85, Missouri 144, Montana 12, Nebraska 40, Nevada 61, New Hampshire 90, New Jersey 167, New Mexico 52, New York 273, North Carolina 187, North Dakota 12, Ohio 229, Oklahoma 109, Oregon 66, Pennsylvania 238, Rhode Island 15, South Carolina 127, South Dakota 17, Tennessee 179, Texas 735, Utah 43, Vermont 9, Virginia 187, Washington 64, West Virginia 37, Wisconsin 167, and Wyoming 7

8

Property:ProjectType | Open Energy Information  

Open Energy Info (EERE)

ProjectType ProjectType Jump to: navigation, search Property Name ProjectType Property Type Page Description A descriptive type for a project. This property uses pages as for its values, each of which should describe the type in detail. Pages using the property "ProjectType" Showing 25 pages using this property. (previous 25) (next 25) A Akutan Geothermal Project + Hydrothermal System + Alligator Geothermal Geothermal Project + Hydrothermal System + Alum Geothermal Project + Hydrothermal System + Aurora Geothermal Project + Hydrothermal System + B Bald Mountain Geothermal Project + Hydrothermal System + Baltazor Springs Geothermal Project + Hydrothermal System + Barren Hills Geothermal Project + Hydrothermal System + Black Rock I Geothermal Project + Hydrothermal System +

9

Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moniz Announces New Biofuels Projects to Drive Cost Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs August 1, 2013 - 2:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - During remarks at the Energy Department's Biomass 2013 annual conference, Secretary Moniz today highlighted the important role biofuels play in the Administration's Climate Action Plan to increase our energy security and reduce greenhouse gas emissions from the transportation sector. Secretary Moniz also announced over $22 million in new investments to help develop cost-competitive algae fuels and streamline the biomass feedstock supply chain for advanced biofuels. "By partnering with industry and universities, we can help make clean,

10

Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Moniz Announces New Biofuels Projects to Drive Cost Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs August 1, 2013 - 2:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - During remarks at the Energy Department's Biomass 2013 annual conference, Secretary Moniz today highlighted the important role biofuels play in the Administration's Climate Action Plan to increase our energy security and reduce greenhouse gas emissions from the transportation sector. Secretary Moniz also announced over $22 million in new investments to help develop cost-competitive algae fuels and streamline the biomass feedstock supply chain for advanced biofuels. "By partnering with industry and universities, we can help make clean,

11

Locomotive Emission and Engine Idle Reduction Technology Demonstration Project  

DOE Green Energy (OSTI)

In response to a United States Department of Energy (DOE) solicitation, the Maryland Energy Administration (MEA), in partnership with CSX Transportation, Inc. (CSXT), submitted a proposal to DOE to support the demonstration of Auxiliary Power Unit (APU) technology on fifty-six CSXT locomotives. The project purpose was to demonstrate the idle fuel savings, the Nitrous Oxide (NOX) emissions reduction and the noise reduction capabilities of the APU. Fifty-six CSXT Baltimore Division locomotives were equipped with APUs, Engine Run Managers (ERM) and communications equipment to permit GPS tracking and data collection from the locomotives. Throughout the report there is mention of the percent time spent in the State of Maryland. The fifty-six locomotives spent most of their time inside the borders of Maryland and some spent all their time inside the state borders. Usually when a locomotive traveled beyond the Maryland State border it was into an adjoining state. They were divided into four groups according to assignment: (1) Power Unit/Switcher Mate units, (2) Remote Control units, (3) SD50 Pusher units and (4) Other units. The primary data of interest were idle data plus the status of the locomotive--stationary or moving. Also collected were main engine off, idling or working. Idle data were collected by county location, by locomotive status (stationary or moving) and type of idle (Idle 1, main engine idling, APU off; Idle 2, main engine off, APU on; Idle 3, main engine off, APU off; Idle 4, main engine idle, APU on). Desirable main engine idle states are main engine off and APU off or main engine off and APU on. Measuring the time the main engine spends in these desirable states versus the total time it could spend in an engine idling state allows the calculation of Percent Idle Management Effectiveness (%IME). IME is the result of the operation of the APU plus the implementation of CSXT's Warm Weather Shutdown Policy. It is difficult to separate the two. The units demonstrated an IME of 64% at stationary idle for the test period. The data collected during calendar year 2004 demonstrated that 707,600 gallons of fuel were saved and 285 tons of NOX were not emitted as a result of idle management in stationary idle, which translates to 12,636 gallons and 5.1 tons of NOx per unit respectively. The noise reduction capabilities of the APU demonstrated that at 150 feet from the locomotive the loaded APU with the main engine shut down generated noise that was only marginally above ambient noise level.

John R. Archer

2005-03-14T23:59:59.000Z

12

Clean Cities: IdleBox Toolkit for Idle-Reduction Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

IdleBox Toolkit for Idle-Reduction IdleBox Toolkit for Idle-Reduction Projects to someone by E-mail Share Clean Cities: IdleBox Toolkit for Idle-Reduction Projects on Facebook Tweet about Clean Cities: IdleBox Toolkit for Idle-Reduction Projects on Twitter Bookmark Clean Cities: IdleBox Toolkit for Idle-Reduction Projects on Google Bookmark Clean Cities: IdleBox Toolkit for Idle-Reduction Projects on Delicious Rank Clean Cities: IdleBox Toolkit for Idle-Reduction Projects on Digg Find More places to share Clean Cities: IdleBox Toolkit for Idle-Reduction Projects on AddThis.com... Coordinator Basics Outreach Logos, Graphics, & Photographs Print Products & Templates Exhibit Booths Presentations Videos QR Codes Tips Education & Webinars Meetings Reporting Contacts IdleBox Toolkit for Idle-Reduction Projects

13

Y-12 Respirator Flow Cycle Time Reduction Project  

SciTech Connect

In mid-July 2000, a Cycle Time Reduction (CTR) project was initiated by senior management to improve the flow and overall efficiency of the respirator distribution process at Y-12. A cross-functional team was formed to evaluate the current process and to propose necessary changes for improvement. Specifically, the team was challenged to make improvements that would eliminate production work stoppages due to the unavailability of respirators in Y-12 Stores. Prior to the team initiation, plant back orders for a specific model respirator were averaging above 600 and have been as high as 750+. The Cycle Time Reduction team segmented the respirator flow into detailed steps, with the focus and emphasis primarily being on the movement of dirty respirators out of work areas, transportation to Oak Ridge National Laboratory (ORNL) Laundry, and return back to Y-12 Stores inventory. The team selected a popular model respirator, size large, to track improvements. Despite a 30 percent increase in respirator usage for the same period of time in the previous year, the team has reduced the back orders by 89% with a steady trend downward. Summary of accomplishments: A 47 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse at the Y-12 Complex; A 73 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse specifically for major users: Enriched Uranium Operations (EUO) and Facilities Maintenance Organization (FMO); Development of a performance measure for tracking back orders; An 89 percent reduction in the number of laundered respirators on back order; Implementation of a tracking method to account for respirator loss; Achievement of an annual cost savings/avoidance of $800K with a one-time cost of $20K; Implementation of a routine pick-up schedule for EUO (major user of respirators); Elimination of activities no longer determined to be needed; Elimination of routine complaint calls to Stores requesting respirators; and Recommendation of improvements at the supplier (ORNL Laundry and Quality groups).

Hawk, C.T.; Rogers, P.E.

2000-12-01T23:59:59.000Z

14

Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development  

Science Conference Proceedings (OSTI)

Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

2002-09-01T23:59:59.000Z

15

Type Ia Supernovae Project at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Type Ia Supernovae Type Ia Supernovae Supernova-1.jpg Update: Recent Berkeley Lab Computing Sciences News about supernovae: read more... Key Challenges: Understanding Type Ia...

16

Independent review of estimated load reductions for PJM's small customer load response pilot project  

E-Print Network (OSTI)

of Estimated Load Reductions for PJMs Small Customer Loadof Estimated Load Reductions for PJMs Small Customer LoadResponse Pilot Project Prepared for PJM Interconnection, LLC

Heffner, G.; Moezzi, M.; Goldman, C.

2004-01-01T23:59:59.000Z

17

Sustainable Campus Project: Potential for Energy Conservation and Carbon Reduction Education in Taiwan  

Science Conference Proceedings (OSTI)

The reality of global warming, climate change and energy shortages has put all circles to the task of actively promoting education in energy conservation and carbon reduction. From 2004, the Ministry of Education has been promoting the Sustainable Campus ... Keywords: Carbon Reduction, Education, Energy Conservation, Facility, Sustainable Campus Project

Shun-Mei Wang; Chien-Kuo Ku; Chun-Yu Chu

2012-07-01T23:59:59.000Z

18

Staff Analysis of Proposed Installation of Two New Selective Catalytic Reduction (SCR) Units on the Projects Two Auxiliary  

E-Print Network (OSTI)

The modification(s) proposed in the petition would install two new Selective Catalytic Reduction (SCR) units on the projects two auxiliary boilers. The addition of a SCR system on each boiler would allow the project to comply with recent changes to the Bay Area Air Quality Management District regulations for emissions of nitrogen oxides (NOx) for auxiliary boilers. The Bay Area Air Quality Management District has determined that the project proposal would result in new permit to operate requirements from the district. The Gilroy Cogeneration Project is a 115-megawatt, natural gas-fired power plant located in the City of Gilroy in Santa Clara County. The project was certified by the

Edmund G. Brown

2013-01-01T23:59:59.000Z

19

Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project  

SciTech Connect

The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-?based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-?hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-?based energy recovery and storage system. This technology is being developed at TDIs facilities to capture and reuse the energy necessary for the companys core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-?hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries to utilize energy recycling technology to lower domestic energy use and see higher net energy efficiency. The prototype system and results will be used to seek additional resources to carry out full deployment of a system. Ultimately, this innovative technology is expected to be transferable to other testing applications involving energy-?based cycling within the company as well as throughout the industry.

Bigelow, Erik

2012-10-30T23:59:59.000Z

20

Influence of Project Type and Procurement Method on Rework Costs in Building Construction Projects  

E-Print Network (OSTI)

Abstract: While it is widely recognized that additional costs due to rework can have an adverse effect on project performance, limited empirical research has been done to investigate the influencing factors. The research presented in this paper aims to determine the influence of different project types and procurement methods on rework costs in construction projects. Using a questionnaire survey, rework costs were obtained from 161 Australian construction projects. The direct and indirect consequences of rework are analyzed and discussed. It is shown that, contrary to expectation, rework costs do not differ relative to project type or procurement method. In addition, it was found rework contributed to 52 % of a projects cost growth and that 26 % of the variance in cost growth was attributable to changes due to direct rework. To reduce rework costs and therefore improve project performance, it is posited that construction organizations begin to consider and measure them, so that an understanding of their magnitude can be captured, root causes identified, and effective prevention strategies implemented.

Peter E. D. Love

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

HQ State HQ City Name of Primary Selectee Project Type Project Title and Brief Project Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total Project Value Total Project Value Including Cost Share AZ Fort Defiance Navajo Tribal Utility Authority Company Smart Grid Workforce Training (Topic B) Navajo Tribal Utility Authority Smart Grid Workforce Training Program - Develop a workforce that is well-trained and committed to the mission of modernizing NTUA's distribution services, including an expeditious and well- built smart grid system. The training program is designed to maximize employment opportunities for citizens of the Navajo Nation located on the reservation. Arizona New Mexico $704,486 $1,408,971 $704,486 $1,408,971 Glendale Glendale Community College Developing and Enhancing Workforce Training Programs (Topic A) Southern California Utility Initiative - Expand training curricula and programs in the Southern California region. The project will raise awareness and

22

Data base on dose reduction research projects for nuclear power plants. Volume 5  

SciTech Connect

This is the fifth volume in a series of reports that provide information on dose reduction research and health physics technology or nuclear power plants. The information is taken from two of several databases maintained by Brookhaven National Laboratory`s ALARA Center for the Nuclear Regulatory Commission. The research section of the report covers dose reduction projects that are in the experimental or developmental phase. It includes topics such as steam generator degradation, decontamination, robotics, improvements in reactor materials, and inspection techniques. The section on health physics technology discusses dose reduction efforts that are in place or in the process of being implemented at nuclear power plants. A total of 105 new or updated projects are described. All project abstracts from this report are available to nuclear industry professionals with access to a fax machine through the ACEFAX system or a computer with a modem and the proper communications software through the ACE system. Detailed descriptions of how to access all the databases electronically are in the appendices of the report.

Khan, T.A.; Yu, C.K.; Roecklein, A.K. [Brookhaven National Lab., Upton, NY (United States)] [Brookhaven National Lab., Upton, NY (United States)

1994-05-01T23:59:59.000Z

23

HQ State HQ City Name of Primary Selectee Project Type Project Title and Brief Project Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Participant Participant Share Total Project Value Including Cost Share AZ Fort Defiance Navajo Tribal Utility Authority Company Smart Grid Workforce Training (Topic B) Navajo Tribal Utility Authority Smart Grid Workforce Training Program - Develop a workforce that is well-trained and committed to the mission of modernizing NTUA's distribution services, including an expeditious and well-built smart grid system. The training program is designed to maximize employment opportunities for citizens of the Navajo Nation located on the reservation. Arizona New Mexico $704,486 $704,486 $1,408,972 $704,486 $704,486 $1,408,972 Glendale Glendale Community College Developing and Enhancing Workforce Training Programs (Topic A) Southern California Utility Initiative - Expand training curricula and

24

Carnegie Supernova Project: Observations of Type IIn Supernovae  

E-Print Network (OSTI)

The observational diversity displayed by various Type IIn supernovae (SNe IIn) is explored and quantified. In doing so a more coherent picture ascribing the variety of observed SNe IIn types to particular progenitor scenarios is sought. Carnegie Supernova Project (CSP) optical and near-infrared light curves and visual-wavelength spectroscopy of the Type IIn SNe 2005kj, 2006aa, 2006bo, 2006qq and 2008fq are presented. Combined with previously published observations of the Type IIn SNe 2005ip and 2006jd (Stritzinger et al. 2012), the full CSP sample is used to derive physical parameters which describe the nature of the interaction between the expanding SN ejecta and the circum-stellar material (CSM). For each SN of our sample we find counterparts, identifying objects similar to SNe 1994W (SN 2006bo), 1998S (SN 2008fq) and 1988Z (SN 2006qq). We present the unprecedented initial u-band plateau of SN 2006aa, and its peculiar late-time luminosity and temperature evolution. For each SN, assuming the CSM was formed b...

Taddia, F; Sollerman, J; Phillips, M M; Anderson, J P; Boldt, L; Campillay, A; Castelln, S; Contreras, C; Folatelli, G; Hamuy, M; Heinrich-Josties, E; Krzeminski, W; Morrell, N; Burns, C R; Freedman, W L; Madore, B F; Persson, S E; Suntzeff, N B

2013-01-01T23:59:59.000Z

25

On the reduction principle for differential equations with piecewise constant argument of generalized type  

E-Print Network (OSTI)

In this paper we introduce a new type of differential equations with piecewise constant argument (EPCAG), more general than EPCA. The Reduction Principle is proved for EPCAG. The structure of the set of solutions is specified. We establish also the existence of global integral manifolds of quasilinear EPCAG in the so called critical case and investigate the stability of the zero solution.

M. U. Akhmet

2006-10-21T23:59:59.000Z

26

Global Threat Reduction Initiative Africa and Middle East Project Plan 2012  

SciTech Connect

GTRI Africa and Middle East Project Plan submitted for school project to American Graduate University.

Jamison, Jeremy D.

2012-02-01T23:59:59.000Z

27

A second field investigation of noise reduction afforded by insert-type hearing protectors  

SciTech Connect

Field testing of noise reduction by earplugs was done. Ten factories and 280 employees took 1400 attenuation tests. User molded, expandable acoustic foam, custom molded, and acoustic wool types of earplugs were evaluated. Workers received protection ranging from about 9 decibels at 125 hertz to 29 decibels at 3150 hertz. Acoustic foam earplugs provided the best hearing protection, and acoustical wool, the least. The authors conclude actual noise protection depends on earplug design.

Edwards, R.G.; Broderson, A.B.; Green, W.W.; Lempert, B.L.

1982-04-01T23:59:59.000Z

28

Experimental investigation of the ground transportation systems (GTS) project for heavy vehicle drag reduction  

DOE Green Energy (OSTI)

A wind tunnel experimental research program was conducted on a heavily instrumented Ground Transportation System (GTS) vehicle. The GTS baseline model represented a generic 1:8 scale Class-8 van-type tractor trailer geometry. Five base drag reduction add-on devices, instrumented with surface pressure ports, were also tested. These add-on devices included two ogive boattail shapes and three slant geometry devices. Six component force and moment data, surface pressure contours, and wake velocity surveys are presented for each configuration along with qualitative insights gained from flow visualization. This wind tunnel program was designed to complement a parallel research effort in computational fluid dynamics (CFD) which modeled many of these same vehicle geometries. The wind tunnel data are documented and archived in ASCII format on floppy discs and available to researchers interested in further analysis or comparison to other CFD solutions.

Croll, R.H.; Gutierrez, W.T.; Hassan, B.; Suazo, J.E.; Riggins, A.J.

1995-12-31T23:59:59.000Z

29

Final Report for Phase I Northern California CO2 Reduction Project  

SciTech Connect

On June 8, 2009, the U. S. Department of Energy's National Energy Technology Laboratory released a Funding Opportunity Announcement (DE-FOA 0000015) with the title, Recovery Act: Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO{sub 2} Use. C6 Resources (C6), an affiliate of Shell Oil Company, responded with a proposal for Technology Area 1: Large-scale industrial carbon capture and sequestration (CCS) projects from industrial sources. As DOE Federally Funded Research and Development Center (FFRDC) Contractors, Lawrence Livermore National Laboratory (LBNL) and Lawrence Berkeley National Laboratory (LLNL) proposed to collaborate with C6 and perform technical tasks, which C6 included in the C6 proposal, titled the Northern California CO{sub 2} Reduction Project. The proposal was accepted for Phase I funding and C6 received DOE Award DEFE0002042. LLNL and LBNL each received Phase I funding of $200,000, directly from DOE. The essential task of Phase I was to prepare a proposal for Phase II, which would be a five-year, detailed technical proposal, budget, and schedule for a complete carbon capture, transportation, and geologic storage project, with the objective of starting the injection of 1 million tons per year of industrial CO2 by the end of FY2015. LLNL and LBNL developed technical proposals (and DOE Field Work Proposals [FWPs]) for many aspects of the geologic testing and CO{sub 2} monitoring that were included in the C6 Phase II proposal, which C6 submitted by the deadline of April 16, 2010. This document is the Final Report for LLNL's Phase I efforts and is presented in two parts. Part 1 is the complete text of the technical proposal provided to C6 by LLNL and LBNL for inclusion in the C6 Phase II proposal. Because of space limitations, however, C6 may not have included all of this information in their proposal. In addition to developing the proposal presented below, LLNL's Bill Foxall and Laura Chiarmonte, in collaboration with LBNL, undertook preliminary technical work evaluating the potential for induced seismicity in Solano County. Part 2 presents technical work preformed during Phase I in the development of a preliminary Certification Framework: Leakage Risk Assessment for CO{sub 2} Injection at the Montezuma Hills Site, Solano County, California, co-authored by LLNL and LBNL collaborators.

Wagoner, J

2010-10-26T23:59:59.000Z

30

Property:Geothermal/ProjectTypeTopic2Count | Open Energy Information  

Open Energy Info (EERE)

ProjectTypeTopic2Count ProjectTypeTopic2Count Jump to: navigation, search Property Name Geothermal/ProjectTypeTopic2Count Property Type Number Description Number of Project Type Topic 2 values. Pages using the property "Geothermal/ProjectTypeTopic2Count" Showing 25 pages using this property. (previous 25) (next 25) A Air Cooling + 0 + D Directional Drilling Systems + 0 + Drilling Systems + 2 + E EGS Demonstration + 0 + F Fluid Imaging + 2 + Fracture Characterization Technologies + 0 + G Geophysical Exploration Technologies + 0 + Geothermal Analysis + 0 + Geothermal Data Development, Collection, and Maintenance + 0 + Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources + 0 + H High Temperature Cements + 0 +

31

Has the Decrease in the AFDC Benefit Reduction Rate Increased Work Effort? An Analysis of the California Work Pays Demonstration Project for 12/92 - 6/94  

E-Print Network (OSTI)

HAS THE DECREASE IN THE AFDC BENEFIT REDUCTION RATEthe Demonstration Project? Are More AFDC Recipients Working?Are AFDC Recipients Earning More? Are AFDC Recipients

Sprague, Mary

1995-01-01T23:59:59.000Z

32

Diastereoselective nickel-catalyzed reductive coupling of alkynes and aldehydes and application towards the B-type amphidinolides  

E-Print Network (OSTI)

The application of recently developed stereoselective nickel-catalyzed reductive coupling reactions of alkynes and aldehydes to the synthesis of complex natural product targets was explored. The "B-Type" amphidinolides ...

Ndubaku, Chudi O

2006-01-01T23:59:59.000Z

33

CMIP5 Projection of Significant Reduction in Extratropical Cyclone Activity over North America  

Science Conference Proceedings (OSTI)

Projections of storm track changes over the continental U.S. and southern Canada made by 23 CMIP5 models have been compared to changes projected by 11 CMIP3 models. Overall, under RCP8.5 forcing, CMIP5 models project much more significant ...

Edmund K. M. Chang

34

Property:Geothermal/NumberOfArraProjectTypeTopic2 | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Geothermal/NumberOfArraProjectTypeTopic2 Jump to: navigation, search Property Name Geothermal/NumberOfArraProjectTypeTopic2 Property Type Number Description Number of Arra Project Type Topic 2 values. Pages using the property "Geothermal/NumberOfArraProjectTypeTopic2" Showing 25 pages using this property. (previous 25) (next 25) A Air Cooling + 0 + D Directional Drilling Systems + 1 + Drilling Systems + 3 + E EGS Demonstration + 3 + F Fluid Imaging + 0 + Fracture Characterization Technologies + 1 + G Geophysical Exploration Technologies + 4 + Geothermal Analysis + 7 + Geothermal Data Development, Collection, and Maintenance + 3 + Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources + 11 +

35

Request for Reduction/Waiver of F&A Principal Investigators /Project Directors must budget Facilities and Administrative (F&A) costs in all grant, contract, and  

E-Print Network (OSTI)

Allowed By Sponsor (if known) Project Budget: Reason for Reduction/Waiver Request: Direct Costs (MTDC BaseRequest for Reduction/Waiver of F&A Principal Investigators /Project Directors must budget Facilities and Administrative (F&A) costs in all grant, contract, and cooperative agreement proposals using

Guenther, Frank

36

Reduction of NOx Emissions in Alamo Area Council of Government Projects  

E-Print Network (OSTI)

This reports summarizes the electricity, natural gas and NOx emissions reductions from retrofit measures reported as part of the AACOG emissions reduction effort. The electricity and natural gas savings were collected by the Brooks Energy and Sustainability Laboratory (BESL), and reported to the Energy Systems Laboratory (ESL). The ESL then assembled these data for processing by eGRID. The results from BESLs data collection efforts and the eGRID analysis are contained in this report.

Haberl, J. S.; Zhu, Y.; Im, P.

2004-01-01T23:59:59.000Z

37

Independent review of estimated load reductions for PJM's small customer load response pilot project  

SciTech Connect

This study describes the results of a low-cost approach used to measure reported load reductions from a residential electric water heater (EWH) load control program operated as part of PJM Interconnection's Demand Response small customer pilot program. Lawrence Berkeley National Laboratory (LBNL) conducted this independent review of the engineering estimates for EWH load control reported by a Curtailment Service Provider (CSP) at PJM's request. LBNL employed low-cost measurement and verification (M&V) approaches that utilized existing interval metering equipment to monitor results for a series of load control tests. The CSP collected hourly load data for two substations and several hundred households over a six-week period in October and November 2003. During this time period, the CSP operated its electric water heater load control program during pre-specified test periods in the morning, afternoon and early evening. LBNL then analyzed substation and premise-level data from these tests in order to verify the diversified demand reductions claimed by the CSP for customers participating in the EWH load control program. We found that the observed load reductions for the premise-level data aggregated over all households in the two participating electric cooperatives were, respectively, 40 percent-60 percent less and 3 percent less-10 percent higher than the estimated diversified demand reduction values assumed by the CSP, depending on whether observed or normalized results are considered. We also analyzed sub-station level data and found that the observed load reductions during the test periods were significantly lower than expected, although confounding influences and operational problems signifiogram during pre-specified test periods in the morning, afternoon and early evening. LBNL then analyzed substation and premise-level data from these tests in order to verify the diversified demand reductions claimed by the CSP for customers participating in the EWH load control program. We found that the observed load reductions for the premise-level data aggregated over all households in the two participating electric cooperatives were, respectively, 40 percent-60 percent less and 3 percent less-10 percent higher than the estimated diversified demand reduction values assumed by the CSP, depending on whether observed or normalized results are considered. We also analyzed sub-station level data and found that the observed load reductions during the test periods were significantly lower than expected, although confounding influences and operational problems significantly limit our ability to differentiate between control-related and non-control related differences in substation-level load shape data. The usefulness and accuracy of the results were hampered by operational problems encountered during the measurement period as well as in sufficient number of load research grade interval meters at one cooperative. Given the larger sample size at one electric cooperative and more statistically-robust results, there is some basis to suggest that the Adjusted Diversified Demand Factor (ADDF) values used by the CSP somewhat over-state the actual load reductions. Given the results and limitations of the M&V approach as implemented, we suggest several options for PJM to consider: (1) require load aggregators participating in ISODR programs to utilize formal PURPA-compliant load research samples in their M&V plans, and (2) continue developing lower cost M&V approaches for mass market load control programs that incorporate suggested improvements described in this study.

Heffner, G.; Moezzi, M.; Goldman, C.

2004-06-01T23:59:59.000Z

38

Integrated safety assessment of an oxygen reduction project at Connecticut Yankee Atomic Power's Haddam Neck plant  

SciTech Connect

Connecticut Yankee Atomic Power Company (CYAPCo) has implemented an Integrated Safety Assessment Program (ISAP) for the integrated evaluation and prioritization of plant-specific licensing issues, regulatory policy issues, and plant improvement projects. As part of the ISAP process, probabilistic risk assessment (PRA) is utilized to evaluate the net safety impact of plant modification projects. On a few occasions, implementation of this approach has resulted in the identification of projects with negative safety impacts that could not be quantified via the normal design review and 10CFR50.59 safety evaluation process. An example is a plant modification that was proposed to reduce the oxygen in the Haddam Neck plant's demineralized water storage tank (DWST). The project involved the design and installation of a nitrogen blanketing system on the DWST. The purpose of the project was to reduce the oxygen content on the secondary side, consistent with recommendations from the Electric Power Research Institute Steam Generator Owners Group. Oxygen is one of the contributors to the corrosion process in systems in contact with the feedwater and can cause damage to associated components if not controlled.

Aubrey, J.E.

1987-01-01T23:59:59.000Z

39

Reduction of uncertainty using sensitivity analysis methods for infinite random sets of indexable type  

Science Conference Proceedings (OSTI)

In this paper we deal with the question ''which is the best way to spend our resources in order to decrease the width of the interval [Bel(F),Pl(F)] in Dempster-Shafer evidence theory?''. A solution based on sensitivity analysis techniques using the ... Keywords: Dempster--Shafer evidence theory, Hartley-like measure of nonspecificity, Random sets, Reduction of uncertainty, Sensitivity analysis

Diego A. Alvarez

2009-05-01T23:59:59.000Z

40

Financing Non-Residential Photovoltaic Projects: Options and Implications  

E-Print Network (OSTI)

roughly 100% of a solar projects installed cost is eligibleCost Recovery System through which certain investments in solar power (and other types of) projectsand solar in general) a harder sell, absent reductions in installed project costs.

Bolinger, Mark

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The RACER (risk analysis, communication, evaluation, and reduction) stakeholder environmental data transparency project for Los Alamos National Laboratory  

SciTech Connect

The RACER (Risk Analysis, Communication, Evaluation, and Reduction) project was created in 2003, as an effort to enhance the Los Alamos National Laboratory's ability to effectively communicate the data and processes used to evaluate environmental risks to the public and the environment. The RACER project staff consists of members of Risk Assessment Corporation, Los Alamos National Laboratory (LANL), and the New Mexico Environment Department (NMED). RACER staff worked closely with members of the community, tribal governments, and others within NMED and LANL to create innovative tools and a process that could provide information to regulators, LANL and the community about the sources of public health risk and ecological impact from LAN L operations. The RACER Data Analysis Tool (DA T) provides the public with webbased access to environmental measurement data collected in and around the LANL site. Its purpose is to provide a 'transparent' view to the public of all data collected by LANL and NMED regarding the LANL site. The DAT is available to the public at 'www.racernm.com'.

Echohawk, John Chris [Los Alamos National Laboratory; Dorries, Alison M [Los Alamos National Laboratory; Eberhart, Craig F [Los Alamos National Laboratory; Werdel, Nancy [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

42

Report on NOx Emissions Reduction from Voluntary Energy Efficiency Projects within the Alamo Area Council of Governments to the Texas Commission on Environmental Quality, August 2003  

E-Print Network (OSTI)

The Energy Systems Laboratory (ESL) at the Texas Engineering Experiment Station, Texas A&M University System was contacted by Mr. Peter Bella of the Alamo Area Council of Governments (AACOG) to help document large-scale, energy efficiency projects for credit within their 2004 Clean Air Plan. The purpose of this study is two-fold: 1) estimate the creditable emissions reductions from energy efficiency actions in AACOG regions, and 2) serve as a pilot project for documenting and calculating emissions reductions for TCEQ. The survey was conducted from February through March 2004.

Haberl, J. S.; Verdict, M.; Yazdani, B.; Zhu, Y.; Im, P.

2004-01-01T23:59:59.000Z

43

DTT Energy Reduction Project  

E-Print Network (OSTI)

DuPont Titanium Technologies has developed a sustainable growth strategy that includes an initiative focused on improving energy efficiency. The energy efficiency initiative is a disciplined approach that began with creation of an Energy and Greenhouse G

Heinrich, C.

2004-01-01T23:59:59.000Z

44

Projections of U. S. GHG Reductions from Nuclear Power New Capacity Based on Historic Levels of Investment  

SciTech Connect

Historical rates of capital investment in nuclear plant construction was used as a guide to estimate the rate of future capacity introduction. The magnitude of nuclear capacity was then used to determine the effect on greenhouse gas (GHG) emissions from electrical production in the U.S. to 2050. Total capital investment in nuclear power plant construction for every U.S. nuclear unit from 1964 to 1990 were obtained and the total investment and divided by their construction period to provide a value for possible rate of investment. The total linear rate of capital expenditure over the entire period was determined as well as that for the period of peak construction from 1973 to 1985, $11.5 billion/y and $17.9 billion/y, respectively in 2004$. These were used with a variety of capital cost estimates for nuclear construction to obtain several scenarios for nuclear capacity additions. Total nuclear generation out to 2050 was calculated assuming current plants would be constrained by 60-year operating licenses (i.e., a single 20-year life extension). The effect on nuclear generating capacity was projected and the resultant impact on GHG emissions determined assuming nuclear would directly replace coal-fired generation. It was concluded that actually reductions in emissions would not be experienced until 2038, yet growth in emissions from electrical production would be slowed up through that point. Nuclear energy, therefore cannot have a dramatic short-term effect on emissions, as likely cannot any energy producing technology due to the significant time to introduce large-scale changes. Nuclear power, however, can have a major longer term impact on emissions, particularly under more favorable cost and investment conditions.

Besmann, Theodore M [ORNL

2010-01-01T23:59:59.000Z

45

CDM Emission Reductions Calculation Sheet Series | Open Energy Information  

Open Energy Info (EERE)

CDM Emission Reductions Calculation Sheet Series CDM Emission Reductions Calculation Sheet Series Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CDM Emission Reductions Calculation Sheet Series Agency/Company /Organization: Institute for Global Environmental Strategies Sector: Energy, Water Focus Area: Agriculture, Greenhouse Gas Topics: Baseline projection, GHG inventory Resource Type: Online calculator User Interface: Spreadsheet Website: www.iges.or.jp/en/cdm/report_ers.html Cost: Free CDM Emission Reductions Calculation Sheet Series Screenshot References: CDM Emission Reductions Calculation Sheet Series[1] "IGES ERs Calculation Sheet aims at providing a simplified spreadsheet for demonstrating emission reductions based on the approved methodologies corresponding to eligible project activities. The sheet will provide you

46

Alternative Fuels Data Center: Idle Reduction Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Loans Idle Reduction Loans to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Loans on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Loans on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Loans on Google Bookmark Alternative Fuels Data Center: Idle Reduction Loans on Delicious Rank Alternative Fuels Data Center: Idle Reduction Loans on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Loans The Small Business Pollution Prevention Assistance Account Loan Program provides low interest rate loans to small businesses undertaking projects in Pennsylvania that reduce waste, pollution, or energy use, including the

47

Stochastic Modeling of Future Highway Maintenance Costs for Flexible Type Highway Pavement Construction Projects  

E-Print Network (OSTI)

The transportation infrastructure systems in the United States were built between the 50's and 80's, with 20 years design life. As most of them already exceeded their original life expectancy, state transportation agencies (STAs) are now under increased needs to rebuild deteriorated transportation networks. For major highway maintenance projects, a federal rule enforces to perform a life-cycle cost analysis (LCCA). The lack of analytical methods for LCCA creates many challenges of STAs to comply with the rule. To address these critical issues, this study aims at developing a new methodology for quantifying the future maintenance cost to assist STAs in performing a LCCA. The major objectives of this research are twofold: 1) identify the critical factors that affect pavement performances; 2) develop a stochastic model that predicts future maintenance costs of flexible-type pavement in Texas. The study data were gathered through the Pavement Management Information System (PMIS) containing more than 190,000 highway sections in Texas. These data were then grouped by critical performance-driven factor which was identified by K-means cluster analysis. Many factors were evaluated to identify the most critical factors that affect pavement maintenance need. With these data, a series of regression analyses were carried out to develop predictive models. Lastly, a validation study with PRESS statistics was conducted to evaluate reliability of the model. The research results reveal that three factors, annual average temperature, annual precipitation, and pavement age, were the most critical factors under very low traffic volume conditions. This research effort was the first of its kind undertaken in this subject. The maintenance cost lookup tables and stochastic model will assist STAs in carrying out a LCCA, with the reliable estimation of maintenance costs. This research also provides the research community with the first view and systematic estimation method that STAs can use to determine long-term maintenance costs in estimating life-cycle costs. It will reduce the agency's expenses in the time and effort required for conducting a LCCA. Estimating long-term maintenance cost is a core component of the LCCA. Therefore, methods developed from this project have the great potential to improve the accuracy of LCCA.

Kim, Yoo Hyun

2012-05-01T23:59:59.000Z

48

Compressed Air Energy Storage: Proven US CAES Plant Cost Achievements and Potential Engineering, Design & Project Management Based C ost Reductions  

Science Conference Proceedings (OSTI)

Compressed Air Energy Storage (CAES) is a market ready technology that can play a valuable role in enhancing grid flexibility for variable generation integration. Relative to combustion turbines, CAES provides additional benefits and value streams, such as potential classification as a transmission asset, lower emissions, superior regulation service, reduction of wind spillage and in other ways improving wind plant economics. Although high cost estimates for CAES circulate in the industry, the first ...

2012-12-20T23:59:59.000Z

49

PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

Science Conference Proceedings (OSTI)

5098-SR-04-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-11-03T23:59:59.000Z

50

PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect

5098-SR-05-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1 BROOKHAVEN NATIONAL LABORATORY

E.M. Harpenau

2010-12-15T23:59:59.000Z

51

Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

52

Navigate to http://cris.csrees.usda.gov/cgi-bin/starfinder/0?path=crisassist.txt&id=anon&pass=&OK=OK 1. Select `Any' or specific project type (e.g. Multistate Projects)  

E-Print Network (OSTI)

. Enter Department prefix or CRIS project number (e.g. FLA-FOR) 3. Select status--hold `Ctrl' key--Select all except Terminated 4. Select 500 5. Hit `Search) change `Project Type' to Multistate 14. In `Term. Date' column, if project

Watson, Craig A.

53

The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NOx) Emissions From Coal-Fired Boilers Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NO ) Emissions From Coal-Fired Boilers X Demonstration Project: A DOE Assessment March 2000 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

54

Energy Efficiency, Cost-Effectiveness, and Air Pollutant Reduction Analysis From Energy Efficiency and Renewable Energy (EE/RE) Projects in Texas Public Schools  

E-Print Network (OSTI)

The purpose of this report is to provide the preliminary results from an analysis of the potential energy savings, and resultant air pollution reductions associated with the energy savings from the application of cost-effective energy efficiency and renewable energy (EE/RE) projects applied to new and existing Texas Independent School Districts (ISDs). The final report from this analysis would be used in a marketing outreach program to school districts through the Texas Education Agency (TEA), Texas Association of School Boards (TASB), and others. This outreach program would be designed in concert with State agencies such as the State Energy Conservation Office (SECO), Public Utility Commission of Texas (PUCT), and Texas General Land Office (GLO); NGOs, and other federal agencies as appropriate.

Haberl, J. S.; Culp, C.; Yazdani, B.; Kim, H.; Liu, Z.; Mukhopadhyay, J.; Do, S.; Kim, K.; Baltazar, J. C.

2010-08-01T23:59:59.000Z

55

Potential for Induced Seismicity Related to the Northern California CO2 Reduction Project Pilot Test, Solano County, California  

Science Conference Proceedings (OSTI)

The objective of this technical report is to analyze the potential for induced seismicity due to a proposed small-scale CO{sub 2} injection project in the Montezuma Hills. We reviewed currently available public information, including 32 years of recorded seismic events, locations of mapped faults, and estimates of the stress state of the region. We also reviewed proprietary geological information acquired by Shell, including seismic reflection imaging in the area, and found that the data and interpretations used by Shell are appropriate and satisfactory for the purpose of this report. The closest known fault to the proposed injection site is the Kirby Hills Fault. It appears to be active, and microearthquakes as large as magnitude 3.7 have been associated with the fault near the site over the past 32 years. Most of these small events occurred 9-17 miles (15-28 km) below the surface, which is deep for this part of California. However, the geographic locations of the many events in the standard seismicity catalog for the area are subject to considerable uncertainty because of the lack of nearby seismic stations; so attributing the recorded earthquakes to motion along any specific fault is also uncertain. Nonetheless, the Kirby Hills Fault is the closest to the proposed injection site and is therefore our primary consideration for evaluating the potential seismic impacts, if any, from injection. Our planned installation of seismic monitoring stations near the site will greatly improve earthquake location accuracy. Shell seismic data also indicate two unnamed faults more than 3 miles east of the project site. These faults do not reach the surface as they are truncated by an unconformity at a depth of about 2,000 feet (610 m). The unconformity is identified as occurring during the Oligocene Epoch, 33.9-23.03 million years ago, which indicates that these faults are not currently active. Farther east are the Rio Vista Fault and Midland Fault at distances of about 6 miles (10 km) and 10 miles (16 km), respectively. These faults have been identified as active during the Quaternary (last 1.6 million years), but without evidence of displacement during the Holocene (the last 11,700 years). The stress state (both magnitude and direction) in the region is an important parameter in assessing earthquake potential. Although the available information regarding the stress state is limited in the area surrounding the injection well, the azimuth of the mean maximum horizontal stress is estimated at 41{sup o} and it is consistent with strike-slip faulting on the Kirby Hills Fault, unnamed fault segments to the south, and the Rio Vista Fault. However, there are large variations (uncertainty) in stress estimates, leading to low confidence in these conclusions regarding which fault segments are optimally oriented for potential slip induced by pressure changes. Uncertainty in the stress state can be substantially reduced by measurements planned when wells are drilled at the site. Injection of CO{sub 2} at about two miles depth will result in a reservoir fluid pressure increase, which is greatest at the well and decreases with distance from the well. After the injection stops, reservoir fluid pressures will decrease rapidly. Pressure changes have been predicted quantitatively by numerical simulation models of the injection. Based on these models, the pressure increase on the Kirby Hills Fault at its closest approach to the well due to the injection of 6,000 metric tons of CO{sub 2} would be a few pounds per square inch (psi), which is a tiny fraction of the natural pressure of approximately 5,000 psi at that depth. The likelihood of such a small pressure increase triggering a slip event is very small. It is even more unlikely that events would be induced at the significantly greater depths where most of the recorded earthquakes are concentrated, because it is unlikely that such a small pressure pulse would propagate downwards any appreciable distance. Therefore, in response to the specific question of the likelihood of the CO{sub 2} injection caus

Myer, L.; Chiaramonte, L.; Daley, T.M.; Wilson, D.; Foxall, W.; Beyer, J.H.

2010-06-15T23:59:59.000Z

56

Effect of Hydrocarbon Emissions From PCCI-Type Combustion On The Performance of Selective Catalytic Reduction Catalysts  

SciTech Connect

Core samples cut from full size commercial Fe-and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. Subsequently, the NOx reduction performance of the exposed catalysts was evaluated on a laboratory bench- reactor fed with simulated exhaust. The Fe-zeolite NOx conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite was much more resistant to HC fouling than the Fe-zeolite catalyst. In the case of the Cu-zeolite, PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOx conversion efficiency. For all cases, the clean catalyst performance was recovered after heating to 600 C. GC-MS analysis of the HCs adsorbed to the catalyst surface provided insights into the observed NOx reduction performance trends.

Prikhodko, Vitaly Y [ORNL; Pihl, Josh A [ORNL; Lewis Sr, Samuel Arthur [ORNL; Parks, II, James E [ORNL

2011-01-01T23:59:59.000Z

57

Effect of Hydrocarbon Emissions From PCCI-Type Combustion On The Performance of Selective Catalytic Reduction Catalysts  

Science Conference Proceedings (OSTI)

Core samples cut from full size commercial Fe-and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. Subsequently, the NOx reduction performance of the exposed catalysts was evaluated on a laboratory bench- reactor fed with simulated exhaust. The Fe-zeolite NOx conversion efficiency was significantly degraded, especially at low temperatures (catalyst was exposed to the engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite was much more resistant to HC fouling than the Fe-zeolite catalyst. In the case of the Cu-zeolite, PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOx conversion efficiency. For all cases, the clean catalyst performance was recovered after heating to 600 C. GC-MS analysis of the HCs adsorbed to the catalyst surface provided insights into the observed NOx reduction performance trends.

Prikhodko, Vitaly Y [ORNL; Pihl, Josh A [ORNL; Lewis Sr, Samuel Arthur [ORNL; Parks, II, James E [ORNL

2011-01-01T23:59:59.000Z

58

Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from  

Open Energy Info (EERE)

Greenhouse Gas Emissions Baselines and Reduction Potentials from Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Agency/Company /Organization United Nations Environment Programme Sector Energy Focus Area Buildings Topics Baseline projection, GHG inventory, Pathways analysis, Background analysis Resource Type Publications Website http://www.unep.org/sbci/pdfs/ Country Mexico Central America References Greenhouse Emissions Baselines and Reduction Potentials for Buildings[1] Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Screenshot "This report represents the first comprehensive description of the factors that determine the present and future impacts of residential and commercial

59

Recycling, Source Reduction,  

U.S. Energy Information Administration (EIA) Indexed Site

Type:" ,"Emission Reductions by Gas in U.S. Units:" ,"Year","Carbon Dioxide (CO2)",,"Methane (CH4)",,"Perfluoromethane (CF4)",,"Perfluoroethane (C2F6)" ,,"short...

60

Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Idle School Bus Idle Reduction Pilot Program to someone by E-mail Share Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Facebook Tweet about Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Twitter Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Google Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Delicious Rank Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Digg Find More places to share Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Idle Reduction Pilot Program As part of the Children's Environmental Health Project, the Arizona

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Projective Model Structure on Pro Simplicial Sheaves, and the Relative \\'Etale Homotopy Type  

E-Print Network (OSTI)

In \\cite{Isa}, Isaksen showed that a proper model category $\\cC$, induces a model structure on the pro category $Pro(\\cC)$. In this paper we generalize Isaksen's theorem to the case when $\\cC$ possess a weaker structure, which we call a "weak fibration category". Namely, we show that if $\\mcal{C}$ is a weak fibration category, that satisfies an extra condition, there is a naturally induced model structure on $Pro(\\cC)$. We then apply our theorem to the case when $\\cC$ is the weak fibration category of simplicial sheafs on a Grothendieck site, where both weak equivalences and fibrations are local as in \\cite{Jar}. This gives a new model structure on the category of pro simplicial sheaves. Using this new model structure we give a definition of the \\'etale homotopy type of Artin and Mazur \\cite{AM}, as the result of applying a derived functor. Our definition actually gives as object in $Pro(\\cS)$ and not just in $Pro(Ho(\\cS))$ as in \\cite{AM}. Our definition also extends naturally to a relative notion of the \\'e...

Barnea, Ilan

2011-01-01T23:59:59.000Z

62

CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE II SUPERNOVAE: EVIDENCE FOR THREE DISTINCT PHOTOMETRIC SUBTYPES  

SciTech Connect

We present R-band light curves of Type II supernovae (SNe) from the Caltech Core-Collapse Project (CCCP). With the exception of interacting (Type IIn) SNe and rare events with long rise times, we find that most light curve shapes belong to one of three apparently distinct classes: plateau, slowly declining, and rapidly declining events. The last class is composed solely of Type IIb SNe which present similar light curve shapes to those of SNe Ib, suggesting, perhaps, similar progenitor channels. We do not find any intermediate light curves, implying that these subclasses are unlikely to reflect variance of continuous parameters, but rather might result from physically distinct progenitor systems, strengthening the suggestion of a binary origin for at least some stripped SNe. We find a large plateau luminosity range for SNe IIP, while the plateau lengths seem rather uniform at approximately 100 days. As analysis of additional CCCP data goes on and larger samples are collected, demographic studies of core-collapse SNe will likely continue to provide new constraints on progenitor scenarios.

Arcavi, Iair; Gal-Yam, Avishay; Yaron, Ofer [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Cenko, S. Bradley; Becker, Adam B. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fox, Derek B. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Leonard, Douglas C. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Moon, Dae-Sik [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Sand, David J. [Las Cumbres Observatory Global Telescope Network, Santa Barbara, CA 93117 (United States); Soderberg, Alicia M. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Kiewe, Michael [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Scheps, Raphael [King's College, University of Cambridge, Cambridge CB2 1ST (United Kingdom); Birenbaum, Gali [12 Amos St, Ramat Chen, Ramat Gan 52233 (Israel); Chamudot, Daniel [20 Chen St, Petach Tikvah 49520 (Israel); Zhou, Jonathan, E-mail: iair.arcavi@weizmann.ac.il [101 Dunster Street, Box 398, Cambridge, MA 02138 (United States)

2012-09-10T23:59:59.000Z

63

Cost-effectiveness of controlling emissions for various alternative-fuel vehicle types, with vehicle and fuel price subsidies estimated on the basis of monetary values of emission reductions  

DOE Green Energy (OSTI)

Emission-control cost-effectiveness is estimated for ten alternative-fuel vehicle (AFV) types (i.e., vehicles fueled with reformulated gasoline, M85 flexible-fuel vehicles [FFVs], M100 FFVs, dedicated M85 vehicles, dedicated M100 vehicles, E85 FFVS, dual-fuel liquefied petroleum gas vehicles, dual-fuel compressed natural gas vehicles [CNGVs], dedicated CNGVs, and electric vehicles [EVs]). Given the assumptions made, CNGVs are found to be most cost-effective in controlling emissions and E85 FFVs to be least cost-effective, with the other vehicle types falling between these two. AFV cost-effectiveness is further calculated for various cases representing changes in costs of vehicles and fuels, AFV emission reductions, and baseline gasoline vehicle emissions, among other factors. Changes in these parameters can change cost-effectiveness dramatically. However, the rank of the ten AFV types according to their cost-effectiveness remains essentially unchanged. Based on assumed dollars-per-ton emission values and estimated AFV emission reductions, the per-vehicle monetary value of emission reductions is calculated for each AFV type. Calculated emission reduction values ranged from as little as $500 to as much as $40,000 per vehicle, depending on AFV type, dollar-per-ton emission values, and baseline gasoline vehicle emissions. Among the ten vehicle types, vehicles fueled with reformulated gasoline have the lowest per-vehicle value, while EVs have the highest per-vehicle value, reflecting the magnitude of emission reductions by these vehicle types. To translate the calculated per-vehicle emission reduction values to individual AFV users, AFV fuel or vehicle price subsidies are designed to be equal to AFV emission reduction values. The subsidies designed in this way are substantial. In fact, providing the subsidies to AFVs would change most AFV types from net cost increases to net cost decreases, relative to conventional gasoline vehicles.

Wang, M.Q.

1993-12-31T23:59:59.000Z

64

Idle Reduction Technology Demonstrations: Status Report  

Science Conference Proceedings (OSTI)

DOE's Advanced Vehicle Testing Activity is sponsoring 3 idle reduction demonstration projects for heavy-duty trucks. This report provides the status of the projects.

Proc, K.

2004-11-01T23:59:59.000Z

65

CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE IIn SUPERNOVAE: TYPICAL PROPERTIES AND IMPLICATIONS FOR THEIR PROGENITOR STARS  

SciTech Connect

Type IIn supernovae (SNe IIn) are rare events, constituting only a few percent of all core-collapse SNe, and the current sample of well-observed SNe IIn is small. Here, we study the four SNe IIn observed by the Caltech Core-Collapse Project (CCCP). The CCCP SN sample is unbiased to the extent that object selection was not influenced by target SN properties. Therefore, these events are representative of the observed population of SNe IIn. We find that a narrow P-Cygni profile in the hydrogen Balmer lines appears to be a ubiquitous feature of SNe IIn. Our light curves show a relatively long rise time (>20 days) followed by a slow decline stage (0.01-0.15 mag day{sup -1}), and a typical V-band peak magnitude of M{sub V} = -18.4 {+-} 1.0 mag. We measure the progenitor star wind velocities (600-1400 km s{sup -1}) for the SNe in our sample and derive pre-explosion mass-loss rates (0.026-0.12 M{sub Sun} yr{sup -1}). We compile similar data for SNe IIn from the literature and discuss our results in the context of this larger sample. Our results indicate that typical SNe IIn arise from progenitor stars that undergo luminous-blue-variable-like mass loss shortly before they explode.

Kiewe, Michael; Gal-Yam, Avishay; Arcavi, Iair [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Leonard, Douglas C.; Emilio Enriquez, J. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Bradley Cenko, S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fox, Derek B. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Moon, Dae-Sik [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Sand, David J.; Soderberg, Alicia M., E-mail: avishay.gal-yam@weizmann.ac.il [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2012-01-01T23:59:59.000Z

66

Electric and Magnetic Fields (EMF) RAPID Program Engineering Project 8: FINAL REPORT, Evaluation of Field Reduction Technologies, Volume 1 (Report) and Volume 2 (Appendices)  

SciTech Connect

This draft report consists of two volumes. Volume 1, the main body, contains an introducto~ sectionj an overview of magnetic fields sectio~ and field reduction technology evaluation section. Magnetic field reduction methods are evalpated for transmission lines, distribution Iines,sulxtations, building wiring applkmd machinery, and transportation systems. The evaluation considers effectiveness, co% and other ftiors. Volume 2 contains five appendices, Append~ A presents magnetic field shielding information. Appendices B and C present design assumptions and magnetic field plots for transmission and distribution lines, respectively. Appendices D and E present cost estimate details for transmission and distribution limes, respectively.

Commonwealth Associates, Inc.; IIT Research Institute

1997-08-01T23:59:59.000Z

67

Dry Barrier Mix in Reduction Cell Cathodes  

Science Conference Proceedings (OSTI)

Presentation Title, Dry Barrier Mix in Reduction Cell Cathodes ... successfully tested as a replacement for barrier bricks in several reduction cell technology types...

68

Baselines for Greenhouse Gas Reductions: Problems, Precedents, Solutions |  

Open Energy Info (EERE)

Baselines for Greenhouse Gas Reductions: Problems, Precedents, Solutions Baselines for Greenhouse Gas Reductions: Problems, Precedents, Solutions Jump to: navigation, search Tool Summary Name: Baselines for Greenhouse Gas Reductions: Problems, Precedents, Solutions Agency/Company /Organization: World Bank Sector: Energy Topics: Baseline projection, GHG inventory, Pathways analysis Resource Type: Publications, Lessons learned/best practices Website: www.p2pays.org/ref/22/21739.pdf References: Baselines for Greenhouse Gas Reductions: Problems, Precedents, Solutions[1] Summary "Rigor in baselines It's important to establish the right degree of rigor in baselining. Overly lax baselines will threaten the system's credibility and usefulness, and shift rents from high quality providers to low quality providers of offsets. Overly stringent baselines will discourage valid projects and

69

Notice of Cancellation of the Environmental Impact Statement for the Clean Power From Integrated Coal/Ore Reduction (CPICOR) Project (DOE/EIS-0280) (10/26/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 Federal Register / Vol. 69, No. 206 / Tuesday, October 26, 2004 / Notices DEPARTMENT OF ENERGY Notice of Cancellation of Environmental Impact Statement for the McIntosh Unit 4 Pressurized Circulating Fluidized Bed Demonstration Project AGENCY: Department of Energy. ACTION: Notice of cancellation of Environmental Impact Statement Process. SUMMARY: The Department of Energy (DOE) is canceling the preparation of an Environmental Impact Statement (EIS) for a proposal by the City of Lakeland to design, construct, and operate a project known as the McIntosh Unit 4 Pressurized Circulating Fluidized Bed Demonstration Project in Lakeland, Florida. DOE selected the City of Lakeland's proposal for further consideration under DOE's Clean Coal Technology Demonstration Program

70

A Synoptic Weather Typing Approach to Simulate Daily Rainfall and Extremes in Ontario, Canada: Potential for Climate Change Projections  

Science Conference Proceedings (OSTI)

An automated synoptic weather typing and stepwise cumulative logit/nonlinear regression analyses were employed to simulate the occurrence and quantity of daily rainfall events. The synoptic weather typing was developed using principal component ...

Chad Shouquan Cheng; Guilong Li; Qian Li; Heather Auld

2010-05-01T23:59:59.000Z

71

A Synoptic Weather-Typing Approach to Project Future Daily Rainfall and Extremes at Local Scale in Ontario, Canada  

Science Conference Proceedings (OSTI)

This paper attempts to project possible changes in the frequency of daily rainfall events late in this century for four selected river basins (i.e., Grand, Humber, Rideau, and Upper Thames) in Ontario, Canada. To achieve this goal, automated ...

Chad Shouquan Cheng; Guilong Li; Qian Li; Heather Auld

2011-07-01T23:59:59.000Z

72

South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials  

Open Energy Info (EERE)

Africa - Greenhouse Gas Emission Baselines and Reduction Potentials Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Agency/Company /Organization United Nations Environment Programme Sector Energy Focus Area Buildings Topics Baseline projection, GHG inventory, Pathways analysis, Background analysis Resource Type Publications Website http://www.unep.org/sbci/pdfs/ Country South Africa UN Region Southern Africa References South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings[1] South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Screenshot "This report aims to provide: a summary quantification of the influence of buildings on climate

73

Methodology for Estimating Reductions of GHG Emissions from Mosaic  

Open Energy Info (EERE)

Methodology for Estimating Reductions of GHG Emissions from Mosaic Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation Agency/Company /Organization: World Bank Sector: Land Focus Area: Forestry Topics: Co-benefits assessment, GHG inventory, Resource assessment Resource Type: Publications Website: wbcarbonfinance.org/docs/REDD_Mosaic_Methodology.pdf Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation Screenshot References: Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation[1] Overview "This methodology is for project activities that reduce emissions of greenhouse gases (GHG) from mosaic deforestation and, where relevant and

74

DOE Program Resources and Tools for Petroleum Reduction in the  

Open Energy Info (EERE)

DOE Program Resources and Tools for Petroleum Reduction in the DOE Program Resources and Tools for Petroleum Reduction in the Transportation Sector Webinar Jump to: navigation, search Tool Summary Name: DOE Program Resources and Tools for Petroleum Reduction in the Transportation Sector Agency/Company /Organization: National Renewable Energy Laboratory Partner: United States Department of Energy Sector: Energy Focus Area: Transportation Topics: Co-benefits assessment Resource Type: Webinar, Guide/manual, Training materials References: DOE Program Resources and Tools for Petroleum Reduction in the Transportation Sector[1] Logo: DOE Program Resources and Tools for Petroleum Reduction in the Transportation Sector Sponsored by the U.S. Department of Energy Technical Assistance Project for state and local officials, this Webinar discussed the resources and tools

75

Sustainable Energy Revolving Loan Fund PROJECT APPLICATION  

E-Print Network (OSTI)

REDUCTIONS Describe in detail the project's anticipated savings in utility costs and reduction: Additional savings calculation information attached: Yes No IV. Estimated Project Costs for the portion: $ Total Amount of SERLF funding requested: $ Additional Estimated Project Costs information attached: Yes

Escher, Christine

76

Optimal team formation for software development exercise: evaluating a method for team formation based on the type of project manager  

Science Conference Proceedings (OSTI)

In the software development exercise for the third graders of the Shibaura Institute of Technology Department of Information Science and Engineering, students are assigned to each team with the capability to carry out a role, for optimization of team ... Keywords: PBL, covariance structure analysis, exercise for software development, exercises in units of groups, factor analysis, genetic algorithm, optimizing project team formation, path diagram, role assignment

Kiyomi Shirakawa; Shiori Yamamoto; Ryota Chiba; Hiroaki Hashiura; Seiichi Komiya

2010-03-01T23:59:59.000Z

77

Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential  

Open Energy Info (EERE)

Environmental and Life Cycle Cost Reduction Potential Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 2: Data Gathering and Analysis Project Description It has been widely recognized that the energy saving benefits of GSHP systems are best realized in the northern and central regions where heating needs are dominant or both heating and cooling loads are comparable. For hot and humid climate such as in the states of FL, LA, TX, southern AL, MS, GA, NC and SC, buildings have much larger cooling needs than heating needs. The Hybrid GSHP (HGSHP) systems therefore have been developed and installed in some locations of those states, which use additional heat sinks (such as cooling tower, domestic water heating systems) to reject excess heat. Despite the development of HGSHP the comprehensive analysis of their benefits and barriers for wide application has been limited and often yields non-conclusive results. In general, GSHP/HGSHP systems often have higher first costs than conventional systems making short-term economics unattractive. Addressing these technical and financial barriers call for additional evaluation of innovative utility programs, incentives and delivery approaches.

78

The institutional needs of joint implementation projects  

SciTech Connect

In this paper, the authors discuss options for developing institutions for joint implementation (JI) projects. They focus on the tasks which are unique to JI projects or require additional institutional needs--accepting the project by the host and investor countries and assessing the project`s greenhouse gas (GHG) emission reduction or sequestration--and they suggest the types of institutions that would enhance their performance. The evaluation is based on four sets of governmental and international criteria for JI projects, the experiences of ten pilot JI projects, and the perspectives of seven collaborating authors from China, Egypt, India, Mexico, and Thailand, who interviewed relevant government and non-government staff involved in JI issue assessment in their countries. After examining the roles for potential JI institutions, they present early findings arguing for a decentralized national JI structure, which includes: (1) national governmental panels providing host country acceptance of proposed JI projects; (2) project parties providing the assessment data on the GHG reduction or sequestration for the projects; (3) technical experts calculating these GHG flows; (4) certified verification teams checking the GHG calculations; and (5) members of an international JI Secretariat training and certifying the assessors, as well as resolving challenges to the verifications. 86 refs.

Watt, E.; Sathaye, J. [Lawrence Berkeley Lab., CA (United States); Buen, O. de; Masera, O. [National Univ. of Mexico, Mexico City (Mexico); Gelil, I.A. [Organization of Energy Conservation and Planning, Cairo (Egypt); Ravindranath, N.H. [Indian Inst. of Science, Bangalore (India); Zhou, D.; Li, J. [Energy Research Inst., Beijing (China); Intarapravich, D. [Thailand Environmental Inst., Bangkok (Thailand)

1995-10-21T23:59:59.000Z

79

Secretary Moniz Announces New Biofuels Projects to Drive Cost...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological...

80

Alternative Fuels Data Center: Emissions Reduction Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions Reduction Emissions Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Emissions Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Emissions Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Emissions Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Emissions Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Emissions Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Emissions Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Emissions Reduction Requirements Recognizing the impact of carbon-emitting fuels on climate change and to

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Petroleum Reduction Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Petroleum Reduction Petroleum Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Petroleum Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Petroleum Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Petroleum Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Petroleum Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Petroleum Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Petroleum Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Petroleum Reduction Requirements The Wisconsin Department of Administration's fleet management policy

82

Operation Redwing. Project 3. 1. Effect of length of positive phase of blast on drag-type and semidrag-time industrial buildings  

SciTech Connect

The primary objective of the project was to obtain information regarding the effect of the length of the positive phase of blast on the response of drag and semidrag structures. A total of six steel-frame buildings were tested during this operation. The structure of each type nearest ground zero was located such that if the yield of the weapon was near the lower limit of its predicted range, it would probably undergo considerable inelastic deformation. Conversely, those structures farthest from ground zero were located such that if the yield of the nuclear device was near the upper limit of its predicted range, they would be substantially deformed, but would not collapse. The third building of each type was located at an intermediate point between these two extremes. Instrumentation was provided to obtain records of the transient structural deflections, strains, and accelerations, as well as of overpressure and dynamic pressure versus time at the sites of the various test structures.

Sinnamon, G.K.; Haltiwanger, J.D.; Newmark, N.M.

1985-09-01T23:59:59.000Z

83

Project Name Project Number Tagging Type  

E-Print Network (OSTI)

,000 acres) and Idaho (800,000 acres), Montana is in a very good position to prevent the widespread on the receptacle, resembling a cotton swab (Figure 5). Lifecycle Yellow starthistle is a facultative winter annual distance dispersal. Estimates on seed longevity are highly variable. Research in Idaho estimated plumed

84

Project information  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Information Amistad Project (Texas) Collbran Project (Colorado) Colorado River Storage Project Dolores Project (Colorado) Falcon Project (Texas) Provo River Project (Utah)...

85

Allocation Reductions  

NLE Websites -- All DOE Office Websites (Extended Search)

Allocation Allocation Reductions Quarterly Allocation Reductions MPP (or computational) repositories that haven't used significant amounts of time are adjusted at certain times by transferring a part of the unused balance to the corresponding DOE Office reserve. The following schedule will be used for allocation year 2014 (which runs 14 January 2014 through 132January 2015). On April 9: if usage is less than 10% remove 25% of the unused balance On July 9: if usage is less than 25% remove 25% of the unused balance if usage is less than 10% remove 50% of the unused balance On October 8: if usage is less than 50% remove 25% of the unused balance if usage is less than 25% remove 75% of the unused balance if usage is less than 10% remove 90% of the unused balance On November 5:

86

WELDED TRANSITION JOINT BETWEEN 2-1/4% Cr 1% Mo STEEL AND TYPE 316 STAINLESS STEEL. SODIUM COMPONENTS DESIGN PROJECT RESEARCH AND DEVELOPMENT PROGRAM-FINAL REPORT  

SciTech Connect

A steam generator, wherein the boiler, steam drum, and superheater are integrated into one single unit, requires the welding of a transition joint between the 2 1/4% Cr-1% Mo steel of the steam drum and the type 316 stainless steel of the superheater. A practicable procedure was developed for the welding of this transition joint and the properties of the weld were evaluated by mechanical testing and metallurgical evaluation. After evaluating the technical aspects of the project and their relation to the fabrication of the generator, it was considered desirable to overlay the welding edge of the 2 1/4% Cr-1% Mo steel with a suitable austenitic weld metul which would subsequently be welded to the type 316 stainless steel of the superheater. Austenitic stainless steel and high-nickel alloy weld metals were evaluated for the overlay; whereas only austenitic stainless steel weld metals were evaluated for the final weld joining the components. It was concluded that type 309 stainless steel weld metal deposited automatically by the submergedarc process is completely satisfactory for cladding the 2 1/4% Cr-1% Mo base metal and for making the final transition weld joining the steam drum and superheater sections of the generator. Supplementary mechanical tests, metallographic examinations, and hardness surveys further attested to the adequacy of the quality of the transition joint resulting from the procedures developed by this program. A detailed fabrication and thermal treatment specification is included for the welding of a transition joint between

1960-08-15T23:59:59.000Z

87

Project: National Earthquake Hazards Reduction Program ...  

Science Conference Proceedings (OSTI)

... of the future of its post-earthquake investigations via a June 2012 Workshop on Deploying Post-Disaster Quick-Response Reconnaissance Teams ...

2013-01-09T23:59:59.000Z

88

Sauget Plant Flare Gas Reduction Project  

E-Print Network (OSTI)

Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams.

Ratkowski, D. P.

2007-01-01T23:59:59.000Z

89

Project: National Windstorm Impact Reduction Program  

Science Conference Proceedings (OSTI)

... and Data Processing Systems, Ty Parrino ... and to the International Building Code and ... of the Petrochemical Committee, Energy Division (committee ...

2013-01-02T23:59:59.000Z

90

AEP Ohio - Commercial Custom Project Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Commercial Custom Project Rebate Program - Commercial Custom Project Rebate Program AEP Ohio - Commercial Custom Project Rebate Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate 50% of cost up to $300,000/project $600,000/year Sliding scale incentive reduction when calculated incentive exceeds $160,000/project. Program Info State Ohio Program Type Utility Rebate Program Rebate Amount 0.08/kWh (for one year energy savings) plus 100/kW AEP's demand reduction (at summer peak) Provider AEP Ohio AEP Ohio offers commercial customers incentives to upgrade inefficient

91

Project Homepage  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle School Home Energy Audit Middle School Home Energy Audit Project Homepage NTEP Home - Project Homepage - Teacher Homepage - Student Pages Abstract: This set of lessons provides an opportunity for midlevel students to gain a basic understanding of how energy is turned into power, how power is measured using a meter, the costs of those units and the eventual reduction of energy consumption and cost to the consumer. Introduction to Research: By conducting energy audits of their own homes and completing exercises to gain baclground information, students begin to see the importance of energy in their daily lives. By using the Internet as a research tool, students gain develop research skills as they gain knowledge for their project. They use e-mail to collaborate with energy experts and share results with other

92

Site Energy Reduction Program  

E-Print Network (OSTI)

DuPonts Sabine River Works site is the largest energy consuming location within DuPont. In the year 2000, each production area was encouraged to reduce energy costs. By 2003 site energy consumption was down 16% on an absolute basis and 12% on a BTU/LB basis. By 2004, overall progress had slowed, energy consumption increased slightly, and area results were mixed. It was time to shake things up with a new perspective. A coordinated site energy program was launched. In 2005, the first full year of the unified program, the site saved $6.9 MM from energy reduction projects. The rate of improvement is accelerating in 2006 with $3.6 MM in energy projects being implemented in the first four months.

Jagen, P. R.

2007-01-01T23:59:59.000Z

93

Alternative Fuels Data Center: Emissions Reduction Credits  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions Reduction Emissions Reduction Credits to someone by E-mail Share Alternative Fuels Data Center: Emissions Reduction Credits on Facebook Tweet about Alternative Fuels Data Center: Emissions Reduction Credits on Twitter Bookmark Alternative Fuels Data Center: Emissions Reduction Credits on Google Bookmark Alternative Fuels Data Center: Emissions Reduction Credits on Delicious Rank Alternative Fuels Data Center: Emissions Reduction Credits on Digg Find More places to share Alternative Fuels Data Center: Emissions Reduction Credits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Emissions Reduction Credits Any state mobile emissions reduction credits program must allow credits for emissions reductions achieved by converting a vehicle to operate on an

94

LUCF Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

RZWR'HVLJQDQG RZWR'HVLJQDQG +RZWR'HVLJQDQG ,PSOHPHQW&DUERQ ,PSOHPHQW&DUERQ 0HDVXULQJDQG0RQLWRULQJ 0HDVXULQJDQG0RQLWRULQJ $.WLYLWLHVIRU/8&) $.WLYLWLHVIRU/8&) 3URMH.WV 3URMH.WV Sandra Brown Winrock International sbrown@winrock.org Winrock International 2 3URMH.WGHVLJQLVVXHV 3URMH.WGHVLJQLVVXHV z Baselines and additionality z Leakage z Permanence z Measuring and monitoring z Issues vary with projects in developed versus developing countries Winrock International 3 /HDNDJH /HDNDJH z Leakage is the unanticipated loss or gain in carbon benefits outside of the project's boundary as a result of the project activities-divide into two types: - Primary leakage or activity shifting outside project area - Secondary leakage or market effects due to

95

Project 370  

NLE Websites -- All DOE Office Websites (Extended Search)

crshadd@sandia.gov crshadd@sandia.gov O 2 /CO 2 RECYCLE COAL COMBUSTION TO MINIMIZE POLLUTANTS Description O 2 /CO 2 recycle coal combustion is a promising, retrofittable technique for electric power production, while producing a nearly pure stream of CO 2 for subsequent use or sequestration. Most pollutant emissions, including NO x , are lower in this process, compared to conventional pulverized coal combustion. However, laboratory and pilot-scale tests to date have shown a wide variation in the fractional reduction of NO x when adopting this technology, suggesting that further improvements in NO x reduction are possible, given a better understanding of the dominant routes of NO x production and destruction in these systems. Goals The goal of this project is to determine the relative influence of three different

96

Generation IV Nuclear Energy Systems Construction Cost Reductions Through the Use of Virtual Environments  

SciTech Connect

The objective of this multi-phase project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. The project will test the suitability of immersive virtual reality technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups. This report presents the results of the completed project.

Timothy Shaw; Vaugh Whisker

2004-02-28T23:59:59.000Z

97

Alternative Fuels Data Center: Idle Reduction Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Incentives to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Incentives on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Incentives on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Incentives on Google Bookmark Alternative Fuels Data Center: Idle Reduction Incentives on Delicious Rank Alternative Fuels Data Center: Idle Reduction Incentives on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Incentives Cascade Sierra Solutions (CSS) provides comprehensive idle reduction solutions for commercial trucks and trailers. Financing, loans, and grant

98

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Beneficial Use of CO Beneficial Use of CO 2 in Precast Concrete Production DE-FE0004285 Yixin Shao, Yaodong Jia Liang Hu McGill University 3H Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation outline * Goals and objectives * Benefits to the program * Project overview * Technical status * Accomplishment to date * Summary 2 Objective Masonry blocks Fiber-cement panels Prefabricated buildings Concrete pipes To develop a carbonation process to replace steam curing in precast concrete production for energy reduction, and carbon storage and utilization. Goals * CO 2 sequestration capacity by cement:

99

Pollution Prevention - Environmental Impact Reduction Checklists for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pollution Prevention - Environmental Impact Reduction Checklists Pollution Prevention - Environmental Impact Reduction Checklists for NEPA/309 Reviewers Pollution Prevention - Environmental Impact Reduction Checklists for NEPA/309 Reviewers The environmental review process under the National Environmental Policy Act (NEPA) provides a valuable opportunity for Federal agency NEPA/309 reviewers to incorporate pollution prevention and environmental impact reduction into actions (or projects). This Environmental Protection Agency guidance was prepared to assist NEPA/309 reviewers in incorporating pollution prevention into each step of the environmental review process, including scoping, mitigation, monitoring, and enforcement. POLLUTION PREVENTION - ENVIRONMENTAL IMPACT REDUCTION CHECKLISTS FOR NEPA/309 REVIEWERS JANUARY 1995

100

Pollution Prevention - Environmental Impact Reduction Checklists for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pollution Prevention - Environmental Impact Reduction Checklists Pollution Prevention - Environmental Impact Reduction Checklists for NEPA/309 Reviewers Pollution Prevention - Environmental Impact Reduction Checklists for NEPA/309 Reviewers The environmental review process under the National Environmental Policy Act (NEPA) provides a valuable opportunity for Federal agency NEPA/309 reviewers to incorporate pollution prevention and environmental impact reduction into actions (or projects). This Environmental Protection Agency guidance was prepared to assist NEPA/309 reviewers in incorporating pollution prevention into each step of the environmental review process, including scoping, mitigation, monitoring, and enforcement. POLLUTION PREVENTION - ENVIRONMENTAL IMPACT REDUCTION CHECKLISTS FOR NEPA/309 REVIEWERS JANUARY 1995

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

GHG REDUCTION POTENTIAL OF BIOGAS RESOURCE UTILZATION IN HOLBKS HEATING AND ELECTRICITY SECTOR.  

E-Print Network (OSTI)

??This project is set out to identify the GHG reduction potentials of the 3 identified biogas plants in the Holbk municipality. The GHG reduction of (more)

DAO, THI THU HUONG DIU

2013-01-01T23:59:59.000Z

102

Analysis of Technology Transfer in CDM Projects | Open Energy Information  

Open Energy Info (EERE)

Analysis of Technology Transfer in CDM Projects Analysis of Technology Transfer in CDM Projects Jump to: navigation, search Tool Summary Name: Analysis of Technology Transfer in CDM Projects Agency/Company /Organization: United Nations Framework Convention on Climate Change Sector: Energy, Land Topics: Finance, Implementation Resource Type: Publications Website: cdm.unfccc.int/Reference/Reports/TTreport/TTrep08.pdf Analysis of Technology Transfer in CDM Projects Screenshot References: Analysis of Technology Transfer in CDM Projects[1] Overview "Although the Clean Development Mechanism (CDM) does not have an explicit technology transfer mandate, it may contribute to technology transfer by financing emission reduction projects using technologies currently not available in the host countries. This report analyzes the claims of

103

Geysers Project Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Geysers Project Geothermal Project Project Location Information Coordinates 38.790555555556°, -122.75583333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.790555555556,"lon":-122.75583333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A commercial vehicle or gasoline powered vehicle may not idle for more than five minutes during any 60-minute period. Exemptions are allowed for the

105

Alternative Fuels Data Center: Emissions Reductions Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions Reductions Emissions Reductions Grants to someone by E-mail Share Alternative Fuels Data Center: Emissions Reductions Grants on Facebook Tweet about Alternative Fuels Data Center: Emissions Reductions Grants on Twitter Bookmark Alternative Fuels Data Center: Emissions Reductions Grants on Google Bookmark Alternative Fuels Data Center: Emissions Reductions Grants on Delicious Rank Alternative Fuels Data Center: Emissions Reductions Grants on Digg Find More places to share Alternative Fuels Data Center: Emissions Reductions Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Emissions Reductions Grants The Carl Moyer Memorial Air Quality Standards Attainment Program (Program) provides incentives to cover the incremental cost of purchasing engines and

106

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A gasoline-fueled motor vehicle is not allowed to operate for more than three consecutive minutes when the vehicle is not in motion, with the

107

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A vehicle may not idle at a loading zone, parking or service area, route terminal, or other off-street areas, except for the following situations:

108

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A motor vehicle engine may not operate for more than five consecutive minutes when the vehicle is not in motion, with the following exceptions:

109

Alternative Fuels Data Center: Idle Reduction Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirements Effective May 1, 2014, a driver may not idle his or her motor vehicle for more than five minutes in a 60-minute period. This limit does not apply if

110

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement Diesel vehicles with a gross vehicle weight rating over 10,000 pounds may not idle for more than five minutes in any continuous 60 minute period.

111

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement The owner or operator of a diesel powered vehicle must limit the length of time their vehicle remains idle. The limit is based on the outside

112

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement Motor vehicles may not idle unnecessarily for longer than five consecutive minutes during any 60-minute period. This includes heavy-duty diesel

113

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement Diesel truck or bus engines may not idle for more than 15 consecutive minutes. Exemptions apply to diesel trucks or buses for which the Nevada

114

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A person that operates a diesel powered motor vehicle in certain counties and townships may not cause or allow the motor vehicle, when it is not in

115

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A diesel- or gasoline-powered motor vehicle may not idle for more than three consecutive minutes, except under the following conditions: 1) to

116

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement Motor vehicles licensed for commercial or public service may not idle for more than three minutes in commercial or residential urban areas, unless

117

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement Idling of any unattended vehicle is prohibited in Utah. Violators are subject to a penalty of up to $750 and/or up to 90 days imprisonment.

118

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement On-road heavy-duty motor vehicles with a gross vehicle weight rating of 8,500 pounds or greater may not idle for more than three consecutive

119

Alternative Fuels Data Center: Petroleum Reduction Initiative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Petroleum Reduction Petroleum Reduction Initiative to someone by E-mail Share Alternative Fuels Data Center: Petroleum Reduction Initiative on Facebook Tweet about Alternative Fuels Data Center: Petroleum Reduction Initiative on Twitter Bookmark Alternative Fuels Data Center: Petroleum Reduction Initiative on Google Bookmark Alternative Fuels Data Center: Petroleum Reduction Initiative on Delicious Rank Alternative Fuels Data Center: Petroleum Reduction Initiative on Digg Find More places to share Alternative Fuels Data Center: Petroleum Reduction Initiative on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Petroleum Reduction Initiative The Petroleum Savings and Independence Advisory Commission (Commission) was established to provide recommendations and monitor programs designed to

120

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A motor vehicle may not idle for more than five consecutive minutes. This regulation does not apply to: 1) vehicles being serviced, provided that

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement Vehicle operators may not idle any commercial diesel vehicle with a gross vehicle weight rating of more than 10,000 pounds for more than 10 minutes

122

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement School bus operators may not idle a school bus engine for more than three consecutive minutes except under the following conditions: uncontrollable

123

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A commercial motor vehicle with a gross vehicle weight rating of 10,000 pounds or more may not idle for more than 15 minutes in any 60-minute

124

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A vehicle may not idle for more than five minutes from April through October in cities and counties where the local government has signed a

125

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A driver may not idle a vehicle on a roadway outside a business or residential district when it is practical to stop and park the vehicle. A

126

Global Threat Reduction Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nonproliferation Nonproliferation U.S. DEPARTMENT OF ENERGY 1 The Current Status of Gap and U.S.-Origin Nuclear Fuel Removals 2011 Jeff Galan, Deputy Project Manager U.S.-Origin Nuclear Remove Program National Nuclear Security Administration Global Threat Reduction Initiative Defense Nuclear Nonproliferation U.S. DEPARTMENT OF ENERGY 2 GTRI Mission and Goals GTRI is: A part of President Obama's comprehensive strategy to prevent nuclear terrorism; and The key organization responsible for implementing the U.S. HEU minimization policy. GTRI MISSION Reduce and protect vulnerable nuclear and radiological material located at civilian sites worldwide. DOE STRATEGIC GOAL 2.2 Prevent the acquisition of nuclear and radiological materials for use in weapons of mass destruction and other

127

Cost and schedule reduction for next-generation Candu  

Science Conference Proceedings (OSTI)

AECL has developed a suite of technologies for Candu{sup R} reactors that enable the next step in the evolution of the Candu family of heavy-water-moderated fuel-channel reactors. These technologies have been combined in the design for the Advanced Candu Reactor TM1 (ACRTM), AECL's next generation Candu power plant. The ACR design builds extensively on the existing Candu experience base, but includes innovations, in design and in delivery technology, that provide very substantial reductions in capital cost and in project schedules. In this paper, main features of next generation design and delivery are summarized, to provide the background basis for the cost and schedule reductions that have been achieved. In particular the paper outlines the impact of the innovative design steps for ACR: - Selection of slightly enriched fuel bundle design; - Use of light water coolant in place of traditional Candu heavy water coolant; - Compact core design with unique reactor physics benefits; - Optimized coolant and turbine system conditions. In addition to the direct cost benefits arising from efficiency improvement, and from the reduction in heavy water, the next generation Candu configuration results in numerous additional indirect cost benefits, including: - Reduction in number and complexity of reactivity mechanisms; - Reduction in number of heavy water auxiliary systems; - Simplification in heat transport and its support systems; - Simplified human-machine interface. The paper also describes the ACR approach to design for constructability. The application of module assembly and open-top construction techniques, based on Candu and other worldwide experience, has been proven to generate savings in both schedule durations and overall project cost, by reducing premium on-site activities, and by improving efficiency of system and subsystem assembly. AECL's up-to-date experience in the use of 3-D CADDS and related engineering tools has also been proven to reduce both engineering and construction costs through more efficient work planning and use of materials, through reduced re-work and through more precise configuration management. Full-scale exploitation of AECL's electronic engineering and project management tools enables further reductions in cost. The Candu fuel-channel reactor type offers inherent manufacturing and construction advantages through the application of a simple, low-pressure low-temperature reactor vessel along with modular fuel channel technology. This leads to cost benefits and total project schedule benefits. As a result, the targets which AECL has set for replication units - overnight capital cost of $1000 US/kW and total project schedule (engineering/manufacturing/construction/commissioning) of 48 months, have been shown to be achievable for the reference NG Candu design. (authors)

Hopwood, J.M.; Yu, S.; Pakan, M.; Soulard, M. [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

2002-07-01T23:59:59.000Z

128

Residential Energy Demand Reduction Analysis and Monitoring Platform...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dramatic Peak Residential Demand Reduction in the Desert Southwest Yahia Baghzouz Center for Energy Research University of Nevada, Las Vegas Golden, CO Overview * Project...

129

A reduction theorem for capacity of positive maps  

E-Print Network (OSTI)

We prove a reduction theorem for capacity of positive maps of finite dimensional C*-algebras, thus reducing the computation of capacity to the case when the image of a nonscalar projection is never a projection.

Erling Stormer

2005-10-06T23:59:59.000Z

130

Property:Project Resource | Open Energy Information  

Open Energy Info (EERE)

Project Resource Project Resource Jump to: navigation, search Property Name Project Resource Property Type Text Pages using the property "Project Resource" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + Wave MHK Projects/ADM 3 + Wave MHK Projects/ADM 4 + Wave MHK Projects/ADM 5 + Wave MHK Projects/AWS II + Wave MHK Projects/Agucadoura + Wave MHK Projects/Alaska 13 + Current /Tidal MHK Projects/Alaska 35 + Current /Tidal MHK Projects/Algiers Light Project + Current /Tidal MHK Projects/Anconia Point Project + Current /Tidal MHK Projects/Ashley Point Project + Current /Tidal MHK Projects/Astoria Tidal Energy + Current /Tidal MHK Projects/Atchafalaya River Hydrokinetic Project II + Current /Tidal MHK Projects/Avalon Tidal + Current /Tidal

131

SF6 Emission Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

SF 6 Emission Reduction Steve Lowder Bonneville Power Administration 2010.09 slide 1 Emission Reduction Emission Reduction is the reason for why we do all of this - because:...

132

Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Technology Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Technology Weight Exemption

133

Project Management Workshops and Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Management Workshops and Awards Project Management Workshops and Awards Aviation Management Executive Secretariat Energy Reduction at HQ Facilities and Infrastructure...

134

Gas pressure reduction circuits  

Science Conference Proceedings (OSTI)

This note describes passive pressure reduction devices for use with sensitive instruments. Two gas circuits are developed which not only provide a pressure reduction under flow demand

D. W. Guillaume; D. DeVries

1989-01-01T23:59:59.000Z

135

Roasting, Reduction and Smelting  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Researches on Reduction Roasting of Low-grade Manganese Oxide Ores Using Biomass Charcoal as Reductant: Yuanbo Zhang1; Daoxian...

136

MOLECULAR MECHANISM OF MICROBIAL TECHNETIUM REDUCTION FINAL REPORT  

Science Conference Proceedings (OSTI)

Microbial Tc(VII) reduction is an attractive alternative strategy for bioremediation of technetium-contaminated subsurface environments. Traditional ex situ remediation processes (e.g., adsorption or ion exchange) are often limited by poor extraction efficiency, inhibition by competing ions and production of large volumes of produced waste. Microbial Tc(VII) reduction provides an attractive alternative in situ remediation strategy since the reduced end-product Tc(IV) precipitates as TcO2, a highly insoluble hydrous oxide. Despite its potential benefits, the molecular mechanism of microbial Tc(VII) reduction remains poorly understood. The main goal of the proposed DOENABIR research project is to determine the molecular mechanism of microbial Tc(VII) reduction. Random mutagenesis studies in our lab have resulted in generation of a set of six Tc(VII) reduction-deficient mutants of Shewanella oneidensis. The anaerobic respiratory deficiencies of each Tc(VII) reduction-deficient mutant was determined by anaerobic growth on various combinations of three electron donors and 14 terminal electron acceptors. Results indicated that the electron transport pathways to Tc(VII), NO3 -, Mn(III) and U(VI) share common structural or regulatory components. In addition, we have recently found that wild-type Shewanella are also able to reduce Tc(IV) as electron acceptor, producing Tc(III) as an end-product. The recent genome sequencing of a variety of technetium-reducing bacteria and the anticipated release of several additional genome sequences in the coming year, provides us with an unprecedented opportunity to determine the mechanism of microbial technetium reduction across species and genus lines.

DiChristina, Thomas J. [Georgia Tech

2013-04-30T23:59:59.000Z

137

Beowawe Bottoming Binary Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Beowawe Bottoming Binary Project Geothermal Project Beowawe Bottoming Binary Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Beowawe Bottoming Binary Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The proposed two-year project supports the DOE GTP's goal of promoting the development and commercial application of energy production from low-temperature geothermal fluids, i.e., between 150°F and 300°F. State Nevada Objectives Demonstrate the technical and economic feasibility of electricity generation from nonconventional geothermal resources of 205°F using the first commercial use of a cycle at a geothermal power plant inlet temperature of less than 300°F.

138

Property:Project Phase | Open Energy Information  

Open Energy Info (EERE)

Phase Phase Jump to: navigation, search Property Name Project Phase Property Type Text This is a property of type String. Pages using the property "Project Phase" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + Phase 2 + MHK Projects/ADM 3 + Phase ? + MHK Projects/ADM 4 + Phase ? + MHK Projects/ADM 5 + Phase 2 + MHK Projects/AW Energy EMEC + Phase 3 + MHK Projects/AWS II + Phase 1 + MHK Projects/Admirality Inlet Tidal Energy Project + Phase 1 + MHK Projects/Agucadoura + Phase 3 + MHK Projects/Alaska 1 + Phase 0 + MHK Projects/Alaska 13 + Phase ? + MHK Projects/Alaska 17 + Phase 0 + MHK Projects/Alaska 18 + Phase 0 + MHK Projects/Alaska 24 + Phase 0 + MHK Projects/Alaska 25 + Phase 0 + MHK Projects/Alaska 28 + Phase 0 +

139

Generation IV Nuclear Energy Systems Construction Cost Reductions through the use of Virtual Environments: Task 1 Completion Report  

SciTech Connect

OAK B204 The objective of this project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. Specifically, this project will test the suitability of Immersive Projection Display (IPD) technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups.

Whisker, V.E.; Baratta, A.J.; Shaw, T.S.; Winters, J.W.; Trikouros, N.; Hess, C.

2002-11-26T23:59:59.000Z

140

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Chart: project timeline - Project Milestones - Budget - Bibliography * Thank you 29 30 Organization Chart * Project team: Purdue University - Dr. Brenda B. Bowen: PI, student...

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy Cost Reduction Measures Identified for Texas State Agencies  

E-Print Network (OSTI)

According t o energy auditors, state-owned facilities in Texas on the average consume over twice the energy of comparable facilities in the private sector. In 1984 and 1986 as part of the Texas Energy Cost Containment Program, two extensive energy audit programs examined a total of 35.3 million square feet of state-owned space. Energy cost reduction measures with paybacks of four years or less were identified. The purpose of this paper is to present the projects identified in 1986. Most relate to lighting, HVAC, and energy management systems. The type of facilities audited include colleges and universities, health science centers, state schools and centers, hospitals, and office buildings. The relation between the facility type and the energy cost reduction measures identified is discussed. In addition, the energy and dollar savings derived from the identified measures at the different facilities are presented. The total savings of the projects identified in both energy audit programs amount to $23.7 million annually.

Grigg, T. J.; Verdict, M. E.

1987-01-01T23:59:59.000Z

142

Dynamic reduction, Version 1. 0  

SciTech Connect

This report describes the theoretical background of the EPRI Dynamic Reduction DYNRED V 1.0. EPRI initiated research under project RP763 to develop the original reduction program DYNEQU. This program was the first to be based on the concept of aggregating of coherent groups of synchronous generators into a single equivalent generator model. While technically advanced, DYNEQU proved difficult to use. Since then, the stability problems encountered in power system planning and operations have changed. The emphasis on first swing transient stability has been replaced by emphasis on inter-area oscillations and voltage stability. The method of identification of coherent generators used in DYNEQU is based on the comparison of rotor angle swings, in a linearized system model, following a fault. It has been shown that this method of coherency identification is good for first swing stability. For inter-area oscillation studies, this method of generator aggregation is less accurate. Far better, are identification methods based on the structure of the power system. Because of these changes in the requirements for reduced order power system models, a new dynamic reduction program (DYNRED) has been developed under EPRI project RP2447-1. It is coherency based, as is DYNEQU, but it has structurally based coherency identification methods in addition to the method used in DYNEQU. This report describes the techniques used in DYNRED, that is: Coherency Identification; Network Reduction; Method of Aggregation, Generator Aggregation, Excitation Aggregation, Primemover/Governor Aggregation. An example of the application of DYNRED to the reduction of a large interconnected power system model is also presented. DYNRED uses the special modeling and network solution techniques developed to enable systems having up to 12,000 bus to be studied. Dynamic data is completely compatible between MASS, PEALS, and the EPRI Extended Transient Midterm Stability Program (ETMSP).

Rogers, G.J.; Wong, D.Y.; Ottevangers, J.; Wang, L. (Ontario Hydro, Toronto, ON (Canada))

1993-04-01T23:59:59.000Z

143

Alternative Fuels Data Center: School District Emissions Reduction Policies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School District School District Emissions Reduction Policies to someone by E-mail Share Alternative Fuels Data Center: School District Emissions Reduction Policies on Facebook Tweet about Alternative Fuels Data Center: School District Emissions Reduction Policies on Twitter Bookmark Alternative Fuels Data Center: School District Emissions Reduction Policies on Google Bookmark Alternative Fuels Data Center: School District Emissions Reduction Policies on Delicious Rank Alternative Fuels Data Center: School District Emissions Reduction Policies on Digg Find More places to share Alternative Fuels Data Center: School District Emissions Reduction Policies on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School District Emissions Reduction Policies

144

Alternative Fuels Data Center: Commercial Vehicle Idle Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Commercial Vehicle Commercial Vehicle Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Commercial Vehicle Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Commercial Vehicle Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Commercial Vehicle Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Commercial Vehicle Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Commercial Vehicle Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Commercial Vehicle Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Commercial Vehicle Idle Reduction Requirement

145

Property:Project Country | Open Energy Information  

Open Energy Info (EERE)

Project Country Project Country Property Type Page Pages using the property "Project Country" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + United Kingdom + MHK Projects/ADM 3 + Ireland + MHK Projects/ADM 4 + United Kingdom + MHK Projects/ADM 5 + Portugal + MHK Projects/AW Energy EMEC + United Kingdom + MHK Projects/AWS II + United Kingdom + MHK Projects/Admirality Inlet Tidal Energy Project + United States + MHK Projects/Agucadoura + Portugal + MHK Projects/Alaska 1 + United States + MHK Projects/Alaska 13 + United States + MHK Projects/Alaska 17 + United States + MHK Projects/Alaska 18 + United States + MHK Projects/Alaska 24 + United States + MHK Projects/Alaska 25 + United States + MHK Projects/Alaska 28 + United States +

146

The reduction of packaging waste  

Science Conference Proceedings (OSTI)

Nationwide, packaging waste comprises approximately one-third of the waste disposed in sanitary landfills. the US Department of Energy (DOE) generated close to 90,000 metric tons of sanitary waste. With roughly one-third of that being packaging waste, approximately 30,000 metric tons are generated per year. The purpose of the Reduction of Packaging Waste project was to investigate opportunities to reduce this packaging waste through source reduction and recycling. The project was divided into three areas: procurement, onsite packaging and distribution, and recycling. Waste minimization opportunities were identified and investigated within each area, several of which were chosen for further study and small-scale testing at the Hanford Site. Test results, were compiled into five ``how-to`` recipes for implementation at other sites. The subject of the recipes are as follows: (1) Vendor Participation Program; (2) Reusable Containers System; (3) Shrink-wrap System -- Plastic and Corrugated Cardboard Waste Reduction; (4) Cardboard Recycling ; and (5) Wood Recycling.

Raney, E.A.; Hogan, J.J.; McCollom, M.L.; Meyer, R.J.

1994-04-01T23:59:59.000Z

147

High-Tech Buildings - Market Transformation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Tech Buildings - Market Transformation Project Title High-Tech Buildings - Market Transformation Project Publication Type Report LBNL Report Number LBNL-49112 Year of Publication...

148

Salt River Project Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Salt River Project Smart Grid Project Salt River Project Smart Grid Project Jump to: navigation, search Project Lead Salt River Project Country United States Headquarters Location Tempe, Arizona Recovery Act Funding $56,859,359.00 Total Project Value $114,003,719.00 Coverage Area Coverage Map: Salt River Project Smart Grid Project Coordinates 33.414768°, -111.9093095° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

149

Aluminum Reduction Technology  

Science Conference Proceedings (OSTI)

Increasing the Power Modulation Window of Aluminium Smelter Pots with Shell Heat Exchanger Technology Initiatives To Reduction Of Aluminum Potline...

150

Aluminum Reduction Technology  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... GHG Measurement and Inventory for Aluminum Production HEX Retrofit Enables Smelter Capacity Expansion HF Emission Reduction from...

151

Cobalt Reduction Sourcebook  

Science Conference Proceedings (OSTI)

Many nuclear utilities have a cobalt reduction plan in place for each plant. However, establishing a cobalt reduction plan is a challenging and often plant-specific task. This document seeks to provide a general approach to not only minimizing elemental cobalt transport to Boiling Water Reactors (BWR) and Pressurized Water Reactors (PWR) reactors, but also to help prioritize cobalt reduction actions for optimum dose rate reduction.

2010-12-21T23:59:59.000Z

152

MCNP variance reduction overview  

Science Conference Proceedings (OSTI)

The MCNP code is rich in variance reduction features. Standard variance reduction methods found in most Monte Carlo codes are available as well as a number of methods unique to MCNP. We discuss the variance reduction features presently in MCNP as well as new ones under study for possible inclusion in future versions of the code.

Hendricks, J.S.; Booth, T.E.

1985-01-01T23:59:59.000Z

153

Petroleum Reduction Planning Tool | Open Energy Information  

Open Energy Info (EERE)

Petroleum Reduction Planning Tool Petroleum Reduction Planning Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Petroleum Reduction Planning Tool Agency/Company /Organization: National Renewable Energy Laboratory, United States Department of Energy Sector: Energy Focus Area: Biomass, Energy Efficiency, Fuels & Efficiency, Hydrogen, Transportation Phase: Prepare a Plan Topics: Analysis Tools, Pathways analysis Resource Type: Software/modeling tools User Interface: Website Complexity/Ease of Use: Not Available Website: www.afdc.energy.gov/afdc/prep/index.php OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Equivalent URI: cleanenergysolutions.org/content/petroleum-reduction-planning-tool Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation

154

Property:Was This Project DOE Funded? | Open Energy Information  

Open Energy Info (EERE)

Was This Project DOE Funded? Jump to: navigation, search Property Name Was This Project DOE Funded? Property Type String Pages using the property "Was This Project DOE Funded?"...

155

Smart Grid Investment Grants: Map of Projects | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grants: Map of Projects Smart Grid Investment Grants: Map of Projects Map showing the distribution of project types awarded across the United States through the Smart Grid...

156

Financing Non-Residential Photovoltaic Projects: Options and Implications  

E-Print Network (OSTI)

reductions in installed project costs. Moreover, the fallout100% of the installed project costs will be considered partthen the portion of the project cost financed in this way is

Bolinger, Mark

2009-01-01T23:59:59.000Z

157

Suspension Hydrogen Reduction of Iron Oxide Concentrates  

DOE Green Energy (OSTI)

The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

H.Y. Sohn

2008-03-31T23:59:59.000Z

158

Header with Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

this project is to design and develop a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC and FutureGen type applications that meets DOE turbine performance...

159

"Department of Energy Information Protection Task Force - SSN Reduction Project PA 09-Baseline Inventory",,,,,,,,,,,,,"1. Not Cost Effective","2. No Resources Available","3. Legally Required to Collect and/or Maintain","4. Other - Explain in Column ""R"""  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Information Protection Task Force - SSN Reduction Project PA 09-Baseline Inventory",,,,,,,,,,,,,"1. Not Cost Effective","2. No Resources Available","3. Legally Required to Collect and/or Maintain","4. Other - Explain in Column ""R""" Department of Energy Information Protection Task Force - SSN Reduction Project PA 09-Baseline Inventory",,,,,,,,,,,,,"1. Not Cost Effective","2. No Resources Available","3. Legally Required to Collect and/or Maintain","4. Other - Explain in Column ""R""" "DOE Privacy Website: http://management.energy.gov/FOIA/privacy.htm",,,,,,,,,,,,,"Yes","No","N/A" ,"1. Departmental Element","2. System Name/ Major Application Name","3. Location","4. Name of System Owner/ Information or Data Owner","5. Contact Information","6. Does the system collect or maintain Social Security numbers?","7. Source of Legal Requirement/Authority to Collect or Maintain Social Security Numbers?","8. Does the system have a Privacy Impact Assessment (PIA)?","9. Does the system have a System of Records Notice (SORN)? If yes, provide the name of the System of Records Notice.","10. Does the system collect or maintain other forms of PII?","Comments"

160

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A motor vehicle equipped with idle reduction or emissions reduction technology may exceed the maximum gross vehicle weight and axle weight

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alternative Fuels Data Center: Mobile Source Emissions Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Mobile Source Mobile Source Emissions Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Mobile Source Emissions Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Mobile Source Emissions Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Mobile Source Emissions Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Mobile Source Emissions Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Mobile Source Emissions Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Mobile Source Emissions Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

162

Alternative Fuels Data Center: Vehicle Emissions Reduction Grants -  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Emissions Vehicle Emissions Reduction Grants - Sacramento to someone by E-mail Share Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Facebook Tweet about Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Twitter Bookmark Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Google Bookmark Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Delicious Rank Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Digg Find More places to share Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

163

Project Accounts  

NLE Websites -- All DOE Office Websites (Extended Search)

» Project Accounts » Project Accounts Project Accounts Overview Project accounts are designed to facilitate collaborative computing by allowing multiple users to use the same account. All actions performed by the project account are traceable back to the individual who used the project account to perform those actions via gsisshd accounting logs. Requesting a Project Account PI's, PI proxies and project managers are allowed to request a project account. In NIM do "Actions->Request a Project Account" and fill in the form. Select the repository that the Project Account is to use from the drop-down menu, "Sponsoring Repository". Enter the name you want for the account (8 characters maximum) and a description of what you will use the account for and then click on the "Request Project Account" button. You

164

Deep carbon reductions in California require electrification and  

NLE Websites -- All DOE Office Websites (Extended Search)

Deep carbon reductions in California require electrification and Deep carbon reductions in California require electrification and integration across economic sectors Title Deep carbon reductions in California require electrification and integration across economic sectors Publication Type Journal Article Year of Publication 2013 Authors Wei, Max, James H. Nelson, J. Greenblatt, Ana Mileva, Josiah Johnston, Michael K. Ting, Christopher Yang, Christopher M. Jones, James E. McMahon, and Daniel M. Kammen Journal Environmental Research Letters Volume 8 Issue 1 Abstract Meeting a greenhouse gas (GHG) reduction target of 80% below 1990 levels in the year 2050 requires detailed long-term planning due to complexity, inertia, and path dependency in the energy system. A detailed investigation of supply and demand alternatives is conducted to assess requirements for future California energy systems that can meet the 2050 GHG target. Two components are developed here that build novel analytic capacity and extend previous studies: (1) detailed bottom-up projections of energy demand across the building, industry and transportation sectors; and (2) a high-resolution variable renewable resource capacity planning model (SWITCH) that minimizes the cost of electricity while meeting GHG policy goals in the 2050 timeframe. Multiple pathways exist to a low-GHG future, all involving increased efficiency, electrification, and a dramatic shift from fossil fuels to low-GHG energy. The electricity system is found to have a diverse, cost-effective set of options that meet aggressive GHG reduction targets. This conclusion holds even with increased demand from transportation and heating, but the optimal levels of wind and solar deployment depend on the temporal characteristics of the resulting load profile. Long-term policy support is found to be a key missing element for the successful attainment of the 2050 GHG target in California.

165

Canby Cascaded Project Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Canby Cascaded Project Geothermal Project Canby Cascaded Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Canby Cascaded Project Geothermal Project Project Location Information Coordinates 41.443888888889°, -120.87027777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.443888888889,"lon":-120.87027777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

Project 244  

NLE Websites -- All DOE Office Websites (Extended Search)

PROJECT PARTNER Advanced Technology Systems, Inc. Pittsburgh, PA PROJECT PARTNERS Ohio University Athens, OH Texas A&M University-Kingsville Kingsville, TX WEBSITES http:...

167

Projects | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

and Conferences Supporting Organizations Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Projects Projects 1-10 of 180 Results Prev...

168

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit...

169

Black carbon snow albedo reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Black carbon snow albedo reduction Black carbon snow albedo reduction Title Black carbon snow albedo reduction Publication Type Journal Article Year of Publication 2012 Authors Hadley, Odelle L., and Thomas W. Kirchstetter Journal Nature Climate Change Volume 2 Pagination 437-440 Abstract Climate models indicate that the reduction of surface albedo caused by black-carbon contamination of snow contributes to global warming and near-worldwide melting of ice1, 2. In this study, we generated and characterized pure and black-carbon-laden snow in the laboratory and verified that black-carbon contamination appreciably reduces snow albedo at levels that have been found in natural settings1, 3, 4. Increasing the size of snow grains in our experiments decreased snow albedo and amplified the radiative perturbation of black carbon, which justifies the aging-related positive feedbacks that are included in climate models. Moreover, our data provide an extensive verification of the Snow, Ice and Aerosol Radiation model1, which will be included in the next assessment of the Intergovernmental Panel on Climate Change5.

170

Aluminum Reduction Technology  

Science Conference Proceedings (OSTI)

Increased Energy Efficiency and Reduced HF Emissions with New Heat Exchanger Industrial Test of Low-voltage Energy-saving Aluminum Reduction...

171

Lattice Reduction - CECM  

E-Print Network (OSTI)

lattice reduction`);" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 6 " fi;" }}{PARA 0 "> " 0 "" { MPLTEXT 1 0 13 " if dd then" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 27 " \\+ uu...

172

PAPERWORK REDUCTION ACT SUBMISSION  

U.S. Energy Information Administration (EIA)

19. Certification for Paperwork Reduction Act Submissions On behalf of this Federal agency, I certify that the collection of information encompassed ...

173

The UNEP Project CD4CDM BUNDLING SMALL-SCALE CDM PROJECTS  

E-Print Network (OSTI)

costs and low sales realizations deter project developers from offering Carbon Emission Reductions (CER it hard to bear high up-front costs and risk capital for running projects through the CDM marketThe UNEP Project CD4CDM BUNDLING SMALL-SCALE CDM PROJECTS December, 2004 H V Kumar S V Kulkarni

174

Alternative Fuels Data Center: Idle Reduction Grant Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Grant Idle Reduction Grant Program to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Grant Program on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Grant Program on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Grant Program on Google Bookmark Alternative Fuels Data Center: Idle Reduction Grant Program on Delicious Rank Alternative Fuels Data Center: Idle Reduction Grant Program on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Grant Program The Wisconsin Department of Administration provides idle reduction grants to eligible common, contract, and private motor carriers headquartered in

175

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with idle reduction technology may exceed the state's

176

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle or combination of vehicles equipped with idle reduction technology may exceed the state's gross and axle weight limits by up to 400

177

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A heavy-duty vehicle that is equipped with qualified idle reduction technology may exceed the Arizona weight limitations specified in Arizona

178

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with qualified idle reduction technology may exceed the state's gross and axle weight limits by up to 400 pounds to compensate

179

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A vehicle equipped with idle reduction technology may exceed the state's gross, axle, and bridge vehicle weight limits by up to 400 pounds to

180

Alternative Fuels Data Center: Emissions Reduction Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions Reduction Emissions Reduction Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Emissions Reduction Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Emissions Reduction Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Emissions Reduction Tax Credit on Google Bookmark Alternative Fuels Data Center: Emissions Reduction Tax Credit on Delicious Rank Alternative Fuels Data Center: Emissions Reduction Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Emissions Reduction Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Emissions Reduction Tax Credit An income tax credit is available to individuals who install diesel particulate emissions reduction technology equipment at any truck stop,

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with qualified idle reduction technology may exceed the state's vehicle weight limits by up to 400 pounds to compensate

182

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Weight Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with qualified idle reduction technology may exceed the state gross and axle weight limits to compensate for the added

183

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with idle reduction technology may exceed the state's

184

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Weight Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with qualified idle reduction technology may exceed the state gross, axle, tandem, or bridge weight limits by up to 400

185

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A vehicle equipped with a fully functional idle reduction system designed to reduce fuel use and emissions from engine idling may exceed the maximum

186

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle or combination of vehicles equipped with idle reduction technology may exceed the state's gross and axle weight limits by up to 400

187

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A vehicle equipped with qualified idle reduction technology may exceed the

188

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with qualifying idle reduction technology may exceed the state's gross vehicle weight limits by up to 400 pounds to compensate

189

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with idle reduction technology may exceed the state gross, axle, and tandem weight limits by up to 400 pounds to account

190

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with idle reduction technology may exceed the gross vehicle or internal bridge weight by the amount equal to the

191

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A motor vehicle equipped with a fully functional idle reduction system designed to reduce fuel use and emissions from engine idling may exceed the

192

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any heavy-duty vehicle equipped with an auxiliary power unit or other qualified idle reduction technology may exceed the state gross, axle,

193

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with an auxiliary power unit or other idle reduction technology may exceed the gross, single axle, tandem axle, or

194

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A commercial vehicle equipped with idle reduction technology may exceed the

195

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Weight Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle or combination of vehicles equipped with idle reduction technology is allowed to exceed the maximum gross vehicle and axle weight

196

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption The maximum gross weight limit and axle weight limit for any vehicle or combination of vehicles equipped with idle reduction technology may exceed

197

Operator strength reduction  

Science Conference Proceedings (OSTI)

Operator strength reduction is a technique that improves compiler-generated code by reformulating certain costly computations in terms of less expensive ones. A common case arises in array addressing expressions used in loops. The compiler can replace ... Keywords: loops, static single assignment form, strength reduction

Keith D. Cooper; L. Taylor Simpson; Christopher A. Vick

2001-09-01T23:59:59.000Z

198

Transparent partial order reduction  

Science Conference Proceedings (OSTI)

Partial Order Reduction (POR) techniques improve the basic model checking algorithm by reducing the numbers of states and transitions explored in verifying a property of the model. In the "ample set" POR framework for the verification of an LTLX ... Keywords: Invisibility, Model checking, Partial order reduction, Transparent, Verification

Stephen F. Siegel

2012-02-01T23:59:59.000Z

199

Pecan Street Project, Inc. Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Project, Inc. Smart Grid Demonstration Project Project, Inc. Smart Grid Demonstration Project Jump to: navigation, search Project Lead Pecan Street Project, Inc. Country United States Headquarters Location Austin, Texas Recovery Act Funding $10,403,570.00 Total Project Value $24,656,485.00 Coordinates 30.267153°, -97.7430608° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

200

Vineyard Energy Project Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Smart Grid Project Smart Grid Project Jump to: navigation, search Project Lead Vineyard Energy Project Country United States Headquarters Location West Tisbury, Massachusetts Recovery Act Funding $787,250.00 Total Project Value $1,574,500.00 Coverage Area Coverage Map: Vineyard Energy Project Smart Grid Project Coordinates 41.3812245°, -70.6744723° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Property:Project City | Open Energy Information  

Open Energy Info (EERE)

City City Jump to: navigation, search Property Name Project City Property Type Page Pages using the property "Project City" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + Siadar, Lewis Western Isles Scotland + MHK Projects/ADM 3 + Galway, NULL + MHK Projects/ADM 4 + Onshore, NULL + MHK Projects/AW Energy EMEC + Orkney, Scotland + MHK Projects/AWS II + Orkney, Scotland + MHK Projects/Admirality Inlet Tidal Energy Project + Port Townsend, Washington + MHK Projects/Agucadoura + 5 km off Agucadoura, NULL + MHK Projects/Alaska 1 + Eagle, Alaska + MHK Projects/Alaska 13 + Ruby, Alaska + MHK Projects/Alaska 17 + Kaltag, Alaska + MHK Projects/Alaska 18 + Nulato, Alaska + MHK Projects/Alaska 24 + Kiana, Alaska +

202

City of Philadelphia- Streamlined Solar Permitting and Fee Reduction  

Energy.gov (U.S. Department of Energy (DOE))

Photovoltaic systems of 10 kW or less installed on 1- or 2-family residential units are eligible for streamlined permitting and a fee reduction. PV projects can use a [http://www.phila.gov/green...

203

Initiatives To Reduction Of Aluminum Potline Energy Consumption ...  

Science Conference Proceedings (OSTI)

Through this project a reduction of 77mV/pot and 0.30 kWh/kg Al were achieved, the best ever result reached at the plant at the present load level. In financial...

204

Property:Project Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Installed Capacity (MW) Installed Capacity (MW) Jump to: navigation, search Property Name Project Installed Capacity (MW) Property Type String Pages using the property "Project Installed Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 + MHK Projects/ADM 5 + 1 + MHK Projects/AWS II + 1 + MHK Projects/Admirality Inlet Tidal Energy Project + 22 + MHK Projects/Agucadoura + 2 + MHK Projects/Alaska 18 + 10 + MHK Projects/Alaska 36 + 10 + MHK Projects/Algiers Cutoff Project + 16 + MHK Projects/Algiers Light Project + 0 + MHK Projects/Anconia Point Project + 0 + MHK Projects/Ashley Point Project + 0 + MHK Projects/Astoria Tidal Energy + 300 + MHK Projects/Avondale Bend Project + 0 + MHK Projects/Bar Field Bend + 0 +

205

Type: Renewal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 INCITE Awards 1 INCITE Awards Type: Renewal Title: -Ab Initio Dynamical Simulations for the Prediction of Bulk Properties‖ Principal Investigator: Theresa Windus, Iowa State University Co-Investigators: Brett Bode, Iowa State University Graham Fletcher, Argonne National Laboratory Mark Gordon, Iowa State University Monica Lamm, Iowa State University Michael Schmidt, Iowa State University Scientific Discipline: Chemistry: Physical INCITE Allocation: 10,000,000 processor hours Site: Argonne National Laboratory Machine (Allocation): IBM Blue Gene/P (10,000,000 processor hours) Research Summary: This project uses high-quality electronic structure theory, statistical mechanical methods, and

206

Energy Reduction Goals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduction Goals Reduction Goals Energy Reduction Goals < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Other Program Info State Vermont Program Type Energy Efficiency Resource Standard Provider Vermont Energy Investment Corporation In June 1999, Vermont enacted legislation authorizing the Vermont Public Service Board (PSB) to establish a volumetric charge on all electric customers' bills to support energy efficiency programs and goals.* The subsequent year the PSB established Efficiency Vermont, a statewide "energy efficiency utility," and a funding mechanism to support it. Efficiency Vermont is currently administered by Vermont Energy Investment Corporation (VEIC), an independent, non-profit corporation. Efficiency Vermont periodically establishes certain goals that constitute

207

Municipal Energy Reduction Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Energy Reduction Fund Municipal Energy Reduction Fund Municipal Energy Reduction Fund < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Buying & Making Electricity Energy Sources Maximum Rebate $400,000 Program Info Start Date 3/17/2010 State New Hampshire Program Type State Loan Program Rebate Amount $5,000 to $400,000 Provider New Hampshire Community Development Finance Authority In March 2010, the New Hampshire Community Development Finance Authority (CDFA) launched a revolving loan program to encourage the state's

208

Fundamental limits on NOx reduction by plasma  

Science Conference Proceedings (OSTI)

This paper discusses the gas-phase reaction mechanisms for removal of NO{sub x} in a plasma. The effect of oxygen content on the competition between the reduction and oxidation processes is discussed. The effect of the electron kinetic energy distribution on the radical production and subsequent chemistry is then discussed in order to predict the best performance that can be achieved for NO{sub x} reduction using the plasma alone. The fundamental limit on the minimum electrical energy consumption that will be required to implement NO{sub x} reduction in any type of plasma reactor is established.

Penetrante, B. M., LLNL

1997-04-07T23:59:59.000Z

209

Advanced Energy Projects: FY 1993, Research summaries  

SciTech Connect

AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

Not Available

1993-09-01T23:59:59.000Z

210

Multiproject baselines for evaluation of electric power projects  

Science Conference Proceedings (OSTI)

Calculating greenhouse gas emissions reductions from climate change mitigation projects requires construction of a baseline that sets emissions levels that would have occurred without the project. This paper describes a standardized multiproject methodology for setting baselines, represented by the emissions rate (kg C/kWh), for electric power projects. A standardized methodology would reduce the transaction costs of projects. The most challenging aspect of setting multiproject emissions rates is determining the vintage and types of plants to include in the baseline and the stringency of the emissions rates to be considered, in order to balance the desire to encourage no- or low-carbon projects while maintaining environmental integrity. The criteria for selecting power plants to include in the baseline depend on characteristics of both the project and the electricity grid it serves. Two case studies illustrate the application of these concepts to the electric power grids in eastern India and South Africa. We use hypothetical, but realistic, climate change projects in each country to illustrate the use of the multiproject methodology, and note the further research required to fully understand the implications of the various choices in constructing and using these baselines.

Sathaye, Jayant; Murtishaw, Scott; Price, Lynn; Lefranc, Maurice; Roy, Joyashree; Winkler, Harald; Spalding-Fecher, Randall

2003-03-12T23:59:59.000Z

211

Science Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Argonne Science Project Ideas! Our Science Project section provides you with sample classroom projects and experiments, online aids for learning about science, as well as ideas for Science Fair Projects. Please select any project below to continue. Also, if you have an idea for a great project or experiment that we could share, please click our Ideas page. We would love to hear from you! Science Fair Ideas Science Fair Ideas! The best ideas for science projects are learning about and investigating something in science that interests you. NEWTON has a list of Science Fair linkd that can help you find the right topic. Toothpick Bridge Web Sites Toothpick Bridge Sites! Building a toothpick bridge is a great class project for physics and engineering students. Here are some sites that we recommend to get you started!

212

Structure and Function of Microbial Metal-Reduction Proteins  

SciTech Connect

In this project, we proposed (i) identification of metal-reduction genes, (ii) development of new threading techniques and (iii) fold recognition and structure prediction of metal-reduction proteins. However, due to the reduction of the budget, we revised our plan to focus on two specific aims of (i) developing a new threading-based protein structure prediction method, and (ii) developing an expert system for protein structure prediction.

Xu, Ying; Crawford, Oakly H.; Xu, Dong; Larimer, Frank W.; Uberbacher, Edward C.; Zhou, Jizhong

2009-09-02T23:59:59.000Z

213

Aluminum Reduction Technology  

Science Conference Proceedings (OSTI)

Jul 15, 2013... and academia from all over the world meet each other and share information. ... Trend and market demand, Energy saving initiatives in Reduction Process, ... An improved finite element model for thermal balance analysis of...

214

Reduction-in-Force  

Energy.gov (U.S. Department of Energy (DOE))

Reduction in force (RIF) is a set of regulations and procedures that are used to determine whether an employee keeps his or her present position, or whether the employee has a right to another...

215

Alternative Fuels Data Center: Idle Reduction Tax Incentives and Exemptions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Tax Idle Reduction Tax Incentives and Exemptions to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Tax Incentives and Exemptions on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Tax Incentives and Exemptions on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Tax Incentives and Exemptions on Google Bookmark Alternative Fuels Data Center: Idle Reduction Tax Incentives and Exemptions on Delicious Rank Alternative Fuels Data Center: Idle Reduction Tax Incentives and Exemptions on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Tax Incentives and Exemptions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Tax Incentives and Exemptions

216

Alternative Fuels Data Center: Idle Reduction Technology Loan Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Technology Loan Program to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Technology Loan Program on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Technology Loan Program on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Technology Loan Program on Google Bookmark Alternative Fuels Data Center: Idle Reduction Technology Loan Program on Delicious Rank Alternative Fuels Data Center: Idle Reduction Technology Loan Program on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Technology Loan Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Technology Loan Program The Minnesota Pollution Control Agency's Small Business Environmental

217

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A heavy-duty vehicle equipped with an auxiliary power unit may exceed the state's gross vehicle weight limit by up to 400 pounds to compensate for

218

Alternative Fuels Data Center: Idle Reduction Technology Rebates  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Technology Rebates to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Technology Rebates on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Technology Rebates on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Technology Rebates on Google Bookmark Alternative Fuels Data Center: Idle Reduction Technology Rebates on Delicious Rank Alternative Fuels Data Center: Idle Reduction Technology Rebates on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Technology Rebates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Technology Rebates The North Carolina Department of Environment and Natural Resources (NCDENR)

219

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Weight Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with a qualified auxiliary power unit (APU) may exceed the state's gross vehicle and axle weight limits by up to 400 pounds to

220

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with an auxiliary power unit (APU) or other idle

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle or combination of vehicles equipped with fully functional idle

222

Alternative Fuels Data Center: Idle Reduction Technology Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Technology Loans to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Technology Loans on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Technology Loans on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Technology Loans on Google Bookmark Alternative Fuels Data Center: Idle Reduction Technology Loans on Delicious Rank Alternative Fuels Data Center: Idle Reduction Technology Loans on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Technology Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Technology Loans The Arkansas Department of Environmental Quality provides small business loans at 80% of the current prime interest rate to institute pollution

223

Alternative Fuels Data Center: Idle Reduction Requirement at Schools  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Requirement at Schools to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement at Schools on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement at Schools on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement at Schools on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement at Schools on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement at Schools on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement at Schools on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement at Schools A school bus driver must turn off the engine upon stopping at a school, or

224

Alternative Fuels Data Center: School Bus Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Idle School Bus Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: School Bus Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Idle Reduction Requirement All local boards of education in North Carolina have adopted idle reduction

225

Human Error Reduction  

Science Conference Proceedings (OSTI)

Reducing human error is recognized in the power-generation industry as a key factor in reducing safety-related events as well as improving asset availability. Achieving a sustainable culture change that leads to human error reduction in plant operations and maintenance remains a significant challenge to the industry. This report presents a behavior-based approach to human performance improvement and error reduction. The report explains fundamental elements of culture change and describes proven practices...

2010-12-23T23:59:59.000Z

226

The Manhattan Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Project Sites and Their Contributions · Key Events · Scientists · Its Story · Additional Information · Related Information President Roosevelt Establishes the Manhattan Project President Roosevelt instructs the Army to take responsibility for construction of atomic weapons complex. The Army delegates the task to the Corps of Engineers, which establishes the Manhattan Engineer District. Courtesy of National Nuclear Security Administration The 70th anniversary of the establishment of the Manhattan Project on August 13, 1942, is celebrated this year. The Manhattan Project played an essential role in bringing World War II to an end through the building of the atomic bomb. This major achievement was possible because the U.S. government conducted a massive, secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon.

227

DSOpilot project (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

DSOpilot project (Smart Grid Project) DSOpilot project (Smart Grid Project) Jump to: navigation, search Project Name DSOpilot project Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

ADELE Project AACAES (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

ADELE Project AACAES (Smart Grid Project) ADELE Project AACAES (Smart Grid Project) Jump to: navigation, search Project Name ADELE Project AACAES Country Germany Coordinates 51.165691°, 10.451526° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.165691,"lon":10.451526,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Demonstration project Smart Charging (Smart Grid Project) | Open Energy  

Open Energy Info (EERE)

project Smart Charging (Smart Grid Project) project Smart Charging (Smart Grid Project) Jump to: navigation, search Project Name Demonstration project Smart Charging Country Netherlands Headquarters Location Noord-Brabant, Netherlands Coordinates 51.482655°, 5.232169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.482655,"lon":5.232169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

DataHub project (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

DataHub project (Smart Grid Project) DataHub project (Smart Grid Project) Jump to: navigation, search Project Name DataHub project Country Denmark Headquarters Location Fredericia, Denmark Coordinates 55.570332°, 9.746595° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.570332,"lon":9.746595,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

ESB Smart Meter Projects (Smart Grid Project) (Limerick, Ireland) | Open  

Open Energy Info (EERE)

Projects (Smart Grid Project) (Limerick, Ireland) Projects (Smart Grid Project) (Limerick, Ireland) Jump to: navigation, search Project Name ESB Smart Meter Projects Country Ireland Headquarters Location Limerick, Ireland Coordinates 52.663857°, -8.626773° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.663857,"lon":-8.626773,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Saltcreek Project Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Summary Project Summary HELP Index Summary Scenario References Student Pages Subject/Content Area: Environmental Science Target Audience: Middle school level - all students, including gifted, learning-disabled, behavior-disordered and limited English proficient Project Goals: As a result of their participation in the Salt Creek Investigation, the students will develop the abilities necessary to do scientific inquiry. They will increase their understanding of factors affecting environmental quality, including the interdependence of organisms, and human-induced hazards. Students will learn how science and technology can help people solve local, national and global environmental problems. Learner Outcomes: Students will: be able to carry out six types of stream monitoring tests.

233

Project Submission Template  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Cooperation International Cooperation Project Title: Country/Organizations: Foreign: Foreign POC: U.S: U.S. POC: Technology Area: Scope of Collaborative Research and Development: Justification of Approach: Work Completed to Date: Overview of Proposed Scope for FY12: Summary Brief Description of Specific Project(s): Timeline: Estimated Cost: Status: CONTINUATION or NEW? Type of Contracting Instrument: (Int'l agreements, lab-lab agreement, etc) Participant Organizations General Scope Budget Foreign (Technical Scope) US (Overhead rate) (Technical Scope) TOTAL Budget Breakdown: Overhead rates and experimental work: APPROVE ____________________ DISAPPROVE ____________________ Approving Official: Associate PDAS, Alice Williams, EM-2.1

234

Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Projects Power Projects Contact SN Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates You are here: SN Home page > About SNR Power Projects Central Valley: In California's Central Valley, 18 dams create reservoirs that can store 13 million acre-feet of water. The project's 615 miles of canals irrigate an area 400 miles long and 45 miles wide--almost one third of California. Powerplants at the dams have an installed capacity of 2,099 megawatts and provide enough energy for 650,000 people. Transmission lines total about 865 circuit-miles. Washoe: This project in west-central Nevada and east-central California was designed to improve the regulation of runoff from the Truckee and Carson river systems and to provide supplemental irrigation water and drainage, as well as water for municipal, industrial and fishery use. The project's Stampede Powerplant has a maximum capacity of 4 MW.

235

Plains CO2 Reduction Partnership PCOR | Open Energy Information  

Open Energy Info (EERE)

CO2 Reduction Partnership PCOR CO2 Reduction Partnership PCOR Jump to: navigation, search Name Plains CO2 Reduction Partnership (PCOR) Place Grand Forks, North Dakota Zip 58202-9018 Product North Dakota-based consortium researching CO2 storage options. PCOR is busy with the ECBM in the Unminable Lignite Research Project. References Plains CO2 Reduction Partnership (PCOR)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Plains CO2 Reduction Partnership (PCOR) is a company located in Grand Forks, North Dakota . References ↑ "Plains CO2 Reduction Partnership (PCOR)" Retrieved from "http://en.openei.org/w/index.php?title=Plains_CO2_Reduction_Partnership_PCOR&oldid=349772"

236

Report: Technical Uncertainty and Risk Reduction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TECHNICAL UNCERTAINTY AND RISK REDUCTION TECHNICAL UNCERTAINTY AND RISK REDUCTION Background In FY 2007 EMAB was tasked to assess EM's ability to reduce risk and technical uncertainty. Board members explored this topic throughout the year as a component of their focus on the previously discussed topic of Discretionary Budgeting. Discussion Understanding the risks and variability associated with EM's projects is a challenging task that has the potential to significantly impact the program's established baselines. According to budget personnel, EM has established a database of baseline variables and possibilities; however, this tool is project-specific and does not apply to the greater complex. The Board believes that EM could benefit from incorporating an additional and more comprehensive data point into the baseline development process that budgets

237

Property:ProjectTechnology | Open Energy Information  

Open Energy Info (EERE)

ProjectTechnology ProjectTechnology Jump to: navigation, search Property Name ProjectTechnology Property Type Page Has Default form Marine and Hydrokinetic Technology Pages using the property "ProjectTechnology" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + MHK Technologies/Oyster + MHK Projects/ADM 3 + MHK Technologies/Wavebob + MHK Projects/ADM 4 + MHK Technologies/Wavebob + MHK Projects/AW Energy EMEC + MHK Technologies/Wave Roller + MHK Projects/Alaska 35 + MHK Technologies/Ocean +, MHK Technologies/Kensington + MHK Projects/BW2 Tidal + MHK Technologies/RED HAWK + MHK Projects/BioSTREAM Pilot Plant + MHK Technologies/bioSTREAM + MHK Projects/Bluemill Sound + MHK Technologies/Exim + MHK Projects/Bondurant Chute + MHK Technologies/SmarTurbine +

238

CHP Emissions Reduction Estimator | Open Energy Information  

Open Energy Info (EERE)

CHP Emissions Reduction Estimator CHP Emissions Reduction Estimator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CHP Emissions Reduction Estimator Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Buildings, Transportation, Industry Topics: GHG inventory, Co-benefits assessment Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.epa.gov/chp/basic/calculator.html Country: United States UN Region: Northern America CHP Emissions Reduction Estimator Screenshot References: http://www.epa.gov/chp/basic/calculator.html "This Emissions Estimator provides the amount of reduced emissions in terms of pounds of CO2, SO2, and NOX based on input from the User regarding the CHP technology being used. In turn the User will be provided with

239

Global Threat Reduction Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

comprehensive comprehensive strategy to prevent nuclear terrorism; and  The key organization responsible for implementing the U.S. HEU minimization policy. GTRI MISSION Reduce and protect vulnerable nuclear and radiological material located at civilian sites worldwide. DOE STRATEGIC GOAL 2.2 Prevent the acquisition of nuclear and radiological materials for use in weapons of mass destruction and other acts of terrorism Protect high priority nuclear and radiological materials from theft and sabotage These efforts result in threat reduction by improving security on the bomb material remaining at civilian sites - each vulnerable building that is protected reduces the risk until a permanent threat reduction solution can be implemented.

240

REDUCTIONS WITHOUT REGRET: SUMMARY  

SciTech Connect

This paper briefly summarizes the series in which we consider the possibilities for losing, or compromising, key capabilities of the U.S. nuclear force in the face of modernization and reductions. The first of the three papers takes an historical perspective, considering capabilities that were eliminated in past force reductions. The second paper is our attempt to define the needed capabilities looking forward in the context of the current framework for force modernization and the current picture of the evolving challenges of deterrence and assurance. The third paper then provides an example for each of our undesirable outcomes: the creation of roach motels, box canyons, and wrong turns.

Swegle, J.; Tincher, D.

2013-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit to the Program * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * This research project develops a reservoir scale CO 2 plume migration model at the Sleipner project, Norway. The Sleipner project in the Norwegian North Sea is the world's first commercial scale geological carbon storage project. 4D seismic data have delineated the CO 2 plume migration history. The relatively long history and high fidelity data make

242

EPRI Integrated Dose Reduction Program Pilot Study  

Science Conference Proceedings (OSTI)

The Integrated Dose Reduction (IDR) project is an integral part of EPRI's support to nuclear plant radiation protection programs. The broad objective of the IDR program is to review existing and recent industry developments and provide utilities with an integrated plan for EPRI's assistance based on a plant's specific needs. This document describes a pilot test of this product at a host site, and identifies areas where EPRI's RP assessments and technical assistance can support key plant programs.

2003-11-21T23:59:59.000Z

243

MHK Projects/Portugal Pre Commercial Pilot Project | Open Energy  

Open Energy Info (EERE)

Portugal Pre Commercial Pilot Project Portugal Pre Commercial Pilot Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

244

MHK Projects/Mohawk MHK Project | Open Energy Information  

Open Energy Info (EERE)

MHK Project MHK Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

245

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline I. Benefits II. Project Overview III. Technical Status A. Background B. Results IV. Accomplishments V. Summary 3 Benefit to the Program * Program goals. - Prediction of CO 2 storage capacity. * Project benefits. - Workforce/Student Training: Support of 3 student GAs in use of multiphase flow and geochemical models simulating CO 2 injection. - Support of Missouri DGLS Sequestration Program. 4 Project Overview: Goals and Objectives Project Goals and Objectives. 1. Training graduate students in use of multi-phase flow models related to CO 2 sequestration. 2. Training graduate students in use of geochemical models to assess interaction of CO

246

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Coal's Center for Coal's FY10 Carbon Sequestration Peer Review February 8 - 12, 2010 2 Collaborators * Tissa Illangasekare (Colorado School of Mines) * Michael Plampin (Colorado School of Mines) * Jeri Sullivan (LANL) * Shaoping Chu (LANL) * Jacob Bauman (LANL) * Mark Porter (LANL) 3 Presentation Outline * Benefit to the program * Project overview * Project technical status * Accomplishments to date * Future Plans * Appendix 4 Benefit to the program * Program goals being addressed (2011 TPP): - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefit: - This project is developing system modeling capabilities that can be used to address challenges associated with infrastructure development, integration, permanence &

247

Project 364  

NLE Websites -- All DOE Office Websites (Extended Search)

765-494-5623 lucht@purdue.edu DEVELOPMENT OF NEW OPTICAL SENSORS FOR MEASUREMENT OF MERCURY CONCENTRATIONS, SPECIATION, AND CHEMISTRY Project Description The feasibility of...

248

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State...

249

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and Evaluation of Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background information - Project Concept (MICP) - Ureolytic Biomineralization, Biomineralization Sealing * Accomplishments to Date - Site Characterization - Site Preparation - Experimentation and Modeling - Field Deployable Injection Strategy Development * Summary

250

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL's Consolidated Sequestration Research Program (CSRP) Project Number FWP ESD09-056 Barry Freifeld Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefits and Goals of GEO-SEQ * Technical Status - Otway Project (CO2CRC) - In Salah (BP, Sonatrach and Statoil) - Ketzin Project (GFZ, Potsdam) - Aquistore (PTRC) * Accomplishments and Summary * Future Plans 3 Benefit to the Program * Program goals being addressed: - Develop technologies to improve reservoir storage capacity estimation - Develop and validate technologies to ensure 99 percent storage permanence.

251

Project 283  

NLE Websites -- All DOE Office Websites (Extended Search)

NJ 07039 973-535 2328 ArchieRobertson@fwc.com Sequestration ADVANCED CO 2 CYCLE POWER GENERATION Background This project will develop a conceptual power plant design...

252

Project 197  

NLE Websites -- All DOE Office Websites (Extended Search)

will bring economic value to both the industrial customers and to the participating companies. * Complete project by June 2006. Accomplishments A ceramic membrane and seal...

253

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CCUS Pittsburgh,...

254

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Interdisciplinary Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford...

255

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for...

256

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

* Concrete products in this project * Standard 8" concrete blocks * Standard 4' x 8' fiber-cement boards CO 2 The Goals * Maximizing carbon uptake by carbonation (at least...

257

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Evaluating Potential Groundwater Impacts and Natural Geochemical...

258

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Introduction * Organization * Benefit to Program * Project Overview * Technical Status * Accomplishments to Date...

259

Project 252  

NLE Websites -- All DOE Office Websites (Extended Search)

Stanford Global Climate Energy Project Terralog Technologies TransAlta University of Alaska Fairbanks Washington State Department of Natural Resources Western Interstate...

260

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

research partnership to improve the understanding of CO 2 within coal and shale reservoirs. 2 2 3 Presentation Outline * Program Goal and Benefits Statement * Project...

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

mechanistic insights 5 Project Overview: Scope of work * Task 1 - Pipeline and Casing Steel Corrosion Studies * Evaluate corrosion behavior of pipeline steels in CO 2 mixtures...

262

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project Program Goals * Technical...

263

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

* This project pinpoints the critical catalyst features necessary to promote carbon dioxide conversion to acrylate, validate the chemical catalysis approach, and develop an...

264

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554 George J. Koperna, Jr. Shawna Cyphers Advanced Resources...

265

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology Project Number...

266

Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Vehicle Heavy-Duty Vehicle Emissions Reduction Grants to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Heavy-Duty Vehicle Emissions Reduction Grants

267

Alternative Fuels Data Center: School Bus Idle Reduction Policy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Idle School Bus Idle Reduction Policy to someone by E-mail Share Alternative Fuels Data Center: School Bus Idle Reduction Policy on Facebook Tweet about Alternative Fuels Data Center: School Bus Idle Reduction Policy on Twitter Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Policy on Google Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Policy on Delicious Rank Alternative Fuels Data Center: School Bus Idle Reduction Policy on Digg Find More places to share Alternative Fuels Data Center: School Bus Idle Reduction Policy on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Idle Reduction Policy School bus drivers or drivers of other vehicles that the school district

268

Alternative Fuels Data Center: State Emissions Reductions Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Emissions State Emissions Reductions Requirements to someone by E-mail Share Alternative Fuels Data Center: State Emissions Reductions Requirements on Facebook Tweet about Alternative Fuels Data Center: State Emissions Reductions Requirements on Twitter Bookmark Alternative Fuels Data Center: State Emissions Reductions Requirements on Google Bookmark Alternative Fuels Data Center: State Emissions Reductions Requirements on Delicious Rank Alternative Fuels Data Center: State Emissions Reductions Requirements on Digg Find More places to share Alternative Fuels Data Center: State Emissions Reductions Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Emissions Reductions Requirements Washington state must limit greenhouse gas (GHG) emissions to achieve the

269

Alternative Fuels Data Center: School Bus Emissions Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions Emissions Reduction to someone by E-mail Share Alternative Fuels Data Center: School Bus Emissions Reduction on Facebook Tweet about Alternative Fuels Data Center: School Bus Emissions Reduction on Twitter Bookmark Alternative Fuels Data Center: School Bus Emissions Reduction on Google Bookmark Alternative Fuels Data Center: School Bus Emissions Reduction on Delicious Rank Alternative Fuels Data Center: School Bus Emissions Reduction on Digg Find More places to share Alternative Fuels Data Center: School Bus Emissions Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Emissions Reduction Each full-sized school bus with a Model Year (MY) 1994 or newer engine that transports children in the state must be equipped with specific emissions

270

Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Station Natural Gas Station Property Tax Reduction to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Google Bookmark Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Delicious Rank Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Station Property Tax Reduction

271

Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Idle Heavy-Duty Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Heavy-Duty Idle Reduction Requirement Heavy-duty vehicles with a gross vehicle weight rating greater than 8,500

272

Alternative Fuels Data Center: School Bus Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Idle School Bus Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: School Bus Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Idle Reduction Requirement The Mississippi State Department of Education requires public school

273

Alternative Fuels Data Center: Alternative Fuel and Idle Reduction Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Idle Reduction Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Idle Reduction Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Idle Reduction Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Idle Reduction Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Idle Reduction Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Idle Reduction Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Idle Reduction Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Idle Reduction Grants

274

Alternative Fuels Data Center: School Bus Emissions Reduction Funding  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Emissions School Bus Emissions Reduction Funding to someone by E-mail Share Alternative Fuels Data Center: School Bus Emissions Reduction Funding on Facebook Tweet about Alternative Fuels Data Center: School Bus Emissions Reduction Funding on Twitter Bookmark Alternative Fuels Data Center: School Bus Emissions Reduction Funding on Google Bookmark Alternative Fuels Data Center: School Bus Emissions Reduction Funding on Delicious Rank Alternative Fuels Data Center: School Bus Emissions Reduction Funding on Digg Find More places to share Alternative Fuels Data Center: School Bus Emissions Reduction Funding on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Emissions Reduction Funding The New York State Energy Research and Development Authority (NYSERDA)

275

Alternative Fuels Data Center: State Fleet Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Fleet Idle State Fleet Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: State Fleet Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: State Fleet Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: State Fleet Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: State Fleet Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: State Fleet Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: State Fleet Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Fleet Idle Reduction Requirement State of Utah fleet vehicles must turn off their engines when stopped for

276

Alternative Fuels Data Center: School Bus Idle Reduction Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Idle School Bus Idle Reduction Regulations to someone by E-mail Share Alternative Fuels Data Center: School Bus Idle Reduction Regulations on Facebook Tweet about Alternative Fuels Data Center: School Bus Idle Reduction Regulations on Twitter Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Regulations on Google Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Regulations on Delicious Rank Alternative Fuels Data Center: School Bus Idle Reduction Regulations on Digg Find More places to share Alternative Fuels Data Center: School Bus Idle Reduction Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Idle Reduction Regulations School bus drivers must turn off bus engines as soon as possible at loading

277

Alternative Fuels Data Center: School Bus Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Idle School Bus Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: School Bus Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Idle Reduction Requirement School bus operators must turn off the bus engine immediately after

278

Alternative Fuels Data Center: Idle Reduction Technology Excise Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Technology Excise Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Technology Excise Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Technology Excise Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Technology Excise Tax Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Technology Excise Tax Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Technology Excise Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Technology Excise Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

279

Alternative Fuels Data Center: Alternative Fuel and Idle Reduction Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Idle Reduction Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Idle Reduction Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Idle Reduction Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Idle Reduction Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Idle Reduction Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Idle Reduction Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Idle Reduction Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Idle Reduction Grants

280

Alternative Fuels Data Center: State Agency Petroleum Reduction Plan  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Petroleum State Agency Petroleum Reduction Plan to someone by E-mail Share Alternative Fuels Data Center: State Agency Petroleum Reduction Plan on Facebook Tweet about Alternative Fuels Data Center: State Agency Petroleum Reduction Plan on Twitter Bookmark Alternative Fuels Data Center: State Agency Petroleum Reduction Plan on Google Bookmark Alternative Fuels Data Center: State Agency Petroleum Reduction Plan on Delicious Rank Alternative Fuels Data Center: State Agency Petroleum Reduction Plan on Digg Find More places to share Alternative Fuels Data Center: State Agency Petroleum Reduction Plan on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Agency Petroleum Reduction Plan All state agencies must reduce their fleets' petroleum consumption by

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Potential Energy Savings and CO2 Emissions Reduction of China's Cement  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry Title Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry Publication Type Report Year of Publication 2012 Authors Ke, Jing, Nina Zheng, David Fridley, Lynn K. Price, and Nan Zhou Date Published 06/2012 Publisher Lawrence Berkeley National Laboratory Keywords cement industry, china energy, china energy group, emission reduction, energy analysis and environmental impacts department, energy efficiency, industrial energy efficiency, Low Emission & Efficient Industry, policy studies Abstract This study analyzes current energy and carbon dioxide (CO2) emission trends in China's cement industryas the basis for modeling different levels of cement production and rates of efficiency improvement andcarbon reduction in 2011-2030. Three cement output projections are developed based on analyses ofhistorical production and physical and macroeconomic drivers. For each of these three productionprojections, energy savings and CO2 emission reduction potentials are estimated in a best practicescenario and two continuous improvement scenarios relative to a frozen scenario. The results reveal thepotential for cumulative final energy savings of 27.1 to 37.5 exajoules and energy-related directemission reductions of 3.2 to 4.4 gigatonnes in 2011-2030 under the best practice scenarios. Thecontinuous improvement scenarios produce cumulative final energy savings of 6.0 to 18.9 exajoules andreduce CO2 emissions by 1.0 to 2.4 gigatonnes. This analysis highlights that increasing energy efficiencyis the most important policy measure for reducing the cement industry's energy and emissions intensity,given the current state of the industry and the unlikelihood of significant carbon capture and storagebefore 2030. In addition, policies to reduce total cement production offer the most direct way ofreducing total energy consumption and CO2 emissions.

282

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

control the spatial distribution of the biobarrier on the 1 meter scale. 2) Achieve a 3-4 order of magnitude reduction in permeability and a 10- to 25-fold increase in minimum...

283

Property:Project State/Province | Open Energy Information  

Open Energy Info (EERE)

State/Province State/Province Jump to: navigation, search Property Name Project State/Province Property Type Page Pages using the property "Project State/Province" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/Admirality Inlet Tidal Energy Project + Washington + MHK Projects/Alaska 1 + Alaska + MHK Projects/Alaska 13 + Alaska + MHK Projects/Alaska 17 + Alaska + MHK Projects/Alaska 18 + Alaska + MHK Projects/Alaska 24 + Alaska + MHK Projects/Alaska 25 + Alaska + MHK Projects/Alaska 28 + Alaska + MHK Projects/Alaska 31 + Alaska + MHK Projects/Alaska 33 + Alaska + MHK Projects/Alaska 35 + Alaska + MHK Projects/Alaska 36 + Alaska + MHK Projects/Alaska 7 + Alaska + MHK Projects/Algiers Cutoff Project + Louisiana + MHK Projects/Algiers Light Project + Louisiana +

284

Federal Assistance Program/Project Status Report  

NLE Websites -- All DOE Office Websites (Extended Search)

suggestions for reducing this burden, to Office of Information Resources Management, AD-241.2 - GTN, Paperwork Reduction Project (1910-0400), U.S. Department of Energy, 1000...

285

Solid Waste Reduction, Recovery, and Recycling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduction, Recovery, and Recycling Reduction, Recovery, and Recycling Solid Waste Reduction, Recovery, and Recycling < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Environmental Regulations Provider Department of Natural Resources This statute expresses the strong support of the State of Wisconsin for the reduction of the amount of solid waste generated, the reuse, recycling and composting of solid waste, and resource recovery from solid waste. The statute also notes that research, development and innovation in the design, management and operation of solid waste reduction, reuse, recycling,

286

NREL: Vehicle Ancillary Loads Reduction - About the Project  

NLE Websites -- All DOE Office Websites (Extended Search)

same effect on fuel cell power sources of the future. The largest ancillary load is the air-conditioning system when it is operating. (Typically it imposes a mechanical load of...

287

Social Security Number Reduction Project | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

regarding acceptable uses of the Social Security Number (SSN). PA09BASELINEINVENTORY.xls More Documents & Publications DOE Guidance on the Use of the SSN Occupational...

288

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Space Geodesy, Seismology, Space Geodesy, Seismology, and Geochemistry for Monitoring Verification and Accounting of CO 2 in Sequestration Sites DE-FE0001580 Tim Dixon, University of South Florida Peter Swart, University of Miami U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to program * Goals & objectives * Preliminary InSAR results (site selection phase) * Project location * Project installed equipment * Specific project results * Summary 3 Benefit to the Program * Focused on monitoring, verification, and accounting (MVA) * If successful, our project will demonstrate the utility of low cost, surface

289

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 DE-FE0001159 Advanced Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations Gary Mavko Rock Physics Project/Stanford University 2 Presentation Outline * Benefit to the Program * Project Overview * Motivating technical challenge * Approach * Technical Status - Laboratory results - Theoretical modeling * Summary Mavko: Stanford University 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations. - Develop technologies to demonstrate that 99% of injected CO 2 remains in injection zones. * Project benefits statement.

290

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Volume Injection of CO Large Volume Injection of CO 2 to Assess Commercial Scale Geological Sequestration in Saline Formations in the Big Sky Region Project Number: DE-FC26-05NT42587 Dr. Lee Spangler Big Sky Carbon Sequestration Partnership Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Goals and Objectives * Project overview * Kevin Dome characteristics * Project design philosophy * Infrastructure * Modeling * Monitoring * Project Opportunities 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

291

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Research on Probabilistic and Research on Probabilistic Hydro-Thermo-Mechanical (HTM) Modeling of CO 2 Geological Sequestration (GS) in Fractured Porous Rocks Project DE-FE0002058 Marte Gutierrez, Ph.D. Colorado School of Mines U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program (Program goals addressed and Project benefits) * Project goals and objectives * Technical status - Project tasks * Technical status - Key findings * Lessons learned * Summary - Accomplishments to date 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

292

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Snøhvit CO Snøhvit CO 2 Storage Project Project Number: FWP-FEW0174 Task 4 Principal Investigators: L. Chiaramonte, *J.A. White Team Members: Y. Hao, J. Wagoner, S. Walsh Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Summary & Accomplishments * Appendix 3 Benefit to the Program * The research project is focused on mechanical

293

Project title:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Requested By: David Young Mail Code : N1410 Phone: 916-353-4542 Date Submitted: 5/4/2011 Date Required: 5/7/2011 Description of the Project: Purpose and Need The Western Area Power Administration (Western), Sierra Nevada Region (SNR), is responsible for the operation and maintenance (O&M) of federally owned and operated transmission lines, Switchyards, and facilities throughout California. Western and Reclamation must comply with the National Electric Safety Code, Western States Coordinating Council (WECC), and internal directives for protecting human safety, the physical environment, and maintaining the reliable operation of the transmission system. There is an existing OPGW communications fiber on the transmission towers between Roseville and Elverta

294

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

InSalah CO InSalah CO 2 Storage Project Project Number: FWP-FEW0174 Task 2 Principal Investigator: W. McNab Team Members: L. Chiaramonte, S. Ezzedine, W. Foxall, Y. Hao, A. Ramirez, *J.A. White Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Accomplishments * Summary * Appendix 3 Benefit to the Program * The research project is combining sophisticated

295

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Complexity and Choice of Complexity and Choice of Model Approaches for Practical Simulations of CO 2 Injection, Migration, Leakage, and Long- term Fate Karl W. Bandilla Princeton University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Project Number DE-FE0009563 2 Presentation Outline * Project Goals and Objectives * Project overview * Accomplishments * Summary 3 Benefit to the Program * The aim of the project is to develop criteria for the selection of the appropriate level of model complexity for CO 2 sequestration modeling at a given site. This will increase the confidence in modeling results, and reduce computational cost when appropriate.

296

Property:ProjectName | Open Energy Information  

Open Energy Info (EERE)

ProjectName ProjectName Jump to: navigation, search Property Name ProjectName Property Type String Description Project name for smart grid projects Pages using the property "ProjectName" Showing 25 pages using this property. (previous 25) (next 25) 0 0.4 kV remote control (Smart Grid Project) + 0.4 kV remote control + 2 220 kV SSSC device for power flow control (Smart Grid Project) + 220 kV SSSC device for power flow control + A A complete and normalized 61850 substation (Smart Grid Project) + A complete and normalized 61850 substation + ADELE Project AACAES (Smart Grid Project) + ADELE Project AACAES + AFTER A Framework for electrical power sysTems vulnerability identification, dEfense and Restoration (Smart Grid Project) + AFTER A Framework for electrical power sysTems vulnerability identification, dEfense and Restoration +

297

Silver Peak Innovative Exploration Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Innovative Exploration Project Geothermal Project Innovative Exploration Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Silver Peak Innovative Exploration Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The scope of this three phase project includes tasks to validate a variety of innovative exploration and drilling technologies which aim to accurately characterize the geothermal site and thereby reduce project risk. Phase 1 exploration will consist of two parts: 1) surface and near surface investigations and 2) subsurface geophysical surveys and modeling. The first part of Phase 1 includes: a hyperspectral imaging survey (to map thermal anomalies and geothermal indicator minerals), shallow temperature probe measurements, and drilling of temperature gradient wells to depths of 1000 feet. In the second part of Phase 1, 2D & 3D geophysical modeling and inversion of gravity, magnetic, and magnetotelluric datasets will be used to image the subsurface. This effort will result in the creation of a 3D model composed of structural, geological, and resistivity components. The 3D model will then be combined with the temperature data to create an integrated model that will be used to prioritize drill target locations.

298

projections | OpenEI  

Open Energy Info (EERE)

projections projections Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 95, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power projections United States Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - United States- Reference Case (xls, 260.9 KiB) Quality Metrics

299

projection | OpenEI  

Open Energy Info (EERE)

projection projection Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 85, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power projection Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - SERC Reliability Corporation / Gateway - Reference Case (xls, 259 KiB)

300

RISK REDUCTION WITH A FUZZY EXPERT EXPLORATION TOOL  

SciTech Connect

Incomplete or sparse data such as geologic or formation characteristics introduce a high level of risk for oil exploration and development projects. ''Expert'' systems developed and used in several disciplines and industries have demonstrated beneficial results when working with sparse data. State-of-the-art expert exploration tools, relying on a database, and computer maps generated by neural networks and user inputs, have been developed through the use of ''fuzzy'' logic, a mathematical treatment of imprecise or non-explicit parameters and values. Oil prospecting risk has been reduced with the use of these properly verified and validated ''Fuzzy Expert Exploration (FEE) Tools.'' Through the course of this project, FEE Tools and supporting software were developed for two producing formations in southeast New Mexico. Tools of this type can be beneficial in many regions of the U.S. by enabling risk reduction in oil and gas prospecting as well as decreased prospecting and development costs. In today's oil industry environment, many smaller exploration companies lack the resources of a pool of expert exploration personnel. Downsizing, volatile oil prices, and scarcity of domestic exploration funds have also affected larger companies, and will, with time, affect the end users of oil industry products in the U.S. as reserves are depleted. The FEE Tools benefit a diverse group in the U.S., allowing a more efficient use of scarce funds, and potentially reducing dependence on foreign oil and providing lower product prices for consumers.

Robert S. Balch; Ron Broadhead

2005-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Property:Did The Test Results Demonstrate Projected Performance...  

Open Energy Info (EERE)

Did The Test Results Demonstrate Projected Performance? Jump to: navigation, search Property Name Did The Test Results Demonstrate Projected Performance? Property Type Text...

302

Wind Project Financing Structures: A Review & Comparative Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Project Financing Structures: A Review & Comparative Analysis Title Wind Project Financing Structures: A Review & Comparative Analysis Publication Type Report Year of...

303

Financing Non-Residential Photovoltaic Projects: Options and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing Non-Residential Photovoltaic Projects: Options and Implications Title Financing Non-Residential Photovoltaic Projects: Options and Implications Publication Type Report...

304

Hawaiian Electric Company Demand Response Roadmap Project Final...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hawaiian Electric Company Demand Response Roadmap Project Final Report Title Hawaiian Electric Company Demand Response Roadmap Project Final Report Publication Type Report LBNL...

305

Estimating Risk to California Energy Infrastructure From Projected...  

NLE Websites -- All DOE Office Websites (Extended Search)

Risk to California Energy Infrastructure From Projected Climate Change Title Estimating Risk to California Energy Infrastructure From Projected Climate Change Publication Type...

306

Guidelines for planning and organizing a performance improvement project  

Science Conference Proceedings (OSTI)

Management planning is the key to success in any type of project. This paper identifies and examines the areas of management responsibility in a performance evaluation project.

Dennis R. Chastain

1973-08-01T23:59:59.000Z

307

Western LNG project - Project summary  

Science Conference Proceedings (OSTI)

The Western LNG Project is a major new undertaking involving the liquefaction of conventional natural gas from the Western Canadian Sedimentary Basin at a plant on the British Columbia north coast. The gas in its liquid form will be shipped to Japan for consumption by utility companies. The Project represents a new era in gas processing and marketing for the Canadian natural gas industry.

Forgues, E.L.

1984-02-01T23:59:59.000Z

308

Aluminum reduction cell electrode  

DOE Patents (OSTI)

The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB[sub 2], for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints. 9 figs.

Goodnow, W.H.; Payne, J.R.

1982-09-14T23:59:59.000Z

309

Membrane-Associated Methane Monooygenase from Type X and Type I Methanotrophs  

SciTech Connect

Membrane-Associated Methane Monooxygenases from Type X and Type I Methanotrophs A.A. DiSirito and W.E. Antholine Project Number: DE-FG02-00ER15446 Final project report.

Antholine, William E.; DiSpirito, Alan A.

2009-11-30T23:59:59.000Z

310

Thermochemical nitrate reduction  

DOE Green Energy (OSTI)

A series of preliminary experiments was conducted directed at thermochemically converting nitrate to nitrogen and water. Nitrates are a major constituent of the waste stored in the underground tanks on the Hanford Site, and the characteristics and effects of nitrate compounds on stabilization techniques must be considered before permanent disposal operations begin. For the thermochemical reduction experiments, six reducing agents (ammonia, formate, urea, glucose, methane, and hydrogen) were mixed separately with {approximately}3 wt% NO{sub 3}{sup {minus}} solutions in a buffered aqueous solution at high pH (13); ammonia and formate were also mixed at low pH (4). Reactions were conducted in an aqueous solution in a batch reactor at temperatures of 200{degrees}C to 350{degrees}C and pressures of 600 to 2800 psig. Both gas and liquid samples were analyzed. The specific components analyzed were nitrate, nitrite, nitrous oxide, nitrogen, and ammonia. Results of experimental runs showed the following order of nitrate reduction of the six reducing agents in basic solution: formate > glucose > urea > hydrogen > ammonia {approx} methane. Airnmonia was more effective under acidic conditions than basic conditions. Formate was also effective under acidic conditions. A more thorough, fundamental study appears warranted to provide additional data on the mechanism of nitrate reduction. Furthermore, an expanded data base and engineering feasibility study could be used to evaluate conversion conditions for promising reducing agents in more detail and identify new reducing agents with improved performance characteristics.

Cox, J.L.; Lilga, M.A.; Hallen, R.T.

1992-09-01T23:59:59.000Z

311

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Leakage Mitigation Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number: FE0004478 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background Information * Accomplishments to Date - Injection strategy development (control and prediction) - Large core tests - ambient pressure - Large core tests - high pressure - Small core tests - high pressure - MCDP, permeability and porosity assessments * Progress Assessment and Summary

312

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Leakage Mitigation CO2 Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number FE0004478 Lee H Spangler, Al Cunningham, Robin Gerlach Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Motivation * Background information * Large core tests - ambient pressure * Large core tests - high pressure 3 Benefit to the Program Program goals being addressed. Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Project benefits statement. The Engineered Biomineralized Sealing Technologies

313

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS CCS Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Program * Program goals being addressed. - Increased control of reservoir pressure, reduced risk of CO2 migration, and expanded formation storage capacity. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints on CCS deployment and provide insight into

314

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Multiphase of Multiphase Flow for Improved Injectivity and Trapping 4000.4.641.251.002 Dustin Crandall, URS PI: Grant Bromhal, NETL ORD Morgantown, West Virginia U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program * Project overview * Breakdown of FY12 project tasks * Facilities and personnel * Task progress to date * Planned task successes * Tech transfer and summary 3 Benefit to the Program * Program goal being addressed - Develop technologies that will support industries' ability to predict CO

315

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS: CCS: Life Cycle Water Consumption for Carbon Capture and Storage Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Benefit to the Program * Program goals being addressed. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints

316

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Resources International, Inc. Advanced Resources International, Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Program goal being addressed: - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Project benefits statement: - This research seeks to develop a set of robust mathematical modules to predict how coal and shale permeability and

317

Project Based Energy Conservation vs. Management Based Energy Conservation  

E-Print Network (OSTI)

Basic American Foods (BAF) is the largest potato dehydrator worldwide. This paper will trace the shift from a Project Based to Management Based energy conservation program. Second only to raw material, energy is one of the highest expenses at BAF. Due to this fact, BAF started a corporation wide energy reduction program in 1999. The program was one full time project engineer focused only on energy reduction projects. This approach, called project based energy conservation, worked well for about 3 years. Total savings from energy reduction projects were equivalent to over 10% of the corporate profit. At that point entropy started to take over and the initial successes were reversing themselves. BAF then re-energized its energy initiative by setting a 5% per year energy reduction goal. The project based program could not achieve this goal. Therefore, the focus switched from project based to a management based energy conservation program.

Judy, K.; O'Brien, S.

2009-05-01T23:59:59.000Z

318

Financing Co-generation Projects  

E-Print Network (OSTI)

The 1980's will be a decade of intense adjustment by busine3s to the cost of money and energy. American Industry will require enormous amounts of capital for energy conservation to remain competitive. However, the average 3.8 percent after tax profit generated by energy intensive industries will not be sufficient to provide the capital required for both normal business expansion and energy conservation projects. Debt financing for energy saving equipment will adversely impact balance sheet figures and liquidity. It appears that only a few of the largest industrial firms have the cash flow to internally finance energy conserving cost reduction projects. These cost reduction projects will reinforce existing dominant cost advantages of industry leaders.

Young, R.

1982-01-01T23:59:59.000Z

319

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Web-based CO Web-based CO 2 Subsurface Modeling Geologic Sequestration Training and Research Project Number DE-FE0002069 Christopher Paolini San Diego State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and goals. * Web interface for simulating water-rock interaction. * Development of, and experience teaching, a new Carbon Capture and Sequestration course at San Diego State University. * Some noteworthy results of student research and training in CCS oriented geochemistry. * Status of active student geochemical and geomechancal modeling projects.

320

Project Title:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repair flowline 61-66-SX-3 Repair flowline 61-66-SX-3 DOE Code: Project Lead: Wes Riesland NEPA COMPLIANCE SURVEY # 291 Project Information Date: 3/1 1/2010 Contractor Code: Project Overview In order to repair this line it was decided to trench a line aproximately 100 feet and tie it into the line at 71-3- 1. What are the environmental sx-3. This will get us out of the old flow line which has been repaired 5-6 times. this will mitigate the chances impacts? of having spills in the future. 2. What is the legal location? This flowline runs from the well77-s-1 0 to the B-2-10 manifold.+ "/-,~?X3 3. What is the duration of the project? Approximately 10 hours(1 day) to complete 4. What major equipment will be used backhoe and operator and one hand if any (work over rig. drilling rig.

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Co-Sequestration Co-Sequestration Studies Project Number 58159 Task 2 B. Peter McGrail Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 and mixed gas storage capacity in various geologic settings - Demonstrate fate of injected mixed gases * Project benefits statement:

322

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of CO 2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural- Genetic Algorithm Project DE FE0009284 Boyun Guo, Ph.D. University of...

323

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SUMNER SUMNER COUNTY, KANSAS Project Number DE-FE0006821 W. Lynn Watney Kansas Geological Survey Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Fountainview Wednesday 8-21-12 1:10-1:35 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Acknowledgements & Disclaimer Acknowledgements * The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0002056 and DE- FE0006821, W.L. Watney and Jason Rush, Joint PIs. Project is managed and

324

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

0-22, 2013 0-22, 2013 Collaborators Zhengrong Wang, Yale University Kevin Johnson, University of Hawaii 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 storage capacity - Demonstrate fate of injected CO 2 and most common contaminants * Project benefits statement: This research project conducts modeling, laboratory studies, and pilot-scale research aimed at developing new technologies and new systems for utilization of basalt formations for long term subsurface storage of CO 2 . Findings from this project

325

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

behavior of shales as behavior of shales as seals and storage reservoirs for CO2 Project Number: Car Stor_FY131415 Daniel J. Soeder USDOE/NETL/ORD U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Project Overview: Goals and Objectives * Program Goals - Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness * Project Objectives - Assess how shales behave as caprocks in contact with CO 2 under a variety of conditions - Assess the viability of depleted gas shales to serve as storage reservoirs for sequestered CO

326

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 leakage and cap rock remediation DE-FE0001132 Runar Nygaard Missouri University of Science and Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the program * Project overview * Technical status * Accomplishments to date * Summary 2 3 Benefit to the Program * Program goals being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefits statement. - The project develops a coupled reservoir and geomechanical modeling approach to simulate cap rock leakage and simulate the success of remediation

327

Project 265  

NLE Websites -- All DOE Office Websites (Extended Search)

The goal of this project is to develop an on-line instrument using multi- wavelength lasers that is capable of characterizing particulate matter (PM) generated in fossil energy...

328

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

"Carbonsheds" as a Framework for Optimizing US CCS Pipeline Transport on a Regional to National Scale DOE-ARRA Project Number DE-FE0001943 Lincoln Pratson Nicholas School of the...

329

Project 114  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototech Company SRI International Kellogg, Brown, and Root ChevronTexaco Sd-Chemie, Inc. COST Total Project Value 20,320,372 DOENon-DOE Share 15,326,608 4,993,764...

330

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

331

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Laboratory U.S. Department of Energy Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

332

Project 134  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Goal To demonstrate a "whole plant" approach using by-products from a coal-fired power plant to sequester carbon in an easily quantifiable and verifiable form. Objectives...

333

MANHATTAN PROJECT  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy traces its origins to World War II and the Manhattan Project effort to build the first atomic bomb. As the direct descendent of the Manhattan Engineer District, the...

334

Project 310  

NLE Websites -- All DOE Office Websites (Extended Search)

carbohydrate generated from agricultural enterprises in the U.S., such as corn wet-milling. This project is studying the production of a suite of specialty chemicals by...

335

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

G., 2011, Design and package of a 14CO2 field analyzer: the Global Monitor Platform (GMP). Proceedings of SPIE, v 8156, p. 81560E 17 DOE-NETL PROJECT REVIEW MEETING 08-21-2012...

336

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Complexity in Geological Carbon Model Complexity in Geological Carbon Sequestration: A Design of Experiment (DoE) & Response Surface (RS) Uncertainty Analysis Project Number: DE-FE-0009238 Mingkan Zhang 1 , Ye Zhang 1 , Peter Lichtner 2 1. Dept. of Geology & Geophysics, University of Wyoming, Laramie, Wyoming 2. OFM Research, Inc., Santa Fe, New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project major goals and benefits; * Detailed project objectives & success criteria; * Accomplishments to date; * Summary of results; * Appendix (organization chart; Gantt chart; additional results). Dept. of Geology & Geophysics, University of Wyoming

337

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Region Region DE-FE0001812 Brian J. McPherson University of Utah U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 4 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 5 Benefit to the Program Program Goals Being Addressed by this Project

338

Project 297  

NLE Websites -- All DOE Office Websites (Extended Search)

of this project is to utilize pure oxygen at a feed rate of less than 10% of the stoichiometric requirement in demonstrating the use of oxygen-enhanced combustion in meeting...

339

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Project Number DE-FE0009562 John Stormont, Mahmoud Reda Taha University of New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D...

340

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Research on Probabilistic Hydro-Thermo-Mechanical (HTM) Modeling of CO 2 Geological Sequestration (GS) in Fractured Porous Rocks Project DE-FE0002058 Marte Gutierrez, Ph.D....

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Flash Steam Recovery Project  

E-Print Network (OSTI)

One of the goals of Vulcan's cost reduction effort is to reduce energy consumption in production facilities through energy optimization. As part of this program, the chloromethanes production unit, which produces a wide variety of chlorinated organic compounds, was targeted for improvement. This unit uses a portion of the high-pressure steam available from the plant's cogeneration facility. Continuous expansions within the unit had exceeded the optimum design capacity of the unit's steam/condensate recovery system, resulting in condensate flash steam losses to the atmosphere. Using computer simulation models and pinch analysis techniques, the Operational Excellence Group (Six Sigma) was able to identify a project to recover the flash steam losses as a supplemental low-pressure steam supply. The project was designed and implemented at no capital cost using existing instrumentation and controls. On an annualized basis steam usage per ton of product fell by about three percent. Absolute savings were about 15,800 million Btu.

Bronhold, C. J.

2000-04-01T23:59:59.000Z

342

Alternative Fuels Data Center: Transit Emissions and Energy Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Transit Emissions and Transit Emissions and Energy Reduction Assistance to someone by E-mail Share Alternative Fuels Data Center: Transit Emissions and Energy Reduction Assistance on Facebook Tweet about Alternative Fuels Data Center: Transit Emissions and Energy Reduction Assistance on Twitter Bookmark Alternative Fuels Data Center: Transit Emissions and Energy Reduction Assistance on Google Bookmark Alternative Fuels Data Center: Transit Emissions and Energy Reduction Assistance on Delicious Rank Alternative Fuels Data Center: Transit Emissions and Energy Reduction Assistance on Digg Find More places to share Alternative Fuels Data Center: Transit Emissions and Energy Reduction Assistance on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

343

A Municipal Official's Guide to Diesel Idling Reduction | Open Energy  

Open Energy Info (EERE)

A Municipal Official's Guide to Diesel Idling Reduction A Municipal Official's Guide to Diesel Idling Reduction Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Municipal Official's Guide to Diesel Idling Reduction Agency/Company /Organization: United States Environmental Protection Agency Partner: New York Planning Federation Sector: Climate, Energy Focus Area: Transportation Resource Type: Lessons learned/best practices Website: www.nyserda.org/publications/09-06GuidetoDieselIdlingReduction.pdf Language: English References: A Municipal Official's Guide to Diesel Idling Reduction[1] References ↑ "A Municipal Official's Guide to Diesel Idling Reduction" Retrieved from "http://en.openei.org/w/index.php?title=A_Municipal_Official%27s_Guide_to_Diesel_Idling_Reduction&oldid=390471"

344

Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Diesel Retrofit Clean Diesel Retrofit and Idle Reduction Grants to someone by E-mail Share Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Facebook Tweet about Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Twitter Bookmark Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Google Bookmark Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Delicious Rank Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Digg Find More places to share Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

345

In-home demonstration of the reduction of woodstove emissions from the use of densified logs  

DOE Green Energy (OSTI)

There is a need to reduce emissions from conventional wood stoves in the short-term while stove replacement takes place over the longer term. One possible is to use fuels that would burn cleaner than cordwood. Densified fuels have been commercially available for years and offer such a possibility. The objective of this project was to evaluate the emissions and efficiency performance of two commercially available densified log types in homes and compare their performance with cordwood. Researchers measured particulate matter (PM), carbon monoxide (CO), and volatile organic matter (VOC) emissions. Both total VOC and methane values are presented. Each home used an Automated Woodstove Emissions Sampler system, developed for the EPA and Bonneville Power Administration, in a series of four week-long tests for each stove. The sequence of tests in each stove was cordwood, Pres-to-Logs, Eco-Logs, and a second, confirming test using Pres-to-Logs. Results show an average reduction of 52% in PM grams per hour emissions overall for the nine stoves using Pres-to-Logs. All nine stoves displayed a reduction in PM emissions. CO emissions were more modestly reduced by 27%, and VOCs were reduced 39%. The emissions reduction percentage was similar for both types of stoves.

Barnett, S.G.; Bighouse, R.D.

1992-07-07T23:59:59.000Z

346

In-Home Demonstration of the Reduction of Woodstove Emissions from the Use of Densified Logs.  

DOE Green Energy (OSTI)

There is a need to reduce emissions from conventional wood stoves in the short-term while stove replacement takes place over the longer term. One possible is to use fuels that would burn cleaner than cordwood. Densified fuels have been commercially available for years and offer such a possibility. The objective of this project was to evaluate the emissions and efficiency performance of two commercially available densified log types in homes and compare their performance with cordwood. Researchers measured particulate matter (PM), carbon monoxide (CO), and volatile organic matter (VOC) emissions. Both total VOC and methane values are presented. Each home used an Automated Woodstove Emissions Sampler system, developed for the EPA and Bonneville Power Administration, in a series of four week-long tests for each stove. The sequence of tests in each stove was cordwood, Pres-to-Logs, Eco-Logs, and a second, confirming test using Pres-to-Logs. Results show an average reduction of 52% in PM grams per hour emissions overall for the nine stoves using Pres-to-Logs. All nine stoves displayed a reduction in PM emissions. CO emissions were more modestly reduced by 27%, and VOCs were reduced 39%. The emissions reduction percentage was similar for both types of stoves.

Barnett, Stockton G.; Bidhouse, Roger D.

1992-07-07T23:59:59.000Z

347

Template:GeothermalProject | Open Energy Information  

Open Energy Info (EERE)

This is the 'GeothermalProject' template. To define a new Geothermal This is the 'GeothermalProject' template. To define a new Geothermal Development Project, please use the Geothermal Development Project Form. Parameters Place - The city and state in which the development project is located. County - The county in which the development project is located GeothermalArea - The geothermal area in which the development project is located. Coordinates - The coordinates (lat, lon) of the resource area. Developer - Project developer ProjectType - The type of project. Typically one of the following: Conventional Hydrothermal (Unproduced) Resource, Conventional Hydrothermal (Produced) Resource, Conventional Hydrothermal Expansion, Coproduction, Geopressured Geopressured System, EGS GEADevelopmentPhase - The phase of plant construction, as defined by

348

Residential Energy Demand Reduction Analysis and Monitoring Platform - REDRAMP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dramatic Peak Residential Dramatic Peak Residential Demand Reduction in the Desert Southwest Yahia Baghzouz Center for Energy Research University of Nevada, Las Vegas Golden, CO Overview * Project description * Subdivision energy efficiency features * Home energy monitoring * Demand side management * Feeder loading * Battery Energy Storage System * Future Work Team Members Project Objective and Methodology * The main objective is to reduce peak power demand of a housing subdivision by 65% (compared to housing development that is built to conventional code). * This objective will be achieved by - Energy efficient home construction with roof- integrated PV system - Demand Side Management - Battery Energy Storage System Project schematic Diagram Project Physical Location: Las Vegas, NV Red Rock Hotel/Casino

349

Projects of the year  

SciTech Connect

The Peabody Hotel, Orlando, Florida was the site of Power Engineering magazine's 2006 Projects of the Year Awards Banquet, which kicked-off the Power-Gen International conference and exhibition. The Best Coal-fired Project was awarded to Tri-State Generation and Transmission Association Inc., owner of Springenville Unit 3. This is a 400 MW pulverized coal plant in Springeville, AZ, sited with two existing coal-fired units. Designed to fire Powder River Basin coal, it has low NOx burners and selective catalytic reduction for NOx control, dry flue gas desulfurization for SO{sub 2} control and a pulse jet baghouse for particulate control. It has a seven-stage feedwater heater and condensers to ensure maximum performance. Progress Energy-Carolinas' Asheville Power Station FGD and SCR Project was awarded the 2006 coal-fired Project Honorable Mention. This plant in Skyland, NC was required to significantly reduce NOx emissions. When completed, the improvements will reduce NOx by 93% compared to 1996 levels and SO{sub 2} by 93% compared to 2001 levels. Awards for best gas-fired, nuclear, and renewable/sustainable energy projects are recorded. The Sasyadko Coal-Mine Methane Cogeneration Plant near Donezk, Ukraine, was given the 2006 Honorable Mention for Best Renewable/Sustainable Energy Project. In November 2004, Ukraine was among 14 nations to launch the Methane to Markets partnership. The award-winning plant is fuelled by methane released during coal extraction. It generates 42 MW of power. 4 photos.

Hansen, T.

2007-01-15T23:59:59.000Z

350

On the longest perpetual reductions in orthogonal expression reduction systems  

Science Conference Proceedings (OSTI)

We study perpetual reductions in orthogonal (or conflict-free) fully extended expression reduction systems (OERS). ERS is a formalism for rewriting that subsumes term rewriting systems (TRSs) and the &lgr;-calculus. We design a strategy ... Keywords: &lgr;-calculus, perpetual reductions, rewrite systems, strong normalization

Zurab Khasidashvili

2001-09-01T23:59:59.000Z

351

Texas Nuclear Profile - South Texas Project  

U.S. Energy Information Administration (EIA) Indexed Site

South Texas Project" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

352

National Earthquake Hazards Reduction Program  

Science Conference Proceedings (OSTI)

... as important along with projected costs for ... A demonstration project would help determine where ... Financial District and Midtown Manhattan and the ...

2011-12-20T23:59:59.000Z

353

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Number (DE-FE0002056) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 Brighton 1&2 2:40 August 20, 2013 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary ORGANIZATIONAL STRUCTURE Modeling CO 2 Sequestration in Saline A quifer and Depleted Oil Reservoir to Evaluate Regional CO 2 Sequestration Potential of Ozark Plateau A quifer System, South-Central Kansas Co-Principal Investigators Co-Principal Investigators Kerry D. Newell -- stratigraphy, geochemistry

354

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracer for Tracking Permanent CO 2 Storage in Basaltic Rocks DE-FE0004847 Jennifer Hall Columbia University in the City of New York U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Conservative and Reactive Tracer Techniques * Accomplishments to Date * Summary 3 Benefit to the Program * The goal of the project is to develop and test novel geochemical tracer techniques for quantitative monitoring, verification and accounting of stored CO 2 . These techniques contribute to the Carbon Storage Program's

355

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO 2 Rich Flue Gas Direct Injection Facility Project Number DOE Grant FE0001833 Paul Metz Department of Mining & Geological Engineering University of Alaska Fairbanks U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix: Not Included in Presentation 3 Benefit to the Program * Carbon Storage Program Major Goals: - Develop technologies that will support industries' ability to

356

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale CO Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554 George J. Koperna, Jr. Shawna Cyphers Advanced Resources International U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Program Goals * Benefits Statement * Project Overview - Goals - Objectives * Technical Status * Accomplishments to Date * Summary * Appendix USDOE/NETL Program Goals * Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop and validate technologies to ensure 99 percent storage permanence. * Develop technologies to improve reservoir storage

357

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SUMNER COUNTY, KANSAS DE-FE0006821 W. Lynn Watney, Jason Rush, Joint PIs Kansas Geological Survey The University of Kansas Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Brighton 1&2 Wednesday 8-21-13 1:10-1:35 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 2 Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Project Team DOE-NETL Contract #FE0006821 KANSAS STATE UNIVERSITY 3 L. Watney (Joint PI), J. Rush (Joint PI), J. Doveton, E. Holubnyak, M. Fazelalavi, R. Miller, D. Newell, J. Raney

358

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Seal Repair Using Seal Repair Using Nanocomposite Materials Project Number DE-FE0009562 John Stormont, Mahmoud Reda Taha University of New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Ed Matteo, Thomas Dewers Sandia National Laboratories 2 Presentation Outline * Introduction and overview * Materials synthesis * Materials testing and characterization * Annular seal system testing * Numerical simulation * Summary 3 Benefit to the Program * BENEFITS STATEMENT: The project involves the development and testing of polymer-cement nanocomposites for repairing flaws in annular wellbore seals. These materials will have superior characteristics compared to conventional

359

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity Project Number DE-FE0002112 PIs Drs. John Kaszuba and Kenneth Sims Virginia Marcon University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status - Results - Conclusions - Next Steps * Summary 3 Benefit to the Program * Program goal being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. - Monitoring, Verification, and Accounting (MVA). MVA technologies seek to monitor, verify, and

360

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of CO Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology Project Number (DEFE0002421) Dr. Yiran Dong Drs. Bruce W. Fouke, Robert A. Sanford, Stephen Marshak University of Illinois-Urbana Champaign U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Technical status * Results and discussion * Summary * Appendix 3 Benefit to the Program This research project has developed scientific, technical and institutional collaborations for the development of

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Mohammad Piri and Felipe Pereira Mohammad Piri and Felipe Pereira University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 2013 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status o Experimentation: core-flooding and IFT/CA o Pore-scale modeling modeling * Accomplishments to Date * Summary University of Wyoming 3 Benefit to the Program * Program goal: o 'Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.' * Benefits statement: o The research project is focused on performing reservoir conditions experiments to measure steady-state relative permeabilities,

362

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring Geological CO Monitoring Geological CO 2 Sequestration using Perfluorocarbon and Stable Isotope Tracers Project Number FEAA-045 Tommy J. Phelps and David R. Cole* Oak Ridge National Laboratory Phone: 865-574-7290 email: phelpstj@ornl.gov (*The Ohio State University) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Developing the Technologies and Building the Infrastructure for CO 2 Storage August 22, 2013 2 Project Overview: Goals and Objectives Goal: Develop methods to interrogate subsurface for improved CO 2 sequestration, field test characterization and MVA, demonstrate CO 2 remains in zone, and tech transfer. Objectives: 1. Assessment of injections in field. PFT gas tracers are analyzed by GC-ECD to

363

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Title: DEVELOPING A Title: DEVELOPING A COMPREHENSIVE RISK ASSESMENT FRAMEWORK FOR GEOLOGICAL STORAGE OF CO2 Ian Duncan University of Texas U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline 1. Benefit to the Program 2. Goals and Objectives 3. Technical Status Project 4. Accomplishments to Date 5. Summary 3 Benefit to the Program The research project is developing a comprehensive understanding of the programmatic (business), and technical risks associated with CCS particularly the likelihood of leakage and its potential consequences. This contributes to the Carbon Storage Program's effort of ensuring 99 percent CO

364

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Acknowledgments Dave Harris, Kentucky Geological Survey Dave Barnes, Western Michigan University John Rupp, Indiana Geological Survey Scott Marsteller, Schlumberger Carbon Services John McBride, Brigham Young University * Project is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal Institute * ConocoPhillips: in-kind match * Western Kentucky Carbon Storage Foundation: matching funding * SeisRes 2020, Houston: VSP acquisition and processing

365

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

to Analyze Spatial and Temporal to Analyze Spatial and Temporal Heterogeneities in Reservoir and Seal Petrology, Mineralogy, and Geochemistry: Implications for CO 2 Sequestration Prediction, Simulation, and Monitoring Project Number DE-FE0001852 Dr. Brenda B. Bowen Purdue University (now at the University of Utah) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction to the project * Tasks * Student training * Student research successes * Lessons learned and future plans 3 Benefit to the Program * Addresses Carbon Storage Program major goals: - Develop technologies that will support industries' ability to predict CO

366

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Results from Simulation Project Results from Simulation Framework for Regional Geologic CO 2 Storage Infrastructure along Arches Province of Midwest United States DOE Award No. DE-FE0001034 Ohio Dept. of Dev. Grant CDO/D-10-03 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting August 21-23, 2012 Joel Sminchak and Neeraj Gupta Battelle Energy Systems sminchak@battelle.org, 614-424-7392 gupta@battelle.org, 614-424-3820 BUSINESS SENSITIVE 2 Presentation Outline 1. Technical Status 2. Background (CO 2 Sources, Geologic Setting) 3. Injection Well history 4. Geocellular Model Development 5. Geological Data (Geological dataset, Geostatistics) 6. Geocellular porosity/permeability model development 7. Pipeline Routing Analysis

367

Research projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Yuan » Research projects Yuan » Research projects Research projects Research Interests Scientific computing, domain decomposition methods Linear solvers for sparse matrices Computational plasma physics Grid generation techniques GPU computing Current Research PDSLin: A hybrid linear solver for large-scale highly-indefinite linear systems The Parallel Domain decomposition Schur complement based Linear solver (PDSLin), which implements a hybrid (direct and iterative) linear solver based on a non-overlapping domain decomposition technique called chur complement method, and it has two levels of parallelism: a) to solve independent subdomains in parallel and b) to apply multiple processors per subdomain. In such a framework, load imbalance and excessive communication lead to the performance bottlenecks, and several techniques are developed

368

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SECARB Anthropogenic Test: SECARB Anthropogenic Test: CO 2 Capture/Transportation/Storage Project # DE-FC26-05NT42590 Jerry Hill, Southern Sates Energy Board Richard A. Esposito, Southern Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - CO 2 Capture - CO 2 Transportation - CO 2 Storage * Accomplishments to Date * Organization Chart * Gantt Chart * Bibliography * Summary Benefit to the Program 1. Predict storage capacities within +/- 30% * Conducted high resolution reservoir characterization of the Paluxy saline formation key

369

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation of the CO Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford University, School of Earth Sciences U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Project Benefits * Technical Status * Imaging at mm- to micron-scales using CT - Permeability measurements and application of the Klinkenberg effect - Molecular Dynamics simulations for permeability and viscosity estimates * Accomplishments to Date * Summary Stanford University 3 Benefit to the Program * Carbon Storage Program major goals

370

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Fidelity Computational Analysis of Fidelity Computational Analysis of CO2 Trappings at Pore-scales Project Number: DE-FE0002407 Vinod Kumar (vkumar@utep.edu) & Paul Delgado (pmdelgado2@utep.edu) University of Texas at El Paso U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Collaborators: Dr. C. Harris (Shell Oil Company/Imperial College), Dr. G. Bromhal (NETL), Dr. M. Ferer (WVU/NETL), Dr. D. Crandall (NETL-Ctr), and Dr. D. McIntyre (NETL). 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - Pore-network modeling - Conductance derivation for irregular geom. - Pore-to-CFD Computations

371

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Number (DE-FE0002056) W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary KANSAS STATE UNIVERSITY Bittersweet Energy Inc. Partners FE0002056 Devilbiss Coring Service Basic Energy Services Wellington Field Operator Industrial and Electrical Power Sources of CO 2 Southwest Kansas CO 2 -EOR Initiative Industry Partners (modeling 4 Chester/Morrowan oil fields to make CO2 ready) +drilling and seismic contractors TBN

372

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

MVA Tools MVA Tools Sam Clegg, Kristy Nowak-Lovato, Ron Martinez, Julianna Fessenden, Thom Rahn, & Lianjie Huang Los Alamos National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview - Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix - Organization Chart - Bibliography 3 Project Overview: Goals and Objectives * Surface MVA - Frequency Modulated Spectroscopy - Quantitatively identify CO2, H2S and CH4 seepage from geologic sequestration sites - Distinguish anthropogenic CO2 from natural CO2 emissions * CO2 carbon stable isotope measurements

373

Waste reduction through consumer education. Final report  

Science Conference Proceedings (OSTI)

The Waste Reduction through Consumer Education research project was conducted to determine how environmental educational strategies influence purchasing behavior in the supermarket. The objectives were to develop, demonstrate, and evaluate consumer education strategies for waste reduction. The amount of waste generated by packaging size and form, with an adjustment for local recyclability of waste, was determined for 14 product categories identified as having more waste generating and less waste generating product choices (a total of 484 products). Using supermarket scan data and shopper identification numbers, the research tracked the purchases of shoppers in groups receiving different education treatments for 9 months. Statistical tests applied to the purchase data assessed patterns of change between the groups by treatment period. Analysis of the data revealed few meaningful statistical differences between study groups or changes in behavior over time. Findings suggest that broad brush consumer education about waste reduction is not effective in changing purchasing behaviors in the short term. However, it may help create a general awareness of the issues surrounding excess packaging and consumer responsibility. The study concludes that the answer to waste reduction in the future may be a combination of voluntary initiatives by manufacturers and retailers, governmental intervention, and better-informed consumers.

Harrison, E.Z.

1996-05-01T23:59:59.000Z

374

FIDDLER CREEK POLYMER AUGMENTATION PROJECT  

SciTech Connect

The Fiddler Creek field is in Weston County, Wyoming, and was discovered in 1948. Secondary waterflooding recovery was started in 1955 and terminated in the mid-1980s with a fieldwide recovery of approximately 40%. The West Fiddler Creek Unit, the focus of this project, had a lower recovery and therefore has the most remaining oil. Before the project this unit was producing approximately 85 bbl of oil per day from 20 pumping wells and 17 swab wells. The recovery process planned for this project involved adapting two independent processes, the injection of polymer as a channel blocker or as a deep-penetrating permeability modifier, and the stabilization of clays and reduction of the residual oil saturation in the near-wellbore area around the injection wells. Clay stabilization was not conducted because long-term fresh water injection had not severely reduced the injectivity. It was determined that future polymer injection would not be affected by the clay. For the project, two adjoining project patterns were selected on the basis of prior reservoir studies and current well availability and production. The primary injection well of Pattern 1 was treated with a small batch of MARCIT gel to create channel blocking. The long-term test was designed for three phases: (1) 77 days of injection of a 300-mg/l cationic polyacrylamide, (2) 15 days of injection of a 300-mg/l anionic polymer to ensure injectivity of the polymer, and (3) 369 days of injection of the 300-mg/l anionic polymer and a 30:1 mix of the crosslinker. Phases 1 and 2 were conducted as planned. Phase 3 was started in late March 1999 and terminated in May 2001. In this phase, a crosslinker was added with the anionic polymer. Total injection for Phase 3 was 709,064 bbl. To maintain the desired injection rate, the injection pressure was slowly increased from 1,400 psig to 2,100 psig. Early in the application of the polymer, it appeared that the sweep improvement program was having a positive effect on Pattern 1 with lesser effects in Pattern 2. These early observations did not continue to develop. The oil production for both patterns remained fairly constant to the rates established by the restart of waterflooding. The water production declined but stabilized in both patterns. The stabilization of the oil at prepolymer rates and water production at the lower rates can be attributed to the polymer injection, but the effect was not as great as originally predicted. The sweep improvement for the patterns appeared to be negatively impacted by extended shutdowns in the injection and production systems. Such problems as those experienced in this project can be expected when long-term polymer injection is started in old waterflood fields. To prevent these problems, new injection and production tubulars and pumps would be required at a cost prohibitive to the present, independent operators. Unless the future results from the continued waterflood show positive effects of the long-term polymer injection, it appears that the batch-type polymer treatment may have more promise than the long-term treatment and should be more cost effective.

Lyle A. Johnson, Jr.

2001-10-31T23:59:59.000Z

375

facial reduction and extended duals  

E-Print Network (OSTI)

Facial reduction and extended duals Here we study two fundamental approaches ...... denberghe, and Henry Wolkowicz, editors, Handbook of semidefinite...

376

ALUMINIUM REDUCTION TECHNOLOGY: V: Fundamentals  

Science Conference Proceedings (OSTI)

ALUMINIUM REDUCTION TECHNOLOGY: Session V: Fundamentals. Sponsored by: LMD Aluminum Committee Program Organizer: Harald A. ye, Institute of...

377

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

DE-FE0002225: DE-FE0002225: Actualistic and geochemical modeling of reservoir rock, CO 2 and formation fluid interaction, Citronelle oil field, Alabama West Virginia University & University of Alabama Presenter: Dr. Amy Weislogel (WVU) Co-PI: Dr. Rona Donahoe (UA) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Overview & Project Map * Reservoir Geochemical Characterization * Formation Fluid Geochemistry * Geochemical Modeling * Summary 3 Benefit to the Program * Develop technologies that will support industries'

378

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 BROWN 2 Presentation Outline * Benefits & overview of deriving acrylates from coupling carbon dioxide and ethylene * Chemical catalysis approach: background and battles left to fight * Experimental assessment of the viability of thermochemical acrylate production * Perspectives for the future BROWN 3 Benefit to the Program * This project identifies the critical catalyst features necessary to promote carbon dioxide coupling with ethylene to acrylate at molybdenum catalysts. This research demonstrates the viability of acrylate production

379

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool to Improve CO2 Sequestration DE FE0004542 Larry Murdoch, Clemson University Stephen Moysey, Clemson University Leonid Germanovich, Georgia Tech Cem Ozan, Baker Hughes Sihyun Kim, Georgia Tech Glenn Skawski, Clemson University Alex Hanna, Clemson University Johnathan Ebenhack, Clemson University Josh Smith, Clemson University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool, Larry Murdoch Project Review Meeting, 23 Aug. 2013 2 Presentation Outline * Preliminaries

380

Hallmark Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication Increased connectivity and automation in the control systems that manage the nation's energy infrastructure have improved system functionality, but left systems more vulnerable to cyber attack. Intruders could severely disrupt control system operation by sending fabricated information or commands to control system devices. To ensure message integrity, supervisory control and data acquisition (SCADA) systems require a method to validate device-to- device communication and verify that information has come from a trusted source and not been altered in transit. The Secure SCADA Communications Protocol (SSCP) provides message

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

DE-FE0001836: DE-FE0001836: Numerical modeling of geomechanical processes related to CO 2 injection within generic reservoirs Andreas Eckert & Runar Nygaard Missouri University of Science & Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Objectives, Benefits and Outcomes * Technical status: Project summary - Teaching - Reservoir scale (Geomechanics & Fluid flow simulation) - Borehole scale (Wellbore integrity & wellbore trajectory planning) * Conclusions * Appendix 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

382

U.S. Virgin Islands Transportation Petroleum Reduction Plan  

SciTech Connect

This NREL technical report determines a way for USVI to meet its petroleum reduction goal in the transportation sector. It does so first by estimating current petroleum use and key statistics and characteristics of USVI transportation. It then breaks the goal down into subordinate goals and estimates the petroleum impacts of these goals with a wedge analysis. These goals focus on reducing vehicle miles, improving fuel economy, improving traffic flow, using electric vehicles, using biodiesel and renewable diesel, and using 10% ethanol in gasoline. The final section of the report suggests specific projects to achieve the goals, and ranks the projects according to cost, petroleum reduction, time frame, and popularity.

Johnson, C.

2011-09-01T23:59:59.000Z

383

Greenhouse Gas Emissions Reduction Act (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduction Act (Maryland) Reduction Act (Maryland) Greenhouse Gas Emissions Reduction Act (Maryland) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Environmental Regulations Provider Maryland Department of the Environment The Greenhouse Gas Emissions Reduction Act requires the Department of the Environment to publish and update an inventory of statewide greenhouse gas emissions for calendar year 2006 and requires the State to reduce statewide

384

Property:Project Nearest Body of Water | Open Energy Information  

Open Energy Info (EERE)

Nearest Body of Water Nearest Body of Water Jump to: navigation, search Property Name Project Nearest Body of Water Property Type String Pages using the property "Project Nearest Body of Water" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + North Atlantic Ocean + MHK Projects/ADM 3 + Galway Bay site close to Spiddal + MHK Projects/ADM 5 + government Pilot Zone + MHK Projects/Algiers Light Project + Mississippi River + MHK Projects/Anconia Point Project + Mississippi River + MHK Projects/Ashley Point Project + Mississippi River + MHK Projects/Astoria Tidal Energy + East River + MHK Projects/Avalon Tidal + Ingram Thorofare + MHK Projects/Avondale Bend Project + Mississippi River + MHK Projects/BW2 Tidal + Maurice River +

385

Sludge Mass Reduction Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparations Preparations within the Tank Farm D. Bumgardner Liquid Waste Engineering Washington Savannah River Company 12 May 2009 2 Agenda Liquid Waste System Overview Sludge Characteristics Sludge Batch Planning Sludge Batch Preparation Sequence - Aluminum Dissolution - Sludge Washing - Sludge Batch Qualification/Acceptance Questions 3 Liquid Waste Processing at SRS ARP - Actinide Removal Process AFP - Actinide Finishing Process ASP - Actinide Strike Process CSS - Clarified Salt Solution CSSX - Caustic-side Solvent Extraction DDA - Deliquification, Dissolution, and Adjustment DSS - Decontaminated Salt Solution DWPF - Defense Waste Processing Facility ETP - Effluent Treatment Project GWSB - Glass Waste Storage Building HLW - High-Level Waste LLW - Low-Level Waste MCU - Modular CSSX Unit

386

Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT)  

E-Print Network (OSTI)

with type strain genome sequencing projects registered inResearch, Braunschweig) Genome sequencing and annotationthe complete Table 2. Genome sequencing project information

Clum, Alicia

2010-01-01T23:59:59.000Z

387

Aluminum reduction cell electrode  

DOE Patents (OSTI)

The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces. 10 figs.

Payne, J.R.

1983-09-20T23:59:59.000Z

388

Dose Reduction Techniques  

SciTech Connect

As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

WAGGONER, L.O.

2000-05-16T23:59:59.000Z

389

CCEF - Renewable Energy Projects in Pre-Development Program ...  

Open Energy Info (EERE)

Program Incentive Type State Loan Program Applicable Sector Commercial, Renewable energy project developers Eligible Technologies Solar Thermal Electric, Photovoltaics,...

390

Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Type Environmental Regulations Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provide...

391

FY12 Approved LDRD Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Approved LDRD Projects 2 Approved LDRD Projects 2012 Projects Page 1 LDRD Proj. No. Project Title P.I. Dept./Bldg. Directorate 09-001 Nanoscale Anode Materials for Lithium Batteries Graetz, J. ST/815 GARS 09-003 Organic Photovoltaics: Nanostructure, Solvent Annealing and Performance Ocko, B. PM/510B BES 10-006 Solar Energy Source Evaluation for Smart Grid Development Yue, Meng ES&T/130 GARS 10-007 High Throughput Quantitative Biochemical Phenotyping Rogers, Alistair ES/EE ELS 10-010 Development of an Ultrafast Electron Diffraction Facility for Condensed Matter Physics Challenges Hill, J. CMP/510B BES 10-012 Design of Pt-free Electrocatalysts for Fuel Cell Oxygen Reduction Reactions Khalifah, P. Chemistry/555 BES 10-014 Charge Generation and Transport in Films of Conjugated Polymers for Organic Photovoltaics BNL Part of a

392

Corporate Property Tax Reduction for New/Expanded Generating Facilities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Reduction for New/Expanded Generating Property Tax Reduction for New/Expanded Generating Facilities Corporate Property Tax Reduction for New/Expanded Generating Facilities < Back Eligibility Commercial Industrial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Home Weatherization Water Wind Program Info State Montana Program Type Property Tax Incentive Rebate Amount Taxable value reduced by 50% for 5 years; reduction in taxable value declines each year thereafter until there is no reduction in tenth year. Provider Montana Department of Revenue Montana generating plants producing one megawatt (MW) or more with an alternative renewable energy source are eligible for the new or expanded industry property tax reduction. This incentive reduces the local mill levy

393

Energy Savings Calculations for Heat Island Reduction Strategies in Baton Rouge, Sacramento and Salt Lake City  

SciTech Connect

In 1997, the US Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'', to quantify the potential benefits of Heat Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective to investigate the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, Sacramento and Salt Lake City. This paper summarizes our efforts to calculate the annual energy savings, peak power avoidance and annual C02 reduction of HIR strategies in the three initial cities. In this analysis, we focused on three building types that offer most savings potential: single-family residence, office and retail store. Each building type was characterized in detail by old or new construction and with a gas furnace or an electric heat pump. We defined prototypical building characteristics for each building type and simulated the impact of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.IE model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on building [direct effect], (3) combined strategies I and 2 [direct effect], (4) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (5) combined strategies 1, 2 and 4 [direct and indirect effects]. We then estimated the total roof area of air-conditioned buildings in each city using readily obtainable data to calculate the metropolitan-wide impact of HIR strategies. The results show, that in Baton Rouge, potential annual energy savings of $15M could be realized by rate-payers from the combined direct and indirect effects of HIR strategies. Additionally, peak power avoidance is estimated at 133 MW and the reduction in annual carbon emissions at 41 kt. In Sacramento, the potential annual energy savings is estimated at $26M, with an avoidance of 486 MW in peak power and a reduction in annual carbon of 92 kt. In Salt Lake City, the potential annual energy savings is estimated at $4M, with an avoidance of 85 MW in peak power and a reduction in annual carbon of 20 kt.

Konopacki, S.; Akbari, H.

2000-03-01T23:59:59.000Z

394

Energy Savings Calculations for Heat Island Reduction Strategies in Baton Rouge, Sacramento and Salt Lake City  

SciTech Connect

In 1997, the US Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'', to quantify the potential benefits of Heat Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective to investigate the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, Sacramento and Salt Lake City. This paper summarizes our efforts to calculate the annual energy savings, peak power avoidance and annual C02 reduction of HIR strategies in the three initial cities. In this analysis, we focused on three building types that offer most savings potential: single-family residence, office and retail store. Each building type was characterized in detail by old or new construction and with a gas furnace or an electric heat pump. We defined prototypical building characteristics for each building type and simulated the impact of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.IE model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on building [direct effect], (3) combined strategies I and 2 [direct effect], (4) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (5) combined strategies 1, 2 and 4 [direct and indirect effects]. We then estimated the total roof area of air-conditioned buildings in each city using readily obtainable data to calculate the metropolitan-wide impact of HIR strategies. The results show, that in Baton Rouge, potential annual energy savings of $15M could be realized by rate-payers from the combined direct and indirect effects of HIR strategies. Additionally, peak power avoidance is estimated at 133 MW and the reduction in annual carbon emissions at 41 kt. In Sacramento, the potential annual energy savings is estimated at $26M, with an avoidance of 486 MW in peak power and a reduction in annual carbon of 92 kt. In Salt Lake City, the potential annual energy savings is estimated at $4M, with an avoidance of 85 MW in peak power and a reduction in annual carbon of 20 kt.

Konopacki, S.; Akbari, H.

2000-03-01T23:59:59.000Z

395

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

capillary trapping (FE0004956), Bryant, UT-Austin capillary trapping (FE0004956), Bryant, UT-Austin Influence of Local Capillary Trapping on Containment System Effectiveness DE-FE0004956 Steven Bryant The University of Texas at Austin U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Local capillary trapping (FE0004956), Bryant, UT-Austin Local capillary trapping (FE0004956), Bryant, UT-Austin 2 Presentation Outline * Motivation and relevance to Program * Project goals * Technical status * Accomplishments * Summary * Future plans Local capillary trapping (FE0004956), Bryant, UT-Austin Local capillary trapping (FE0004956), Bryant, UT-Austin

396

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and objectives * Carbon gasification * Carbon reactivity studies * Catalyst development * Techno-economic analysis * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

397

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Caprock Integrity and Improved Caprock Integrity and Risk Assessment Techniques Project Number (FE0009168) Michael Bruno, PhD, PE GeoMechanics Technologies U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Introduction and Motivation 2 A primary requirement for long-term geologic storage and containment of carbon dioxide is ensuring caprock integrity. Large-scale CO2 injection requires improved and advanced simulation tools and risk assessment techniques to better predict and help control system failures, and to enhance performance of geologic storage. GeoMechanics Technologies is developing enhanced simulation and risk analysis approaches to assess and

398

Irene Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Irene Station, African Weather Bureau Irene Station, African Weather Bureau The photos on this site come from the Southern Hemisphere Additional Ozonesondes (SHADOZ) project. Additional photos can be found on the SHADOZ Project Web Site. Photo of the Dobson 89 Instrument The Irene Weather Office Agnes Phahlane sits behind the Dobson and collects Total Ozone Data The lab at the Irene station Cal Archer Prepares an ozonesonde Flight Preparations The balloon is readied The release Back to the SAFARI 2000 Photo Page Index Other Sites: Skukuza, MISR Validation Site | Skukuza, Eddy Covariance Site | C-130 Flight Photos | Sua Pan Site | Irene Weather Station | Fire Studies | Kalahari Transect | Kalahari Transect Sites for Canopy Structure Data | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data

399

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive Monitoring and Uncertainty Assessment of CO 2 Plume Migration DOE-FE0004962 Steven Bryant The University of Texas at Austin U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin 2 Presentation Outline * Motivation and relevance to Program * Project goals * Technical status * Accomplishments * Summary * Future plans Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin

400

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Basin-Scale Leakage Risks from Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on CCS Energy Market Competitiveness Catherine A. Peters Jeffery P. Fitts Michael A. Celia Princeton University Paul D. Kalb Vatsal Bhatt Brookhaven National Laboratory Elizabeth J. Wilson Jeffrey M. Bielicki Melisa Pollak University of Minnesota DOE Award DE-FE0000749 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to CCUS research program * Project Goals & Objectives * Technical Status  Thrust I - Reservoir-scale simulations of leakage potential with permeability evolution

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Project Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Description Project Description The Energy Policy Act of 2005 (EPAct 2005), the Energy Independence and Security Act of 2007 (EISA 2007), and Presidential Executive Order 13423 all contain requirements for Federal facilities to decrease energy consumption and increase the use of renewable energy by the year 2015. To provide leadership in meeting these requirements, DOE, in partnership with the General Services Administration (GSA), has installed a rooftop solar electric, or PV, system on the roof of DOE's headquarters in Washington, D.C. The 205 kilowatt (kW) installation is one of the largest of its kind in the Nation's capital. A display in the For- restal building will show the power output of the PV system during the day and the energy produced over

402

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

for Modeling CO for Modeling CO 2 Processes: Pressure Management, Basin-Scale Models, Model Comparison, and Stochastic Inversion ESD09-056 Jens T. Birkholzer with Abdullah Cihan, Marco Bianchi, Quanlin Zhou, Xiaoyi Liu, Sumit Mukhopadhyay, Dorothee Rebscher, Barbara Fialeix Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview and Technical Status - Task 1: Optimization of Brine Extraction for Pressure Management and Mitigation - Task 2: Basin-scale Simulation of CO 2 Storage in the Northern Plains - Prairie Basal Aquifer - Task 3: Sim-SEQ Model Comparison

403

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Kansas Center for Research University of Kansas Center for Research Kansas Geological Survey U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 Presentation Outline * Benefits, objectives, overview * Methods * Background & setting * Technical status * Accomplishments * Summary Benefit to the Program * Program goal addressed: Develop technologies that will support the industries' ability to predict CO 2 storage capacity in geologic formations to within ± 30 percent. * Program goal addressed: This project will confirm - via a horizontal test boring - whether fracture attributes derived from 3-D seismic PSDM Volumetric Curvature (VC) processing are real. If

404

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project benefits and objectives * Carbon reactivity studies * Catalyst mechanism studies * Catalyst development * Test results * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

405

FUSRAP Project  

Office of Legacy Management (LM)

Project Project 23b 14501 FUSRAP TECHNICAL BULLETIN N O . - R 3 v . L DATE: 1.2 9-99 SUBJECT : Pr.pec.d BY T r m L u d Approval Summary of the results for the Springdale characterization activities performed per WI-94-015, Rev. 0. TUO separate radiological characterization surveys and a limited cherical characterization survey were performed on the Springdale Site in Octcjer and December, 1993. The design of the radiological surveys were to supplement and define existing ORNL surveys. The limited cher.ica1 characterization survey was performed to assist in the completion of waste disposal paperwork. Radiological contamination is primarily ir. the 'belt cutting and belt fabrication'areas of the building with a small erea of contamination in the south end of the building. The chemiccl sac~le

406

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigating the Fundamental Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide Project Number DE-FE0000397 Lee H Spangler Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Computational tool development * Laboratory studies to understand subsurface CO 2 behavior * Analog studies to inform risk analysis * Near surface detection technologies / testing * Mitigation method development 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

407

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

FE/NETL CTS Cost Models and FE/NETL CTS Cost Models and Benefits Assessment of Carbon Storage R&D Program David Morgan Benefits Division Office of Program Planning and Analysis National Energy Technology Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 OFFICE OF FOSSIL ENERGY 2 Presentation Outline * Overview of benefits assessment * Overview of FE/NETL models used to assess benefits of CO 2 capture and storage * Benefits evaluation of Storage Program's R&D projects using a model to estimate costs of CO 2 storage in a saline aquifer * Description of model used to estimate costs of

408

Project 307  

NLE Websites -- All DOE Office Websites (Extended Search)

INTEGRATING MONO ETHANOL AMINE (MEA) INTEGRATING MONO ETHANOL AMINE (MEA) REGENERATION WITH CO 2 COMPRESSION AND PEAKING TO REDUCE CO 2 CAPTURE COSTS Background In Phase I, Trimeric Corporation, in collaboration with the University of Texas at Austin, performed engineering and economic analyses necessary to determine the feasibility of novel MEA processing schemes aimed at reducing the cost of CO 2 capture from flue gas. These novel MEA-based CO 2 capture schemes are designed for integration into coal-fired power plants with the aim of reducing costs and improving efficiency. Primary Project Goal The primary goal of this project was to reduce the cost of MEA scrubbing for the recovery of CO 2 from flue gas by improved process integration. CONTACTS Sean I. Plasynski Sequestration Technology Manager

409

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline * Benefit to the program * Project overview: Why 14 C for MVA? * Technical status: Cartridges, injections, lasers * Summary * Organizational chart * Collaborators 3 Benefit to the Program * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Permanent storage of CO 2 can be demonstrated by adding carbon-14 ( 14 C) prior to injection. This research project aims to demonstrate this by tagging fossil CO 2 with 14 C at a field site. When completed, this system will show that 14 C can be a safe and effective tracer for sequestered CO 2 . A laser-based 14 C measurement method is being adapted for continuous monitoring. This technology contributes to the Carbon Storage Program's effort of ensuring 99 percent

410

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Leakage Pathways and Leakage Pathways and Mineralization within Caprocks for Geologic Storage of CO 2 Project DE-FC26-0xNT4 FE0001786 James P. Evans Utah State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Goals and Objectives * Relationship to overall program goals * Overview of seal bypass * Technical status; bypass systems - Field based studies - Technological advances * Accomplishments and Summary * Appendices 3 Benefit to the Program * Program goals addressed * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.

411

Project 301  

NLE Websites -- All DOE Office Websites (Extended Search)

2006 2006 Combustion Technologies CONTACTS Robert R. Romanosky Advanced Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov Arun C. Bose Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4467 arun.bose@netl.doe.gov ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION Background Over the past years, environmental concerns regarding pollutants have grown dramatically. Current annual greenhouse gas (GHG) emissions are 12% higher than they were in 1992. In addition, carbon dioxide (CO 2 ) emissions are projected to increase by an additional 34% over the next 20 years. About one third of carbon emissions in the

412

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Michael G. Waddell Earth Sciences and Resources Institute University of South Carolina U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 2 Presentation Outline * Project goals and benefits * Overview of the geology of the South Georgia Rift basin in SC * Results of petrographic and core analysis from the Rizer #1 * Future investigations in the SGR * Summary 3 Benefit to the Program Program Goals: * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected

413

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Micro-Structured Sapphire Fiber Sensors for Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments DE-FE0001127 Investigators: Hai Xiao, Hai-Lung Tsai, Missouri University of Science and Technology Junhang Dong, University of Cincinnati Program Manager: Norm Popkie, Gasification Division, NETL DOE Project Kickoff Meeting in the NETL Pittsburgh December 15, 2009 Outline * Background * Objectives * Project Elements * Management Plan * Research Plan and Approaches * Risk Management * Summary Background * Demands: High-performance, reliable, in situ sensors are highly demanded for advanced process control and lifecycle management in existing and future advanced power and fuel systems - Improved efficiency/safety/reliability/availability/maintainability

414

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Mart Oostrom Mart Oostrom Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline  Project overview  Sub-Task 1: Investigation of CO 2 migration in heterogeneous porous media  Sub-Task 2: Modeling CCUS deployment in China  Summary Collaboration with China on Clean Energy Research 3 Benefit to the Program The Clean Energy Partnership was established by a memorandum of understanding between the Chinese Academy of Sciences, the National Energy Technology Laboratory and the Pacific Northwest National Laboratory in May of 2009 with the goal of significantly reducing the environmental emissions and improving the efficiency of

415

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Evaluation of Geophysical Methods for Monitoring and Tracking CO 2 Migration in the Subsurface PI: Jeffrey Daniels Co-PI: Robert Burns & Franklin Schwartz Students: Michael Murphy & Kyle Shalek The Ohio State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 FOA Number: DE-FOA-0000032 NETL Award Number: DE-FE0002441 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 3 Benefit to the Program * Program Goal: Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones

416

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

0-22, 2013 0-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Advanced simulation tool for quantifying transport in porous and fractured geological formations during CO 2 sequestration that includes all mechanisms: convection, diffusion, dissolution and chemical reactions * A simulator that can fully model these processes does not currently exist * Simulator will contribute to our ability to predict CO 2 storage capacity in geologic formations, to within ±30 percent 4 Project Overview: Goals and Objectives Comprehensive reservoir simulator for investigation of CO 2 non-isothermal, multiphase flow and long-term storage in

417

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas J. Wolery Thomas J. Wolery Lawrence Livermore National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 LLNL-PRES-574632 2 Team Members * Roger Aines * Bill Bourcier * Tom Wolery * Tom Buscheck * Tom Wolfe (consultant) * Mike DiFilippo (consultant) * Larry Lien (Membrane Development Specialists) 3 Presentation Outline * Overview of Active CO 2 Reservoir Management (ACRM) * Subsurface Reservoir Management: Made Possible by Brine Production, Yielding Many Benefits * Brine Disposal Options - What brines are out there? - What are the treatment options? 4 Benefit to the Program * This project is identifying and evaluating

418

Developing Government Renewable Energy Projects  

DOE Green Energy (OSTI)

The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INLs renewable energy experiences date back to the 1980s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the dos and donts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

2012-07-01T23:59:59.000Z

419

Project Payette  

SciTech Connect

This is the concept for Project Payette, a nuclear event in the Seismic Detection Research Program. For this experiment, a nuclear explosive in the range of 5 to 10 kt will be detonated at a depth of 2000 to 3000 ft in an underground cavity of sufficient size that the walls of the cavity experience only elastic motion. The site will be located in a salt dome. Project Payette has been divided into three phases. Phase I will include site evaluation and engineering design of the construction of the cavity. It is estimated to require about 1 year. Phase II will include construction of the cavity and emplacement hole. It is estimated to require about 2 years. Phase III will include emplacement of instruments and the device, the detonation and the post-shot program including cavity re-entry. This is estimated to require about 1 year. The scope of this concept is intended to define Project Payette sufficiently will that Phase I work may proceed.

Warner, D.

1966-08-01T23:59:59.000Z

420

Alum Innovative Exploration Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Innovative Exploration Project Geothermal Project Innovative Exploration Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Alum Innovative Exploration Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Phase 1 exploration will consist of two parts: 1) surface and near surface investigations and 2) subsurface geophysical surveys and modeling. The first part of Phase 1 includes: a hyperspectral imaging survey (to map thermal anomalies and geothermal indicator minerals), shallow (6 ft) temperature probe measurements, and drilling of temperature gradient wells to depths of 1000 feet. In the second part of Phase 1, 2D & 3D geophysical modeling and inversion of gravity, magnetic, and magnetotelluric datasets will be used to image the subsurface. This effort will result in the creation of a 3D model composed of structural, geological, and resistivity components. The 3D model will then be combined with the temperature and seismic data to create an integrated model that will be used to prioritize drill target locations. Four geothermal wells will be drilled and geologically characterized in Phase 2. The project will use a coiled-tube rig to test this drilling technology at a geothermal field for the first time. Two slimwells and two production wells will be drilled with core collected and characterized in the target sections of each well. In Phase 3, extended flow tests will be conducted on the producible wells to confirm the geothermal resource followed by an overall assessment of the productivity of the Alum geothermal area. Finally, Phase 3 will evaluate the relative contribution of each exploration technique in reducing risk during the early stages of the geothermal project.

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Learning and cost reductions for generating technologies in the national energy modeling system (NEMS)  

E-Print Network (OSTI)

other than distributed generation. The cost reductionsWind Solar Thermal Photovoltaic Distributed Generation-Base Distributed Generation-Peak D Vintage PLANT TYPE C

Gumerman, Etan; Marnay, Chris

2004-01-01T23:59:59.000Z

422

Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports  

NLE Websites -- All DOE Office Websites (Extended Search)

Contiguous Platinum Monolayer Oxygen Reduction Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports Co-PIs: Jia Wang, Miomir Vukmirovic, Kotaro Sasaki, Brookhaven National Laboratory Yang Shao-Horn Massachusetts Institute of Technology Rachel O'Malley, David Thompsett, Sarah Ball, Graham Hard Johnson Matthey Fuel Cells Radoslav Adzic Brookhaven National Laboratory DOE Projects Kickoff Meeting September 30 , 2009 2 Project Overview Project Overview 1. Objectives: Objectives: Developing high performance fuel cell electrocatalysts for the oxygen reduction reaction (ORR) comprising contiguous Pt monolayer Pt monolayer on stable, inexpensive metal or alloy nanorods, nanowires, nanobars and

423

An Examination of Greenhouse Gas Reduction Potential at the  

E-Print Network (OSTI)

amount reduction from present emissions depends on the energy use trends of the nation in question and create an informed project timeline that takes into account the institution's trends in energy use Hall, came with a large initial price tag but will end up saving energy and money in the future

Peterson, Blake R.

424

Energy reduction analysis report for Tropicana solar process steam system  

SciTech Connect

Economic assessment data pertinent to the current Tropican solar system configuration is presented and the potential for energy reduction through the use of additional and/or larger systems is projected. The economic model, Tropicana plant and citrus juice industry energy savings potential, and industrial low-pressure steam energy savings potential are discussed. (MHR)

1978-10-01T23:59:59.000Z

425

Super Projects (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Super Projects (Arkansas) Super Projects (Arkansas) Super Projects (Arkansas) < Back Eligibility Construction Industrial Installer/Contractor Investor-Owned Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info State Arkansas Program Type Bond Program Provider Department of Economic Develoment A 2004 amendment to the state constitution authorizes the state to attract super projects by issuing bonds to fund a project's infrastructure, limited to 5% of the net general revenues during the most recent fiscal year. Super projects are defined as ones that create at least 500 new jobs and invest more than $500 million. Examples of the type of projects that might meet the criteria for a super project and have infrastructure needs

426

Energy Reduction at HQ | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Reduction at HQ Energy Reduction at HQ Aviation Management Executive Secretariat Energy Reduction at HQ Electric Metering Facilities Initiatives Recycling Programs Services...

427

NREL: Vehicles and Fuels Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's vehicles and fuels projects focus on developing, evaluating, and demonstrating innovative technologies that reduce the nation's dependence on imported petroleum and improve air quality. We work in partnership with vehicle manufacturers, equipment suppliers, fuel providers, and others to develop and commercialize vehicle and fuel technologies that meet our nation's energy and environmental goals. Advanced Combustion and Fuels Biofuels Electric Vehicle Grid Integration Energy Storage Fleet Test and Evaluation Power Electronics ReFUEL Laboratory Secure Transportation Data Vehicle Ancillary Loads Reduction Vehicle Systems Analysis Printable Version Vehicles & Fuels Research Home Projects Advanced Combustion & Fuels Biofuels Electric Vehicle Grid Integration

428

MHK Projects/Ogdensburg Kinetic Energy Project | Open Energy Information  

Open Energy Info (EERE)

Ogdensburg Kinetic Energy Project Ogdensburg Kinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6942,"lon":-75.4863,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

429

MHK Projects/Avondale Bend Project | Open Energy Information  

Open Energy Info (EERE)

Avondale Bend Project Avondale Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9301,"lon":-90.2215,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

430

MHK Projects/New Madrid Bend Project | Open Energy Information  

Open Energy Info (EERE)

Madrid Bend Project Madrid Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.5515,"lon":-89.4613,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

431

MHK Projects/Cat Island Project | Open Energy Information  

Open Energy Info (EERE)

Cat Island Project Cat Island Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.9431,"lon":-91.0932,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

432

MHK Projects/Kempe Bend Project | Open Energy Information  

Open Energy Info (EERE)

Kempe Bend Project Kempe Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.8622,"lon":-91.3073,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

433

MHK Projects/Coal Creek Project | Open Energy Information  

Open Energy Info (EERE)

Creek Project Creek Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.3617,"lon":-101.094,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

434

MHK Projects/Reliance Light Project | Open Energy Information  

Open Energy Info (EERE)

Reliance Light Project Reliance Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3219,"lon":-91.1956,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

435

MHK Projects/Helena Reach Project | Open Energy Information  

Open Energy Info (EERE)

Helena Reach Project Helena Reach Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5795,"lon":-90.5722,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

436

MHK Projects/Fortyeight Mile Point Project | Open Energy Information  

Open Energy Info (EERE)

Fortyeight Mile Point Project Fortyeight Mile Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.0447,"lon":-90.6659,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

437

MHK Projects/Chitokoloki Project | Open Energy Information  

Open Energy Info (EERE)

Chitokoloki Project Chitokoloki Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-13.8336,"lon":23.2047,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

438

MHK Projects/Wrangell Narrows Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Wrangell Narrows Tidal Energy Project Wrangell Narrows Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.6324,"lon":-132.936,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

439

MHK Projects/Milliken Bend Project | Open Energy Information  

Open Energy Info (EERE)

Milliken Bend Project Milliken Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.5594,"lon":-91.1119,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

440

MHK Projects/40MW Lewis project | Open Energy Information  

Open Energy Info (EERE)

40MW Lewis project 40MW Lewis project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.791595089019,"lon":-6.7286683246493,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "reduction type project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

MHK Projects/Griffin Project | Open Energy Information  

Open Energy Info (EERE)

Griffin Project Griffin Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-31.9529,"lon":115.857,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

442

MHK Projects/Greenville Bend Project | Open Energy Information  

Open Energy Info (EERE)

Greenville Bend Project Greenville Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9231,"lon":-90.1433,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

443

MHK Projects/Jackson Point Project | Open Energy Information  

Open Energy Info (EERE)

Jackson Point Project Jackson Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.264,"lon":-91.5854,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

444

MHK Projects/Highlands Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Project Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3432,"lon":-73.9977,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

445

MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Piscataqua Tidal Hydrokinetic Energy Project Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1055,"lon":-70.7912,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

446

MHK Projects/Hope Field Point Project | Open Energy Information  

Open Energy Info (EERE)

Hope Field Point Project Hope Field Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1552,"lon":-90.0716,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

447

MHK Projects/College Point Project | Open Energy Information  

Open Energy Info (EERE)

Point Project Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30,"lon":-90.8357,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

448

MHK Projects/Wickliffe Project | Open Energy Information  

Open Energy Info (EERE)

Wickliffe Project Wickliffe Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.9756,"lon":-89.1193,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

449

MHK Projects/Claiborne Island Project | Open Energy Information  

Open Energy Info (EERE)

Claiborne Island Project Claiborne Island Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2055,"lon":-91.0732,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

450

MHK Projects/Passamaquoddy Tribe Hydrokinetic Project | Open Energy  

Open Energy Info (EERE)

Passamaquoddy Tribe Hydrokinetic Project Passamaquoddy Tribe Hydrokinetic Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

451

MHK Projects/Point Menoir Project | Open Energy Information  

Open Energy Info (EERE)

Menoir Project Menoir Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.6436,"lon":-91.3029,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

452

MHK Projects/Malone Field Light Project | Open Energy Information  

Open Energy Info (EERE)

Malone Field Light Project Malone Field Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.8923,"lon":-91.0632,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

453

MHK Projects/Duncan Point Project | Open Energy Information  

Open Energy Info (EERE)

Duncan Point Project Duncan Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3743,"lon":-91.2403,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

454

MHK Projects/Little Prairie Bend Project | Open Energy Information  

Open Energy Info (EERE)

Little Prairie Bend Project Little Prairie Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.2522,"lon":-89.657,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

455

MHK Projects/Ashley Point Project | Open Energy Information  

Open Energy Info (EERE)

Ashley Point Project Ashley Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8354,"lon":-90.432,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

456

MHK Projects/Algiers Light Project | Open Energy Information  

Open Energy Info (EERE)

Light Project Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9502,"lon":-90.0558,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

457

MHK Projects/Huffman Light Project | Open Energy Information  

Open Energy Info (EERE)

Huffman Light Project Huffman Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type<