National Library of Energy BETA

Sample records for reduction scr selective

  1. Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Using Cu-zeolite | Department of Energy Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using Cu-zeolite Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using Cu-zeolite Discusses the impact of Na in biodiesel on three emission control devices: the diesel particulate filter, diesel oxidation catalyst, and zeolyte-based SCR catalyst deer11_toops.pdf (1.75 MB) More Documents & Publications Impacts of Biodiesel on Emission Control

  2. Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    2005-05-01

    The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

  3. HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES

    SciTech Connect (OSTI)

    Jerry B. Urbas

    1999-05-01

    The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as the Project Manager. This project demonstrated the operation of the Hybrid SNCR/SCR NO{sub x} control process on a full-scale coal fired utility boiler. The hybrid technology was expected to provide a cost-effective method of reducing NO{sub x} while balancing capital and operation costs. An existing urea based SNCR system was modified with an expanded-duct catalyst to provide increased NO{sub x} reduction efficiency from the SNCR while producing increased ammonia slip levels to the catalyst. The catalyst was sized to reduce the ammonia slip to the air heaters to less than 2 ppm while providing equivalent NO{sub x} reductions. The project goals were to demonstrate hybrid technology is capable of achieving at least a 55% reduction in NO{sub x} emissions while maintaining less than 2ppm ammonia slip to the air heaters, maintain flyash marketability, verify the cost benefit and applicability of Hybrid post combustion technology, and reduce forced outages due to ammonium bisulfate (ABS) fouling of the air heaters. Early system limitations, due to gas temperature stratification, restricted the Hybrid NO{sub x} reduction capabilities to 48% with an ammonia slip of 6.1 mg/Nm{sup 3} (8 ppm) at the catalyst inlet. After resolving the stratification problem

  4. UREA INFRASTRUCTURE FOR UREA SCR NOX REDUCTION

    SciTech Connect (OSTI)

    Bunting, Bruce G.

    2000-08-20

    Urea SCR is currently the only proven NOX aftertreatment for diesel engines - high NOX reduction possible - some SCR catalyst systems are robust against fuel sulfur - durability has been demonstrated - many systems in the field - long history in other markets - Major limitations to acceptance - distribution of urea solution to end user - ensuring that urea solution is added to vehicle.

  5. Reductant Utilization in a LNT + SCR System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilization in a LNT + SCR System Reductant Utilization in a LNT + SCR System Investigation of the potential synergies of LNT and SCR for treating NOx emissions from a diesel engine. deer09_parks.pdf (1.09 MB) More Documents & Publications Emissions Control for Lean Gasoline Engines Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in

  6. Ammonia Sensor for SCR NOX Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensor for SCR NOX Reduction Ammonia Sensor for SCR NOX Reduction Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_wang.pdf (6.29 MB) More Documents & Publications Urea SCR and DPF System for Deisel Sport Utility Vehicle Meeting Tier II Bin 5 Lean NOx Reduction with Dual Layer LNT/SCR

  7. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    SciTech Connect (OSTI)

    1996-10-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

  8. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of Nitrogen Oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1995

    SciTech Connect (OSTI)

    1996-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  9. Deactivation Mechanism of Cu/Zeolite SCR Catalyst Due to Reductive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mechanism of CuZeolite SCR Catalyst Due to Reductive Hydrothermal Aging Deactivation Mechanism of CuZeolite SCR Catalyst Due to Reductive Hydrothermal Aging Better control for ...

  10. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    SciTech Connect (OSTI)

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  11. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Selective Catalytic Reduction of NO by Hydrocarbons Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

  12. SCR Technologies for NOx Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies for NOx Reduction SCR Technologies for NOx Reduction 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_hesser.pdf (730.17 KB) More Documents & Publications Injection System and Engine Strategies for Advanced Emission Standards Advanced Diesel Common Rail Injection System for Future Emission Legislation Powertrain Trends and Future Potential

  13. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    SciTech Connect (OSTI)

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO{sub x} emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O&M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO{sub x} removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system.

  14. Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Focus is the heavy duty, US dynamometer ...

  15. Investigation on continuous soot oxidation and NOx reduction by SCR coated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DPF | Department of Energy on continuous soot oxidation and NOx reduction by SCR coated DPF Investigation on continuous soot oxidation and NOx reduction by SCR coated DPF Evaluation of CSI catalyst for NOx removal and soot oxidation. deer09_iretskaya.pdf (2.63 MB) More Documents & Publications Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications Two Catalyst Formulations - One Solution for NOx After-treatment Systems SCR-DPF Integrations for Diesel

  16. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; Liu, Qingcai; Tumuluri, Uma; Wu, Zili; Wachs, Israel E.

    2016-04-14

    We compared the molecular structures, surface acidity and catalytic activity for NO/NH3/O2 SCR of V2O5-WO3/TiO2 catalysts for two different synthesis methods: co-precipitation of aqueous vanadium and tungsten oxide precursors with TiO(OH)2 and by incipient wetness impregnation of the aqueous precursors on a reference crystalline TiO2 support (P25; primarily anatase phase). Bulk analysis by XRD showed that co-precipitation results in small and/or poorly ordered TiO2(anatase) particles and that VOx and WOx do not form solid solutions with the bulk titania lattice. Surface analysis of the co-precipitated catalyst by High Sensitivity-Low Energy Ion Scattering (HS-LEIS) confirms that the VOx and WOx aremore » surface segregated for the co-precipitated catalysts. In situ Raman and IR spectroscopy revealed that the vanadium and tungsten oxide components are present as surface mono-oxo O = VO3 and O = WO4 sites on the TiO2 supports. Co-precipitation was shown for the first time to also form new mono-oxo surface VO4 and WO4 sites that appear to be anchored at surface defects of the TiO2 support. IR analysis of chemisorbed ammonia showed the presence of both surface NH3* on Lewis acid sites and surface NH4+* on Brønsted acid sites. TPSR spectroscopy demonstrated that the specific SCR kinetics was controlled by the redox surface VO4 species and that the surface kinetics was independent of TiO2 synthesis method or presence of surface WO5 sites. SCR reaction studies revealed that the surface WO5 sites possess minimal activity below ~325 °C and their primary function is to increase the adsorption capacity of ammonia. A relationship between the SCR activity and surface acidity was not found. The SCR reaction is controlled by the surface VO4 sites that initiate the reaction at ~200 °C. The co-precipitated catalysts were always more active than the corresponding impregnated catalysts. Finally, we ascribe the higher activity of the co-precipitated catalysts to the presence of

  17. The Effects of Hydrocarbons on NOx Reduction over Fe-based SCR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and NOx reduction over a commercial Fe-zeolite SCR catalyst to understand catalyst ... Hydrocarbon Inhibition and HC Storage Modeling in Fe-Zeolite Catalysts for HD Diesel ...

  18. Lean NOx Reduction with Dual Layer LNT/SCR Catalysts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduction with Dual Layer LNT/SCR Catalysts Lean NOx Reduction with Dual Layer LNT/SCR Catalysts Results show that a series of dual layer catalysts with a bottom layer of LNT catalyst and a top layer of SCR catalyst can carry out coupled ammonia generation and NOx reduction, achieving high NOx conversion with minimal ammonia slip deer12_harold.pdf (5.41 MB) More Documents & Publications Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR

  19. Fuel-Borne Reductants for NOx Aftertreatment: Preliminary EtOH SCR Study |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Reductants for NOx Aftertreatment: Preliminary EtOH SCR Study Fuel-Borne Reductants for NOx Aftertreatment: Preliminary EtOH SCR Study 2003 DEER Conference Presentation: Oak Ridge National Laboratory 2003_deer_thomas.pdf (468.93 KB) More Documents & Publications Ag-Al2O3 Catalyst HC-SCR: Performance with Light Alcohols and Other Reductants Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck MD9 Engine Outfitted with SCR NOx Adsorber Regeneration

  20. Development of a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines

    Broader source: Energy.gov [DOE]

    Stand-alone urea SCR system was developed for marine diesel engines and showed a 50-percent reduction in NOx.

  1. The Effects of Hydrocarbons on NOx Reduction over Fe-based SCR Catalyst

    Broader source: Energy.gov [DOE]

    Study of effects of hydrocarbons on ammonia storage and NOx reduction over a commercial Fe-zeolite SCR catalyst to understand catalyst behaviors at low temperatures and improve NOx reduction performance and reduce system cost

  2. Hydrocarbon selective catalytic reduction catalyst for NO.sub.x emissions control

    DOE Patents [OSTI]

    Furbeck, Howard; Koermer, Gerald; Moini, Ahmad

    2016-04-12

    The present disclosure provides an AgBi catalyst over alumina suitable for performing hydrocarbon selective catalytic reduction (HC-SCR).

  3. Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

    SciTech Connect (OSTI)

    Harold, Michael; Crocker, Mark; Balakotaiah, Vemuri; Luss, Dan; Choi, Jae-Soon; Dearth, Mark; McCabe, Bob; Theis, Joe

    2013-09-30

    Oxides of nitrogen in the form of nitric oxide (NO) and nitrogen dioxide (NO{sub 2}) commonly referred to as NO{sub x}, is one of the two chemical precursors that lead to ground-level ozone, a ubiquitous air pollutant in urban areas. A major source of NO{sub x} is generated by equipment and vehicles powered by diesel engines, which have a combustion exhaust that contains NO{sub x} in the presence of excess O{sub 2}. Catalytic abatement measures that are effective for gasoline-fueled engines such as the precious metal containing three-way catalytic converter (TWC) cannot be used to treat O2-laden exhaust containing NO{sub x}. Two catalytic technologies that have emerged as effective for NO{sub x} abatement are NO{sub x} storage and reduction (NSR) and selective catalytic reduction (SCR). NSR is similar to TWC but requires much larger quantities of expensive precious metals and sophisticated periodic switching operation, while SCR requires an on-board source of ammonia which serves as the chemical reductant of the NO{sub x}. The fact that NSR produces ammonia as a byproduct while SCR requires ammonia to work has led to interest in combining the two together to avoid the need for the cumbersome ammonia generation system. In this project a comprehensive study was carried out of the fundamental aspects and application feasibility of combined NSR/SCR. The project team, which included university, industry, and national lab researchers, investigated the kinetics and mechanistic features of the underlying chemistry in the lean NOx trap (LNT) wherein NSR was carried out, with particular focus on identifying the operating conditions such as temperature and catalytic properties which lead to the production of ammonia in the LNT. The performance features of SCR on both model and commercial catalysts focused on the synergy between the LNT and SCR converters in terms of utilizing the upstream-generated ammonia and alternative reductants such as propylene, representing the

  4. Hydrocarbon fouling of SCR during Premixed Charge Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Efficient Emissions Control for Multi-Mode Lean DI Engines Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using ...

  5. Development of a Stand-Alone Urea-SCR System for NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using ...

  6. Impact of Sulfation and Desulfation on NOx Reduction Using Cu-Chabazite SCR Catalysts

    SciTech Connect (OSTI)

    Brookshear, Daniel W; Nam, Jeong-Gil; Nguyen, Ke; Toops, Todd J; Binder, Andrew J

    2015-01-01

    This bench reactor study investigates the impact of gaseous sulfur on the NOx reduction activity of Cu-chabazite SCR (Cu-CHA) catalysts at SO2 concentrations representative of marine diesel engine exhaust. After two hours of 500 ppm SO2 exposure at 250 and 400 C in the simulated diesel exhaust gases, the NOx reduction activity of the sulfated Cu-CHA SCR catalysts is severely degraded at evaluation temperatures below 250 C; however, above 250 C the impact of sulfur exposure is minimal. EPMA shows that sulfur is located throughout the washcoat and along the entire length of the sulfated samples. Interestingly, BET measurements reveal that the sulfated samples have a 20% decrease in surface area. Furthermore, the sulfated samples show a decrease in NOx/nitrate absorption during NO exposure in a DRIFTS reactor which suggests that Cu sites in the catalyst are blocked by the presence of sulfur. SO2 exposure also results in an increase in NH3 storage capacity, possibly due to the formation of ammonium sulfate species in the sulfated samples. In all cases, lean thermal treatments as low as 500 C reverse the effects of sulfur exposure and restore the NOx reduction activity of the Cu-CHA catalyst to that of the fresh condition.

  7. Impact of sulfation and desulfation on NOx reduction using Cu-chabazite SCR catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brookshear, Daniel William; Nam, Jeong -Gil; Nguyen, Ke; Toops, Todd J.; Binder, Andrew J.

    2015-06-05

    This bench reactor study investigates the impact of gaseous sulfur on the NOx reduction activity of Cu-chabazite SCR (Cu-CHA) catalysts at SO2 concentrations representative of marine diesel engine exhaust. After two hours of 500 ppm SO2 exposure at 250 and 400 °C in the simulated diesel exhaust gases, the NOx reduction activity of the sulfated Cu-CHA SCR catalysts is severely degraded at evaluation temperatures below 250 °C; however, above 250 °C the impact of sulfur exposure is minimal. EPMA shows that sulfur is located throughout the washcoat and along the entire length of the sulfated samples. Interestingly, BET measurements revealmore » that the sulfated samples have a 20% decrease in surface area. Moreover, the sulfated samples show a decrease in NOx/nitrate absorption during NO exposure in a DRIFTS reactor which suggests that Cu sites in the catalyst are blocked by the presence of sulfur. SO2 exposure also results in an increase in NH3 storage capacity, possibly due to the formation of ammonium sulfate species in the sulfated samples. In all cases, lean thermal treatments as low as 500 °C reverse the effects of sulfur exposure and restore the NOx reduction activity of the Cu-CHA catalyst to that of the fresh condition.« less

  8. Bifunctional Catalysts for the Selective Catalytic Reduction of NO by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrocarbons | Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Argonne National Laboratory 2004_deer_marshall.pdf (554.22 KB) More Documents & Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction

  9. Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction

    SciTech Connect (OSTI)

    Schmieg, Steven J.; Oh, Se H.; Kim, Chang H.; Brown, David B.; Lee, Jong H.; Peden, Charles HF; Kim, Do Heui

    2012-04-30

    Multiple catalytic functions (NOx conversion, NO and NH3 oxidation, NH3 storage) of a commercial Cu-zeolite urea/NH3-SCR catalyst were assessed in a laboratory fixed-bed flow reactor system after differing degrees of hydrothermal aging. Catalysts were characterized by using x-ray diffraction (XRD), 27Al solid state nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) / energy dispersive X-ray (EDX) spectroscopy to develop an understanding of the degradation mechanisms during catalyst aging. The catalytic reaction measurements of laboratory-aged catalysts were performed, which allows us to obtain a universal curve for predicting the degree of catalyst performance deterioration as a function of time at each aging temperature. Results show that as the aging temperature becomes higher, the zeolite structure collapses in a shorter period of time after an induction period. The decrease in SCR performance was explained by zeolite structure destruction and/or Cu agglomeration, as detected by XRD/27Al NMR and by TEM/EDX, respectively. Destruction of the zeolite structure and agglomeration of the active phase also results in a decrease in the NO/NH3 oxidation activity and the NH3 storage capacity of the catalyst. Selected laboratory aging conditions (16 h at 800oC) compare well with a 135,000 mile vehicle-aged catalyst for both performance and characterization criteria.

  10. Deactivation of Accelerated Engine-Aged and Field-Aged SCR Catalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using Cu-zeolite Impacts of Biodiesel on Emission Control Devices ...

  11. Bifunctional Catalysts for the Selective Catalytic Reduction of NO by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrocarbons | Department of Energy 3 DEER Conference Presentation: Argonne National Laboratory 2003_deer_marshall.pdf (533.74 KB) More Documents & Publications Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

  12. Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications

    DOE Patents [OSTI]

    Viola, Michael B.; Schmieg, Steven J.; Sloane, Thompson M.; Hilden, David L.; Mulawa, Patricia A.; Lee, Jong H.; Cheng, Shi-Wai S.

    2012-05-29

    A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.

  13. Impact of sulfation and desulfation on NOx reduction using Cu-chabazite SCR catalysts

    SciTech Connect (OSTI)

    Brookshear, Daniel William; Nam, Jeong -Gil; Nguyen, Ke; Toops, Todd J.; Binder, Andrew J.

    2015-06-05

    This bench reactor study investigates the impact of gaseous sulfur on the NOx reduction activity of Cu-chabazite SCR (Cu-CHA) catalysts at SO2 concentrations representative of marine diesel engine exhaust. After two hours of 500 ppm SO2 exposure at 250 and 400 °C in the simulated diesel exhaust gases, the NOx reduction activity of the sulfated Cu-CHA SCR catalysts is severely degraded at evaluation temperatures below 250 °C; however, above 250 °C the impact of sulfur exposure is minimal. EPMA shows that sulfur is located throughout the washcoat and along the entire length of the sulfated samples. Interestingly, BET measurements reveal that the sulfated samples have a 20% decrease in surface area. Moreover, the sulfated samples show a decrease in NOx/nitrate absorption during NO exposure in a DRIFTS reactor which suggests that Cu sites in the catalyst are blocked by the presence of sulfur. SO2 exposure also results in an increase in NH3 storage capacity, possibly due to the formation of ammonium sulfate species in the sulfated samples. In all cases, lean thermal treatments as low as 500 °C reverse the effects of sulfur exposure and restore the NOx reduction activity of the Cu-CHA catalyst to that of the fresh condition.

  14. Advanced Metal-Oxide based SCR Catalysts

    Broader source: Energy.gov [DOE]

    SCR with ammonia as reductant is an effective strategy being utilized to reduce NOx emissions to meet regulated levels.

  15. PILOT-SCALE EVALUATION OF THE IMPACT OF SELECTIVE CATALYTIC REDUCTION FOR NOx ON MERCURY SPECIATION

    SciTech Connect (OSTI)

    Dennis L. Laudal; John H. Pavlish; Kevin C. Galbreath; Jeffrey S. Thompson; Gregory F. Weber; Everett Sondreal

    2000-12-01

    Full-scale tests in Europe and bench-scale tests in the United States have indicated that the catalyst, normally vanadium/titanium metal oxide, used in the selective catalytic reduction (SCR) of NO{sub x}, may promote the formation of Hg{sup 2+} and/or particulate-bound mercury (Hg{sub p}). To investigate the impact of SCR on mercury speciation, pilot-scale screening tests were conducted at the Energy & Environmental Research Center. The primary research goal was to determine whether the catalyst or the injection of ammonia in a representative SCR system promotes the conversion of Hg{sup 0} to Hg{sup 2+} and/or Hg{sub p} and, if so, which coal types and parameters (e.g., rank and chemical composition) affect the degree of conversion. Four different coals, three eastern bituminous coals and a Powder River Basin (PRB) subbituminous coal, were tested. Three tests were conducted for each coal: (1) baseline, (2) NH{sub 3} injection, and (3) SCR of NO{sub x}. Speciated mercury, ammonia slip, SO{sub 3}, and chloride measurements were made to determine the effect the SCR reactor had on mercury speciation. It appears that the impact of SCR of NO{sub x} on mercury speciation is coal-dependent. Although there were several confounding factors such as temperature and ammonia concentrations in the flue gas, two of the eastern bituminous coals showed substantial increases in Hg{sub p} at the inlet to the ESP after passing through an SCR reactor. The PRB coal showed little if any change due to the presence of the SCR. Apparently, the effects of the SCR reactor are related to the chloride, sulfur and, possibly, the calcium content of the coal. It is clear that additional work needs to be done at the full-scale level.

  16. Sulfur Effect and Performance Recovery of a DOC + CSF + Cu-Zeolite SCR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System | Department of Energy Sulfur Effect and Performance Recovery of a DOC + CSF + Cu-Zeolite SCR System Sulfur Effect and Performance Recovery of a DOC + CSF + Cu-Zeolite SCR System effect and performance recovery studies at system level with typical diesel emission control consisting of diesel oxidation catalyst, catalyzed soot filter, and selective catalytic reduction deer11_tang.pdf (504.68 KB) More Documents & Publications Investigation of Sulfur Deactivation on Cu/Zeolite SCR

  17. Investigation of Sulfur Deactivation on Cu/Zeolite SCR Catalysts in Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application | Department of Energy Sulfur Deactivation on Cu/Zeolite SCR Catalysts in Diesel Application Investigation of Sulfur Deactivation on Cu/Zeolite SCR Catalysts in Diesel Application Investigation of Sulfur Deactivation on Cu/Zeolite SCR Catalysts in Diesel Application deer09_cheng.pdf (564.79 KB) More Documents & Publications Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials Sulfur Effect and Performance Recovery of a DOC + CSF +

  18. Improvement of Urea SCR Performance Using Wiremesh Thermolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxidation and Efficient Urea SCR NOx Reduction SCR Performance Optimization Through Advancements in Aftertreatment Packaging Urea Mixing Design -- Simulation and Test Investigation

  19. The selective catalytic reduction of NOx over Ag/Al2O3 with isobutanol as the reductant

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brookshear, Daniel William; Pihl, Josh A.; Toops, Todd J.; West, Brian H.; Prikhodko, Vitaly Y.

    2016-02-13

    Here, this study investigates the potential of isobutanol (iBuOH) as a reductant for the selective catalytic reduction (SCR) of NOx over 2 wt% Ag/Al2O3 between 150 and 550 °C and gas hourly space velocities (GHSV) between 10,000 and 35,000 h-1. The feed gas consists of 500 ppm NO, 5% H2O, 10% O2, and 375-1500 ppm iBuOH (C1:N ratios of 3-12); additionally, blends of 24 and 48% iBuOH in gasoline are evaluated. Over 90% NOx conversion is achieved between 300 and 400 C using pure iBuOH, including a 40% peak selectivity towards NH3 that could be utilized in a dual HC/NH3more » SCR configuration. The iBuOH/gasoline blends are only able to achieve greater than 90% NOx conversion when operated at a GHSV of 10,000 h-1 and employing a C1:N ratio of 12. Iso-butyraldehyde and NO2 appear to function as intermediates in the iBuOH-SCR mechanism, which mirrors the mechanism observed for EtOH-SCR. In general, the performance of iBuOH in the SCR of NOx over a Ag/Al2O3 catalyst is comparable with that of EtOH, although EtOH/gasoline blends display higher NOx reduction than iBuOH/gasoline blends. The key parameter in employing alcohols in SCR appears to be the C-OH:N ratio rather than the C1:N ratio.« less

  20. System and method for controlling an engine based on ammonia storage in multiple selective catalytic reduction catalysts

    SciTech Connect (OSTI)

    Sun, MIn; Perry, Kevin L.

    2015-11-20

    A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.

  1. Predictable SCR co-benefits for mercury control

    SciTech Connect (OSTI)

    Pritchard, S.

    2009-01-15

    A test program, performed in cooperation with Dominion Power and the Babcock and Wilcox Co., was executed at Dominion Power's Mount Storm power plant in Grant County, W. Va. The program was focused on both the selective catalytic reduction (SCR) catalyst capability to oxide mercury as well as the scrubber's capability to capture and retain the oxidized mercury. This article focuses on the SCR catalyst performance aspects. The Mount Storm site consists of three units totaling approximately 1,660 MW. All units are equipped with SCR systems for NOx control. A full-scale test to evaluate the effect of the SCR was performed on Unit 2, a 550 MWT-fired boiler firing a medium sulfur bituminous coal. This test program demonstrated that the presence of an SCR catalyst can significantly affect the mercury speciation profile. Observation showed that in the absence of an SCR catalyst, the extent of oxidation of element a mercury at the inlet of the flue gas desulfurization system was about 64%. The presence of a Cornertech SCR catalyst improved this oxidation to levels greater than 95% almost all of which was captured by the downstream wet FGD system. Cornertech's proprietary SCR Hg oxidation model was used to accurately predict the field results. 1 ref., 2 figs., 1 tab.

  2. N2O Emissions From 2010 SCR Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    N2O Emissions From 2010 SCR Systems N2O Emissions From 2010 SCR Systems Reviews potential contribution to N2O formation of typical diesel exhaust aftertreatment system based on selective catalytic reduction depending on catalyst properties, and exhaust temperature and gas composition deer11_kamasamudram.pdf (1.2 MB) More Documents & Publications Degradation Mechanisms of Urea Selective Catalytic Reduction Technology Selective ammonia slip catalyst enabling highly efficient NOx removal

  3. Selective catalytic reduction system and process using a pre-sulfated zirconia binder

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly; Rossin, Joseph A.

    2010-06-29

    A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO.sub.2)SO.sub.4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.

  4. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  5. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prikhodko, Vitaly Y.; James E. Parks, II; Pihl, Josh A.; Toops, Todd J.

    2016-04-05

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCRmore » approach is of interest. In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. At an SCR average inlet temperature of 350 °C, an NH3:NOX ratio of 1.15:1 (achieved through longer rich cycle timing) resulted in 99.7 % NOX conversion. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher underfloor temperatures, NH3 oxidation over the SCR limited NH3 availability for NOX reduction. At the engine conditions studied, greater than 99 % NOX conversion was achieved with passive SCR while delivering

  6. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A; Toops, Todd J

    2016-01-01

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three-way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in the oxygen-rich exhaust. Thus, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCR approach is of interest. In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. 15% excess NH3 production over a 1:1 NH3:NOX ratio was required (via longer rich cycle timing) to achieve 99.7% NOX conversion at an SCR average inlet temperature of 350 C. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher temperatures, NH3 oxidation becomes important and limits NH3 availability for NOX reduction. At the engine conditions studied here, greater than 99% NOX conversion was achieved with passive SCR while delivering fuel

  7. Selective catalytic reduction of nitric oxide with ethanol/gasoline blends over a silver/alumina catalyst

    SciTech Connect (OSTI)

    Pihl, Josh A; Toops, Todd J; Fisher, Galen; West, Brian H

    2014-01-01

    Lean gasoline engines running on ethanol/gasoline blends and equipped with a silver/alumina catalyst for selective catalytic reduction (SCR) of NO by ethanol provide a pathway to reduced petroleum consumption through both increased biofuel utilization and improved engine efficiency relative to the current stoichiometric gasoline engines that dominate the U.S. light duty vehicle fleet. A pre-commercial silver/alumina catalyst demonstrated high NOx conversions over a moderate temperature window with both neat ethanol and ethanol/gasoline blends containing at least 50% ethanol. Selectivity to NH3 increases with HC dosing and ethanol content in gasoline blends, but appears to saturate at around 45%. NO2 and acetaldehyde behave like intermediates in the ethanol SCR of NO. NH3 SCR of NOx does not appear to play a major role in the ethanol SCR reaction mechanism. Ethanol is responsible for the low temperature SCR activity observed with the ethanol/gasoline blends. The gasoline HCs do not deactivate the catalyst ethanol SCR activity, but they also do not appear to be significantly activated by the presence of ethanol.

  8. The Effects of Hydrothermal Agingon a Commercial Cu SCR Catalyst

    Broader source: Energy.gov [DOE]

    Examines the effect of hydrothermal aging on the Nox reduction over a commercial Cu-zeolite SCR catalyst.

  9. Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2011-04-20

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of model based control design for integrated DPF-SCR aftertreatment systems.

  10. Hydrocarbon Fouling of SCR during PCCI combustion

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Pihl, Josh A; Lewis Sr, Samuel Arthur; Parks, II, James E

    2012-01-01

    The combination of advanced combustion with advanced selective catalytic reduction (SCR) catalyst formulations was studied in the work presented here to determine the impact of the unique hydrocarbon (HC) emissions from premixed charge compression ignition (PCCI) combustion on SCR performance. Catalyst core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. The zeolites which form the basis of these catalysts are different with the Cu-based catalyst made on a chabazite zeolite which las smaller pore structures relative to the Fe-based catalyst. Subsequent to exposure, bench flow reactor characterization of performance and hydrocarbon release and oxidation enabled evaluation of overall impacts from the engine exhaust. The Fe-zeolite NOX conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the raw engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite showed better tolerance to HC fouling at low temperatures compared to the Fe-zeolite but PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOX conversion efficiency. Furthermore, chemical analysis of the hydrocarbons trapped on the SCR cores was conducted to better determine chemistry specific effects.

  11. Degradation Mechanisms of Urea Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Degradation Mechanisms of Urea Selective Catalytic Reduction Technology Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction Materials

  12. SCR-DPF Integrations for Diesel ExhaustPerformance and Perspectives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    results from integrating the SCR catalyst into the diesel filter as one multifunctional unit. ... Investigation on continuous soot oxidation and NOx reduction by SCR coated DPF ...

  13. Non-uniform Aging on Super Duty Diesel Truck Aged Urea Cu/Zeolite SCR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts | Department of Energy uniform Aging on Super Duty Diesel Truck Aged Urea Cu/Zeolite SCR Catalysts Non-uniform Aging on Super Duty Diesel Truck Aged Urea Cu/Zeolite SCR Catalysts Cu/Zeolite SCR catalysts aged for 50k miles on a Super Duty diesel truck deer10_cheng.pdf (950.84 KB) More Documents & Publications Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials Deactivation

  14. Validated SCR Concept Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Validated SCR Concept Development Validated SCR Concept Development Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_kraemer.pdf (280.16 KB) More Documents & Publications SCR Technologies for NOx Reduction Development of a Dynamic DOE Calibration Model Vehicular Applications of

  15. Urea Decomposition and SCR Performance at Low Temperature | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Decomposition and SCR Performance at Low Temperature Urea Decomposition and SCR Performance at Low Temperature 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National Laboratory 2004_deer_sluder.pdf (210.18 KB) More Documents & Publications Fuel-Borne Reductants for NOx Aftertreatment: Preliminary EtOH SCR Study CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR Development of Optimal Catalyst Designs and Operating

  16. Modeling Species Inhibition of NO oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2010-09-15

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data.

  17. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants...

  18. Improvement of Urea SCR Performance Using Wiremesh Thermolysis Mixer |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Improvement of Urea SCR Performance Using Wiremesh Thermolysis Mixer Improvement of Urea SCR Performance Using Wiremesh Thermolysis Mixer Wiremesh mixer development should bring harmony between injection, thermolysis, and mixing. deer08_rajadurai.pdf (215.31 KB) More Documents & Publications Wiremesh Substrates for Enhanced Particulate Oxidation and Efficient Urea SCR NOx Reduction SCR Performance Optimization Through Advancements in Aftertreatment Packaging Urea

  19. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    SciTech Connect (OSTI)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E.

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  20. Ag-Al2O3 Catalyst HC-SCR: Performance with Light Alcohols and Other Reductants

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National Laboratory

  1. Ag-Al2O3 Catalyst HC-SCR: Performance with Light Alcohols and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ag-Al2O3 Catalyst HC-SCR: Performance with Light Alcohols and Other Reductants Ag-Al2O3 Catalyst HC-SCR: Performance with Light Alcohols and Other Reductants 2004 Diesel Engine ...

  2. Evaluation of NH3-SCR Catalyst Technology on a 250-kW Stationary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

  3. Optimal SCR Control Using Data-Driven Models

    SciTech Connect (OSTI)

    Stevens, Andrew J.; Sun, Yannan; Lian, Jianming; Devarakonda, Maruthi N.; Parker, Gordon

    2013-04-16

    We present an optimal control solution for the urea injection for a heavy-duty diesel (HDD) selective catalytic reduction (SCR). The approach taken here is useful beyond SCR and could be applied to any system where a control strategy is desired and input-output data is available. For example, the strategy could also be used for the diesel oxidation catalyst (DOC) system. In this paper, we identify and validate a one-step ahead Kalman state-space estimator for downstream NOx using the bench reactor data of an SCR core sample. The test data was acquired using a 2010 Cummins 6.7L ISB production engine with a 2010 Cummins production aftertreatment system. We used a surrogate HDD federal test procedure (FTP), developed at Michigan Technological University (MTU), which simulates the representative transients of the standard FTP cycle, but has less engine speed/load points. The identified state-space model is then used to develop a tunable cost function that simultaneously minimizes NOx emissions and urea usage. The cost function is quadratic and univariate, thus the minimum can be computed analytically. We show the performance of the closed-loop controller in using a reduced-order discrete SCR simulator developed at MTU. Our experiments with the surrogate HDD-FTP data show that the strategy developed in this paper can be used to identify performance bounds for urea dose controllers.

  4. Ammonia Generation over TWC for Passive SCR NOX Control for Lean Gasoline Engines

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A; Toops, Todd J

    2014-01-01

    A commercial three-way catalyst (TWC) was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential low cost approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. NH3 generation was evaluated at different air-fuel equivalence ratios at multiple engine speed and load conditions. Near complete conversion of NOX to NH3 was achieved at =0.96 for nearly all conditions studied. At the =0.96 condition, HC emissions were relatively minimal, but CO emissions were significant. Operation at AFRs richer than =0.96 did not provide more NH3 yield and led to higher HC and CO emissions. Results of the reductant conversion and consumption processes were used to calculate a representative fuel consumption of the engine operating with an ideal passive SCR system. The results show a 1-7% fuel economy benefit at various steady-state engine speed and load points relative to a stoichiometric engine operation.

  5. DEMONSTRATION OF POTENTIAL FOR SELECTIVE CATALYTIC REDUCTION AND DIESEL PARTICULATE FILTERS

    SciTech Connect (OSTI)

    McGILL,R; KHAIR, M; SHARP, C

    2003-08-24

    This project addresses the potential for Selective Catalytic Reduction (SCR) devices (using urea as reductant) together with Diesel Particulate Filters (DPF) and low-pressure loop exhaust gas recirculation (EGR) to achieve future stringent emissions standards for heavy-duty engines powering Class 8 vehicles. Two emission control systems consisting of the three technologies (EGR, SCR, and DPF) were calibrated on a Caterpillar C-12 heavy-duty diesel engine. Results of these calibrations showed good promise in meeting the 2010 heavy-duty emission standards as set forth by the Environmental Protection Agency (EPA). These two emission control systems were developed to evaluate a series of fuels that have similar formulations except for their sulfur content. Additionally, one fuel, code-named BP15, was also evaluated. This fuel was prepared by processing straight-run distillate stocks through a commercial, single stage hydrotreater employing high activity catalyst at maximum severity. An additional goal of this program is to provide data for an on-going EPA technology review that evaluates progress toward meeting 2007/2010 emission standards. These emissions levels were to be achieved not only on the transient test cycles but in other modes of operation such as the steady-state Euro-III style emission test known as the OICA (Organisation Internationale des Compagnies d'Automobiles) or the ESC (European Stationary Cycle). Additionally, hydrocarbon and carbon monoxide emissions standards are to be met.

  6. Laboratory Product Speciation Studies of the LNT + in situ SCR NOx Emission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Concept | Department of Energy Product Speciation Studies of the LNT + in situ SCR NOx Emission Control Concept Laboratory Product Speciation Studies of the LNT + in situ SCR NOx Emission Control Concept Understanding the detailed chemistry of Nox Reduction across the combined LNT+SCR system. deer10_crocker.pdf (827.9 KB) More Documents & Publications Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Lean NOx

  7. Simulation of catalytic oxidation and selective catalytic NOx reduction in lean-exhaust hybrid vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Chakravarthy, Veerathu K

    2012-01-01

    We utilize physically-based models for diesel exhaust catalytic oxidation and urea-based selective catalytic NOx reduction to study their impact on drive cycle performance of hypothetical light-duty diesel powered hybrid vehicles. The models have been implemented as highly flexible SIMULINK block modules that can be used to study multiple engine-aftertreatment system configurations. The parameters of the NOx reduction model have been adjusted to reflect the characteristics of Cu-zeolite catalysts, which are of widespread current interest. We demonstrate application of these models using the Powertrain System Analysis Toolkit (PSAT) software for vehicle simulations, along with a previously published methodology that accounts for emissions and temperature transients in the engine exhaust. Our results illustrate the potential impact of DOC and SCR interactions for lean hybrid electric and plug-in hybrid electric vehicles.

  8. 08FFL-0020Influence of High Fuel Rail Pressure and Urea Selective Catalytic Reduction on PM Formation in an Off-Highway Heavy-Duty Diesel Engine

    SciTech Connect (OSTI)

    Kass, Michael D; Domingo, Norberto; Storey, John Morse; Lewis Sr, Samuel Arthur

    2008-01-01

    The influence of fuel rail pressure (FRP) and urea-selective catalytic reduction (SCR) on particulate matter (PM) formation is investigated in this paper along with notes regarding the NOx and other emissions. Increasing FRP was shown to reduce the overall soot and total PM mass for four operating conditions. These conditions included two high speed conditions (2400 rpm at 540 and 270 Nm of torque) and two moderated speed conditions (1400 rpm at 488 and 325 Nm). The concentrations of CO2 and NOx increased with fuel rail pressure and this is attributed to improved fuel-air mixing. Interestingly, the level of unburned hydrocarbons remained constant (or increased slightly) with increased FRP. PM concentration was measured using an AVL smoke meter and scanning mobility particle sizer (SMPS); and total PM was collected using standard gravimetric techniques. These results showed that the smoke number and particulate concentrations decrease with increasing FRP. However the decrease becomes more gradual as very high rail pressures. Additionally, the total PM decreased with increasing FRP; however, the soluble organic fraction (SOF) reaches a maximum after which it declines with higher rail pressure. The total PM was collected for the two 1400 rpm conditions downstream of the engine, diesel oxidation catalyst, and a urea-SCR catalyst. The results show that significant PM reduction occurs in the SCR catalyst even during high rates of urea dosage. Analysis of the PM indicates that residual SOF is burned up in the SCR catalyst.

  9. Selective catalyst reduction light-off strategy

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-10-18

    An emissions control system includes a temperature determination module and an emissions control module. The temperature determination module determines a first temperature of a heater element of a diesel particulate filter (DPF) assembly in an exhaust system and determines a second temperature of a catalyst of the DPF assembly. The emissions control module selectively activates the heater element, selectively initiates a predefined combustion process in an engine based upon the first temperature, and selectively starts a reductant injection process based upon the second temperature.

  10. Development of a Durable Low-Temperature Urea-SCR Catalyst for CIDI Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Durable Low-Temperature Urea-SCR Catalyst for CIDI Engines Development of a Durable Low-Temperature Urea-SCR Catalyst for CIDI Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Sandia National Laboratories 2004_deer_pena.pdf (298.19 KB) More Documents & Publications Experimental and Modelling Study of the Effect of Diffusional Limitations on the NH3 SCR Activity Vehicle Technologies Office Merit Review 2016: Innovative SCR Materials and

  11. Mitigation of the Impact of Pt Contamination on Cu-Zeolite SCR Catalyst

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance | Department of Energy Mitigation of the Impact of Pt Contamination on Cu-Zeolite SCR Catalyst Performance Mitigation of the Impact of Pt Contamination on Cu-Zeolite SCR Catalyst Performance Investigates operating conditions under which PGM elements get volatilized and transferred onto the downstream SCR catalyst, resulting in loss of NOx reduction performance deer12_chen.pdf (856.01 KB) More Documents & Publications The Effects of Hydrothermal Agingon a Commercial Cu SCR

  12. JV 58-Effects of Biomass Combustion on SCR Catalyst

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Christopher J. Zygarlicke; Joshua R. Strege; Donald P. McCollor; Jason D. Laumb; Lingbu Kong

    2006-08-31

    A portable slipstream selective catalytic reduction (SCR) reactor was installed at a biomass cofired utility boiler to examine the rates and mechanisms of catalyst deactivation when exposed to biomass combustion products. The catalyst was found to deactivate at a much faster rate than typically found in a coal-fired boiler, although this may have been the result of high ash loading rather than a general property of biomass combustion. Deactivation was mainly the result of alkali and alkaline-earth sulfate formation and growth in catalyst pores, apparently caused by alkaline-earth ash deposition on or near the pore sites. The high proportion of biomass in the fuel contributed to elevated levels of alkali and alkaline-earth material in the ash when compared to coal ash, and these higher levels provided more opportunity for sulfate formation. Based on laboratory tests, neither catalyst material nor ammonia contributed measurably to ash mass gains via sulfation. A model constructed using both field and laboratory data was able to predict catalyst deactivation of catalysts under subbituminous coal firing but performed poorly at predicting catalyst deactivation under cofiring conditions. Because of the typically higher-than coal levels of alkali and alkaline-earth elements present in biomass fuels that are available for sulfation at typical SCR temperatures, the use of SCR technology and biomass cofiring needs to be carefully evaluated prior to implementation.

  13. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    SciTech Connect (OSTI)

    J. A. Withum; J. E. Locke

    2006-02-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Unit 1

  14. Selecting the best defect reduction methodology

    SciTech Connect (OSTI)

    Hinckley, C.M.; Barkan, P.

    1994-04-01

    Defect rates less than 10 parts per million, unimaginable a few years ago, have become the standard of world-class quality. To reduce defects, companies are aggressively implementing various quality methodologies, such as Statistical Quality Control Motorola`s Six Sigma, or Shingo`s poka-yok. Although each quality methodology reduces defects, selection has been based on an intuitive sense without understanding their relative effectiveness in each application. A missing link in developing superior defect reduction strategies has been a lack of a general defect model that clarifies the unique focus of each method. Toward the goal of efficient defect reduction, we have developed an event tree which addresses a broad spectrum of quality factors and two defect sources, namely, error and variation. The Quality Control Tree (QCT) predictions are more consistent with production experience than obtained by the other methodologies considered independently. The QCT demonstrates that world-class defect rates cannot be achieved through focusing on a single defect source or quality control factor, a common weakness of many methodologies. We have shown that the most efficient defect reduction strategy depend on the relative strengths and weaknesses of each organization. The QCT can help each organization identify the most promising defect reduction opportunities for achieving its goals.

  15. Development of SCR on Diesel Particulate Filter System for Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high and low engine-out NOx conditions PDF icon deer12naseri.pdf More Documents & Publications Investigation on continuous soot oxidation and NOx reduction by SCR coated DPF ...

  16. Laboratory Product Speciation Studies of the LNT + in situ SCR...

    Broader source: Energy.gov (indexed) [DOE]

    Understanding the detailed chemistry of Nox Reduction across the combined LNT+SCR system. deer10crocker.pdf (827.9 KB) More Documents & Publications Development of Optimal ...

  17. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    SciTech Connect (OSTI)

    J.A. Withum

    2006-03-07

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), evaluated the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)-wet flue gas desulfurization (FGD) combination or a spray dyer absorber-fabric filter (SDA-FF) combination. In this program CONSOL determined mercury speciation and removal at 10 bituminous coal-fired facilities; at four of these facilities, additional tests were performed on units without SCR, or with the existing SCR bypassed. This project final report summarizes the results and discusses the findings of the body of work as a whole. Eleven Topical Reports were issued (prior to this report) that describe in great detail the sampling results at each of the ten power plants individually. The results showed that the SCR-FGD combination removed a substantial fraction of mercury from flue gas. The coal-to-stack mercury removals ranged from 65% to 97% for the units with SCR and from 53% to 87% for the units without SCR. There was no indication that any type of FGD system was more effective at mercury removal than others. The coal-to-stack mercury removal and the removal in the wet scrubber were both negatively correlated with the elemental mercury content of the flue gas and positively correlated with the scrubber liquid chloride concentration. The coal chlorine content was not a statistically significant factor in either case. Mercury removal in the ESP was positively correlated with the fly ash carbon content and negatively correlated with the flue gas temperature. At most of the units, a substantial fraction (>35%) of the flue gas mercury was in the elemental form at the boiler economizer outlet. After passing through the SCR-air heater combination very little of the total mercury (<10%) remained in the elemental form in

  18. Deactivation of Accelerated Engine-Aged and Field-Aged Fe-Zeolite SCR Catalysts

    SciTech Connect (OSTI)

    Toops, Todd J; Nguyen, Ke; Foster, Adam; Bunting, Bruce G; Hagaman, Edward {Ed} W; Jiao, Jian

    2010-01-01

    A single-cylinder diesel engine with an emissions control system - diesel oxidation catalyst (DOC), Fe-zeolite selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF) - was used to perform accelerated thermal aging of the SCR catalyst. Cyclic aging is performed at SCR inlet temperatures of 650, 750 and 850 degrees C for up to 50 aging cycles. To assess the validity of the implemented accelerated thermal aging protocol, a field-aged SCR catalyst of similar formulation was also evaluated. The monoliths were cut into sections and evaluated for NO{sub x} performance in a bench-flow reactor. While the rear section of both the field-aged and the accelerated engine-aged SCR catalysts maintained high NO{sub x}conversion, 75-80% at 400 degrees C, the front section exhibited a drastic decrease to only 20-35% at 400 degrees C. This two-tiered deactivation was also observed for field-aged samples that were analyzed in this study. To understand the observed performance changes, thorough materials characterization was performed which revealed two primary degradation mechanisms. The first mechanism is a general Fe-zeolite deterioration which led to surface area losses, dealumination of the zeolite, and Fe{sub 2}O{sub 3} crystal growth. This degradation accelerated above 750 degrees C, and the effects were generally more severe in the front of the catalyst. The second deactivation mechanism is linked to trace levels of Pt that are suspected to be volatizing from the DOC and depositing on the front section of the SCR catalyst. Chemical evidence of this can be seen in the high levels of NH{sub 3} oxidation (80% conversion at 400 degrees C), which coincides with the decrease in performance.

  19. Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst on Lean Gasoline Engine

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Pihl, Josh A; Toops, Todd J; Thomas, John F; Parks, II, James E; West, Brian H

    2015-01-01

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.

  20. Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerlambert.pdf (232.58 KB) More Documents & Publications Urea SCR and DPF System for Diesel ...

  1. Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Ford Motor Company 2004deerhammerle.pdf (444.2 KB) More Documents & Publications Urea SCR and DPF System for ...

  2. SCR Potential and Issues for Heavy-Duty Applications in the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SCR Potential and Issues for Heavy-Duty Applications in the United States 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Daimler Chrysler Detroit Diesel ...

  3. Selective Catalytic Reduction and Exhaust Gas Recirculation Systems Optimization

    Office of Energy Efficiency and Renewable Energy (EERE)

    A patented EGR-SCR approach was shown to readily meet the 2010 EPA requirments for NOx and PM emisisons through independent testing programs.

  4. Review of SCR Technologies for Diesel Emission Control: Euruopean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experience and Worldwide Perspectives | Department of Energy SCR Technologies for Diesel Emission Control: Euruopean Experience and Worldwide Perspectives Review of SCR Technologies for Diesel Emission Control: Euruopean Experience and Worldwide Perspectives 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Aaquis and Aaquis 2004_deer_joubert2.pdf (380.7 KB) More Documents & Publications A New Active DPF System for "Stop and Go" Duty-Cycle Vehicles French

  5. Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies: Preprint

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R.; Luecke, J.; Brezny, R.; Geisselmann, A.; Voss, K.; Hallstrom, K.; Leustek, M.; Parsons, J.; Abi-Akar, H.

    2011-04-01

    An accelerated durability test method determined the potential impact of biodiesel ash impurities, including engine testing with multiple diesel particulate filter substrate types, as well as diesel oxidation catalyst and selective catalyst reduction catalysts. The results showed no significant degradation in the thermo-mechanical properties of a DPF after exposure to 150,000-mile equivalent biodiesel ash and thermal aging. However, exposure to 435,000-mile equivalent aging resulted in a 69% decrease in thermal shock resistance. A decrease in DOC activity was seen after exposure to 150,000-mile equivalent aging, resulting in higher hydrocarbon slip and a reduction in NO2 formation. The SCR catalyst experienced a slight loss in activity after exposure to 435,000-mile equivalent aging. The SCR catalyst, placed downstream of the DPF and exposed to B20 exhaust suffered a 5% reduction in overall NOx conversion activity over the HDDT test cycle. It is estimated that the additional ash from 150,000 miles of biodiesel use would also result in a moderate increases in exhaust backpressure for a DPF. The results of this study suggest that long-term operation with B20 at the current specification limits for alkali and alkaline earth metal impurities will adversely impact the performance of DOC, DPF and SCR systems.

  6. A SCR Model Calibration Approach with Spatially Resolved Measurements and NH3 Storage Distributions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Song, Xiaobo; Parker, Gordon G.; Johnson, John H.; Naber, Jeffrey D.; Pihl, Josh A.

    2014-11-27

    The selective catalytic reduction (SCR) is a technology used for reducing NO x emissions in the heavy-duty diesel (HDD) engine exhaust. In this study, the spatially resolved capillary inlet infrared spectroscopy (Spaci-IR) technique was used to study the gas concentration and NH3 storage distributions in a SCR catalyst, and to provide data for developing a SCR model to analyze the axial gaseous concentration and axial distributions of NH3 storage. A two-site SCR model is described for simulating the reaction mechanisms. The model equations and a calculation method was developed using the Spaci-IR measurements to determine the NH3 storage capacity andmore » the relationships between certain kinetic parameters of the model. Moreover, a calibration approach was then applied for tuning the kinetic parameters using the spatial gaseous measurements and calculated NH3 storage as a function of axial position instead of inlet and outlet gaseous concentrations of NO, NO2, and NH3. The equations and the approach for determining the NH3 storage capacity of the catalyst and a method of dividing the NH3 storage capacity between the two storage sites are presented. It was determined that the kinetic parameters of the adsorption and desorption reactions have to follow certain relationships for the model to simulate the experimental data. Finally, the modeling results served as a basis for developing full model calibrations to SCR lab reactor and engine data and state estimator development as described in the references (Song et al. 2013a, b; Surenahalli et al. 2013).« less

  7. Biodiesel + SCR Retrofit Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    + SCR Retrofit Testing Biodiesel + SCR Retrofit Testing This work retrofitted an in-use ... More Documents & Publications DPF Performance with Biodiesel Blends Impact of Biodiesel on ...

  8. Selective reduction of NOx in oxygen rich environments with plasma...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    environments with plasma-assisted catalysis: Catalyst development and mechanistic studies Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: ...

  9. Synthesis and Evaluation of Cu-SAPO-34 Catalysts for Ammonia Selective Catalytic Reduction. 1. Aqueous Solution Ion Exchange

    SciTech Connect (OSTI)

    Gao, Feng; Walter, Eric D.; Washton, Nancy M.; Szanyi, Janos; Peden, Charles HF

    2013-09-06

    SAPO-34 molecular sieves are synthesized using various structure directing agents (SDAs). Cu-SAPO-34 catalysts are prepared via aqueous solution ion exchange. Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies. Catalytic properties are examined using standard ammonia selective catalytic reduction (NH3-SCR) and ammonia oxidation reactions. During solution ion exchange, different SAPO-34 samples undergo different extent of structural damage via irreversible hydrolysis. Si content within the samples (i.e., Al-O-Si bond density) and framework stress are key factors that affect irreversible hydrolysis. Even using very dilute Cu acetate solutions, it is not possible to generate Cu-SAPO-34 samples with only isolated Cu2+ ions. Small amounts of CuOx species always coexist with isolated Cu2+ ions. Highly active and selective Cu-SAPO-34 catalysts for NH3-SCR are readily generated using this synthesis protocol, even for SAPO-34 samples that degrade substantially during solution ion exchange. High-temperature aging is found to improve the catalytic performance. This is likely due to reduction of intracrystalline mass-transfer limitations via formation of additional porosity in the highly defective SAPO-34 particles formed after ion exchange. The authors gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Office of Vehicle Technologies for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOEs Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830.

  10. Study of On-Board Ammonia (NH3) Generation for SCR Operation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Study of On-Board Ammonia (NH3) Generation for SCR Operation Study of On-Board Ammonia (NH3) Generation for SCR Operation The feasibility of on-board ammonia generation was examined using synthesized exhaust compositions deer09_wong.pdf (82.51 KB) More Documents & Publications On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer Delphi On-board Ammonia Generation (OAG) Reductant Utilization in a LNT + SCR System

  11. Selective Catalytic Reduction and Exhaust Gas Recirculation Systems...

    Broader source: Energy.gov (indexed) [DOE]

    A patented EGR-SCR approach was shown to readily meet the 2010 EPA requirments for NOx and PM emisisons through independent testing programs. deer08copan.pdf (142.02 KB) More ...

  12. Effect of Unburned Methyl Esters on the NOx Conversion of Fe-Zeolite SCR Catalyst

    SciTech Connect (OSTI)

    Williams, A.; Ratcliff, M.; Pedersen, D.; McCormick, R.; Cavataio, G.; Ura, J.

    2010-03-01

    Engine and flow reactor experiments were conducted to determine the impact of biodiesel relative to ultra-low-sulfur diesel (ULSD) on inhibition of the selective catalytic reduction (SCR) reaction over an Fe-zeolite catalyst. Fe-zeolite SCR catalysts have the ability to adsorb and store unburned hydrocarbons (HC) at temperatures below 300 C. These stored HCs inhibit or block NO{sub x}-ammonia reaction sites at low temperatures. Although biodiesel is not a hydrocarbon, similar effects are anticipated for unburned biodiesel and its organic combustion products. Flow reactor experiments indicate that in the absence of exposure to HC or B100, NO{sub x} conversion begins at between 100 and 200 C. When exposure to unburned fuel occurs at higher temperatures (250-400 C), the catalyst is able to adsorb a greater mass of biodiesel than of ULSD. Experiments show that when the catalyst is masked with ULSD, NO{sub x} conversion is inhibited until it is heated to 400 C. However, when masked with biodiesel, NO{sub x} conversion is observed to begin at temperatures as low as 200 C. Engine test results also show low-temperature recovery from HC storage. Engine tests indicate that, overall, the SCR system has a faster recovery from HC masking with biodiesel. This is at least partially due to a reduction in exhaust HCs, and thus total HC exposure with biodiesel.

  13. Ammonia Production and Utilization in a Hybrid LNT+SCR System

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Parks, II, James E

    2009-01-01

    A hybrid LNT+SCR system is used to control NOx from a light-duty diesel engine with in-cylinder regeneration controls. A diesel oxidation catalyst and diesel particulate filter are upstream of the LNT and SCR catalysts. Ultraviolet (UV) adsorption spectroscopy performed directly in the exhaust path downstream of the LNT and SCR catalysts is used to characterize NH3 production and utilization in the system. Extractive exhaust samples are analyzed with FTIR and magnetic sector mass spectrometry (H2) as well. Furthermore, standard gas analyzers are used to complete the characterization of exhaust chemistry. NH3 formation increases strongly with extended regeneration (or over regeneration ) of the LNT, but the amount of NOx reduction occurring over the SCR catalyst is limited by the amount of NH3 produced as well as the amount of NOx available downstream of the LNT. Control of lean-rich cycling parameters enables control of the ratio of NOx reduction between the LNT and SCR catalysts. During lean-rich cycling, fuel penalties are similar for either LNT dominant or LNT with supplemental SCR NOx reduction. However, stored NH3 after multiple lean-rich cycles can enable continued NOx reduction by the SCR after lean-rich cycling stops; thus, requirements for active regeneration of the LNT+SCR system can be modified during transient operation.

  14. Modeling Study of SCR/PGM Interactions in NH3 Slip Catalysts | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Study of SCR/PGM Interactions in NH3 Slip Catalysts Modeling Study of SCR/PGM Interactions in NH3 Slip Catalysts The focus of this research is on the optimization of NH3 slip catalyst performance by simulating the behavior of different SCR/PGM configurations. p-19_nova.pdf (250.42 KB) More Documents & Publications Experimental and Modelling Study of the Effect of Diffusional Limitations on the NH3 SCR Activity Selective ammonia slip catalyst enabling highly efficient NOx

  15. Solid SCR Demonstration Truck Application | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SCR Demonstration Truck Application Solid SCR Demonstration Truck Application Demonstrate the feasibility and performance of the FEV Solid SCR (Ammonium Carbamate) Technology ...

  16. Final Report of a CRADA Between Pacific Northwest National Laboratory and the General Motors Company (CRADA No. PNNL/271): “Degradation Mechanisms of Urea Selective Catalytic Reduction Technology”

    SciTech Connect (OSTI)

    Kim, Do Heui; Lee, Jong H.; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.; Wiebenga, Michelle H.

    2011-12-13

    Diesel engines can offer substantially higher fuel efficiency, good driving performance characteristics, and reduced carbon dioxide (CO2) emission compared to stoichiometric gasoline engines. Despite the increasing public demand for higher fuel economy and reduced dependency on imported oil, however, meeting the stringent emission standards with affordable methods has been a major challenge for the wide application of these fuel-efficient engines in the US market. The selective catalytic reduction of NOx by urea (urea-SCR) is one of the most promising technologies for NOx emission control for diesel engine exhausts. To ensure successful NOx emission control in the urea-SCR technology, both a diesel oxidation catalyst (DOC) and a urea-SCR catalyst with high activity and durability are critical for the emission control system. Because the use of this technology for light-duty diesel vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy the durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions, which is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations. In addition, it is imperative to develop a good understanding of deactivation mechanisms to help develop improved catalyst materials. In this CRADA program, General Motors Company and PNNL have investigated fresh, laboratory- and vehicle-aged DOC and SCR catalysts. The studies have led to a better understanding of various aging factors that impact the long-term performance of catalysts used in the urea-SCR technology, and have improved the correlation between laboratory and vehicle aging for reduced development time and cost. This Final Report briefly highlights many of the technical accomplishments and documents the productivity of the program in terms of peer-reviewed scientific publications

  17. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    SciTech Connect (OSTI)

    J.A. Withum; S.C. Tseng; J.E. Locke

    2005-11-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dryer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the seventh in a series of topical reports, describes the results and analysis of mercury sampling performed on a 1,300 MW unit burning a bituminous coal containing three percent sulfur. The unit was equipped with an ESP and a limestone-based wet FGD to control particulate and SO2 emissions, respectively. At the time of sampling an SCR was not installed on this unit. Four sampling tests were performed in September 2003. Flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. The results show that the FGD inlet flue gas oxidized:elemental mercury ratio was roughly 2:1, with 66% oxidized mercury and 34% elemental mercury. Mercury removal, on a coal

  18. 15.04.14 R Selective Reduction - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selective Reduction of CO2 to Methane Luca, O. R., McCrory, C. C. L., Dalleska, N. F. & Koval, C. A. The Selective Electrochemical Conversion of Preactivated CO2 to Methane. Journal of The Electrochemical Society, 162(7), H473-476, DOI: 10.1149/2.0371507jes (2015). Scientific Achievement Demonstration of selective electrochemical reduction of CO2 to methane with Faradaic efficiency as high as 93%. Significance & impact CO2 is preactivated with an N-heterocyclic carbene, and in the

  19. A SCR Model Calibration Approach with Spatially Resolved Measurements and NH3 Storage Distributions

    SciTech Connect (OSTI)

    Song, Xiaobo; Parker, Gordon G.; Johnson, John H.; Naber, Jeffrey D.; Pihl, Josh A.

    2014-11-27

    The selective catalytic reduction (SCR) is a technology used for reducing NO x emissions in the heavy-duty diesel (HDD) engine exhaust. In this study, the spatially resolved capillary inlet infrared spectroscopy (Spaci-IR) technique was used to study the gas concentration and NH3 storage distributions in a SCR catalyst, and to provide data for developing a SCR model to analyze the axial gaseous concentration and axial distributions of NH3 storage. A two-site SCR model is described for simulating the reaction mechanisms. The model equations and a calculation method was developed using the Spaci-IR measurements to determine the NH3 storage capacity and the relationships between certain kinetic parameters of the model. Moreover, a calibration approach was then applied for tuning the kinetic parameters using the spatial gaseous measurements and calculated NH3 storage as a function of axial position instead of inlet and outlet gaseous concentrations of NO, NO2, and NH3. The equations and the approach for determining the NH3 storage capacity of the catalyst and a method of dividing the NH3 storage capacity between the two storage sites are presented. It was determined that the kinetic parameters of the adsorption and desorption reactions have to follow certain relationships for the model to simulate the experimental data. Finally, the modeling results served as a basis for developing full model calibrations to SCR lab reactor and engine data and state estimator development as described in the references (Song et al. 2013a, b; Surenahalli et al. 2013).

  20. Combination & Integration of DPF-SCR Aftertreatment Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aftertreatment Technologies Combination & Integration of DPF-SCR Aftertreatment ... More Documents & Publications Combination and Integration of DPF-SCR Aftertreatment ...

  1. Evaluation of NH3-SCR Catalyst Technology on a 250-kW Stationary Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Genset | Department of Energy NH3-SCR Catalyst Technology on a 250-kW Stationary Diesel Genset Evaluation of NH3-SCR Catalyst Technology on a 250-kW Stationary Diesel Genset 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_malyala.pdf (164.77 KB) More Documents & Publications Two Catalyst Formulations - One Solution for NOx After-treatment Systems Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Development of Optimal Catalyst

  2. Method of selective reduction of halodisilanes with alkyltin hydrides

    DOE Patents [OSTI]

    D'Errico, John J.; Sharp, Kenneth G.

    1989-01-01

    The invention relates to the selective and sequential reduction of halodisilanes by reacting these compounds at room temperature or below with trialkyltin hydrides or dialkyltin dihydrides without the use of free radical intermediates. The alkyltin hydrides selectively and sequentially reduce the Si-Cl, Si-Br or Si-I bonds while leaving intact the Si-Si and Si-F bonds present.

  3. Method of selective reduction of polyhalosilanes with alkyltin hydrides

    DOE Patents [OSTI]

    Sharp, Kenneth G.; D'Errico, John J.

    1989-01-01

    The invention relates to the selective and stepwise reduction of polyhalosilanes by reacting at room temperature or below with alkyltin hydrides without the use of free radical intermediates. Alkyltin hydrides selectively and stepwise reduce the Si--Br, Si--Cl, or Si--I bonds while leaving intact any Si--F bonds. When two or more different halogens are present on the polyhalosilane, the halogen with the highest atomic weight is preferentially reduced.

  4. Update on Progress of APBF-DEC EGR/DPF/SCR Demonstration Program at SwRI |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Progress of APBF-DEC EGR/DPF/SCR Demonstration Program at SwRI Update on Progress of APBF-DEC EGR/DPF/SCR Demonstration Program at SwRI 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Southwest Research Institute 2004_deer_khair.pdf (264.85 KB) More Documents & Publications Final Update on APBF-DEC EGR/DPF/SCR Demonstration Project at SwRI Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A Progress Report Low Emisssions

  5. Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the U.S. Market | Department of Energy Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles in the U.S. Market Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles in the U.S. Market 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Ford Motor Company 2004_deer_hoard.pdf (114.79 KB) More Documents & Publications Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control Concept

  6. On the selection of dimension reduction techniques for scientific applications

    SciTech Connect (OSTI)

    Fan, Y J; Kamath, C

    2012-02-17

    Many dimension reduction methods have been proposed to discover the intrinsic, lower dimensional structure of a high-dimensional dataset. However, determining critical features in datasets that consist of a large number of features is still a challenge. In this paper, through a series of carefully designed experiments on real-world datasets, we investigate the performance of different dimension reduction techniques, ranging from feature subset selection to methods that transform the features into a lower dimensional space. We also discuss methods that calculate the intrinsic dimensionality of a dataset in order to understand the reduced dimension. Using several evaluation strategies, we show how these different methods can provide useful insights into the data. These comparisons enable us to provide guidance to a user on the selection of a technique for their dataset.

  7. NOx Aftertreatment Using Ethanol as Reductant | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aftertreatment Using Ethanol as Reductant NOx Aftertreatment Using Ethanol as Reductant The hydrocarbon-SCR that was developed using ethanol and E85 as the reductant showed high ...

  8. Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bin 5 DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program (DE-FC26-01NT41103) | Department of Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_lambert.pdf (232.58 KB) More Documents & Publications Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks

  9. Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bin 5 DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program (DE-FC26-01NT41103) | Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Ford Motor Company 2004_deer_hammerle.pdf (444.2 KB) More Documents & Publications Urea SCR and DPF System for Deisel Sport Utility Vehicle Meeting Tier II Bin 5 Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5

  10. SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & DPF RETROFITS FOR MOBILE DIESEL ENGINES SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_leprince.pdf (290.81 KB) More Documents & Publications Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3 and Fuel Consumption Using High and Low Engine-Out NOx Calibrations Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A Progress Report The Development and

  11. In-line localized monitoring of catalyst activity in selective catalytic NO.sub.x reduction systems

    DOE Patents [OSTI]

    Muzio, Lawrence J.; Smith, Randall A.

    2009-12-22

    Localized catalyst activity in an SCR unit for controlling emissions from a boiler, power plant, or any facility that generates NO.sub.x-containing flue gases is monitored by one or more modules that operate on-line without disrupting the normal operation of the facility. Each module is positioned over a designated lateral area of one of the catalyst beds in the SCR unit, and supplies ammonia, urea, or other suitable reductant to the catalyst in the designated area at a rate that produces an excess of the reductant over NO.sub.x on a molar basis through the designated area. Sampling probes upstream and downstream of the designated area draw samples of the gas stream for NO.sub.x analysis, and the catalyst activity is determined from the difference in NO.sub.x levels between the two probes.

  12. Sinia Renovables SCR | Open Energy Information

    Open Energy Info (EERE)

    Name: Sinia Renovables SCR Place: Spain Sector: Renewable Energy Product: Investment arm of Banco Sabadell, involved in the financing of renewable energy projects. References:...

  13. SCR Tech LLC | Open Energy Information

    Open Energy Info (EERE)

    Sector: Services Product: US-based provider of catalyst regeneration technologies and management services for SCR systems. Coordinates: 35.2225, -80.837539 Show Map Loading...

  14. SCR Performance Optimization Through Advancements in Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    walled packaging for SCR systems. Urea doser integration is also investigated. PDF icon deer08way.pdf More Documents & Publications Challenge in Urea Mixing Design Urea Mixing ...

  15. Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems

    SciTech Connect (OSTI)

    Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan

    2009-09-15

    A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

  16. Combination and Integration of DPF-SCR Aftertreatment Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Combination and Integration of DPF-SCR Aftertreatment Technologies Combination & Integration of DPF-SCR Aftertreatment Technologies Combination & ...

  17. Combination and Integration of DPF-SCR Aftertreatment Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Combination and Integration of DPF-SCR Aftertreatment Technologies Combination and Integration of DPF-SCR Aftertreatment Technologies Combination ...

  18. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite...

    Office of Scientific and Technical Information (OSTI)

    Book: Understanding NOx SCR Mechanism and Activity on CuChabazite Structures throughout the Catalyst Life Cycle Citation Details In-Document Search Title: Understanding NOx SCR...

  19. Thermolysis Characterization of Urea-SCR | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermolysis Characterization of Urea-SCR Thermolysis Characterization of Urea-SCR 2002 DEER Conference Presentation: Cummins Inc. PDF icon 2002deerfang.pdf More Documents & ...

  20. Review of SCR Technologies for Diesel Emission Control: Euruopean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SCR Technologies for Diesel Emission Control: Euruopean Experience and Worldwide Perspectives Review of SCR Technologies for Diesel Emission Control: Euruopean Experience and ...

  1. Urea/Ammonia Distribution Optimization in an SCR Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UreaAmmonia Distribution Optimization in an SCR Emission Control System Through the Use of CFD Analysis UreaAmmonia Distribution Optimization in an SCR Emission Control System ...

  2. Understanding the Deactivation Mechanisms of Cu/Zeolite SCR Catalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deactivation Mechanisms of CuZeolite SCR Catalysts in Diesel Application Understanding the Deactivation Mechanisms of CuZeolite SCR Catalysts in Diesel Application To understand ...

  3. Investigation of Sulfur Deactivation on Cu/Zeolite SCR Catalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sulfur Deactivation on CuZeolite SCR Catalysts in Diesel Application Investigation of Sulfur Deactivation on CuZeolite SCR Catalysts in Diesel Application Investigation of Sulfur ...

  4. Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements EAS ...

  5. NH3-Selective Catalytic Reduction over Ag/Al2O3 Catalysts

    Broader source: Energy.gov [DOE]

    DRIFT spectroscopy used together with flow reactor experiments to investigate the role of H2 for SCR over Ag/Al2O3

  6. Appendix SCR: Feature, Event, and Process Screening for PA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SCR-2014 Feature, Event, and Process Screening for PA United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix SCR-2014 Feature, Event, and Process Screening for PA Table of Contents SCR-1.0 Introduction SCR-2.0 Basis for FEPs Screening Process SCR-2.1 Requirement for FEPs SCR-2.2 FEPs List Development for the CCA SCR-2.3 Criteria for Screening of FEPs and Categorization of Retained FEPs

  7. A Comparative Kinetics Study between Cu/SSZ-13 and Fe/SSZ-13 SCR Catalysts

    SciTech Connect (OSTI)

    Gao, Feng; Wang, Yilin; Kollar, Marton; Washton, Nancy M.; Szanyi, Janos; Peden, Charles HF

    2015-11-09

    Cu- and Fe/SSZ-13 catalysts with the same Cu(Fe)/Al ratios are synthesized using the same parent SSZ-13 starting material. The catalytic performance for both fresh and hydrothermally aged catalysts is tested with NO and NH3 oxidation, and standard SCR reactions under steady-state conditions, and standard and fast SCR under temperature-programmed conditions. For standard SCR, Cu/SSZ-13 shows much better low-temperature performance which can be explained by NH3-inhibition of Fe/SSZ-13. During hydrothermal aging, both catalysts undergo dealumination but Fe/SSZ-13 dealuminates more severely. For aged catalysts, Cu/SSZ-13 gains oxidation activities due to formation of CuOx. However, Fe/SSZ-13 loses oxidation activities although formation of FeOx clusters and FeAlOx species also occur. Because of such physical properties differences, aged Cu/SSZ-13 loses while Fe/SSZ-13 maintains high-temperature SCR selectivities. A physical mixture of aged catalysts provides stable SCR performance in a wide temperature range and is able to decrease N2O formation at high reaction temperatures. This suggests that Fe/SSZ-13 can be used as a cocatalyst for Cu/SSZ-13 for transportation applications. During temperature-programmed SCR reactions, weak hysteresis is found during standard SCR due to NH3 inhibition. For fast SCR, hysteresis caused by NH4NO3 inhibition is much more significant. NH4NO3 deposition is greatly enhanced by Brønsted and Lewis acidity of the catalysts.

  8. SCR Performance Optimization Through Advancements in Aftertreatment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Packaging | Department of Energy Performance Optimization Through Advancements in Aftertreatment Packaging SCR Performance Optimization Through Advancements in Aftertreatment Packaging The impact of improved urea mixing designs on urea vaporization and ammonia distribution is presented, along with a comparison of single and dual walled packaging for SCR systems. Urea doser integration is also investigated. deer08_way.pdf (1.24 MB) More Documents & Publications Challenge in Urea Mixing

  9. Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor

    SciTech Connect (OSTI)

    Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

    2010-08-31

    Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

  10. 3rd Generation SCR System Using Solid Ammonia Storage and Direct Gas Dosing

    Office of Energy Efficiency and Renewable Energy (EERE)

    SCR system provides direct ammonia gas dosing for optimal SCR performance with simplified and flexible exhaust layout.

  11. A Study and Comparison of SCR Reaction Kinetics from Reactor...

    Broader source: Energy.gov (indexed) [DOE]

    Presents experimental study of a Cu-zeolite SCR in both reactor and engine test cell, and comparison of the model parameters between the SCR reactor and engine model p-27song.pdf ...

  12. Impact of Biodiesel-Based Na on the Selective Catalytic Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Discusses the impact of Na in biodiesel on three emission control devices: the diesel particulate filter, diesel oxidation catalyst, and zeolyte-based SCR catalyst deer11toops.pdf ...

  13. Modeling Species Inhibition and Competitive Adsorption in Urea-SCR Catalysts

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Lee, Jong H.

    2012-04-16

    Although the urea-SCR technology exhibits high NOx reduction efficiency over a wide range of temperatures among the lean NOx reduction technologies, further improvement in low-temperature performance is required to meet the future emission standards and to lower the system cost. In order to improve the catalyst technologies and optimize the system performance, it is critical to understand the reaction mechanisms and catalyst behaviors with respect to operating conditions. Urea-SCR catalysts exhibit poor NOx reduction performance at low temperature operating conditions (T < 150 C). We postulate that the poor performance is either due to NH3 storage inhibition by species like hydrocarbons or due to competitive adsorption between NH3 and other adsorbates such as H2O and hydrocarbons in the exhaust stream. In this paper we attempt to develop one-dimensional models to characterize inhibition and competitive adsorption in Fe-zeolite based urea-SCR catalysts based on bench reactor experiments. We further use the competitive adsorption (CA) model to develop a standard SCR model based on previously identified kinetics. Simulation results indicate that the CA model predicts catalyst outlet NO and NH3 concentrations with minimal root mean square error.

  14. Combination & Integration of DPF-SCR Aftertreatment Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Aftertreatment Technologies Combination & Integration of DPF-SCR Aftertreatment Technologies Work is undertaken to examine the feasibility of integrating SCR and DPF technologies for the next generation of emission control systems for on-road heavy-truck application deer11_rappe.pdf (2.21 MB) More Documents & Publications Combination and Integration of DPF-SCR Aftertreatment Technologies Combination & Integration of DPF-SCR Aftertreatment

  15. SCR-DPF Integrations for Diesel ExhaustPerformance and Perspectives for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High SCR Loadings | Department of Energy SCR-DPF Integrations for Diesel ExhaustPerformance and Perspectives for High SCR Loadings SCR-DPF Integrations for Diesel ExhaustPerformance and Perspectives for High SCR Loadings Presents laboratory and engine bench test results from integrating the SCR catalyst into the diesel filter as one multifunctional unit. deer12_folic.pdf (1.36 MB) More Documents & Publications Development of SCR on Diesel Particulate Filter System for Heavy Duty

  16. Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device

    DOE Patents [OSTI]

    Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H

    2014-05-06

    A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.

  17. Method for selective catalytic reduction of nitrogen oxides

    DOE Patents [OSTI]

    Mowery-Evans, Deborah L.; Gardner, Timothy J.; McLaughlin, Linda I.

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  18. Method For Selective Catalytic Reduction Of Nitrogen Oxides

    DOE Patents [OSTI]

    Mowery-Evans, Deborah L.; Gardner, Timothy J.; McLaughlin, Linda I.

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  19. Impact of Biodiesel-based Na on the Selective Catalytic Reduction...

    Office of Scientific and Technical Information (OSTI)

    of Biodiesel-based Na on the Selective Catalytic Reduction of NOx by NH3 Over Cu-zeolite Catalysts Citation Details In-Document Search Title: Impact of Biodiesel-based Na on the ...

  20. Hydrocarbon fouling of SCR during Premixed Charge Compression Ignition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (PCCI) combustion | Department of Energy fouling of SCR during Premixed Charge Compression Ignition (PCCI) combustion Hydrocarbon fouling of SCR during Premixed Charge Compression Ignition (PCCI) combustion Analyzed the effects of higher hydrocarbon emissions from PCCI combustion on SCR catalysts in operating a light-duty 1.9-liter GM diesel engine in both PCCI and conventional combustion modes deer11_parks.pdf (1.16 MB) More Documents & Publications Efficient Emissions Control for

  1. SCR Potential and Issues for Heavy-Duty Applications in the United States |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Potential and Issues for Heavy-Duty Applications in the United States SCR Potential and Issues for Heavy-Duty Applications in the United States 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Daimler Chrysler Detroit Diesel Corporation 2004_deer_aneja.pdf (1.08 MB) More Documents & Publications Aftertreatment Modeling Status, Futur Potential, and Application Issues Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty

  2. Experimental Studies for DPF and SCR Model, Control System, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Diesel and Biodiesel Fuels Experimental Studies for DPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels Combination and ...

  3. LNT + SCR Aftertreatment for Medium-Heavy Duty Applications:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LNT + SCR Aftertreatment for Medium-Heavy Duty Applications: A Systems Approach Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER ...

  4. Experimental Studies for DPF and SCR Model, Control System, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Diesel and Biodiesel Fuels Experimental Studies for DPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels Advanced Engine...

  5. Experimental Studies for DPF and SCR Model, Control System, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Diesel and Biodiesel Fuels Experimental Studies for DPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels Measuring PM ...

  6. 3rd Generation SCR System Using Solid Ammonia Storage and Direct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    rd Generation SCR System Using Solid Ammonia Storage and Direct Gas Dosing 3rd Generation SCR System Using Solid Ammonia Storage and Direct Gas Dosing SCR system provides direct ...

  7. Initial Results of the DeNOx SCR System by Urea Injection in the Euro 5 Bus

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Initial Results of the DeNOx SCR System by Urea Injection in the Euro 5 Bus Initial Results of the DeNOx SCR System by Urea Injection in the Euro 5 Bus 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_seguelong.pdf (255.33 KB) More Documents & Publications Potential Effect of Pollutantn Emissions on Global Warming: First Comparisong Using External Costs on Urban Buses Vehicle Emissions Review - 2012 Comparative Study on

  8. Overview of DOE Emission Control R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology areas: NOx adsorbers Urea and HC SCR Particulate filters ... group metal content, sulfur poisoning Urea Selective Catalytic Reduction (SCR): ...

  9. Selective reduction of NOx in oxygen rich environments with plasma-assisted

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    catalysis: Catalyst development and mechanistic studies | Department of Energy reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies 2003 DEER Conference Presentation: Pacific Northwest National Laboratory 2003_deer_peden.pdf (867.07 KB) More Documents & Publications Plasma-Activated Lean

  10. Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations Results of ...

  11. Fuel-Borne Reductants for NOx Aftertreatment: Preliminary EtOH...

    Broader source: Energy.gov (indexed) [DOE]

    and Other Reductants Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck MD9 Engine Outfitted with SCR NOx Adsorber Regeneration Phenomena In Heavy Duty Applications

  12. Progress Update: Creating Mobile Emission Reduction Credits | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Update: Creating Mobile Emission Reduction Credits Progress Update: Creating Mobile Emission Reduction Credits 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Emission Reduction Specialists 2004_deer_sloan.pdf (48.07 KB) More Documents & Publications Creating Mobile Emission Reduction Credits ADEC II Universal SCR Retrofit System for On-road and Off-road Diesel Engines SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES

  13. Method and system for SCR optimization

    DOE Patents [OSTI]

    Lefebvre, Wesley Curt; Kohn, Daniel W.

    2009-03-10

    Methods and systems are provided for controlling SCR performance in a boiler. The boiler includes one or more generally cross sectional areas. Each cross sectional area can be characterized by one or more profiles of one or more conditions affecting SCR performance and be associated with one or more adjustable desired profiles of the one or more conditions during the operation of the boiler. The performance of the boiler can be characterized by boiler performance parameters. A system in accordance with one or more embodiments of the invention can include a controller input for receiving a performance goal for the boiler corresponding to at least one of the boiler performance parameters and for receiving data values corresponding to boiler control variables and to the boiler performance parameters. The boiler control variables include one or more current profiles of the one or more conditions. The system also includes a system model that relates one or more profiles of the one or more conditions in the boiler to the boiler performance parameters. The system also includes an indirect controller that determines one or more desired profiles of the one or more conditions to satisfy the performance goal for the boiler. The indirect controller uses the system model, the received data values and the received performance goal to determine the one or more desired profiles of the one or more conditions. The system model also includes a controller output that outputs the one or more desired profiles of the one or more conditions.

  14. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC

    Broader source: Energy.gov [DOE]

    Showcases new content added to the AFDC including: Diesel Vehicles, Diesel Exhaust Fluid, Selective Catalytic Reduction Technologies, and an upcoming Deisel Exhaust Fluid Locator.

  15. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2008-08-05

    Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

  16. Combination & Integration of DPF-SCR Aftertreatment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aftertreatment Combination & Integration of DPF-SCR Aftertreatment Work focused on optimizing SCR washcoat within the DPF substrate, and maximizing the capacity for passive soot oxidation exhibited in the system deer12_rappe.pdf (1.47 MB) More Documents & Publications Combination and Integration of DPF-SCR Aftertreatment Technologies Combination & Integration of DPF-SCR Aftertreatment Technologies

  17. Mechanisms of Hydrocarbon Poisoning of A Urea SCR Catalyst

    Broader source: Energy.gov [DOE]

    Understanding what reactions and which catalytic functions are affected by hydrocarbons can lead to improved tolerances for selective catalytic reduction performance

  18. TRIAC/SCR proportional control circuit

    DOE Patents [OSTI]

    Hughes, Wallace J.

    1999-01-01

    A power controller device which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the "reset" input of a R-S flip flop, while an "0" crossing detector controls the "set" input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the "reset" and "set" inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations.

  19. TRIAC/SCR proportional control circuit

    DOE Patents [OSTI]

    Hughes, W.J.

    1999-04-06

    A power controller device is disclosed which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the ``reset`` input of a R-S flip flop, while an ``0`` crossing detector controls the ``set`` input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the ``reset`` and ``set`` inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations. 9 figs.

  20. TRIAC/SCR proportional control circuit

    SciTech Connect (OSTI)

    Hughes, Wallace J.

    1997-12-01

    A power controller device which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage to frequency converter controls the reset input of a R-S flip flop, while an 0 crossing detector controls the set input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the reset and set inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations.

  1. Volatility of Vanadia from Vanadia-Based SCR Catalysts under...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Volatility of Vanadia from Vanadia-Based SCR Catalysts under Accelerated Aging Conditions TiO2-supported vanadia (and tungsta) can be stabillized by optimization of the catalyst ...

  2. SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 ...

  3. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    SciTech Connect (OSTI)

    Hinton, W.S.; Maxwell, J.D.; Healy, E.C.; Hardman, R.R.; Baldwin, A.L.

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test program was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.

  4. Creating Mobile Emission Reduction Credits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Creating Mobile Emission Reduction Credits Creating Mobile Emission Reduction Credits 2002 DEER Conference Presentation: Emission Credit Brokers 2002_deer_sloan.pdf (184.47 KB) More Documents & Publications Progress Update: Creating Mobile Emission Reduction Credits An Experimental Study of PM Emission Characteristics of Commercial Diesel Engine with Urea-SCR System Evaluation of NH3-SCR Catalyst Technology on a 250-kW Stationary Diesel Genset

  5. MODELING COMPETITIVE ADSORPTION IN UREA-SCR CATALYSTS FOR EFFECTIVE LOW TEMPERATURE NOX CONTROL

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2010-09-17

    Although the SCR technology exhibits higher NOx reduction efficiency over a wider range of temperatures among the lean NOx reduction technologies, further improvement in low-temperature performance is required to meet the future emission standards and to lower the system cost. In order to improve the catalyst technologies and optimize the system performance, it is critical to understand the reaction mechanisms and catalyst behaviors with respect to operating conditions. For example, it is well known that the ammonia coverage on catalyst surface is critical for NOx reduction efficiency. However, the level of ammonia storage is influenced by competitive adsorption by other species, such as H2O and NO2. Moreover, hydrocarbon species that slip through the upstream DOC during the cold-start period can also inhibit the SCR performance, especially at low temperatures. Therefore, a one-dimensional detailed kinetic model that can account for the effects of such competitive adsorption has been developed based on steady state surface isotherm tests on a commercial Fe-zeolite catalyst. The model is developed as a C language S-function and implemented in Matlab/Simulink environment. Rate kinetics of adsorption and desorption of each of the adsorbents are determined from individual adsorption tests and validated for a set of test conditions that had all the adsorbents in the feed gas.

  6. Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis Details progress on non-zeolitic zirconia-based mixed oxides as promising new SCR catalyst materials and results of engine bench testing of full-size SCR prototype confirms Details progress on non-zeolitic zirconia-based mixed oxides as promising new SCR catalyst materials and results of engine bench testing of full-size SCR prototype

  7. Experimental Studies for CPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels

    SciTech Connect (OSTI)

    Johnson, John; Naber, Jeffrey; Parker, Gordon; Yang, Song-Lin; Stevens, Andrews; Pihl, Josh

    2013-04-30

    The research carried out on this project developed experimentally validated Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), and Selective Catalytic Reduction (SCR) high‐fidelity models that served as the basis for the reduced order models used for internal state estimation. The high‐fidelity and reduced order/estimator codes were evaluated by the industrial partners with feedback to MTU that improved the codes. Ammonia, particulate matter (PM) mass retained, PM concentration, and NOX sensors were evaluated and used in conjunction with the estimator codes. The data collected from PM experiments were used to develop the PM kinetics using the high‐fidelity DPF code for both NO2 assisted oxidation and thermal oxidation for Ultra Low Sulfur Fuel (ULSF), and B10 and B20 biodiesel fuels. Nine SAE papers were presented and this technology transfer process should provide the basis for industry to improve the OBD and control of urea injection and fuel injection for active regeneration of the PM in the DPF using the computational techniques developed. This knowledge will provide industry the ability to reduce the emissions and fuel consumption from vehicles in the field. Four MS and three PhD Mechanical Engineering students were supported on this project and their thesis research provided them with expertise in experimental, modeling, and controls in aftertreatment systems.

  8. Deactivation of Accelerated Engine-Aged and Field-Aged SCR Catalysts and the Role of the DOC

    Broader source: Energy.gov [DOE]

    A technique for accelerated aging of SCR system (DOC -> SCR-> DPF) reveals two deactivation mechanisms and replicates field-aged effects

  9. A Study and Comparison of SCR Reaction Kinetics from Reactor and Engine Experimental Data

    Broader source: Energy.gov [DOE]

    Presents experimental study of a Cu-zeolite SCR in both reactor and engine test cell, and comparison of the model parameters between the SCR reactor and engine model

  10. Accelerated Thermal Aging of Fe-Zeolite SCR Catalysts Using an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Aging of Fe-Zeolite SCR Catalysts Using an Engine-Based Systems Approach Accelerated Thermal Aging of Fe-Zeolite SCR Catalysts Using an Engine-Based Systems Approach This ...

  11. Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A Progress Report Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A Progress Report 2003 ...

  12. Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis Details progress on non-zeolitic zirconia-based ...

  13. Safe and compact ammonia storage/delivery systems for SCR-DeNOX...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safe and compact ammonia storagedelivery systems for SCR-DeNOX in automotive units Safe and compact ammonia storagedelivery systems for SCR-DeNOX in automotive units Presentation ...

  14. Low Emisssions Potential of EGR-SCR-DPF and Advanced Fuel Formulations - A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Report | Department of Energy Emisssions Potential of EGR-SCR-DPF and Advanced Fuel Formulations - A Progress Report Low Emisssions Potential of EGR-SCR-DPF and Advanced Fuel Formulations - A Progress Report 2002 DEER Conference Presentation: Southwest Research Insititute 2002_deer_khair.pdf (4.91 MB) More Documents & Publications Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A Progress Report Update on Progress of APBF-DEC EGR/DPF/SCR Demonstration

  15. Impact of Honeycomb Ceramics Geometrical Cell Design on Urea SCR System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Honeycomb Ceramics Geometrical Cell Design on Urea SCR System Impact of Honeycomb Ceramics Geometrical Cell Design on Urea SCR System Honeycomb ceramic substrates with 3 cell geometries were performance tested for Nox conversion. Results provide suggestions for the best cell structure for SCR systems. p-04_fujii.pdf (365.59 KB) More Documents & Publications Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission

  16. Nonroad SCR-Urea Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nonroad SCR-Urea Study Nonroad SCR-Urea Study Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_schubert.pdf (161.67 KB) More Documents & Publications Distributing Urea for the On-Road Vehicle Market Ensuring the Availability and Reliability of Urea Dosing For On-Road and Non-Road

  17. Synthesis and Evaluation of Cu/SAPO-34 Catalysts for NH3-SCR 2: Solid-state Ion Exchange and One-pot Synthesis

    SciTech Connect (OSTI)

    Gao, Feng; Walter, Eric D.; Washton, Nancy M.; Szanyi, Janos; Peden, Charles HF

    2015-01-01

    Cu-SAPO-34 catalysts are synthesized using two methods: solid-state ion exchange (SSIE) and one-pot synthesis. SSIE is conducted by calcining SAPO-34/CuO mixtures at elevated temperatures. For the one-pot synthesis method, Cu-containing chemicals (CuO and CuSO4) are added during gel preparation. A high-temperature calcination step is also needed for this method. Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies, and scanning electron microscopy (SEM). Catalytic properties are examined using standard ammonia selective catalytic reduction (NH3-SCR) and ammonia oxidation reactions. In Cu-SAPO-34 samples formed using SSIE, Cu presents both as isolated Cu2+ ions and unreacted CuO. The former is highly active and selective in NH3-SCR, while the latter catalyzes a side reaction; notably, the non-selective oxidation of NH3 above 350 ºC. Using the one-pot method followed by a high-temperature aging treatment, it is possible to form Cu SAPO-34 samples with predominately isolated Cu2+ ions at low Cu loadings. However at much higher Cu loadings, isolated Cu2+ ions that bind weakly with the CHA framework and CuO clusters also form. These Cu moieties are very active in catalyzing non-selective NH3 oxidation above 350 ºC. Low-temperature reaction kinetics indicate that Cu-SAPO-34 samples formed using SSIE have core-shell structures where Cu is enriched in the shell layers; while Cu is more evenly distributed within the one-pot samples. Reaction kinetics also suggest that at low temperatures, the local environment next to Cu2+ ion centers plays little role on the overall catalytic properties. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the Environmental

  18. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mistry, Hemma; Varela, Ana Sofia; Bonifacio, Cecile S.; Zegkinoglou, Ioannis; Sinev, Ilya; Choi, Yong-Wook; Kisslinger, Kim; Stach, Eric A.; Yang, Judith C.; Strasser, Peter; et al

    2016-06-30

    There is an urgent need to develop technologies that use renewable energy to convert waste products such as carbon dioxide into hydrocarbon fuels. Carbon dioxide can be electrochemically reduced to hydrocarbons over copper catalysts, although higher efficiency is required. We have developed oxidized copper catalysts displaying lower overpotentials for carbon dioxide electroreduction and record selectivity towards ethylene (60%) through facile and tunable plasma treatments. Herein we provide insight into the improved performance of these catalysts by combining electrochemical measurements with microscopic and spectroscopic characterization techniques. Operando X-ray absorption spectroscopy and cross-sectional scanning transmission electron microscopy show that copper oxides aremore » surprisingly resistant to reduction and copper+ species remain on the surface during the reaction. Furthermore, our results demonstrate that the roughness of oxide-derived copper catalysts plays only a partial role in determining the catalytic performance, while the presence of copper+ is key for lowering the onset potential and enhancing ethylene selectivity.« less

  19. Passive Ammonia SCR for Lean Burn SIDI Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ammonia SCR for Lean Burn SIDI Engines Passive Ammonia SCR for Lean Burn SIDI Engines Passive NH3 SCR has been demonstrated as a high efficiency and low cost alternative lean NOx aftertreatment technology for stratified gasoline engines. deer09_li.pdf (1.57 MB) More Documents & Publications Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control

  20. Earthquake risk reduction in the United States: An assessment of selected user needs and recommendations for the National Earthquake Hazards Reduction Program

    SciTech Connect (OSTI)

    1994-12-31

    This Assessment was conducted to improve the National Earthquake Hazards Reduction Program (NEHRP) by providing NEHRP agencies with information that supports their user-oriented setting of crosscutting priorities in the NEHRP strategic planning process. The primary objective of this Assessment was to take a ``snapshot`` evaluation of the needs of selected users throughout the major program elements of NEHRP. Secondary objectives were to conduct an assessment of the knowledge that exists (or is being developed by NEHRP) to support earthquake risk reduction, and to begin a process of evaluating how NEHRP is meeting user needs. An identification of NEHRP`s strengths also resulted from the effort, since those strengths demonstrate successful methods that may be useful to NEHRP in the future. These strengths are identified in the text, and many of them represent important achievements since the Earthquake Hazards Reduction Act was passed in 1977.

  1. Catalyst for reduction of nitrogen oxides

    DOE Patents [OSTI]

    Ott, Kevin C.

    2010-04-06

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  2. Effects of Alkali and Alkaline Earth Cocations on the Activity and Hydrothermal Stability of Cu/SSZ-13 NH3-SCR Catalysts

    SciTech Connect (OSTI)

    Gao, Feng; Wang, Yilin; Washton, Nancy M.; Kollar, Marton; Szanyi, Janos; Peden, Charles HF

    2015-10-13

    Using a three-step aqueous solution ion-exchange method, cocation modified Cu/SSZ-13 SCR catalysts were synthesized. These catalysts, in both fresh and hydrothermally aged forms, were characterized with several methods including temperature-programmed reduction by H2 (H2-TPR), temperature-programmed desorption of NH3 (NH3-TPD), and 27Al solid-state nuclear magnetic resonance (NMR) and diffuse reflectance Infrared Fourier Transform (DRIFT) spectroscopies. Their catalytic performance was probed using steady-state standard NH3-SCR. Characterization results indicate that cocations weaken interactions between Cu-ions and the CHA framework making them more readily reducible. By removing a portion of Brønsted acid sites, cocations also help to mitigate hydrolysis of the zeolite catalysts during hydrothermal aging as evidenced from 27Al NMR. Reaction tests show that certain cocations, especially Li+ and Na+, promote low-temperature SCR rates while others show much less pronounced effects. In terms of applications, our results indicate that introducing cocations can be a viable strategy to improve both low- and high-temperature performance of Cu/SSZ-13 SCR catalysts.

  3. Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R.; Luecke, J.; Brezny, R.; Geisselmann, A.; Voss, K.; Hallstrom, K.; Leustek, M.; Parsons, J.; Abi-Akar, H.

    2011-06-01

    It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter. It is estimated that the additional ash from 150,000 miles of biodiesel use would also result in a moderate increases in exhaust backpressure for a DPF. A decrease in DOC activity was seen after exposure to 150,000 mile equivalent aging, resulting in higher HC slip and a reduction in NO{sub 2} formation. The metal-zeolite SCR catalyst experienced a slight loss in activity after exposure to 435,000 mile equivalent aging. This catalyst, placed downstream of the DPF, showed a 5% reduction in overall NOx conversion activity over the HDDT test cycle.

  4. Understanding the Deactivation Mechanisms of Cu/Zeolite SCR Catalysts in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Application | Department of Energy Deactivation Mechanisms of Cu/Zeolite SCR Catalysts in Diesel Application Understanding the Deactivation Mechanisms of Cu/Zeolite SCR Catalysts in Diesel Application To understand the durability of Cu/Zeolite urea-SCR catalysts in diesel applications, the effects of engine and lab aging on catalyst reactivity and material properties were investigated. deer08_cheng.pdf (1.93 MB) More Documents & Publications Deactivation Mechanisms of Base

  5. Application of SCR and PM-METALIT for Non-Road Applications: SCRi

    Broader source: Energy.gov [DOE]

    Advantages of this new application of SCR and PM-METALIT for non-road applications include compact design, robustness, low backpressure, and cost

  6. Simplification of Diesel Emission Control System Packaging Using SCR Coated on DPF

    Broader source: Energy.gov [DOE]

    Study demonstrates high NOx conversion with SCR coated on DPF. Optimization of catalyst washcoat and coating process minimizes back-pressure while maintaining good performance.

  7. Mitigation of the Impact of Pt Contamination on Cu-Zeolite SCR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation of the Impact of Pt Contamination on Cu-Zeolite SCR Catalyst Performance Investigates operating conditions under which PGM elements get volatilized and transferred onto ...

  8. Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program ...

  9. Urea SCR and DPF System for Deisel Sport Utility Vehicle Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program ...

  10. Final Update on APBF-DEC EGR/DPF/SCR Demonstration Project at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A Progress Report Update on Progress of APBF-DEC EGRDPFSCR Demonstration ...

  11. Low Emisssions Potential of EGR-SCR-DPF and Advanced Fuel Formulations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A Progress Report Update on Progress of APBF-DEC EGRDPFSCR Demonstration ...

  12. Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Report | Department of Energy Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A Progress Report Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A Progress Report 2003 DEER Conference Presentation: Southwest Research Institute deer_2003_khair.pdf (1.37 MB) More Documents & Publications Final Update on APBF-DEC EGR/DPF/SCR Demonstration Project at SwRI Low Emisssions Potential of EGR-SCR-DPF and Advanced Fuel Formulations - A Progress

  13. Urea SCR Durability Assessment for Tier 2 Light-Duty Truck

    Broader source: Energy.gov [DOE]

    Summarizes progress toward development of a durable urea SCR system to meet Tier 2 Bin 5 on 3780 lb light truck

  14. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect (OSTI)

    Constance Senior

    2004-12-31

    The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  15. Overview of DOE Emission Control R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Technology areas: NOx adsorbers Urea and HC SCR Particulate filters Future ... group metal content, sulfur poisoning Urea Selective Catalytic Reduction (SCR): ...

  16. NO{sub x} reduction RACT compliance requires careful technology selection

    SciTech Connect (OSTI)

    Heckler, G.B.

    1996-05-01

    After the Clean Air Act Amendments passed in 1990, Title I (Attainment and Maintenance of Ambient Air Quality Standards) and Title IV (Acid Deposition Control) of the Act required power plants to submit and implement compliance plans for NO{sub x} and volatile organic compounds (VOC) emissions, among other pollutants. This legislation affected PECO Energy Co.`s Eddystone Generating Station, requiring the utility to comply with the Act under reasonably available control technology (RACT) rules established by the state of Pennsylvania. After carefully considering alternatives aligned with the RACT rules for Pennsylvania, PECO adopted a compliance strategy and submitted it to the Pennsylvania Department of Environmental Protection (PaDEP) for review and approval. Under the case-by-case RACT proposals, the proposed NO{sub x} reduction technology for Units 3 and 4 was to rehabilitate existing OFA ports which had been bricked over. Each of the four corners of these units was originally constructed with an OFA port located in the boiler side walls. Also under the case-by-case RACT proposals, the proposed NO{sub x} reduction technology for the A, B and C auxiliary boilers was to install low-NO{sub x} burners. Under presumptive RACT proposals, PECO proposed low-NO{sub x} burners with close-coupled OFA (CCOFA) and separated OFA (SOFA) as the proposed NO{sub x}-reduction technology for Units 1 and 2. For the combustion turbines PECO proposed to reduce NO{sub x} by limiting the annual capacity factor to 5 percent or less on a 12-month rolling basis. After considering technological and economic feasibility, the utility proposed no VOC reductions because none of the available VOC reduction technologies fell within RACT guidelines.

  17. Discovery of New NOx Reduction Catalysts for CIDI Engines Using Combinatorial Techniques

    SciTech Connect (OSTI)

    Blint, Richard J

    2005-08-15

    This project for the discovery of new lean reduction NOx catalysts was initiated on August 16th, 2002 and is now into its fourth year. Several materials have already been identified as NOx reduction catalysts for possible future application. NOx reduction catalysts are a critical need in the North American vehicle market since these catalysts are needed to enable both diesels and lean gasoline engines to meet the 2007-2010 emission standards. Hydrocarbon selective catalytic reduction (SCR) is a preferred technology since it requires no infrastructure changes (as may be expected for urea SCR) and most likely has the simplest engine control strategy of the three proposed NOx reduction approaches. The use of fast throughput techniques and informatics greatly enhances the possibility of discovering new NOx reduction catalysts. Using fast throughput techniques this project has already screened over 3000 new materials and evaluates hundreds of new materials a month. Evaluating such a high number of new materials puts this approach into a very different paradigm than previous discovery approaches for new NOx reduction catalysts. With so much data on materials it is necessary to use statistical techniques to identify the potential catalysts and these statistical techniques are needed to optimize compositions of the multi-component materials that are identified under the program as possible new lean NOx catalysts. Several new materials have conversions in excess of 80% at temperatures above 300 C. That is more than twice the activity of previous HC SCR materials. These materials are candidates for emission control on heavy-duty systems (i.e.; over 8500 pounds gross weight). Tests of one of the downselected materials on an engine dynamometer show NOx reductions greater than 80% under some conditions even though the net NOx reductions on the HWFET and the US06 cycles were relatively low. The program is scheduled to continue until the end of the 2006 calendar year. Work in the

  18. Coverage Dependent Charge Reduction of Cationic Gold Clusters on Surfaces Prepared Using Soft Landing of Mass-selected Ions

    SciTech Connect (OSTI)

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-11-29

    The ionic charge state of monodisperse cationic gold clusters on surfaces may be controlled by selecting the coverage of mass-selected ions soft landed onto a substrate. Polydisperse diphosphine-capped gold clusters were synthesized in solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine in the presence of 1,3-bis(diphenylphosphino)propane. The polydisperse gold clusters were introduced into the gas phase by electrospray ionization and mass selection was employed to select a multiply charged cationic cluster species (Au11L53+, m/z = 1409, L = 1,3-bis(diphenylphosphino)propane) which was delivered to the surfaces of four different self-assembled monolayers on gold (SAMs) at coverages of 1011 and 1012 clusters/mm2. Employing the spatial profiling capabilities of in-situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) it is shown that, in addition to the chemical functionality of the monolayer (as demonstrated previously: ACS Nano, 2012, 6, 573) the coverage of cationic gold clusters on the surface may be used to control the distribution of ionic charge states of the soft-landed multiply charged clusters. In the case of a 1H,1H,2H,2H-perfluorodecanethiol SAM (FSAM) almost complete retention of charge by the deposited Au11L53+ clusters was observed at a lower coverage of 1011 clusters/mm2. In contrast, at a higher coverage of 1012 clusters/mm2, pronounced reduction of charge to Au11L52+ and Au11L5+ was observed on the FSAM. When soft landed onto 16- and 11-mercaptohexadecanoic acid surfaces on gold (16,11-COOH-SAMs), the mass-selected Au11L53+ clusters exhibited partial reduction of charge to Au11L52+ at lower coverage and additional reduction of charge to both Au11L52+ and Au11L5+ at higher coverage. The reduction of charge was found to be more pronounced on the surface of the shorter (thinner) C11 than the longer (thicker) C16-COOH-SAM. On the surface of the 1-dodecanethiol (HSAM) monolayer, the most abundant charge state

  19. Method for reduction of selected ion intensities in confined ion beams

    DOE Patents [OSTI]

    Eiden, G.C.; Barinaga, C.J.; Koppenaal, D.W.

    1998-06-16

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer. 7 figs.

  20. Apparatus for reduction of selected ion intensities in confined ion beams

    DOE Patents [OSTI]

    Eiden, Gregory C. (Richland, WA); Barinaga, Charles J. (Richland, WA); Koppenaal, David W. (Richland, WA)

    2001-01-01

    An apparatus for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the apparatus has an ion trap or a collision cell containing a reagent gas wherein the reagent gas accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the collision cell as employed in various locations within analytical instruments including an inductively coupled plasma mass spectrometer.

  1. Method for reduction of selected ion intensities in confined ion beams

    DOE Patents [OSTI]

    Eiden, Gregory C. (Richland, WA); Barinaga, Charles J. (Richland, WA); Koppenaal, David W. (Richland, WA)

    1998-01-01

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer.

  2. Catalyst and method for reduction of nitrogen oxides

    DOE Patents [OSTI]

    Ott, Kevin C.

    2008-08-19

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  3. Catalyst and method for reduction of nitrogen oxides

    DOE Patents [OSTI]

    Ott, Kevin C.

    2008-05-27

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  4. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 8

    SciTech Connect (OSTI)

    Sullivan, S.G.; Khan, T.A.; Xie, J.W.

    1995-05-01

    The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in a continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This volume 8 of the series. The abstracts in this bibliography were selected form proceedings of technical meetings and conference journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to the many aspects of radiation protection and dose reduction, and ranges form use of robotics, to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 8 contains 232 abstracts, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 8. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes.

  5. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 7

    SciTech Connect (OSTI)

    Kaurin, D.G.; Khan, T.A.; Sullivan, S.G.; Baum, J.W.

    1993-07-01

    The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in the continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This is volume 7 of the series. The abstracts in this bibliography were selected from proceedings of technical meetings and conferences, journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to radiation protection and dose reduction, and ranges from use of robotics to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 7 contains 293 abstract, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 7. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes.

  6. Urea SCR and DPF System for Deisel Sport Utility Vehicle Meeting Tier II

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bin 5 | Department of Energy Deisel Sport Utility Vehicle Meeting Tier II Bin 5 Urea SCR and DPF System for Deisel Sport Utility Vehicle Meeting Tier II Bin 5 2002 DEER Conference Presentation: Ford Motor Company 2002_deer_hammerle.pdf (1.16 MB) More Documents & Publications Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program (DE-FC26-01NT41103) Urea SCR and DPF System for

  7. Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bin 5 | Department of Energy Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 2003 DEER Conference Presentation: Ford Motor Company 2003_deer_hammerle.pdf (408.4 KB) More Documents & Publications Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program (DE-FC26-01NT41103) Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5

  8. Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Tier 2 Diesel Light-Duty Trucks Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_lambert.pdf (460.97 KB) More Documents & Publications Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5

  9. Volatility of Vanadia from Vanadia-Based SCR Catalysts under Accelerated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aging Conditions | Department of Energy Vanadia from Vanadia-Based SCR Catalysts under Accelerated Aging Conditions Volatility of Vanadia from Vanadia-Based SCR Catalysts under Accelerated Aging Conditions TiO2-supported vanadia (and tungsta) can be stabillized by optimization of the catalyst support p-03_chapman.pdf (299.43 KB) More Documents & Publications The Utility of FeVO4 in Combination with Stabilized Titanias for Mobile SCR Application New Developments in Titania-Based Catalysts

  10. SCReaming for Low NOx - SCR for the Light Duty Market | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy SCReaming for Low NOx - SCR for the Light Duty Market SCReaming for Low NOx - SCR for the Light Duty Market Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_traver.pdf (260.76 KB) More Documents & Publications Validated SCR Concept Development Simulation and Analysis of HP/LP EGR for Heavy-Duty Applications New Demands on Heavy Duty Engine Management

  11. Accelerated Thermal Aging of Fe-Zeolite SCR Catalysts Using an Engine-Based

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Approach | Department of Energy Thermal Aging of Fe-Zeolite SCR Catalysts Using an Engine-Based Systems Approach Accelerated Thermal Aging of Fe-Zeolite SCR Catalysts Using an Engine-Based Systems Approach This research points the way for developing a rapid aging cycle for SSCR-DPF systems. deer08_bunting.pdf (318.51 KB) More Documents & Publications Deactivation of Accelerated Engine-Aged and Field-Aged SCR Catalysts and the Role of the DOC Catalyst Characterization

  12. Post Mortem of 120k mi Light-Duty Urea SCR and DPF System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Post Mortem of 120k mi Light-Duty Urea SCR and DPF System Post Mortem of 120k mi Light-Duty Urea SCR and DPF System Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_lambert.pdf (649.68 KB) More Documents & Publications Urea SCR and DPF System for Tier 2 Diesel Light-Duty

  13. Enhanced High Temperature Performance of NOx Reduction Catalyst Materials

    SciTech Connect (OSTI)

    Gao, Feng; Kim, Do Heui; Luo, Jinyong; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai Ying; Hess, Howard ..

    2012-12-31

    Two primary NOx after-treatment technologies have been recognized as the most promising approaches for meeting stringent NOx emission standards for diesel vehicles within the Environmental Protection Agencys (EPAs) 2007/2010 mandated limits, NOx Storage Reduction (NSR) and NH3 selective catalytic reduction (SCR); both are, in fact being commercialized for this application. However, in looking forward to 2015 and beyond with expected more stringent regulations, the continued viability of the NSR technology for controlling NOx emissions from lean-burn engines such as diesels will require at least two specific, significant and inter-related improvements. First, it is important to reduce system costs by, for example, minimizing the precious metal content while maintaining, even improving, performance and long-term stability. A second critical need for future NSR systems, as well as for NH3 SCR, will be significantly improved higher and lower temperature performance and stability. Furthermore, these critically needed improvements will contribute significantly to minimizing the impacts to fuel economy of incorporating these after-treatment technologies on lean-burn vehicles. To meet these objectives will require, at a minimum an improved scientific understanding of the following things: i) the various roles for the precious and coinage metals used in these catalysts; ii) the mechanisms for these various roles; iii) the effects of high temperatures on the active metal performance in their various roles; iv) mechanisms for higher temperature NOx storage performance for modified and/or alternative storage materials; v) the interactions between the precious metals and the storage materials in both optimum NOx storage performance and long term stability; vi) the sulfur adsorption and regeneration mechanisms for NOx reduction materials; vii) materials degradation mechanisms in CHA-based NH3 SCR catalysts. The objective of this CRADA project between PNNL and Cummins, Inc. is

  14. Effects of Si/Al Ratio on Cu/SSZ-13 NH3-SCR Catalysts: Implications for the active Cu species and the Roles of Brønsted Acidity

    SciTech Connect (OSTI)

    Gao, Feng; Washton, Nancy M.; Wang, Yilin; Kollar, Marton; Szanyi, Janos; Peden, Charles HF

    2015-09-03

    Cu/SSZ-13 catalysts with three Si/Al ratios of 6, 12 and 35 were synthesized with Cu incorporation via solution ion exchange. The implications of varying Si/Al ratios on the nature of the multiple Cu species that can be present in the SSZ-13 zeolite are a major focus of this work, as highlighted by the results of a variety of catalyst characterization and reaction kinetics measurements. Specifically, catalysts were characterized with surface area/pore volume measurements, temperature programmed reduction by H2 (H2-TPR), NH3 temperature programmed desorption (NH3-TPD), and DRIFTS and solid-state nuclear magnetic resonance (NMR) spectroscopies. Catalytic properties were examined using NO oxidation, ammonia oxidation, and standard ammonia selective catalytic reduction (NH3-SCR) reactions on selected catalysts under differential conditions. Besides indicating possible variably active multiple Cu species for these reactions, the measurements are also used to untangle some of the complexities caused by the interplay between redox of Cu ion centers and Brønsted acidity. All three reactions appear to follow a redox reaction mechanism, yet the roles of Brønsted acidity are quite different. For NO oxidation, increasing Si/Al ratio lowers Cu redox barriers, thus enhancing reaction rates. Brønsted acidity appears to play essentially no role for this reaction. For standard NH3-SCR, residual Brønsted acidity plays a significant beneficial role at both low- and high-temperature regimes. For NH3 oxidation, no clear trend is observed suggesting both Cu ion center redox and Brønsted acidity play important and perhaps competing roles. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of

  15. Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motor Company 2004deerhoard.pdf (114.79 KB) More Documents & Publications Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control ...

  16. Update on Progress of APBF-DEC EGR/DPF/SCR Demonstration Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Update on APBF-DEC EGRDPFSCR Demonstration Project at SwRI Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A Progress Report Low Emisssions Potential ...

  17. Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations

    Broader source: Energy.gov [DOE]

    Results of simulations of LDD hybrid vehicle under hybrid drive cycle conditions in PSAT show the potential impact of urea-SCR NOx controls on HEVs and PHEVs powered by lean-burn engines.

  18. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA; Volume 5

    SciTech Connect (OSTI)

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

    1994-01-01

    Promoting the exchange of information related to implementation of the As Low as Reasonably Achievable (ALARA) philosophy is a continuing objective for the Department of Energy (DOE). This report was prepared by the Brookhaven National Laboratory (BNL) ALARA Center for the DOE Office of Health. It contains the fifth in a series of bibliographies on dose reduction at DOE facilities. The BNL ALARA Center was originally established in 1983 under the sponsorship of the Nuclear Regulatory Commission to monitor dose-reduction research and ALARA activities at nuclear power plants. This effort was expanded in 1988 by the DOE`s Office of Environment, Safety and Health, to include DOE nuclear facilities. This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose-reduction activities, with a specific focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and accelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts.

  19. Metal-supported De-NOx SCR Catalysts Prepared by Room Temperature Aerosol Deposition for Potential Marine Applications

    Broader source: Energy.gov [DOE]

    Presents preparation of SCR catalyst coatings on cost effective metallic substrates using aerosol deposition technique and their catalytic De-NOx performance

  20. Passive SCR for lean gasoline NOX control: Engine-based strategies to minimize fuel penalty associated with catalytic NH3 generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prikhodko, Vitaly Y.; Parks, James E.; Pihl, Josh A.; Toops, Todd J.

    2016-02-18

    Lean gasoline engines offer greater fuel economy than common stoichiometric gasoline engines. However, excess oxygen prevents the use of the current three-way catalyst (TWC) to control nitrogen oxide (NOX) emissions in lean exhaust. A passive SCR concept, introduced by General Motors Global R&D, makes use of a TWC that is already onboard to generate NH3 under slightly rich conditions, which is stored on the downstream SCR. The stored NH3 is then used to reduce NOX emissions when the engine switches to lean operation. In this work, the effect of engine parameters, such as air-fuel equivalence ratio and spark timing, onmore » NH3 generation over a commercial Pd-only TWC with no dedicated oxygen storage component was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine. NOX reduction, NH3 formation, and reductant utilization processes were evaluated, and fuel efficiency was assessed and compared to the stoichiometric engine operation case. We found air-fuel equivalence ratio to be one of the most important parameters in controlling the NH3 production; however, the rich operation necessary for NH3 production results in a fuel consumption penalty. The fuel penalty can be minimized by adjusting spark timing to increase rich-phase engine out NOX emissions and, thereby, NH3 levels. Additionally, higher engine out NOX during engine load increase to simulate acceleration resulted in additional fuel savings. Ultimately, a 10% fuel consumption benefit was achieved with the passive SCR approach by optimizing rich air-fuel equivalence ratio and spark timing while also utilizing acceleration load conditions.« less

  1. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA

    SciTech Connect (OSTI)

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

    1993-12-01

    This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose reduction activities, with a focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and aocelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts. An author index and a subject index are provided to facilitate use. Both indices contain the abstract numbers from previous volumes, as well as the current volume. Information that the reader feels might be included in the next volume of this bibliography should be submitted to the BNL ALARA Center.

  2. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect (OSTI)

    Constance Senior; Temi Linjewile

    2003-10-31

    This is the third Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the second set of mercury measurements was made after the catalysts had been exposed to flue gas for about 2,000 hours. There was good agreement between the Ontario Hydro measurements and the SCEM measurements. Carbon trap measurements of total mercury agreed fairly well with the SCEM. There did appear to be some loss of mercury in the sampling system toward the end of the sampling campaign. NO{sub x} reductions across the catalysts ranged from 60% to 88%. Loss of total mercury across the commercial catalysts was not observed, as it had been in the March/April test series. It is not clear whether this was due to aging of the catalyst or to changes in the sampling system made between March/April and August. In the presence of ammonia, the blank monolith showed no oxidation. Two of the commercial catalysts showed mercury oxidation that was comparable to that in the March/April series. The other three commercial catalysts showed a decrease in mercury oxidation relative to the March/April series. Oxidation of mercury increased without ammonia present. Transient experiments showed that when ammonia was turned on, mercury appeared to desorb from the catalyst, suggesting displacement of adsorbed mercury by the ammonia.

  3. Stripping ethanol from ethanol-blended fuels for use in NO.sub.x SCR

    DOE Patents [OSTI]

    Kass, Michael Delos; Graves, Ronald Lee; Storey, John Morse Elliot; Lewis, Sr., Samuel Arthur; Sluder, Charles Scott; Thomas, John Foster

    2007-08-21

    A method to use diesel fuel alchohol micro emulsions (E-diesel) to provide a source of reductant to lower NO.sub.x emissions using selective catalytic reduction. Ethanol is stripped from the micro emulsion and entered into the exhaust gasses upstream of the reducing catalyst. The method allows diesel (and other lean-burn) engines to meet new, lower emission standards without having to carry separate fuel and reductant tanks.

  4. Development of HC-SCR System Using Diesel Fuel as a Reductant

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  5. Wiremesh Substrates for Enhanced Particulate Oxidation and Efficient Urea SCR NOx Reduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  6. Hydrothermally stable, low-temperature NO.sub.x reduction NH.sub.3-SCR catalyst

    SciTech Connect (OSTI)

    Narula, Chaitanya K; Yang, Xiaofan

    2015-03-24

    A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.

  7. Deactivation Mechanism of Cu/Zeolite SCR Catalyst Due to Reductive Hydrothermal Aging

    Broader source: Energy.gov [DOE]

    Better control for preventing catalyst deactivation resulted from study of and proposed mechanism for deactivation of Cu/zeolite under rich conditions.

  8. Hydrocarbon Effect on a Fe-zeolite Urea-SCR Catalyst: An Experimental and Modeling Study

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Herling, Darrell R.

    2010-04-14

    Synergies between various catalytic converters such as SCR and DPF are vital to the success of an integrated aftertreatment system for simultaneous NOx and particulate matter control in diesel engines. Several issues such as hydrocarbon poisoning, thermal aging and other coupled aftertreatment dynamics need to be addressed to develop an effective emission control system. This paper reports an experimental and modeling study to understand the effect of hydrocarbons on a Fe-zeolite urea-SCR bench reactor. Several bench-reactor tests to understand the inhibition of NOx oxidation, to characterize hydrocarbon storage and to investigate the impact of hydrocarbons on SCR reactions were conducted. Toluene was chosen as a representative hydrocarbon in diesel exhaust and various tests using toluene reveal its inhibition of NO oxidation at low temperatures and its oxidation to CO and CO2 at high temperatures. Surface isotherm tests were conducted to characterize the adsorption-desorption equilibrium of toluene through Langmuir isotherms. Using the rate parameters, a toluene storage model was developed and validated in simulation. With toluene in the stream, controlled SCR tests were run on the reactor and performance metrics such as NOx conversion and NH3 slip were compared to a set of previously run tests with no toluene in the stream. Tests indicate a significant effect of toluene on NOx and NH3 conversion efficiencies even at temperatures greater than 300oC. A kinetic model to address the toluene inhibition during NO oxidation reaction was developed and is reported in the paper. This work is significant especially in an integrated DPF-SCR aftertreatment scenario where the SCR catalyst on the filter substrate is exposed to un-burnt diesel hydrocarbons during active regeneration of the particulate filter.

  9. Evaluation of SCR and DOC/CPF Tech in Diesel Exhaust Emission Control to Meet U.S. Tier 2 Bin 5

    Broader source: Energy.gov [DOE]

    The continuous regeneration trap may cause irreversibly negative effects on the NOx removal efficiency of the SCR system.

  10. Urea/Ammonia Distribution Optimization in an SCR Emission Control System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Through the Use of CFD Analysis | Department of Energy Urea/Ammonia Distribution Optimization in an SCR Emission Control System Through the Use of CFD Analysis Urea/Ammonia Distribution Optimization in an SCR Emission Control System Through the Use of CFD Analysis Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle

  11. Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aftertreatment System | Department of Energy Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System Lean-burn SIDI engine technology offers improved fuel economy. deer10_viola.pdf (3.46 MB) More Documents & Publications Emissions Control for Lean Gasoline Engines NH3 generation over commercial Three-Way Catalysts and Lean-NOx Traps Emissions Control for Lean Gasoline En

  12. SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards in 2005 | Department of Energy Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 2003 DEER Conference Presentation: PUREM 2003_deer_frank.pdf (716.31 KB) More Documents & Publications The PUREM SCR System with AdBlue State-of-the-Art and Emergin Truck Engine Technologies Ensuring the Availability and Reliability of Urea Dosing For On-Road and

  13. ADEC II Universal SCR Retrofit System for On-road and Off-road Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy ADEC II Universal SCR Retrofit System for On-road and Off-road Diesel Engines ADEC II Universal SCR Retrofit System for On-road and Off-road Diesel Engines Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_carlson.pdf (88.96 KB) More Documents & Publications DIesel Emission Control Technology Developments Cleaning Up Diesel

  14. Application Experience with a Combined SCR and DPF Technology for Heavy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Duty Diesel Retrofit | Department of Energy Experience with a Combined SCR and DPF Technology for Heavy Duty Diesel Retrofit Application Experience with a Combined SCR and DPF Technology for Heavy Duty Diesel Retrofit Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_conway.pdf (286.62 KB) More Documents & Publications SCRT Technology for Retrofit of

  15. LNT or Urea SCR Technology: Which is the right technology for TIER 2 BIN 5

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    passenger vehicles? | Department of Energy or Urea SCR Technology: Which is the right technology for TIER 2 BIN 5 passenger vehicles? LNT or Urea SCR Technology: Which is the right technology for TIER 2 BIN 5 passenger vehicles? Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_dorenkamp.pdf (6.78 MB) More Documents & Publications The BMW Approach to Tier2

  16. Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chemistry during LNT Regeneration for a Lean Gasoline Engine Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-09_parks.pdf (507.29 KB) More Documents & Publications Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Emissions Control for Lean

  17. Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene-Isoquinoline Complex

    SciTech Connect (OSTI)

    Thoi, VanSara; Kornienko, Nick; Margarit, C; Yang, Peidong; Chang, Christopher

    2013-06-07

    The solar-driven reduction of carbon dioxide to value-added chemical fuels is a longstanding challenge in the fields of catalysis, energy science, and green chemistry. In order to develop effective CO2 fixation, several key considerations must be balanced, including (1) catalyst selectivity for promoting CO2 reduction over competing hydrogen generation from proton reduction, (2) visible-light harvesting that matches the solar spectrum, and (3) the use of cheap and earth-abundant catalytic components. In this report, we present the synthesis and characterization of a new family of earth-abundant nickel complexes supported by N-heterocyclic carbene amine ligands that exhibit high selectivity and activity for the electrocatalytic and photocatalytic conversion of CO2 to CO. Systematic changes in the carbene and amine donors of the ligand have been surveyed, and [Ni(Prbimiq1)]2+ (1c, where Prbimiq1 = bis(3-(imidazolyl)isoquinolinyl)propane) emerges as a catalyst for electrochemical reduction of CO2 with the lowest cathodic onset potential (Ecat = 1.2 V vs SCE). Using this earth-abundant catalyst with Ir(ppy)3 (where ppy = 2-phenylpyridine) and an electron donor, we have developed a visible-light photoredox system for the catalytic conversion of CO2 to CO that proceeds with high selectivity and activity and achieves turnover numbers and turnover frequencies reaching 98,000 and 3.9 s1, respectively. Further studies reveal that the overall efficiency of this solar-to-fuel cycle may be limited by the formation of the active Ni catalyst and/or the chemical reduction of CO2 to CO at the reduced nickel center and provide a starting point for improved photoredox systems for sustainable carbon-neutral energy conversion.

  18. Selective Catalytic Reduction of NO by NH3 with WO3-TiO2 Catalysts: Influence of Catalyst Synthesis Method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; Liu, Qingcai; Wu, Zili; Wachs, Israel E.

    2016-02-02

    A series of supported WO3/TiO2 catalysts was prepared by a new synthesis procedure involving co-precipitation of an aqueous TiO(OH)2 and (NH4)10W12O41*5H2O slurry under controlled pH conditions. The morphological properties, molecular structures, surface acidity and surface chemistry of the supported WO3/TiO2 catalysts were determined with BET, in situ Raman, in situ IR and temperature-programmed surface reaction (TPSR) spectroscopy, respectively. Isotopic 18O-16O exchange demonstrated that tungsten oxide was exclusively present as surface WOx species on the TiO2 support with mono-oxo W=O coordination. In contrast to previous studies employing impregnation synthesis that found only surface one mono-oxo O=WO4 site on TiO2, the co-precipitationmore » procedure resulted in the formation of two distinct surface WOx species: mono-oxo O=WO4 (~1010-1017 cm-1) on low defect density patches of TiO2 and a second mono-oxo O=WO4 (~983-986 cm-1) on high defect density patches of TiO2. The concentration of the second WOx surface species increases as a function of solution pH. Both surface WOx sites, however, exhibited the same NO/NH3 SCR reactivity. The co-precipitated WO3-TiO2 catalysts synthesized in alkaline solutions exhibited enhanced performance for the NO/NH3 SCR reaction that is ascribed to the greater number of surface defects on the resulting TiO2 support. For the co-precipitated catalyst prepared at pH10, surface NH4+ species on Br nsted acid sites were found to be more reactive than surface NH3* species on Lewis acid sites for SCR of NO with NH3.« less

  19. New Developments in Titania-Based Catalysts for Selective Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SCR Application Volatility of Vanadia from Vanadia-Based SCR Catalysts under Accelerated Aging Conditions Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis

  20. Selection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selected U.S. energy issues: a view from the Energy Information Administration for AAAS Fellows Department of Energy May 20, 2016 by Howard Gruenspecht, Deputy Administrator * EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding of energy and its interaction with the economy and the environment * By law, data, analyses, and forecasts provided by EIA are independent of approval by any other

  1. Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2011-07-12

    A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.

  2. Measurement and Modeling of Spatial NH3 Storage Distributions in a Commercial Small Port Cu Zeolite Urea SCR Catalyst

    Broader source: Energy.gov [DOE]

    A modified Spaci-IR technique can measure transient NH3 and NOx concentrations; data have been used to calibrate and validate an SCR model, with good agreement between experiments and simulations.

  3. The Utility of FeVO4 in Combination with Stabilized Titanias for Mobile SCR Application

    Broader source: Energy.gov [DOE]

    Selective catalytic reduction studies with ammonia/NO model gas mixtures were used to screen mixed FeVO4/titania powders for activity in both fresh and aged conditions; reaction of ammonia in the absence of NO was also used as measure of ammonia oxidation tendency at elevated reaction temperatures

  4. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite Structures throughout the Catalyst Life Cycle

    SciTech Connect (OSTI)

    Ribeiro, Fabio; Delgass, Nick; Gounder, Rajmani; Schneider, William F.; Miller, Jeff; Yezerets, Aleksey; McEwen, Jean-Sabin; Peden, Charles HF; Howden, Ken

    2014-12-09

    Oxides of nitrogen (NOx) compounds contribute to acid rain and photochemical smog and have been linked to respiratory ailments. NOx emissions regulations continue to tighten, driving the need for high performance, robust control strategies. The goal of this project is to develop a deep, molecular level understanding of the function of Cu-SSZ-13 and Cu-SAPO-34 materials that catalyze the SCR of NOx with NH3.

  5. Laboratory technologies ENDURE(tm) SCR Catalyst and Hyperion Power Module

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    garner Federal Laboratory Consortium awards Federal Laboratory Consortium Awards Laboratory technologies ENDURE(tm) SCR Catalyst and Hyperion Power Module garner Federal Laboratory Consortium awards The annual awards recognize successful efforts by federal laboratory employees to transfer government-developed technology to commercial industry. April 27, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to

  6. Selective catalytic reduction system and process for control of NO.sub.x emissions in a sulfur-containing gas stream

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly

    2015-08-11

    An exhaust gas treatment process, apparatus, and system for reducing the concentration of NOx, CO and hydrocarbons in a gas stream, such as an exhaust stream (29), via selective catalytic reduction with ammonia is provided. The process, apparatus and system include a catalytic bed (32) having a reducing only catalyst portion (34) and a downstream reducing-plus-oxidizing portion (36). Each portion (34, 36) includes an amount of tungsten. The reducing-plus-oxidizing catalyst portion (36) advantageously includes a greater amount of tungsten than the reducing catalyst portion (36) to markedly limit ammonia salt formation.

  7. Selective CO{sub 2} reduction conjugated with H{sub 2}O oxidation utilizing semiconductor/metal-complex hybrid photocatalysts

    SciTech Connect (OSTI)

    Morikawa, T. Sato, S. Arai, T. Uemura, K. Yamanaka, K. I. Suzuki, T. M. Kajino, T. Motohiro, T.

    2013-12-10

    We developed a new hybrid photocatalyst for CO{sub 2} reduction, which is composed of a semiconductor and a metal complex. In the hybrid photocatalyst, ?G between the position of conduction band minimum (E{sub CBM}) of the semiconductor and the CO{sub 2} reduction potential of the complex is an essential factor for realizing fast electron transfer from the conduction band of semiconductor to metal complex leading to high photocatalytic activity. On the basis of this concept, the hybrid photocatalyst InP/Ru-complex, which functions in aqueous media, was developed. The photoreduction of CO{sub 2} to formate using water as an electron donor and a proton source was successfully achieved as a Z-scheme system by functionally conjugating the InP/Ru-complex photocatalyst for CO{sub 2} reduction with a TiO{sub 2} photocatalyst for water oxidation. The conversion efficiency from solar energy to chemical energy was ca. 0.04%, which approaches that for photosynthesis in a plant. Because this system can be applied to many other inorganic semiconductors and metal-complex catalysts, the efficiency and reaction selectivity can be enhanced by optimization of the electron transfer process including the energy-band configurations, conjugation conformations, and catalyst structures. This electrical-bias-free reaction is a huge leap forward for future practical applications of artificial photosynthesis under solar irradiation to produce organic species.

  8. HUBBLE SPACE TELESCOPE PROPER MOTION (HSTPROMO) CATALOGS OF GALACTIC GLOBULAR CLUSTERS. I. SAMPLE SELECTION, DATA REDUCTION, AND NGC7078 RESULTS

    SciTech Connect (OSTI)

    Bellini, A.; Anderson, J.; Van der Marel, R. P.; Watkins, L. L.; King, I. R.; Bianchini, P.; Chanam, J.; Chandar, R.; Cool, A. M.; Ferraro, F. R.; Massari, D.; Ford, H.

    2014-12-20

    We present the first study of high-precision internal proper motions (PMs) in a large sample of globular clusters, based on Hubble Space Telescope (HST) data obtained over the past decade with the ACS/WFC, ACS/HRC, and WFC3/UVIS instruments. We determine PMs for over 1.3 million stars in the central regions of 22 clusters, with a median number of ?60,000 stars per cluster. These PMs have the potential to significantly advance our understanding of the internal kinematics of globular clusters by extending past line-of-sight (LOS) velocity measurements to two- or three-dimensional velocities, lower stellar masses, and larger sample sizes. We describe the reduction pipeline that we developed to derive homogeneous PMs from the very heterogeneous archival data. We demonstrate the quality of the measurements through extensive Monte Carlo simulations. We also discuss the PM errors introduced by various systematic effects and the techniques that we have developed to correct or remove them to the extent possible. We provide in electronic form the catalog for NGC7078 (M 15), which consists of 77,837 stars in the central 2.'4. We validate the catalog by comparison with existing PM measurements and LOS velocities and use it to study the dependence of the velocity dispersion on radius, stellar magnitude (or mass) along the main sequence, and direction in the plane of the sky (radial or tangential). Subsequent papers in this series will explore a range of applications in globular-cluster science and will also present the PM catalogs for the other sample clusters.

  9. Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel NOx Emission Control Concept | Department of Energy and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control Concept Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control Concept Experimental results show low-emissions potential - possibly T2/B2 (SULEV) NOx with low-emitting engines and system optimization. deer09_xu.pdf (371.28 KB) More Documents & Publications Lean NOx

  10. Integrating low-NO{sub x} burners, overfire air, and selective non-catalytic reduction on a utility coal-fired boiler

    SciTech Connect (OSTI)

    Hunt, T.; Muzio, L.; Smith, R.

    1995-05-01

    Public Service Company of Colorado (PSCo), in cooperation with the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI), is testing the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control system. This system combines low-NO{sub x} burners, overfire air, selective non-catalytic reduction (SNCR), and dry sorbent injection with humidification to reduce by up to 70% both NO{sub x} and SO{sub 2} emissions from a 100 MW coal-fired utility boiler. The project is being conducted at PSCo`s Arapahoe Unit 4 located in Denver, Colorado as part of the DOE`s Clean Coal Technology Round 3 program. The urea-based SNCR system, supplied by Noell, Inc., was installed in late 1991 and was tested with the unmodified boiler in 1992. At full load, it reduced NO{sub x} emissions by about 35% with an associated ammonia slip limit of 10 ppm. Babcock & Wilcox XLS{reg_sign} burners and a dual-zone overfire air system were retrofit to the top-fired boiler in mid-1992 and demonstrated a NO{sub x} reduction of nearly 70% across the load range. Integrated testing of the combustion modifications and the SNCR system were conducted in 1993 and showed that the SNCR system could reduce NO{sub x} emissions by an additional 45% while maintaining 10 ppm of ammonia slip limit at full load. Lower than expect4ed flue-gas temperatures caused low-load operation to be less effective than at high loads. NO{sub x} reduction decreased to as low as 11% at 60 MWe at an ammonia slip limit of 10 ppm. An ammonia conversion system was installed to improve performance at low loads. Other improvements to increase NO{sub x} removal at low-loads are planned. The combined system of combustion modifications and SNCR reduced NO{sub x} emissions by over 80% from the original full-load baseline. 11 figs.