Sample records for reduction factor advanced

  1. Human Factors Aspects of Advanced Process Control

    E-Print Network [OSTI]

    Shaw, J. A.

    HUMAN FACTORS ASPECTS OF ADVANCED PRO?CESS CONTROL John A. Shaw Combustion Engineering Taylor Instrument Division Rochester, New York ABSTRACT Energy conservation practices, such as heat recovery and integration, require that many... chemical and related processes use advanced control systems. Many of the more advanced process control strategies and algorithms can cause operator confusion, leading to incorrect operator actions and negating the advantages of the advanced control...

  2. Advanced configurations for leakage reduction in a labyrinth seal

    E-Print Network [OSTI]

    Veldanda, Sharath B.

    1992-01-01T23:59:59.000Z

    ADVANCED CONFIGURATIONS FOR LEAKAGE REDUCTION IN A LABYRINTH SEAL A Thesis by SHARATH B. VELDANDA Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1992 Major Subject: Mechanical Engineering ADVANCED CONFIGURATION FOR LEAKAGE REDUCTION IN A LABYRINTH SEAL A Thesis by SHARATH B. VELDANDA Approved as to style and content by: David L. Rhode y~~ (Member) K. D. Korkan (Member...

  3. Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector

    SciTech Connect (OSTI)

    Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

    2014-09-01T23:59:59.000Z

    Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

  4. advanced emission reduction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reduction by means Multidisciplinary Databases and Resources Websites Summary: and Plasma Research Department, Ris), Helge Egsgaard (Biosystems Department, Ris), Per G....

  5. Human factors survey of advanced instrumentation and controls

    SciTech Connect (OSTI)

    Carter, R.J.

    1989-01-01T23:59:59.000Z

    A survey oriented towards identifying the human factors issues in regard to the use of advanced instrumentation and controls (I C) in the nuclear industry was conducted. A number of United States (US) and Canadian nuclear vendors and utilities were participants in the survey. Human factors items, subsumed under the categories of computer-generated displays (CGD), controls, organizational support, training, and related topics, were discussed. The survey found the industry to be concerned about the human factors issues related to the implementation of advanced I C. Fifteen potential human factors problems were identified. They include: the need for an advanced I C guideline equivalent to NUREG-0700; a role change in the control room from operator to supervisor; information overload; adequacy of existing training technology for advanced I C; and operator acceptance and trust. 11 refs., 1 tab.

  6. An Automatic Image Reduction Pipeline for the Advanced Camera for Surveys

    E-Print Network [OSTI]

    Johns Hopkins University, Department of Physics and Astonomy, Advanced Camera for Surveys Team

    are constructed similar to those used in STScI OPUS pipeline. Reading and manipulation of FITS images and tables and catalogs) for archiving purposes. Although Apsis was designed primarily as an automated pipeline, it canAn Automatic Image Reduction Pipeline for the Advanced Camera for Surveys John P. Blakeslee

  7. DEMONSTRATION OF AN ADVANCED INTEGRATED CONTROL SYSTEM FOR SIMULTANEOUS EMISSIONS REDUCTION

    SciTech Connect (OSTI)

    Suzanne Shea; Randhir Sehgal; Ilga Celmins; Andrew Maxson

    2002-02-01T23:59:59.000Z

    The primary objective of the project titled ''Demonstration of an Advanced Integrated Control System for Simultaneous Emissions Reduction'' was to demonstrate at proof-of-concept scale the use of an online software package, the ''Plant Environmental and Cost Optimization System'' (PECOS), to optimize the operation of coal-fired power plants by economically controlling all emissions simultaneously. It combines physical models, neural networks, and fuzzy logic control to provide both optimal least-cost boiler setpoints to the boiler operators in the control room, as well as optimal coal blending recommendations designed to reduce fuel costs and fuel-related derates. The goal of the project was to demonstrate that use of PECOS would enable coal-fired power plants to make more economic use of U.S. coals while reducing emissions.

  8. Current advances in using neurotrophic factors to treat neurodegenerative disorders

    E-Print Network [OSTI]

    Weissmiller, April M; Wu, Chengbiao

    2012-01-01T23:59:59.000Z

    neurotrophic factors to treat neurodegenerative disorders.neurotrophic factors to treat neurodegenerative disordersCNS diseases are difficult to treat due to the Page 3 of 9

  9. Reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead of ContractingofReducing WasteReduction

  10. Human Factors Evaluation of Advanced Electric Power Grid Visualization Tools

    SciTech Connect (OSTI)

    Greitzer, Frank L.; Dauenhauer, Peter M.; Wierks, Tamara G.; Podmore, Robin

    2009-04-01T23:59:59.000Z

    This report describes initial human factors evaluation of four visualization tools (Graphical Contingency Analysis, Force Directed Graphs, Phasor State Estimator and Mode Meter/ Mode Shapes) developed by PNNL, and proposed test plans that may be implemented to evaluate their utility in scenario-based experiments.

  11. Advanced Non-Krylov Subspace Model Order Reduction Techniques for Interconnect Circuits

    E-Print Network [OSTI]

    Yan, Boyuan

    2009-01-01T23:59:59.000Z

    decoupled into a number of MISO circuits based on the input-partitioned into many MISO systems and the traditionalcan be performed on these MISO systems. The new reduction

  12. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    SciTech Connect (OSTI)

    Harry Littleton; John Griffin

    2011-07-31T23:59:59.000Z

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (�¢����Energy SMARRT�¢���) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU�¢����s/year and 6.46 trillion BTU�¢����s/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

  13. Transformation of point rainfall to areal rainfall by estimating areal reduction factors, using radar data, for Texas

    E-Print Network [OSTI]

    Gill, Tarun Deep

    2005-08-29T23:59:59.000Z

    are Technical Paper TP-29 (U.S. Weather Bureau, 1957), TP-40 (Hershfield, 1961a, 1961b), NOAA Atlas 2 (Miller et al., 1973). Areal reduction factors from areas ranging from 0 to 1024 sq. km. and for durations from 30 min. up to 24 hours are presented in TP-29... from additional dense gauging networks in the Western United States. Leclerc and Schaake (1972) expressed the results of TP-29 by giving a formula for the areal reduction factors: 0.25 0.251.1 ( 1.1 0.25 )/1ttA ETARF Z Z e e...

  14. ADVANCED BYPRODUCT RECOVERY: DIRECT CATALYTIC REDUCTION OF SO2 TO ELEMENTAL SULFUR

    SciTech Connect (OSTI)

    Robert S. Weber

    1999-05-01T23:59:59.000Z

    Arthur D. Little, Inc., together with its commercialization partner, Engelhard Corporation, and its university partner Tufts, investigated a single-step process for direct, catalytic reduction of sulfur dioxide from regenerable flue gas desulfurization processes to the more valuable elemental sulfur by-product. This development built on recently demonstrated SO{sub 2}-reduction catalyst performance at Tufts University on a DOE-sponsored program and is, in principle, applicable to processing of regenerator off-gases from all regenerable SO{sub 2}-control processes. In this program, laboratory-scale catalyst optimization work at Tufts was combined with supported catalyst formulation work at Engelhard, bench-scale supported catalyst testing at Arthur D. Little and market assessments, also by Arthur D. Little. Objectives included identification and performance evaluation of a catalyst which is robust and flexible with regard to choice of reducing gas. The catalyst formulation was improved significantly over the course of this work owing to the identification of a number of underlying phenomena that tended to reduce catalyst selectivity. The most promising catalysts discovered in the bench-scale tests at Tufts were transformed into monolith-supported catalysts at Engelhard. These catalyst samples were tested at larger scale at Arthur D. Little, where the laboratory-scale results were confirmed, namely that the catalysts do effectively reduce sulfur dioxide to elemental sulfur when operated under appropriate levels of conversion and in conditions that do not contain too much water or hydrogen. Ways to overcome those limitations were suggested by the laboratory results. Nonetheless, at the end of Phase I, the catalysts did not exhibit the very stringent levels of activity or selectivity that would have permitted ready scale-up to pilot or commercial operation. Therefore, we chose not to pursue Phase II of this work which would have included further bench-scale testing, scale-up, pilot-scale (0.5 MW{sub e}) testing at conditions representative of various regenerable SO{sub 2}-control systems, preparation of a commercial process design, and development of a utility-scale demonstration plan.

  15. Developing an Online Tool for Delivering Research Results: An Update to the Oregon Department of Transportation's Crash Reduction Factor Database

    E-Print Network [OSTI]

    Bertini, Robert L.

    Developing an Online Tool for Delivering Research Results: An Update to the Oregon Department interactive online report (tool) can produce results that are easier for the user to access of Transportation's crash reduction factor (CRF) database were incorporated into an online tool. The paper describes

  16. Advanced and developmental technologies for treatment and volume reduction of dry active wastes

    SciTech Connect (OSTI)

    Kohout, R. [R. Kohout & Associates, Ltd., Toronto (Canada)

    1994-12-31T23:59:59.000Z

    The nuclear power industry processes Dry Active Wastes (DAW) to achieve cost-effective volume reduction and/or to produce a residue that is more compatible with final disposal criteria. The two principal processes currently used by the industry are compaction and incineration. Although incineration is often considered the process of choice, capital and operating cost are often high, and in some countries, public opposition and lengthy permitting processes result in expensive delays to bringing the process to operation. Therefore, alternative treatment options (mechanical, thermal, chemical, and biological) are being investigated to provide timely, cost-effective options for industry use. An overview of those developmental processes considered applicable to processing DAW is presented. In each category, {open_quotes}established{close_quotes} processes are mentioned and/or referenced, but the focus is on {open_quotes}potential{close_quotes} technologies and the status of their development. The emphasis is on processing DAW, and therefore, those developmental processes that primarily treat solids in aqueous streams and melting/sintering technologies, both of lesser applicability to nuclear utility wastes, have been omitted. Included are those developmental technologies that appear to have a potential for radioactive waste application based on development on demonstration programs.

  17. DEVELOPMENT OF HUMAN FACTORS ENGINEERING GUIDANCE FOR SAFETY EVALUATIONS OF ADVANCED REACTORS.

    SciTech Connect (OSTI)

    O'HARA, J.; PERSENSKY, J.; SZABO, A.

    2006-10-01T23:59:59.000Z

    Advanced reactors are expected to be based on a concept of operations that is different from what is currently used in today's reactors. Therefore, regulatory staff may need new tools, developed from the best available technical bases, to support licensing evaluations. The areas in which new review guidance may be needed and the efforts underway to address the needs will be discussed. Our preliminary results focus on some of the technical issues to be addressed in three areas for which new guidance may be developed: automation and control, operations under degraded conditions, and new human factors engineering methods and tools.

  18. Sediment studies of the biological factors controlling the reduction of U(VI).

    SciTech Connect (OSTI)

    Lovley, derek, R.

    2004-08-04T23:59:59.000Z

    Studies were conducted primarily with sediments, both in laboratory incubations and in a field experiment, with supporting studies with pure cultures. To our knowledge the sediment studies were the first on microbial U(VI) reduction in actual uranium-contaminated subsurface sediments, under conditions that mimic those found in situ. Important findings included: (1) U(VI) reduction is a biotic process in subsurface sediments. (2) U(VI) reduction can be stimulated most effectively with the addition of acetate. Although it had been speculated that microbial U(VI) reduction might be capable of this type of environmental remediation ever since the discovery of microbial U(VI) reduction, this had not been previously demonstrated under environmentally relevant conditions. (3) U(VI) is reduced concurrently with Fe(III) and prior to sulfate reduction. U(VI) and Fe(III) reduction proceeded concurrently, accompanied by a dramatic enrichment in organisms in the Geobacteraceae. Sulfate-reducing microorganisms do not appear to be important components of the microbial community reducing U(VI) in these subsurface sediments. (4) Nitrate has important influences on U(VI) reduction. Nitrate inhibits the reduction of metals until nitrate is depleted. Fe(III)-reducing microorganisms such as Geobacter metallireducens and Desulfitobacterium species can oxidize Fe(II) with the reduction of nitrate which is an important consideration because our previous studies have demonstrated that freshly precipitated Fe(III) oxides can reoxidize U(IV) to U(VI). The discovery that G. metallireducens can ''run backwards'' and oxidize U(IV) when nitrate is present reveals another mechanism preventing precipitation of U(IV) in the presence of nitrate as well as potential novel strategy for removing uranium from the subsurface after a site has been remediated. (5) Importance of understanding Fe(III) forms available for microbial reduction. Fe(III) is orders of magnitude more abundant than U(VI) as an electron acceptor to support microbial growth. It was demonstrated that poorly crystalline Fe(III) oxides and structural Fe(III) in clays are the predominant forms of microbially reducible Fe(III). Such findings are important for the development of models of Fe(III) reduction in similar aquifer environments, such as those found at many UMTRA sites. (6) Mechanisms for Fe(III) oxide reduction. It was discovered that phylogenetically distinct Fe(III) reducer have different strategies for reducing Fe(III) and the fact that Geobacter species must directly contact Fe(III) in order to reduce it may help explain its predominance over other Fe(III) reducers in the subsurface. (7) Transfer of laboratory results to the field. Results from laboratory studies were used to design a field experiment in which U(VI) reduction was successfully precipitated from the contaminated water with the injection of acetate.

  19. Energy Policy 34 (2006) 32183232 Beyond the learning curve: factors influencing cost reductions

    E-Print Network [OSTI]

    Kammen, Daniel M.

    2006-01-01T23:59:59.000Z

    in photovoltaics Gregory F. NemetĂ Energy and Resources Group, University of California, 310 Barrows Hall 3050 changed more dramatically than photovoltaics (PV), the cost of which has declined by a factor of nearly in the most impor- tant factors--plant size, module efficiency, and the cost of silicon. Ways in which

  20. Advanced human-system interface design review guideline. Evaluation procedures and guidelines for human factors engineering reviews

    SciTech Connect (OSTI)

    O`Hara, J.M.; Brown, W.S. [Brookhaven National Lab., Upton, NY (United States); Baker, C.C.; Welch, D.L.; Granda, T.M.; Vingelis, P.J. [Carlow International Inc., Falls Church, VA (United States)

    1994-07-01T23:59:59.000Z

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator`s overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support. NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use.

  1. Advances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14Scripting for Advanced Workflows Jack

  2. Reduction of Nup107 attenuates the growth factor signaling in the senescent cells

    SciTech Connect (OSTI)

    Kim, Sung Young; Kang, Hyun Tae; Choi, Hae Ri [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)] [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Park, Sang Chul, E-mail: scpark@snu.ac.kr [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2010-10-08T23:59:59.000Z

    Research highlights: {yields} Decreased expression of Nup107 in aged cells and organs. {yields} Depletion of Nup107 results in impaired nuclear translocation of p-ERK. {yields} Depletion of Nup107 affects downstream effectors of ERK signaling. {yields} Depletion of Nup107 inhibits cell proliferation of oligodendroglioma cells. -- Abstract: Hypo-responsiveness to growth factors is a fundamental feature of cellular senescence. In this study, we found markedly decreased level of Nup107, a key scaffold protein in nuclear pore complex assembly, in senescent human diploid fibroblasts as well as in organs of aged mice. Depletion of Nup107 by specific siRNA in young human diploid fibroblasts prevented the effective nuclear translocation of phosphorylated extracellular signal-regulated kinase (ERK) following epidermal growth factor (EGF) stimulation, and decreased the expression of c-Fos in consequence. The disturbances in ERK signaling in Nup107 depleted cells closely mirror the similar changes in senescent cells. Knockdown of Nup107 in anaplastic oligodendroglioma cells caused cell death, rather than growth retardation, indicating a greater sensitivity to Nup107 depletion in cancer cells than in normal cells. These findings support the notion that Nup107 may contribute significantly to the regulation of cell fate in aged and transformed cells by modulating nuclear trafficking of signal molecules.

  3. Advanced Experimental Analysis of Controls on Microbial Fe(III) Oxide Reduction - Final Report - 09/16/1996 - 03/16/2001

    SciTech Connect (OSTI)

    Roden, Eric E.

    2001-03-16T23:59:59.000Z

    Considering the broad influence that microbial Fe(III) oxide reduction can have on subsurface metal/organic contaminant biogeochemistry, understanding the mechanisms that control this process is critical for predicting the behavior and fate of these contaminants in anaerobic subsurface environments. Knowledge of the factors that influence the rates of growth and activity of Fe(III) oxide-reducing bacteria is critical for predicting (i.e., modeling) the long-term influence of these organisms on the fate of contaminants in the subsurface, and for effectively utilizing Fe(III) oxide reduction and associated geochemical affects for the purpose of subsurface metal/organic contamination bioremediation. This research project will refine existing models for microbiological and geochemical controls on Fe(III) oxide reduction, using laboratory reactor systems that mimic, to varying degrees, the physical and chemical conditions of the subsurface. Novel experimental methods for studying the kinetics of microbial Fe(III) oxide reduction and measuring growth rates of Fe(III) oxide-reducing bacteria will be developed. These new methodologies will be directly applicable to studies on subsurface contaminant transformations directly coupled to or influenced by microbial Fe(III) oxide reduction.

  4. 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    ABB CE's Low NOx Bulk Furnace Staging (LNBFS) System and Low NOx Concentric Firing System (LNCFS) are demonstrated in stepwise fashion. These systems incorporate the concept of advanced overfire air (AOFA), clustered coal nozzles, and offset air. A complete description of the installed technologies is provided in the following section. The primary objective of the Plant Lansing Smith demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology are also being performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project.

  5. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO[sub x] burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulatecharacteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO[sub x] emission levels to be approximately 0.65 lb/MBtu. Flyash LOI values for the LNB configuration are approximately 8 percent at full-load. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. Abbreviated diagnostic tests for the LNB+AOFA configuration indicate that at 500 MWe, NO[sub x] emissions are approximately 0.55 lb/MBtu with corresponding flyash LOI values of approximately 11 percent. For comparison, the long-term full-load, baseline NO[sub x] emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB+AOFA configuration will be performed when the stackparticulate emissions issue is resolved. Testing of a process optimization package on Plant Hammond Unit 4 was performed during this quarter. The software was configured to minimize NO[sub x] emissions using total combustion air flow and advanced overfire air distribution as the controlled parameters. Preliminary results from this testing indicate that this package shows promise in reducing NO[sub x] emissions while maintaining or improving other boiler performance parameters.

  6. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Fourth quarterly technical progress report

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

  7. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly report, April 1--June 30, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, the authors have planned a structured program including: Market/process/cost/evaluation; Lab-scale catalyst preparation/optimization studies; Lab-scale, bulk/supported catalyst kinetic studies; Bench-scale catalyst/process studies; and Utility review. Progress is reported from all three organizations.

  8. Human factors engineering evaluation of the Advanced Test Reactor Control Room

    SciTech Connect (OSTI)

    Boone, M.P.; Banks, W.W.

    1980-12-01T23:59:59.000Z

    The information presented here represents preliminary findings related to an ongoing human engineering evaluation of the Advanced Test Reactor (ATR) Control Room. Although many of the problems examined in this report have been previously noted by ATR operations personnel, the systematic approach used in this investigation produced many new insights. While many violations of Human Engineering military standards (MIL-STD) are noted, and numerous recommendations made, the recommendations should be examined cautiously. The reason for our suggested caution lies in the fact that many ATR operators have well over 10-years experience in operating the controls, meters, etc. Hence, it is assumed adaptation to the existing system is quite developed and the introduction of hardware/control changes, even though the changes enhance the system, may cause short-term (or long-term, depending upon the amount of operator experience and training) adjustment problems for operators adapting to the new controls/meters and physical layout.

  9. FED-A, an advanced performance FED based on low safety factor and current drive

    SciTech Connect (OSTI)

    Peng, Y.K.M.; Rutherford, P.H.

    1983-08-01T23:59:59.000Z

    The FED-A study aims to quantify the potential improvement in cost-effectiveness of the Fusion Engineering Device (FED) by assuming low safety factor q (less than 2 as opposed to about 3) at the plasma edge and noninductive current drive (as opposed to only inductive current drive). The FED-A performance objectives are set to be : (1) ignition assuming International Tokamak Reactor (INTOR) plamsa confinement scaling, but still achieving a fusion power amplification Q greater than or equal to 5 when the confinement is degraded by a factor of 2; (2) neutron wall loading of about 1 MW/m/sup 2/, with 0.5 MW/m/sup 2/ as a conservative lower bound; and (3) more clearly power-reactor-like operations, such as steady state.

  10. Advances in Lung Volume

    E-Print Network [OSTI]

    Jones, Michelle

    Advances in Lung Volume Reduction Surgery The Ohio University Medical Center Lung Volume Reduction LungVolumeReductionSurgery Spring 2010 © 2010 The Ohio State University Medical Center ­ 04 Consult Ohio State's #12;The Ohio State University Medical Center Lung Volume Reduction Surgery Patient

  11. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-02-03T23:59:59.000Z

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an Advanced Overfire Air (AOFA) system followed by Low NO{sub x} Burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  12. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-03T23:59:59.000Z

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an Advanced Overfire Air (AOFA) system followed by Low NO{sub x} Burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  13. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{sub x} burners, advanced overfire systems, and digital control system.

  14. A new high performance AC to DC rectifier with input power factor correction and harmonic reduction capacity

    E-Print Network [OSTI]

    Martinez, Roberto

    1994-01-01T23:59:59.000Z

    ]. Unfortunately, the maximum power factor that could be achieved is 0. 763. 0, 9 o. e E 0. 7 ll 0. 6 0. 5 m=0. 79 PF = 0. 763 Disixnt. Mtxte I 8 'o + o 0 0 CI PF Contirucus Mcci III 0, 4 Pn = 0. 052 0. 0001 0, 001 0. 01 0. 1 1 10 100 Pn Fig...

  15. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    SciTech Connect (OSTI)

    Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

    1994-04-01T23:59:59.000Z

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  16. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-11-25T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

  17. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Fourth quarterly technical progress report, [October--December, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    This quarterly report discusses the technical progress of a U. S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, tests of the LNCFS Level III system were conducted to determine the effect that fuel fineness has on NOx emissions and unburned carbon levels. Results showed that changing the fineness of the fuel has almost no effect on NOx emissions; however, unburned carbon levels can be reduced significantly by increasing fuel fineness.

  18. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, VOL. ???, XXXX, DOI:10.1029/, Low cloud reduction in a greenhouse-warmed1

    E-Print Network [OSTI]

    Bretherton, Chris

    -30 son is that the global radiative effect of boundary-layer clouds is an aggregate over many31 large cloud reduction, and they com-11 bine to weaken shortwave cloud radiative effect by over 50%. Large-scale circulation regimes, but the `dynamic' effect of circulation shifts on clouds32 largely cancel out on global

  19. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  20. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1992

    SciTech Connect (OSTI)

    Not Available

    1992-11-25T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

  1. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, first quarter 1992

    SciTech Connect (OSTI)

    Not Available

    1992-05-20T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO{sub x} emissions for each day of long-term testing are presented. The average NO{sub x} emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO{sub x} combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

  2. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-05-20T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO[sub x] emissions for each day of long-term testing are presented. The average NO[sub x] emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO[sub x] combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

  3. Growing the renewable chemicals and advanced biofuels cluster in MN

    E-Print Network [OSTI]

    Levinson, David M.

    Growing the renewable chemicals and advanced biofuels cluster in MN #12;Renewable Chemical Value% Reduction 60% Reduction 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Gasoline Corn Ethanol Advanced Biofuel Cellulosic Biofuel Corn Ethanol 20% GHG Reduction Compared to gasoline: Advanced Biofuel 50% GHG Reduction e

  4. 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report second quarter, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    ABB CE`s Low NOx Bulk Furnace Staging (LNBFS) System and Low NOx Concentric Firing System (LNCFS) are demonstrated in stepwise fashion. These systems incorporate the concept of advanced overfire air (AOFA), clustered coal nozzles, and offset air. A complete description of the installed technologies is provided in the following section. The primary objective of the Plant Lansing Smith demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology are also being performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project.

  5. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Third quarterly progress report, 1992: Innovative Clean Coal Technology (ICCT)

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulatecharacteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO{sub x} emission levels to be approximately 0.65 lb/MBtu. Flyash LOI values for the LNB configuration are approximately 8 percent at full-load. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. Abbreviated diagnostic tests for the LNB+AOFA configuration indicate that at 500 MWe, NO{sub x} emissions are approximately 0.55 lb/MBtu with corresponding flyash LOI values of approximately 11 percent. For comparison, the long-term full-load, baseline NO{sub x} emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB+AOFA configuration will be performed when the stackparticulate emissions issue is resolved. Testing of a process optimization package on Plant Hammond Unit 4 was performed during this quarter. The software was configured to minimize NO{sub x} emissions using total combustion air flow and advanced overfire air distribution as the controlled parameters. Preliminary results from this testing indicate that this package shows promise in reducing NO{sub x} emissions while maintaining or improving other boiler performance parameters.

  6. Accepted Article Preview: Published ahead of advance online publication Transcription Factor/microRNA Axis Blocks Melanoma

    E-Print Network [OSTI]

    Shamir, Ron

    /microRNA Axis Blocks Melanoma Invasion Program by miR-211 Targeting NUAK1 Rachel E Bell, Mehdi Khaled, Dvir Levy, Transcription Factor/microRNA Axis Blocks Melanoma Invasion Program by miR-211 Targeting NUAK1 Blocks Melanoma Invasion Program by miR-211 Targeting NUAK1 Rachel E. Bella,h , Mehdi Khaledb

  7. Advanced byproduct recovery: Direct catalytic reduction of SO{sub 2} to elemental sulfur. First quarterly technical progress report, [October--December 1995

    SciTech Connect (OSTI)

    Benedek, K. [Little (Arthur D.), Inc., Cambridge, MA (United States); Flytzani-Stephanopoulos, M. [Tufts Univ., Medford, MA (United States)

    1996-02-01T23:59:59.000Z

    The team of Arthur D. Little, Tufts University and Engelhard Corporation will be conducting Phase I of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. this catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria or zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an ongoing DOE-sponsored University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicates that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. the performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

  8. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    SciTech Connect (OSTI)

    Noam Lior; Stuart W. Churchill

    2003-10-01T23:59:59.000Z

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at the Gordon Conference on Modern Development in Thermodynamics. The results obtained are very encouraging for the development of the RCSC as a commercial burner for significant reduction of NO{sub x} emissions, and highly warrants further study and development.

  9. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  10. An advanced algorithm for construction of Integral Transport Matrix Method operators using accumulation of single cell coupling factors

    SciTech Connect (OSTI)

    Powell, B. P.; Azmy, Y. Y. [North Carolina State University, Department of Nuclear Engineering, Burlington Engineering Labs, 2500 Stinston Drive, Raleigh, NC 27695 (United States)

    2013-07-01T23:59:59.000Z

    The Integral Transport Matrix Method (ITMM) has been shown to be an effective method for solving the neutron transport equation in large domains on massively parallel architectures. In the limit of very large number of processors, the speed of the algorithm, and its suitability for unstructured meshes, i.e. other than an ordered Cartesian grid, is limited by the construction of four matrix operators required for obtaining the solution in each sub-domain. The existing algorithm used for construction of these matrix operators, termed the differential mesh sweep, is computationally expensive and was developed for a structured grid. This work proposes the use of a new algorithm for construction of these operators based on the construction of a single, fundamental matrix representing the transport of a particle along every possible path throughout the sub-domain mesh. Each of the operators is constructed by multiplying an element of this fundamental matrix by two factors dependent only upon the operator being constructed and on properties of the emitting and incident cells. The ITMM matrix operator construction time for the new algorithm is demonstrated to be shorter than the existing algorithm in all tested cases with both isotropic and anisotropic scattering considered. While also being a more efficient algorithm on a structured Cartesian grid, the new algorithm is promising in its geometric robustness and potential for being applied to an unstructured mesh, with the ultimate goal of application to an unstructured tetrahedral mesh on a massively parallel architecture. (authors)

  11. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal fired boilers. Second quarterly technical progress report, [April--June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO{sub x} emission levels to be approximately 0.65 lb/MBtu with flyash LOI values of approximately 8 percent. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. For comparison, the long-term full-load, baseline NO{sub x} emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB plus AOFA configuration began in May 1993 and is scheduled to end during August 1993. As of June 30, the diagnostic, performance, chemical emissions tests segments for this configuration have been conducted and 29 days of long-term, emissions data collected. Preliminary results from the May--June 1993 tests of the LNB plus AOFA system show that the full load NO{sub x} emissions are approximately 0.42 lb/MBtu with corresponding fly ash LOI values near 8 percent. This is a substantial improvement in both NO{sub x} emissions and LOI values when compared to the results obtained during the February--March 1992 abbreviated testing of this system.

  12. Degradation of Trichloroethylene Using Advanced Reduction Processes

    E-Print Network [OSTI]

    Farzaneh, Hajar

    2014-10-27T23:59:59.000Z

    , photolysis, and photocatalysis. According to their results, the 10 degradation rate decreased by increasing TCE initial concentration whereas, it was increased by increasing the amount of NZLc to a certain value and the rate did not increase further...

  13. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Topical report, LNCFS Levels 1 and 3 test results

    SciTech Connect (OSTI)

    Not Available

    1993-08-17T23:59:59.000Z

    This report presents results from the third phase of an Innovative Clean Coal Technology (ICC-1) project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The purpose of this project was to study the NO{sub x} emissions characteristics of ABB Combustion Engineering`s (ABB CE) Low NO{sub x} Concentric Firing System (LNCFS) Levels I, II, and III. These technologies were installed and tested in a stepwise fashion at Gulf Power Company`s Plant Lansing Smith Unit 2. The objective of this report is to provide the results from Phase III. During that phase, Levels I and III of the ABB C-E Services Low NO{sub x} Concentric Firing System were tested. The LNCFS Level III technology includes separated overfire air, close coupled overfire air, clustered coal nozzles, flame attachment coal nozzle tips, and concentric firing. The LNCFS Level I was simulated by closing the separated overfire air nozzles of the LNCFS Level III system. Based upon long-term data, LNCFS Level HI reduced NO{sub x} emissions by 45 percent at full load. LOI levels with LNCFS Level III increased slightly, however, tests showed that LOI levels with LNCFS Level III were highly dependent upon coal fineness. After correcting for leakage air through the separated overfire air system, the simulated LNCFS Level I reduced NO{sub x} emissions by 37 percent. There was no increase in LOI with LNCFS Level I.

  14. Low Temperature Combustion and Diesel Emission Reduction Research

    Broader source: Energy.gov (indexed) [DOE]

    Compression ratio control Enablers: Advanced controls Variable Valve Timing Two-stage turbo-charging CoolingEGR Two stage combustion Fuel CN reduction Vaporization too slow...

  15. Determination of vapor-liquid equilibrium data and decontamination factors needed for the development of evaporator technology for use in volume reduction of radioactive waste streams

    SciTech Connect (OSTI)

    Betts, S.E. [California Univ., Santa Barbara, CA (United States)

    1993-10-01T23:59:59.000Z

    A program is currently in progress at Argonne National Laboratory to evaluate and develop evaporator technology for concentrating radioactive waste streams. By concentrating radioactive waste streams, disposal costs can be significantly reduced. To effectively reduce the volume of waste, the evaporator must achieve high decontamination factors so that the distillate is sufficiently free of radioactive material. One technology that shows a great deal of potential for this application is being developed by LICON, Inc. In this program, Argonne plans to apply LICON`s evaporator designs to the processing of radioactive solutions. Concepts that need to be incorporated into the design of the evaporator include, criticality safety, remote operation and maintenance, and materials of construction. To design an effective process for concentrating waste streams, both solubility and vapor-liquid equilibrium data are needed. The key issue, however, is the high decontamination factors that have been demonstrated by this equipment. Two major contributions were made to this project. First, a literature survey was completed to obtain available solubility and vapor-liquid equilibrium data. Some vapor-liquid data necessary for the project but not available in the literature was obtained experimentally. Second, the decontamination factor for the evaporator was determined using neutron activation analysis (NAA).

  16. The Central Ohio Chapter, an affiliate of the Human Factors and Ergonomics Society, was formed in 1987. Its purpose is to promote and advance the understanding of the human factors involved in the design, manufacture,

    E-Print Network [OSTI]

    Sommerich, Carolyn M.

    The Central Ohio Chapter, an affiliate of the Human Factors and Ergonomics Society, was formed person who is a member of the national Human Factors and Ergonomics Society. Members in good standing: "Human Factors and Ergonomics ­ Central Ohio" Mail your application to: Human Factors and Ergonomics

  17. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction...

  18. Advanced Characterization of Particles and Particle-Cell Interactions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization of Particles and Particle-Cell Interactions Advanced Characterization of Particles and Particle-Cell Interactions 2004 Diesel Engine Emissions Reduction (DEER)...

  19. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Factors CO2 Emission factor for grid electricity (tonnePotential for Electricity Saving and CO2 Emission Reduction

  20. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  1. Dynamic reduction, Version 1. 0

    SciTech Connect (OSTI)

    Rogers, G.J.; Wong, D.Y.; Ottevangers, J.; Wang, L. (Ontario Hydro, Toronto, ON (Canada))

    1993-04-01T23:59:59.000Z

    This report describes the theoretical background of the EPRI Dynamic Reduction DYNRED V 1.0. EPRI initiated research under project RP763 to develop the original reduction program DYNEQU. This program was the first to be based on the concept of aggregating of coherent groups of synchronous generators into a single equivalent generator model. While technically advanced, DYNEQU proved difficult to use. Since then, the stability problems encountered in power system planning and operations have changed. The emphasis on first swing transient stability has been replaced by emphasis on inter-area oscillations and voltage stability. The method of identification of coherent generators used in DYNEQU is based on the comparison of rotor angle swings, in a linearized system model, following a fault. It has been shown that this method of coherency identification is good for first swing stability. For inter-area oscillation studies, this method of generator aggregation is less accurate. Far better, are identification methods based on the structure of the power system. Because of these changes in the requirements for reduced order power system models, a new dynamic reduction program (DYNRED) has been developed under EPRI project RP2447-1. It is coherency based, as is DYNEQU, but it has structurally based coherency identification methods in addition to the method used in DYNEQU. This report describes the techniques used in DYNRED, that is: Coherency Identification; Network Reduction; Method of Aggregation, Generator Aggregation, Excitation Aggregation, Primemover/Governor Aggregation. An example of the application of DYNRED to the reduction of a large interconnected power system model is also presented. DYNRED uses the special modeling and network solution techniques developed to enable systems having up to 12,000 bus to be studied. Dynamic data is completely compatible between MASS, PEALS, and the EPRI Extended Transient Midterm Stability Program (ETMSP).

  2. Highway noise reduction by barrier walls

    E-Print Network [OSTI]

    Young, Murray F

    1971-01-01T23:59:59.000Z

    's Variables 3. Noise Reduction and Noise Reduction Factor 4. Relationship Between Noise Attenuation and d 5. Rettinger's Variables 6. Relationship of Sound-Level Reduction and v 7. Basic Principles in Sound-Transmission Loss 8. The Mass Law Relationship... that the barrier wall is acoustically opaque (i. e. , impermeable to sound waves). Purcell (8) found that the noise transmission loss of a wall was a measure of the ratio of the acoustical energy transmitted through the wall to the acoustical energy incident...

  3. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2008-08-05T23:59:59.000Z

    Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

  4. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R. [NETL

    2013-03-11T23:59:59.000Z

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  5. Un-reduction

    E-Print Network [OSTI]

    Martins Bruveris; David C. P. Ellis; Francois Gay-Balmaz; Darryl D. Holm

    2015-04-08T23:59:59.000Z

    This paper provides a full geometric development of a new technique called un-reduction, for dealing with dynamics and optimal control problems posed on spaces that are unwieldy for numerical implementation. The technique, which was originally concieved for an application to image dynamics, uses Lagrangian reduction by symmetry in reverse. A deeper understanding of un-reduction leads to new developments in image matching which serve to illustrate the mathematical power of the technique.

  6. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power and TransmissionAdolphusAdvanced Energy

  7. Develop & Demonstrate an Advanced Low Temp Heat Recovery Absorption...

    Broader source: Energy.gov (indexed) [DOE]

    million tons of CO 2e reduction per year. The Advanced Low Temperature Heat Recovery Absorption Chiller Module will provide the next level of performance and economics that could...

  8. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01T23:59:59.000Z

    Model Inputs Emissions Factors CO2 Emission factor for grid tonne CO2/MWh)  CO2 Emission factor for fuel  (tonne CO2/TJ)Improvements and CO2 Emission Reduction Potentials in the

  9. Trace Reduction for Virtual Memory Simulations Scott F. Kaplan, Yannis Smaragdakis, and Paul R. Wilson

    E-Print Network [OSTI]

    Smaragdakis, Yannis

    reduction techniques. In this paper we present two new algorithms for trace re- duction | Safely AllowedTrace Reduction for Virtual Memory Simulations Scott F. Kaplan, Yannis Smaragdakis, and Paul R Drop SAD and Optimal LRU Reduction OLR. Both achieve high reduction factors and guarantee exact

  10. Trace Reduction for Virtual Memory Simulations Scott F. Kaplan, Yannis Smaragdakis, and Paul R. Wilson \\Lambda

    E-Print Network [OSTI]

    Kaplan, Scott

    reduction techniques. In this paper we present two new algorithms for trace re­ duction --- Safely AllowedTrace Reduction for Virtual Memory Simulations Scott F. Kaplan, Yannis Smaragdakis, and Paul R Drop (SAD) and Optimal LRU Reduction (OLR). Both achieve high reduction factors and guarantee exact

  11. Trace Reduction for Virtual Memory Simulations Scott F. Kaplan, Yannis Smaragdakis, and Paul R. Wilson

    E-Print Network [OSTI]

    Kaplan, Scott

    reduction techniques. In this paper we present two new algorithms for trace re- duction | Safely AllowedTrace Reduction for Virtual Memory Simulations Scott F. Kaplan, Yannis Smaragdakis, and Paul R Drop (SAD) and Optimal LRU Reduction (OLR). Both achieve high reduction factors and guarantee exact

  12. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect (OSTI)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01T23:59:59.000Z

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  13. Advances in Energy Reduction in Methanol Plant Design

    E-Print Network [OSTI]

    Huggins, P. J.; Griffiths, G. W.

    1982-01-01T23:59:59.000Z

    process us s a patented type of quench reactor where the r se in temperature caused by the exothermic syntheis reactions is controlled by injection of col~ gas, from the circulation compressor discharge, .t various levels within the catalyst bed. i i... synthesis,lis controlled or 'quenched' at the exit of eac! bed by the introduction of cold fresh feed. Th split of circulation gas to the reactor between c ld quench gas and hot feed gas (which has to b heated to reaction temperatures) was about ffiO/40...

  14. Degradation of Selenocyanate with an Advanced Reduction Process(ARP)

    E-Print Network [OSTI]

    Luo, Guofan

    2014-08-05T23:59:59.000Z

    Selenocyanate (SeCN^(-)) is a common form of selenium contamination in refinery and mining wastewater generated from processing oil or minerals from seleniferous formations such as marine shales. Humans who drink water containing selenium over...

  15. Advanced Reduction Processes - A New Class of Treatment Processes

    E-Print Network [OSTI]

    Vellanki, Bhanu Prakash

    2012-10-19T23:59:59.000Z

    .86. ......................................................... 39 Figure 3-7: Sulfite (0.0159 M) absorption spectra at different pH. ................................. 40 Figure 3-8: Perchlorate degradation by sulfite/UV-L at various pH (8 mW/cm2, 11 mM sulfite concentration, without air circulation, T=38o... C). .................. 47 Figure 3-9: Perchlorate degradation by sulfite/UV-L at various pH (7 mW/cm2, 11 mM sulfite concentration, with air circulation, T? 28o C). ...................... 48 Figure 3-10: First-order rate constants...

  16. FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |Exelon GenerationExtraction Utility792 206FISCALin

  17. Chromium isotopes as indicators of hexavalent chromium reduction

    SciTech Connect (OSTI)

    Johnson, Thomas M.

    2012-03-20T23:59:59.000Z

    This is the final report for a university research project which advanced development of a new technology for identifying chemical reduction of hexavalent chromium contamination in groundwater systems. Reduction renders mobile and toxic hexavalent chromium immobile and less toxic. The new method uses stable isotope ratio measurements, which are made using multicollector ICP-mass spectrometry. The main objectives of this project were completed during the project period and two peer-reviewed articles were published to disseminate the information gained.

  18. Advertise Subscribe Log in Register Advanced search

    E-Print Network [OSTI]

    Advertise Subscribe Log in Register Advanced search Home News Comment Special reports People power Europe does not need nuclear power to meet its future energy needs. Question of nuclear subsidies-reduction target would be better. Blowing away nuclear power Europe does not need nuclear power to meet its future

  19. Assessment of Demand Response and Advanced Metering

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    #12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

  20. advanced energy design: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced energy design First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Advances in Energy Reduction in...

  1. Geothermal: Advanced Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You...

  2. REDUCTIONS WITHOUT REGRET: SUMMARY

    SciTech Connect (OSTI)

    Swegle, J.; Tincher, D.

    2013-09-16T23:59:59.000Z

    This paper briefly summarizes the series in which we consider the possibilities for losing, or compromising, key capabilities of the U.S. nuclear force in the face of modernization and reductions. The first of the three papers takes an historical perspective, considering capabilities that were eliminated in past force reductions. The second paper is our attempt to define the needed capabilities looking forward in the context of the current framework for force modernization and the current picture of the evolving challenges of deterrence and assurance. The third paper then provides an example for each of our undesirable outcomes: the creation of roach motels, box canyons, and wrong turns.

  3. Dose reduction at nuclear power plants

    SciTech Connect (OSTI)

    Baum, J.W.; Dionne, B.J.

    1983-01-01T23:59:59.000Z

    The collective dose equivalent at nuclear power plants increased from 1250 rem in 1969 to nearly 54,000 rem in 1980. This rise is attributable primarily to an increase in nuclear generated power from 1289 MW-y to 29,155 MW-y; and secondly, to increased average plant age. However, considerable variation in exposure occurs from plant to plant depending on plant type, refueling, maintenance, etc. In order to understand the factors influencing these differences, an investigation was initiated to study dose-reduction techniques and effectiveness of as low as reasonably achievable (ALARA) planning at light water plants. Objectives are to: identify high-dose maintenance tasks and related dose-reduction techniques; investigate utilization of high-reliability, low-maintenance equipment; recommend improved radioactive waste handling equipment and procedures; examine incentives for dose reduction; and compile an ALARA handbook.

  4. Influence of Biogenic Fe(II) on the Extent of Microbial Reduction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    indicating that other factors, such as blockage of the electron transfer chain and mineralogy, restricted the reduction extent. This study also revealed that the relative...

  5. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger [University of Arizona

    2014-12-17T23:59:59.000Z

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

  6. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Joesph Fadok

    2008-01-01T23:59:59.000Z

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

  7. Carbon Reduction Analysis and Action Using the CoolClimate Version date: 12/17/2009

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Carbon Reduction Analysis and Action Using the CoolClimate Calculator Version date: 12 of publication. Recommended citation: Cuitation: Jones, C.M. and Kammen, D.M. (2009.) Carbon Reduction Analysis research and development of advanced carbon footprint management tools for U.S. households, small

  8. A technique optimization protocol and the potential for dose reduction in digital mammography

    E-Print Network [OSTI]

    A technique optimization protocol and the potential for dose reduction in digital mammography for a digital mammography system and demonstrate the potential for dose reduction in comparison Nicole T. Rangera Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Duke University

  9. Aluminum reduction cell electrode

    DOE Patents [OSTI]

    Goodnow, W.H.; Payne, J.R.

    1982-09-14T23:59:59.000Z

    The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB[sub 2], for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints. 9 figs.

  10. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Iron and Steel Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01T23:59:59.000Z

    Efficiency Improvement and CO2 Emission Reduction PotentialsModel Inputs Emissions Factors CO2 Emission factor for grid electricity (tonne CO2/MWh)  CO2 Emission factor for fuel (

  11. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

    2012-01-01T23:59:59.000Z

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  12. The Garching-Bonn Deep Survey (GaBoDS) Wide-Field-Imaging Reduction Pipeline

    E-Print Network [OSTI]

    H. Hildebrandt; T. Erben; M. Schirmer; J. P. Dietrich; P. Schneider

    2007-05-03T23:59:59.000Z

    We introduce our publicly available Wide-Field-Imaging reduction pipeline THELI. The procedures applied for the efficient pre-reduction and astrometric calibration are presented. A special emphasis is put on the methods applied to the photometric calibration. As a test case the reduction of optical data from the ESO Deep Public Survey including the WFI-GOODS data is described. The end-products of this project are now available via the ESO archive Advanced Data Products section.

  13. Forest Fuels ReductionForest Fuels Reduction Department of

    E-Print Network [OSTI]

    Bolding, M. Chad

    the initial fuels reduction treatments leave the site with regard to long-term forest vegetation and soil are the productivity and cost rates for alternative choices of equipment for mechanical fuels reduction; what reduction operations for existing markets and new markets? (eg. biomass energy) Research Rationale

  14. ASSESSING THE LIQUEFACTION RISK REDUCTION OF REINFORCED SOILS: A HOMOGENIZATION APPROACH

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    liquefaction risk reduction factor. Then section 4 develops the same evaluation for a cross trench reinforcedASSESSING THE LIQUEFACTION RISK REDUCTION OF REINFORCED SOILS: A HOMOGENIZATION APPROACH Maxime for the reduction of the liquefaction risk, which can be expected from reinforcing the soil by a periodic array

  15. Comparison of Global Optimization Methods for Drag Reduction in the Automotive Industry

    E-Print Network [OSTI]

    Dumas, Laurent

    Comparison of Global Optimization Methods for Drag Reduction in the Automotive Industry Laurent reduction problems in the automotive industry. All the methods consist in improving classical genetic of a GA is reduced by a factor up to 7. 1 Introduction The topic of drag reduction in the automotive

  16. Institute for ADVANCED STUDY

    E-Print Network [OSTI]

    OF EVENTS 91 · REPORT OF THE INSTITUTE LIBRARIES 93 · INSTITUTE FOR ADVANCED STUDY/PARK CITY MATHEMATICS. The Institute for Advanced Study has sustained this founding principle for more than sixty-five years

  17. Institute Jor ADVANCED STUDY

    E-Print Network [OSTI]

    for advanced study HELENE L. KAPLAN Of Counsel Skiiddcn Arps Slate Meagher & Flam PETER R. KANN Chairman

  18. Italian Academy Advanced Studies

    E-Print Network [OSTI]

    Qian, Ning

    The Italian Academy for Advanced Studies in America at Columbia University Annual Report 2006­2007 The Italian Academy for Advanced Studies in America at Columbia University Annual Report 2006­2007 #12;italian academy for advanced studies in america 1161 Amsterdam Avenue New York, NY 10027 tel: (212) 854-2306 fax

  19. Inert anodes and advanced smelting of aluminum

    SciTech Connect (OSTI)

    ASME Technical Working Group on Inert Anode Technologies

    1999-07-01T23:59:59.000Z

    This report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issued associated with these technologies from a technical, environmental, and economic viewpoint. It discusses the outlook for the direct retrofit of advanced reduction technologies to existing aluminum smelters, and compares retrofits to ''brown field'' usage and ''green field'' adoption of the technologies. A number of observations and recommendations are offered for consideration concerning further research and development efforts that may be directed toward these advanced technologies. The opportunities are discussed in the context of incremental progress that is being made in conventional Hall-Heroult cell systems.

  20. Geothermal: Sponsored by OSTI -- Geothermal Plant Capacity Factors

    Office of Scientific and Technical Information (OSTI)

    Plant Capacity Factors Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related...

  1. Vehicle Technologies Office: National Idling Reduction Network...

    Office of Environmental Management (EM)

    Idling Reduction Network News Archives Vehicle Technologies Office: National Idling Reduction Network News Archives The National Idling Reduction Network brings together trucking...

  2. Aluminum reduction cell electrode

    DOE Patents [OSTI]

    Payne, J.R.

    1983-09-20T23:59:59.000Z

    The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces. 10 figs.

  3. Dose Reduction Techniques

    SciTech Connect (OSTI)

    WAGGONER, L.O.

    2000-05-16T23:59:59.000Z

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  4. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect (OSTI)

    Bai, Xuemei [Cellana LLC; Sabarsky, Martin

    2013-09-30T23:59:59.000Z

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  5. Advanced Powerhouse Controls Save Pulp Mill $500 in Purchased Energy in First Month

    E-Print Network [OSTI]

    Morrison, R.; Hilder, S.

    2004-01-01T23:59:59.000Z

    This case study describes the application of advanced regulatory and supervisory controls to powerhouse operations at a large pulp mill in central British Columbia. Substantial reductions in mill operating costs were achieved by actively managing...

  6. Large Wind Property Tax Reduction

    Broader source: Energy.gov [DOE]

    In 2001, North Dakota established property tax reductions for commercial wind turbines constructed before 2011. Originally, the law reduced the taxable value of centrally-assessed* wind turbines...

  7. Advanced Turbine Systems (ATS): Phase 1 system scoping and feasibility studies

    SciTech Connect (OSTI)

    White, D.J.

    1993-04-15T23:59:59.000Z

    As part of this involvement Solar intends to design and commercialize a unique gas turbine system that promises high cycle efficiencies and low exhaust emissions. This engine of approximately 12-MW will be targeted for the dispersed power markets both urban and rural. Goals of 50% thermal efficiency and 8 parts-per-million by volume (ppmv) nitrogen oxide emissions were established. Reliability, availability, and maintainability (RAM) will continue to be the most important factors in the competitive marketplace. The other major goal adopted was one of reducing the cost of power produced by 10%. This reduction is based on the cost of power (COP) associated with today`s engines that lie in the same horsepower range as that targeted in this study. An advanced cycle based on an approximation of the Ericsson Cycle was adopted after careful studies of a number of different cycles. This advanced intercooled, recuperated engine when fired at 2450{degree}F will be capable of meeting the 50% efficiency goal if the cooling air requirements do not exceed 7% of the total air flow rate. This latter qualification will probably dictate the use of ceramic parts for both the nozzle guide vanes and the turbine blades. Cooling of these parts will probably be required and the 7% cooling flow allowance is thought to be adequate for such materials. Analyses of the cost of power and RAM goals show that the installed cost of this advanced engine can be approximately 50% above today`s costs. This cost is based on $4.00 per million Btu fuel and a COP reduction of 10% while maintaining the same RAM as today`s engines.

  8. Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Document states additional...

  9. Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on...

  10. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations Waste Characterization, Reduction, and Repackaging Facility (WCRRF)...

  11. Economics of Grade Reduction

    E-Print Network [OSTI]

    Neff, Paul J.

    1914-02-10T23:59:59.000Z

    Fig. C - Curves of Moan Effective Pressure.... —Follows Page No. 201 Fig. D - Speed Factor Curves --Follows Pago No. 203 Fig. E - Curves of M.E.P. Compound Engines.... --Follows page Ho. 208 Fig. G - Typical Profile Showing Velocity Grades... #84 of A. R. E. A. Mr* A* M. Wellington-Book-"Railway Location.* Mr. G. R. Henderson-Book-"Locomotive Operation." Prof. &* Webb-Book-"Economics of Railroad Con- struction* Mr. Edward C. SchmIdt~"FreIght Train Resistance*" Published as University...

  12. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Accelerated Reliability Test Battery Electric Vehicle Fast Charge Test Battery Energy Storage Performance Test For DC Fast Charge Demand Reduction...

  13. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced-Rooftop-Unit-Control Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  14. DOE Advanced Protection Project

    Broader source: Energy.gov (indexed) [DOE]

    protection logic in each relay 17 Copyright 2010, Southern California Edison Advanced Protection on the System of the Future * Use fault-interrupting switches with relays...

  15. Advanced Studies Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Institute Advanced Studies Institute Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff...

  16. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Thermal Control Technologies Advanced Vehicle Systems Technology Transfer Jet Cooling Alternative Coolants TIM Low R Structure Phase Change Spray Cooling Air Cooling...

  17. Advanced Propulsion Technology Strategy

    Broader source: Energy.gov (indexed) [DOE]

    Alternative Sources) Hydrogen Time ADVANCED PROPULSION TECHNOLOGY STRATEGY DOWNSIZED TURBO GAS ENGINE CHEVROLET CRUZE 1.4L TURBO ECOTEC Downsized SIDI Turbo Boosting HCCI -...

  18. Environmental Sustainability Paper Usage / Reduction

    E-Print Network [OSTI]

    ;carbon footprint and develop carbon reduction projects around IT and staff/student behaviour change is supported by the Environmental Sustainability Manager and is seen as a key link to the University's Carbon Management Programme (e.g. to produce a forecast of carbon reductions as required by the Carbon Trust

  19. Comprehensive Poverty Reduction Strategies in

    E-Print Network [OSTI]

    Peak, Derek

    Comprehensive Poverty Reduction Strategies in Canada: Policy or Window Dressing? Charles Plante, Upstream: Institute for a Healthy Society #12;Overview What is poverty? Current state of poverty in Saskatchewan What is a Comprehensive Poverty Reduction Strategy (CPRS)? Are CPRS effective at reducing

  20. Reduction potentials of vesicle-bound viologens

    SciTech Connect (OSTI)

    Yabin Lei; Hurst, J.K. (Oregon Graduate Inst. of Science and Technology, Beaverton (United States))

    1991-10-03T23:59:59.000Z

    Thermodynamic reduction potentials have been determined by using spectroelectrochemical and cyclic voltammetric methods for a homologous series of amphiphilic ciologens (N-methyl-N{prime}-alkyl-4,4{prime}-bipyridinium ions, C{sub n}MV{sup 2+}) in a variety of media, including dihexadecyl phosphate (DHP), dioctadecylimethylammonium, and phosphatidylcholine small unilamellar vesicles. In general, potentials for both one-electron steps, i.e., C{sub n}MV{sup 2+} + e{sup {minus}} {yields} C{sub n}MV{sup +} and C{sub n}MV{sup +} + e{sup {minus}} {yields} C{sub n}MV{sup 0}, were insensitive to the alkyl chain length, which was varied over the range n = 6{minus}20. The single exception was a large decrease ({approximately}100 mV) in the first reduction potential for DHP-bound viologens when the chain length was increased from n = 10 to n = 12; this effect was attributed to a change in binding topography. The magnitudes of the reduction potentials were highly dependent upon the vesicle charge; the pattern observed indicated that interfacial electrostatic interactions between the surfactant headgroups and bipyridinium rings were the dominant factors determining the potentials. As discussed in the text, the data allow resolution of several heretofore puzzling observations concerning viologen reactivities in microphase suspensions.

  1. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  2. Kansas Advanced Semiconductor Project

    SciTech Connect (OSTI)

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21T23:59:59.000Z

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  3. Projection-based model reduction for contact problems

    E-Print Network [OSTI]

    Balajewicz, Maciej; Farhat, Charbel

    2015-01-01T23:59:59.000Z

    Large scale finite element analysis requires model order reduction for computationally expensive applications such as optimization, parametric studies and control design. Although model reduction for nonlinear problems is an active area of research, a major hurdle is modeling and approximating contact problems. This manuscript introduces a projection-based model reduction approach for static and dynamic contact problems. In this approach, non-negative matrix factorization is utilized to optimally compress and strongly enforce positivity of contact forces in training simulation snapshots. Moreover, a greedy algorithm coupled with an error indicator is developed to efficiently construct parametrically robust low-order models. The proposed approach is successfully demonstrated for the model reduction of several two-dimensional elliptic and hyperbolic obstacle and self contact problems.

  4. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Efficiency Improvement and CO2 Emission Reduction Potentialsand Its Impact on CO2 Emission," Iron & Steel, 2010, 45(5):Emissions Factors CO2 Emission factor for grid electricity (

  5. Radiation Chemistry of Advanced TALSPEAK Flowsheet

    SciTech Connect (OSTI)

    Mincher, Bruce; Peterman, Dean; Mcdowell, Rocklan; Olson, Lonnie; Lumetta, Gregg J.

    2013-08-28T23:59:59.000Z

    This report summarizes the results of initial experiments designed to understand the radiation chemistry of an Advanced TALSPEAK process for separating trivalent lanthanides form the actinides. Biphasic aerated samples were irradiated and then analyzed for post-irradiation constituent concentrations and solvent extraction distribution ratios. The effects of irradiation on the TALSPEAK and Advanced TALSPEAK solvents were similar, with very little degradation of the organic phase extractant. Decomposition products were detected, with a major product in common for both solvents. This product may be responsible for the slight increase in distribution ratios for Eu and Am with absorbed dose, however; separation factors were not greatly affected.

  6. Active load management with advanced window wall systems: Research and industry perspectives

    SciTech Connect (OSTI)

    Lee, Eleanor S.; Selkowitz, Stephen E.; Levi, Mark S.; Blanc, Steven L.; McConahey, Erin; McClintock, Maurya; Hakkarainen, Pekka; Sbar, Neil L.; Myser, Michael P.

    2002-06-01T23:59:59.000Z

    Advanced window wall systems have the potential to provide demand response by reducing peak electric loads by 20-30% in many commercial buildings through the active control of motorized shading systems, switchable window coatings, operable windows, and ventilated double-skin facade systems. These window strategies involve balancing daylighting and solar heat gains, heat rejection through ventilation, and night-time natural ventilation to achieve space-conditioning and lighting energy use reductions without the negative impacts on occupants associated with other demand responsive (DR) strategies. This paper explores conceptually how advanced window systems fit into the context of active load management programs, which cause customers to directly experience the time-varying costs of their consumption decisions. Technological options are suggested. We present pragmatic criteria that building owners use to determine whether to deploy such strategies. A utility's perspective is given. Industry also provides their perspectives on where the technology is today and what needs to happen to implement such strategies more broadly in the US. While there is significant potential for these advanced window concepts, widespread deployment is unlikely to occur with business-as-usual practice. Technologically, integrated window-lighting-HVAC products are underdeveloped. Implementation is hindered by fragmented labor practices, non-standard communication protocols, and lack of technical expertise. Design tools and information products that quantify energy performance, occupant impacts, reliability, and other pragmatic concerns are not available. Interest within the building industry in sustainability, energy-efficiency, and increased occupant amenity, comfort, and productivity will be the driving factors for these advanced facades in the near term--at least until the dust settles on the deregulated electricity market.

  7. Identification of potential sources and source regions of fine ambient particles measured at Gosan background site in Korea using advanced hybrid receptor model combined with positive matrix factorization - article no. D22217

    SciTech Connect (OSTI)

    Han, J.S.; Moon, K.J.; Kim, Y.J. [National Institute of Environmental Research, Inchon (Republic of Korea). Dept. of Air Quality Research

    2006-11-15T23:59:59.000Z

    The size- and time-resolved measurement of particulate trace elements was made using an eight-stage Davis Rotating Unit for Monitoring sampler and synchrotron X-ray fluorescence system from 29 March to 29 May in 2002 at Gosan, Korea, which is one of the representative background sites in east Asia. A sa result, continuous 3-hour average concentrations were obtained for 19 elements including S, Si, Al, Fe, Ca, Cl, Cu, Zn, Ti, K, Mn, Pb, Ni, V, Se, As, Rb, Cr, and Br. Positive matrix factorization (PMF) method was applied to the size-resolved aerosol data sets in order to identify the possible sources and to estimate their contribution to particulate matter mass in each size range. Twelve sources were then resolved in the fine size range ( 0.07 to 1.15 {mu}m), including continental aerosol, biomass burning, coal combustion, oil heating furnace, residual oil-fired boiler, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, copper smelter, and volcanic emission. A newly developed hybrid receptor model, concentration, retention time, and source emission weighted trajectory (CRSWT) was then applied to the source intensities derived from the PMF analysis by incorporating meteorological and source inventory information of the study region in order to suggest the regional information of long-range transported fine aerosol sources. The CRSWT model was able to resolve highly potential source areas and pathways for the fine ambient aerosol at the Gosan background site.

  8. advanced reactors advanced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  9. advanced ceramics advanced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  10. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  11. Nevada State Energy Reduction Plan

    Broader source: Energy.gov [DOE]

    As mandated by the Nevada statutes, the Nevada Energy Office prepared a state energy reduction plan which requires state agencies, departments, and other entities in the Executive Branch to reduce...

  12. NOx Reduction through Efficiency Gain 

    E-Print Network [OSTI]

    Benz, R.; Thompson, R.; Staedter, M.

    2007-01-01T23:59:59.000Z

    with a novel control design to deliver a comprehensive boiler controls retrofit that provides reductions in emissions as well as substantial cost savings. Combining mechanical engineering expertise with substantial experience in control engineering...

  13. Economics of Steam Pressure Reduction

    E-Print Network [OSTI]

    Sylva, D. M.

    Economics of Steam Pressure Reduction is a technical paper that addresses the operating and economic advantages associated with the program to lower the steam operating pressure. Evaluation of a testing program will be discussed. The paper...

  14. Renewable Chemicals and Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

  15. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials SHARE Advanced Materials ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of...

  16. Institute /or ADVANCED STUDY

    E-Print Network [OSTI]

    OF THE INSTITUTE LIBRARIES 63 INSTITUTE FOR ADVANCED STUDY/PARK CITY MATHEMATICS INSTITUTE 66 · MENTORING PROGRAM sustained and has yielded an unsurpassed record of definitive scholarship. Although small in scale

  17. Institute for ADVANCED STUDY

    E-Print Network [OSTI]

    · PROGRAM IN THEORETICAL BIOLOGY 103 · REPORT OF THE INSTITUTE LIBRARIES 107 INSTITUTE FOR ADVANCED STUDY Study has sustained its founding principle for seventy years. This com- mitment his yielded

  18. The Advanced Manufacturing Partnership

    E-Print Network [OSTI]

    Das, Suman

    ;ve Manufacturing Technologies (led by Dow, Honeywell and MIT) Manufacturing Ins;tutes (led, Honeywell and MIT GOALS § To launch public-private ini:a:ves to advance transforma

  19. Advanced Review Geometry optimization

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Advanced Review Geometry optimization H. Bernhard Schlegel Geometry optimization is an important part of most quantum chemical calcu- lations. This article surveys methods for optimizing equilibrium geometries, lo- cating transition structures, and following reaction paths. The emphasis is on optimizations

  20. Advanced Energy Design Guides

    Energy Savers [EERE]

    hotels up to 80 rooms and 4 stories Advanced Energy Design Guide for Small Hospitals and Health- care Facilities ASHE, ASHRAE, AIA, IES, USGBC, DOE Small healthcare facilities up...

  1. Prospects for an advanced Kennedy-Thorndike experiment in low Earth orbit

    E-Print Network [OSTI]

    J. A. Lipa; S. Buchman; S. Saraf; J. Zhou; A. Alfauwaz; J. Conklin; G. D. Cutler; R. L. Byer

    2012-03-18T23:59:59.000Z

    We discuss the potential for a small space mission to perform an advanced Kennedy-Thorndike test of Special Relativity using the large and rapid velocity modulation available in low Earth orbit. An improvement factor of ~100 over present ground results is expected, with an additional factor of 10 possible using more advanced technology.

  2. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as Reductants Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx...

  3. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants...

  4. Facile and controllable electrochemical reduction of graphene...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and controllable electrochemical reduction of graphene oxide and its applications. Facile and controllable electrochemical reduction of graphene oxide and its applications....

  5. Characterizing Test Methods and Emissions Reduction Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Methods and Emissions Reduction Performance of In-Use Diesel Retrofit Technologies from the National Clean Diesel Campaign Characterizing Test Methods and Emissions Reduction...

  6. Plasma-assisted catalytic reduction system

    DOE Patents [OSTI]

    Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

    1998-01-27T23:59:59.000Z

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

  7. Electrocatalytic Reactivity for Oxygen Reduction of Palladium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactivity for Oxygen Reduction of Palladium-Modified Carbon Nanotubes Synthesized in Supercritical Fluid. Electrocatalytic Reactivity for Oxygen Reduction of Palladium-Modified...

  8. Sequential high temperature reduction, low temperature hydrolysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high temperature reduction, low temperature hydrolysis for the regeneration of sulfated NOx trap catalysts. Sequential high temperature reduction, low temperature hydrolysis for...

  9. Demonstrating Fuel Consumption and Emissions Reductions with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Demonstrating Fuel Consumption and Emissions Reductions with Next Generation...

  10. Microbial reduction of iron ore

    DOE Patents [OSTI]

    Hoffmann, Michael R. (Pasadena, CA); Arnold, Robert G. (Pasadena, CA); Stephanopoulos, Gregory (Pasadena, CA)

    1989-01-01T23:59:59.000Z

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  11. Microbial reduction of iron ore

    DOE Patents [OSTI]

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14T23:59:59.000Z

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  12. Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems

    SciTech Connect (OSTI)

    Escola, George

    2007-01-17T23:59:59.000Z

    Recuperators have been identified as key components of advanced gas turbines systems that achieve a measure of improvement in operating efficiency and lead the field in achieving very low emissions. Every gas turbine manufacturer that is studying, developing, or commercializing advanced recuperated gas turbine cycles requests that recuperators operate at higher temperature without a reduction in design life and must cost less. The Solar Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems Program is directed towards meeting the future requirements of advanced gas turbine systems by the following: (1) The development of advanced alloys that will allow recuperator inlet exhaust gas temperatures to increase without significant cost increase. (2) Further characterization of the creep and oxidation (dry and humid air) properties of nickel alloy foils (less than 0.13 mm thick) to allow the economical use of these materials. (3) Increasing the use of advanced robotic systems and advanced in-process statistical measurement systems.

  13. Advanced Modular Inverter Technology Development

    SciTech Connect (OSTI)

    Adam Szczepanek

    2006-02-04T23:59:59.000Z

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

  14. Advanced Worker Protection System

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    The Advanced Worker Protection System (AWPS) is a liquid-air-based, self-contained breathing and cooling system with a duration of 2 hrs. AWPS employs a patented system developed by Oceaneering Space Systems (OSS), and was demonstrated at their facility in Houston, TX as well as at Kansas State University, Manhattan. The heart of the system is the life-support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack is combined with advanced protective garments, an advanced liquid cooling garment (LCG), a respirator, and communications and support equipment. The prototype unit development and testing under Phase 1 has demonstrated that AWPS has the ability to meet performance criteria. These criteria were developed with an understanding of both the AWPS capabilities and the DOE decontamination and decommissioning (D and D) activities protection needs.

  15. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-01-01T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  16. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-12-31T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  17. Beta Reduction Constraints Manuel Bodirsky Katrin Erk

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Beta Reduction Constraints Manuel Bodirsky Katrin Erk Alexander Koller Joachim Niehren Programming partially. In this paper, we introduce beta reduction constraints to describe beta reduction steps between partially known lambda terms. We show that beta reduction constraints can be expressed in an extension

  18. Lead reduction in ambient air

    SciTech Connect (OSTI)

    Smith, R.D.; Kiehn, O.A.; Wilburn, D.R.; Bowyer, R.C.

    1987-01-01T23:59:59.000Z

    The Bureau of Mines evaluated the emission control methods, including the capital investments and operating cost, necessary for further reducing lead levels in ambient air at the Glover, Herculaneum, and Buick smelter-refineries in Missouri and the East Helena, MT, smelter. This report presents theoretically achievable lead emission reductions and estimated capital and operating costs.

  19. Advanced fuel chemistry for advanced engines.

    SciTech Connect (OSTI)

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01T23:59:59.000Z

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  20. advanced incomplete factorization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geometric Approach to ML Estimation With Incomplete Data: Application to Semi Reilly, James P. 97 3.2. PARTIALLY BALANCED INCOMPLETE-BLOCK DESIGNS 55 3.2 Partially balanced...

  1. Gills Onions Advanced Energy

    E-Print Network [OSTI]

    !!! One-third incoming onions discarded as tail, top, and peel! #12;The Solution... Advanced Energy honor from the American CouncilThe highest honor from the American Council of Engineering Companies Residential & Food Service Anaerobic Digestion Fats, Oil, and Grease (FOG) from Food Service Anaerobic Methane

  2. Advanced Test Reactor Tour

    SciTech Connect (OSTI)

    Miley, Don

    2011-01-01T23:59:59.000Z

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  3. Search Asia Advanced Search

    E-Print Network [OSTI]

    on state-run forestry companies. Illegal logging activities have cost the Indonesian government some US$600Asia Times Search Asia Times Advanced Search Southeast Asia Indonesia looks to curb log smuggling to discuss the issue of log smuggling, Forestry Minister M Prakosa said. "We will hold bilateral dialogues

  4. Advanced fossil energy utilization

    SciTech Connect (OSTI)

    Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

    2010-01-01T23:59:59.000Z

    This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

  5. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28T23:59:59.000Z

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  6. Stable reduction product of misonidazole

    SciTech Connect (OSTI)

    Panicucci, R.; McClelland, R.A.; Rauth, A.M.

    1986-07-01T23:59:59.000Z

    The predominant stable product (greater than 80%) of the anaerobic radiation chemical reduction (pH 7, formate, N/sub 2/O) of misonidazole (MISO) has been identified as the cyclic guanidinium ion MISO-DDI, a 4,5-dihydro-4,5-dihydroxyimidazolium ion. This cation was prepared as its sulfate salt by the reaction of glyoxal and the appropriate N-substituted guanidinium sulfate. Its formation during MISO reduction was established by NMR spectral comparison and by derivatization as glyoxal bis-oxime, which was formed in 86% yield in fully reduced systems. The toxicity of pure MISO-DDI X sulfate was examined in vivo (C/sub 3/H mice) and in vitro (CHO cells). This product is less toxic than the parent MISO and free glyoxal. A reactive, short-lived, intermediate is suggested as the agent responsible for the toxicity of MISO under hypoxic conditions.

  7. Predictive Dynamic Security Assessment through Advanced Computing

    SciTech Connect (OSTI)

    Huang, Zhenyu; Diao, Ruisheng; Jin, Shuangshuang; Chen, Yousu

    2014-11-30T23:59:59.000Z

    Abstract— Traditional dynamic security assessment is limited by several factors and thus falls short in providing real-time information to be predictive for power system operation. These factors include the steady-state assumption of current operating points, static transfer limits, and low computational speed. This addresses these factors and frames predictive dynamic security assessment. The primary objective of predictive dynamic security assessment is to enhance the functionality and computational process of dynamic security assessment through the use of high-speed phasor measurements and the application of advanced computing technologies for faster-than-real-time simulation. This paper presents algorithms, computing platforms, and simulation frameworks that constitute the predictive dynamic security assessment capability. Examples of phasor application and fast computation for dynamic security assessment are included to demonstrate the feasibility and speed enhancement for real-time applications.

  8. The practical equity implications of advanced metering infrastructure

    SciTech Connect (OSTI)

    Felder, Frank A.

    2010-07-15T23:59:59.000Z

    Reductions in advanced metering costs and the efficiency benefits of dynamic pricing make a compelling case to adopt both, particularly for industrial and commercial facilities. Regulators should seriously consider such policies for residential households as well. Regulators can take meaningful steps to mitigate, if not entirely offset, the possibility that some low-income ratepayers may have higher electricity bills with AM and DP. (author)

  9. Emissions Reduction Impact of Renewables

    E-Print Network [OSTI]

    Haberl, J. S.; Yazdani, B.; Culp, C.

    2012-01-01T23:59:59.000Z

    p. 1 Energy Systems Laboratory ? 2012 EMISSIONS REDUCTION IMPACT OF RENEWABLES October 2012 Jeff Haberl, Bahman Yazdani, Charles Culp Energy Systems Laboratory Texas A&M University p. 2 Energy Systems Laboratory ? 2012... Do TCEQ: Vince Meiller, Bob Gifford ERCOT: Warren Lasher USEPA: Art Diem, Julie Rosenberg ACKNOWLEDGEMENTS p. 3 Energy Systems Laboratory ? 2012 RENEWABLES Solar PV Solar Thermal Hydro Biomass Landfill Gas Geothermal p. 4...

  10. Emissions Reduction Impact of Renewables 

    E-Print Network [OSTI]

    Haberl, J. S.; Yazdani, B.; Culp, C.

    2012-01-01T23:59:59.000Z

    Systems Laboratory ? 2012 p. 9 Energy Systems Laboratory ? 2012 p. 10 Energy Systems Laboratory ? 2012 WIND PROJECTS IN TEXAS Completed, Announced, and Retired Wind Projects in Texas, as of December 2011 p. 11 Energy Systems Laboratory ? 2012... Laboratory ? 2012 p. 24 Energy Systems Laboratory ? 2012 p. 25 Energy Systems Laboratory ? 2012 NOx REDUCTIONS FROM WIND POWER New 2010 Annual eGrid for NOx Emissions West Zone North Zone Houston Zone South Zone Unit: lbs of NOx/MWh Unit: lbs...

  11. Herty Advanced Materials Development Center

    Broader source: Energy.gov [DOE]

    Session 1-B: Advancing Alternative Fuels for the Military and Aviation Sector Breakout Session 1: New Developments and Hot Topics Jill Stuckey, Acting Director, Herty Advanced Materials Development Center

  12. ADVANCE! Leadership Experience Project Guidelines

    E-Print Network [OSTI]

    Hone, James

    ADVANCE! Leadership Experience Project Guidelines Fieldwork Practicum Description: The fieldwork component of the ADVANCE! leadership program offers students the opportunity to integrate theory exposure to that industry. Together, they design a leadership project in which the student takes an active

  13. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect (OSTI)

    SAGE Electrochromics, Inc

    2006-12-13T23:59:59.000Z

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  14. Advanced Photon Source Upgrade Project

    ScienceCinema (OSTI)

    Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

    2013-04-19T23:59:59.000Z

    Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

  15. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research and...

  16. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05132011 Project...

  17. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05182012 Project...

  18. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 06192014 Project...

  19. Advanced Energy Design Guides | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Energy Design Guides Advanced Energy Design Guides EERE Building Technologies Program - This fact sheet discusses the Advanced Energy Design Guides (AEDGs) and how they...

  20. Advanced Separation Consortium

    SciTech Connect (OSTI)

    NONE

    2006-01-01T23:59:59.000Z

    The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

  1. Noisy Independent Factor Analysis Model for Density Estimation and Classification

    E-Print Network [OSTI]

    Amato, U.

    2009-06-09T23:59:59.000Z

    We consider the problem of multivariate density estimation when the unknown density is assumed to follow a particular form of dimensionality reduction, a noisy independent factor analysis (IFA) model. In this model the ...

  2. Physics of advanced tokamaks

    SciTech Connect (OSTI)

    Taylor, T.S.

    1997-11-01T23:59:59.000Z

    Significant reductions in the size and cost of a fusion power plant core can be realized if simultaneous improvements in the energy replacement time, {tau}{sub E}, and the plasma pressure or beta, {beta}{sub T} = 2 {micro}{sub 0}

    /B{sup 2} can be achieved in steady-state conditions with high self-driven, bootstrap current fraction. Significant recent progress has been made in experimentally achieving these high performance regimes and in developing a theoretical understanding of the underlying physics. Three operational scenarios have demonstrated potential for steady state high performance, the radiative improved (RI) mode, the high internal inductance or high {ell}{sub i} scenario, and the negative central magnetic shear, NCS (or reversed shear, RS) scenario. In a large number of tokamaks, reduced ion thermal transport to near neoclassical values, and reduced particle transport have been observed in the region of negative or very low magnetic shear: the transport reduction is consistent with stabilization of microturbulence by sheared E x B flow. There is strong temporal and spatial correlation between the increased sheared E x B flow, the reduction in the measured turbulence, and the reduction in transport. The DIII-D tokamak, the JET tokamak and the JT-60U tokamak have all observed significant increases in plasma performance in the NCS operational regime. Strong plasma shaping and broad pressure profiles, provided by the H-mode edge, allow high beta operation, consistent with theoretical predictions; and normalized beta values up to {beta}{sub T}/(I/aB) {equivalent_to} {beta}{sub N} {approximately} 4.5%-m-T/MA simultaneously with confinement enhancement over L-mode scaling, H = {tau}/{tau}{sub ITER-89P} {approximately} 4, have been achieved in the DIII-D tokamak. In the JT-60U tokamak, deuterium discharges with negative central magnetic shear, NCS, have reached equivalent break-even conditions, Q{sub DT} (equiv) = 1.

  3. Advanced Polymer Processing Facility

    SciTech Connect (OSTI)

    Muenchausen, Ross E. [Los Alamos National Laboratory

    2012-07-25T23:59:59.000Z

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  4. Advanced worker protection system

    SciTech Connect (OSTI)

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01T23:59:59.000Z

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  5. Advanced thyristor valve project

    SciTech Connect (OSTI)

    Damsky, B.L.

    1984-01-01T23:59:59.000Z

    General Electrics's thyristor valve project incorporates the most advanced technologies available. With joint funding from the Electric Power Research Institute, commercial application of the separate light-triggered thyristor is now underway. The cesium vapor lamp source to trigger the light sensitive thyristors will reduce component complexity and cost. A unique thermal management feature relies on forced vaporization cooling with Freon-113, which equals the thermal performance of water without posing insulation reliability problems. 7 figures.

  6. Advanced Microturbine Systems

    SciTech Connect (OSTI)

    None

    2005-12-31T23:59:59.000Z

    Dept. of Energy (DOE) Cooperative Agreement DE-FC02-00-CH11061 was originally awarded to Honeywell International, Inc. â?? Honeywell Power Systems Inc. (HPSI) division located in Albuquerque, NM in October 2000 to conduct a program titled Advanced Microturbine Systems (AMS). The DOE Advanced Microturbines Systems Program was originally proposed as a five-year program to design and develop a high efficiency, low emissions, durable microturbine system. The period of performance was to be October 2000 through September 2005. Program efforts were underway, when one year into the program Honeywell sold the intellectual property of Honeywell Power Systems Inc. and HPSI ceased business operations. Honeywell made an internal decision to restructure the existing program due to the HPSI shutdown and submitted a formal request to DOE on September 24, 2001 to transfer the Cooperative Agreement to Honeywell Engines, Systems and Services (HES&S) in Phoenix, AZ in order to continue to offer support for DOE's Advanced Microturbine Program. Work continued on the descoped program under Cooperative Agreement No. DE-FC26-00-CH11061 and has been completed.

  7. Economic Benefits of Advanced Materials in Nuclear Power Systems

    SciTech Connect (OSTI)

    Busby, Jeremy T [ORNL

    2009-01-01T23:59:59.000Z

    One of the key obstacles for the commercial deployment of advanced fast reactors (for either transuranic element burning or power generation) is the capital cost. There is a perception of higher capital cost for fast reactor systems than advanced light water reactors (ALWR). However, the cost estimates for a fast reactor come with a large uncertainty due to the fact that far fewer fast reactors have been built than LWR facilities. Furthermore, the large variability of industrial cost estimates complicates accurate comparisons. For example, under the Gen IV program, the Japanese Sodium Fast Reactor (JSFR) has a capital cost estimate that is lower than current LWR s, and considerably lower than that for the PRISM design (which is arguably among the most mature of today s fast reactor designs). Further reductions in capital cost must be made in US fast reactor systems to be considered economically viable. Three key approaches for cost reduction can be pursued. These include design simplifications, new technologies that allow reduced capital costs, and simulation techniques that help optimize system design. While it is plausible that improved materials will provide opportunities for both simplified design and reduced capital cost, the economic benefit of advanced materials has not been quantitatively analyzed. The objective of this work is to examine the potential impact of advanced materials on the capital investment costs of fast nuclear reactors.

  8. "Ecosystem Services, Biodiversity and Poverty Reduction

    E-Print Network [OSTI]

    "Ecosystem Services, Biodiversity and Poverty Reduction: Is conservation the answer?" Paul van for the foreseeable future. #12;John Beddington's "Perfect Storm" Population Increase Poverty Reduction Food Security Globalisation Climate Change Health Water Security Poverty Alleviation Finance Urbanisation Population Energy

  9. Ozone Reductions using Residential Building Envelopes

    E-Print Network [OSTI]

    Ozone Reductions using Residential Building Envelopes I.S. Walker, M.H. Sherman and W.W. Nazaroff or adequacy of the information in this report. #12;Arnold Schwarzenegger Governor Ozone Reductions Using

  10. Electricity Generation and Emissions Reduction Decisions

    E-Print Network [OSTI]

    Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General analysis, and public education in global environmental change. It seeks to provide leadership;1 Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium

  11. Bioaugmentation for Reduction of Diffuse Pesticide Contamination

    E-Print Network [OSTI]

    Bioaugmentation for Reduction of Diffuse Pesticide Contamination A Bioprophylactic Concept Karin/Repro, Uppsala 2013 #12;Bioaugmentation for Reduction of Diffuse Pesticide Contamination. A Bioprophylactic Concept. Abstract Pesticides and their residues frequently contaminate surface waters and groundwater so

  12. Extracellular Reduction of Hexavalent Chromium by Cytochromes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reduction of Hexavalent Chromium by Cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Extracellular Reduction of Hexavalent Chromium by Cytochromes MtrC and OmcA of...

  13. Carbon Dioxide Reduction Through Urban Forestry

    E-Print Network [OSTI]

    Standiford, Richard B.

    . Retrieval Terms: urban forestry, carbon dioxide, sequestration, avoided energy The Authors E. Gregory McCarbon Dioxide Reduction Through Urban Forestry: Guidelines for Professional and Volunteer Tree; Simpson, James R. 1999. Carbon dioxide reduction through urban forestry

  14. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect (OSTI)

    Dr. Ramana Reddy

    2012-04-12T23:59:59.000Z

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode. Successful extraction of metal from metal oxide dissolved in Urea/ChCl (2:1) was accomplished. The current efficiencies were relatively high in both the metal deposition processes with current efficiency greater than 86% for lead and 95% for zinc. This technology will advance the metal oxide reduction process by increasing the process efficiency and also eliminate the production of CO2 which makes this an environmentally benign technology for metal extraction.

  15. Development of an advanced high efficiency coal combustor for boiler retrofit

    SciTech Connect (OSTI)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01T23:59:59.000Z

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  16. Development of an advanced high efficiency coal combustor for boiler retrofit. Summary report

    SciTech Connect (OSTI)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01T23:59:59.000Z

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  17. A Compressed Air Reduction Program

    E-Print Network [OSTI]

    Hawks, K. D.

    A COMPRESSED AIR REDUCTION PROGRAM K. Dwight Hawks General Motors Corporation - Ruick-Oldsmobi1e-Cadillac Group Warren, Michigan ABSTRACT The reascn for implementing this program was to assist the plant in Quantifying some of its leaks... in the equipme~t throuqhout the plant and to provide direction as to which leaks are yenerat~ng high uti 1ity costs. The direction is very beneficial in lIlaking maintenance aware of prolill,Pls within equipment .IS \\Iell as notifying them as to whf're thei...

  18. Relative trajectory data reduction analysis

    E-Print Network [OSTI]

    Grant, Kenneth William

    1969-01-01T23:59:59.000Z

    REDATIVE TRAJECTORY DATA RFDUCTION ANA1. YS1S A Thesis KENNE'Ill Vi. GRANT Subrnitl ed to the Gratluate College of 'J exas ASM University in pa) &ial full'illment of the reouir ament for the degree of MASTER OF SCIENCE August 1969 Major... Trajectory Data Reduction Analysis. (August 1969) Kenneth W. Grant, B. A. , University of California at Riverside Directed by: Dr. Rudolph Freund Knowledge of missile/drone intercept parameters is extremely important in the analysis of ordnance system...

  19. Advanced Energy Projects FY 1996 research summaries

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    The mission of the Advanced Energy Projects Division (AEP) is to explore the scientific feasibility of novel energy-related concepts. These concepts are typically at an early stage of scientific development and, therefore, are premature for consideration by applied research or technology development programs. The portfolio of projects is dynamic, but reflects the broad role of the Department in supporting research and development for improving the Nation`s energy posture. Topical areas presently receiving support include: alternative energy sources; innovative concepts for energy conversion and storage; alternate pathways to energy efficiency; exploring uses of new scientific discoveries; biologically-based energy concepts; renewable and biodegradable materials; novel materials for energy technology; and innovative approaches to waste treatment and reduction. Summaries of the 70 projects currently being supported are presented. Appendices contain budget information and investigator and institutional indices.

  20. Draft Advanced Nuclear Energy Projects Solicitation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Federal loan guarantee solicitation announcement -- Advanced Nuclear Energy Projects. Draft Advanced Nuclear Energy Projects Solicitation More Documents & Publications Draft...

  1. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast Energy Efficiency Partnerships: Advanced Lighting Controls - 2015 Peer Review Northeast Energy Efficiency Partnerships: Advanced Lighting Controls - 2015 Peer Review...

  2. Southface Energy Institute: Advanced Commercial Buildings Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southface Energy Institute: Advanced Commercial Buildings Initiative - 2015 Peer Review Southface Energy Institute: Advanced Commercial Buildings Initiative - 2015 Peer Review...

  3. Enhancing Transportation Energy Security through Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Security through Advanced Combustion and Fuels Technologies Enhancing Transportation Energy Security through Advanced Combustion and Fuels Technologies 2005...

  4. Advanced Battery Materials Characterization: Success stories...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success...

  5. Department of Mathematics: Advanced Graduate Course ...

    E-Print Network [OSTI]

    Advanced Graduate Course Advertisements. Descriptions of advanced graduate courses for specific semesters. The course advertisements are PDF documents.

  6. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  7. Electrolytes - Advanced Electrolyte and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electrolytes - Advanced Electrolyte and Electrolyte Additives Electrolytes - Advanced Electrolyte and Electrolyte Additives Develop & Evaluate...

  8. Electrolytes - Advanced Electrolyte and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced Electrolyte and Electrolyte Additives Develop & evaluate...

  9. Horizontal Advanced Tensiometer

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2004-06-22T23:59:59.000Z

    An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

  10. Advanced NTR options. [Ta

    SciTech Connect (OSTI)

    Davis, J.W.; Mills, J.C.; Glass, J.F.; Tu, W. (Rockwell International/Rocketdyne Division, 6633 Canoga Avenue, MS HB23 Canoga Park, California 81303 (US))

    1991-01-05T23:59:59.000Z

    Advanced NTR concepts which offer performance improvements over the ROVER/NERVA designs have been investigated. In addition, the deliverable performance of low pressure operation and materials issues have been investigated. Based on current experience, a maximum exit gas temperature of 3200 K is likely achievable with a ZrC based PBR design. At 3200 K a low pressure NTR would have marginal performance advantage (Isp) over a high pressure system. If tantalum or other high melting point carbides are used then an exit gas temperature of 3500 K may be feasible. At 3500 K low pressure operation offers more significant performance improvements which could outweigh associated size and mass penalties.

  11. Advanced Simulation Capability

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth SitePresentations |StateNuclear Energy Projects4 Status Report The Advanced

  12. Advanced Simulation Capability

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth SitePresentations |StateNuclear Energy Projects4 Status Report The Advanced2

  13. Advanced Conversion Roadmap Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001Energy Efficiency Grants |Energy|AdvancedLeslie

  14. Advanced Combustion FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power and TransmissionAdolphusAdvanced

  15. Advanced Materials Manufacturing | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power andAdvancedCMWG

  16. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvanced ModelingNuclear

  17. Advanced Studies Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvanced

  18. Advanced Studies Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvancedInstitute Engineering Institute

  19. Advanced Target Effects Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvancedInstitute Engineering

  20. Advanced Feedstock Supply System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartmentDevelopment and1 | BioenergyAdvanced

  1. A Comparison Between Model Reduction and Controller Reduction: Application to a PWR Nuclear Planty

    E-Print Network [OSTI]

    Gevers, Michel

    A Comparison Between Model Reduction and Controller Reduction: Application to a PWR Nuclear Planty model reduction with controller reduction for the same PWR system. We show that closed-loop techniques to the design of a low-order con- troller for a realistic model of order 42 of a Pressurized Water Reactor (PWR

  2. Recent advances in long-pulse high-confinement plasma operations in Experimental Advanced Superconducting Tokamak

    SciTech Connect (OSTI)

    Guo, H. Y. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China) [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); Li, J.; Wan, B. N., E-mail: bnwan@ipp.ac.cn; Gong, X. Z.; Xu, G. S.; Zhang, X. D.; Ding, S. Y.; Gan, K. F.; Hu, J. S.; Hu, L. Q.; Liu, S. C.; Qian, J. P.; Sun, Y. W.; Wang, H. Q.; Wang, L.; Xia, T. Y.; Xiao, B. J.; Zeng, L.; Zhao, Y. P. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China)] [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); and others

    2014-05-15T23:59:59.000Z

    A long-pulse high confinement plasma regime known as H-mode is achieved in the Experimental Advanced Superconducting Tokamak (EAST) with a record duration over 30?s, sustained by Lower Hybrid wave Current Drive (LHCD) with advanced lithium wall conditioning and divertor pumping. This long-pulse H-mode plasma regime is characterized by the co-existence of a small Magneto-Hydrodynamic (MHD) instability, i.e., Edge Localized Modes (ELMs) and a continuous quasi-coherent MHD mode at the edge. We find that LHCD provides an intrinsic boundary control for ELMs, leading to a dramatic reduction in the transient power load on the vessel wall, compared to the standard Type I ELMs. LHCD also induces edge plasma ergodization, broadening heat deposition footprints, and the heat transport caused by ergodization can be actively controlled by regulating edge plasma conditions, thus providing a new means for stationary heat flux control. In addition, advanced tokamak scenarios have been newly developed for high-performance long-pulse plasma operations in the next EAST experimental campaign.

  3. Advanced thermochemical hydrogen cycles

    SciTech Connect (OSTI)

    Hollabaugh, C.M.; Bowman, M.G.

    1981-01-01T23:59:59.000Z

    The overall objective of this program is to contribute to the development of practical thermochemical cycles for the production of hydrogen from water. Specific goals are: investigate and evaluate the technical and economic viability of thermochemical cycles as an advanced technology for producing hydrogen from water; investigate and evaluate the engineering principles involved in interfacing individual thermochemical cycles with the different thermal energy sources (high temperature fission, solar, and fusion); and conduct a continuing research and development effort to evaluate the use of solid sulfates, oxides and other compounds as potentially advanced cycles and as alternates to H/sub 2/SO/sub 4/ based cycles. Basic thermochemistry studies have been completed for two different steps in the decomposition of bismuth sulfate. Two different bismuth sulfate cycles have been defined for different sulfuric acid strengths. The eventual best cycle will depend on energy required to form sulfuric acid at different concentrations. A solids decomposition facility has been constructed and practical studies of solid decompositions are being conducted. The facility includes a rotary kiln system and a dual-particle fluidized bed system. Evaluation of different types of cycles for coupling with different heat sources is continuing.

  4. Advance Turbo Encoder and Turbo Decoder

    E-Print Network [OSTI]

    Manjunatha K N; Kiran B; Prasanna Kumar. C

    Abstract- This paper presents the design and development of an efficient VLSI architecture for 3GPP advanced Turbo decoder by utilizing the convolutional interleaver. The high-throughput 3GPP Advance Turbo code requires turbo decoder architecture. Interleaver is known to be the main obstacle to the decoder implementation and introduces latency, due to the collisions it introduces in accesses to memory. In this paper, we propose a low-complexity Soft Input Soft Output (SISO) turbo decoder for memory architecture to enable the Turbo decoding that achieves minimum latency. Design trade-offs in terms of area and throughput efficiency are explored to find the optimal architecture. The proposed Turbo decoder has been modeled using Simulink; various test cases are used to estimate the performances. The results are analyzed and achieved 50 % reduction in computation time along with reduced BER (e-3). The hardware of the Turbo Encoder and Turbo Decoder has been modeled in Verilog, simulated in Modelsim, synthesized using TSMC 65 nm Synopsys Design compiler and physical implementation has been carried out using IC Compiler.

  5. Advanced energy projects FY 1994 research summaries

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

  6. Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems

    E-Print Network [OSTI]

    Augustine, Chad R

    2009-01-01T23:59:59.000Z

    The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

  7. Surface Plasmon-Driven Water Reduction: Gold Nanoparticle Size...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasmon-Driven Water Reduction: Gold Nanoparticle Size Matters. Surface Plasmon-Driven Water Reduction: Gold Nanoparticle Size Matters. Abstract: Water reduction under two visible...

  8. Engine Friction Reduction Through Surface Finish and Coatings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Friction Reduction Through Surface Finish and Coatings Engine Friction Reduction Through Surface Finish and Coatings Opportunities exist for friction reduction in piston rings and...

  9. Greenhouse Gas Reductions: SF6

    ScienceCinema (OSTI)

    Anderson, Diana

    2013-04-19T23:59:59.000Z

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas ? one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  10. Greenhouse Gas Reductions: SF6

    SciTech Connect (OSTI)

    Anderson, Diana

    2012-01-01T23:59:59.000Z

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas — one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  11. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

    2005-01-01T23:59:59.000Z

    The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  12. Dimensional Reduction in Quantum Gravity

    E-Print Network [OSTI]

    G. 't Hooft

    2009-03-20T23:59:59.000Z

    The requirement that physical phenomena associated with gravitational collapse should be duly reconciled with the postulates of quantum mechanics implies that at a Planckian scale our world is not 3+1 dimensional. Rather, the observable degrees of freedom can best be described as if they were Boolean variables defined on a two-dimensional lattice, evolving with time. This observation, deduced from not much more than unitarity, entropy and counting arguments, implies severe restrictions on possible models of quantum gravity. Using cellular automata as an example it is argued that this dimensional reduction implies more constraints than the freedom we have in constructing models. This is the main reason why so-far no completely consistent mathematical models of quantum black holes have been found. Essay dedicated to Abdus Salam.

  13. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

    2004-10-01T23:59:59.000Z

    The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  14. Electrolyte treatment for aluminum reduction

    DOE Patents [OSTI]

    Brown, Craig W. (Seattle, WA); Brooks, Richard J. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA); Juric, Drago D. (Bulleen, AU)

    2002-01-01T23:59:59.000Z

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  15. Advanced nuclear rocket engine mission analysis

    SciTech Connect (OSTI)

    Ramsthaler, J.; Farbman, G.; Sulmeisters, T.; Buden, D.; Harris, P.

    1987-12-01T23:59:59.000Z

    The use of a derivative of the NERVA engine developed from 1955 to 1973 was evluated for potential application to Air Force orbital transfer and maneuvering missions in the time period 1995 to 2020. The NERVA stge was found to have lower life cycle costs (LCC) than an advanced chemical stage for performing low earth orbit (LEO) to geosynchronous orbit (GEO0 missions at any level of activity greater than three missions per year. It had lower life cycle costs than a high performance nuclear electric engine at any level of LEO to GEO mission activity. An examination of all unmanned orbital transfer and maneuvering missions from the Space Transportation Architecture study (STAS 111-3) indicated a LCC advantage for the NERVA stage over the advanced chemical stage of fifteen million dollars. The cost advanced accured from both the orbital transfer and maneuvering missions. Parametric analyses showed that the specific impulse of the NERVA stage and the cost of delivering material to low earth orbit were the most significant factors in the LCC advantage over the chemical stage. Lower development costs and a higher thrust gave the NERVA engine an LCC advantage over the nuclear electric stage. An examination of technical data from the Rover/NERVA program indicated that development of the NERVA stage has a low technical risk, and the potential for high reliability and safe operation. The data indicated the NERVA engine had a great flexibility which would permit a single stage to perform all Air Force missions.

  16. REDUCTION CAPACITY OF SALTSTONE AND SALTSTONE COMPONENTS

    SciTech Connect (OSTI)

    Roberts, K.; Kaplan, D.

    2009-11-30T23:59:59.000Z

    The duration that saltstone retains its ability to immobilize some key radionuclides, such as technetium (Tc), plutonium (Pu), and neptunium (Np), depends on its capacity to maintain a low redox status (or low oxidation state). The reduction capacity is a measure of the mass of reductants present in the saltstone; the reductants are the active ingredients that immobilize Tc, Pu, and Np. Once reductants are exhausted, the saltstone loses its ability to immobilize these radionuclides. The reduction capacity values reported here are based on the Ce(IV)/Fe(II) system. The Portland cement (198 {micro}eq/g) and especially the fly ash (299 {micro}eq/g) had a measurable amount of reduction capacity, but the blast furnace slag (820 {micro}eq/g) not surprisingly accounted for most of the reduction capacity. The blast furnace slag contains ferrous iron and sulfides which are strong reducing and precipitating species for a large number of solids. Three saltstone samples containing 45% slag or one sample containing 90% slag had essentially the same reduction capacity as pure slag. There appears to be some critical concentration between 10% and 45% slag in the Saltstone formulation that is needed to create the maximum reduction capacity. Values from this work supported those previously reported, namely that the reduction capacity of SRS saltstone is about 820 {micro}eq/g; this value is recommended for estimating the longevity that the Saltstone Disposal Facility will retain its ability to immobilize radionuclides.

  17. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Gregory Gaul

    2004-04-21T23:59:59.000Z

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

  18. Sandia National Laboratories: advanced combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combustion Sandia and General Motors: Advancing Clean Combustion Engines with Predictive Simulation Tools On February 14, 2013, in CRF, Energy, Partnership, Transportation Energy...

  19. Advanced Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Advanced Combustion Combustion engines drive a large percentage of our nation's transportation vehicles and power generation and manufacturing facilities. Today's...

  20. ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE

    Broader source: Energy.gov (indexed) [DOE]

    AND ENGINEERING Under the Advanced Fuels Cycle Initiative, Transmutation Science and Engineering is divided into four subprograms: Physics, Structural Materials, Materials...

  1. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Brochure Annual Reports Posters Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) Now Playing: The Advanced Photon Source More videos: Building...

  2. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Brochure Annual Reports Posters Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) Featured Videos: Introduction to the Advanced Photon Source...

  3. Sandia National Laboratories: Advanced Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Biofuels Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks On February 26, 2013, in Biofuels, Biomass,...

  4. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video Library Related Links: APS Colloquium APS Podcasts APS Today More videos: Introduction to the APS Physics of the Blues Now Playing: Building the Advanced Photon Source This...

  5. Advanced HEV/PHEV Concepts

    Broader source: Energy.gov (indexed) [DOE]

    - In-kind Barriers Addressed * Cost * Settingvalidating technical targets * Design optimization for maximum mpg * Infrastructure and convenience for advanced technology vehicle...

  6. Fuels for Advanced Combustion Engines

    Broader source: Energy.gov (indexed) [DOE]

    Fuels for Advanced Combustion Engines Bradley T. Zigler National Renewable Energy Laboratory 15 May 2012 Project ID FT002 This presentation does not contain any proprietary,...

  7. Advanced drilling systems study.

    SciTech Connect (OSTI)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

    1996-05-01T23:59:59.000Z

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  8. The Advanced Light Source

    SciTech Connect (OSTI)

    Jackson, A.

    1991-05-01T23:59:59.000Z

    The Advanced Light Source (ALS), a national user facility currently under construction at the Lawrence Berkeley Laboratory (LBL), is a third-generation synchrotron light source designed to produce extremely bright beams of synchrotron radiation in the energy range from a few eV to 10 keV. The design is based on a 1--1.9-GeV electron storage ring (optimized at 1.5 GeV), and utilizes special magnets, known as undulators and wigglers (collectively referred to as insertion devices), to generate the radiation. The facility is scheduled to begin operating in April 1993. In this paper we describe the progress in the design, construction, and commissioning of the accelerator systems, insertion devices, and beamlines. Companion presentations at this conference give more detail of specific components in the ALS, and describe the activities towards establishing an exciting user program. 3 figs., 2 tabs.

  9. Advanced thyristor valve project

    SciTech Connect (OSTI)

    Flairty, C. (General Electric Co., Malvern, PA (USA))

    1991-04-01T23:59:59.000Z

    An advanced thyristor value was developed HVDC conversion applications. New features incorporated in the design include: improved heat transfer from the thyristors, two phase cooling of components, and light firing required the development of both a separate light triggered thyristor with a full forward blocking voltage rating and a special flash lamp employing cesium vapor as the associated light source. A valve rated 133 kV and 2200 A bridge current was constructed and lab tested before shipment to the Sylmar Converter Station, which is the southern terminus of the Pacific DC Intertie. The Los Angeles Department of Water and Power, which operates the Sylmar Station, installed the valve and operated it to gain experience. 36 figs., 5 tabs.

  10. Advanced servo manipulator

    DOE Patents [OSTI]

    Holt, W.E.; Kuban, D.P.; Martin, H.L.

    1988-10-25T23:59:59.000Z

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member. 41 figs.

  11. Advanced Containment System

    DOE Patents [OSTI]

    Kostelnik, Kevin M. (Idaho Falls, ID); Kawamura, Hideki (Tokyo, JP); Richardson, John G. (Idaho Falls, ID); Noda, Masaru (Tokyo, JP)

    2004-10-12T23:59:59.000Z

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  12. Advanced Containment System

    DOE Patents [OSTI]

    Kostelnik, Kevin M. (Idaho Falls, ID); Kawamura, Hideki (Tokyo, JP); Richardson, John G. (Idaho Falls, ID); Noda, Masaru (Tokyo, JP)

    2005-05-24T23:59:59.000Z

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  13. Advanced Turbine Systems (ATS) program conceptual design and product development

    SciTech Connect (OSTI)

    NONE

    1996-08-31T23:59:59.000Z

    Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

  14. NOx reduction in gas turbine combustors

    E-Print Network [OSTI]

    Sung, Nak Won

    1976-01-01T23:59:59.000Z

    NOx REDUCTION IN GAS TURBINE COMBUSTORS A Thesis by Nak Won Sung Submitted to the Graduate College of Texas A&M University in partial fullfillment of the requirement for the degree of MASTER OF SCIENCE August 1976 Major Subject: Mechanical... Engineering NOx REDUCTION IN GAS TURBINE COMBUSTORS A Thesis by Nak Won Sung Approved as to style and content by: (Chairman of Committe (Head of Department) (Member) August 1976 "40308 (Member) 1 1. 1 ABSTRACT NOx Reduction in Gas Turbine...

  15. ADVANCED POWER SYSTEMS ANALYSIS TOOLS

    SciTech Connect (OSTI)

    Robert R. Jensen; Steven A. Benson; Jason D. Laumb

    2001-08-31T23:59:59.000Z

    The use of Energy and Environmental Research Center (EERC) modeling tools and improved analytical methods has provided key information in optimizing advanced power system design and operating conditions for efficiency, producing minimal air pollutant emissions and utilizing a wide range of fossil fuel properties. This project was divided into four tasks: the demonstration of the ash transformation model, upgrading spreadsheet tools, enhancements to analytical capabilities using the scanning electron microscopy (SEM), and improvements to the slag viscosity model. The ash transformation model, Atran, was used to predict the size and composition of ash particles, which has a major impact on the fate of the combustion system. To optimize Atran key factors such as mineral fragmentation and coalescence, the heterogeneous and homogeneous interaction of the organically associated elements must be considered as they are applied to the operating conditions. The resulting model's ash composition compares favorably to measured results. Enhancements to existing EERC spreadsheet application included upgrading interactive spreadsheets to calculate the thermodynamic properties for fuels, reactants, products, and steam with Newton Raphson algorithms to perform calculations on mass, energy, and elemental balances, isentropic expansion of steam, and gasifier equilibrium conditions. Derivative calculations can be performed to estimate fuel heating values, adiabatic flame temperatures, emission factors, comparative fuel costs, and per-unit carbon taxes from fuel analyses. Using state-of-the-art computer-controlled scanning electron microscopes and associated microanalysis systems, a method to determine viscosity using the incorporation of grey-scale binning acquired by the SEM image was developed. The image analysis capabilities of a backscattered electron image can be subdivided into various grey-scale ranges that can be analyzed separately. Since the grey scale's intensity is dependent on the chemistry of the particle, it is possible to map chemically similar areas which can also be related to the viscosity of that compound at temperature. A second method was also developed to determine the elements associated with the organic matrix of the coals, which is currently determined by chemical fractionation. Mineral compositions and mineral densities can be determined for both included and excluded minerals, as well as the fraction of the ash that will be represented by that mineral on a frame-by-frame basis. The slag viscosity model was improved to provide improved predictions of slag viscosity and temperature of critical viscosity for representative Powder River Basin subbituminous and lignite coals.

  16. Infrared Spectroscopy of Laser Irradiated Dental Hard Tissues using the Advanced Light Source

    E-Print Network [OSTI]

    on the laser ablation/drilling process and may lead to a reduction in the ablation rate and efficiencyInfrared Spectroscopy of Laser Irradiated Dental Hard Tissues using the Advanced Light Source D Dental Sciences, San Francisco, CA 94143-0758, USA INTRODUCTION Infrared lasers are ideally suited

  17. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Operations, EP-WCRR-WO-DOP-0233 Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations, EP-WCRR-WO-DOP-0233 The documents...

  18. Plasma Assisted Catalysis System for NOx Reduction

    Broader source: Energy.gov (indexed) [DOE]

    2 NOXTECH NOXTECH PLASMA ASSISTED CATALYSIS SYSTEM FOR NOx REDUCTION BY NOXTECH With the Support & Cooperation of DOE Noxtech, Inc. *Delaware Corporation registered to do business...

  19. CoolCab Truck Thermal Load Reduction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - On-board idle reduction technologies * Bergstrom battery electric AC * Airtronic diesel-fired heater * Objectives - Quantify truck cabin heat transfer - Identify potential...

  20. RMOTC to Test Oil Viscosity Reduction Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RMOTC to Test Oil Viscosity Reduction Technology The Rocky Mountain Oilfield Testing Center (RMOTC) announces that the "Teapot Dome" oil field in Wyoming is hosting a series of...

  1. Metal Artifact Reduction in Computed Tomography /

    E-Print Network [OSTI]

    Karimi, Seemeen

    2014-01-01T23:59:59.000Z

    Monoenergetic imaging of dual-energy CT reduces artifactsartifact reduction by dual energy computed tomography usingimage re- construction for dual energy X-ray transmission

  2. Pollution Prevention - Environmental Impact Reduction Checklists...

    Broader source: Energy.gov (indexed) [DOE]

    provides a valuable opportunity for Federal agency NEPA309 reviewers to incorporate pollution prevention and environmental impact reduction into actions (or projects). This...

  3. Puget Sound Clean Cities Petroleum Reduction Project

    Broader source: Energy.gov (indexed) [DOE]

    million people per year. Relevance Vehicle Deployment: * 223 alternative fuel and advance technology vehicles deployed in local government fleets. * 220 compressed natural gas...

  4. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

    2005-04-01T23:59:59.000Z

    The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) and provided information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 2 efforts also included preparation of a draft topical report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region'', which is nearing completion. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. The video will be completed and aired on Prairie Public Television in the next quarter. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. The addition of the Canadian province of Alberta to the PCOR Partnership region expanded the decision support system (DSS) geographic information system database. Task 5 screened and qualitatively assessed sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  5. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Lisa S. Botnen

    2005-07-01T23:59:59.000Z

    The Plains CO{sub 2} Reduction (PCOR) Partnership characterization work is nearing completion, and most remaining efforts are related to finalizing work products. Task 2 (Technology Deployment) has developed a Topical Report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region''. Task 3 (Public Outreach) has developed an informational Public Television program entitled ''Nature in the Balance'', about CO{sub 2} sequestration. The program was completed and aired on Prairie Public Television in this quarter. Task 4 (Sources, Sinks, and Infrastructure) efforts are nearing completion, and data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation are being incorporated into a series of topical reports. The expansion of the Decision Support System Geographic Information System database has continued with the development of a ''save bookmark'' feature that allows users to save a map from the system easily. A feature that allows users to develop a report that summarizes CO{sub 2} sequestration parameters was also developed. Task 5 (Modeling and Phase II Action Plans) focused on screening and qualitatively assessing sequestration options and developing economic estimates for important regional CO{sub 2} sequestration strategies.

  6. NOx reduction methods and apparatuses

    DOE Patents [OSTI]

    Tonkyn, Russell G.; Barlow, Stephan E.; Balmer, M. Lou; Maupin, Gary D.

    2004-10-26T23:59:59.000Z

    A NO.sub.x reduction method includes treating a first gas containing NO.sub.x, producing a second gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the second gas to N.sub.2, and producing a third gas containing less NO.sub.x than the first gas, substantially all of the third gas NO.sub.x being NO. The method also includes treating the third gas, producing a fourth gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the fourth gas to N.sub.2, and producing a fifth gas containing less NO.sub.x than the third gas, substantially all of the fifth gas NO.sub.x being NO. Treating the first and/or third gas can include treatment with a plasma. Reducing a portion of the NO.sub.2 in the second and/or fourth gas can include reducing with a catalyst. The method can further include controlling energy consumption of the plasmas independent of each other.

  7. Laser Direct Drive: Scientific Advances,

    E-Print Network [OSTI]

    1 Laser Direct Drive: Scientific Advances, Technical Achievements, and the Road To Fusion Energy energy gain ( 40) at 1 MJ laser energy · Advanced lasers/ target designs overcome uniformity requirements, medical applications) Gas laser medium is easy to cool (tough to break gas) Nike single beam focus #12

  8. Advanced LBB methodology and considerations

    SciTech Connect (OSTI)

    Olson, R.; Rahman, S.; Scott, P. [Battelle, Columbus, OH (United States)] [and others

    1997-04-01T23:59:59.000Z

    LBB applications have existed in many industries and more recently have been applied in the nuclear industry under limited circumstances. Research over the past 10 years has evolved the technology so that more advanced consideration of LBB can now be given. Some of the advanced considerations for nuclear plants subjected to seismic loading evaluations are summarized in this paper.

  9. Systems Engineering Advancement Research Initiative

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Systems Engineering Advancement Research Initiative RESEARCH PORTFOLIO Fall 2008 About SEAri http://seari.mit.edu The Systems Engineering Advancement Research Initiative brings together a set of sponsored research projects and a consortium of systems engineering leaders from industry, government, and academia. SEAri is positioned within

  10. Volume reduction and vitrification of nuclear waste with thermal plasma

    SciTech Connect (OSTI)

    Hoffelner, W. [Moser-Glaser and Co., Muttenz (Switzerland); Chrubasik, A. [NUKEM GmbH, Alzenau (Germany); Eschenbach, R.C. [RETECH Inc., Ukiah, CA (United States)

    1993-12-31T23:59:59.000Z

    A process for efficient and safe destruction of organics and vitrification of low/medium level radioactive waste is presented. A transferred arc plasma torch is employed as the heat source. The process handles several types of feed: combustibles, inorganic materials and metals. A non-leaching glassy solid which can be stored without further treatment is obtained as the final product. High volume-reduction factors can be achieved with this process. A wet gas cleaning system leads to extremely clean off-gas.

  11. Agricultural Industry Advanced Vehicle Technology: Benchmark Study for Reduction in Petroleum Use

    SciTech Connect (OSTI)

    Roger Hoy

    2014-09-01T23:59:59.000Z

    Diesel use on farms in the United States has remained relatively constant since 1985, decreasing slightly in 2009, which may be attributed to price increases and the economic recession. During this time, the United States’ harvested area also has remained relatively constant at roughly 300 million acres. In 2010, farm diesel use was 5.4% of the total United States diesel use. Crops accounting for an estimated 65% of United States farm diesel use include corn, soybean, wheat, hay, and alfalfa, respectively, based on harvested crop area and a recent analysis of estimated fuel use by crop. Diesel use in these cropping systems primarily is from tillage, harvest, and various other operations (e.g., planting and spraying) (Figure 3). Diesel efficiency is markedly variable due to machinery types, conditions of operation (e.g., soil type and moisture), and operator variability. Farm diesel use per acre has slightly decreased in the last two decades and diesel is now estimated to be less than 5% of farm costs per acre. This report will explore current trends in increasing diesel efficiency in the farm sector. The report combines a survey of industry representatives, a review of literature, and data analysis to identify nascent technologies for increasing diesel efficiency

  12. Final Report - Energy Reduction and Advanced Water Removal via Membrane Solvent Extraction Technology

    SciTech Connect (OSTI)

    Reed, John; Fanselow, Dan; Abbas, Charles; Sammons, Rhea; Kinchin, Christopher

    2014-08-06T23:59:59.000Z

    3M and Archer Daniels Midland (ADM) collaborated with the U.S. Department of Energy (DOE) to develop and demonstrate a novel membrane solvent extraction (MSE) process that can substantially reduce energy and water consumption in ethanol production, and accelerate the fermentation process. A cross-flow membrane module was developed, using porous membrane manufactured by 3M. A pilot process was developed that integrates fermentation, MSE and vacuum distillation. Extended experiments of 48-72 hours each were conducted to develop the process, verify its performance and begin establishing commercial viability.

  13. Impacts of Natural Organic Matter on Perchlorate Removal by an Advanced Reduction Process

    E-Print Network [OSTI]

    Duan, Yuhang

    2012-10-19T23:59:59.000Z

    experiments were conducted to obtain data on the impacts of natural organic matter and light intensity on destruction of perchlorate by the ARPs that use sulfite activated by ultraviolet light produced by low-pressure mercury lamps or KrCl excimer lamps...

  14. Degradation of Vinyl Chloride and 1,2-Dichloroethane by Advanced Reduction Processes

    E-Print Network [OSTI]

    Liu, Xu

    2013-07-27T23:59:59.000Z

    UV with dithionite, sulfite, sulfide or ferrous iron. Complete degradation of both target compounds was achieved by all ARP and the reactions were found to follow pseudo-first-order decay kinetics. The effects of pH, sulfite dose, UV light intensity...

  15. Advanced Thermal Control Enabling Cost Reduction for Automotive Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Abraham, T.; Kelly, K.; Bennion, K.; Vlahinos, A.

    2008-09-01T23:59:59.000Z

    Describes NREL's work on next-generation vehicle cooling technologies (jets, sprays, microchannels) and novel packaging topologies to reduce costs and increase performance and reliability.

  16. Advanced Non-Krylov Subspace Model Order Reduction Techniques for Interconnect Circuits

    E-Print Network [OSTI]

    Yan, Boyuan

    2009-01-01T23:59:59.000Z

    Freund. Efficient linear circuit analysis by Pade approxima-for reduced order analysis of linear circuit with multiple

  17. Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.

    SciTech Connect (OSTI)

    Bull, Diana L; Ochs, Margaret Ellen

    2013-09-01T23:59:59.000Z

    This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

  18. Biogeochemical Processes Controlling Microbial Reductive Precipitation of Radionuclides

    SciTech Connect (OSTI)

    Fredrickson, James K.; Brooks, Scott C.

    2004-03-17T23:59:59.000Z

    This project is focused on elucidating the principal biogeochemical reactions that govern the concentrations, chemical speciation, and distribution of the redox sensitive contaminants uranium (U) and technetium (Tc) between the aqueous and solid phases. The research is designed to provide new insights into the under-explored areas of competing geochemical and microbiological oxidation-reduction reactions that govern the fate and transport of redox sensitive contaminants and to generate fundamental scientific understanding of the identity and stoichiometry of competing microbial reduction and geochemical oxidation reactions. These goals and objectives are met through a series of hypothesis-driven tasks that focus on (1) the use of well-characterized microorganisms and synthetic and natural mineral oxidants, (2) advanced spectroscopic and microscopic techniques to monitor redox transformations of U and Tc, and (3) the use of flow-through experiments to more closely approximate groundwater environments. The results are providing an improved understanding and predictive capability of the mechanisms that govern the redox dynamics of radionuclides in subsurface environments. For purposes of this poster, the results are divided into three sections: (1) influence of Ca on U(VI) bioreduction; (2) localization of biogenic UO{sub 2} and TcO{sub 2}; and (3) reactivity of Mn(III/IV) oxides.

  19. Advanced robot locomotion.

    SciTech Connect (OSTI)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01T23:59:59.000Z

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  20. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-01-30T23:59:59.000Z

    This is the second quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between October 1, 2002 and December 30, 2002. This report presents a review of progress on the following specific tasks. (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System. (b) New research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions''. (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions''. (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b). (f) New Research project (Task 13): ''Study of Cuttings Transport with Foam under Elevated Pressure and Temperature Conditions''. (g) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (h) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  1. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

    2000-12-01T23:59:59.000Z

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

  2. University of Rochester Medical Center Advancement Director for Advancement and Alumni Relations

    E-Print Network [OSTI]

    Portman, Douglas

    University of Rochester Medical Center Advancement Director for Advancement 58 Overview: Reporting to the Sr. Assistant Vice President for Medical Center Advancement for Academic Programs (SAVP), the Director of Advancement

  3. Steam Load Reduction Guidance Emergency Management Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Steam Load Reduction Guidance Emergency Management Program v October 2014 Steam_Load_Reduction_Guidance_DSRDSR 1.0 PurposeandScope Utilities provides steam to the campus community for space heating, hot water in the steam distribution system or the Central Energy Plant, the preservation of building infrastructure

  4. Dose reduction improvements in storage basins of spent nuclear fuel

    SciTech Connect (OSTI)

    Huang, Fan-Hsiung F.

    1997-08-13T23:59:59.000Z

    Spent nuclear fuel in storage basins at the Hanford Site has corroded and contaminated basin water, which has leaked into the soil; the fuel also had deposited a layer of radioactive sludge on basin floors. The SNF is to be removed from the basins to protect the nearby Columbia River. Because the radiation level is high, measures have been taken to reduce the background dose rate to as low as reasonably achievable (ALARA) to prevent radiation doses from becoming the limiting factor for removal of the SW in the basins to long-term dry storage. All activities of the SNF Project require application of ALARA principles for the workers. On the basis of these principles dose reduction improvements have been made by first identifying radiological sources. Principal radiological sources in the basin are basin walls, basin water, recirculation piping and equipment. Dose reduction activities focus on cleaning and coating basin walls to permit raising the water level, hydrolasing piping, and placing lead plates. In addition, the transfer bay floor will be refinished to make decontamination easier and reduce worker exposures in the radiation field. The background dose rates in the basin will be estimated before each task commences and after it is completed; these dose reduction data will provide the basis for cost benefit analysis.

  5. Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation...

    Office of Environmental Management (EM)

    Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Solicitation...

  6. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30T23:59:59.000Z

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work has consisted of both modeling and single cylinder engine experiments to quantify DIGN performance. The air handling systems of natural gas engines dissipate a percentage of available energy as a result of both flow losses and turbomachinery inefficiencies. An analytical study was initiated to increase compressor efficiency by employing a 2-stage inter-cooled compressor. Caterpillar also studied a turbo-compound system that employs a power turbine to recover energy from the exhaust gases for improved engine efficiency. Several other component and system investigations were undertaken during the final phase of the program to reach the ultimate ARES goals. An intake valve actuation system was developed and tested to improve engine efficiency, durability and load acceptance. Analytical modeling and materials testing were performed to evaluate the performance of steel pistons and compacted graphite iron cylinder head. Effort was made to improve the detonation sensing system by studying and comparing the performance of different pressure sensors. To reduce unburned hydrocarbon emissions, different camshafts were designed and built to investigate the effect of exhaust valve opening timing and value overlap. 1-D & 3-D coupled simulation was used to study intake and exhaust manifold dynamics with the goal of reducing load in-balance between cylinders. Selective catalytic reduction with on-board reductant generation to reduce NOx emissions was also engine tested. An effective mean to successfully deploy ARES technologies into the energy markets is to deploy demonstration projects in the field. In 2010, NETL and Caterpillar agreed to include a new “opportunity fuel” deliverable and two field demonstrations in the ARES program. An Organic Rankine Cycle system was designed with production intent incorporating lessons learned from the Phase II demonstration. Unfortunately, business conditions caused Caterpillar to cancel this demonstration in 2011. Nonetheless, Caterpillar partnered with a local dealer to deploy an ARES class engine using syngas from a biomass gasifier as

  7. Advanced Materials Center of Excellence Jason Boehm

    E-Print Network [OSTI]

    Advanced Materials Center of Excellence Webinar Jason Boehm Program Coordination Office National · Materials Genome Initiative · Advanced Materials Center of Excellence · Overview Federal Funding Opportunity one Center focused on Advanced Materials Depending on FY2014 Funding NIST expects to announce

  8. Advanced Light Source Activity Report 2005

    E-Print Network [OSTI]

    Tamura Ed., Lori S.

    2010-01-01T23:59:59.000Z

    upgrade on the Advanced Light Source," Nucl. Instrum. Meth.n photoemission at the Advanced Light Source," Radiât. Phys.high-pressure studies at the Advanced Light Source w i t h a

  9. Advanced Metering Implementations - A Perspective from Federal Sector

    SciTech Connect (OSTI)

    Eaarni, Shankar

    2014-08-11T23:59:59.000Z

    Federal mandate (EPACT 2005) requires that federal buildings install advanced electrical meters-meters capable of providing data at least daily and measuring the consumption of electricity at least hourly. This work presents selected advanced metering implementations to understand some of the existing practices related to data capture and to understand how the data is being translated into information and knowledge that can be used to improve building energy and operational performance to meet federal energy reduction mandates. This study highlights case studies to represent some of the various actions that are being taken based on the data that are being collected to improve overall energy performance of these buildings. Some of these actions include- individualized tenant billing and energy forecasting, benchmarking, identifying energy conservation measures, measurement and verification.

  10. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30T23:59:59.000Z

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

  11. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Sy Ali

    2002-03-01T23:59:59.000Z

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these technologies and the corresponding early adopters are likely to be located.

  12. Advanced Geothermal Turbodrill

    SciTech Connect (OSTI)

    W. C. Maurer

    2000-05-01T23:59:59.000Z

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  13. Advances in rapid prototyping

    SciTech Connect (OSTI)

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-12-31T23:59:59.000Z

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{trademark} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. Sandia uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype parts in support of a Sandia National Laboratories managed program called FASTCAST. As participants in the Beta test program for QuickCast{trademark} resin and software, they experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible, using this technology, to produce highly accurate prototype parts as well as acceptable firs article and small lots size production parts. They use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster, with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This presentation will focus on the successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes.

  14. Attic or Roof? An Evaluation of Two Advanced Weatherization Packages

    SciTech Connect (OSTI)

    Neuhauser, K.

    2012-06-01T23:59:59.000Z

    This project examines implementation of advanced retrofit measures in the context of a large-scale weatherization program and the archetypal Chicago brick bungalow. One strategy applies best practice air sealing methods and a standard insulation method to the attic floor. The other strategy creates an unvented roof assembly using materials and methods typically available to weatherization contractors. Through implementations of the retrofit strategies in a total of eight (8) test homes, the research found that the two different strategies achieve similar reductions in air leakage measurement (55%) and predicted energy performance (18%) relative to the pre-retrofit conditions.

  15. REDUCTIONS WITHOUT REGRET: HISTORICAL PERSPECTIVES

    SciTech Connect (OSTI)

    Swegle, J.; Tincher, D.

    2013-09-09T23:59:59.000Z

    This is the first of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as some closing thoughts for the future. This paper examines the circumstances and consequences of the elimination of ? The INF-range Pershing II ballistic missile and Gryphon Ground-Launched Cruise Missile (GLCM), deployed by NATO under a dual-track strategy to counter Soviet intermediate-range missiles while pursuing negotiations to limit or eliminate all of these missiles. ? The Short-Range Attack Missile (SRAM), which was actually a family of missiles including SRAM A, SRAM B (never deployed), and SRAM II and SRAM T, these last two cancelled during an over-budget/behind-schedule development phase as part of the Presidential Nuclear Initiatives of 1991 and 1992. ? The nuclear-armed version of the Tomahawk Land-Attack Cruise Missile (TLAM/N), first limited to shore-based storage by the PNIs, and finally eliminated in deliberations surrounding the 2010 Nuclear Posture Review Report. ? The Missile-X (MX), or Peacekeeper, a heavy MIRVed ICBM, deployed in fixed silos, rather than in an originally proposed mobile mode. Peacekeeper was likely intended as a bargaining chip to facilitate elimination of Russian heavy missiles. The plan failed when START II did not enter into force, and the missiles were eliminated at the end of their intended service life. ? The Small ICBM (SICBM), or Midgetman, a road-mobile, single-warhead missile for which per-unit costs were climbing when it was eliminated under the PNIs. Although there were liabilities associated with each of these systems, there were also unique capabilities; this paper lays out the pros and cons for each. Further, we articulate the capabilities that were eliminated with these systems.

  16. DOE - Office of Legacy Management -- Westinghouse Advanced Reactors...

    Office of Legacy Management (LM)

    Advanced Reactors Div Plutonium and Advanced Fuel Labs - PA 10 FUSRAP Considered Sites Site: WESTINGHOUSE ADVANCED REACTORS DIV., PLUTONIUM FUEL LABORATORIES, AND THE ADVANCED FUEL...

  17. FreedomCAR Advanced Traction Drive Motor Development Phase I

    SciTech Connect (OSTI)

    Ley, Josh (UQM Technologies, Inc.); Lutz, Jon (UQM Technologies, Inc.)

    2006-09-01T23:59:59.000Z

    The overall objective of this program is to design and develop an advanced traction motor that will meet the FreedomCAR and Vehicle Technologies (FCVT) 2010 goals and the traction motor technical targets. The motor specifications are given in Section 1.3. Other goals of the program include providing a cost study to ensure the motor can be developed within the cost targets needed for the automotive industry. The program has focused on using materials that are both high performance and low costs such that the performance can be met and cost targets are achieved. In addition, the motor technologies and machine design features must be compatible with high volume manufacturing and able to provide high reliability, efficiency, and ruggedness while simultaneously reducing weight and volume. Weight and volume reduction will become a major factor in reducing cost, material cost being the most significant part of manufacturing cost at high volume. Many motor technology categories have been considered in the past and present for traction drive applications, including: brushed direct current (DC), PM (PM) brushless dc (BLDC), alternating current (AC) induction, switched reluctance and synchronous reluctance machines. Of these machine technologies, PM BLDC has consistently demonstrated an advantage in terms of power density and efficiency. As rare earth magnet cost has declined, total cost may also be reduced over the other technologies. Of the many different configurations of PM BLDC machines, those which incorporate power production utilizing both magnetic torque as well as reluctance torque appear to have the most promise for traction applications. There are many different PM BLDC machine configurations which employ both of these torque producing mechanisms; however, most would fall into one of two categories--some use weaker magnets and rely more heavily on reluctance torque (reluctance-dominant PM machines), others use strong PMs and supplement with reluctance torque (magnet-dominant PM machines). This report covers a trade study that was conducted in this phase I program to explore which type of machine best suits the FCVT requirements.

  18. Advanced Technology Vehicles Manufacturing Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

  19. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

  20. Advanced Computational Methods for Turbulence and Combustion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Computational Methods for Turbulence and Combustion Advanced Computational Methods for Turbulence and Combustion Bell.png Key Challenges: Development and application of...

  1. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    farms with advanced coal generation facilities and operatingfarms with advanced coal generation facilities and operatingin the stand-alone coal generation option (IGCC+CCS plant)

  2. Recent Device Developments with Advanced Bulk Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Device Developments with Advanced Bulk Thermoelectric Materials at RTI Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI Reviews work in engineered...

  3. 2012 Advanced Applications Research & Development Peer Review...

    Broader source: Energy.gov (indexed) [DOE]

    2012 Advanced Applications R&D Peer Review - Mode Meter Development - Ning Zhou, PNNL 2012 Advanced Applications R&D Peer Review - Oscillation Monitoring System - Mani...

  4. Improved Solvers for Advanced Engine Combustion Simulation |...

    Broader source: Energy.gov (indexed) [DOE]

    Improved Solvers for Advanced Engine Combustion Simulation Improved Solvers for Advanced Engine Combustion Simulation 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  5. Chemical Kinetic Models for Advanced Engine Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Models for Advanced Engine Combustion William J. Pitz (PI) Marco Mehl, Charles K. Westbrook Lawrence Livermore National Laboratory June 17, 2014 DOE National Laboratory Advanced...

  6. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Renewable Energy and Energy Efficiency, DOE. LBNL 275-E Advanced Coal Wind Hybrid:Renewable Energy Laboratory), and Ryan Wiser ( LBNL). i Advanced Coal Wind Hybrid:

  7. Development of Advanced Electrolytes and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Component R&D within the ABR Program, 2009 thru 2013 Electrolytes - Advanced Electrolyte and Electrolyte Additives Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery...

  8. Advanced Materials for Proton Exchange Membranes | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Materials for Proton Exchange Membranes Advanced Materials for Proton Exchange Membranes A presentation to the High Temperature Membranes Working Group meeting, May 19,...

  9. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics...

  10. Nick Wright Named Advanced Technologies Group Lead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nick Wright Named Advanced Technologies Group Lead Nick Wright Named Advanced Technologies Group Lead February 4, 2013 Nick Nick Wright has been named head of the National Energy...

  11. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic21 Figure 6. Comparison of ACWH and CCGT-Wind

  12. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting arravt067vssbazzi2012o.pdf More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV Advancing Plug In Hybrid Technology and...

  13. Ecology Action: Small Market Advanced Retrofit Transformation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ecology Action: Small Market Advanced Retrofit Transformation Program - 2015 Peer Review Ecology Action: Small Market Advanced Retrofit Transformation Program - 2015 Peer Review...

  14. Advances in understanding solar energy collection materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding solar energy collection materials Advances in understanding solar energy collection materials A LANL team and collaborators have made advances in the understanding of...

  15. Advanced Engine Development | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Engine Development High-performance computing accelerates advanced engine development July 11, 2014 Oak Ridge National Laboratory's (ORNL's) Dean Edwards and a...

  16. Advanced Hybrid Water Heater using Electrochemical Compressor...

    Energy Savers [EERE]

    Advanced Hybrid Water Heater using Electrochemical Compressor Advanced Hybrid Water Heater using Electrochemical Compressor Xergy is using its Electro Chemical Compression (ECC)...

  17. Advanced Manufacturing Initiative Improves Turbine Blade Productivity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

  18. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Cummins, Inc., June 2011 Presentation on Advanced Natural Gas Reciprocating Engines...

  19. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dresser Waukesha, June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Dresser Waukesha, June 2011 Presentation on Advanced Natural Gas Reciprocating...

  20. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caterpillar, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Caterpillar, Inc., June 2011 Presentation on Advanced Natural Gas Reciprocating...

  1. Optimization of Advanced Diesel Engine Combustion Strategies

    Broader source: Energy.gov (indexed) [DOE]

    - UW-ERC 1 "University Research in Advanced Combustion and Emissions Control" Optimization of Advanced Diesel Engine Combustion Strategies Profs. Rolf Reitz, D. Foster, J....

  2. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  3. Three Offshore Wind Advanced Technology Demonstration Projects...

    Office of Environmental Management (EM)

    Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September...

  4. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

  5. Webinar: Systems Performance Advancement II Funding Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: Systems Performance Advancement II Funding Opportunity Announcement Webinar: Systems Performance Advancement II Funding Opportunity Announcement January 22, 2015 2:00PM to...

  6. Advanced Low Temperature Absorption Chiller Module Integrated...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Low Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 Advanced Low...

  7. Advanced human-system interface design review guidelines

    SciTech Connect (OSTI)

    O'Hara, J.M.

    1990-01-01T23:59:59.000Z

    Advanced, computer-based, human-system interface designs are emerging in nuclear power plant (NPP) control rooms. These developments may have significant implications for plant safety in that they will greatly affect the ways in which operators interact with systems. At present, however, the only guidance available to the US Nuclear Regulatory Commission (NRC) for the review of control room-operator interfaces, NUREG-0700, was written prior to these technological changes and is thus not designed to address them. The objective of the project reported in this paper is to develop an Advanced Control Room Design Review Guideline for use in performing human factors reviews of advanced operator interfaces. This guideline will be implemented, in part, as a portable, computer-based, interactive document for field use. The paper describes the overall guideline development methodology, the present status of the document, and the plans for further guideline testing and development. 21 refs., 3 figs.

  8. Deputy Director, Advanced Manufacturing Office

    Broader source: Energy.gov [DOE]

    This position is located in the Advanced Manufacturing Office (AMO), within the Office of Energy Efficiency and Renewable Energy (EERE). EERE leads the U.S. Department of Energy's efforts to...

  9. SERI advanced wind turbine blades

    SciTech Connect (OSTI)

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01T23:59:59.000Z

    The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  10. SERI advanced wind turbine blades

    SciTech Connect (OSTI)

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01T23:59:59.000Z

    The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  11. Georgia Power- Advanced Solar Initiative

    Broader source: Energy.gov [DOE]

    Note: According to Georgia Power's website, the Advanced Solar Initiative's final program guidelines are due to be published on June 25th and the bidding period for is expected to open on July 10,...

  12. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30T23:59:59.000Z

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

  13. February 2000 Advanced Technology Program

    E-Print Network [OSTI]

    of Standards and Technology (NIST) is a cost-sharing program designed to partner the federal governmentFebruary 2000 Advanced Technology Program Information Infrastructure for Healthcare Focused Program: A Brief History ADADVANCEDANCED TECHNOLOGY PRTECHNOLOGY PROGRAMOGRAM NISTIR 6477 National Institute

  14. Advanced Policy Practice Spring 2014

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Advanced Policy Practice Spring 2014 SW 548-001 Instructor course that focuses on the theory and evidence-based skill sets of policy analysis, development, implementation, and change. The course focuses on policy

  15. GEOSCIENCES 585 ADVANCED REMOTE SENSING

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    . Topics covered include: field methods, field spectroscopy, textural analysis, spectral mixture analysis analysis (3) Perform advanced concepts in digital image processing including texture analysis, atmospheric reasons (e.g. illness, accident, etc.), the instructor will, at her discretion, decide whether

  16. Advancing Measurement of Family Leisure

    E-Print Network [OSTI]

    Melton, Karen

    2014-08-06T23:59:59.000Z

    This study advanced knowledge of the measurement properties of the Family Leisure Activity Profile (FLAP). The FLAP is a sixteen-item index based on the Core and Balance Model of Family Functioning. This study assessed three distinct scaling...

  17. Advanced Process Management and Implementation

    E-Print Network [OSTI]

    Robinson, J.

    Advanced Process Management is a method to achieve optimum process performance during the life cycle of a plant through proper design, effective automation, and adequate operator decision support. Developing a quality process model is an effective...

  18. Power Factor Compensation (PFC) Power Factor Compensation

    E-Print Network [OSTI]

    Knobloch,JĂĽrgen

    Power Factor Compensation (PFC) Power Factor Compensation The power factor (PF) is defined as the ratio between the active power and the apparent power of a system. If the current and voltage are periodic with period , and [ ), then the active power is defined by ( ) ( ) (their inner product

  19. Westinghouse advanced particle filter system

    SciTech Connect (OSTI)

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

    1995-11-01T23:59:59.000Z

    Integrated Gasification Combined Cycles (IGCC), Pressurized Fluidized Bed Combustion (PFBC) and Advanced PFBC (APFB) are being developed and demonstrated for commercial power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC, PFBC and APFB in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of these advanced, solid fuel power generation cycles.

  20. Recent advances in hydraulic fracturing

    SciTech Connect (OSTI)

    Gidley, J.L.

    1989-01-01T23:59:59.000Z

    This book is a reference to the application of significant technological advances in hydraulic fracturing. It features illustrative problems to demonstrate specific applications of advanced technologies. Chapters examine pretreatment formation evaluation, rock mechanics and fracture geometry, 2D and 3D fracture-propagation models, propping agents and fracture conductivity, fracturing fluids and additives, fluid leakoff, flow behavior, proppant transport, treatment design, well completions, field implementation, fracturing-pressure analysis, postfracture formation evaluation, fracture azimuth and geometry determination, and economics of fracturing.

  1. Lung Transplantation for Advanced Bronchiectasis

    E-Print Network [OSTI]

    Turner, Monica G.

    Lung Transplantation for Advanced Bronchiectasis Don Hayes Jr., M.D., F.A.A.P., F.A.C.P., F.C.C.P.1 and Keith C. Meyer, M.D., M.S., F.A.C.P., F.C.C.P.2 ABSTRACT Lung transplant (LT) can be successfully performed on patients with advanced bronchiectatic lung disease with subsequent good posttransplant quality

  2. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    SciTech Connect (OSTI)

    H.Y. Sohn

    2008-03-31T23:59:59.000Z

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  3. Nox reduction system utilizing pulsed hydrocarbon injection

    DOE Patents [OSTI]

    Brusasco, Raymond M. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

  4. ADVANCED MIXING MODELS

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R; David Tamburello, D

    2008-11-13T23:59:59.000Z

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and schedule savings. The focus of the present work is to establish mixing criteria associated with the waste processing at SRS and to quantify the mixing time required to suspend sludge particles with the submersible jet pump. Literature results for a turbulent jet flow are reviewed briefly, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. One of the main objectives in the waste processing is to provide the DWPF a uniform slurry composition at a certain weight percentage (typically {approx}13 wt%) over an extended period of time. In preparation of the sludge for slurrying to DWPF, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition for DWPF? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination? Grenville and Tilton (1996) investigated the mixing process by giving a pulse of tracer (electrolyte) through the submersible jet nozzle and by monitoring the conductivity at three locations within the cylindrical tank. They proposed that the mixing process was controlled by the turbulent kinetic energy dissipation rate in the region far away from the jet entrance. They took the energy dissipation rates in the regions remote from the nozzle to be proportional to jet velocity and jet diameter at that location. The reduction in the jet velocity was taken to be proportional to the nozzle velocity and distance from the nozzle. Based on their analysis, a correlation was proposed. The proposed correlation was shown to be valid over a wide range of Reynolds numbers (50,000 to 300,000) with a relative standard deviation of {+-} 11.83%. An improved correlat

  5. DC, AC and advanced EV propulsion systems

    SciTech Connect (OSTI)

    O'Neil, W.

    1983-08-01T23:59:59.000Z

    Battery development and liquid fuel availability and cost are still the pacing factors in wide scale electric vehicle introduction. Propulsion systems also require technical development, however, if electric vehicles are to be acceptable in the marketplace in competition against ICE vehicles. Eaton Corporation has undertaken a program designed to identify and investigate three broad types of propulsion systems in identical test vehicles on the same test track under conditions as similar as possible. Characteristics of dc, ac and advanced systems are compared to date, and projections of anticipated results and further work are provided. The compelling advantages of multiple mechanical ratios in EV propulsion systems are reviewed. An emerging, but less obvious, advantage is higher overall system efficiency.

  6. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect (OSTI)

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01T23:59:59.000Z

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  7. Meeting Summary Advanced Light Water Reactor Fuels Industry Meeting Washington DC October 27 - 28, 2011

    SciTech Connect (OSTI)

    Not Listed

    2011-11-01T23:59:59.000Z

    The Advanced LWR Fuel Working Group first met in November of 2010 with the objective of looking 20 years ahead to the role that advanced fuels could play in improving light water reactor technology, such as waste reduction and economics. When the group met again in March 2011, the Fukushima incident was still unfolding. After the March meeting, the focus of the program changed to determining what we could do in the near term to improve fuel accident tolerance. Any discussion of fuels with enhanced accident tolerance will likely need to consider an advanced light water reactor with enhanced accident tolerance, along with the fuel. The Advanced LWR Fuel Working Group met in Washington D.C. on October 72-18, 2011 to continue discussions on this important topic.

  8. Energy Efficiency Interest Rate Reduction Program

    Broader source: Energy.gov [DOE]

    The Alaska Housing Finance Corporation (AHFC) offers interest rate reductions to home buyers purchasing new and existing homes with 5 Star and 5 Star Plus energy ratings. All homes constructed on...

  9. Oxygen reduction on platinum : an EIS study

    E-Print Network [OSTI]

    Golfinopoulos, Theodore

    2009-01-01T23:59:59.000Z

    The oxygen reduction reaction (ORR) on platinum over yttria-stabilized zirconia (YSZ) is examined via electrochemical impedance spectroscopy (EIS) for oxygen partial pressures between 10-4 and 1 atm and at temperatures ...

  10. Waste Characterization, Reduction, and Repackaging Facility...

    Office of Environmental Management (EM)

    (TSR), ABD-WFM-006, Revision 2.1 Waste Characterization, Reduction, and Repackaging Facility (WCRRF)Technical Safety Requirements (TSR), ABD-WFM-006, Revision 2.1 The...

  11. Greenhouse Gas Emissions Reduction Act (Maryland)

    Broader source: Energy.gov [DOE]

    The Greenhouse Gas Emissions Reduction Act requires the Department of the Environment to publish and update an inventory of statewide greenhouse gas emissions for calendar year 2006 and requires...

  12. INVARIANTS OF IDEALS HAVING PRINCIPAL REDUCTIONS

    E-Print Network [OSTI]

    1910-40-82T23:59:59.000Z

    The integer r denotes the reduction number of I. In defining k, we are using the ..... H1,... ,Hs ? Q such that T2 n ? T1G = F1H1 + ..... Math. J. 27 (1978), 929–934.

  13. Solid Waste Reduction, Recovery, and Recycling

    Broader source: Energy.gov [DOE]

    This statute expresses the strong support of the State of Wisconsin for the reduction of the amount of solid waste generated, the reuse, recycling and composting of solid waste, and resource...

  14. Sharing the Burden of GHG Reductions

    E-Print Network [OSTI]

    Jacoby, Henry D.

    The G8 countries propose a goal of a 50% reduction in global emissions by 2050, in an effort that needs to take account of other agreements specifying that developing countries are to be provided with incentives to action ...

  15. Large Drag Reduction over Superhydrophobic Riblets

    E-Print Network [OSTI]

    Barbier, Charlotte; D'Urso, Brian

    2014-01-01T23:59:59.000Z

    Riblets and superhydrophobic surfaces are two demonstrated passive drag reduction techniques. We describe a method to fabricate surfaces that combine both of these techniques in order to increase drag reduction properties. Samples have been tested with a cone-and-plate rheometer system, and have demonstrated significant drag reduction even in the transitional-turbulent regime. Direct Numerical Simulations have been performed in order to estimate the equivalent slip length at higher rotational speed. The sample with 100~$\\mu$m deep grooves has been performing very well, showing drag reduction varying from 15 to 20 $\\%$ over the whole range of flow conditions tested, and its slip length was estimated to be over 100 $\\mu$m.

  16. ADVANCED MIXING MODELS

    SciTech Connect (OSTI)

    Lee, S.; Dimenna, R.; Tamburello, D.

    2011-02-14T23:59:59.000Z

    The process of recovering and processing High Level Waste (HLW) the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four mixers (pumps) located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are typically set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The focus of the present work is to establish mixing criteria applicable to miscible fluids, with an ultimate goal of addressing waste processing in HLW tanks at SRS and quantifying the mixing time required to suspend sludge particles with the submersible jet pump. A single-phase computational fluid dynamics (CFD) approach was taken for the analysis of jet flow patterns with an emphasis on the velocity decay and the turbulent flow evolution for the farfield region from the pump. Literature results for a turbulent jet flow are reviewed, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. The work described in this report suggests a basis for further development of the theory leading to the identified mixing indicators, with benchmark analyses demonstrating their consistency with widely accepted correlations. Although the indicators are somewhat generic in nature, they are applied to Savannah River Site (SRS) waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. One of the main objectives in the waste processing is to provide feed of a uniform slurry composition at a certain weight percentage (e.g. typically {approx}13 wt% at SRS) over an extended period of time. In preparation of the sludge for slurrying, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination?

  17. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30T23:59:59.000Z

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.

  18. ADVANCED WORKER PROTECTION SYSTEM

    SciTech Connect (OSTI)

    Judson Hedgehock

    2001-03-16T23:59:59.000Z

    From 1993 to 2000, OSS worked under a cost share contract from the Department of Energy (DOE) to develop an Advanced Worker Protection System (AWPS). The AWPS is a protective ensemble that provides the user with both breathing air and cooling for a NIOSH-rated duration of two hours. The ensemble consists of a liquid air based backpack, a Liquid Cooling Garment (LCG), and an outer protective garment. The AWPS project was divided into two phases. During Phase 1, OSS developed and tested a full-scale prototype AWPS. The testing showed that workers using the AWPS could work twice as long as workers using a standard SCBA. The testing also provided performance data on the AWPS in different environments that was used during Phase 2 to optimize the design. During Phase 1, OSS also performed a life-cycle cost analysis on a representative clean up effort. The analysis indicated that the AWPS could save the DOE millions of dollars on D and D activities and improve the health and safety of their workers. During Phase 2, OSS worked to optimize the AWPS design to increase system reliability, to improve system performance and comfort, and to reduce the backpack weight and manufacturing costs. To support this design effort, OSS developed and tested several different generations of prototype units. Two separate successful evaluations of the ensemble were performed by the International Union of Operation Engineers (IUOE). The results of these evaluations were used to drive the design. During Phase 2, OSS also pursued certifying the AWPS with the applicable government agencies. The initial intent during Phase 2 was to finalize the design and then to certify the system. OSS and Scott Health and Safety Products teamed to optimize the AWPS design and then certify the system with the National Institute of Occupational Health and Safety (NIOSH). Unfortunately, technical and programmatic difficulties prevented us from obtaining NIOSH certification. Despite the inability of NIOSH to certify the design, OSS was able to develop and successfully test, in both the lab and in the field, a prototype AWPS. They clearly demonstrated that a system which provides cooling can significantly increase worker productivity by extending the time they can function in a protective garment. They were also able to develop mature outer garment and LCG designs that provide considerable benefits over current protective equipment, such as self donning and doffing, better visibility, and machine washable. A thorough discussion of the activities performed during Phase 1 and Phase 2 is presented in the AWPS Final Report. The report also describes the current system design, outlines the steps needed to certify the AWPS, discusses the technical and programmatic issues that prevented the system from being certified, and presents conclusions and recommendations based upon the seven year effort.

  19. Advanced Distillation Final Report

    SciTech Connect (OSTI)

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

    2010-03-24T23:59:59.000Z

    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were performed with the targeted mixture, ethane-ethylene, as well as with analogous low relative volatility systems: cyclohexane-hexane and cyclopentane-pentane. Devices and test stands were specifically designed for these efforts. Development progressed from experiments and models considering sections of a full scale device to the design, fabrication, and operation of a single-channel distillation unit with integrated heat transfer. Throughout the project, analytical and numerical models and Computational Fluid Dynamics (CFD) simulations were validated with experiments in the process of developing this platform technology. Experimental trials demonstrated steady and controllable distillation for a variety of process conditions. Values of Height-to-an-Equivalent Theoretical Plate (HETP) ranging from less than 0.5 inch to a few inches were experimentally proven, demonstrating a ten-fold performance enhancement relative to conventional distillation. This improvement, while substantial, is not sufficient for MPT distillation to displace very large scale distillation trains. Fortunately, parallel efforts in the area of business development have yielded other applications for MPT distillation, including smaller scale separations that benefit from the flowsheet flexibility offered by the technology. Talks with multiple potential partners are underway. Their outcome will also help determine the path ahead for MPT distillation.

  20. Advanced Integrated Traction System

    SciTech Connect (OSTI)

    Greg Smith; Charles Gough

    2011-08-31T23:59:59.000Z

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

  1. Advanced Microturbine Systems

    SciTech Connect (OSTI)

    Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

    2008-12-31T23:59:59.000Z

    In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a technology metric or a system-output metric. A common form for the technology metric is in the units of PPM {at} 15% O2. In this case the metric reflects the molar fraction of the pollutant in the powerplant exhaust when corrected to a standard exhaust condition as containing 15% (molar) oxygen, assuring that the PPM concentrations are not altered by subsequent air addition or dilution. Since fuel combustion consumes oxygen, the output oxygen reference is equivalent to a fuel input reference. Hence, this technology metric reflects the moles of pollutant per mole of fuel input, but not the useful output of the powerplant-i.e. the power. The system-output metric does embrace the useful output and is often termed an output-based metric. A common form for the output-based metric is in the units of lb/MWh. This is a system metric relating the pounds of pollutant to output energy (e.g., MWh) of the powerplant.

  2. Systems Analyses of Advanced Brayton Cycles

    SciTech Connect (OSTI)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30T23:59:59.000Z

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study how alternative process schemes and power cycles might be used and integrated to achieve higher systems efficiency. To achieve these design results, the total systems approach is taken requiring creative integration of the various process units within the plant. Advanced gas turbine based cycles for Integrated gasification Combined cycle (IGCC) applications are identified by a screening analysis and the more promising cycles recommended for detailed systems analysis. In the case of the IGFC task, the main objective is met by developing a steady-state simulation of the entire plant and then using dynamic simulations of the hybrid Solid Oxide Fuel Cell (SOFC)/Gas Turbine sub-system to investigate the turbo-machinery performance. From these investigations the desired performance characteristics and a basis for design of turbo-machinery for use in a fuel cell gas turbine power block is developed.

  3. Reduction of metal oxides through mechanochemical processing

    DOE Patents [OSTI]

    Froes, Francis H. (Moscow, ID); Eranezhuth, Baburaj G. (Moscow, ID); Senkov, Oleg N. (Moscow, ID)

    2000-01-01T23:59:59.000Z

    The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.

  4. Twin Cities Metro Advanced Practice Center

    E-Print Network [OSTI]

    Offsite cold storage options (contact info for truck, warehouse) #12;Twin Cities Metro Advanced Practice

  5. Industry and the APS | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    important applications, including advances in manufacturing, information technology, nanotechnology, pharmaceuticals, biomedicine, oil and gas, transportation, agriculture,...

  6. ABPDU - Advanced Biofuels Process Demonstration Unit

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

  7. National Training and Education Resource Advanced Authoring Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Authoring Training Participant Guide NTER Advanced Authoring Training Participant Guide (032012 pw) 2 Contents OBJECTIVES ......

  8. Non-Hardware ("Soft") Cost-Reduction Roadmap for Residential and Small Commercial Solar Photovoltaics, 2013-2020

    SciTech Connect (OSTI)

    Ardani, K.; Seif, D.; Margolis, R.; Morris, J.; Davidson, C.; Truitt, S.; Torbert, R.

    2013-08-01T23:59:59.000Z

    The objective of this analysis is to roadmap the cost reductions and innovations necessary to achieve the U.S. Department of Energy (DOE) SunShot Initiative's total soft-cost targets by 2020. The roadmap focuses on advances in four soft-cost areas: (1) customer acquisition; (2) permitting, inspection, and interconnection (PII); (3) installation labor; and (4) financing. Financing cost reductions are in terms of the weighted average cost of capital (WACC) for financing PV system installations, with real-percent targets of 3.0% (residential) and 3.4% (commercial).

  9. Process for producing advanced ceramics

    DOE Patents [OSTI]

    Kwong, Kyei-Sing (Tuscaloosa, AL)

    1996-01-01T23:59:59.000Z

    A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.

  10. Low Temperature Combustion and Diesel Emission Reduction Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Diesel Emission Reduction Research Low Temperature Combustion and Diesel Emission Reduction Research Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan....

  11. Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials...

    Open Energy Info (EERE)

    Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Agency...

  12. California Customer Load Reductions during the Electricity Crisis...

    Open Energy Info (EERE)

    Reductions during the Electricity Crisis: Did They Help to Keep the Lights On? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: California Customer Load Reductions during...

  13. Biomineralization Associated with Microbial Reduction of Fe3...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Associated with Microbial Reduction of Fe3+ and Oxidation of Fe2+ in Solid Minerals . Biomineralization Associated with Microbial Reduction of Fe3+ and Oxidation of Fe2+...

  14. Evidence for Localization of Reaction Upon Reduction of Carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Localization of Reaction Upon Reduction of Carbon Tetrachloride by Granular Iron. Evidence for Localization of Reaction Upon Reduction of Carbon Tetrachloride by Granular Iron....

  15. Polyelectrolyte-Induced Reduction of Exfoliated Graphite Oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reduction of Exfoliated Graphite Oxide: A Facile Route to Synthesis of Soluble Graphene Nanosheets. Polyelectrolyte-Induced Reduction of Exfoliated Graphite Oxide: A Facile...

  16. Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and...

  17. Perspectives Regarding Diesel Engine Emissions Reduction in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions...

  18. 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report...

  19. The Mechanisms of Oxygen Reduction and Evolution Reactions in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries. The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous...

  20. Catalytic reduction system for oxygen-rich exhaust

    DOE Patents [OSTI]

    Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

    1999-04-13T23:59:59.000Z

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

  1. DOE Program Resources and Tools for Petroleum Reduction in the...

    Open Energy Info (EERE)

    for Petroleum Reduction in the Transportation Sector Webinar Jump to: navigation, search Tool Summary Name: DOE Program Resources and Tools for Petroleum Reduction in the...

  2. Fuel economy and emissions reduction of HD hybrid truck over...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving...

  3. Sulfur Isotopes as Indicators of Amended Bacterial Sulfate Reduction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Amended Bacterial Sulfate Reduction Processes Influencing Field Scale Uranium Bioremediation. Sulfur Isotopes as Indicators of Amended Bacterial Sulfate Reduction Processes...

  4. Theoretical Study of the Structure, Stability and Oxygen Reduction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study of the Structure, Stability and Oxygen Reduction Activity ofUltrathin Platinum Nanowires. Theoretical Study of the Structure, Stability and Oxygen Reduction Activity...

  5. Testing Oxygen Reduction Reaction Activity with the Rotating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique...

  6. Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis . Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis . Abstract: The research described in...

  7. EV Everywhere Grand Challenge - Battery Status and Cost Reduction...

    Energy Savers [EERE]

    Status and Cost Reduction Prospects EV Everywhere Grand Challenge - Battery Status and Cost Reduction Prospects Presentation given by technology manager David Howell at the EV...

  8. Carbon Emissions Reduction Potential in the US Chemicals and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 Carbon Emissions Reduction Potential in the US...

  9. CRADA with Cummins on Characterization and Reduction of Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins on Characterization and Reduction of Combustion Variations CRADA with Cummins on Characterization and Reduction of Combustion Variations 2012 DOE Hydrogen and Fuel Cells...

  10. Emissions Reduction Experience with Johnson Matthey EGRT on Off...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduction Experience with Johnson Matthey EGRT on Off-Road Equipment Emissions Reduction Experience with Johnson Matthey EGRT on Off-Road Equipment Poster presentation at the 2007...

  11. Idling Emissions Reduction Technology with Low Temperature Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idling Emissions Reduction Technology with Low Temperature Combustion of DI Biodiesel and PFI n-Butanol Idling Emissions Reduction Technology with Low Temperature Combustion of DI...

  12. EPA Source Reduction Assistance Grant Program | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    accepting applications for the Source Reduction Assistance Grant Program to support pollution preventionsource reduction andor resource conservation projects that reduce or...

  13. Density Functional Theory Study of Oxygen Reduction Activity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Density Functional Theory Study of Oxygen Reduction Activity on Ultrathin Platinum Nanotubes. Density Functional Theory Study of Oxygen Reduction Activity on Ultrathin Platinum...

  14. assess viscosity reduction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    frequency distributions of load reduction Vander Zanden, Jake 11 ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS University of California eScholarship...

  15. Advanced Nuclear Fuel Cycle Options

    SciTech Connect (OSTI)

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01T23:59:59.000Z

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  16. Advanced Manufacturing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJune 17, 2015EnergyTheAdvanced BiofuelsAdvanced DOEfunds

  17. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power andAdvancedCMWGLaboratoryAdvanced

  18. Advanced Accelerator Concepts Final Report

    SciTech Connect (OSTI)

    Wurtele, Jonathan S.

    2014-05-13T23:59:59.000Z

    A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitation of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di#11;erences we might observe would revolutionize fundamental physics. This is the physics motivation for our experiment, one that requires only a few dozen researchers but must effectively integrate plasma, accelerator, atomic, and fundamental physics, as well as combine numerous technologies in the control, manipulation, and measurement of neutral and non-neutral particles. The ELENA ring (to which we hope to contribute, should funding be provided) is expect, when completed, to significantly enhance the performance of antihydrogen trapping by increasing by a factor of 100 the number of antiprotons that can be successfully trapped and cooled. ELENA operation is scheduled to commence in 2017. In collaboration with LBNL scientists, we proposed a frictional cooling scheme. This is an alternative cooling method to that used by ELENA. It is less complicated, experimentally unproven, and produces a lower yield of cold antiprotons. Students and postdoctoral researchers work on the trapping, cooling, transport, and nonlinear dynamics of antiprotons bunches that are provided by the AD to ALPHA; they contribute to the operation of the experiment, to software development, and to the design and operation of experiments. Students are expected to spend at summers at CERN while taking courses; after completion of courses they typically reside at CERN for most of the half-year run. The Antiproton Decelerator [AD] at CERN, along with its experiments, is the only facility in the world where antiprotons can be trapped and cooled and combined with positrons to form cold antihydrogen, with the ultimate goal of studying CPT violation and, subsequently, gravitational interactions of antimatter. Beyond the ALPHA experiment, the group worked on beam physics problems including limits on the average current in a time-dependent period cathode and new methods to create longitudinally coherent high repetition rate soft x-ray sources and wide bandwidth mode locked x-ray lasers. We completed a detailed study of quantum mechanical effects in the transit time cooling of muons.

  19. Waste reduction at the Savannah River Site

    SciTech Connect (OSTI)

    Stevens, W.E.; Lee, R.A.; Reynolds, R.W.

    1990-01-01T23:59:59.000Z

    The Savannah River Site (SRS) is a key installation for the production and research of nuclear materials for national defense and peace time applications and has been operating a full nuclear fuel cycle since the early 1950s. Wastes generated include high level radioactive, transuranic, low level radioactive, hazardous, mixed, sanitary, and aqueous wastes. Much progress has been made during the last several years to reduce these wastes including management systems, characterization, and technology programs. The reduction of wastes generated and the proper handling of the wastes have always been a part of the Site's operation. This paper summarizes the current status and future plans with respect to waste reduction to waste reduction and reviews some specific examples of successful activities.

  20. Waste reduction at the Savannah River Site

    SciTech Connect (OSTI)

    Stevens, W.E.; Lee, R.A.; Reynolds, R.W.

    1990-12-31T23:59:59.000Z

    The Savannah River Site (SRS) is a key installation for the production and research of nuclear materials for national defense and peace time applications and has been operating a full nuclear fuel cycle since the early 1950s. Wastes generated include high level radioactive, transuranic, low level radioactive, hazardous, mixed, sanitary, and aqueous wastes. Much progress has been made during the last several years to reduce these wastes including management systems, characterization, and technology programs. The reduction of wastes generated and the proper handling of the wastes have always been a part of the Site`s operation. This paper summarizes the current status and future plans with respect to waste reduction to waste reduction and reviews some specific examples of successful activities.

  1. Analysis of variation at transcription factor binding sites in Drosophila and humans

    E-Print Network [OSTI]

    Spivakov, Mikhail

    Background: Advances in sequencing technology have boosted population genomics and made it possible to map the positions of transcription factor binding sites (TFBSs) with high precision. Here we investigate TFBS variability ...

  2. The 6th International Workshop on Advanced Smart Materials and Smart Structures Technology ANCRiSST2011

    E-Print Network [OSTI]

    Spencer Jr., B.F.

    The 6th International Workshop on Advanced Smart Materials and Smart Structures Technology ANCRi) for the response reduction of building structures under seismic loading. First, the building structure used sink, the sensitivity to the amplitude of the loading and the natural frequency of the building

  3. Effects of Levels of Automation for Advanced Small Modular Reactors: Impacts on Performance, Workload, and Situation Awareness

    SciTech Connect (OSTI)

    Johanna Oxstrand; Katya Le Blanc

    2014-07-01T23:59:59.000Z

    The Human-Automation Collaboration (HAC) research effort is a part of the Department of Energy (DOE) sponsored Advanced Small Modular Reactor (AdvSMR) program conducted at Idaho National Laboratory (INL). The DOE AdvSMR program focuses on plant design and management, reduction of capital costs as well as plant operations and maintenance costs (O&M), and factory production costs benefits.

  4. Controlled black liquor viscosity reduction through salting-in

    SciTech Connect (OSTI)

    Roberts, J.E.; Khan, S.A.; Spontak, R.J. [North Carolina State Univ., Raleigh, NC (United States)] [North Carolina State Univ., Raleigh, NC (United States)

    1996-08-01T23:59:59.000Z

    Black liquor viscosity increases exponentially with solids content and therefore causes processing problems for the paper industry by being a limiting factor in the Kraft pulp process. This study investigates a new approach for achieving viscosity reduction by salting-in black liquor through the addition of thiocyanate salts. These salts generally increase the solubility of the polymer constituents in black liquor, leading to a decrease in its viscosity. Several thiocyanate salts capable of reducing liquor viscosity by more than two orders of magnitude have been identified, with viscosity reduction greatest at high solids content. Salting-in of black liquor depends on the cation paired with the thiocyanate anion, as well as on solution pH and temperature. Comparative studies reveal the most effective viscosity-reducing agent of the series examined and that lignin plays an important role in the viscosity behavior of both unmodified and salted-in black liquor at high solids concentrations. These experimental findings are interpreted in terms of the underlying principles that describe salting-in and how it affects aqueous solution structure.

  5. Reduction in maximum time uncertainty of paired time signals

    DOE Patents [OSTI]

    Theodosiou, George E. (West Chicago, IL); Dawson, John W. (Clarendon Hills, IL)

    1983-01-01T23:59:59.000Z

    Reduction in the maximum time uncertainty (t.sub.max -t.sub.min) of a series of paired time signals t.sub.1 and t.sub.2 varying between two input terminals and representative of a series of single events where t.sub.1 .ltoreq.t.sub.2 and t.sub.1 +t.sub.2 equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t.sub.min) of the first signal t.sub.1 closer to t.sub.max and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20-800.

  6. Reduction in maximum time uncertainty of paired time signals

    DOE Patents [OSTI]

    Theodosiou, G.E.; Dawson, J.W.

    1983-10-04T23:59:59.000Z

    Reduction in the maximum time uncertainty (t[sub max]--t[sub min]) of a series of paired time signals t[sub 1] and t[sub 2] varying between two input terminals and representative of a series of single events where t[sub 1][<=]t[sub 2] and t[sub 1]+t[sub 2] equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t[sub min]) of the first signal t[sub 1] closer to t[sub max] and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20--800. 6 figs.

  7. Reduction in maximum time uncertainty of paired time signals

    DOE Patents [OSTI]

    Theodosiou, G.E.; Dawson, J.W.

    1981-02-11T23:59:59.000Z

    Reduction in the maximum time uncertainty (t/sub max/ - t/sub min/) of a series of paired time signals t/sub 1/ and t/sub 2/ varying between two input terminals and representative of a series of single events where t/sub 1/ less than or equal to t/sub 2/ and t/sub 1/ + t/sub 2/ equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t/sub min/) of the first signal t/sub 1/ closer to t/sub max/ and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20 to 800.

  8. PAMPA II Advanced Charting System

    E-Print Network [OSTI]

    Inbarajan, Prabhu Anand

    2004-09-30T23:59:59.000Z

    where the project is heading, and if needed, then look into the finer level details by drilling down to locate and correct problems. The objective of this thesis is to build an Advanced Charting System (ACS), which would act as a companion to PAMPA 2...

  9. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2000-01-01T23:59:59.000Z

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  10. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2002-02-01T23:59:59.000Z

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  11. Advanced Networking Voice over IP

    E-Print Network [OSTI]

    Lo Cigno, Renato Antonio

    by the original monopoly system The structure was tailored and optimized for voice transport Local Exchange to allow direct curret for powering the phone and to limit the signal bandwidth to a known extent ­ routing and setup ­ resource finding and reservation #12;5 Renato.LoCigno@disi.unitn.it Advanced

  12. Advanced Networking Voice over IP

    E-Print Network [OSTI]

    Lo Cigno, Renato Antonio

    are not uniform across coutries. Architecture is still biased by the original monopoly system The structure technique on the local loop, filtered between 300 and 3400 Hz to allow direct curret for powering the phone ­ routing and setup ­ resource finding and reservation #12;Renato.LoCigno@disi.unitn.it Advanced Networking

  13. Digital Tomosynthesis: Advanced Breast Cancer

    E-Print Network [OSTI]

    Fygenson, Deborah Kuchnir

    creating an image. · A newer process, called full field digital mammography uses digital receptors. #12Digital Tomosynthesis: Advanced Breast Cancer Imaging Technique Max Wiedmann #12;Digital Bremsstrahlung, a process in which electrons are accelerated against an anode, causing photons to be fired off

  14. Banner Advancement Account Request Form

    E-Print Network [OSTI]

    Karsai, Istvan

    Banner Advancement Account Request Form ETSU Office of Information Technology 424 Roy Nicks Hall, Box 70728 Johnson City, Tennessee 37614 (423) 439-4648 · oithelp@etsu.edu This section for use ______________________________________________________________________________________ [last] [first] [middle] ETSU Domain Name _____________________@etsu.edu School / College

  15. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2002-04-01T23:59:59.000Z

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  16. Advanced Fuels Campaign 2012 Accomplishments

    SciTech Connect (OSTI)

    Not Listed

    2012-11-01T23:59:59.000Z

    The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

  17. Advanced Workshop in Regulation and

    E-Print Network [OSTI]

    Lin, Xiaodong

    Advanced Workshop in Regulation and Competition 2011-2012 Conflicting Technological and Competitive Forces in Regulated Industries January 13, 2012 Smart Grid and Rates Location: Rutgers Business School 1:40pm "Smart Grid in Maryland" Kurt Strunk, NERA Economic Consulting, 1:40pm-2:05pm "Gas Pipeline Rates

  18. Advance Indexing July 3, 2014

    E-Print Network [OSTI]

    Nejdl, Wolfgang

    the existing index High query performance > contiguous posting list High index maintenance cost #12;15 Index Tree #12;16 Index Tree ­ Step by Step Construction #12;17 Index Tree - Algorithm #12;18 Experiment1 Advance Indexing Limock July 3, 2014 #12;2 Papers 1) Gurajada, Sairam : "On-line index

  19. Gas fired Advanced Turbine System

    SciTech Connect (OSTI)

    LeCren, R.T.; White, D.J.

    1993-01-01T23:59:59.000Z

    The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

  20. Advancing Michigan's State of Knowledge

    E-Print Network [OSTI]

    Zhao, Jennifer Jing

    Advancing Michigan's State of Knowledge GRADUATE E D U C AT I O N "To attract and grow quality jobs for Michigan's Economic Future: Jobs, Education and Protecting Families State of the State Address - 2009 Michigan Graduate Education Day Thursday, April 23, 2009 , Andrews University Aquinas College Baker College

  1. POSTDOCTORAL POSITION ADVANCED SUBSTRATE ENGINEERING

    E-Print Network [OSTI]

    ; Information regarding SMART: http://smart.mit.edu/home.html Professor Fitzgerald's Web Site: http AND SMART, C.S. TAN, NTU AND SMART, AND S.F. YOON, NTU AND SMART BACKGROUND: There is an opening in MIT's Singapore research center (SMART) for post-doctoral fellow in the area of advanced substrate engineering

  2. TUM Institute for Advanced Study

    E-Print Network [OSTI]

    Haug, Stephan

    , 85748 Garching When October 21, 2010, 9.00 a.m. With the new home for the TUM Institute for Advanced in Smart Grids Prof. Sandra Hirche (TUM) Dr. Dragan Obradovic (Siemens AG) Electrochemistry and the Future of the Automobile Dr. Frederick T. Wagner (General Motors R&D) 12:00 Lunch · Ideas Market (Faculty of Mechanical

  3. Direct electrochemical reduction of metal-oxides

    DOE Patents [OSTI]

    Redey, Laszlo I. (Downers Grove, IL); Gourishankar, Karthick (Downers Grove, IL)

    2003-01-01T23:59:59.000Z

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  4. Evaluation of technologies for volume reduction of plutonium-contaminated soils from the Nevada Test Site

    SciTech Connect (OSTI)

    Papelis, C.; Jacobson, R.L.; Miller, F.L.; Shaulis, L.K.

    1996-06-01T23:59:59.000Z

    Nuclear testing at and around the Nevada Test Site (NTS) resulted in plutonium (Pu) contamination of the soil over an area of several thousands of acres. The objective of this project was to evaluate the potential of five different processes to reduce the volume of Pu-contaminated soil from three different areas, namely Areas 11, 13, and 52. Volume reduction was to be accomplished by concentrating the Pu into a small but highly contaminated soil fraction, thereby greatly reducing the volume of soil requiring disposal. The processes tested were proposed by Paramag Corp. (PARAMAG), Advanced Processing Technologies Inc. (APT), Lockheed Environmental Systems and Technologies (LESAT), Nuclear Remediation Technologies (NRT), and Scientific Ecology Group (SEG). Because of time and budgetary restraints, the NRT and SEG processes were tested with soil from Area 11 only. These processes typically included a preliminary soil conditioning step (e.g., attrition scrubbing, wet sieving), followed by a more advanced process designed to separate Pu from the soil, based on physiochemical properties of Pu compounds (e.g., magnetic susceptibility, specific gravity). Analysis of the soil indicates that a substantial fraction of the total Pu contamination is typically confined in a relatively narrow and small particle size range. Processes which were able to separate this highly contaminated soil fraction (using physical methods, e.g., attrition scrubbing, wet sieving), from the rest of the soil achieved volume (mass) reductions on the order of 70%. The advanced, more complex processes tested did not enhance volume reduction. The primary reason why processes that rely on the dependence of settling velocity on density differences failed was the very fine grain size of the Pu-rich particles.

  5. Cerium Oxide Coating for Oxidation Reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMSStaffCerium Oxide Coating for Oxidation

  6. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  7. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO[sub 2] per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO[sub 2] emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  8. Australia's Humanitarian Action Policy and Disaster Risk Reduction Policy

    E-Print Network [OSTI]

    Botea, Adi

    to get more information Disaster Risk Reduction Team Disaster Prevention and Risk Reduction Section GrantAustralia's Humanitarian Action Policy and Disaster Risk Reduction Policy A Commitment: · Disaster risk reduction is integrated into the Australian aid program · Capacity of partner governments

  9. THE ECONOMIC PAYOFF FOR GLOBAL WARMING EMISSIONS REDUCTION

    E-Print Network [OSTI]

    Dr. Sam; V. Shelton; Laura A. Schaefer

    efficiency technology, such as residential electric heat pump water heaters, can cause carbon reduction to

  10. Dissimilatory Metal Reduction by Anaeromyxobacter Species

    SciTech Connect (OSTI)

    Qingzhong Wu; Cornell Gayle; Frank Löffler; Sanford, Robert

    2004-03-17T23:59:59.000Z

    Recent findings suggest that Anaeromyxobacter populations play relevant roles in metal and radionuclide reduction and immobilization at contaminated DOE sites. This research effort will characterize Anaeromyxobacter dehalogenans strain 2CP-C as well as other Anaeromyxobacter isolates in hand, and assess their contribution towards metal detoxification and plume stabilization under environmentally relevant conditions.

  11. 2 Key Achievements 7 Greenhouse Gas Reduction

    E-Print Network [OSTI]

    Princeton University Reports Contents 2 Key Achievements 7 Greenhouse Gas Reduction Campus Energy was established in 2008, the University has invested $5.3 million in energy-savings projects, resulting in annual of a 5.2-megawatt solar collector field. · Audit the remaining 20 of the top 50 energy- consuming

  12. Cyclone reduction of taconite. Final report

    SciTech Connect (OSTI)

    Taylor, P.R.; Bartlett, R.W.; Abdel-latif, M.A.; Hou, X.; Kumar, P. [College of Mines and Earth Resources, University of Idaho, Idaho Falls, ID (United States)

    1995-05-01T23:59:59.000Z

    A cyclone reactor system for the partial reduction and melting of taconite concentrate fines has been engineered, designed and operated. A non-transferred arc plasma torch was employed as a heat source. Taconite fines, carbon monoxide, and carbon dioxide were fed axially into the reactor, while the plasma gas was introduced tangentially into the cyclone. The average reactor temperature was maintained at above 1400{degrees}C, and reduction experiments were performed under various conditions. The influence of the following parameters on the reduction of taconite was investigated experimentally; carbon monoxide to carbon dioxide inlet feed ratio, carbon monoxide inlet partial pressure, and average reactor temperature. The interactions of the graphite lining with carbon dioxide and taconite were also studied. An attempt was made to characterize the flow behavior of the molten product within the cyclone. The results suggest that the system may approach a plug flow reactor, with little back mixing. Finally, a fundamental mathematical model was developed. The model describes the flow dynamics of gases and solid particles in a cyclone reactor, energy exchange, mass transfer, and the chemical kinetics associated with cyclone smelting of taconite concentrate fines. The influence of the various parameters on the reduction and melting of taconite particles was evaluated theoretically.

  13. Timelike reduction and T-duality 

    E-Print Network [OSTI]

    Scuro, Sante Rodolfo

    1999-01-01T23:59:59.000Z

    expressions for the Killing sailors in Anti-de Sitter spacetime of odd dimension with respect to the field reparametrization in the bosonic sector. In addition, we perform Kaluza-Klein reduction along the time direction of D = 10 type IIB theory to D = 9. Then...

  14. Genome of Geobacter sulfurreducens: Metal Reduction

    E-Print Network [OSTI]

    Lovley, Derek

    and in the generation of electricity. G. sulfurreducens, a member of the - Proteobacteria and of the family GeobacterGenome of Geobacter sulfurreducens: Metal Reduction in Subsurface Environments B. A. Methe´,1 * K. Utterback,1 S. E. Van Aken,1 D. R. Lovley,2 C. M. Fraser1 The complete genome sequence of Geobacter

  15. Cost reduction ideas for LNG terminals

    SciTech Connect (OSTI)

    Habibullah, A.; Weldin, F.

    1999-07-01T23:59:59.000Z

    LNG projects are highly capital intensive and this has long been regarded as being inevitable. However, recent developments are forcing the LNG industry to aggressively seek cost reductions. For example, the gas-to-liquids (GTL) process is increasingly seen as a potential rival technology and is often being touted as an economically superior alternative fuel source. Another strong driving force behind needed cost reductions is the low crude oil price which seems to have settled in the $10--13/bb. range. LNG is well positioned as the fuel of choice for environmentally friendly new power projects. As a result of the projected demand for power especially in the Pacific Rim countries several LNG terminal projects are under consideration. Such projects will require a new generation of LNG terminal designs emphasizing low cost, small scale and safe and fully integrated designs from LNG supply to power generation. The integration of the LNG terminal with the combined cycle gas turbine (CCGT) power plant offers substantial cost savings opportunities for both plants. Various cost reduction strategies and their impact on the terminal design are discussed including cost reduction due to integration.

  16. Task Performance is Prioritized Over Energy Reduction

    E-Print Network [OSTI]

    1 Task Performance is Prioritized Over Energy Reduction Ravi Balasubramanian*, Member, IEEE, Robert requirements were increased. These results indicated that task performance may be prioritized over energy main results: (1) More trials were required for a brief contact task to find a low-energy strategy when

  17. Can fermions save large N dimensional reduction?

    E-Print Network [OSTI]

    Paulo F. Bedaque; Michael I. Buchoff; Aleksey Cherman; Roxanne P. Springer

    2009-08-21T23:59:59.000Z

    This paper explores whether Eguchi-Kawai reduction for gauge theories with adjoint fermions is valid. The Eguchi-Kawai reduction relates gauge theories in different numbers of dimensions in the large $N$ limit provided that certain conditions are met. In principle, this relation opens up the possibility of learning about the dynamics of 4D gauge theories through techniques only available in lower dimensions. Dimensional reduction can be understood as a special case of large $N$ equivalence between theories related by an orbifold projection. In this work, we focus on the simplest case of dimensional reduction, relating a 4D gauge theory to a 3D gauge theory via an orbifold projection. A necessary condition for the large N equivalence between the 4D and 3D theories to hold is that certain discrete symmetries in the two theories must not be broken spontaneously. In pure 4D Yang-Mills theory, these symmetries break spontaneously as the size of one of the spacetime dimensions shrinks. An analysis of the effect of adjoint fermions on the relevant symmetries of the 4D theory shows that the fermions help stabilize the symmetries. We consider the same problem from the point of view of the lower dimensional 3D theory and find that, surprisingly, adjoint fermions are not generally enough to stabilize the necessary symmetries of the 3D theory. In fact, a rich phase diagram arises, with a complicated pattern of symmetry breaking. We discuss the possible causes and consequences of this finding.

  18. Timelike reduction and T-duality

    E-Print Network [OSTI]

    Scuro, Sante Rodolfo

    1999-01-01T23:59:59.000Z

    expressions for the Killing sailors in Anti-de Sitter spacetime of odd dimension with respect to the field reparametrization in the bosonic sector. In addition, we perform Kaluza-Klein reduction along the time direction of D = 10 type IIB theory to D = 9. Then...

  19. Equimultiplicity, reduction, and blowing up.pdf

    E-Print Network [OSTI]

    reduction of .1 if lJn = Jm1 for some integer n; or, eguivalently, if J is contained in the ...... 5/955; so if q is a minimal prime divisor of mR, and Rq is flat over S, then.

  20. Power Factor Improvement

    E-Print Network [OSTI]

    Viljoen, T. A.

    1979-01-01T23:59:59.000Z

    Power factor control is a necessary ingredient in any successful Energy Management Program. Many companies are operating with power factors of 70% or less and are being penalized through the electrical utility bill. This paper starts by describing...

  1. Human Factors Related to a Virtual Reality Surgical Simulator: The

    E-Print Network [OSTI]

    Bowden, Richard

    and therefore, reductions in patient intervention costs (Banta, 1993). #12; Human Factors Related to a Virtual Training System in the light of feedback from surgeons. Initial work to produce finite element models are displayed. The training system has been well received by the surgeons and represents a new and potentially

  2. DISSERTATION ADVANCING THE EDUCATION OF EXCEPTIONALLY

    E-Print Network [OSTI]

    Loudon, Catherine

    DISSERTATION FELLOWSHIP AWARD ADVANCING THE EDUCATION OF EXCEPTIONALLY PROMISING STUDENTS WHO HAVE FINANCIAL NEED WHAT WE PROVIDE The Jack Kent Cooke Foundation Dissertation Fellowship Award supports advanced doctoral students completing dissertations that further the understanding of the educational

  3. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Alone IGCC+CCS Coal Plant The levelized cost of electricitythan advanced coal plants and hence their cost estimates areestimates of the costs of an advanced coal plant, since they

  4. RESEARCH ENGINEER IN ADVANCED ANALYTICAL ELECTRON MICROSCOPY

    E-Print Network [OSTI]

    Gilchrist, James F.

    RESEARCH ENGINEER IN ADVANCED ANALYTICAL ELECTRON MICROSCOPY Department of Materials Science. #12;Job Description (for website) Job Title: Research Engineer in Advanced Analytical Electron or an engineering discipline and four years of demonstrated experience in electron microscopy. Requirements

  5. Advanced Power Electronic Interfaces for Distributed

    E-Print Network [OSTI]

    Advanced Power Electronic Interfaces for Distributed Energy Systems Part 2: Modeling, Development Electronic Interfaces for Distributed Energy Systems Part 2: Modeling, Development, and Experimental, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter S

  6. Partnering with Industry to Develop Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Breakout Session IA—Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute

  7. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  8. Sandia National Laboratories: Advanced Electric Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Electric Systems grid-slide1 grid-slide2 grid-slide3 grid-slide4 Advanced Electric Systems Integrating Renewable Energy into the Electric Grid Why is Grid...

  9. Strategy for advancement of IRP in public power, Volume 1: IRP advancement strategy

    SciTech Connect (OSTI)

    Garrick, C.J. [Garrick & Associates, Morrison, CO (United States)

    1995-10-01T23:59:59.000Z

    The nation`s 3,000 publicly and cooperatively owned utilities have a documented need for assistance in integrated resource planning (IRP) and related strategic business planning practices. The availability of appropriate and sufficient assistance will be an important factor influencing the ability of these utilities to face the challenges and opportunities of today`s competitive electric utility environment. The U.S. Department of Energy (DOE) actively supports IRP advancement in the investor-owned utility (IOU) sector. This is accomplished through multiple vehicles, including grant funding to the state energy offices, to the National Conference of State Legislatures (NCSL), and to the National Association of Regulatory Utility Commissioners (NARUC). However, public utilities typically are not impacted by these DOE efforts. As consumer-controlled organizations, many publicly and cooperatively owned utilities are not regulated by state public utility commissions (PUCs). To advance IRP as an essential approach for publicly and cooperatively owned utility operation in a drastically changing industry, DOE must develop additional vehicles of assistance, including the federal power agencies and key industry organizations such as the American Public Power Association (APPA) and the National Rural Electric Cooperatives Association (NRECA).

  10. Plasma-assisted catalytic storage reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA); Brusasco, Raymond M. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.

  11. Plasma-assisted catalytic storage reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA); Brusasco, Raymond M. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.

  12. Advanced Neutron Source radiological design criteria

    SciTech Connect (OSTI)

    Westbrook, J.L.

    1995-08-01T23:59:59.000Z

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design.

  13. 10.1177/0270467605279324BULLETIN OF SCIENCE, TECHNOLOGY & SOCIETY / October 2005Imboela / POVERTY REDUCTION IN ZAMBIA Poverty Reduction in Zambia

    E-Print Network [OSTI]

    Delaware, University of

    10.1177/0270467605279324BULLETIN OF SCIENCE, TECHNOLOGY & SOCIETY / October 2005Imboela / POVERTY REDUCTION IN ZAMBIA Poverty Reduction in Zambia: A Conceptual Analysis of the Zambian Poverty Reduction Poverty reduction strategy papers (PRSPs) present a recipient country's program of intent for the utiliza

  14. SmallholderSmallholder CarbonCarbon AgroforestryAgroforestry && Carbon for Poverty ReductionCarbon for Poverty Reduction

    E-Print Network [OSTI]

    SmallholderSmallholder CarbonCarbon AgroforestryAgroforestry && Carbon for Poverty ReductionCarbon for Poverty Reduction Roundtable (CAPR)Roundtable (CAPR) GEO Forest Monitoring SymposiumGEO Forest Monitoring)Amazon Initiative Consortium (IA) #12;Carbon for Poverty Reduction Roundtable (CAPR)Carbon for Poverty Reduction

  15. Development of Advanced Combustion Technologies for Increased...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Technologies for Increased Thermal Efficiency Development of Advanced Combustion Technologies for Increased Thermal Efficiency Investigation of fuel effects on...

  16. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  17. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    site it operates at partial load in more hours Advanced Coalthe ACWH operates more often at partial load conditions to

  18. Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories

    Office of Legacy Management (LM)

    Radiological Condition of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories Cheswick, Pennsylvania -. -, -- AGENCY: Office of Operational Safety, Department...

  19. Advanced Engine Trends, Challenges and Opportunities

    Broader source: Energy.gov (indexed) [DOE]

    Petroleum (Conventional and Alternative Sources) Alternative Fuels (Ethanol, Biodiesel, CNG, LPG) Electricity (Conv. and Alternative Sources) Hydrogen Time ADVANCED...

  20. Recent Theoretical Results for Advanced Thermoelectric Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Recent Theoretical Results for Advanced Thermoelectric Materials Transport theory and first principles calculations applied to oxides, chalcogenides and skutterudite...

  1. US DRIVE Advanced Combustion and Emission Control Technical Team...

    Energy Savers [EERE]

    Advanced Combustion and Emission Control Technical Team Roadmap US DRIVE Advanced Combustion and Emission Control Technical Team Roadmap The ACEC focuses on advanced engine and...

  2. 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced Combustion Advanced combustion research and development merit review results 2010amr04.pdf...

  3. advanced configurations topical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recurrence satisfied by the Stirling numbers of the second kind. Abrams, Aaron; Hower, Valerie 2010-01-01 264 ADVANCE-Nebraska Advancing Women, Advancing STEM Engineering...

  4. advanced genetic strategies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reverse-genetic screen Roth, Frederick 3 Advanced Genetics PCB 5065 Fall 2013 page 1 Syllabus Advanced Genetics PCB 5065 Fall 2013 Biology and Medicine Websites Summary: Advanced...

  5. Sandia Energy - Consortium for Advanced Simulation of Light Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consortium for Advanced Simulation of Light Water Reactors (CASL) Home Stationary Power Nuclear Fuel Cycle Advanced Nuclear Energy Consortium for Advanced Simulation of Light Water...

  6. PIA - Advanced Test Reactor National Scientific User Facility...

    Energy Savers [EERE]

    Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

  7. FIELD EVALUATION OF THE MYRTLE CREEK ADVANCED

    E-Print Network [OSTI]

    Bertini, Robert L.

    FIELD EVALUATION OF THE MYRTLE CREEK ADVANCED CURVE WARNING SYSTEM Final Report SPR 352 #12;#12;FIELD EVALUATION OF THE MYRTLE CREEK ADVANCED CURVE WARNING SYSTEM SPR 352 Final Report by Robert L's Catalog No. 5. Report Date June 2006 4. Title and Subtitle Field Evaluation of the Myrtle Creek Advanced

  8. Advanced Technology Briefing to VLT/PAC

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Advanced Technology Briefing to VLT/PAC Mohamed Abdou VLT, San Diego December 10, 1998 #12;M. Abdou VLT/PAC Meeting, Dec. 10, 1998 Advanced Technology ­ Scope Advanced technology is concerned with the longer-term technologies for high power density fusion systems that will have the greatest impact

  9. Advanced control documentation for operators

    SciTech Connect (OSTI)

    Ayral, T.E. (Mobil Oil, Torrance, CA (US)); Conley, R.C. (Profimatics, Inc., Thousand Oaks, CA (US)); England, J.; Antis, K. (Ashland Oil, Ashland, KY (US))

    1988-09-01T23:59:59.000Z

    Advanced controls were implemented on Ashland Oil's Reduced Crude Conversion (RCC) and Metals Removal System (MRS) units, the RCC and MRS main fractionators and the unit gas plant. This article describes the format used for the operator documentation at Ashland. Also, a potential process unit problem is described which can be solved by good operator documentation. The situation presented in the paper is hypothetical, however,the type of unit upset described an occur if proper precautions are not taken.

  10. Advanced downhole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

    1991-07-16T23:59:59.000Z

    An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  11. ADVANCED FUELS CAMPAIGN 2013 ACCOMPLISHMENTS

    SciTech Connect (OSTI)

    Not Listed

    2013-10-01T23:59:59.000Z

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.

  12. Developing Tutorials for Advanced Physics Students: Processes and Lessons Learned

    E-Print Network [OSTI]

    Baily, Charles; Pollock, Steven J

    2013-01-01T23:59:59.000Z

    When education researchers describe newly developed curricular materials, they typically concentrate on the research base behind their design, and the efficacy of the final products, but do not highlight the initial stages of creating the actual materials. With the aim of providing useful information for faculty engaged in similar projects, we describe here our development of a set of in-class tutorials for advanced undergraduate electrodynamics students, and discuss factors that influenced their initial design and refinement. Among the obstacles to be overcome was the investigation of student difficulties within the short time frame of our project, and devising ways for students to engage in meaningful activities on advanced-level topics within a single 50-minute class period. We argue for a process that leverages faculty experience and classroom observations, and present several guidelines for tutorial development and implementation in upper-division physics classrooms.

  13. Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture

    SciTech Connect (OSTI)

    Debe, Mark K.

    2007-09-30T23:59:59.000Z

    This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF-ternary catalyst materials for higher performance, documents enhanced durability under multiple types of accelerated tests by factors of 10x to 50x over conventional catalysts, & demonstrates their performance & durability in large area MEA FC stack tests. The PEMFC ion exchange membrane is the other key functioning FC component on which work was completed. While improvements have been made to standard PFSA type membranes, they still require humidification to achieve adequate proton conductivity & so their use at elevated temperatures & drier operating conditions is limited. Membranes with increased durability & conductivity under hotter, drier conditions allow the use of FC's in many applications, particularly automotive. Towards this goal, 2 approaches were pursued in the work reported here. The first part was designed for immediate application at drier conditions & operating temperatures between 85C and 120C, focused on the development of a membrane based on a low equivalent weight (EW), perfluorinated sulfonic acid (PFSA) ionomer for good ionic conductivity at low humidification, & the use of stabilizing additives for improved oxidative stability. The ionomer used was developed at 3M & has a shorter acid containing side-chain than the Nafion™ ionomer. This ionomer also has a higher T? & higher modulus than that of a Nafion™ membrane of the same EW, allowing lower EW ionomers to be prepared with very good mechanical properties. In addition, more than 50 stabilizing additives were evaluated in ex-situ, Fenton’s tests & more than 10 of these were incorporated into membranes & evaluated in accelerated FC tests. This work led to thin (25-30 micron) cast membranes with substantially improved conductivity & durability under simulated automotive conditions, compared to membranes currently available. The 2nd body of membrane work was focused on developing & characterizing 3 approaches for making new PEM's for operation under hot (>120C) & dry (dew point <80C) FC conditions: inorganic materials with enhanced proton conductivity, polymer matrices swollen with lo

  14. Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on

    E-Print Network [OSTI]

    Keller, Arturo A.

    , brackish groundwater, produced water, etc.produced water, etc. Advanced treatmentAdvanced treatment Water© Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on EnergyEnergy--Water LinkagesWater Linkages (The Water Utility Perspective)(The Water

  15. ARIES-AT: AN ADVANCED TOKAMAK, ADVANCED TECHNOLOGY FUSION POWER PLANT

    E-Print Network [OSTI]

    California at San Diego, University of

    ARIES-AT: AN ADVANCED TOKAMAK, ADVANCED TECHNOLOGY FUSION POWER PLANT F. Najmabadi, S. C. Jardin*,6 of high-performance tokamak plasmas together with advanced technology in a fusion power plant. Several and advanced technology leads to attractive fusion power plant with excellent safety and environmental

  16. Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential

    E-Print Network [OSTI]

    Roden, Eric E.

    mechanisms, constraints on Tc solubility, and the oxidation state, and speciation of sediment reduction of medical and defense nuclear waste. During spent nuclear fuel reprocessing, 99 Tc(IV)O2 is solubilized

  17. Novel reactions of a neutral organic reductant : reductive coupling and nanoparticle synthesis

    E-Print Network [OSTI]

    Mork, Anna Jolene

    2012-01-01T23:59:59.000Z

    A recently developed bis-pyridinylidene neutral organic electron donor captured our interest as a potential source of new chemistries for reductive coupling and the synthesis of group IV nanoparticles. This super electron ...

  18. Utilizing an encroachment probability benefit-cost model to estimate accident reduction factors

    E-Print Network [OSTI]

    Hayes, Carolyn A

    1997-01-01T23:59:59.000Z

    Improving safety on Texas roadways is a major public concern. Over the years, the Texas Department of Transportation and other highway agencies have become interested in reducing society's accident cost while maximizing returns on accident...

  19. Cost reduction of polar class vessels : structural optimization that includes production factors

    E-Print Network [OSTI]

    Normore, Stephen S. (Stephen Selwyn)

    2013-01-01T23:59:59.000Z

    The design of ship structures was normally optimized to reduce construction material and maintain adequate strength while adhering to a given classification society's rules. In the case of Polar Class vessels, where weight ...

  20. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation Into The Social, Ecological, and Economic Factors To Conisder When

    E-Print Network [OSTI]

    Into The Social, Ecological, and Economic Factors To Conisder When Planning Sustainble Housing Michael Lanki INTO THE SOCIAL, ECOLOGICAL, AND ECONOMIC FACTORS TO CONISDER WHEN PLANNING SUSTAINBLE HOUSING Prepared, and educating people on sustainability. Key ecological criteria are reduction of green house gases, reduction

  1. Advanced Search WEF Login Help?

    E-Print Network [OSTI]

    for the water quality field. WE&T provides information on what professionals demand: cutting-edge technologies and Technology. "The anode is no longer a limiting factor in power production for these cells," Logan reports

  2. Bibliography of greenhouse-gas reduction strategies

    SciTech Connect (OSTI)

    Tompkins, M.M.; Mintz, M.M.

    1995-03-01T23:59:59.000Z

    A bibliography of greenhouse-gas reduction strategies has been compiled to assist the Climate change Action Plan Task Force in their consideration of strategies to reduce greenhouse-gas emissions from personal motor vehicles. The document contains a summary of the literature, including it major directions and implications; and annotated listing of 32 recent pertinent documents; and a listing of a larger group of related reports.

  3. Multi-Site Energy Reduction Through Teamwork

    E-Print Network [OSTI]

    Tutterow, V.; Walters, T.

    2006-01-01T23:59:59.000Z

    Multi-Site Energy Reduction Through Teamwork Thomas R. Theising Energy/Waste Management and Procurement Manager BASF Corporation Freeport, Texas ABSTRACT Energy Teams were established at seven locations in Tennessee, Texas... to the business. The completion of an energy audit will leave a laundry list of ideas to be considered. The energy management process, at the Site level, begins at this point. At BASF, we have found the most successful method of evaluating...

  4. Dimensional reduction without continuous extra dimensions

    SciTech Connect (OSTI)

    Chamseddine, Ali H. [American University of Beirut, Physics Department, Beirut, Lebanon and I.H.E.S. F-91440 Bures-sur-Yvette (France)] [American University of Beirut, Physics Department, Beirut, Lebanon and I.H.E.S. F-91440 Bures-sur-Yvette (France); Froehlich, J.; Schubnel, B. [ETHZ, Mathematics and Physics Departments, Zuerich (Switzerland)] [ETHZ, Mathematics and Physics Departments, Zuerich (Switzerland); Wyler, D. [Institute of Theoretical Physics, University of Zuerich (Switzerland)] [Institute of Theoretical Physics, University of Zuerich (Switzerland)

    2013-01-15T23:59:59.000Z

    We describe a novel approach to dimensional reduction in classical field theory. Inspired by ideas from noncommutative geometry, we introduce extended algebras of differential forms over space-time, generalized exterior derivatives, and generalized connections associated with the 'geometry' of space-times with discrete extra dimensions. We apply our formalism to theories of gauge- and gravitational fields and find natural geometrical origins for an axion- and a dilaton field, as well as a Higgs field.

  5. Incomplete Dirac reduction of constrained Hamiltonian systems

    E-Print Network [OSTI]

    C. Chandre

    2014-12-16T23:59:59.000Z

    First-class constraints constitute a potential obstacle to the computation of a Poisson bracket in Dirac's theory of constrained Hamiltonian systems. Using the pseudoinverse instead of the inverse of the matrix defined by the Poisson brackets between the constraints, we show that a Dirac-Poisson bracket can be constructed, even if it corresponds to an incomplete reduction of the original Hamiltonian system. The uniqueness of Dirac brackets is discussed.

  6. Radiological Threat Reduction | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations:Radiological Threat Reduction SHARE

  7. Size reduction of complex networks preserving modularity

    SciTech Connect (OSTI)

    Arenas, A.; Duch, J.; Fernandez, A.; Gomez, S.

    2008-12-24T23:59:59.000Z

    The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  8. Self-Reduction Rate of a Microtubule

    E-Print Network [OSTI]

    Takashi Hiramatsu; Tetsuo Matsui; Kazuhiko Sakakibara

    2007-11-01T23:59:59.000Z

    We formulate and study a quantum field theory of a microtubule, a basic element of living cells. Following the quantum theory of consciousness by Hameroff and Penrose, we let the system to reduce to one of the classical states without measurement if certain conditions are satisfied(self-reductions), and calculate the self-reduction time $\\tau_N$ (the mean interval between two successive self-reductions) of a cluster consisting of more than $N$ neighboring tubulins (basic units composing a microtubule). $\\tau_N$ is interpreted there as an instance of the stream of consciousness. We analyze the dependence of $\\tau_N$ upon $N$ and the initial conditions, etc. For relatively large electron hopping amplitude, $\\tau_N$ obeys a power law $\\tau_N \\sim N^b$, which can be explained by the percolation theory. For sufficiently small values of the electron hopping amplitude, $\\tau_N$ obeys an exponential law, $\\tau_N \\sim \\exp(c' N)$. By using this law, we estimate the condition for $\\tau_N $ to take realistic values $\\tau_N$ \\raisebox{-0.5ex}{$\\stackrel{>}{\\sim}$} $10^{-1}$ sec as $N$ \\raisebox{-0.5ex} {$\\stackrel{>}{\\sim}$} 1000.

  9. Exact Bivariate Polynomial Factorization in Q by Approximation of Roots

    E-Print Network [OSTI]

    Feng, Yong; Zhang, Jingzhong

    2010-01-01T23:59:59.000Z

    Factorization of polynomials is one of the foundations of symbolic computation. Its applications arise in numerous branches of mathematics and other sciences. However, the present advanced programming languages such as C++ and J++, do not support symbolic computation directly. Hence, it leads to difficulties in applying factorization in engineering fields. In this paper, we present an algorithm which use numerical method to obtain exact factors of a bivariate polynomial with rational coefficients. Our method can be directly implemented in efficient programming language such C++ together with the GNU Multiple-Precision Library. In addition, the numerical computation part often only requires double precision and is easily parallelizable.

  10. Uncertainty quantification approaches for advanced reactor analyses.

    SciTech Connect (OSTI)

    Briggs, L. L.; Nuclear Engineering Division

    2009-03-24T23:59:59.000Z

    The original approach to nuclear reactor design or safety analyses was to make very conservative modeling assumptions so as to ensure meeting the required safety margins. Traditional regulation, as established by the U. S. Nuclear Regulatory Commission required conservatisms which have subsequently been shown to be excessive. The commission has therefore moved away from excessively conservative evaluations and has determined best-estimate calculations to be an acceptable alternative to conservative models, provided the best-estimate results are accompanied by an uncertainty evaluation which can demonstrate that, when a set of analysis cases which statistically account for uncertainties of all types are generated, there is a 95% probability that at least 95% of the cases meet the safety margins. To date, nearly all published work addressing uncertainty evaluations of nuclear power plant calculations has focused on light water reactors and on large-break loss-of-coolant accident (LBLOCA) analyses. However, there is nothing in the uncertainty evaluation methodologies that is limited to a specific type of reactor or to specific types of plant scenarios. These same methodologies can be equally well applied to analyses for high-temperature gas-cooled reactors and to liquid metal reactors, and they can be applied to steady-state calculations, operational transients, or severe accident scenarios. This report reviews and compares both statistical and deterministic uncertainty evaluation approaches. Recommendations are given for selection of an uncertainty methodology and for considerations to be factored into the process of evaluating uncertainties for advanced reactor best-estimate analyses.

  11. Advances in process intensification through multifunctional reactor engineering

    SciTech Connect (OSTI)

    O'Hern, T. J.

    2012-03-01T23:59:59.000Z

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes critical to process intensification and implementation in commercial applications. Physics of the heat and mass transfer and chemical kinetics and how these processes are ultimately scaled were investigated. Specifically, we progressed the knowledge and tools required to scale a multifunctional reactor for acid-catalyzed C4 paraffin/olefin alkylation to industrial dimensions. Understanding such process intensification strategies is crucial to improving the energy efficiency and profitability of multifunctional reactors, resulting in a projected energy savings of 100 trillion BTU/yr by 2020 and a substantial reduction in the accompanying emissions.

  12. Development of advanced mixed oxide fuels for plutonium management

    SciTech Connect (OSTI)

    Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

    1997-06-01T23:59:59.000Z

    A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium.

  13. Advanced wind turbine design studies: Advanced conceptual study. Final report

    SciTech Connect (OSTI)

    Hughes, P.; Sherwin, R. [Atlantic Orient Corp., Norwich, VT (United States)] [Atlantic Orient Corp., Norwich, VT (United States)

    1994-08-01T23:59:59.000Z

    In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

  14. Report on sodium compatibility of advanced structural materials.

    SciTech Connect (OSTI)

    Li, M.; Natesan, K.; Momozaki, Y.; Rink, D.L.; Soppet, W.K.; Listwan, J.T. (Nuclear Engineering Division)

    2012-07-09T23:59:59.000Z

    This report provides an update on the evaluation of sodium compatibility of advanced structural materials. The report is a deliverable (level 3) in FY11 (M3A11AN04030403), under the Work Package A-11AN040304, 'Sodium Compatibility of Advanced Structural Materials' performed by Argonne National Laboratory (ANL), as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing corrosion and tensile data from the standpoint of sodium compatibility of advanced structural alloys. The scope of work involves exposure of advanced structural alloys such as G92, mod.9Cr-1Mo (G91) ferritic-martensitic steels and HT-UPS austenitic stainless steels to a flowing sodium environment with controlled impurity concentrations. The exposed specimens are analyzed for their corrosion performance, microstructural changes, and tensile behavior. Previous reports examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design, fabrication, and construction of a forced convection sodium loop for sodium compatibility studies of advanced materials. This report presents the results on corrosion performance, microstructure, and tensile properties of advanced ferritic-martensitic and austenitic alloys exposed to liquid sodium at 550 C for up to 2700 h and at 650 C for up to 5064 h in the forced convection sodium loop. The oxygen content of sodium was controlled by the cold-trapping method to achieve {approx}1 wppm oxygen level. Four alloys were examined, G92 in the normalized and tempered condition (H1 G92), G92 in the cold-rolled condition (H2 G92), G91 in the normalized and tempered condition, and hot-rolled HT-UPS. G91 was included as a reference to compare with advanced alloy, G92. It was found that all four alloys showed weight loss after sodium exposures at 550 and 650 C. The weight loss of the four alloys was comparable after sodium exposures at 550 C; the weight loss of ferritic-martensitic steels, G92 and G91 is more significant than that of austenitic stainless steel, HT-UPS after sodium exposures at 650 C. Sodium exposures up to 2700 h at 550 C had no significant influence on tensile properties, while sodium exposures up to 5064 h at 650 C dramatically lowered the tensile strengths of the four alloys. The ultimate tensile strength of H1 G92, H2 G92, and G91 ferritic-martensitic steels was reduced to as much as nearly half of its initial value after sodium exposures at 650 C. Though the uniform elongation was recovered to some extent, these three ferritic-martensitic steels showed considerable strain softening after sodium exposures. The yield stress of HT-UPS austenitic stainless steel increased, the ultimate tensile strength decreased, and the total elongation was reduced after sodium exposures at 650 C. The dynamic strain aging effect observed in the as-received HT-UPS specimens became less pronounced after sodium exposures at 650 C. Microstructural characterization of sodium-exposed specimens showed no appreciable surface deterioration or grain structure changes under an optical microscope, except for the H2 G92 steel, in which the martensite structure transformed to large grain ferrite after sodium exposures at 650 C. TEM observations of the sodium-exposed H2 G92 steel showed significant recrystallization after sodium exposure for 2700 h at 550 C, and transformation of martensite to ferrite and high density of precipitates in nearly dislocation-free matrix after sodium exposures at 650 C. Further microstructural analysis and evaluation of decarburization/carburization behavior is needed to understand the dramatic changes in the tensile strengths of advanced ferritic-martensitic and austenitic steels after sodium exposures at 650 C.

  15. advancing industrial efficiency: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of California eScholarship Repository Summary: Treatment Motor System Optimization Fuel Cells Microturbinesoptimization Advanced reciprocating engines Advanced...

  16. Effects of Advanced Combustion Technologies on Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics...

  17. Financing Advanced Biofuels, Biochemicals And Biopower In Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Afternoon...

  18. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels Cross-cutting...

  19. Advanced Boost System Development for Diesel HCCI/LTC Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Boost System Development for Diesel HCCILTC Application Advanced Boost System Development for Diesel HCCILTC Application...

  20. Advanced Vehicles Group: Center for Transportation Technologies and Systems

    SciTech Connect (OSTI)

    Not Available

    2008-08-01T23:59:59.000Z

    Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.