Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EPA Presentation: Reducing Pollution from Power Plants, October 29, 2010  

Broader source: Energy.gov [DOE]

Presentation to the Electricity Advisory Committe on October 29, 2010by the US Environmental Protection Agency Office of Air and Radiation on Reducing Pollution from Power Plants and the need for...

2

Clean Power Plan: Reducing Carbon Pollution From Existing Power Plants  

E-Print Network [OSTI]

Efficiency Improvements Efficiency improvements Co-firing or switching to natural gas Coal retirements Retrofit CCS (e.g.,WA Parish in Texas) 2. Use lower-emitting power sources more Dispatch changes to existing natural gas combined cycle (CC) Dispatch... that are high emitting. Energy conservation programs. Retrofitting units with partial CCS. Use of certain biomass. Efficiency improvements at higher- emitting plants.* Market-based trading programs. Building new renewables. Dispatch changes. Co...

Bremer,K.

2014-01-01T23:59:59.000Z

3

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma  

Broader source: Energy.gov (indexed) [DOE]

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant challenges from severe weather, hot summers, and about 2% annual load growth. To better control costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid technologies, tools, and techniques from 2010-2012. The objective is to engage customers in lowering peak demand using smart technologies in homes and businesses and to achieve greater efficiencies on the distribution system. The immediate goal: To defer two 165 MW power plants currently planned for

4

Reducing CO2 Emissions from Fossil Fuel Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 Emissions From Fossil Fuel Power Plants Scott M. Klara - National Energy Technology Laboratory EPGA's 3 rd Annual Power Generation Conference October 16-17, 2002 Hershey, Pennsylvania EPGA - SMK - 10/17/02 * One of DOE's 17 national labs * Government owned/operated * Sites in Pennsylvania, West Virginia, Oklahoma, Alaska * More than 1,100 federal and support contractor employees * FY 02 budget of $750 million National Energy Technology Laboratory EPGA - SMK - 10/17/02 * Diverse research portfolio - 60 external projects - Onsite focus area * Strong industry support - 40% cost share * Portfolio funding $100M 0 10 20 30 40 50 60 1997 1998 1999 2000 2001 2002 2003 2003 2003 Budget (Million $) Fiscal Year Senate House Administration Request Carbon Sequestration: A Dynamic Program Separation & Capture From Power Plants Plays Key Role

5

Power Plant Power Plant  

E-Print Network [OSTI]

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

6

Methods of reducing emissions of nitrogen oxides at thermal power plants burning solid domestic waste  

Science Journals Connector (OSTI)

Essentially all the major methods of reducing the emissions of nitrogen oxides from flue gases employed in power generation have been tested on plants in Moscow which burn solid domestic waste for production of h...

A. N. Tugov; V. F. Moskvichev

2009-01-01T23:59:59.000Z

7

Reducing the Cost of Energy from Parabolic Trough Solar Power Plants: Preprint  

SciTech Connect (OSTI)

Parabolic trough solar technology is the most proven and lowest cost large-scale solar power technology available today, primarily because of the nine large commercial-scale solar power plants that are operating in the California Mojave Desert. However, no new plants have been built during the past ten years because the cost of power from these plants is more expensive than power from conventional fossil fuel power plants. This paper reviews the current cost of energy and the potential for reducing the cost of energy from parabolic trough solar power plant technology based on the latest technological advancements and projected improvements from industry and sponsored R&D. The paper also looks at the impact of project financing and incentives on the cost of energy.

Price, H.; Kearney, D.

2003-01-01T23:59:59.000Z

8

Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.  

SciTech Connect (OSTI)

Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and desalination. Some of the direct approaches, such as dry air cooling, desalination, and recovery of cooling tower water for boiler makeup water, are costly and are deployed primarily in countries with severe water shortages, such as China, Australia, and South Africa. Table 1 shows drivers and approaches for reducing freshwater consumption in several countries outside the United States. Indirect approaches reduce water consumption while meeting other objectives, such as improving plant efficiency. Plants with higher efficiencies use less energy to produce electricity, and because the greater the energy production, the greater the cooling water needs, increased efficiency will help reduce water consumption. Approaches for improving efficiency (and for indirectly reducing water consumption) include increasing the operating steam parameters (temperature and pressure); using more efficient coal-fired technologies such as cogeneration, IGCC, and direct firing of gas turbines with coal; replacing or retrofitting existing inefficient plants to make them more efficient; installing high-performance monitoring and process controls; and coal drying. The motivations for increasing power plant efficiency outside the United States (and indirectly reducing water consumption) include the following: (1) countries that agreed to reduce carbon emissions (by ratifying the Kyoto protocol) find that one of the most effective ways to do so is to improve plant efficiency; (2) countries that import fuel (e.g., Japan) need highly efficient plants to compensate for higher coal costs; (3) countries with particularly large and growing energy demands, such as China and India, need large, efficient plants; (4) countries with large supplies of low-rank coals, such as Germany, need efficient processes to use such low-energy coals. Some countries have policies that encourage or mandate reduced water consumption - either directly or indirectly. For example, the European Union encourages increased efficiency through its cogeneration directive, which requires member states to assess their

Elcock, D. (Environmental Science Division)

2011-05-09T23:59:59.000Z

9

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: SO2, Nox, CO2  

Reports and Publications (EIA)

This report responds to a request received from Senator David McIntosh on June 29, 2000 to analyze the impacts on energy consumers and producers of coordinated strategies to reduce emissions of sulfur dioxide, nitrogen oxides, and carbon dioxide at U.S. power plants.

2001-01-01T23:59:59.000Z

10

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect (OSTI)

U.S. low rank coals contain relatively large amounts of moisture, with the moisture content of subbituminous coals typically ranging from 15 to 30 percent and that for lignites from 25 and 40 percent. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit, for it can result in fuel handling problems and it affects heat rate, stack emissions and maintenance costs. Theoretical analyses and coal test burns performed at a lignite fired power plant show that by reducing the fuel moisture, it is possible to improve boiler performance and unit heat rate, reduce emissions and reduce water consumption by the evaporative cooling tower. The economic viability of the approach and the actual impact of the drying system on water consumption, unit heat rate and stack emissions will depend critically on the design and operating conditions of the drying system. The present project evaluated the low temperature drying of high moisture coals using power plant waste heat to provide the energy required for drying. Coal drying studies were performed in a laboratory scale fluidized bed dryer to gather data and develop models on drying kinetics. In addition, analyses were carried out to determine the relative costs and performance impacts (in terms of heat rate, cooling tower water consumption and emissions) of drying along with the development of optimized drying system designs and recommended operating conditions.

Edward K. Levy; Nenad Sarunac; Harun Bilirgen; Hugo Caram

2006-03-01T23:59:59.000Z

11

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect (OSTI)

This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energy extracted from boiler flue gas.

Edward Levy; Harun Bilirgen; Ursla Levy; John Sale; Nenad Sarunac

2006-01-01T23:59:59.000Z

12

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect (OSTI)

This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also given for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.

Edward Levy; Nenad Sarunac; Harun Bilirgen; Wei Zhang

2005-04-01T23:59:59.000Z

13

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect (OSTI)

Low rank fuels such as subbituminous coals and lignites contain significant amounts of moisture compared to higher rank coals. Typically, the moisture content of subbituminous coals ranges from 15 to 30 percent, while that for lignites is between 25 and 40 percent, where both are expressed on a wet coal basis. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit. High fuel moisture results in fuel handling problems, and it affects heat rate, mass rate (tonnage) of emissions, and the consumption of water needed for evaporative cooling. This project deals with lignite and subbituminous coal-fired pulverized coal power plants, which are cooled by evaporative cooling towers. In particular, the project involves use of power plant waste heat to partially dry the coal before it is fed to the pulverizers. Done in a proper way, coal drying will reduce cooling tower makeup water requirements and also provide heat rate and emissions benefits. The technology addressed in this project makes use of the hot circulating cooling water leaving the condenser to heat the air used for drying the coal (Figure 1). The temperature of the circulating water leaving the condenser is usually about 49 C (120 F), and this can be used to produce an air stream at approximately 43 C (110 F). Figure 2 shows a variation of this approach, in which coal drying would be accomplished by both warm air, passing through the dryer, and a flow of hot circulating cooling water, passing through a heat exchanger located in the dryer. Higher temperature drying can be accomplished if hot flue gas from the boiler or extracted steam from the turbine cycle is used to supplement the thermal energy obtained from the circulating cooling water. Various options such as these are being examined in this investigation. This is the eleventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report.

Edward Levy

2005-10-01T23:59:59.000Z

14

Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543  

SciTech Connect (OSTI)

Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle-necks in the process causes increased space requirements and will have negative impact on the project schedule, which increases not only the cost but also the dose exposure to personnel. For these reasons it is critical to create a process that transfers material into conditioned waste ready for disposal as quickly as possible. To a certain extent the decommissioning program should be led by the waste management process. With the objective to reduce time for handling of dismantled material at site and to efficiently and environmental-friendly use waste management methods (clearance for re-use followed by clearance for recycling), the costs for the plant decommissioning could be reduced as well as time needed for performing the decommissioning project. Also, risks for delays would be reduced with a well-defined handling scheme which limits surprises. Delays are a major cost driver for decommissioning projects. (authors)

Larsson, Arne; Lidar, Per [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden)] [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden); Bergh, Niklas; Hedin, Gunnar [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)] [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)

2013-07-01T23:59:59.000Z

15

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect (OSTI)

This is the eighth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture, prior to firing in a pulverized coal boiler. Analyses were performed to determine the effects of coal product moisture on unit performance. Results are given showing how the coal product moisture level affects parameters such as boiler efficiency, power required to drive the fluidizing air fan, other station service power needed for fans and pulverizers, net unit heat rate, thermal energy rejected by the cooling tower, and stack emissions.

Nenad Sarunac; Edward Levy

2005-03-01T23:59:59.000Z

16

Optimizing Techology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants  

SciTech Connect (OSTI)

More than 56,000 coal quality data records from five public data sets have been selected for use in this project. These data will be used to create maps showing where coals with low mercury and acid-gas emissions might be found for power plants classified by air-pollution controls. Average coal quality values, calculated for 51,156 commercial coals by U.S. county-of-origin, are listed in the appendix. Coal moisture values are calculated for commercially shipped coal from 163 U.S. counties, where the raw assay data (including mercury and chlorine values) are reported on a dry basis. The calculated moisture values are verified by comparison with observed moisture values in commercial coal. Moisture in commercial U.S. coal shows provincial variation. For example, high volatile C bituminous rank coal from the Interior province has 3% to 4% more moisture than equivalent Rocky Mountain province coal. Mott-Spooner difference values are calculated for 4,957 data records for coals collected from coal mines and exploration drill holes. About 90% of the records have Mott-Spooner difference values within {+-}250 Btu/lb.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2004-01-31T23:59:59.000Z

17

Reducing Pump Power Consumption by 40% (1000 KW) Through Improved Pump Management in a Central Plant  

E-Print Network [OSTI]

are connected to the loop supply common header and loop return common header. Chillers 1 - 4 are 1500-ton, double effect absorption chillers. Five pumps support this cluster between the loop return common header and their inlet sub- common header. Figure 3... operation schedule. Turbine Steam Flow (LBm 6600 6300 5500 4700 4700 I Chiller9 ( Chiller10 1 Chillers 11 & 12 Central Utilitv Plant Chillers 1 - 4. Because some modification work is in the process with absorption chillers # 1 - 4 of the Central...

Deng, S.; Liu, M.; Turner, W. D.

1998-01-01T23:59:59.000Z

18

Power Plant Cycling Costs  

SciTech Connect (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

19

Reduced shear power spectrum  

SciTech Connect (OSTI)

Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.

Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Northwestern U.; Shapiro, Charles; /Chicago U. /KICP, Chicago; White, Martin J.; /UC, Berkeley, Astron.

2005-08-01T23:59:59.000Z

20

Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants  

SciTech Connect (OSTI)

The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

Balat, M.; Balat, H.; Oz, C. [University of Mahallesi, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Researching power plant water recovery  

SciTech Connect (OSTI)

A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

NONE

2008-04-01T23:59:59.000Z

22

DSM Power Plant in India  

Science Journals Connector (OSTI)

India is facing acute energy shortage that is likely to affect its economic development. There are severe supply side constraints in term of coal and gas shortages that are likely to continue in the near future. Hence, in its current focus to solving the energy shortage problem and sustaining the development trajectory, the country should aim at a balance between supply side and demand side measures. Energy Efficiency in end use is increasingly gaining importance as one of the most cost effective options for achieving short to medium term energy savings. India has initiated the National Mission for Enhanced Energy Efficiency under National Action Plan for Climate Change which addresses various aspects of energy efficiency such as technology, financing, fiscal incentive and also creation of energy efficiency as a market instrument. However, even though energy efficiency has substantial scope in the Indian subcontinent, the market for energy efficiency has been limited. This paper discusses the concept of mega Demand Side Management projects as a DSM Power Plant. A DSM Power Plant acts as an umbrella with multiple energy efficiency schemes under its ambit aimed at transforming energy efficiency into a business by providing a push to the scale of operation as well as financial sustenance to energy efficiency projects. This paper expounds on the various aspects of DSM Power Plant in terms of its policy and institutional mechanism for the large scale implementation of energy efficiency in India. This paper provides an illustration of the concept of DSM Power Plant model through a case study in one of the states (Rajasthan) of India. Further, a comparative analysis of the cost of generation from DSM Power Plant and a representative conventional power plant (CPP) in Rajasthan has been undertaken and the DSM Power Plant comes out to be a more cost effective option. The concept of DSM Power Plant will not only address the issue of energy shortages but will also help the financially thwarted utilities to reduce their revenue deficit in the near future.

Saurabh Gupta; Tanushree Bhattacharya

2013-01-01T23:59:59.000Z

23

Power Plant Cycling Costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

24

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OITs Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the waste water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the waste water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

25

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard  

Gasoline and Diesel Fuel Update (EIA)

3 3 ERRATA Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard July 2001 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This Service Report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Contacts This report was prepared by the Office of Integrated Analysis and Forecasting, Energy Information Adminis- tration. General questions concerning the report may be directed to Mary J. Hutzler (202/586-2222, mhutzler @eia.doe.gov), Director of the Office of Integrated Analysis and Forecasting, Scott B. Sitzer (202/586-2308,

26

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

27

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

28

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

29

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

30

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

31

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

32

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

33

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

34

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

35

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

36

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

37

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

38

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

39

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

40

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Mississippi Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

42

Washington Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

43

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

44

Iowa Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

45

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

46

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

47

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

48

Saguargo Solar Power Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Saguargo Solar Power Plant Solar Power Plant Saguargo Solar Power Plant Solar Power Plant Jump to: navigation, search Name Saguargo Solar Power Plant Solar Power Plant Facility Saguargo Solar Power Plant Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Developer Solargenix Location Red Rock, Arizona Coordinates 32.54795°, -111.292887° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.54795,"lon":-111.292887,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Reducing Power Factor Cost | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Factor Cost Reducing Power Factor Cost Low power factor is expensive and inefficient. Many utility companies charge an additional fee if your power factor is less than 0.95....

50

Kemaliye Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Kemaliye Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kemaliye Geothermal Power Plant Project Location Information...

51

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

52

Thermal Solar Power Plants Experience  

Science Journals Connector (OSTI)

In parallel with rising interest in solar power generation, several solar thermal facilities of different configuration and size were ... were designed as modest-size experimental or prototype solar power plants ...

W. Grasse; H. P. Hertlein; C.-J. Winter; G. W. Braun

1991-01-01T23:59:59.000Z

53

Geothermal electric power plant status  

SciTech Connect (OSTI)

A status summary of the activity for the 44 proposed geothermal electric power plants in the United States as of March 31, 1981 is presented, as well as the power on-line electric plants to date. The information comes from the Department of Energy Geothermal Progress Monitor System (DOE, 1981).

Murphy, M.; Entingh, D.J.

1981-10-01T23:59:59.000Z

54

NETL Water and Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water and Power Plants Review Water and Power Plants Review A review meeting was held on June 20, 2006 of the NETL Water and Power Plants research program at the Pittsburgh NETL site. Thomas Feeley, Technology Manager for the Innovations for Existing Plants Program, gave background information and an overview of the Innovations for Existing Plants Water Program. Ongoing/Ending Projects Alternative Water Sources Michael DiFilippo, a consultant for EPRI, presented results from the project "Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities". John Rodgers, from Clemson University, presented results from the project "An Innovative System for the Efficient and Effective Treatment of Non-traditional Waters for Reuse in Thermoelectric Power Generation".

55

Reducing Livestock Losses To Toxic Plants  

E-Print Network [OSTI]

,Extension CommunicationsSpecialistTheTexasA&MUniversitySystem. Cover design byRhondaKappler, ExtensionCommercial Artist Reducing Livestock Losses to Toxic Plants Allan McGinty and Rick Machen* More than 100 species of toxic plants in- fest Texas rangelands. These plants... and Sons: New York, N.Y. Lane, M. A., M. H. Ralphs, J. D. Olsen, F. D. Provenza and J. A. Pfister. 1990. ?Conditioned taste aversion: potentialfor reducing cattle loss to larkspur.? Journal ofRangeManagement. 43:127-131. McGinty, Allan and Tommy G. Welch...

McGinty, Allan; Machen, Richard V.

2000-04-25T23:59:59.000Z

56

Reducing Power Load Fluctuations on Ships Using Power Redistribution Control  

E-Print Network [OSTI]

is supplied from generators driven by diesel en- gines, gas engines, and/or gas/steam turbines. In a powerReducing Power Load Fluctuations on Ships Using Power Redistribution Control Damir Radan,1 Asgeir J generated by consumers operating in marine power systems is proposed. The controller redistributes the power

Johansen, Tor Arne

57

Video camera use at nuclear power plants  

SciTech Connect (OSTI)

A survey of US nuclear power plants was conducted to evaluate video camera use in plant operations, and determine equipment used and the benefits realized. Basic closed circuit television camera (CCTV) systems are described and video camera operation principles are reviewed. Plant approaches for implementing video camera use are discussed, as are equipment selection issues such as setting task objectives, radiation effects on cameras, and the use of disposal cameras. Specific plant applications are presented and the video equipment used is described. The benefits of video camera use --- mainly reduced radiation exposure and increased productivity --- are discussed and quantified. 15 refs., 6 figs.

Estabrook, M.L.; Langan, M.O.; Owen, D.E. (ENCORE Technical Resources, Inc., Middletown, PA (USA))

1990-08-01T23:59:59.000Z

58

Owners of nuclear power plants  

SciTech Connect (OSTI)

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

59

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon Nuclear" "Clinton Power Station Unit 1","1,065","8,612",9.0,"Exelon Nuclear" "Dresden Generating Station Unit 2, Unit 3","1,734","14,593",15.2,"Exelon Nuclear" "LaSalle Generating Station

60

Tuzla Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Tuzla Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Ayvacik, Canakkale Coordinates 39.553940696342, 26.161228192504 Loading...

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Okeanskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Information Facility Type Single Flash Owner Ministry of Natural Resources of Russia Commercial Online Date 2007 Power Plant Data Type of Plant Number of Generating Units...

62

Mendeleevskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Information Facility Type Single Flash Owner Ministry of Natural Resources of Russia Commercial Online Date 2007 Power Plant Data Type of Plant Number of Generating Units...

63

Dynamic modeling of IGCC power plants  

Science Journals Connector (OSTI)

Integrated Gasification Combined Cycle (IGCC) power plants are an effective option to reduce emissions and implement carbon-dioxide sequestration. The combination of a very complex fuel-processing plant and a combined cycle power station leads to challenging problems as far as dynamic operation is concerned. Dynamic performance is extremely relevant because recent developments in the electricity market push toward an ever more flexible and varying operation of power plants. A dynamic model of the entire system and models of its sub-systems are indispensable tools in order to perform computer simulations aimed at process and control design. This paper presents the development of the lumped-parameters dynamic model of an entrained-flow gasifier, with special emphasis on the modeling approach. The model is implemented into software by means of the Modelica language and validated by comparison with one set of data related to the steady operation of the gasifier of the Buggenum power station in the Netherlands. Furthermore, in order to demonstrate the potential of the proposed modeling approach and the use of simulation for control design purposes, a complete model of an exemplary IGCC power plant, including its control system, has been developed, by re-using existing models of combined cycle plant components; the results of a load dispatch ramp simulation are presented and shortly discussed.

F. Casella; P. Colonna

2012-01-01T23:59:59.000Z

64

Power plant | OpenEI  

Open Energy Info (EERE)

Power plant Power plant Dataset Summary Description No description given. Source Environmental Protection Agency (EPA) Date Released January 26th, 2009 (5 years ago) Date Updated June 07th, 2010 (4 years ago) Keywords eGrid eGRID2007 EIA Electricity emissions epa Power plant Data application/zip icon eGRID2007_Version1-1.zip (zip, 18.7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

65

Strategies in tower solar power plant optimization  

E-Print Network [OSTI]

A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of the algorithms and the resulting designs are studied for two typical cases. We describe a method to evaluate the impact of design variables in the plant performance. This method will tell us what variables are key to the optimal plant design and which ones are less important. This information can be used to further improve the plant design and to accelerate the optimization procedure.

Ramos, A

2012-01-01T23:59:59.000Z

66

Solar thermionic power plant (II)  

SciTech Connect (OSTI)

It has been shown that the geometric configuration of a central receiver solar electric power plant (SEPP) can be optimized for the high power density and concentration required for the operation of a thermionic converter. The working period of a Thermionic Diode Converter constructed on the top of a SEPP in Riyadh area is found to be 5 to 6 hours per day in winter and 6 to 8 hours in summer. 17 refs.

Abou-Elfotouh, F.; Almassary, M.; Fatmi, H.

1981-01-01T23:59:59.000Z

67

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant  

Science Journals Connector (OSTI)

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant ... A natural gas combined cycle (NGCC) power plant with capacity of about 430 MW integrated to a chemical solvent absorber/stripping capture plant is investigated. ... The natural gas combined cycle (NGCC) is an advanced power generation technology that improves the fuel efficiency of natural gas. ...

Mehdi Karimi; Magne Hillestad; Hallvard F. Svendsen

2012-01-19T23:59:59.000Z

68

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects ..-.. --__- _".-.-l--_--l -_._ _- --- ~~~. . ..~ CONTENTS Page - - I NTRODUCTI ON 1 Purpose 1 Docket Contents 1 Exhibit I: Summary of Activities at Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania I-l Exhibit II: Documents Supporting the Certification of Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania iii II-1 . . .- .__.^ I ^_... _.-__^-____-. - CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT

69

Power Transmission, Distribution and Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Transmission, Distribution and Plants A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abdel-Aal, Radwan E. - Computer Engineering Department, King Fahd University of...

70

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon Nuclear" "PPL Susquehanna Unit 1, Unit 2","2,450","18,516",23.8,"PPL Susquehanna LLC" "Peach Bottom Unit 2, Unit 3","2,244","18,759",24.1,"Exelon Nuclear" "Three Mile Island Unit 1",805,"6,634",8.5,"Exelon Nuclear"

71

Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects  

SciTech Connect (OSTI)

These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

None

1986-02-12T23:59:59.000Z

72

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

73

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

74

New Hampshire Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

75

Matsukawa Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Information Name Matsukawa Geothermal Power Plant Facility ower Plant Sector Geothermal energy Location Information Location Iwate, Japan Coordinates 39.980897288029,...

76

Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants ProMIS/Project No.:DE-NT0005647  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improvement to AIr2AIr® technology Improvement to AIr2AIr® technology to reduce Fresh-WAter evAporAtIve coolIng loss At coAl-BAsed thermoelectrIc poWer plAnts promIs/project no. :de-nt0005647 Background The production of electricity requires a reliable, abundant, and predictable source of freshwater - a resource that is limited in many parts of the United States and throughout the world. The process of thermoelectric generation from fossil fuels such as coal, oil, and natural gas is water intensive. According to the 2000 U.S. Geological Survey, thermoelectric-power withdrawals accounted for 48 percent of total water use, 39 percent of total freshwater withdrawals (136 billion gallons per day) for all categories, and 52 percent of fresh surface water withdrawals. As a growing economy drives the need for more electricity, demands on freshwater

77

World electric power plants database  

SciTech Connect (OSTI)

This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

NONE

2006-06-15T23:59:59.000Z

78

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Power Plant Geothermal/Power Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (19) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine which is connected to a generator to produce electricity. The type of energy conversion technology that is used depends on whether the resource is predominantly water or steam, the temperature of the resource, and the

79

Energeticals power plant engineering | Open Energy Information  

Open Energy Info (EERE)

Energeticals power plant engineering Energeticals power plant engineering Jump to: navigation, search Name energeticals power plant engineering Place München, Bavaria, Germany Zip 81371 Sector Biomass, Geothermal energy Product Planning, design, installation and operation of turnkey plants for heat and electricity generation in the field of solid Biomass, deep and shallow geothermal energy and water power. References energeticals power plant engineering[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. energeticals power plant engineering is a company located in München, Bavaria, Germany . References ↑ "[ energeticals power plant engineering]" Retrieved from "http://en.openei.org/w/index.php?title=Energeticals_power_plant_engineering&oldid=344770

80

Integrated Coal Gasification Power Plant Credit (Kansas)  

Broader source: Energy.gov [DOE]

Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Specialized Materials and Fluids and Power Plants  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Specialized Materials and Fluids and Power Plants.

82

Running dry at the power plant  

SciTech Connect (OSTI)

In the future, competition for water will require electricity generators in the United States to address conservation of fresh water. There are a number of avenues to consider. One is to use dry-cooling and dry-scrubbing technologies. Another is to find innovative ways to recycle water within the power plant itself. A third is to find and use alternative sources of water, including wastewater supplies from municipalities, agricultural runoff, blackish groundwater, or seawater. Dry technologies are usually more capital intensive and typically exact a penalty in terms of plant performance, which in turn raises the cost of power generation. On the other hand, if the cost of water increases in response to greater demand, the cost differences between dry and wet technologies will be reduced. EPRI has a substantial R & D programme evaluating new water-conserving power plant technologies, improving dry and hybrid cooling technologies, reducing water losses in cooling towers, using degraded water sources and developing resource assessment and management decision support tools. 5 refs., 10 figs.

Barker, B.

2007-07-01T23:59:59.000Z

83

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2003-10-20T23:59:59.000Z

84

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2003-08-04T23:59:59.000Z

85

Tracking New Coal-Fired Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Coal-Fired Power Plants New Coal-Fired Power Plants (data update 1/13/2012) January 13, 2012 National Energy Technology Laboratory Office of Strategic Energy Analysis & Planning Erik Shuster 2 Tracking New Coal-Fired Power Plants This report is intended to provide an overview of proposed new coal-fired power plants that are under development. This report may not represent all possible plants under consideration but is intended to illustrate the potential that exists for installation of new coal-fired power plants. Additional perspective has been added for non-coal-fired generation additions in the U.S. and coal-fired power plant activity in China. Experience has shown that public announcements of power plant developments do not provide an accurate representation of eventually

86

Guadalupe Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Plant Biomass Facility Jump to: navigation, search Name Guadalupe Power Plant Biomass Facility Facility Guadalupe Power Plant Sector Biomass Facility Type Landfill Gas...

87

Nuclear power pros and cons: A comparative analysis of radioactive emissions from nuclear power plants and thermal power plants  

Science Journals Connector (OSTI)

On the basis of the public data statistics of recent years on pollution and emissions from nuclear power plants (NPPs) and thermal power plants...

V. A. Gordienko; S. N. Brykin; R. E. Kuzin

2012-02-01T23:59:59.000Z

88

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant (Redirected from Flash Steam Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility

89

Coal Power Plant Database | Open Energy Information  

Open Energy Info (EERE)

Power Plant Database Power Plant Database Jump to: navigation, search Name Coal Power Plant Database Data Format Excel Spreadsheet, Excel Pivot Table, Access Database Geographic Scope United States TODO: Import actual dataset contents into OpenEI The Coal Power Plant Database (CPPDB) is a dataset which "consolidates large quantities of information on coal-fired power plants in a single location."[1] It is produced by the National Energy Technology Laboratory (NETL). External links 2007 Edition Excel Spreadsheet Excel Pivot Table Access Database User's Manual (PDF) References ↑ "User's Manual: Coal Power Plant Database" Retrieved from "http://en.openei.org/w/index.php?title=Coal_Power_Plant_Database&oldid=273301" Categories: Datasets Articles with outstanding TODO tasks

90

Opportunity for Offshore Wind to Reduce Future Demand for Coal-Fired Power Plants in China with Consequent Savings in Emissions of CO2  

Science Journals Connector (OSTI)

Wind speeds at 100 m elevation are extrapolated from winds at 50 and 10 m using a vertical power law profile. ... (31, 32) In 2010, four offshore wind farms successfully completed the first concession bidding process for offshore demonstration projects in China, with a range of bidding prices from 9.7 c/kWh to 11.6 c/kWh in 2013 US dollars. ...

Xi Lu; Michael B. McElroy; Xinyu Chen; Chongqing Kang

2014-11-19T23:59:59.000Z

91

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonwill require higher parasitic power for gas circulation. Theefficiency of a solar power plant with gas-turbine topping

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

92

Power Plant Analyser -- A computer code for power plant operation studies  

SciTech Connect (OSTI)

This paper describes Power Plant Analyser (PPA), a computer code for power plant dynamic and steady-state performance analysis. Power Plant Analyser simulates fossil power plant systems, such as drum-type, once-through, gas turbine, and combined cycle plants in a user-friendly manner. It provides a convenient tool for power engineers to understand the complex and interrelated thermodynamic processes and operating characteristics of the plant. It can also be used for conceptual training of power plant operators, and as a test bed for control and operating strategies.

Lu, S.; Hogg, B.W. [Queen`s Univ. of Belfast, Northern Ireland (United Kingdom). Dept. of Electrical and Electronic Engineering] [Queen`s Univ. of Belfast, Northern Ireland (United Kingdom). Dept. of Electrical and Electronic Engineering

1996-12-01T23:59:59.000Z

93

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary Cycle Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators.

94

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing

95

DOE Signs Cooperative Agreement for New Hydrogen Power Plant | Department  

Broader source: Energy.gov (indexed) [DOE]

DOE Signs Cooperative Agreement for New Hydrogen Power Plant DOE Signs Cooperative Agreement for New Hydrogen Power Plant DOE Signs Cooperative Agreement for New Hydrogen Power Plant November 6, 2009 - 12:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) has signed a cooperative agreement with Hydrogen Energy California LLC (HECA) to build and demonstrate a hydrogen-powered electric generating facility, complete with carbon capture and storage, in Kern County, Calif. The new plant is a step toward commercialization of a clean technology that enables use of our country's vast fossil energy resources while addressing the need to reduce greenhouse gas emissions. HECA, which is owned by Hydrogen Energy International, BP Alternative Energy, and Rio Tinto, plans to construct an advanced integrated gasification combined cycle (IGCC) plant that will produce power by

96

Solar thermal power plants for the Spanish electricity market  

Science Journals Connector (OSTI)

Solar thermal power plants are at present the cheapest technology for solar electricity production. At good sites Levelised Electricity Costs (LEC) of 11 Ct/kWh have been achieved in commercially operated power plants. Economy of scale and further technical improvements will reduce the LEC for future projects. On the 27th of March 2004 in Spain the existing feed-in-law has been modified in order to support the erection of solar thermal power plants and thus make use of the huge solar potential of Spain. A payment of approx. 21 Ct/kWh, guaranteed for the first 25 years of operation, makes the erection and operation of solar thermal power plants very profitable for possible investors on the Spanish peninsula. This paper will present the present situation in Spain and the planned power plant projects. For one specific project the set-up is presented in more detail.

M. Eck; F. Rueda; S. Kronshage; C. Schillings; F. Trieb; E. Zarza

2007-01-01T23:59:59.000Z

97

Power Plant Optimization Demonstration Projects Cover Photos:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 SEPTEMBER 2007 5 SEPTEMBER 2007 Power Plant Optimization Demonstration Projects Cover Photos: * Top left: Coal Creek Station * Top right: Big Bend Power Station * Bottom left: Baldwin Energy Complex * Bottom right: Limestone Power Plant A report on four projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * Tampa Electric Company * Pegasus Technologies * NeuCo. , Inc.  Power Plant Optimization Demonstration Projects Executive Summary .......................................................................................4 Background: Power Plant Optimization ......................................................5 Lignite Fuel Enhancement Project ...............................................................8

98

Turkerler Alasehir Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Turkerler Alasehir Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Turkerler Alasehir Geothermal Power Plant Project...

99

Miravalles V Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Miravalles V Geothermal Power Plant Project Location Information Coordinates...

100

Requirements for Power Plant and Power Line Development (Wisconsin) |  

Broader source: Energy.gov (indexed) [DOE]

Requirements for Power Plant and Power Line Development (Wisconsin) Requirements for Power Plant and Power Line Development (Wisconsin) Requirements for Power Plant and Power Line Development (Wisconsin) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Solar Program Info State Wisconsin Program Type Siting and Permitting Provider Public Service Commission of Wisconsin

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility Type Commercial Online Date Geothermal Area

102

Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

Abstract In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740MW coal-fired power plant project located at latitude 28S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 2537MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location.

Rodrigo Soto; Julio Vergara

2014-01-01T23:59:59.000Z

103

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

104

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

105

Nuclear power plants: structure and function  

SciTech Connect (OSTI)

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

106

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Power Plant < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (20) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine

107

Coal-Fired Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impacts of TMDLs on Impacts of TMDLs on Coal-Fired Power Plants April 2010 DOE/NETL-2010/1408 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The

108

Efficiency combined cycle power plant  

SciTech Connect (OSTI)

This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

Pavel, J.; Meyers, G.A.; Baldwin, T.S.

1990-06-12T23:59:59.000Z

109

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Application of Pulsed Electrical Fields for Advanced Cooling in Coal-Fired Power Plants Application of Pulsed Electrical Fields for Advanced Cooling in Coal-Fired Power Plants Drexel University is conducting research with the overall objective of developing technologies to reduce freshwater consumption at coal-fired power plants. The goal of this research is to develop a scale-prevention technology based on a novel filtration method and an integrated system of physical water treatment in an effort to reduce the amount of water needed for cooling tower blowdown. This objective is being pursued under two coordinated, National Energy Technology Laboratory sponsored research and development projects. In both projects, pulsed electrical fields are employed to promote the precipitation and removal of mineral deposits from power plant cooling water, thereby allowing the water to be recirculated for longer periods of time before fresh makeup water has to be introduced into the cooling water system.

110

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Solar Power Plant Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Developer Abengoa Solar Location Gila Bend, Arizona Coordinates 32.916163°, -112.968727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.916163,"lon":-112.968727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Power Plant Emission Reductions Using a Generation Performance Standard  

Gasoline and Diesel Fuel Update (EIA)

Power Plant Emission Reductions Power Plant Emission Reductions Using a Generation Performance Standard by J. Alan Beamon, Tom Leckey, and Laura Martin There are many policy instruments available for reducing power plant emissions, and the choice of a policy will affect compliance decisions, costs, and prices faced by consumers. In a previous analysis, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides (NO x ), sulfur dioxide (SO 2 ), and carbon dioxide (CO 2 ) emissions, assuming a policy instru- ment patterned after the SO 2 allowance program created in the Clean Air Act Amendments of 1990. 1 This report compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard (GPS) as an instrument for reducing CO 2 emissions. 2 In general, the results of the two analyses are similar: to reduce

112

Methodology for Scaling Fusion Power Plant Availability  

SciTech Connect (OSTI)

Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

Lester M. Waganer

2011-01-04T23:59:59.000Z

113

Tracking New Coal-Fired Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 8, 2010 National Energy Technology Laboratory Office of Systems Analyses and Planning Erik Shuster 2 Tracking New Coal-Fired Power Plants This report is intended to...

114

Uenotai Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Facility Power Plant Sector Geothermal energy Location Information Location Akita, Japan Coordinates 39.001204660867, 140.60390925355 Loading map... "minzoom":false,"mapp...

115

Modeling mercury in power plant plumes  

SciTech Connect (OSTI)

Measurements of speciated mercury (Hg) downwind of coal-fired power plants suggest that the Hg{sup II}/(Hg{sup 0} + Hg{sup II}) ratio decreases significantly between the point of emission and the downwind ground-level measurement site, but that the SO{sub 2}/(Hg{sup 0} + Hg{sup II}) ratio is conserved. The authors simulated nine power plant plume events with the Reactive & Optics Model of Emissions (ROME), a reactive plume model that includes a comprehensive treatment of plume dispersion, transformation, and deposition. The model simulations fail to reproduce such a depletion in Hg{sup II}. A sensitivity study of the impact of the Hg{sup II} dry deposition velocity shows that a difference in dry deposition alone cannot explain the disparity. Similarly, a sensitivity study of the impact of cloud chemistry on results shows that the effect of clouds on Hg chemistry has only minimal impact. Possible explanations include Hg{sup II} reduction to Hg{sup 0} in the plume, rapid reduction of Hg{sup II} to Hg{sup 0} on ground surfaces, and/or an overestimation of the Hg{sup II} fraction in the power plant emissions. The authors propose that a chemical reaction not included in current models of atmospheric mercury reduces Hg{sup II} to Hg{sup 0} in coal-fired power plant plumes. The incorporation of two possible reduction pathways for Hg{sup II} shows better agreement between the model simulations and the ambient measurements. These potential Hg{sup II} to Hg{sup 0} reactions need to be studied in the laboratory to investigate this hypothesis. Because the speciation of Hg has a significant effect on Hg deposition, models of the fate and transport of atmospheric Hg may need to be modified to account for the reduction of Hg{sup II} in coal-fired power plant plumes if such a reaction is confirmed in further experimental investigations. 31 refs., 2 figs., 6 tabs.

Kristen Lohman; Christian Seigneur; Eric Edgerton; John Jansen [Atmospheric & Environmental Research, Inc., San Ramon, CA (United States)

2006-06-15T23:59:59.000Z

116

Tribology in coal-fired power plants  

Science Journals Connector (OSTI)

Material wear and degradation is of great importance to the economy of South Africa especially within the mining, agriculture, manufacturing and power generation fields. It has been found that unexpected and high rates of fly-ash erosion occur at certain sections of power plants, this is particularly evident at the Majuba power station. The loss of small amounts of material due to erosion can be enough to cause serious damage and significantly reduce the working lifetime of, for, e.g. hopper liners. This study investigated the long-term solid particle erosion of a range of oxide and nitride-fired SiC-based ceramics and alumina with the aim of reducing erosive wear damage in power plants. This entailed carrying out experimental tests on an in-house built erosion testing machine that simulate the problems encountered in the industry. The target materials were eroded with 125180?m silica sand at shallow and high impact angles. The surface wear characteristics were studied using both light and scanning electron microscopy (SEM). The results obtained indicate that the erosion rates of the materials remain fairly constant from the onset. It was found that prolonged exposure to erosion results in the progressive removal of the matrix and subsequent loss of unsupported SiC particulates. The fact that the particles were relatively small did not have a significant effect on the erosion rate. This would explain the observed constant rates of erosion for longer periods. These behaviours can be further explained in terms of the composition and mechanical properties of the erodents and target ceramics.

D.O. Moumakwa; K. Marcus

2005-01-01T23:59:59.000Z

117

Advanced Sensor Diagnostics in Nuclear Power Plant Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensor Diagnostics in Nuclear Power Plant Applications Sensor Diagnostics in Nuclear Power Plant Applications R.B. Vilim Argonne National Laboratory Sensor degradation occurs routinely during nuclear power plant operation and can contribute to reduced power production and less efficient plant operation. Mechanisms include drift of sensor electronics and mechanical components, fouling and erosion of flow meter orifice plates, and general degradation of thermocouples. One solution to this problem is the use of higher quality instrumentation and of physical redundancy. This, however, increases plant cost and does not address the degradation problem in a fundamental way. An alternative approach is to use signal processing algorithms to detect a degraded sensor and to construct a replacement value using an

118

District Cooling Using Central Tower Power Plant  

Science Journals Connector (OSTI)

Abstract During the operation of solar power towers there are occasions, commonly in the summer season, where some of the heliostats have to stop focusing at the central receiver, located at the top of the tower, because the maximum temperature that the receiver can withstand has been reached. The highest demands of cooling for air conditioning take place at these same occasions. In the present paper, we have analyzed the possibility of focusing the exceeding heliostats to the receiver increasing the mass flow rate of the heat transfer fluid over the nominal value and using the extra heat as a source of an absorption chiller. The chilled water would be used to cool buildings and offices, using a district cooling network. Using the extra heat of the solar power tower plant would greatly reduce the electricity usage. In this work we have analyzed the case of a circular field of heliostats focusing at a circular receiver, such as the case of Gemasolar plant. We have quantified the thermal power that can be obtained from the unused heliostats, the cooling capacity of the absorption system as well as the heat losses through the insulated pipes that distribute the chilled water to the buildings of the network.

C. Marugn-Cruz; S. Snchez-Delgado; M.R. Rodrguez-Snchez; M. Venegas

2014-01-01T23:59:59.000Z

119

Wave Power Plant Inc | Open Energy Information  

Open Energy Info (EERE)

Powered Compressed Air Stations This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleWavePowerPlantInc&oldid76915...

120

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Use of Restored Wetlands to Enhance Power Plant Cooling and Mitigate the Demand on Surface Water Use The Use of Restored Wetlands to Enhance Power Plant Cooling and Mitigate the Demand on Surface Water Use Photo of a Temperate Wetland. Photo of a Temperate Wetland Applied Ecological Services, Inc. (AES) will study the use of restored wetlands to help alleviate the increasing stress on surface and groundwater resources from thermoelectric power plant cooling requirements. The project will develop water conservation and cooling strategies using restored wetlands. Furthermore, the project aims to demonstrate the benefits of reduced water usage with added economic and ecological values at thermoelectric power plant sites, including: enhancing carbon sequestration in the corresponding wetlands; improving net heat rates from existing power generation units; avoiding limitations when low-surface

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Deming Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Deming Solar Plant Solar Power Plant Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic Developer New Solar Ventures/ Solar Torx 50/50 Location New Mexico Coordinates 34.9727305°, -105.0323635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9727305,"lon":-105.0323635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Prescott Airport Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Prescott Airport Solar Plant Solar Power Plant Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar Facility Type Photovoltaic Developer APS Location Prescott, Arizona Coordinates 34.5400242°, -112.4685025° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5400242,"lon":-112.4685025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in Integrated Gasification Combined Cycle Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Feasibility Studies to Improve Plant Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in Integrated Gasification Combined Cycle Plants Background Gasification provides the means to turn coal and other carbonaceous solid, liquid and gaseous feedstocks as diverse as refinery residues, biomass, and black liquor into synthesis gas and valuable byproducts that can be used to produce low-emissions power, clean-burning fuels and a wide range of commercial products to support

124

Reducing the Dimensionality of Plant Spectral Databases  

E-Print Network [OSTI]

), which takes into account the biological factors that a#11;ect the interaction of solar radiation, Canada y School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada 1 #12; plant re

Waterloo, University of

125

Aluto-Langano Geotermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

System - Ethiopian Rift Valley Plant Information Facility Type Binary Cycle Power Plant, ORC Owner Ethiopian Electric Power Corporation Developer Ethiopian Electric Power...

126

Lessons learned from existing biomass power plants  

SciTech Connect (OSTI)

This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

Wiltsee, G.

2000-02-24T23:59:59.000Z

127

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonefficiency of a solar power plant with gas-turbine toppingfor a solar power plant with Brayton-cycle gas turbine

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

128

New York Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Indian Point Unit 2, Unit 3","2,063","16,321",39.0,"Entergy Nuclear Indian Point" "James A Fitzpatrick Unit 1",855,"6,361",15.2,"Entergy Nuc Fitzpatrick LLC" "Nine Mile Point Nuclear Station Unit 1, Unit 2","1,773","14,239",34.0,"Nine Mile Point Nuclear Sta LLC" "R E Ginna Nuclear Power Plant Unit 1",581,"4,948",11.8,"R.E. Ginna Nuclear Power Plant, LLC" "4 Plants

129

Reducing Emissions in Plant Flaring Operations  

E-Print Network [OSTI]

, lowering emissions and maximizing production. Saving energy and reducing emissions are the internal requirements for every division of this major corporation. To achieve the public goals the company set, they issued a five year plan called Methods on Energy...

Duck, B.

2011-01-01T23:59:59.000Z

130

Reducing Power Consumption of Wireless Pulse Oximeters  

Science Journals Connector (OSTI)

Purpose... To implement the signal processing algorithms into a data evaluation unit powered by mains electricity whilst the measuring head is powered by ... it is still not used in todays wireless

N. Stuban; M. Niwayama

2012-01-01T23:59:59.000Z

131

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing (except water vapor) is emitted to the atmosphere. Resources below 400°F

132

Water recovery using waste heat from coal fired power plants.  

SciTech Connect (OSTI)

The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

2011-01-01T23:59:59.000Z

133

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2003-01-20T23:59:59.000Z

134

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-10-15T23:59:59.000Z

135

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally-acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national perspective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan

2002-04-15T23:59:59.000Z

136

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-07-15T23:59:59.000Z

137

Cold side thermal energy storage system for improved operation of air cooled power plants  

E-Print Network [OSTI]

Air cooled power plants experience significant performance fluctuations as plant cooling capacity reduces due to higher daytime temperature than nighttime temperature. The purpose of this thesis is to simulate the detailed ...

Williams, Daniel David

2012-01-01T23:59:59.000Z

138

Desalination study of Florida Power and Light power plants  

SciTech Connect (OSTI)

This report documents the results of a project to determine the viability of converting existing power plants to large scale, dual-purpose cogeneration of power and fresh water from desalination. The work involved evaluating suitable desalination technologies, developing utility based dual-product economic methods, screening FPL plant and desalination system combinations for promising candidates, and performing three case studies in greater detail to illustrate the viability of producing water at a utility power plant. The study was motivated by the fact that certain synergisms can be obtained by combining or co-locating power and desalination plants at a common site. Economic synergisms are obtained from better use of available energy, sharing common facilities and sharing staff. In addition, environmental synergisms are achieved by using existing industrial sites, common intake/outfalls, and combining thermal with brine effluents to obtain neutral buoyance and achieve more rapid dispersion.

Labar, M.P.; Loh, G.T.; Schleicher, R.W.; Sinha, A.K. (General Atomics International Services Corp., San Diego, CA (United States))

1992-12-01T23:59:59.000Z

139

Brawley Power Plant Abandoned | Open Energy Information  

Open Energy Info (EERE)

Abandoned Abandoned Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Brawley Power Plant Abandoned Abstract N/A Authors California Division of Oil, Gas and and Geothermal Resources Published Journal Geothermal Hot Line, 1985 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Brawley Power Plant Abandoned Citation California Division of Oil, Gas, and Geothermal Resources. 1985. Brawley Power Plant Abandoned. Geothermal Hot Line. 15(2):76-77. Retrieved from "http://en.openei.org/w/index.php?title=Brawley_Power_Plant_Abandoned&oldid=682727" Categories: References Uncited References Geothermal References What links here Related changes Special pages Printable version Permanent link Browse properties

140

Cost Analysis of Solar Power Plants  

Science Journals Connector (OSTI)

The factors influencing the desirability of solar power plants (SPPs), and of SPP investment decisions, will be discussed in this chapter. The numerical details presented axe based, as far as possible, on actu...

H. P. Hertlein; H. Klaiss; J. Nitsch

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Geothermal Power Plants Meeting Clean Air Standards  

Broader source: Energy.gov [DOE]

Geothermal power plants can meet the most stringent clean air standards. They emit little carbon dioxide, very low amounts of sulfur dioxide, and no nitrogen oxides. See Charts 1, 2, and 3 below.

142

Beta Dosimetry at Nuclear Power Plants  

Science Journals Connector (OSTI)

......function of gamma dose and energy of the beta rays. Measurements...radiation and effective beta energy obtained in the working environment at nuclear power plants during the shut-down...decommissioning. The effective beta energy is most frequently between......

P. Carn; M. Lieskovsky

1991-08-01T23:59:59.000Z

143

Coal-Fuelled Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Combined cycle power plant, when used as a generic ... which converts heat into mechanical energy in a combined gas and steam turbine process. Combined cycle processes with coal gasification or coal combustion .....

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

144

Cabell on Nuclear Energy Power Plants  

Science Journals Connector (OSTI)

Cabell on Nuclear Energy Power Plants ... IN EXPLAINING the function of his research group t o the new works superintendent of a nuclear power plant at a mining and reduction installation in the Alaskan mountains, Dr. Blank, of the United Nations Inspection and Research Laboratories, said, "We can't inspect what we don't know. ... In order to know what you're doing, we have to know more about atomic energy than you domore than anybody does. ...

1947-02-17T23:59:59.000Z

145

Parabolic Trough Organic Rankine Cycle Power Plant  

SciTech Connect (OSTI)

Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

2005-01-01T23:59:59.000Z

146

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

with Sensible- Heat Storage Solar Power Plant with Sulfurof the Solar Power Plant Storage-Vessel Design, . . . . .System for Chemical Storage of Solar Energy. UC Berkeley,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

147

Dora-3 Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Information Name Dora-3 Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Coordinates 37.875046144284, 28.102602480794 Loading...

148

Zhangbei Guotou Wind Power Plant | Open Energy Information  

Open Energy Info (EERE)

Zhangbei Guotou Wind Power Plant Jump to: navigation, search Name: Zhangbei Guotou Wind Power Plant Place: Beijing Municipality, China Zip: 100037 Sector: Wind energy Product: A...

149

MHK Technologies/Yongsoo Wave Power Plant | Open Energy Information  

Open Energy Info (EERE)

Yongsoo Wave Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Yongsoo Wave Power Plant.jpg Technology Profile Technology Type Click...

150

World's Largest Concentrating Solar Power Plant Opens in California...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

World's Largest Concentrating Solar Power Plant Opens in California World's Largest Concentrating Solar Power Plant Opens in California February 19, 2014 - 12:00am Addthis Ivanpah,...

151

RAPID/Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

for compensation. Geothermal Power Plant in Federal Bureau of Land Management Federal Energy Regulatory Commission Geothermal Power Plant in New Mexico None NA Every person...

152

DOE Announces Loan Guarantee Applications for Nuclear Power Plant...  

Energy Savers [EERE]

Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis...

153

Saradambika Power Plant Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Saradambika Power Plant Pvt Ltd Jump to: navigation, search Name: Saradambika Power Plant Pvt. Ltd Place: Hyderabad, Andhra Pradesh, India Zip: 500082 Sector: Biomass Product:...

154

Modelling power output at nuclear power plant by neural networks  

Science Journals Connector (OSTI)

In this paper, we propose two different neural network (NN) approaches for industrial process signal forecasting. Real data is available for this research from boiling water reactor type nuclear power reactors. NNs are widely used for time series prediction, ... Keywords: evaluation methods, model input selection, neural networks, nuclear power plant, one-step ahead prediction

Jaakko Talonen; Miki Sirola; Eimontas Augilius

2010-09-01T23:59:59.000Z

155

FUSION POWER PLANTS GOALS AND TECHNOLOGICAL CHALLENGES  

E-Print Network [OSTI]

FUSION POWER PLANTS ­ GOALS AND TECHNOLOGICAL CHALLENGES Farrokh Najmabadi Dept. of Electrical & Computer Eng. and Fusion Energy Research Program, University of California, San Diego, La Jolla, CA 92093-0417 619-534-7869 (619-534-7716, Fax) ABSTRACT Fusion is one of a few future power sources with the poten

Najmabadi, Farrokh

156

Evolution of Nuclear Power Plant Design  

Science Journals Connector (OSTI)

... research is expensive, and applied research and development on atomic energy is so expensive that expenditure should be justified either by the needs of defence or by the expectation of a ... per cent) have risen, and this rise reacts against nuclear power with its high capital cost. The result of these changes is that nuclear power from the plants which ...

CHRISTOPHER HINTON

1960-09-24T23:59:59.000Z

157

Innovative applications of technology for nuclear power plant productivity improvements  

SciTech Connect (OSTI)

The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

Naser, J. A. [Electric Power Research Inst., 3420 Hillview Avenue, Palo Alto, CA 94303 (United States)

2012-07-01T23:59:59.000Z

158

Probabilistic analysis and operational data in response to NUREG-0737, Item II. K. 3. 2 for Westinghouse NSSS plants. [Modifications to reduce LOCA due to stuck-open power-operated relief valve  

SciTech Connect (OSTI)

This report describes various modifications to Westinghouse plants since TMI and, using probabilistic analysis via event trees, estimates the effect of the post-TMI changes, including an automatic (PORV) (power operated relief valve) isolation concept identified in NUREG-0731 item II.K.3.1. The requested safety valve operational data is included as an appendix. A significant reduction in the frequency of a small break LOCA, due to a stuck open PORV has already been achieved by the modifications made subsequent to TMI. Domestic Westinghouse operating plant data (based on 181 reactor years of operation) has been collected and evaluated. An auto block valve closure system has been evaluated. The analysis is generally applicable to all Westinghouse plants which have incorporated the post-TMI hardware and procedural changes relative to stuck-open PORVs.

Wood, D.C.; Gottshall, C.L.

1981-02-01T23:59:59.000Z

159

Mobile-mirror concentrators for solar thermal power plants  

SciTech Connect (OSTI)

Seven central-receiver, solar-thermal power plants with heliostat concentrators have been built around the world in the last two decades. This technology has proven to be much too expensive for commercial power plants and efforts to reduce the cost have reached an impasse. It is the nature of the solar concentrators which makes it so expensive. There are two types of concentrators: those, called heliostats, with mirrors on stationary supports, and those with mirrors on mobile supports. Mobile mirrors are potentially much cheaper than heliostats.

Ratliff, G. [Ratliff (George), Pittsburgh, PA (United States)

1999-11-01T23:59:59.000Z

160

Solar power plant and sustainable rural development in Slovenia  

Science Journals Connector (OSTI)

This paper investigates potentials and opportunities in the development of solar power plants in rural areas in Slovenia as a supplementary or as an entrepreneurial activity to generate incomes and sustainable rural development. The focus is on agricultural household buildings. The estimated viability of the solar power plant investment is sensitive to the size of the surface areas of the buildings, flows of investment costs and revenues, including revenues from economic policy measures, and indirect ecological savings by reducing carbon dioxide emissions. On the basis of these results, this paper derives cost-benefit implications, entrepreneurial and managerial implications for energy production and use, and particularly for sustainable rural development.

Štefan Bojnec; Drago Papler

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Power Plant Dams (Kansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Plant Dams (Kansas) Power Plant Dams (Kansas) Power Plant Dams (Kansas) < Back Eligibility Commercial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Water Buying & Making Electricity Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment This act states the provisions for erection and maintenance of dams. When any person, corporation or city may be desirous of erecting and maintaining a milldam or dam for generating power across any watercourse, the party so desiring to do the same may run the stream over the land of any other person by ditching or otherwise, and he, she or it may obtain the right to erect and maintain said dam and keep up and maintain the necessary ditches

162

The Evolution of Nuclear Power Plant Design: Synopsis  

Science Journals Connector (OSTI)

1 April 1961 research-article The Evolution of Nuclear Power Plant Design: Synopsis Christopher Hinton

1961-01-01T23:59:59.000Z

163

Towards New Widgets to Reduce PC Power Consumption  

E-Print Network [OSTI]

1 Towards New Widgets to Reduce PC Power Consumption Abstract We present a study which describes document) were compared for power consumption across both a desktop and a laptop computer and across two in the power consumption of the interac- tion technique is the number of screen updates in- volved. Keywords

Williamson, John

164

Fossil Power Plant Applications of Expert Systems: An EPRI Perspective  

E-Print Network [OSTI]

the role of expert systems in the electric power industry, with particular emphasis on six fossil power plant applications currently under development by the Electric Power Research Institute....

Divakaruni, S. M.

165

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

166

power plant | OpenEI Community  

Open Energy Info (EERE)

plant plant Home Kyoung's picture Submitted by Kyoung(155) Contributor 12 November, 2012 - 09:17 Legal Reviews are Underway BHFS Legal review permitting power plant roadmap transmission The legal review of the Regulatory Roadmap flowcharts and supporting content is well underway and will continue for the next several months with our legal team at [www.bhfs.com Brownstein Hyatt Farber and Schreck]. The BHFS has been meeting with the NREL roadmap team during weekly 2-3 hour meetings to provide comments and suggestions on each flowchart at the federal and state levels. They have had some fantastic recommendations for updates - particularly for Sections 7 and 8 of the roadmap, pertaining to the permitting of power plants and transmission lines. Syndicate content 429 Throttled (bot load)

167

South Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina nuclear power plants, summer capacity and net generation, 2010" South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Catawba Unit 1, Unit 2","2,258","18,964",36.5,"Duke Energy Carolinas, LLC" "H B Robinson Unit 2",724,"3,594",6.9,"Progress Energy Carolinas Inc" "Oconee Unit 1, Unit 2, Unit 3","2,538","20,943",40.3,"Duke Energy Carolinas, LLC" "V C Summer Unit 1",966,"8,487",16.3,"South Carolina Electric&Gas Co" "4 Plants 7 Reactors","6,486","51,988",100.0

168

Stateline Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Stateline Solar Power Plant Stateline Solar Power Plant Jump to: navigation, search Name Stateline Solar Power Plant Facility Stateline Sector Solar Facility Type Photovoltaic Developer First Solar Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

Blythe Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Blythe Solar Power Plant Blythe Solar Power Plant Jump to: navigation, search Name Blythe Solar Power Plant Facility Blythe Sector Solar Facility Type Photovoltaic Developer First Solar Location Blythe, California Coordinates 33.6172329°, -114.5891744° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.6172329,"lon":-114.5891744,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

NREL: TroughNet - Parabolic Trough Power Plant System Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parabolic Trough Power Plant System Technology Parabolic Trough Power Plant System Technology A parabolic trough solar power plant uses a large field of collectors to supply thermal energy to a conventional power plant. Because they use conventional power cycles, parabolic trough power plants can be hybridized-other fuels can be used to back up the solar power. Like all power cycles, trough power plants also need a cooling system to transfer waste heat to the environment. Parabolic trough power plant technologies include: Direct steam generation Fossil-fired (hybrid) backup Operation and maintenance Power cycles Steam Rankine Organic Rankine Combined Wet and dry cooling Power Cycles A photo of an aerial view of a power plant in the middle of a solar field with rows and rows of parabolic troughs tracking. The cooling towers can be seen with the water plume rising into the air. The white water tanks can be seen in the background.

171

MHD power plant instrumentation and control  

SciTech Connect (OSTI)

The Electric Power Research Institute (EPRI) has awarded a contract to the MHD Development Corporation (MDC) to develop instrumentation and control requirements and strategies for commercial MHD power plants. MDC subcontracted MSE to do the technical development required. MSE is being assisted by Montana State University (MSU) for the topping cycle development. A computer model of a stand-alone MHD/steam plant is being constructed. The plant is based on the plant design set forth in the MDC proposal to the Federal Clean Coal Technology 5 solicitation. It consists of an MHD topping plant, a Heat Recovery Seed Recovery (HRSR) plant, and a steam turbo-generator. The model is based on the computer code used for a study of the Corette plant retrofitted with an MHD plant. Additional control strategies, based on MHD testing results and current steam bottoming plant control data, will be incorporated. A model will be devised and implemented for automatic control of the plant. Requirements regarding instrumentation and actuators will be documented. Instrumentation and actuators that are not commercially available will be identified. The role and desired characteristics of an expert system in the automated control scheme is being investigated. Start-up and shutdown procedures will be studied and load change dynamic performance will be evaluated. System response to abnormal topping cycle and off-design system operation will be investigated. This includes use of MHD topping cycle models which couple gasdynamic and electrical behavior for the study of controlling of the MHD topping cycle. A curvefitter, which uses cubic Hermitian spline interpolation functions in as many as five dimensions, allows much more accurate reproduction of nonlinear, multidimensional functions. This project will be the first to investigate plant dynamics and control using as many as seven independent variables or control inputs to the MHD topping cycle.

Lofftus, D.; Rudberg, D. [MSE Inc., Butte, MT (United States); Johnson, R.; Hammerstrom, D. [Montana State Univ., Bozeman, MT (United States)

1993-12-31T23:59:59.000Z

172

Report on Hawaii geothermal power plant project  

SciTech Connect (OSTI)

The Hawaii Geothermal Generator Project is the first power plant in the State of Hawaii to be powered by geothermal energy. This plant, which is located in the Puna District on the Island of Hawaii, produces three (3) megawatts of electricity utilizing the steam phase from the geothermal well. This project represents the climax of the geophysical research efforts going on for two decades in the Hawaiian Islands which resulted in the discovery of a significant reservoir of geothermal energy which could be put to practical use. In 1978 the Department of Energy, in conjunction with the State of Hawaii, entered into negotiations to design and build a power plant. The purpose and objective of this plant was to demonstrate the feasibility of constructing and operating a geothermal power plant located in a remote volcanically active area. A contract was signed in mid 1978 between the Research Corporation of the University of Hawaii (RCUH) and the Department of Energy (DOE). To date, the DOE has provided 8.3 million dollars with the State of Hawaii and others contributing 2.1 million dollars. The cost of the project exceeded its original estimates by approximately 25%. These increases in cost were principally contributed to the higher cost for construction than was originally estimated. Second, the cost of procuring the various pieces of equipment exceed their estimates by 10 to 20 percent, and third, the engineering dollar per man hour rose 20 to 25 percent.

Not Available

1983-06-01T23:59:59.000Z

173

Slim Holes for Small Power Plants  

SciTech Connect (OSTI)

Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

Finger, John T.

1999-08-06T23:59:59.000Z

174

Automation of hydroelectric power plants  

SciTech Connect (OSTI)

This paper describes how the author's company has been automating its hydroelectric generating plants. The early automations were achieved with a relay-type supervisory control system, relay logic, dc tachometer, and a pneumatic gate-position controller. While this system allowed the units to be started and stopped from a remote location, they were operated at an output that was preset by the pneumatic control at the generating site. The supervisory control system at the site provided such information as unit status, generator breaker status, and a binary coded decimal (BCD) value of the pond level. The generating units are started by energizing an on-site relay that sets the pneumatic gate controller to a preset value above the synchronous speed of the hydroelectric generator. The pneumatic controller then opens the water-wheel wicket gates to the preset startup position. As the hydroelectric generator starts to turn, the machine-mounted dc tachometer produces a voltage. At a dc voltage equivalent to synchronous speed, the generator main breaker closes, and a contact from the main breaker starts a field-delay timer. Within a few seconds, the field breaker closes. Once the cycle is complete, a relay changes the pneumatic setpoint to a preset operating point of about 8/10 wicket gate opening.

Grasser, H.S. (Consolidated Papers, Inc., Wisconsin Rapids, WI (US))

1990-03-01T23:59:59.000Z

175

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network [OSTI]

Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

176

E-Print Network 3.0 - advanced power plants Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plants Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced power plants...

177

E-Print Network 3.0 - atomic power plant Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plant Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic power plant...

178

E-Print Network 3.0 - advanced power plant Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plant Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced power plant...

179

E-Print Network 3.0 - atomic power plants Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plants Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic power plants...

180

Combined Heat and Power Plant Steam Turbine  

E-Print Network [OSTI]

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Combined cycle power plant incorporating coal gasification  

DOE Patents [OSTI]

A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

1981-01-01T23:59:59.000Z

182

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM  

E-Print Network [OSTI]

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California, Center for Ocean Health, Long Marine Lab GREGOR CAILLIET, Moss Landing Marine Laboratories DAVID MAYER be obvious that large studies like these require the coordinated work of many people. We would first like

183

Chapter 3 - Coal-fired Power Plants  

Science Journals Connector (OSTI)

Abstract Coal provides around 40% of the worlds electricity, more than any other source. Most modern coal-fired power stations burn pulverized coal in a boiler to raise steam for a steam turbine. High efficiency is achieved by using supercritical boilers made of advanced alloys that produce high steam temperatures, and large, high-efficiency steam turbines. Alternative types of coal-fired power plants include fluidized bed boilers that can burn a variety of poor fuels, as well as coal gasifiers that allow coal to be turned into a combustible gas that can be burned in a gas turbine. Emissions from coal plants include sulfur dioxide, nitrogen oxide, and trace metals, all of which must be controlled. Capturing carbon dioxide from a coal plant is also under consideration. This can be achieved using post-combustion capture, a pre-combustion gasification process, or by burning coal in oxygen instead of air.

Paul Breeze

2014-01-01T23:59:59.000Z

184

Wind Power Plant Voltage Stability Evaluation: Preprint  

SciTech Connect (OSTI)

Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

Muljadi, E.; Zhang, Y. C.

2014-09-01T23:59:59.000Z

185

Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas...

186

Mohave Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Mohave Solar Power Plant Mohave Solar Power Plant Facility Mojave Solar Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Owner Mojave Solar LLC, Developer Abengoa Solar, Mohave Sun LLC Location Mohave County, Arizona Coordinates 35.017264°, -117.316607° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.017264,"lon":-117.316607,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

SELFMONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION)  

E-Print Network [OSTI]

SELF­MONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION) Aldo and identification are extremely important activities for the safety of a nuclear power plant. In particular inside huge and complex production plants. 1 INTRODUCTION Safety in nuclear power plants requires

188

Using government purchasing power to reduce equipment standby power  

SciTech Connect (OSTI)

Although the government sector represents only 10 to 15 percent of the economy in most countries, carefully targeted public procurement can play a significant role in market transformation through its influence on both buyers and suppliers. Government leadership in energy-efficient purchasing can set an example for other buyers, while creating opportunities for leading manufacturers and distributors to increase their sales and market share by offering energy-efficient products at competitive prices. Under proper circumstances, a highly visible government purchasing policy can have a disproportionately large influence on the market for efficient products. In the United States, President Bush signed an Executive Order in 2001 directing all federal agencies to buy products with low standby power (1 watt or less where possible). This represents a deliberate choice to use government purchasing - rather than regulations or incentives - as a market-based strategy to encourage energy savings. It also builds upon existing efforts to encourage Federal purchase of energy-efficient products (Energy Star products and others in the top 25th percentile of efficiency). This paper summarizes the Federal Energy Management Program s first 18 months of experience in implementing this Executive Order, including analysis of data on standby power, interactions with manufacturers and industry groups, and the relationship between these efforts and other federal programs concerning product labelling, testing, rating, and efficiency standards. After five years of implementing low-standby power purchasing, we estimate energy savings for federal agencies alone at about 230 GWh/year (worth US$14 million), with spillover effects on the broader market that will save all US consumers nearly 4000 GWh/year (US$300 million).

Harris, Jeffrey; Meier, Alan; Bartholomew, Emily; Thomas, Alison; Glickman, Joan; Ware Michelle

2003-03-03T23:59:59.000Z

189

Configuration management in nuclear power plants  

E-Print Network [OSTI]

Configuration management (CM) is the process of identifying and documenting the characteristics of a facility's structures, systems and components of a facility, and of ensuring that changes to these characteristics are properly developed, assessed, approved, issued, implemented, verified, recorded and incorporated into the facility documentation. The need for a CM system is a result of the long term operation of any nuclear power plant. The main challenges are caused particularly by ageing plant technology, plant modifications, the application of new safety and operational requirements, and in general by human factors arising from migration of plant personnel and possible human failures. The IAEA Incident Reporting System (IRS) shows that on average 25% of recorded events could be caused by configuration errors or deficiencies. CM processes correctly applied ensure that the construction, operation, maintenance and testing of a physical facility are in accordance with design requirements as expressed in the d...

2003-01-01T23:59:59.000Z

190

Sustainability in the power plant choice  

Science Journals Connector (OSTI)

International literature presents several studies on the economics of power plants based on cash flows. However there are sustainability factors (e.g., environmental and social aspects, etc.) able to heavily bear on the sustainability of certain investments. This paper lists and quantifies these factors and ranks under different scenarios the following technologies: hydro, coal, oil, gas and nuclear. Then an overall multi-attribute model, based on the quality function deployment approach, delivers a weight for each factor, dividing its impact in the three different sustainability dimensions: economic, environmental and social. Finally the factor weights and their performances are coupled to obtain an overall ranking. The results show that hydroelectric plants are usually the best solution. Coal and nuclear could be a good choice even if each type of plant has its strengths and weaknesses. On the contrary, the oil and gas-fired plants are always the worst choice.

Giorgio Locatelli; Mauro Mancini

2013-01-01T23:59:59.000Z

191

Power plants coordination for economic and environmental load dispatch of thermal power plants with wind generation systems  

Science Journals Connector (OSTI)

Economic load dispatch (ELD) and economic emission dispatch (EED) have been applied to obtain generation scheduling of thermal power plants at optimum fuel cost and emissions. Due to limited availability of quality coal, issue of environmental emissions and high prices of coal, installation of renewable energy systems are suggested in power grid. Renewable energy system preferably wind generators are used in co-working with thermal plant which reduces generation cost, coal requirement and environmental emissions. This paper presents Newton-Raphson method to obtain ELD and EED. System simulation and programming is carried out in MATLAB environment. Analysis has been made on generation cost and for nitrous oxides emissions only due to its harmful effects and its rising tendency with excess air. Price penalty factor is also calculated to determine emission cost. Doubly fed induction generator (DFIG) is suggested as wind energy systems in combination with coal-based thermal plant. Performance results related to generation scheduling, transmission line loading, bus voltages, total cost and environmental emissions are shown for coal-based thermal power plant and with co-generation. The investigation shows that with co-generation, coal-based thermal power plant runs at minimum emissions level which further reflects on the generation economy.

Kishor B. Porate; Krishna L. Thakre; Ghanashyam Bodhe

2013-01-01T23:59:59.000Z

192

Why Area Might Reduce Power in Nanoscale CMOS Paul Beckett  

E-Print Network [OSTI]

Why Area Might Reduce Power in Nanoscale CMOS Paul Beckett School of Electrical and Computer Engineering RMIT University Melbourne, Australia 3000 Email: pbeckett@rmit.edu.au Seth Copen Goldstein School-- In this paper we explore the relationship between power and area. By exploiting parallelism (and thus using more

Goldstein, Seth Copen

193

Green Computing Using Automatic Parallelizing and Power Reducing Compiler  

E-Print Network [OSTI]

. BG/Q (A2:16cores) Water Cooled20PFLOPS, 3-4MW (2011-12), BlueWaters(HPCS) Power7, 10 PFLOP+(2011Green Computing Using Automatic Parallelizing and Power Reducing Compiler with Multiplatform API (Embedded) Mobile Phone, Game, TV, Car Navigation, Camera, IBM/ Sony/ Toshiba Cell, Fujitsu FR1000

Kasahara, Hironori

194

Working fluid selection for an increased efficiency hybridized geothermal-solar thermal power plant in Newcastle, Utah.  

E-Print Network [OSTI]

??Renewable sources of energy are of extreme importance to reduce greenhouse gas emissions from traditional power plants. Such renewable sources include geothermal and solar thermal (more)

Carnell, John Walter

2012-01-01T23:59:59.000Z

195

Ahuachapan Geothermal Power Plant, El Salvador  

SciTech Connect (OSTI)

The Ahuachapan geothermal power plant has been the subject of several recent reports and papers (1-7). This article is a condensation of the author's earlier writings (5-7), and incorporates new information on the geothermal activities in El Salvador obtained recently through a telephone conversation with Ing. R. Caceres of the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) who has been engaged in the design and engineering of the newest unit at Ahuachapan. El Salvador is the first of the Central American countries to construct and operate a geothermal electric generating station. Exploration began in the mid-1960's at the geothermal field near Ahuachapan in western El Salvador. The first power unit, a separated-steam or so-called ''single-flash'' plant, was started up in June 1975, and was followed a year later by an identical unit. In July 1980, the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) will complete the installation of a third unit, a dual-pressure (or ''double-flash'') unit rated at 35 MW. The full Ahuachapan plant will then constitute about 20% of the total installed electric generating capacity of the country. During 1977, the first two units generated nearly one-third of all the electricity produced in El Salvador. C.E.L. is actively pursuing several other promising sites for additional geothermal plants. There is the possibility that eventually geothermal energy will contribute about 450 MW of electric generating capacity. In any event it appears that by 1985 El Salvador should be able to meet its domestic needs for electricity by means of its indigenous geothermal and hydroelectric power plants, thus eliminating any dependence on imported petroleum for power generation.

DiPippo, Ronald

1980-12-01T23:59:59.000Z

196

Modeling Generator Power Plant Portfolios and Pollution Taxes in  

E-Print Network [OSTI]

Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain-term solution (e.g.,are long-term solution (e.g., solar power and wind power (solar power and wind power Heavy user of fossil fuels:Heavy user of fossil fuels: Electric power industryElectric power industry

Nagurney, Anna

197

Capacity Value of Concentrating Solar Power Plants  

SciTech Connect (OSTI)

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

198

NETL: Coal-Fired Power Plants (CFPPs)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NOx Sources NOx Sources Coal-Fired Power Plants (CFPPs) Causes of greenhouse gases, Including NOx What is NOx? Environmental Impacts NOx Sources Reduction Efforts Several greenhouse gases, including NOx, are increasing due to human activities in the following areas: Burning of fossil fuel (for example, coal-fired power plants), Logging (mainly contributes to carbon monoxide), Agriculture processes, Use of chlorofluorocarbons (CFC) in holon fire suppression and refrigeration The chart below shows the three major gases contributing to greenhouse gas emissions along with their source by sector. Annual Greenhouse Gas Emissions by Sector Note: This figure was created and copyrighted by Robert A. Rohde from published data and is part of the Global Warming Art project. This image is an original work created for Global Warming Art Permission is granted to copy, distribute and/or modify this image under either:

199

Decentralised optimisation of cogeneration in virtual power plants  

SciTech Connect (OSTI)

Within several projects we investigated grid structures and management strategies for active grids with high penetration of renewable energy resources and distributed generation (RES and DG). Those ''smart grids'' should be designed and managed by model based methods, which are elaborated within these projects. Cogeneration plants (CHP) can reduce the greenhouse gas emissions by locally producing heat and electricity. The integration of thermal storage devices is suitable to get more flexibility for the cogeneration operation. If several power plants are bound to centrally managed clusters, it is called ''virtual power plant''. To operate smart grids optimally, new optimisation and model reduction techniques are necessary to get rid with the complexity. There is a great potential for the optimised management of CHPs, which is not yet used. Due to the fact that electrical and thermal demands do not occur simultaneously, a thermally driven CHP cannot supply electrical peak loads when needed. With the usage of thermal storage systems it is possible to decouple electric and thermal production. We developed an optimisation method based on mixed integer linear programming (MILP) for the management of local heat supply systems with CHPs, heating boilers and thermal storages. The algorithm allows the production of thermal and electric energy with a maximal benefit. In addition to fuel and maintenance costs it is assumed that the produced electricity of the CHP is sold at dynamic prices. This developed optimisation algorithm was used for an existing local heat system with 5 CHP units of the same type. An analysis of the potential showed that about 10% increase in benefit is possible compared to a typical thermally driven CHP system under current German boundary conditions. The quality of the optimisation result depends on an accurate prognosis of the thermal load which is realised with an empiric formula fitted with measured data by a multiple regression method. The key functionality of a virtual power plant is to increase the value of the produced power by clustering different plants. The first step of the optimisation concerns the local operation of the individual power generator, the second step is to calculate the contribution to the virtual power plant. With small extensions the suggested MILP algorithm can be used for an overall EEX (European Energy Exchange) optimised management of clustered CHP systems in form of the virtual power plant. This algorithm has been used to control cogeneration plants within a distribution grid. (author)

Wille-Haussmann, Bernhard; Erge, Thomas; Wittwer, Christof [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg (Germany)

2010-04-15T23:59:59.000Z

200

Advanced Power Plant Development and Analysis Methodologies  

SciTech Connect (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

2006-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advanced Power Plant Development and Analyses Methodologies  

SciTech Connect (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

G.S. Samuelsen; A.D. Rao

2006-02-06T23:59:59.000Z

202

Turbine Drive Gas Generator for Zero Emission Power Plants  

SciTech Connect (OSTI)

The Vision 21 Program seeks technology development that can reduce energy costs, reduce or eliminate atmospheric pollutants from power plants, provide choices of alternative fuels, and increase the efficiency of generating systems. Clean Energy Systems is developing a gas generator to replace the traditional boiler in steam driven power systems. The gas generator offers the prospects of lower electrical costs, pollution free plant operations, choices of alternative fuels, and eventual net plant efficiencies in excess of 60% with sequestration of carbon dioxide. The technology underlying the gas generator has been developed in the aerospace industry over the past 30 years and is mature in aerospace applications, but it is as yet unused in the power industry. This project modifies and repackages aerospace gas generator technology for power generation applications. The purposes of this project are: (1) design a 10 MW gas generator and ancillary hardware, (2) fabricate the gas generator and supporting equipment, (3) test the gas generator using methane as fuel, (4) submit a final report describing the project and test results. The principal test objectives are: (1) define start-up, shut down and post shutdown control sequences for safe, efficient operation; (2) demonstrate the production of turbine drive gas comprising steam and carbon dioxide in the temperature range 1500 F to 3000 F, at a nominal pressure of 1500 psia; (3) measure and verify the constituents of the drive gas; and (4) examine the critical hardware components for indications of life limitations. The 21 month program is in its 13th month. Design work is completed and fabrication is in process. The gas generator igniter is a torch igniter with sparkplug, which is currently under-going hot fire testing. Fabrication of the injector and body of the gas generator is expected to be completed by year-end, and testing of the full gas generator will begin in early 2002. Several months of testing are anticipated. When demonstrated, this gas generator will be the prototype for use in demonstration power plants planned to be built in Antioch, California and in southern California during 2002. In these plants the gas generator will demonstrate durability and its operational RAM characteristics. In 2003, it is expected that the gas generator will be employed in new operating plants primarily in clean air non-attainment areas, and in possible locations to provide large quantities of high quality carbon dioxide for use in enhanced oil recovery or coal bed methane recovery. Coupled with an emission free coal gasification system, the CES gas generator would enable the operation of high efficiency, non-polluting coal-fueled power plants.

Doyle, Stephen E.; Anderson, Roger E.

2001-11-06T23:59:59.000Z

203

Aspects Regarding Design of Wind Power Plants Foundation System  

Science Journals Connector (OSTI)

During the past years wind power plants projects have become very important all over ... must be calculated for dynamic loads, especially wind charge. The article present the particularities of the wind power plants

Vasile Farcas; Nicoleta Ilies

2014-01-01T23:59:59.000Z

204

Power Plant and Industrial Fuel Use Act | Department of Energy  

Office of Environmental Management (EM)

Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Self Certifications Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended...

205

1 INTRODUCTION In Nuclear Power Plant (NPP) systems, effective  

E-Print Network [OSTI]

1 INTRODUCTION In Nuclear Power Plant (NPP) systems, effective prediction methods are sought for Nuclear Power Plant Failure Scenarios Using an Ensemble-based Approach J. Liu & V. Vitelli Chair

Paris-Sud XI, Université de

206

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

provide solar power plant energy storage for a reasonablefor Chemical Storage of Solar Energy. UC Berkeley, M.S.for a solar power plant without energy storage for nighttime

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

207

A study of a commercial MHD power plant scheme  

Science Journals Connector (OSTI)

This paper is devoted to an investigation of one of the possible process flow diagrams of MHD electrical power plants. The structure of MHD electrical power plants, the interrelation between the ... theoretical a...

S. A. Pashkov; E. V. Shishkov

1980-07-01T23:59:59.000Z

208

Unusual Condition Mining for Risk Management of Hydroelectric Power Plants  

Science Journals Connector (OSTI)

Kyushu Electric Power Co.,Inc. collects different sensor data and weather information to maintain the safety of hydroelectric power plants while the plants are running. In this paper, we consider that the abnormal condition sign may be unusual condition. ...

Takashi Onoda; Norihiko Ito; Hironobu Yamasaki

2006-12-01T23:59:59.000Z

209

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

for concentrating solar-thermal energy use a large number ofBoth solar power plants absorb thermal energy in high-of a solar power plant that converts thermal energy into

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

210

How a Geothermal Power Plant Works (Simple) | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant Works (Simple) Most power plants-whether fueled by coal, gas, nuclear power, or geothermal energy-have one feature in common: they convert heat to electricity. Heat from...

211

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Cecil. E. A. , Research on Dry-Type Cooling _T_o_w_e_r~s~f~oTower Type Wet-Cooled Power Plant Solar-Power Plant Dry-Cool

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

212

Radio-frequency identification could help reduce the spread of plant pathogens  

E-Print Network [OSTI]

frequency identification could help reduce the spread ofeconomic losses. It also helps control the Plant Protection

Luvisi, Andrea; Panattoni, Alessandra; Triolo, Enrico

2012-01-01T23:59:59.000Z

213

Restoration of the graphite memory of a reactor in the third power-generating unit of the Leningrad nuclear power plant  

Science Journals Connector (OSTI)

The restoration of the graphite masonry of cell 52-16 in the reactor in the third power-generating unit of the Leningrad nuclear power plant is described. The process reduces to moving...

V. I. Lebedev; Yu. V. Garusov; M. A. Pavlov; A. N. Peunov; E. P. Kozlov

1999-11-01T23:59:59.000Z

214

Loan Guarantee Recipient Awarded Power Plant of the Year  

Broader source: Energy.gov [DOE]

The Ivanpah Solar Electric Generating System, a DOE loan guarantee recipient, won 2014 Plant of the Year from POWER Magazine.

215

Geothermal Power Plants Meeting Water Quality and Conservation Standards  

Broader source: Energy.gov [DOE]

U.S. geothermal power plants can easily meet federal, state, and local water quality and conservation standards.

216

World's Largest Concentrating Solar Power Plant Opens in California  

Broader source: Energy.gov [DOE]

The Ivanpah Solar Electric Generating System, the world’s largest concentrating solar power plant, officially opened on February 13.

217

Control of CO2 emission through enhancing energy efficiency of auxiliary power equipment in thermal power plant  

Science Journals Connector (OSTI)

Abstract This paper describes the results of energy efficiency enhancement in 23 numbers of 210MW coal fired power plants spread over India. Energy efficiency improvement of major auxiliary equipment with different plant load factors are summarized here with improved performance. The effect of plant load factor on all major auxiliary equipment and improvement in performance of auxiliary equipment are discussed in this paper. Operation of the plant at improved plant load factor reduced the specific auxiliary power from 11.23% at 70% PLF to 8.74% at 100% PLF that reduced the net auxiliary power by 9.1MU/year that is an equivalent reduction of CO2 emission by 9500t/year. Optimizing the excess air, controlling the furnace ingress, enhanced energy efficiency of individual equipment by proper maintenance, etc., improves the plant capacity and reduces the overall auxiliary power by about 1.52.1% of gross energy generation i.e., equivalent CO2 reduction of 23,00032,400t/year and release an additional power of about 3.5MW (for a typical one 210MW power plant) into grid.

Rajashekar P. Mandi; Udaykumar R. Yaragatti

2014-01-01T23:59:59.000Z

218

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis  

E-Print Network [OSTI]

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis ¨Ozge I¸slegen Graduate School excellent research assistance. #12;Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis Abstract: For fossil fuel power plants to be built in the future, carbon capture and storage (CCS) technologies offer

Silver, Whendee

219

Multi-objective optimization of solar tower power plants  

E-Print Network [OSTI]

Multi-objective optimization of solar tower power plants Pascal Richter Center for Computational · Optimization of solar tower power plants 1/20 #12;Introduction ­ Solar tower power plants Solar tower PS10 (11 MW) in Andalusia, Spain · Solar tower with receiver · Heliostat field with self-aligning mirrors

Ábrahám, Erika

220

Hybrid Modeling and Control of a Hydroelectric Power Plant  

E-Print Network [OSTI]

Hybrid Modeling and Control of a Hydroelectric Power Plant Giancarlo Ferrari-Trecate, Domenico,mignone,castagnoli,morari}@aut.ee.ethz.ch Abstract In this work we present the model of a hydroelectric power plant in the framework of Mixed Logic with a model predictive control scheme. 1 Introduction The outflow control for hydroelectric power plants

Ferrari-Trecate, Giancarlo

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NETL: News Release - Energy Department Awards Project in Power Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

24, 2006 24, 2006 Energy Department Awards Project in Power Plant Improvement Initiative Technology Focuses on Nation's 500 Small Coal-Burning Energy Producers WASHINGTON, DC - The U.S. Department of Energy today awarded a contract to CONSOL Energy Inc., a major coal producer, as part of an effort under DOE's Power Plant Improvement Initiative to reduce the ever-increasing demands on U.S. electricity supplies. MORE INFO Read more about the eight PPII project selections made in October 2001 "This award represents yet another step forward in advancing clean coal technologies for the future," said Assistant Secretary for Fossil Energy Jeffrey Jarrett. "With more than half of America's electricity coming from coal, this resource is vital to our nation's energy security. The success

222

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

Roshandell, Melina

2013-01-01T23:59:59.000Z

223

Magnetohydrodynamic (MHD) power plant interface engineering  

SciTech Connect (OSTI)

This report summarizes the results of EPRI Research Project 2466-10. The objective of this project was to identify the preliminary interface requirements and characteristics for a coal-fired magnetohydrodynamic retrofit power plant located at the Scholz Generating Station, Sneads, Florida. An initial building arrangement has been developed and incorporated into the plot plan of the Scholz Generating Station. An MHD process flow diagram was generated and integrated with the existing plant process flow diagram. The electrical interface schematic for the MHD system was also developed. A preliminary list of process flow, electrical, and physical interfaces was produced and the respective interface requirements defined. The existing facilities were inspected and the necessary modifications imposed by the MHD system have been identified. 6 refs., 24 figs., 11 tabs.

Van Bibber, L.E.; Wiseman, D.A. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Advanced Energy Systems Div.); Cuchens, J.W. (Southern Electric International, Birmingham, AL (USA))

1990-07-01T23:59:59.000Z

224

(Nuclear power plant control and instrumentation technology)  

SciTech Connect (OSTI)

While on vacation, the traveler attended the European Nuclear Conference in Lyon, France. This trip was part of an outside activity approved by DOE. The traveler is a consultant to Loyola College, serving as chairman of a panel to assess the state of the art in the controls and instrumentation technology in the European nuclear community. This study is being conducted by Loyola College under subcontract to the National Science Foundation. The traveler was surprised by the level of automation claimed (by the company Siemens AG KWU) to be present in the German Konvoi nuclear power plants. The claim was that this was done to improve the safety of the plant by keeping the operator out of the loop'' for the first 30 minutes of some transients or accidents.

White, J.D.

1990-10-10T23:59:59.000Z

225

CFD analysis for solar chimney power plants  

Science Journals Connector (OSTI)

Abstract Solar chimney power plants are investigated numerically using ANSYS Fluent and an in-house developed Computational Fluid Dynamics (CFD) code. Analytical scaling laws are verified by considering a large range of scales with tower heights between 1m (sub-scale laboratory model) and 1000m (largest envisioned plant). A model with approximately 6m tower height is currently under construction at the University of Arizona. Detailed time-dependent high-resolution simulations of the flow in the collector and chimney of the model provide detailed insight into the fluid dynamics and heat transfer mechanisms. Both transversal and longitudinal convection rolls are identified in the collector, indicating the presence of a RayleighBnardPoiseuille instability. Local separation is observed near the chimney inflow. The flow inside the chimney is fully turbulent.

Hermann F. Fasel; Fanlong Meng; Ehsan Shams; Andreas Gross

2013-01-01T23:59:59.000Z

226

POWER-EFFICIENT OFDM WITH REDUCED COMPLEXITY AND FEEDBACK OVERHEAD  

E-Print Network [OSTI]

to the transmitter. Our design exploits the correlation among sub-carriers in order to re- duce feedback overheadPOWER-EFFICIENT OFDM WITH REDUCED COMPLEXITY AND FEEDBACK OVERHEAD Antonio G. Marques Dept. of TSC subscriber lines (DSL), digital audio and video broadcasting (DAB/DVB) standards and wireless local area

Marques, Antonio Garcia

227

Relative Movements for Design of Commodities in Nuclear Power Plants  

Broader source: Energy.gov [DOE]

Relative Movements for Design of Commodities in Nuclear Power Plants Javad Moslemian, Vice President, Nuclear Power Technologies, Sargent & Lundy LLC Nezar Abraham, Senior Associate II, Nuclear Power Technologies, Sargent & Lundy LLC

228

Single stage rankine and cycle power plant  

SciTech Connect (OSTI)

The specification describes a Rankine cycle power plant of the single stage type energized by gasified freon, the latter being derived from freon in the liquid state in a boiler provided in the form of a radio frequency heating cell adapted at low energy input to effect a rapid change of state from liquid freon at a given temperature and pressure to gaseous freon of relatively large volume, thereby to drive a Rankine cycle type of engine recognized in the prior art as a steam engine type of engine of the piston or turbine type.

Closs, J.J.

1981-10-13T23:59:59.000Z

229

Fuel Cell Power Plant Experience Naval Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

clean clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. FuelCell Energy, Inc. * Premier developer of fuel cell technology - founded in 1969 * Over 50 power installations in North America, Europe, and Asia * Industrial, commercial, utility

230

NSR and the Power Plant Improvement Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOURCE REVIEW (NSR) and the CLEAN COAL SOURCE REVIEW (NSR) and the CLEAN COAL POWER INITIATIVE (CCPI) Summary Changes which result in increases in emissions of air pollutants from existing industrial facilities, such as power plants, can invoke stringent and costly new regulations. However, it is not the intent of such requirements to present a barrier to the installation of environmentally beneficial pollution control projects, or to projects demonstrating new methods to burn coal cleanly under the DOE Clean Coal Technology Program. Special provisions are included in the Clean Air Act and its implementing regulations to address potential exemptions of such projects from new source review regulations. This paper provides a general review of those provisions, and encourages project managers to

231

Power System Frequency Control Characteristics as a Function of Nuclear Power Plant Participation  

Science Journals Connector (OSTI)

When the participation of nuclear power plants in electric power system increases then they have to be ... take an increasing part in the frequency and power control of the power system. However there are specifi...

Z. Domachowski

1988-01-01T23:59:59.000Z

232

A stochastic model for the daily coordination of pumped storage hydro plants and wind power plants  

Science Journals Connector (OSTI)

We propose a stochastic model for the daily operation scheduling of a generation system including pumped storage hydro plants and wind power plants, where the uncertainty is represented by the hourly wind power p...

Maria Teresa Vespucci; Francesca Maggioni

2012-03-01T23:59:59.000Z

233

Optimal Endogenous Carbon Taxes Electric Power Supply Chains with Power Plants  

E-Print Network [OSTI]

Optimal Endogenous Carbon Taxes for Electric Power Supply Chains with Power Plants Anna Nagurney for the determination of optimal carbon taxes applied to electric power plants in the con- text of electric power supply portion of such policy inter- ventions directed at the electric power industry. The general framework

Nagurney, Anna

234

Monitoring power plant fireside corrosion using corrosion probes  

SciTech Connect (OSTI)

The ability to monitor the corrosion degradation of key components in fossil fuel power plants is of utmost importance for Futuregen and ultra-supercritical power plants. Fireside corrosion occurs in the high temperature sections of energy production facilities due to a number of factors: ash deposition, coal composition, thermal gradients, and low NOx conditions, among others. Problems occur when equipment designed for either oxidizing or reducing conditions is exposed to alternating oxidizing and reducing conditions. This can happen especially near the burners. The use of low NOx burners is becoming more commonplace and can produce reducing environments that accelerate corrosion. One method of addressing corrosion of these surfaces is the use of corrosion probes to monitor when process changes cause corrosive conditions. In such a case, corrosion rate could become a process control variable that directs the operation of a coal combustion or coal gasification system. Alternatively, corrosion probes could be used to provide an indication of total metal damage and thus a tool to schedule planned maintenance outages.

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.

2005-01-01T23:59:59.000Z

235

Alternative off-site power supply improves nuclear power plant safety  

Science Journals Connector (OSTI)

Abstract A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source.

Blae Gjorgiev; Andrija Volkanovski; Duko Kan?ev; Marko ?epin

2014-01-01T23:59:59.000Z

236

Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems  

SciTech Connect (OSTI)

A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

2008-09-30T23:59:59.000Z

237

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dexin Wang Dexin Wang Principal Investigator Gas Technology Institute 1700 South Mount Prospect Rd Des Plaines, Il 60018 847-768-0533 dexin.wang@gastechnology.org TransporT MeMbrane Condenser for WaTer and energy reCovery froM poWer planT flue gas proMIs/projeCT no.: nT0005350 Background One area of the U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program's research is being performed to develop advanced technologies to reuse power plant cooling water and associated waste heat and to investigate methods to recover water from power plant flue gas. Considering the quantity of water withdrawn and consumed by power plants, any recovery or reuse of this water can significantly reduce the plant's water requirements. Coal occurs naturally with water present (3-60 weight %), and the combustion

238

Power/desal plant evolves to meet changing needs  

SciTech Connect (OSTI)

This article reviews the design and operation of a dual purpose power/desalination plant in the Virgin Islands. The topics of the article include a description of the original plant design and operation, combined-cycle integration with existing power/desalination plant, system design, operating experience and incorporation of the St. Croix design at St. Thomas.

Atkins, T.E.; Rothgeb, G.

1993-08-01T23:59:59.000Z

239

Electromagnetic Compatibility in Nuclear Power Plants  

SciTech Connect (OSTI)

Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

1999-08-29T23:59:59.000Z

240

Oscillation Damping: A Comparison of Wind and Photovoltaic Power Plant Capabilities: Preprint  

SciTech Connect (OSTI)

This work compares and contrasts strategies for providing oscillation damping services from wind power plants and photovoltaic power plants.

Singh, M.; Allen, A.; Muljadi, E.; Gevorgian, V.

2014-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The 'value of research' methodology and hybrid power plant design  

SciTech Connect (OSTI)

Distributed power generation is one of the most powerful applications of fuel cell power plants. Several types of configurations have been hypothesized and tested for these kinds of applications at the conceptual level, but hybrid power plants are one of the most efficient. These are designs that combine the fuel cell cycle with other thermodynamic cycles to provide higher efficiency. The power plant in focus is the high-pressure (HP)-low-pressure (LP) solid oxide fuel cells (SOFC)/steam turbine (ST)/gas turbine (GT) configuration which is a part of the Vision-21 program in the USA. In this design, coal is gasified in an entrained bed gasifier and the syngas produced is cleaned in a transport bed desulfurizer and passed over to cascaded SOFC modules (at two pressure levels). This module is integrated with a reheat GT cycle. The heat of the exhaust from the GT cycle is used to convert water to steam, which is eventually used in a steam bottoming cycle. Since this hybrid technology is new and futuristic, the system level models used for predicting the fuel cells' performance and for other modules such as the desulfurizer have significant uncertainties in them. Also, the performance curves of the SOFC would differ depending on the materials used for the anode, cathode, and electrolyte. The accurate characterization and quantification of these uncertainties is crucial to the credibility of the model predictions. We have utilized the uncertainty analysis of the (HP-LP)SOFC/ST/GT conceptual design to illustrate the concept of 'value of research', which deals with the examination of tradeoffs inherent in allocating scarce resources to reduce uncertainty.

Subramanyan, K.; Diwekar, U.M. [Vishwamitra Research Institute, Westmont, IL (United States)

2006-01-18T23:59:59.000Z

242

UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS  

E-Print Network [OSTI]

1 UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS Piero Baraldi1 on transients originated by different faults in the pressurizer of a nuclear power reactor. Key Words: Fault of Nuclear Power Plants (NPPs) [Cheon et al., 1993; Kim et al., 1996; Reifman, 1997; Zio et al., 2006a; Zio

Boyer, Edmond

243

Corrosion Investigations at Masned Combined Heat and Power Plant  

E-Print Network [OSTI]

Corrosion Investigations at Masnedø Combined Heat and Power Plant Part VI Melanie Montgomery AT MASNED? COMBINED HEAT AND POWER PLANT PART VI CONTENTS 1. Introduction Department for Manufacturing Engineering Technical University of Denmark Asger Karlsson Energi E2 Power

244

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network [OSTI]

production plants, and steam methane reforming (SMR) systemsproduction via steam methane reforming, (e) power plant FGD

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

245

Impact of wind power on generation economy and emission from coal based thermal power plant  

Science Journals Connector (OSTI)

The major chunk of power generation is based on coal fueled thermal power plant. Due to increasing demand of power there will be future crises of coal reservoirs and its costing. Apart from this, coal based thermal power plant is the main source of environmental emissions like carbon dioxides (CO2), sulfur dioxides (SO2) and oxides of nitrogen (NOx) which not only degrades the air quality but also is responsible for global warming, acid rain etc. This paper proposes a combined working of Doubly Fed Induction Generator (DFIG) with coal based Synchronous Generator (SG) in the MATLAB environment. STATCOM is suggested at common coupling point to maintain voltage stability and also maintain the system in synchronism. Analysis have been made for environmental emissions, coal requirement and system economy for both the cases, when the total load supplied by only SG and with the combination. Emission analysis have been also made with the application of washed coal in SG. With the impact of DFIG energy generation from SG have been reduces which proportionally affects on coal requirement, generation cost and environmental emissions. Application of washed coal improves the performance of SG and also reduces the environmental emissions.

K.B. Porate; K.L. Thakre; G.L. Bodhe

2013-01-01T23:59:59.000Z

246

Unsupervised neural network for forecasting alarms in hydroelectric power plant  

Science Journals Connector (OSTI)

Power plant management relies on monitoring many signals that represent the technical parameters of the real plant. The use of neural networks (NN) is a novel approach that can help to produce decisions when i...

P. Isasi-Viuela; J. M. Molina-Lpez

1997-01-01T23:59:59.000Z

247

Risk-informed incident management for nuclear power plants  

E-Print Network [OSTI]

Decision making as a part of nuclear power plant operations is a critical, but common, task. Plant management is forced to make decisions that may have safety and economic consequences. Formal decision theory offers the ...

Smith, Curtis Lee, 1966-

2002-01-01T23:59:59.000Z

248

Fuel Cell Power Plant Experience Naval Applications | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plant Experience Naval Applications Fuel Cell Power Plant Experience Naval Applications Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu20118wolak.pdf More...

249

Fuel Cell Power Plants Renewable and Waste Fuels | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plants Renewable and Waste Fuels Fuel Cell Power Plants Renewable and Waste Fuels Presentation by Frank Wolak, Fuel Cell Energy, at the Waste-to-Energy using Fuel Cells Workshop...

250

North Brawley Power Plant Asset Impairment Analysis | Open Energy  

Open Energy Info (EERE)

North Brawley Power Plant Asset Impairment Analysis North Brawley Power Plant Asset Impairment Analysis Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Power Plant Asset Impairment Analysis Author Giza Singer Even Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for North Brawley Power Plant Asset Impairment Analysis Citation Giza Singer Even. North Brawley Power Plant Asset Impairment Analysis [Internet]. [updated 2012;cited 2012]. Available from: http://www.sec.gov/Archives/edgar/data/1296445/000119312512118396/d316623dex991.htm Retrieved from "http://en.openei.org/w/index.php?title=North_Brawley_Power_Plant_Asset_Impairment_Analysis&oldid=682476" Categories: References

251

Florida Electrical Power Plant Siting Act (Florida) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electrical Power Plant Siting Act (Florida) Electrical Power Plant Siting Act (Florida) Florida Electrical Power Plant Siting Act (Florida) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Buying & Making Electricity Solar Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection The Power Plant Siting Act (PPSA) is the state's centralized process for licensing large power plants. One license-a certification- replaces local and state permits. Local governments and state agencies within whose jurisdiction the power plant is to be built participate in the process. For

252

Investment Decisions for Baseload Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investment Decisions for Investment Decisions for Baseload Power Plants January 29, 2010 402/012910 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United

253

SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT  

SciTech Connect (OSTI)

Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

2005-07-01T23:59:59.000Z

254

Power plant report (EIA-759), current (for microcomputers). Data file  

SciTech Connect (OSTI)

The purpose of Form EIA-759, formerly FPC-4, Power Plant Report, is to collect data necessary to fulfill regulatory responsibility; ensure power reliability; and measure fuel consumption and power production. The data diskette contains data collected by the survey. Specific ownership code, prime mover code, fuel code, company code, plant name, current capacity, fuel name, old capacity, effective date - month/year, status, multistate code, current year, generation, consumption, stocks, electric plant code, and NERC code are included.

NONE

1992-08-01T23:59:59.000Z

255

Benchmarking Variable Cost Performance in an Industrial Power Plant  

E-Print Network [OSTI]

and deploy a tool that can help plants benchmark operating performance. This paper introduces a benchmarking methodology designed to meet this need. The "Energy Conversion Index" (ECn ratios the "value" of utilities exported from the power plant... Index" (ECl) methodology ratios the ''value'' of utilities exported from the power plant to the actual cost of the fuel and . electricity required to produce them, generating a single number or "index." ECI is a powerful technique because...

Kane, J. F.; Bailey, W. F.

256

From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the Worlds First nuclear power plant  

Science Journals Connector (OSTI)

Successful commissioning in the 1954 of the Worlds First nuclear power plant constructed at the Institute for Physics ... center for training Soviet and foreign specialists on nuclear power plants, the personnel...

V. I. Rachkov; S. G. Kalyakin; O. F. Kukharchuk; Yu. I. Orlov

2014-05-01T23:59:59.000Z

257

NEPA Process for Geothermal Power Plants in the Deschutes National...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: NEPA Process for Geothermal Power Plants in the Deschutes National Forest EIS at Newberry...

258

The Chena Hot Springs 400kw Geothermal Power Plant: Experience...  

Open Energy Info (EERE)

efficiency requiresincreased power plant equipment size (turbine, condenser,pump and boiler) that can ordinarily become cost prohibitive.One of the main goals for the Chena...

259

Virtual Power Plant Simulation and Control Scheme Design.  

E-Print Network [OSTI]

?? Virtual Power Plant (VPP) is a concept that aggregate Distributed Energy Resources (DER) together, aims to overcome the capacity limits of single DER and (more)

Chen, Zhenwei

2012-01-01T23:59:59.000Z

260

Water generator replaces bottled water in nuclear power plant  

Science Journals Connector (OSTI)

WaterPure International Incorporated of Doylestown, Pennsylvania, USA, has announced that it has placed its atmospheric water generator (AWG) inside a selected nuclear power plant.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

262

New York Nuclear Profile - R E Ginna Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

263

Sensitivity analysis for the outages of nuclear power plants  

E-Print Network [OSTI]

Feb 17, 2012 ... Abstract: Nuclear power plants must be regularly shut down in order to perform refueling and maintenance operations. The scheduling of the...

Kengy Barty

2012-02-17T23:59:59.000Z

264

Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

Not Available

2006-07-01T23:59:59.000Z

265

Insights for Quantitative Risk Assessment of Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Traditional techniques of risk analysis have been fitted for the application to combined cycle power plants and the results of several...

Gabriele Ballocco; Andrea Carpignano

2004-01-01T23:59:59.000Z

266

Sandia National Laboratories: character-izing solar-power-plant...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

character-izing solar-power-plant output variability Sandia PV Team Publishes Book Chapter On January 21, 2014, in Computational Modeling & Simulation, Energy, Modeling & Analysis,...

267

How a Geothermal Power Plant Works (Simple) - Text Version |...  

Energy Savers [EERE]

Lines Deliver Electricity Electrical current from the generator is sent to a step-up transformer outside the power plant. Voltage is increased in the transformer and electrical...

268

North Brawley Geothermal Power Plant Project Overview | Open...  

Open Energy Info (EERE)

Project Overview Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Geothermal Power Plant Project Overview Author PCL Construction...

269

Construction Underway on First Geothermal Power Plant in New Mexico  

Broader source: Energy.gov [DOE]

New Mexico Governor Bill Richardson and Raser Technologies, Inc. announced in late August that construction has begun on the first commercial geothermal power plant in New Mexico.

270

Geothermal Power Plants Minimizing Solid Waste and Recovering Minerals  

Broader source: Energy.gov [DOE]

Although many geothermal power plants generate no appreciable solid waste, the unique characteristics of some geothermal fluids require special attention to handle entrained solid byproducts.

271

Heat Exchanger Design for Solar Gas-Turbine Power Plant.  

E-Print Network [OSTI]

?? The aim of this project is to select appropriate heat exchangers out of available gas-gas heat exchangers for used in a proposed power plant. (more)

Yakah, Noah

2012-01-01T23:59:59.000Z

272

Rock bed thermal storage for concentrating solar power plants.  

E-Print Network [OSTI]

??ENGLISH ABSTRACT: Concentrating solar power plants are a promising means of generating electricity. However, they are dependent on the sun as a source of energy, (more)

Allen, Kenneth Guy

2014-01-01T23:59:59.000Z

273

RAPID/BulkTransmission/Power Plant | Open Energy Information  

Open Energy Info (EERE)

BulkTransmissionPower Plant < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA RAPID Toolkit About Bulk...

274

Suginoi Hotel Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Facility Power Plant Sector Geothermal energy Location Information Location Beppu, Japan Coordinates 33.283191762234, 131.47605371632 Loading map... "minzoom":false,"mapp...

275

Testing of a coal-fired diesel power plant  

SciTech Connect (OSTI)

The POC coal-fired power plant consists of a Cooper-Bessemer LSC-6 engine (15.5 inch bore, 22 inch stroke) rated at 400 rev/min and 208 psi bmep producing approximately 1.8 MW of power. The power plant is fueled with 'engine grade' coal slurry which has been physically cleaned to an ash level of approximately 1.5 to 2% (dry basis) and has a mean particle size of approximately 12 micron. CWS is injected directly into the combustion chamber through a fuel injector (one per cylinder) which was designed and developed to be compatible with the fuel. Each injector is fitted with a 19 orifice nozzle tip made with sapphire inserts in each orifice. The combustion chambers are fitted with twin diesel pilot injectors which provide a positive ignition source and substantially shorten the ignition delay period of the CWS fuel. Durable coatings (typically tungsten carbide) are used for the piston rings and cylinder liners to reduce wear rates. The emission control system consists of SCR for NO[sub x] control, sodium sorbent injection for SO[sub x] control, and a cyclone plus baghouse for particulate capture. The cyclone is installed upstream of the engine turbocharger which helps protect the turbine blades.

Wilson, R.P.; Balles, E.N.; Benedek, K.R.; Benson, C.E. (Little (Arthur D.), Inc., Cambridge, MA (United States)); Rao, K.; Schaub, F. (Cooper-Bessemer, Mount Vernon, OH (United States)); Kimberley, J. (AMBAC, West Springfield, MA (United States)); Itse, D. (PSI Technology Co., Andover, MA (United States))

1993-01-01T23:59:59.000Z

276

Testing of a coal-fired diesel power plant  

SciTech Connect (OSTI)

The POC coal-fired power plant consists of a Cooper-Bessemer LSC-6 engine (15.5 inch bore, 22 inch stroke) rated at 400 rev/min and 208 psi bmep producing approximately 1.8 MW of power. The power plant is fueled with `engine grade` coal slurry which has been physically cleaned to an ash level of approximately 1.5 to 2% (dry basis) and has a mean particle size of approximately 12 micron. CWS is injected directly into the combustion chamber through a fuel injector (one per cylinder) which was designed and developed to be compatible with the fuel. Each injector is fitted with a 19 orifice nozzle tip made with sapphire inserts in each orifice. The combustion chambers are fitted with twin diesel pilot injectors which provide a positive ignition source and substantially shorten the ignition delay period of the CWS fuel. Durable coatings (typically tungsten carbide) are used for the piston rings and cylinder liners to reduce wear rates. The emission control system consists of SCR for NO{sub x} control, sodium sorbent injection for SO{sub x} control, and a cyclone plus baghouse for particulate capture. The cyclone is installed upstream of the engine turbocharger which helps protect the turbine blades.

Wilson, R.P.; Balles, E.N.; Benedek, K.R.; Benson, C.E. [Little (Arthur D.), Inc., Cambridge, MA (United States); Rao, K.; Schaub, F. [Cooper-Bessemer, Mount Vernon, OH (United States); Kimberley, J. [AMBAC, West Springfield, MA (United States); Itse, D. [PSI Technology Co., Andover, MA (United States)

1993-01-01T23:59:59.000Z

277

Optimal Placement of Wind Power Plants for Delivery Loss Minimization  

Science Journals Connector (OSTI)

In this chapter we investigate how to minimize power delivery losses in the distribution system on ... We show that strategically placing and utilizing new wind power plants can lead to significant loss reduction...

Masoud Honarvar Nazari

2013-01-01T23:59:59.000Z

278

Can New Nuclear Power Plants be Project Financed?  

E-Print Network [OSTI]

This paper considers the prospects for financing a wave of new nuclear power plants (NPP) using project financing, which is used widely in large capital intensive infrastructure investments, including the power and gas sectors, but has...

Taylor, Simon

279

Salton Sea Power Plant Recognized as Most Innovative Geothermal Project  

Broader source: Energy.gov [DOE]

The first power plant to be built in the Salton Sea area in 20 years was recognized in December by Power Engineering magazine as the most innovative geothermal project of the year.

280

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Design. Propofied Solar Cooling Tower Type Wet-Cooled Powerdry-cooling tower was used in the proposed solar power plantTower Power-Generation Subsystem Summary An Overall Summary of the Proposed Solar

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Feasibility study of a solar chimney power plant in Jordan  

Science Journals Connector (OSTI)

A solar chimney power plant system is theoretically designed for ... by mathematical software. The actual values of solar irradiation in Jordan are used in the ... simulation to predict the power output of the solar

Aiman Al Alawin; Omar Badran; Ahmad Awad; Yaser Abdelhadi

2012-10-01T23:59:59.000Z

282

MHK Technologies/Morild Power Plant | Open Energy Information  

Open Energy Info (EERE)

Morild Power Plant Morild Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Morild Power Plant.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/MORILD Demonstration Plant Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

283

Materials for Ultra-Supercritical Steam Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Advanced Ultra-Supercritical for Advanced Ultra-Supercritical Steam Power Plants Background The first ultra-supercritical (USC) steam plants in the U.S. were designed, constructed, and operated in the late 1950s. The higher operating temperatures and pressures in USC plants were designed to increase the efficiency of steam plants. However, materials performance problems forced the reduction of steam temperatures in these plants, and discouraged further developmental efforts on low heat-rate units.

284

GRR/Section 7-CA-b - State Plant Commissioning Process, Small Power Plant  

Open Energy Info (EERE)

7-CA-b - State Plant Commissioning Process, Small Power Plant 7-CA-b - State Plant Commissioning Process, Small Power Plant Exception < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-CA-b - State Plant Commissioning Process, Small Power Plant Exception 07CABPlantCommissioningProcessSmallPowerPlantExemption.pdf Click to View Fullscreen Contact Agencies California Energy Commission Regulations & Policies California Code of Regulations, Title 20 - Public Utilities and Energy Triggers None specified Click "Edit With Form" above to add content 07CABPlantCommissioningProcessSmallPowerPlantExemption.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

285

Economic comparison of a well-head geothermal power plant and a traditional one  

Science Journals Connector (OSTI)

Abstract The objective of this paper was to do an economic comparison between the traditional approach to geothermal projects and a well-head method, where smaller power plants were installed on each well to considerably reduce the time until energy production begins. The two methods were compared in a hypothetical steamfield, based on their NPV and net power production. The comparison showed that wellhead power plants benefit geothermal projects by increasing the power output and NPV by as much as 5% and 16% respectively, depending on how early they can start production and the rate of installation.

Carlos Atli Crdova Geirdal; Maria S. Gudjonsdottir; Pall Jensson

2015-01-01T23:59:59.000Z

286

Secretary Chu Visits Vogtle Nuclear Power Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vogtle Nuclear Power Plant Vogtle Nuclear Power Plant Secretary Chu Visits Vogtle Nuclear Power Plant February 15, 2012 - 3:54pm Addthis Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Just over 60 years ago, scientists in Arco, Idaho, successfully used nuclear energy to power four light bulbs, laying the foundation for U.S.

287

Power Plant Research and Siting Program (Maryland) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Plant Research and Siting Program (Maryland) Power Plant Research and Siting Program (Maryland) Power Plant Research and Siting Program (Maryland) < Back Eligibility Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of Natural Resources The Power Plant Research and Siting Act of 1971 established the Power Plant Research Program (PPRP) to evaluate electric generation issues in the state and recommend responsible, long-term solutions. The program manages a consolidated review of all issues related to power generation in Maryland: it reviews applications, evaluates impacts, and recommends conditions for

288

Energy Department Report Calculates Emissions and Costs of Power Plant  

Broader source: Energy.gov (indexed) [DOE]

Report Calculates Emissions and Costs of Power Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 - 10:08am Addthis A new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling. Grid operators typically cycle power plants to accommodate fluctuations in

289

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reduction of Water Use in Wet FGD Systems – USR Group, Inc. Reduction of Water Use in Wet FGD Systems – USR Group, Inc. The project team demonstrates the use of regenerative heat exchange to reduce flue gas temperature and minimize evaporative water consumption in wet flue gas desulfurization (FGD) systems on coal-fired boilers. Most water consumption in coal-fired power plants occurs due to evaporative water losses. For example, a 500-megawatt (MW) power plant will loose approximately 5,000 - 6,000 gallons per minute (gpm) to evaporation and 500 gpm in the wet FGD system. Installation of regenerative reheat on FGD systems is expected to reduce water consumption to one half of water consumption using conventional FGD technology. Electrostatic Precipitator Researchers are conducting pilot-scale tests of regenerative heat exchange to determine the reduction in FGD water consumption that can be achieved and assessing the resulting impact on air pollution control (APC) systems. The project team consists of URS Group, Inc. as the prime contractor, the Electric Power Research Institute (EPRI), Southern Company, Tennessee Valley Authority (TVA), and Mitsubishi Heavy Industries (MHI). The team is conducting an analysis of the improvement in the performance of the APC systems and the resulting reduction in capital and operating costs. The tests are intended to determine the impact of operation at cooler flue gas temperatures on FGD water consumption, electrostatic precipitator (ESP) particulate removal (see Figure 1), SO3 removal, and Hg removal. Additionally, tests are conducted to assess the potential negative impact of excessive corrosion rates in the regenerative heat exchanger.

290

Baca geothermal demonstration project. Power plant detail design document  

SciTech Connect (OSTI)

This Baca Geothermal Demonstration Power Plant document presents the design criteria and detail design for power plant equipment and systems, as well as discussing the rationale used to arrive at the design. Where applicable, results of in-house evaluations of alternatives are presented.

Not Available

1981-02-01T23:59:59.000Z

291

Conservation Screening Curves to Compare Efficiency Investments to Power Plants  

E-Print Network [OSTI]

curve approach supplements with load shape information the data contained in a supply curve of conservedLBL-27286 Conservation Screening Curves to Compare Efficiency Investments to Power Plants Jonathan to Compare Efficiency Investments to Power Plants Jonathan Koomey, Arthur H. Rosenfeld, and Ashok Gadgil

292

Lignite-fired thermal power plants and SO2 pollution in Turkey  

Science Journals Connector (OSTI)

About 80% of the electric energy production in Turkey is provided by thermal power plants which use fossil fuels. Lignite, the most abundant domestic energy source, is consumed in most of these plants. Turkey has approximately 0.85% of the world's lignite reserves; however, the Turkish lignites have low calorific value and contain relatively higher amounts of ash, moisture, and sulfur. Nearly 80% of the lignite mined in Turkey is consumed in the thermal power plants since it is not appropriate for use in other types of industry and heating. In Turkey, 13 large-scale lignite-fired thermal power plants are responsible for a considerable amount of air pollution. Therefore, it is crucial to decide on the optimal place and technology for the future thermal power plants, and to equip the currently operating plants with newer technologies that will reduce amount of contaminants released into the air. In this study, the effects of the lignite-fired thermal power plants which have an important place in the energy politics in Turkey on the air pollution are investigated. We focused on SO2 pollution and the regions in which the SO2 emissions were concentrated and diffused. The pollutant diffusion areas were projected and mapped based on parameters such as wind data, isotherm curves, population density, and topographic features by using Geographical Information System (GIS) software, ArcView. The contribution of the thermal power plants to SO2 pollution was also examined.

Nuriye Peker Say

2006-01-01T23:59:59.000Z

293

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Internet-Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at Coal-Fired Power Plants Internet-Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at Coal-Fired Power Plants GIS Catalog Graphic Arthur Langhus Layne, LLC will create an internet-based, geographic information system (GIS) catalog of non-traditional sources of cooling water for coal-fired power plants. The project will develop data to identify the availability of oil and gas produced water, abandoned coal mine water, industrial waste water, and low-quality ground water. By pairing non-traditional water sources to power plant water needs, the research will allow power plants that are affected by water shortages to continue to operate at full-capacity without adversely affecting local communities or the environment. The nationwide catalog will identify the location, water withdrawal, and

294

HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM  

SciTech Connect (OSTI)

This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

J.L. Justice

1999-03-25T23:59:59.000Z

295

Phase IV - Resource Production and Power Plant Construction | Open Energy  

Open Energy Info (EERE)

Phase IV - Resource Production and Power Plant Construction Phase IV - Resource Production and Power Plant Construction Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home GEA Development Phase IV: Resource Production and Power Plant Construction GEA Development Phases The Geothermal Energy Association's (GEA) Geothermal Reporting Terms and Definitions are a guideline for geothermal developers to use when submitting geothermal resource development information to GEA for public dissemination in its annual US Geothermal Power Production and Development Update. GEA's Geothermal Reporting Terms and Definitions serve to increase the consistency, accuracy, and reliability of industry information presented in the development updates. Phase I - Resource Procurement and Identification Phase II - Resource Exploration and Confirmation

296

US nuclear power plants: Emergency planning inadequate  

Science Journals Connector (OSTI)

... local ! area are considered inadequate. The I operators of the plants - both at IndianIndianPoint ...

Peter David

1983-05-12T23:59:59.000Z

297

Guidance for Deployment of Mobile Technologies for Nuclear Power Plant  

Broader source: Energy.gov (indexed) [DOE]

Guidance for Deployment of Mobile Technologies for Nuclear Power Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making,

298

Revamp of Ukraine VCM plant will boost capacity, reduce emissions  

SciTech Connect (OSTI)

Oriana Concern (formerly P.O. Chlorvinyl) is revamping its 250,000 metric ton/year (mty) vinyl chloride monomer (VCM) plant at Kalusch, Ukraine. At the core of the project area new ethylene dichloride (EDC) cracking furnace and direct chlorination unit, and revamp of an oxychlorination unit to use oxygen rather than air. The plant expansion and modernization will boost capacity to 370,000 mty. New facilities for by-product recycling and recovery, waste water treatment, and emissions reduction will improve the plant`s environmental performance. This paper shows expected feedstock and utility consumption for VCM production. Techmashimport and P.O. Chlorvinyl commissioned the Kalusch plant in 1975. The plant was built by Uhde GmbH, Dortmund, Germany. The paper also provides a schematic of the Hoechst/Uhde VCM process being used for the plant revamp. The diagram is divided into processing sections.

NONE

1996-05-13T23:59:59.000Z

299

Comparison of conventional solar chimney power plants and sloped solar chimney power plants using second law analysis  

Science Journals Connector (OSTI)

Abstract In the present paper the performance of solar chimney power plants based on second law analysis is investigated for various configurations. A comparison is made between the conventional solar chimney power plant (CSCPP) and the sloped solar chimney power plant (SSCPP). The appropriate entropy generation number and second-law efficiency for solar chimney power plants are proposed in this study. Results show that there is the optimum collector size that provides the minimum entropy generation and the maximum second-law efficiency. The second-law efficiency of both systems increases with the increasing of the system height. The study reveals the influence of various effects that change pressure and temperature of the systems. It was found that SSCPP is thermodynamically better than CSCPP for some configurations. The results obtained here are expected to provide information that will assist in improving the overall efficiency of the solar chimney power plant.

Atit Koonsrisuk

2013-01-01T23:59:59.000Z

300

Economical load distribution in power networks that include hybrid solar power plants  

Science Journals Connector (OSTI)

With respect to the growing share of renewable resources in secure provision of electrical energy, proper utilization of hybrid power plants is of great importance. Therefore, an optimal production planning for operation of these power plants is evidently necessary. Generally, economical load distribution refers to determination of an optimal point in production that fully provides for the total network load. In other words, the economical load distribution refers to cost minimization of the produced electrical power for satisfying the total network demand, with consideration of the actual constraints in the power system. To serve this purpose, several methods have been in use, but with the entry of power plants that use renewable energy resources, necessary steps should be taken to ensure their optimal use. However, economical optimization and sufficient reliability in serving concurrent demands are the two-fold objectives of the electrical power system and need to be considered simultaneously. Therefore, in analyzing the share of renewable energy resources in the total electrical power network, both their economical advantages and their reliable level of production should be considered. Presently, many countries show interest in using hybrid solar power plants and fossil fuel power plants. In this research, the problem of augmenting power networks with solar power plants and finding their optimal production point is dealt with. Some models for the production cost functions of these power plants are presented and discussed.

Mohammad Taghi Ameli; Saeid Moslehpour; Mehdi Shamlo

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Optimal Scheduling of Industrial Combined Heat and Power Plants  

E-Print Network [OSTI]

Optimal Scheduling of Industrial Combined Heat and Power Plants under Time-sensitive Electricity Prices Sumit Mitra , Lige Sun , Ignacio E. Grossmann December 24, 2012 Abstract Combined heat and power companies. However, under-utilization can be a chance for tighter interaction with the power grid, which

Grossmann, Ignacio E.

302

Nevada manufacturer installing geothermal power plant | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant August 26, 2010 - 4:45pm Addthis Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Joshua DeLung Chemetall supplies materials for lithium-ion batteries for electric vehicles $28.4 million in Recovery Act funding going toward geothermal plant Plant expected to produce 4 MW of electrical power, employ 25 full-time workers Chemetall produces lithium carbonate to customers in a wide range of industries, including for batteries used in electric vehicles, and now the

303

Minnesota Power Plant Siting Act (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Plant Siting Act (Minnesota) Power Plant Siting Act (Minnesota) Minnesota Power Plant Siting Act (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting This Act regulates the siting of large electric power generating plants, which are defined as plants designed for or capable of operating with a

304

Fuel Cell Power Plants Biofuel Case Study - Tulare, CA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

clean clean Fuel Cell Power Plants Biofuel Case Study - Tulare, CA DOE-NREL Workshop Golden, CO June 11-13, 2012 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. Integrated Fuel Cell Company 2 Manufacture Sell (direct & via partners) Install Services 1.4 MW plant at a municipal building 2.4 MW plant owned by an Independent power producer 600 kW plant at a food processor 11.2 MW plant - largest fuel cell park in the world Delivering ultra-clean baseload distributed generation globally Growing Market Presence 180 MW installed and in backlog Over 80 Direct FuelCell® plants generating power at more than 50 sites globally Providing:

305

The design of solar chimney power plant for sustainable power generation.  

E-Print Network [OSTI]

??The solar chimney power plant (SCPP) also known as solar updraft tower is a nonconcentrating solar thermal technology, which employs both solar and wind energy (more)

Asante, David

2014-01-01T23:59:59.000Z

306

On Line Power Plant Performance Monitoring  

E-Print Network [OSTI]

in achieving the best operation of the plant 3. To evaluate component performance and deterioration for use in a maintenance program 4. To develop cost data and incremental cost characteristics for the economic operation or dispatch of the unit... ? Analyze current plant?eQuipment status and diagnostics for preventive maintenance and equipment damage ? Provide current energy management and system dispatch operation information ? Capability for plant and equipment acceptance and periodic...

Ahner, D. J.; Priestley, R. R.

307

The 2001 Power Plant Improvement Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2001 Power Plant Improvement Initiative 2001 Power Plant Improvement Initiative The 2001 Power Plant Improvement Initiative When U.S. consumers were confronted in 1999 and 2000 with blackouts and brownouts of electric power in major regions of the country, Congress responded by directing the Department of Energy to issue "a general request for proposals for the commercial scale demonstration of technologies to assure the reliability of the nation's energy supply from existing and new electric generating facilities...." The Congress transferred $95 million from previously appropriated funding for the 1986-93 Clean Coal Technology Program. On February 6, 2001, the Energy Department issued a solicitation for proposals under the program it called the "Power Plant Improvement Initiative" (PPII). By the April 19, 2001, deadline, 24 candidate projects

308

DOE Announces Loan Guarantee Applications for Nuclear Power Plant  

Broader source: Energy.gov (indexed) [DOE]

DOE Announces Loan Guarantee Applications for Nuclear Power Plant DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The applications reflect the intentions of those companies to build 21 new reactors, with some applications covering two reactors at the same site. All five reactor designs that have been certified, or are currently under review for possible certification, by the Nuclear Regulatory Commission (NRC) are

309

Finding Alternative Water Sources for Power Plants with Google Earth |  

Broader source: Energy.gov (indexed) [DOE]

Finding Alternative Water Sources for Power Plants with Google Finding Alternative Water Sources for Power Plants with Google Earth Finding Alternative Water Sources for Power Plants with Google Earth May 29, 2013 - 12:07pm Addthis A sample image from the AWSIS system. A sample image from the AWSIS system. Gayland Barksdale Technical Writer, Office of Fossil Energy Sobering news from experts: Rising populations, regional droughts, and decreasing groundwater levels are draining the nation's fresh water supply. And it's not just that we're using that water for our personal consumption; even the electricity we rely on to power our society requires a lot of water. In fact, major energy producers - like coal-fired power plants, which produce about 40 percent of our electricity - require about 150 billion gallons of fresh water per day to produce the electricity we

310

Preconstruction of the Honey Lake Hybrid Power Plant  

SciTech Connect (OSTI)

The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PG E) under existing long-term power sales contracts. Transfer of electricity to the PG E grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 7 tabs.

Not Available

1988-04-30T23:59:59.000Z

311

Preconstruction of the Honey Lake Hybrid Power Plant: Final report  

SciTech Connect (OSTI)

The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PGandE) under existing long-term power sales contracts. Transfer of electricity to the PGandE grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 4 tabs.

Not Available

1988-04-30T23:59:59.000Z

312

DOE Announces Loan Guarantee Applications for Nuclear Power Plant  

Broader source: Energy.gov (indexed) [DOE]

Loan Guarantee Applications for Nuclear Power Plant Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The applications reflect the intentions of those companies to build 21 new reactors, with some applications covering two reactors at the same site. All five reactor designs that have been certified, or are currently under review for possible certification, by the Nuclear Regulatory Commission (NRC) are represented in the Part I applications. DOE also has received Part I

313

Finding Alternative Water Sources for Power Plants with Google Earth |  

Broader source: Energy.gov (indexed) [DOE]

Finding Alternative Water Sources for Power Plants with Google Finding Alternative Water Sources for Power Plants with Google Earth Finding Alternative Water Sources for Power Plants with Google Earth May 29, 2013 - 12:07pm Addthis A sample image from the AWSIS system. A sample image from the AWSIS system. Gayland Barksdale Technical Writer, Office of Fossil Energy Sobering news from experts: Rising populations, regional droughts, and decreasing groundwater levels are draining the nation's fresh water supply. And it's not just that we're using that water for our personal consumption; even the electricity we rely on to power our society requires a lot of water. In fact, major energy producers - like coal-fired power plants, which produce about 40 percent of our electricity - require about 150 billion gallons of fresh water per day to produce the electricity we

314

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial...

315

Pauzhetskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

group":"","inlineLabel":"","visitedicon":"" Display map Geothermal Resource Area Rye Patch Geothermal Area Geothermal Region Northwest Basin and Range Geothermal Region Plant...

316

Life cycle considerations of the flue gas desulphurization system at a lignite-fired power plant in Thailand  

Science Journals Connector (OSTI)

The Flue Gas Desulphurization (FGD) system has been installed at the biggest lignite-fired power generation plant in Thailand to reduce the large...2...emission. In order to understand the costs and benefits, bot...

Sate Sampattagul; Seizo Kato

2004-11-01T23:59:59.000Z

317

Testing of power-generating gas-turbine plants at Russian electric power stations  

Science Journals Connector (OSTI)

This paper cites results of thermal testing of various types and designs of power-generating gas-turbine plants (GTP), which have been placed in service at electric-power stations in Russia in recent years. Therm...

G. G. Olkhovskii; A. V. Ageev; S. V. Malakhov

2006-07-01T23:59:59.000Z

318

A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION  

SciTech Connect (OSTI)

In this report is described the work effort to develop and demonstrate a software framework to support advanced process simulations to evaluate the performance of advanced power systems. Integrated into the framework are a broad range of models, analysis tools, and visualization methods that can be used for the plant evaluation. The framework provides a tightly integrated problem-solving environment, with plug-and-play functionality, and includes a hierarchy of models, ranging from fast running process models to detailed reacting CFD models. The framework places no inherent limitations on the type of physics that can be modeled, numerical techniques, or programming languages used to implement the equipment models, or the type or amount of data that can be exchanged between models. Tools are provided to analyze simulation results at multiple levels of detail, ranging from simple tabular outputs to advanced solution visualization methods. All models and tools communicate in a seamless manner. The framework can be coupled to other software frameworks that provide different modeling capabilities. Three software frameworks were developed during the course of the project. The first framework focused on simulating the performance of the DOE Low Emissions Boiler System Proof of Concept facility, an advanced pulverized-coal combustion-based power plant. The second framework targeted simulating the performance of an Integrated coal Gasification Combined Cycle - Fuel Cell Turbine (IGCC-FCT) plant configuration. The coal gasifier models included both CFD and process models for the commercially dominant systems. Interfacing models to the framework was performed using VES-Open, and tests were performed to demonstrate interfacing CAPE-Open compliant models to the framework. The IGCC-FCT framework was subsequently extended to support Virtual Engineering concepts in which plant configurations can be constructed and interrogated in a three-dimensional, user-centered, interactive, immersive environment. The Virtual Engineering Framework (VEF), in effect a prototype framework, was developed through close collaboration with NETL supported research teams from Iowa State University Virtual Reality Applications Center (ISU-VRAC) and Carnegie Mellon University (CMU). The VEF is open source, compatible across systems ranging from inexpensive desktop PCs to large-scale, immersive facilities and provides support for heterogeneous distributed computing of plant simulations. The ability to compute plant economics through an interface that coupled the CMU IECM tool to the VEF was demonstrated, and the ability to couple the VEF to Aspen Plus, a commercial flowsheet modeling tool, was demonstrated. Models were interfaced to the framework using VES-Open. Tests were performed for interfacing CAPE-Open-compliant models to the framework. Where available, the developed models and plant simulations have been benchmarked against data from the open literature. The VEF has been installed at NETL. The VEF provides simulation capabilities not available in commercial simulation tools. It provides DOE engineers, scientists, and decision makers with a flexible and extensible simulation system that can be used to reduce the time, technical risk, and cost to develop the next generation of advanced, coal-fired power systems that will have low emissions and high efficiency. Furthermore, the VEF provides a common simulation system that NETL can use to help manage Advanced Power Systems Research projects, including both combustion- and gasification-based technologies.

Mike Bockelie; Dave Swensen; Martin Denison; Adel Sarofim; Connie Senior

2004-12-22T23:59:59.000Z

319

Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 FEBRUARY 2008 6 FEBRUARY 2008 Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant * Bottom left: AES Greenidge Power Plant * Bottom right: Presque Isle Power Plant A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Consol Energy * Pegasus Technologies * We Energies  Mercury Control Demonstration Projects Executive Summary ............................................................................ 4 Background ......................................................................................... 5 Mercury Removal Projects ................................................................ 7 TOXECON(tm) Retrofit For Mercury and Multi-Pollutant Control on Three 90-MW Coal-Fired Boilers ........................................7

320

POWER PLANT WATER USAGE AND LOSS STUDY - Final  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POWER PLANT WATER USAGE AND LOSS STUDY POWER PLANT WATER USAGE AND LOSS STUDY August 2005 Revised May 2007 Prepared for: The United States Department of Energy National Energy Technology Laboratory DOE Gasification Technology Manager: Gary J. Stiegel DOE Project Manager: James R. Longanbach Project Manager: Michael D. Rutkowski Principal Investigators: Michael G. Klett Norma J. Kuehn Ronald L. Schoff Vladimir Vaysman Jay S. White Power Plant Water Usage and Loss Study i August 2005 TABLE OF CONTENTS TABLE OF CONTENTS ...................................................................................................................... I LIST OF TABLES.............................................................................................................................III

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A Survey of Power Plant Designs  

E-Print Network [OSTI]

is mixed with compressed air in the combustion chamber and burned. High-pressure combustion gases spin;Sustainable Energy, MIT 2005. #12;Allen Fossil Plant is on the Mississippi River five miles southwest (TVA), http://www.tva.gov #12;Coal fired Plant Otpco.com Fuel handling (1) Rotary dumper (2) Storage

Ervin, Elizabeth K.

322

Power management strategies and energy storage needs to increase the operability of photovoltaic plants  

Science Journals Connector (OSTI)

This paper analyzes the effect of introducing an energy storage (ES) system in an intermittent renewable energy power plant such as a photovoltaic(PV) installation. The aim of this integration is to achieve an improvement in the operability of these power plants by increasing their production predictability. This will allow a further PV integration within the electrical power system facilitating the system's loaddemand balance. In this manner the paper proposes two power management strategies (PMSs) each with different configurations for operating a PV power plant: the first focuses on fixing constant power production and the latter focuses on reducing the high frequency fluctuations of the production. Thereafter this paper analyzes and quantifies the ratings of the ES system (ESS) required to ensure a reliable performance of the plant on an annual basis for each of the PMSs with their different possible configurations. The resulting ES ratings vary with these PMS configurations. It can be concluded that significant improvements in production predictability are achieved with an ESS energy capacity of approximately 50% of the average daily energy produced by the PV panels and a power rating of around 55% of the plant's rated power. All the results are based on 1-year-long simulations which used real irradiance data sampled every 2?min.

H. Beltran; I. Etxeberria-Otadui; E. Belenguer; P. Rodriguez

2012-01-01T23:59:59.000Z

323

Energy Department Report Calculates Emissions and Costs of Power Plant  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Report Calculates Emissions and Costs of Power Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 - 10:08am Addthis A new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling.

324

Multi-point and Multi-level Solar Integration into a Conventional Coal-Fired Power Plant  

Science Journals Connector (OSTI)

The integration assists the power plant to reduce coal (gas) consumption and pollution emission or to increase power output. ... The solar direct generated steam is used to replace part of the steam extractions from turbines. ... In other words, the solar heat carried by steam does not enter the turbine directly, different from that in other solar-power-generating systems. ...

Qin Yan; Yongping Yang; Akira Nishimura; Abbas Kouzani; Eric Hu

2010-02-25T23:59:59.000Z

325

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

326

Effect of the shutdown of a large coal fired power plant on ambient mercury species  

E-Print Network [OSTI]

Effect of the shutdown of a coal-fired power plant on urbanof the shutdown of a large coal-fired power plant on ambientof the shutdown of a large coal-fired power plant on ambient

Wang, Yungang

2014-01-01T23:59:59.000Z

327

DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |  

Broader source: Energy.gov (indexed) [DOE]

Orders Mirant Power Plant to Operate Under Limited Orders Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances Docket No. EO-05-01. Order No. 202-05-3: Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide electric reliability for Washington, D.C., and will do so at the lowest reasonable impact to the environment. DOE Orders Mirant Power Plant to Operate Under Limited Circumstances More Documents & Publications Comments on Department of Energy's Emergency Order To Resume Limited Operation at Mirant's Potomac River Generating Station and Proposed Mirant Compliance Plan

328

North Brawley Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Brawley Geothermal Power Plant Brawley Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home North Brawley Geothermal Power Plant General Information Name North Brawley Geothermal Power Plant Facility North Brawley Sector Geothermal energy Location Information Location Imperial Valley, California Coordinates 33.015046°, -115.542267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.015046,"lon":-115.542267,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

Sauder Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sauder Power Plant Biomass Facility Sauder Power Plant Biomass Facility Jump to: navigation, search Name Sauder Power Plant Biomass Facility Facility Sauder Power Plant Sector Biomass Location Fulton County, Ohio Coordinates 41.5719341°, -84.1435136° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5719341,"lon":-84.1435136,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Stowe Power Production Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Stowe Power Production Plant Biomass Facility Stowe Power Production Plant Biomass Facility Jump to: navigation, search Name Stowe Power Production Plant Biomass Facility Facility Stowe Power Production Plant Sector Biomass Facility Type Landfill Gas Location Montgomery County, Pennsylvania Coordinates 40.2290075°, -75.3878525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2290075,"lon":-75.3878525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plant Water Management Power Plant Water Management A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Impaired Water as Cooling Water in Coal-Based Power Plants – Nalco Company Example of Pipe Scaling The overall objective of this project, conducted by Nalco Company in partnership with Argonne National Laboratory, is to develop advanced-scale control technologies to enable coal-based power plants to use impaired water in recirculating cooling systems. The use of impaired water is currently challenged technically and economically due to additional physical and chemical treatment requirements to address scaling, corrosion, and biofouling. Nalco's research focuses on methods to economically manage scaling issues (see Figure 1). The overall approach uses synergistic

332

Nove Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Nove Power Plant Biomass Facility Nove Power Plant Biomass Facility Jump to: navigation, search Name Nove Power Plant Biomass Facility Facility Nove Power Plant Sector Biomass Facility Type Landfill Gas Location Contra Costa County, California Coordinates 37.8534093°, -121.9017954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8534093,"lon":-121.9017954,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Neal Hot Springs Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Neal Hot Springs Geothermal Power Plant Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot Springs Geothermal Power Plant Facility Neal Hot Springs Sector Geothermal energy Location Information Location Malheur County, Oregon Coordinates 44.02239°, -117.4631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.02239,"lon":-117.4631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

Lesson 7 - Waste from Nuclear Power Plants | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7 - Waste from Nuclear Power Plants 7 - Waste from Nuclear Power Plants Lesson 7 - Waste from Nuclear Power Plants This lesson takes a look at the waste from electricity production at nuclear power plants. It considers the different types of waste generated, as well as how we deal with each type of waste. Specific topics covered include: Nuclear Waste Some radioactive Types of radioactive waste Low-level waste High-level waste Disposal and storage Low-level waste disposal Spent fuel storage Waste isolation Reprocessing Decommissioning Lesson 7 - Waste.pptx More Documents & Publications National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Third National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

335

DOE - Office of Legacy Management -- Shippingport Atomic Power Plant - PA  

Office of Legacy Management (LM)

Shippingport Atomic Power Plant - Shippingport Atomic Power Plant - PA 13 FUSRAP Considered Sites Site: SHIPPINGPORT ATOMIC POWER PLANT (PA.13 ) Eliminated from further consideration under FUSRAP. Designated Name: Not Designated Alternate Name: Duquesne Light Company PA.13-1 Location: 25 miles west of Pittsburgh in Beaver County , Shippingport , Pennsylvania PA.13-2 Evaluation Year: circa 1987 PA.13-3 Site Operations: First commercially operated nuclear power reactor. Joint project (Federal Government an Duquesne Light Company) to demonstrate pressurized water reactor technology and to generate electricity. Plant operated by Duquesne Light Company under supervision of the Office of the DOE Deputy Assistant Secretary for Naval Reactors -- 1957 to October 1982. PA.13-2 Site Disposition: Eliminated - No Authority. DOE chartered Major Project #118, Shippingport Station Decommissioning Project completed cleanup in 1989. PA.13-1

336

Feasibility study of a VirtualPower Plant for Ludvika.  

E-Print Network [OSTI]

?? This thesis is a feasibility study of avirtual power plant (VPP) in centralSweden and part of a project withInnoEnergy Instinct and STRI. The VPPconsists (more)

Lundkvist, Johanna

2013-01-01T23:59:59.000Z

337

Fuel Cell Power Plants Biofuel Case Study- Tulare, CA  

Broader source: Energy.gov [DOE]

Success story about fuel cell power plants using wastewater treatment gas in Tulare, California. Presented by Frank Wolak, Fuel Cell Energy, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

338

Characteristics of an Economically Attractive Fusion Power Plant  

E-Print Network [OSTI]

Characteristics of an Economically Attractive Fusion Power Plant Farrokh Najmabadi University: Assessment Based on Attractiveness & Feasibility Periodic Input from Energy Industry Goals and Requirements Scientific & Technical Achievements Evaluation Based on Customer Attributes Attractiveness Characterization

339

Risk Framework for the Next Generation Nuclear Power Plant Construction  

E-Print Network [OSTI]

sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

Yeon, Jaeheum 1981-

2012-12-11T23:59:59.000Z

340

Analytic model of solar power plant with a Stirling engine  

Science Journals Connector (OSTI)

An analytic model is proposed of a solar power plant (SPP) with a Stirling engine that is based on the isothermal model of the Stirling engine (SE) working process and is improved...

I. A. Tursunbaev

2007-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...  

Office of Scientific and Technical Information (OSTI)

(NREL) at www.nrel.govpublications. Executive Summary Many binary-cycle geothermal power plants use air as the heat rejection medium. An air-cooled condenser (ACC) system is...

342

Numerical Investigation of Solar Chimney Power Plant in UAE  

Science Journals Connector (OSTI)

This paper presents a numerical simulation results for a steady air flow inside a solar chimney power plant. A standard k-epsilon turbulence model is used to model a prototype solar chimney that was built in Al A...

Mohammad O. Hamdan; Saud Khashan

2014-01-01T23:59:59.000Z

343

Simulation Calculation on Solar Chimney Power Plant System  

Science Journals Connector (OSTI)

It is unpractical to establish a Solar Chimney Power Plant System (SCPPS) used to ... flow field of the SCPPS which caused by solar radiation intensity have been analyzed. The calculated ... as well as the differ...

HuiLan Huang; Hua Zhang; Yi Huang; Feng Lu

2007-01-01T23:59:59.000Z

344

Operation and Maintenance Methods in Solar Power Plants  

Science Journals Connector (OSTI)

A solar chimney power plant has a high chimney (tower), with a height of up ... , the roof curves upward to join the chimney, creating a funnel. The sun heats ... is absorbed by the water within the dark solar pa...

Mustapha Hatti

2014-01-01T23:59:59.000Z

345

Design and construction of Khanom barge mounted power plant  

SciTech Connect (OSTI)

The design and construction of 75 MW barge mounted power plant or power plant barge (PPB) which is to be installed in the southern region of Thailand is described. The PPB is being fabricated as a complete unit on its own integral hull, and will be transported in July 1988 from the fabrication site, Daewoo's Okpo Shipyard in Korea to the Khanom site. The PPB will be positioned and set on prepared foundation in a temporary pond at the site by controlled ballasting. The project design consists of two major parts; one is the system design of the power plant and the other is the design of the barge structure. This paper describes the power plant system design and the design of the barge highlighting unique design and construction concepts with regard to fabrication, transportation and installation of the PPB.

Yoon, H.W.; Sampathkumar, C.B.; Keller, J.J. (Burns and Roe, Inc., Oradell, NJ (USA))

1988-01-01T23:59:59.000Z

346

Marsh Road Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Marsh Road Power Plant Biomass Facility Marsh Road Power Plant Biomass Facility Jump to: navigation, search Name Marsh Road Power Plant Biomass Facility Facility Marsh Road Power Plant Sector Biomass Facility Type Landfill Gas Location San Mateo County, California Coordinates 37.4337342°, -122.4014193° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4337342,"lon":-122.4014193,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

How Gas Turbine Power Plants Work | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion chambers where it mixes with the air. The mixture is burned at temperatures of more than 2000 degrees F. The combustion produces a high temperature, high pressure gas stream that enters and expands through the turbine section. The turbine is an intricate array of alternate stationary and

348

Salton Sea Power Plant Recognized as Most Innovative Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

as Most Innovative Geothermal Project February 10, 2013 - 3:32pm Addthis The first power plant to be built in the Salton Sea area in 20 years was recognized in December by...

349

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

SciTech Connect (OSTI)

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

350

Novel Dry Cooling Technology for Power Plants  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

351

It is not just a job its a WINDTEST! Wind Energy with Power Plant Properties?WINDTEST  

E-Print Network [OSTI]

It is not just a job ­ it´s a WINDTEST! Wind Energy with Power Plant Properties?WINDTEST Kaiser-21 Power Quality Measurement ·IEC 61400-123 Wind Farm Power Curve Measure. ·MEASNET Power Quality of a wind turbine test WINDTEST Kaiser-Wilhelm-Koog GmbH 10/25 #12;b) The WF is able to reduce active power

352

The Industrial Power Plant Management System - An Engineering Approach  

E-Print Network [OSTI]

THE INDUSTRIAL POWER PLANT MANAGEMENT SYSTEM AN ENGINEERING APPROACH Seppo E. Aarnio, Heikki J. Tarvainen and Valentin Tinnis EKONO Oy, Helsinki, Finland EKONO Inc., Bellevue, Washington ABSTRACT Based on energy studies in over 70 plants... in Finland. The results of the optimization calculations are used for two types of operations guidance. The first duty of the operators is to adjust the determined set points for the most economic loading, fuel firing and purchasing of power. This is done...

Aarnio, S. E.; Tarvainen, H. J.; Tinnis, V.

1979-01-01T23:59:59.000Z

353

Power Plant Report (EIA-759): Historic, 1989. Data file  

SciTech Connect (OSTI)

The purpose of the form is to collect data necessary to fulfill regulatory responsibility; ensure power reliability; and measure fuel consumption and power production. The data tape contains data collected by the survey. Specific Ownership Code, Prime Mover Code, Fuel Code, Company Code, Plant Name, Current Capacity, Fuel Name, Old Capacity, Effective Date - Month/Year, Status, Multistate Code, Current Year, Generation, Consumption, Stocks, Electric Plant Code, and NERC Code are included.

Not Available

1989-01-01T23:59:59.000Z

354

Hybrid solar central receiver for combined cycle power plant  

DOE Patents [OSTI]

A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

1995-01-01T23:59:59.000Z

355

Nuclear Power Plants and Their Fuel as Terrorist Targets  

Science Journals Connector (OSTI)

...applied to terrorism. To tell...Shipment Risk Estimates...Director of Nuclear Control Institute...said that an attack on a plant could make a huge...believe nuclear power is being...operation of nuclear facilities...applied to terrorism. To...Shipment Risk Estimates...Director of Nuclear Control Institute...said that an attack on a plant could make...believe nuclear power is being...

Douglas M. Chapin; Karl P. Cohen; W. Kenneth Davis; Edwin E. Kintner; Leonard J. Koch; John W. Landis; Milton Levenson; I. Harry Mandil; Zack T. Pate; Theodore Rockwell; Alan Schriesheim; John W. Simpson; Alexander Squire; Chauncey Starr; Henry E. Stone; John J. Taylor; Neil E. Todreas; Bertram Wolfe; Edwin L. Zebroski

2002-09-20T23:59:59.000Z

356

Utility & Regulatory Factors Affecting Cogeneration & Independent Power Plant Design & Operation  

E-Print Network [OSTI]

UTILITY & REGULATORY FACTORS AFFECTiNG COGENERATION & INDEPENDENT POWER PLANT DESIGN & OPERATION Richard P. Felak General Electric Company Schenectady, New York ABSTRACT In specifying a cogeneration or independent power plant, the owner... should be especially aware of the influences which electric utilities and regulatory bodies will have on key parameters such as size, efficiency, design. reliability/ availabilitY, operating capabilities and modes, etc. This paper will note examples...

Felak, R. P.

357

A Systematic Comparison on Power Block Efficiencies for CSP Plants with Direct Steam Generation  

Science Journals Connector (OSTI)

Abstract The increase of the process temperature of concentrating solar power plants above the degradation temperature of thermal oil (400C) opens the way for increased power block efficiency and thus reduced cost of electricity production. Direct solar steam generation is one technical option to follow this path. The paper presents different power block designs for direct steam generation parabolic trough and linear Fresnel power plants. Based on a systematic modelling approach, results for efficiency gains are derived and compared against a reference case of an oil-based plant. The results show that different reheat configurations are feasible and that efficiency gains in the range from 4 to 6% can be expected based on todays or near future solar collector technology.

T. Hirsch; A. Khenissi

2014-01-01T23:59:59.000Z

358

Ivanpah: World's Largest Concentrating Solar Power Plant  

Broader source: Energy.gov [DOE]

The Ivanpah Solar Energy Generating System has the capacity to generate 392 megawattsof clean electricity -- enough to power 94,400 average American homes. As the first commercial deployment of innovative power tower CSP technology in the United States, the Ivanpah project was the recipient of a $1.6 billion loan guarantee from the Departments Loan Programs Office (LPO).

359

Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants  

Broader source: Energy.gov (indexed) [DOE]

Federal Risk Insurance for Nuclear Power Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy August 4, 2006 - 8:42am Addthis ATLANTA, GA - After touring Georgia Power and speaking to its employees, U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced completion of the final rule that establishes the process for utility companies building the next six new nuclear power plants in the United States to qualify for a portion of $2 billion in federal risk insurance. The rule will be available on DOE's web site soon. "Providing federal risk insurance is an important step in speeding the nuclear renaissance in this country," Secretary Bodman said. "Companies

360

CO2 Capture Membrane Process for Power Plant Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 Capture Membrane Process for Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Model Predictive Control of Integrated Gasification Combined Cycle Power Plants  

SciTech Connect (OSTI)

The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

B. Wayne Bequette; Priyadarshi Mahapatra

2010-08-31T23:59:59.000Z

362

Fault Analysis at a Wind Power Plant for One Year of Observation: Preprint  

SciTech Connect (OSTI)

This paper analyzes the fault characteristics observed at a wind power plant, and the behavior of the wind power plant under fault events.

Muljadi, E.; Mills, Z.; Foster, R.; Conto, J.; Ellis, A.

2008-07-01T23:59:59.000Z

363

FAULT DETECTION IN NUCLEAR POWER PLANTS COMPONENTS BY A COMBINATION OF STATISTICAL METHODS  

E-Print Network [OSTI]

FAULT DETECTION IN NUCLEAR POWER PLANTS COMPONENTS BY A COMBINATION OF STATISTICAL METHODS Independent Component Analysis nc Normal conditions NPP Nuclear Power Plant PCA Principal Component Analysis

Paris-Sud XI, Université de

364

Low-Rank Coal Grinding Performance Versus Power Plant Performance  

SciTech Connect (OSTI)

The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

Rajive Ganguli; Sukumar Bandopadhyay

2008-12-31T23:59:59.000Z

365

Map of Solar Power Plants/Data | Open Energy Information  

Open Energy Info (EERE)

Solar Power Plants/Data Solar Power Plants/Data < Map of Solar Power Plants Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate HeatRate WindTurbineManufacturer FacilityStatus AV Solar Ranch I Solar Power Plant Photovoltaics NextLight Renewable Power Antelope Valley, California 230 MW230,000 kW 230,000,000 W 230,000,000,000 mW 0.23 GW 2.3e-4 TW Agua Caliente Solar Power Plant Photovoltaics NextLight Renewable Power Yuma County, Arizona 280 MW280,000 kW 280,000,000 W 280,000,000,000 mW 0.28 GW 2.8e-4 TW Agua Caliente Solar Project Utility scale solar First Solar Yuma County, Arizona 290 MW290,000 kW 290,000,000 W 290,000,000,000 mW

366

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma  

Broader source: Energy.gov (indexed) [DOE]

costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid technologies, tools, and...

367

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management Carnegie Mellon University, in a joint effort with the University of Pittsburgh, is conducting a study of the use of treated municipal wastewater as cooling system makeup for coal fired power plants. This project builds upon a study sponsored by the U.S. Department of Energy entitled, "Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants," which showed that treated municipal wastewater is the most common and widespread source in the United States. Data analysis revealed that 81 percent of power plants proposed for construction by the Energy Information Administration (EIA) would have sufficient cooling water supply from one to two publicly owned treatment works (POTW) within a 10-mile radius, while 97 percent of the proposed power plants would be able to meet their cooling water needs with one to two POTWs within 25 miles of these plants. Thus, municipal wastewater will be the impaired water source most likely to be locally available in sufficient and reliable quantities for power plants. Results of initial studies indicate that it is feasible to use secondary treated municipal wastewater as cooling system makeup. The biodegradable organic matter, ammonia-nitrogen, and phosphorus in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, although current research is demonstrating that these problems can be controlled through aggressive chemical management. It is currently unclear whether tertiary treatment of municipal waste water prior to its re-use can be a cost-effective option to aggressive chemical management of the bulk cooling water volume.

368

A Simulated Field Trip: "The Visual Aspects of Power Plant Sitings1"  

E-Print Network [OSTI]

A Simulated Field Trip: "The Visual Aspects of Power Plant Sitings1" Bill Bottom 2 Alex Young 3 of conventional thermal (fossil fuel and nuclear), geo- thermal, wind and solar power plants. There are several be dependent on conventional thermal power plants to generate electricity. These power plants are powered

Standiford, Richard B.

369

Modelling Power Output at Nuclear Power Plant by Neural Networks  

Science Journals Connector (OSTI)

In this paper, we propose two different neural network (NN) approaches for industrial process signal forecasting. Real data is available for this research from boiling water reactor type nuclear power reactors. N...

Jaakko Talonen; Miki Sirola; Eimontas Augilius

2010-01-01T23:59:59.000Z

370

NETL: News Release - DOE-Funded Innovation Promotes Reduced Coal Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

21, 2007 21, 2007 DOE-Funded Innovation Promotes Reduced Coal Plant Emissions Novel Catalyst System Bolsters NOx Control Washington, DC - A catalyst-activity testing tool developed with funding from the U.S. Department of Energy is now commercially available and offers a major breakthrough in managing the selective catalytic reduction systems that are used in power plants to control nitrogen oxides (NOx) emissions. The much-needed innovation will promote both cleaner air and cost savings for electric customers by helping plant operators to more cost-effectively comply with NOx emissions regulations, including the new Clean Air Interstate Rule. Most of America's energy systems rely on combustion processes. A drawback of combustion is the formation of NOx - a group of highly reactive gases that form when fuel is burned at high temperatures and which contribute to smog, acid rain, and global warming. Selective catalytic reduction (SCR) systems control NOx emissions by injecting ammonia or urea into flue gas in the presence of a catalyst, converting NOx into nitrogen and water.

371

The 2001 Power Plant Improvement Initiative  

Broader source: Energy.gov [DOE]

When U.S. consumers were confronted in 1999 and 2000 with blackouts and brownouts of electric power in major regions of the country, Congress responded by directing the Department of Energy to...

372

EEE 463 Electrical Power Plants (3) [F] Course (Catalog) Description  

E-Print Network [OSTI]

. Environmental impact of electric generation (3 lectures) 9. Advanced energy conversion systems (geothermalEEE 463 Electrical Power Plants (3) [F] Course (Catalog) Description: Generation of electric power using fossil, nuclear and renewable, including solar, geothermal, wind, hydroelectric, biomass and ocean

Zhang, Junshan

373

Solar electric power plant due to start up  

Science Journals Connector (OSTI)

In early April of this year, Solar One, a central receiver pilot plant designed to show that solar energy can be harnessed by utilities to produce electricity on a commercial scale, will begin producing power. ... With a rated maximum power output to the utility grid of 10.8 MW, Solar One is the world's largest solarpowered electrical generating facility. ...

RUDY M. BAUM

1982-03-15T23:59:59.000Z

374

Willows indirectly reduce arbuscular mycorrhizal colonization of understorey plants  

E-Print Network [OSTI]

in AMF colonization of alpine perennial plants across a willow-meadow ecotone is due to variation in (i) above-ground competition with willows for light (experiment 1), (ii) below-ground interactions with willows and their ectomycorrhizal fungi (EMF...

Becklin, Katie M.; Pallo, Megan L.; Galen, Candace

2012-01-01T23:59:59.000Z

375

NETL: News Release - Premier Power Plant Test Facility Achieves Milestone,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 8, 2000 May 8, 2000 Premier Power Plant Test Facility Achieves Milestone,Raises Hopes for New Clean Coal Technology The world's premier test facility for future power plants has achieved a major milestone - and in the process, raised prospects for a new class of coal technology that researchers now believe could lead to cleaner, more efficient and lower cost electric power generation. The Power System Development Facility The Power System Development Facility at Wilsonville, Alabama, is the Nation's state-of-the-art test facility for 21st century power generating technologies. The U.S. Department of Energy and Southern Company today jointly announced the first successful test of a new type of technology for turning coal into gas. The gas could then be used in future turbines or fuel cells to

376

Exergoeconomic analysis of a biomass post-firing combined-cycle power plant  

Science Journals Connector (OSTI)

Abstract Biomass can be converted thermo- and bio-chemically to solid, liquid and gaseous biofuels. In this paper, energy, exergy and exergoeconomic analyses are applied to a biomass integrated post-firing combined-cycle power plant. The energy and exergy efficiencies of the cycle are found to be maximized at specific compressor pressure ratio values, and that higher pressure ratios reduce the total unit product cost. Increasing the gas turbine inlet temperature and decreasing the compressor pressure ratio decreases the CO2 mole fraction exiting the power plant. The exergoeconomic factor for the biomass integrated post-firing combined-cycle power plant at the optimum energy/exergy efficiency is 0.39. This implies that the major cost rate of this power plant configuration is attributable to the exergy destruction cost rate. Increasing the compressor pressure ratio decreases the mass of air per mass of steam in the power plant, implying a reduction in the gas turbine plant size. Increasing both the compressor pressure ratio and the heat recovery steam generator inlet gas temperature increases the capital investment cost compared with the exergy destruction cost. However, increasing the gas turbine inlet temperature decreases this ratio.

Hassan Athari; Saeed Soltani; Seyed Mohammad Seyed Mahmoudi; Marc A. Rosen; Tatiana Morosuk

2014-01-01T23:59:59.000Z

377

Cost Implications of Carbon Capture and Storage for the Coal Power Plants in India  

Science Journals Connector (OSTI)

Abstract Carbon Capture and Storage (CCS) is the process of extraction of carbon dioxide (CO2) from industrial and energy related sources, transport to storage locations and long-term isolation from the atmosphere. It is being considered as a bridging technology, with significant carbon mitigation potential, especially for large point sources such as coal power plants. The present study looks at the technical feasibility and economic viability of any such initiative in the Indian context by means of case studies of individual power plants. The incremental cost of electricity (COE) of the plants retrofitted with CCS has been estimated using the cost data on CCS components from literature as well as using the IECM (Integrated Environmental Control Model) software. The values of incremental COE and the cost of CO2 avoidance have been estimated as INR 2.2-2.6/kWh and INR 2600-3200 per tCO2, respectively. The costs are highly sensitive to the boiler efficiency and the heat rate of the base plant. The retrofitting of the CCS units in the existing coal plants in India is expected to reduce the net power output of the already inadequate power sector and increase the electricity generation cost substantially. Thus, it would be worthwhile to investigate the necessary and sufficient conditions under which the Indian power plants could graduate to the CCS technologies.

Anand B. Rao; Piyush Kumar

2014-01-01T23:59:59.000Z

378

DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |  

Broader source: Energy.gov (indexed) [DOE]

DOE Orders Mirant Power Plant to Operate Under Limited DOE Orders Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances December 20, 2005 - 11:44am Addthis DOE finds emergency; determines plant will help electric reliability WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide electric reliability for Washington, D.C., and will do so at the lowest reasonable impact to the environment. "After weighing all of the information, I believe an emergency situation exists, and that issuance of this order is in the public interest. This order will provide the level of electricity reliability necessary to keep

379

Running Dry at the Power Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Running Dry at the Power Plant Running Dry at the Power Plant Running Dry at the Power Plant Securing sufficient supplies of fresh water for societal, industrial, and agricultural uses while protecting the natural environment is becoming increasingly difficult in many parts of the United States. Climate variability and change may exacerbate the situation through hotter weather and disrupted precipitation patterns that promote regional droughts. Achieving long- term water sustainability will require balancing competing needs effectively, managing water resources more holistically, and developing innovative approaches to water use and conserva- tion. Utility companies-which use substantial amounts of water for plant cooling and other needs-are doing their part by pursuing water-conserving

380

DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |  

Broader source: Energy.gov (indexed) [DOE]

Orders Mirant Power Plant to Operate Under Limited Orders Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances December 20, 2005 - 11:44am Addthis DOE finds emergency; determines plant will help electric reliability WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide electric reliability for Washington, D.C., and will do so at the lowest reasonable impact to the environment. "After weighing all of the information, I believe an emergency situation exists, and that issuance of this order is in the public interest. This order will provide the level of electricity reliability necessary to keep

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Malavi Power Plant Ltd MPPL pltd | Open Energy Information  

Open Energy Info (EERE)

Malavi Power Plant Ltd MPPL pltd Malavi Power Plant Ltd MPPL pltd Jump to: navigation, search Name Malavi Power Plant Ltd. (MPPL pltd) Place Bangalore, India Zip 560 001 Sector Biomass Product Biomass/biogas project developer and plant operator. Coordinates 12.97092°, 77.60482° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":12.97092,"lon":77.60482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

Optimization of Technical Diagnostics Procedures for Hydroelectric Power Plants  

Science Journals Connector (OSTI)

In this paper, a mathematical model is proposed for determination of the optimal solution for the maintenance system of a specific steel structure the hydraulic power plant. The aim is to obtain the maximum efficiency of the plant within existing conditions and limitations. The objective of a mathematical model is to select the diagnostics parameters, which define knowledge of the permissible reliability level and certain analytic expression, which corresponds to precisely described state of hydroelectric power plant components assembly. Model of technical diagnostics procedures optimization represents a specific approach to problems of preventive maintaining according to state. It is related to the concept of state parameters change, which represents a basis for obtaining the optimal solution for procedures of technical diagnostics. It also creates direct relations between the law of the state parameter changes and reliability of the considered power plant components.

D. Nikoli?; R.R. Nikoli?; B. Krsti?; V. Lazi?; I.. Nikoli?; I. Krsti?; V. Krsti?

2012-01-01T23:59:59.000Z

383

Advanced Feed Water and Cooling Water Treatment at Combined Cycle Power Plant  

Science Journals Connector (OSTI)

Tokyo Gas Yokosuka Power Station is an IPP combined cycle power plant supplied by Fuji Electric Systems...

Ryo Takeishi; Kunihiko Hamada; Ichiro Myogan

2007-01-01T23:59:59.000Z

384

Some aspects of the decommissioning of nuclear power plants  

SciTech Connect (OSTI)

The major factors influencing the choice of a national concept for the decommissioning of nuclear power plants are examined. The operating lifetimes of power generating units with nuclear reactors of various types (VVER-1000, VVER-440, RBMK-1000, EGP-6, and BN-600) are analyzed. The basic approaches to decommissioning Russian nuclear power plants and the treatment of radioactive waste and spent nuclear fuel are discussed. Major aspects of the ecological and radiation safety of personnel, surrounding populations, and the environment during decommissioning of nuclear installations are identified.

Khvostova, M. S., E-mail: marinakhvostova@list.ru [St. Petersburg State Maritime Technical University (Sevmashvtuz), Severodvinsk Branch (Russian Federation)

2012-03-15T23:59:59.000Z

385

The Salton Sea 10 MWe power plant, unit 1  

SciTech Connect (OSTI)

The Southern California Edison Company's Salton Sea Geothermal Electric Project is the second of two flashsteam projects located in the Imperial Valley of California to successfully demonstrate the feasibility of utilizing steam from highly saline geothermal fluids for electric power generation. The objective of Edison's Power Plant Unit 1 program at the Salton Sea KGRA is to develop design, operating, and economic criteria for commercial geothermal developments in the Imperial Valley of California. The Edison plant is designed specifically for utilization of geothermal steam and employs principles found in conventional fossil-fueled electric generating plants. This plant serves as a model of a full scale commercial plant, using systems and components which likely will be utilized in large scale follow-on units.

Moss, W.E.; Whitescarver, O.D.; Yamasaki, R.N.

1982-10-01T23:59:59.000Z

386

Investigation of valve failure problems in LWR power plants  

SciTech Connect (OSTI)

An analysis of component failures from information in the computerized Nuclear Safety Information Center (NSIC) data bank shows that for both PWR and BWR plants the component category most responsible for approximately 19.3% of light water reactor (LWR) power plant shutdowns. This investigation by Burns and Roe, Inc. shows that the greatest cause of shutdowns in LWRs due to valve failures is leakage from valve stem packing. Both BWR plants and PWR plants have stem leakage problems (BWRs, 21% and PWRs, 34%).

None

1980-04-01T23:59:59.000Z

387

GV1 Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

GV1 Solar Power Plant GV1 Solar Power Plant Jump to: navigation, search Name GV1 Solar Power Plant Facility GV1 Sector Solar Facility Type Concentrating Solar Power Developer Greenvolts Location Tracy, California Coordinates 37.7396513°, -121.4252227° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7396513,"lon":-121.4252227,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

SEGS VI Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

SEGS VI Solar Power Plant SEGS VI Solar Power Plant Jump to: navigation, search Name SEGS VI Solar Power Plant Facility SEGS VI Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Kramer Junction, California Coordinates 34.9925°, -117.540833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9925,"lon":-117.540833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Tonopah Airport Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Tonopah Airport Solar Power Plant Tonopah Airport Solar Power Plant Jump to: navigation, search Name Tonopah Airport Solar Power Plant Facility Tonopah Airport Solar Sector Solar Facility Type Concentrating Solar Power Developer Solar Millenium, LLC Location Nye County, Nevada Coordinates 38.5807111°, -116.0413889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5807111,"lon":-116.0413889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants |  

Broader source: Energy.gov (indexed) [DOE]

Feasibility Study of Hydrogen Production at Existing Nuclear Power Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants A funding opportunity announcement of the cost shared feasibility studies of nuclear energy based production of hydrogen using available technology. The objective of this activity is to select and conduct project(s) that will utilize hydrogen production equipment and nuclear energy as necessary to produce data and analysis on the economics of hydrogen production with nuclear energy. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants More Documents & Publications https://e-center.doe.gov/iips/faopor.nsf/UNID/E67E46185A67EBE68 Microsoft Word - FOA cover sheet.doc Microsoft Word - hDE-FOA-0000092.rtf

391

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermoelectric Power Plant Water Demands Using Alternative Water Supplies: Thermoelectric Power Plant Water Demands Using Alternative Water Supplies: Power Demand Options in Regions of Water Stress and Future Carbon Management Sandia National Laboratories (SNL) is conducting a regional modeling assessment of non-traditional water sources for use in thermoelectric power plants. The assessment includes the development of a model to characterize water quantity and quality from several sources of non-traditional water, initially focused within the Southeastern United States. The project includes four primary tasks: (1) identify water sources, needs, and treatment options; (2) assess and model non-traditional water quantity and quality; (3) identify and characterize water treatment options including an assessment of cost; and (4) develop a framework of metrics, processes, and modeling aspects that can be applied to other regions of the United States.

392

Solar Millenium Palen Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Palen Solar Power Plant Palen Solar Power Plant Jump to: navigation, search Name Solar Millenium Palen Solar Power Plant Facility Solar Millenium Palen Sector Solar Facility Type Concentrating Solar Power Facility Status Proposed Owner BrightSource Developer Solar Millenium, LLC Location Palen, California Coordinates 33.695923°, -115.225468° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.695923,"lon":-115.225468,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

Golden Hills Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Hills Solar Power Plant Hills Solar Power Plant Jump to: navigation, search Name Golden Hills Solar Power Plant Facility Golden Hills Solar Sector Solar Facility Type Photovoltaic Developer PowerWorks Location Alameda County, California Coordinates 37.6016892°, -121.7195459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6016892,"lon":-121.7195459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

Springerville Generating Station Solar System Solar Power Plant | Open  

Open Energy Info (EERE)

Springerville Generating Station Solar System Solar Power Plant Springerville Generating Station Solar System Solar Power Plant Jump to: navigation, search Name Springerville Generating Station Solar System Solar Power Plant Facility Springerville Generating Station Solar System Sector Solar Facility Type Photovoltaic Developer Tucson Electric Power Location Springerville, Arizona Coordinates 34.1333799°, -109.2859196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1333799,"lon":-109.2859196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

Unlocking Customer Value: The Virtual Power Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant The utility world has changed drastically in the last 10 years. New technologies like Smart Meters and fully functional Smart Grid concepts have made large inroads into the utility space and no one should want to be left behind. Utilities also face additional pressures from regulatory bodies who are continuing to encourage carbon reduction and greater customer flexibility. Utilities need to balance these new requirements with the financial obligations of providing reliable power (at a reasonable price) while attempting to meet shareholder expectations. Each of these goals are not necessarily complimentary, thus utilities need to determine how to address each one.

396

Starwood Solar I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Starwood Solar I Solar Power Plant Starwood Solar I Solar Power Plant Jump to: navigation, search Name Starwood Solar I Solar Power Plant Facility Starwood Solar I Sector Solar Facility Type Concentrating Solar Power Developer Lockheed Martin/Starwood Energy Location Harquahala Valley, Arizona Coordinates 33.45729°, -113.1619359° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.45729,"lon":-113.1619359,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Mojave Solar Park Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solar Park Solar Power Plant Solar Park Solar Power Plant Jump to: navigation, search Name Mojave Solar Park Solar Power Plant Facility Mojave Solar Park Sector Solar Facility Type Concentrating Solar Power Developer Solel Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

SEGS IX Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

IX Solar Power Plant IX Solar Power Plant Jump to: navigation, search Name SEGS IX Solar Power Plant Facility SEGS IX Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Harper Lake, California Coordinates 35.0305°, -117.29° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0305,"lon":-117.29,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

AV Solar Ranch I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AV Solar Ranch I Solar Power Plant AV Solar Ranch I Solar Power Plant Jump to: navigation, search Name AV Solar Ranch I Solar Power Plant Facility AV Solar Ranch I Sector Solar Facility Type Photovoltaic Developer NextLight Renewable Power Location Antelope Valley, California Coordinates 38.70833°, -121.32889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.70833,"lon":-121.32889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

Carrizo Energy Solar Farm Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Carrizo Energy Solar Farm Solar Power Plant Carrizo Energy Solar Farm Solar Power Plant Jump to: navigation, search Name Carrizo Energy Solar Farm Solar Power Plant Facility Carrizo Energy Solar Farm Sector Solar Facility Type Concentrating Solar Power Developer Ausra CA II Location Carizzo Plain, California Coordinates 35.1913858°, -119.7260983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1913858,"lon":-119.7260983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Unlocking Customer Value: The Virtual Power Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant The utility world has changed drastically in the last 10 years. New technologies like Smart Meters and fully functional Smart Grid concepts have made large inroads into the utility space and no one should want to be left behind. Utilities also face additional pressures from regulatory bodies who are continuing to encourage carbon reduction and greater customer flexibility. Utilities need to balance these new requirements with the financial obligations of providing reliable power (at a reasonable price) while attempting to meet shareholder expectations. Each of these goals are not necessarily complimentary, thus utilities need to determine how to address each one.

402

Beacon Solar Energy Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solar Power Plant Solar Power Plant Jump to: navigation, search Name Beacon Solar Energy Project Solar Power Plant Facility Beacon Solar Energy Project Sector Solar Facility Type Concentrating Solar Power Developer NextEra Energy Location Kern County, California Coordinates 35.4937274°, -118.8596804° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.4937274,"lon":-118.8596804,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

High Plains Ranch Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

High Plains Ranch Solar Power Plant High Plains Ranch Solar Power Plant Jump to: navigation, search Name High Plains Ranch Solar Power Plant Facility High Plains Ranch Sector Solar Facility Type Photovoltaic Developer Sun Power Location Carizzo Plain, California Coordinates 35.1913858°, -119.7260983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1913858,"lon":-119.7260983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

SEGS IV Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solar Power Plant Solar Power Plant Jump to: navigation, search Name SEGS IV Solar Power Plant Facility SEGS IV Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Kramer Junction, California Coordinates 34.9925°, -117.540833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9925,"lon":-117.540833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

405

Don Ana Sun Tower Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Don Ana Sun Tower Solar Power Plant Don Ana Sun Tower Solar Power Plant Jump to: navigation, search Name Don Ana Sun Tower Solar Power Plant Facility Don Ana Sun Tower Sector Solar Facility Type Concentrating Solar Power Developer NRG Energy/eSolar Location Dona Ana County, New Mexico Coordinates 32.485767°, -106.7234639° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.485767,"lon":-106.7234639,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

406

Alpine SunTower Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

SunTower Solar Power Plant SunTower Solar Power Plant Jump to: navigation, search Name Alpine SunTower Solar Power Plant Facility Alpine SunTower Sector Solar Facility Type Concentrating Solar Power Developer NRG Energy/eSolar Location Lancaster, California Coordinates 34.6867846°, -118.1541632° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.6867846,"lon":-118.1541632,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

SES Solar Two Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Project Solar Power Plant Project Solar Power Plant Jump to: navigation, search Name SES Solar Two Project Solar Power Plant Facility SES Solar Two Project Sector Solar Facility Type Concentrating Solar Power Developer Stirling Energy Systems, Tessera Solar Location Imperial Valley, California Coordinates 33.03743°, -115.621591° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.03743,"lon":-115.621591,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

408

SEGS VIII Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

VIII Solar Power Plant VIII Solar Power Plant Jump to: navigation, search Name SEGS VIII Solar Power Plant Facility SEGS VIII Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Harper Lake, California Coordinates 35.0305°, -117.29° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0305,"lon":-117.29,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

Solar Millenium Ridgecrest Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Ridgecrest Solar Power Plant Ridgecrest Solar Power Plant Jump to: navigation, search Name Solar Millenium Ridgecrest Solar Power Plant Facility Solar Millenium Ridgecrest Sector Solar Facility Type Concentrating Solar Power Developer Solar Millenium, LLC Location Ridgecrest, California Coordinates 35.6224561°, -117.6708966° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6224561,"lon":-117.6708966,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Parabolic Trough Solar Power Plant Simulation Model: Preprint  

SciTech Connect (OSTI)

As interest for clean renewable electric power technologies grows, a number of parabolic trough power plants of various configurations are being considered for deployment around the globe. It is essential that plant designs be optimized for each specific application. The optimum design must consider the capital cost, operations and maintenance cost, annual generation, financial requirements, and time-of-use value of the power generated. Developers require the tools for evaluating tradeoffs between these various project elements. This paper provides an overview of a computer model that is being used by scientists and developers to evaluate the tradeoff between cost, performance, and economic parameters for parabolic trough solar power plant technologies. An example is included that shows how this model has been used for a thermal storage design optimization.

Price, H.

2003-01-01T23:59:59.000Z

411

Tracking new coal-fired power plants: coal's resurgence in electric power generation  

SciTech Connect (OSTI)

This information package is intended to provide an overview of 'Coal's resurgence in electric power generation' by examining proposed new coal-fired power plants that are under consideration in the USA. The results contained in this package are derived from information that is available from various tracking organizations and news groups. Although comprehensive, this information is not intended to represent every possible plant under consideration but is intended to illustrate the large potential that exists for new coal-fired power plants. It should be noted that many of the proposed plants are likely not to be built. For example, out of a total portfolio (gas, coal, etc.) of 500 GW of newly planned power plant capacity announced in 2001, 91 GW have been already been scrapped or delayed. 25 refs.

NONE

2007-05-01T23:59:59.000Z

412

Performance Diagnosis using Optical Torque Sensor for Selection of a Steam Supply Plant among Advanced Combined Cycle Power Plants  

Science Journals Connector (OSTI)

A newly developed optical torque sensor was applied to select a steam supply plant among advanced combined cycle, i.e. ACC, power plants of...

Shuichi Umezawa

2007-01-01T23:59:59.000Z

413

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network [OSTI]

- BACKGROUND: In December 2009, the Combined Heat and Power Plant at Cornell Cornell's conversion of a coal fired heating plant to natural Gas the power plant #12;

Keinan, Alon

414

Submerged passively-safe power plant  

SciTech Connect (OSTI)

The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process.

Herring, J.S.

1991-12-31T23:59:59.000Z

415

Submerged passively-safe power plant  

DOE Patents [OSTI]

The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process.

Herring, J. Stephen (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

416

Submerged passively-safe power plant  

DOE Patents [OSTI]

The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process. 8 figures.

Herring, J.S.

1993-09-21T23:59:59.000Z

417

On-chip Power Grid Verification with Reduced Order Modeling.  

E-Print Network [OSTI]

??To ensure the robustness of an integrated circuit design, its power distribution network (PDN) must be validated beforehand against any voltage drop on VDD nets. (more)

Goyal, Ankit

2010-01-01T23:59:59.000Z

418

Sandia National Laboratories: reduce the cost of solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the cost of solar power Launch of Solar Testing Site in Vermont On November 27, 2013, in Energy, Facilities, News, News & Events, Partnership, Photovoltaic, Photovoltaic Regional...

419

Fusion power plant for water desalination and reuse  

Science Journals Connector (OSTI)

Development of industry and agriculture demands a huge fresh water consumption. Exhaust of water sources together with pollution arises a difficult problem of population, industry, and agriculture water supply. Request for additional water supply in next 50 years is expected from industrial and agricultural sectors of many countries in the world. The presented study of fusion power plant for water desalination and reuse is aimed to widen a range of possible fusion industrial applications. Fusion offers a safe, long-term source of energy with abundant resources and major environmental advantages. Thus fusion can provide an attractive energy option to society in the next century. Fusion power tokamak reactor based on RF DEMO-S project [Proc. ISFNT-5 (2000) in press; Conceptual study of RF DEMO-S fusion reactor (2000)] was chosen as an energy source. A steady state operation mode is considered with thermal power of 4.0 GW. The reactor has to operate in steady-state plasma mode with high fraction of bootstrap current. Average plant availability of ?0.7 is required. A conventional type of water cooled blanket is the first choice, helium or lithium coolants are under consideration. Desalination plant includes two units: reverse osmosis and distillation. Heat to electricity conversion schemes is optimized fresh water production and satisfy internal plant electricity demand The plant freshwater capacity is ?6?000?000 m3 per day. Fusion power plant of this capacity can provide a region of a million populations with fresh water, heat and electricity.

A.A. Borisov; A.V. Desjatov; I.M. Izvolsky; A.G. Serikov; V.P. Smirnov; Yu.N. Smirnov; G.E. Shatalov; S.V. Sheludjakov; N.N. Vasiliev; E.P. Velikhov

2001-01-01T23:59:59.000Z

420

Nuclear Power Plant NDE Challenges - Past, Present, and Future  

SciTech Connect (OSTI)

The operating fleet of U.S. nuclear power plants was built to fossil plant standards (of workmanship, not fitness for service) and with good engineering judgment. Fortuitously, those nuclear power plants were designed using defense-in-depth concepts, with nondestructive examination (NDE) an important layer, so they can tolerate almost any component failure and still continue to operate safely. In the 30+ years of reactor operation, many material failures have occurred. Unfortunately, NDE has not provided the reliability to detect degradation prior to initial failure (breaching the pressure boundary). However, NDE programs have been improved by moving from prescriptive procedures to performance demonstrations that quantify inspection effectiveness for flaw detection probability and sizing accuracy. Other improvements include the use of risk-informed strategies to ensure that reactor components contributing the most risk receive the best and most frequent inspections. Another challenge is the recent surge of interest in building new nuclear power plants in the United States to meet increasing domestic energy demand. New construction will increase the demand for NDE but also offers the opportunity for more proactive inspections. This paper reviews the inception and evolution of NDE for nuclear power plants over the past 40 years, recounts lessons learned, and describes the needs remaining as existing plants continue operation and new construction is contemplated.

Doctor, S. R. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States)

2007-03-21T23:59:59.000Z

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanofiltration Treatment Options for Thermoelectric Power Plant Water Treatment Demands Nanofiltration Treatment Options for Thermoelectric Power Plant Water Treatment Demands Sandia National Laboratories (SNL) is conducting a study on the use of nanofiltration (NF) treatment options to enable use of non-traditional water sources as an alternative to freshwater make-up for thermoelectric power plants. The project includes a technical and economic evaluation of NF for two types of water that contain moderate to high levels of total dissolved solids (TDS): (1) cooling tower recirculating water and (2) produced waters from oil & gas extraction operations. Reverse osmosis (RO) is the most mature and commonly considered option for high TDS water treatment. However, RO is generally considered to be too expensive to make treatment of produced waters for power plant use a feasible application. Therefore, SNL is investigating the use of NF, which could be a more cost effective treatment option than RO. Similar to RO, NF is a membrane-based process. Although NF is not as effective as RO for the removal of TDS (typical salt rejection is ~85 percent, compared to >95 percent for RO), its performance should be sufficient for typical power plant applications. In addition to its lower capital cost, an NF system should have lower operating costs because it requires less pressure to achieve an equivalent flux of product water.

422

A proposal of nuclear fusion power plant equipped with SMES  

Science Journals Connector (OSTI)

When we intend to operate the nuclear fusion power plant (NFPP) under the economically efficient conditions as an independent power plant, it is desirable that the generated electric power should be sent to network according to the power demand. With such strategy being expanded, some energy storage system is available. In this paper, NFPP equipped with the superconducting magnetic energy storage system (SMES) as electric power storage device is proposed. The advantages of NFPP equipped with SMES are discussed and a case study of 500 MW NFPP equipped with 6 \\{GWh\\} SMES is done with estimating its operational value. For SMES coil, the concept of Force Balanced Coil (FBC) is applied and 6 \\{GWh\\} class FBC is briefly designed.

Tatsuya Natsukawa; Hirokazu Makamura; Marta Molinas; Shinichi Nomura; Shunji Tsuji-Iio; Ryuichi Shimada

2000-01-01T23:59:59.000Z

423

Regulatory guidance for lightning protection in nuclear power plants  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects. (authors)

Kisner, R. A.; Wilgen, J. B.; Ewing, P. D.; Korsah, K. [Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6007 (United States); Antonescu, C. E. [U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

2006-07-01T23:59:59.000Z

424

Regulatory Guidance for Lightning Protection in Nuclear Power Plants  

SciTech Connect (OSTI)

Abstract - Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.

Kisner, Roger A [ORNL; Wilgen, John B [ORNL; Ewing, Paul D [ORNL; Korsah, Kofi [ORNL; Antonescu, Christina E [ORNL

2006-01-01T23:59:59.000Z

425

State of the art review of radioactive waste volume reduction techniques for commercial nuclear power plants  

SciTech Connect (OSTI)

A review is made of the state of the art of volume reduction techniques for low level liquid and solid radioactive wastes produced as a result of: (1) operation of commercial nuclear power plants, (2) storage of spent fuel in away-from-reactor facilities, and (3) decontamination/decommissioning of commercial nuclear power plants. The types of wastes and their chemical, physical, and radiological characteristics are identified. Methods used by industry for processing radioactive wastes are reviewed and compared to the new techniques for processing and reducing the volume of radioactive wastes. A detailed system description and report on operating experiences follow for each of the new volume reduction techniques. In addition, descriptions of volume reduction methods presently under development are provided. The Appendix records data collected during site surveys of vendor facilities and operating power plants. A Bibliography is provided for each of the various volume reduction techniques discussed in the report.

Not Available

1980-04-01T23:59:59.000Z

426

Performance Assessment of Flashed Steam Geothermal Power Plant  

SciTech Connect (OSTI)

Five years of operating experience at the Comision Federal de Electricidad (CFE) Cerro Prieto flashed steam geothermal power plant are evaluated from the perspective of U. S. utility operations. We focus on the design and maintenance of the power plant that led to the achievement of high plant capacity factors for Units No. 1 and 2 since commercial operation began in 1973. For this study, plant capacity factor is the ratio of the average load on the machines or equipment for the period of time considered to the capacity rating of the machines or equipment. The plant capacity factor is the annual gross output in GWh compared to 657 GWh (2 x 37.5 MW x 8760 h). The CFE operates Cerro Prieto at base load consistent with the system connected electrical demand of the Baja California Division. The plant output was curtailed during the winter months of 1973-1975 when the system electric demand was less than the combined output capability of Cerro Prieto and the fossil fuel plant near Tijuana. Each year the system electric demand has increased and the Cerro Prieto units now operate at full load all the time. The CFE added Units 3 and 4 to Cerro Prieto in 1979 which increased the plant name plate capacity to 150 MW. Part of this additional capacity will supply power to San Diego Gas and Electric Company through an interconnection across the border. The achievement of a high capacity factor over an extensive operating period was influenced by operation, design, and maintenance of the geothermal flash steam power plant.

Alt, Theodore E.

1980-12-01T23:59:59.000Z

427

Reducing Power Consumption in Backbone Luca Chiaraviglio, Marco Mellia, Fabio Neri  

E-Print Network [OSTI]

Reducing Power Consumption in Backbone Networks Luca Chiaraviglio, Marco Mellia, Fabio Neri Dip. di studies, the power consumption of the Internet accounts for up to 10% of the worldwide energy consumption, and several initiatives are being put into place to reduce the power consumption of the ICT sector in general

Mellia, Marco

428

Energy-Aware Networks: Reducing Power Consumption By Switching Off Network Elements  

E-Print Network [OSTI]

Energy-Aware Networks: Reducing Power Consumption By Switching Off Network Elements Luca% of the worldwide energy consumption, and several initiatives are being punt into place to reduce the power power consumption, even without taking into account the energy necessary for equipment cooling [4

Mellia, Marco

429

Energy-Aware Networks: Reducing Power Consumption By Switching Off Network Elements  

E-Print Network [OSTI]

Energy-Aware Networks: Reducing Power Consumption By Switching Off Network Elements Luca% of the worldwide energy consumption, and several initiatives are being put into place to reduce the power power consumption, even without taking into account the energy necessary for equipment cooling [4

Mellia, Marco

430

Reducing Energy Costs for IBM Blue Gene/P via Power-Aware Job Scheduling  

E-Print Network [OSTI]

Reducing Energy Costs for IBM Blue Gene/P via Power-Aware Job Scheduling Zhou Zhou1 , Zhiling Lan1 scheduling approach for HPC systems based on variable energy prices and job power profiles. In particular, we from produc- tion systems show that our power-aware job scheduling approach can reduce the energy cost

Feitelson, Dror

431

Progress in Decommissioning the Humboldt Bay Power Plant - 13604  

SciTech Connect (OSTI)

Decommissioning of the Pacific Gas and Electric (PG and E) Company Humboldt Bay Power Plant (HBPP) Unit 3 nuclear facility has now, after more than three decades of SAFSTOR and initial decommissioning work, transitioned to full-scale decommissioning. Decommissioning activities to date have been well orchestrated and executed in spite of an extremely small work site with space constricted even more by other concurrent on-site major construction projects including the demolition of four fossil units, construction of a new generating station and 60 KV switchyard upgrade. Full-scale decommissioning activities - now transitioning from Plant Systems Removal (PG and E self-perform) to Civil Works Projects (contractor performed) - are proceeding in a safe, timely, and cost effective manner. As a result of the successful decommissioning work to date (approximately fifty percent completed) and the intense planning and preparations for the remaining work, there is a high level of confidence for completion of all HBPP Unit 3 decommissions activities in 2018. Strategic planning and preparations to transition into full-scale decommissioning was carried out in 2008 by a small, highly focused project team. This planning was conducted concurrent with other critical planning requirements such as the loading of spent nuclear fuel into dry storage at the Independent Spent Fuel Storage Installation (ISFSI) finishing December 2008. Over the past four years, 2009 through 2012, the majority of decommissioning work has been installation of site infrastructure and removal of systems and components, known as the Plant System Removal Phase, where work scope was dynamic with significant uncertainty, and it was self-performed by PG and E. As HBPP Decommissioning transitions from the Plant System Removal Phase to the Civil Works Projects Phase, where work scope is well defined, a contracting plan similar to that used for Fossil Decommissioning will be implemented. Award of five major work scopes in various stages of development are planned as they include: Turbine Building Demolition, Nuclear Facilities Demolition and Excavation, Intake and Discharge Canal Remediation, Office Facility Demobilization, and Final Site Restoration. Benefits realized by transitioning to the Civil Works Projects Phase with predominant firm fixed-price/fixed unit price contracting include single civil works contractor who can coordinate concrete shaving, liner removal, structural removal, and other demolition activities; streamline financial control; reduce PG and E overhead staffing; and provide a specialized Bidder Team with experience from other similar projects. (authors)

Rod, Kerry [PG and E Utility, Humboldt Bay Power Plant, 1000 King Salmon Ave. Eureka, CA 95503 (United States)] [PG and E Utility, Humboldt Bay Power Plant, 1000 King Salmon Ave. Eureka, CA 95503 (United States); Shelanskey, Steven K. [Anata Management Solutions, 5180 South Commerce Dr,, Suite F Murray, UT 84107 (United States)] [Anata Management Solutions, 5180 South Commerce Dr,, Suite F Murray, UT 84107 (United States); Kristofzski, John [CH2MHILL, 295 Bradley Blvd. Suite 300, Richland WA 99353 (United States)] [CH2MHILL, 295 Bradley Blvd. Suite 300, Richland WA 99353 (United States)

2013-07-01T23:59:59.000Z

432

Participation of wind power plants in system frequency control: Review of grid code requirements and control methods  

Science Journals Connector (OSTI)

Abstract Active power reserves are needed for the proper operation of an electrical system. These reserves are continuously regulated in order to match the generation and consumption in the system and thus, to maintain a constant electrical frequency. They are usually provided by synchronized conventional generating units such as hydraulic or thermal power plants. With the progressive displacement of these generating plants by non-synchronized renewable-based power plants (e.g. wind and solar) the net level of synchronous power reserves in the system becomes reduced. Therefore, wind power plants are required, according to some European Grid Codes, to also provide power reserves like conventional generating units do. This paper focuses not only on the review of the requirements set by Grid Codes, but also on control methods of wind turbines for their participation in primary frequency control and synthetic inertia.

Francisco Daz-Gonzlez; Melanie Hau; Andreas Sumper; Oriol Gomis-Bellmunt

2014-01-01T23:59:59.000Z

433

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-01-31T23:59:59.000Z

434

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-04-27T23:59:59.000Z

435

Boiler Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; J. Sarver; M. Borden; K. Coleman; J. Blough; S. Goodstine; R.W. Swindeman; W. Mohn; I. Perrin

2003-04-21T23:59:59.000Z

436

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2005.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-10-27T23:59:59.000Z

437

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2004-04-23T23:59:59.000Z

438

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2004-07-30T23:59:59.000Z

439

Boiler Materials For Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-09-30T23:59:59.000Z

440

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

K. Coleman; R. Viswanathan; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2004-01-23T23:59:59.000Z

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2005.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-08-01T23:59:59.000Z

442

Boiler Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-01-31T23:59:59.000Z

443

Boiler Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-07-17T23:59:59.000Z

444

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2004-10-30T23:59:59.000Z

445

Boiler Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of January 1 to March 31, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-04-20T23:59:59.000Z

446

STRUCTURAL HEALTH MONITORING SOLUTIONS FOR POWER PLANTS Benoit Jouan, Jurgen Rudolph, Steffen Bergholz  

E-Print Network [OSTI]

but also in the context of conventional power plants and renewables such as wind power plants. ConsequentlySTRUCTURAL HEALTH MONITORING SOLUTIONS FOR POWER PLANTS Benoit Jouan, J¨urgen Rudolph, Steffen solutions gain in importance not only as part of the ageing management of nuclear power plant components

Paris-Sud XI, Université de

447

Statement from Energy Secretary Ernest Moniz on Proposed New EPA Rules for Existing Power Plants  

Broader source: Energy.gov [DOE]

Energy Secretary Ernest Moniz's statement on the EPA's proposed new rules for existing power plants.

448

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

449

Fiber optic sensors for nuclear power plant applications  

SciTech Connect (OSTI)

Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.

Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu-603102 (India)

2012-05-17T23:59:59.000Z

450

20 - Licensing for nuclear power plant siting, construction and operation  

Science Journals Connector (OSTI)

Abstract: This chapter addresses the need for licensing of nuclear power plants, and how such licenses can be requested by an applicant and granted by a regulatory authority. The licensing process is country dependent, although based on the common principle that the applicant must demonstrate that the proposed nuclear power plant will comply with the established regulations, and that it will operate safely without undue risks to the health and safety of plant personnel, the population and the environment. During the construction and operational phases the regulatory authority ensures compliance with the the license conditions through evaluation, monitoring and inspection. The license may be a single document covering all the phases in the life of the plant, or a set of consecutive documents requested and issued for different phases, which may include design certification, site approval, design and construction, commissioning and operation, design changes during operation, life extension and, finally, decommissioning.

A. Alonso; S.K. Sharma; D.F. Torgerson

2012-01-01T23:59:59.000Z

451

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Use of Air2Air™ Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants – SPX Cooling Systems Use of Air2Air™ Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants – SPX Cooling Systems In this project, SPX Cooling Systems, formerly Marley Cooling Technologies, Inc., evaluates the performance of its patented Air2Air(tm) condensing technology in cooling tower applications at coal-fired electric power plants. Researchers quantify Air2Air(tm) water conservation capabilities with results segmented by season and time of day. They determine the pressure drop and energy use during operation. Additionally, SPX Cooling Systems develops a collection method for the recovered water, analyzes water quality, and identifies potential on-site processes capable of utilizing the recovered water.

452

SCE Roof Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

SCE Roof Project Solar Power Plant SCE Roof Project Solar Power Plant Jump to: navigation, search Name SCE Roof Project Solar Power Plant Facility SCE Roof Project Sector Solar Facility Type Photovoltaic Developer First Solar Location California Coordinates 36.778261°, -119.4179324° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.778261,"lon":-119.4179324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

Victorville 2 Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Victorville 2 Solar Power Plant Victorville 2 Solar Power Plant Jump to: navigation, search Name Victorville 2 Solar Power Plant Facility Victorville 2 Sector Solar Facility Type Hybrid Developer Inland Energy Location Victorville, California Coordinates 34.5361067°, -117.2911565° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5361067,"lon":-117.2911565,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Cimarron I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

I Solar Power Plant I Solar Power Plant Jump to: navigation, search Name Cimarron I Solar Power Plant Facility Cimarron I Sector Solar Facility Type Photovoltaic Developer First Solar Location Colfax County, New Mexico Coordinates 36.5799757°, -104.4723301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.5799757,"lon":-104.4723301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

Topaz Solar Farm Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solar Power Plant Solar Power Plant Jump to: navigation, search Name Topaz Solar Farm Solar Power Plant Facility Topaz Solar Farm Sector Solar Facility Type Photovoltaic Developer OptiSolar Location San Luis Obispo County, California Coordinates 35.3102296°, -120.4357631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.3102296,"lon":-120.4357631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

CalRENEW-1 Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

CalRENEW-1 Solar Power Plant CalRENEW-1 Solar Power Plant Jump to: navigation, search Name CalRENEW-1 Solar Power Plant Facility CalRENEW-1 Sector Solar Facility Type Photovoltaic Developer Cleantech America Location Fresno County, California Coordinates 36.9858984°, -119.2320784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.9858984,"lon":-119.2320784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

El Dorado Solar Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Dorado Solar Project Solar Power Plant Dorado Solar Project Solar Power Plant Jump to: navigation, search Name El Dorado Solar Project Solar Power Plant Facility El Dorado Solar Project Sector Solar Facility Type Photovoltaic Developer First Solar/Sempra Generation Location Boulder City, Nevada Coordinates 35.9785911°, -114.8324851° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.9785911,"lon":-114.8324851,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

SES Solar Three Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Three Project Solar Power Plant Three Project Solar Power Plant Jump to: navigation, search Name SES Solar Three Project Solar Power Plant Facility SES Solar Three Project Sector Solar Facility Type Photovoltaics Facility Status Proposed Developer Stirling Energy Systems, Tessera Solar Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

Inspection technologies protect and enhance materials for power plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inspection technologies protect and enhance materials for power plants Inspection technologies protect and enhance materials for power plants Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Inspection technologies protect and enhance materials for power plants A researcher makes thermal images of ceramic defects THERMAL IMAGING - Julian Benz uses Argonne's thermal imaging system

460

Power Plant and Industrial Fuel Use Act | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Self Certifications Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended (42 U.S.C. 8301 et seq.), provides that no new baseload electric powerplant may be constructed or operated without the capability to use coal or another alternate fuel as a primary energy source. In order to meet the requirement of coal capability, the owner or operator of such facilities proposing to use natural gas or petroleum as its primary energy source shall certify, pursuant to FUA section 201(d), and Section 501.60(a)(2) of DOE's regulations to the Secretary of Energy prior to construction, or prior to operation as a base load powerplant, that such powerplant has the capability to use coal or another alternate fuel.

Note: This page contains sample records for the topic "reducing power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Niland Solar Farm LLC Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Niland Solar Farm LLC Solar Power Plant Niland Solar Farm LLC Solar Power Plant Jump to: navigation, search Name Niland Solar Farm LLC Solar Power Plant Facility Niland Solar Farm LLC Sector Solar Facility Type Photovoltaic Developer First Solar Location Niland, California Coordinates 33.2400366°, -115.5188756° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.2400366,"lon":-115.5188756,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

Palmdale Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Palmdale Project Solar Power Plant Palmdale Project Solar Power Plant Jump to: navigation, search Name Palmdale Project Solar Power Plant Facility Palmdale Project Sector Solar Facility Type Hybrid Developer Inland Energy Location Palmdale, California Coordinates 34.5794343°, -118.1164613° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5794343,"lon":-118.1164613,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Sunset Reservoir Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Reservoir Solar Power Plant Reservoir Solar Power Plant Jump to: navigation, search Name Sunset Reservoir Solar Power Plant Facility Sunset Reservoir Sector Solar Facility Type Photovoltaic Developer Recurrent Energy Location San Francisco, California Coordinates 37.7749295°, -122.4194155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7749295,"lon":-122.4194155,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

464

Kings River Conservation District (KRCD) Solar Farm Solar Power Plant |  

Open Energy Info (EERE)

KRCD) Solar Farm Solar Power Plant KRCD) Solar Farm Solar Power Plant Jump to: navigation, search Name Kings River Conservation District (KRCD) Solar Farm Solar Power Plant Facility Kings River Conservation District (KRCD) Solar Farm Sector Solar Facility Type Photovoltaic Developer Cleantech America Location San Joachin Valley, California Coordinates 34.0787104°, -117.8660029° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0787104,"lon":-117.8660029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

Atlantic City Convention Center Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Convention Center Solar Power Plant Convention Center Solar Power Plant Jump to: navigation, search Name Atlantic City Convention Center Solar Power Plant Facility Atlantic City Convention Center Sector Solar Facility Type Photovoltaic Developer Pepco Energy Services Location Atlantic City, New Jersey Coordinates 39.3642834°, -74.4229266° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3642834,"lon":-74.4229266,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

How Coal Gasification Power Plants Work | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gasification » How Coal Gasification » How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work The heart of a gasification-based system is the gasifier. A gasifier converts hydrocarbon feedstock into gaseous components by applying heat under pressure in the presence of steam. A gasifier differs from a combustor in that the amount of air or oxygen available inside the gasifier is carefully controlled so that only a relatively small portion of the fuel burns completely. This "partial oxidation" process provides the heat. Rather than burning, most of the carbon-containing feedstock is chemically broken apart by the gasifier's heat and pressure, setting into motion chemical reactions that produce "syngas." Syngas is primarily hydrogen and carbon monoxide, but can include

467

Emcore/SunPeak Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Emcore/SunPeak Solar Power Plant Emcore/SunPeak Solar Power Plant < Emcore Jump to: navigation, search Name Emcore/SunPeak Solar Power Plant Facility Emcore/SunPeak Sector Solar Facility Type Concentrating Photovoltaic Developer SunPeak Solar Location Albuquerque, New Mexico Coordinates 35.0844909°, -106.6511367° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0844909,"lon":-106.6511367,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

Desert Sunlight Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Sunlight Solar Power Plant Sunlight Solar Power Plant Jump to: navigation, search Name Desert Sunlight Solar Power Plant Facility Desert Sunlight Sector Solar Facility Type Photovoltaic Developer First Solar Location Desert Center, California Coordinates 33.7541038°, -115.3311778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7541038,"lon":-115.3311778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

Nellis AFB Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Nellis AFB Solar Power Plant Nellis AFB Solar Power Plant Jump to: navigation, search Name Nellis AFB Solar Power Plant Facility Nellis AFB Sector Solar Facility Type Photovoltaic Developer Fotowatio Renewable Ventures Location Clark County, Nevada Coordinates 36.0795613°, -115.094045° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.0795613,"lon":-115.094045,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Seawater pumped-storage power plant in Okinawa island, Japan  

Science Journals Connector (OSTI)

The authors describe the characteristics, problems and treatment of a seawater pumped-storage power plant which is the first high headtype power plant in the world. The authors propose a general geologic investigation program using boreholes for underground projects. The effectiveness of the investigations conducted by EPDC are evaluated before construction of the vertical shaft of the seawater pumped-storage power plant in Okinawa island, Japan. In the investigation stage of the project, no adit was excavated and all geological and geotechnical information about the underground facilities were obtained efficiently from exploration by drill holes including logging and geotechnical tests such as observation by borehole scanner, prospecting by VSP, initial stress measurement by sleeve fracturing method and JFT test.

Akitaka Hiratsuka; Takashi Arai; Tsukasa Yoshimura

1993-01-01T23:59:59.000Z

471

Gasification CFD Modeling for Advanced Power Plant Simulations  

SciTech Connect (OSTI)

In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETLs Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

Zitney, S.E.; Guenther, C.P.

2005-09-01T23:59:59.000Z

472

Fuel Cell Power Plants Renewable and Waste Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plants Power Plants Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean FuelCell Energy, Inc. * Premier developer of stationary fuel Premier developer of stationary fuel cell technology - founded in 1969 * Over 50 installations in North America, Europe, and Asia * Industrial, commercial, utility products products * 300 KW to 50 MW and beyond FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. g Product Line Based on Stack Building Block Cell Package and Stack Four-Stack Module DFC3000 Two 4-Stack Modules 2.8 MW Single-Stack Module Single Stack Module DFC1500 One 4-Stack Module 1.4 MW DFC300

473

Searchlight Solar I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Searchlight Solar I Solar Power Plant Searchlight Solar I Solar Power Plant Jump to: navigation, search Name Searchlight Solar I Solar Power Plant Facility Searchlight Solar I Sector Solar Facility Type Photovoltaic Developer American Capital Energy Location Searchlight, Nevada Coordinates 35.48428°, -114.937° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.48428,"lon":-114.937,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

Solaren Space Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solaren Space Solar Power Plant Solaren Space Solar Power Plant Jump to: navigation, search Name Solaren Space Solar Power Plant Facility Solaren Space Solar Sector Solar Facility Type Photovoltaic Developer Solaren Corp Generating Capacity (MW) 200.0200 MW 200,000 kW 200,000,000 W 200,000,000,000 mW 0.2 GW References [1] Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

475

Exergetic analysis and evaluation of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant  

Science Journals Connector (OSTI)

The present work has been undertaken for energetic and exergetic analysis of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant. Comparative analysis has been conducted ...

V. Siva Reddy; S. C. Kaushik; S. K. Tyagi

2014-03-01T23:59:59.000Z

476

Please Stand By: Reduce Your Standby Power Use | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Please Stand By: Reduce Your Standby Power Use Please Stand By: Reduce Your Standby Power Use Please Stand By: Reduce Your Standby Power Use August 17, 2009 - 5:00am Addthis John Lippert Standby power, vampire power, phantom loads, leaking electricity... Whatever you want to call it, standby power is the power consumed by a product when in the lowest power consuming mode-typically when the product is switched off or not performing its primary purpose. Alan Meier and colleagues at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (LBNL) noted that many household appliances are never fully switched off, but spend most of the time in a standby mode, consuming electricity to power such features as clocks and remote control operation. They estimated that standby power accounts for 5%-10% of

477

Please Stand By: Reduce Your Standby Power Use | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Please Stand By: Reduce Your Standby Power Use Please Stand By: Reduce Your Standby Power Use Please Stand By: Reduce Your Standby Power Use August 17, 2009 - 5:00am Addthis John Lippert Standby power, vampire power, phantom loads, leaking electricity... Whatever you want to call it, standby power is the power consumed by a product when in the lowest power consuming mode-typically when the product is switched off or not performing its primary purpose. Alan Meier and colleagues at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (LBNL) noted that many household appliances are never fully switched off, but spend most of the time in a standby mode, consuming electricity to power such features as clocks and remote control operation. They estimated that standby power accounts for 5%-10% of

478

Reducing power consumption during execution of an application on a plurality of compute nodes  

DOE Patents [OSTI]

Methods, apparatus, and products are disclosed for reducing power consumption during execution of an application on a plurality of compute nodes that include: executing, by each compute node, an application, the application including power consumption directives corresponding to one or more portions of the application; identifying, by each compute node, the power consumption directives included within the application during execution of the portions of the application corresponding to those identified power consumption directives; and reducing power, by each compute node, to one or more components of that compute node according to the identified power consumption directives during execution of the portions of the application corresponding to those identified power consumption directives.

Archer, Charles J. (Rochester, MN); Blocksome, Michael A. (Rochester, MN); Peters, Amanda E. (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian E. (Rochester, MN)

2012-06-05T23:59:59.000Z

479

Thermodynamics of combined-cycle electric power plants  

Science Journals Connector (OSTI)

Published data imply an average thermal efficiency of about 0.34 for U.S. electricity generating plants. With clever use of thermodynamics and technology modern gas and steam turbines can be coupled to effect dramatic efficiency increases. These combined-cycle power plants now reach thermal efficiencies in excess of 0.60. It is shown how the laws of thermodynamics make this possible.

Harvey S. Leff

2012-01-01T23:59:59.000Z

480

Methodology for Constructing Reduced-Order Power Block Performance Models for CSP Applications: Preprint  

SciTech Connect (OSTI)

The inherent variability of the solar resource presents a unique challenge for CSP systems. Incident solar irradiation can fluctuate widely over a short time scale, but plant performance must be assessed for long time periods. As a result, annual simulations with hourly (or sub-hourly) timesteps are the norm in CSP analysis. A highly detailed power cycle model provides accuracy but tends to suffer from prohibitively long run-times; alternatively, simplified empirical models can run quickly but don?t always provide enough information, accuracy, or flexibility for the modeler. The ideal model for feasibility-level analysis incorporates both the detail and accuracy of a first-principle model with the low computational load of a regression model. The work presented in this paper proposes a methodology for organizing and extracting information from the performance output of a detailed model, then using it to develop a flexible reduced-order regression model in a systematic and structured way. A similar but less generalized approach for characterizing power cycle performance and a reduced-order modeling methodology for CFD analysis of heat transfer from electronic devices have been presented. This paper builds on these publications and the non-dimensional approach originally described.

Wagner, M.

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "red