Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Reducing home heating and cooling costs  

SciTech Connect

This report is in response to a request from the House Committee on Energy and Commerce that the Energy Information Administration (EIA) undertake a neutral, unbiased analysis of the cost, safety, and health and environmental effects of the three major heating fuels: heating oil, natural gas, and electricity. The Committee also asked EIA to examine the role of conservation in the choice of heating and cooling fuel. To accommodate a wide audience, EIA decided to respond to the Committee`s request in the context of a report on reducing home heating and cooling costs. Accordingly, this report discusses ways to weatherize the home, compares the features of the three major heating and cooling fuels, and comments on the types of heating and cooling systems on the market. The report also includes a worksheet and supporting tables that will help in the selection of a heating and/or cooling system.

Not Available

1994-07-01T23:59:59.000Z

2

Reducing Home Heating and Cooling Costs  

U.S. Energy Information Administration (EIA) Indexed Site

. . . . . . . . . . . . 19 B1. Annual Cost of Oil Heat in Various Climates for a Range of Heating Oil Prices and System Efficiencies . . . . . 21 B2. Annual Cost of Gas Heat in...

3

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

4

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating...

5

Solar home heating in Michigan  

Science Conference Proceedings (OSTI)

This booklet presents the fundamentals of solar heating for both new and existing homes. A variety of systems for space heating and household water heating are explained, and examples are shown of solar homes and installations in Michigan.

Not Available

1984-01-01T23:59:59.000Z

6

Home heating system  

SciTech Connect

A home heating system is disclosed that has a furnace with a combustion chamber for burning fuel and creating heat, and a chimney with a draft therein. An improvement is described that has an exhaust flue connected between the combustion chamber and the chimney for venting heated exhaust products from the furnace, a heat reclaimer connected into the exhaust flue between the combustion chamber and the chimney for reclaiming heat from the heated exhaust product, and an outside air line for supplying air from the outside of the house to the combustion chamber. A first flue portion of the exhaust flue is connected between the combustion chamber and the heat reclaimer, and a second insulated flue portion of the exhaust flue is connected between the heat reclaimer and the chimney. An outside air by-pass or balancing line is connected between the outside air line and the chimney for satisfying the chimney suction at flame-out. A flow sensing and regulating device may be connected into the outside air line for regulating the flow or air so that outside air is supplied to the furnace only when fuel is burned therein.

Bellaff, L.

1980-03-25T23:59:59.000Z

7

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

8

Northeast Home Heating Oil Reserve  

Gasoline and Diesel Fuel Update (EIA)

Northeast Home Heating Oil Reserve Northeast Home Heating Oil Reserve Information on the Northeast Home Heating Oil Reserve is available from the U.S. Department of Energy (DOE) Office of Petroleum Reserves web site at http://www.fossil.energy.gov/programs/reserves/heatingoil/. Northeast Home Heating Oil Reserve (NEHHOR) inventories now classified as ultra-low sulfur distillate (15 parts per million) are not considered to be in the commercial sector and therefore are excluded from distillate fuel oil supply and disposition statistics in Energy Information Administration publications, such as the Weekly Petroleum Status Report, Petroleum Supply Monthly, and This Week In Petroleum. Northeast Home Heating Oil Reserve Terminal Operator Location (Thousand Barrels) Hess Corp. Groton, CT 500*

9

PreHeat: controlling home heating using occupancy prediction  

Science Conference Proceedings (OSTI)

Home heating is a major factor in worldwide energy use. Our system, PreHeat, aims to more efficiently heat homes by using occupancy sensing and occupancy prediction to automatically control home heating. We deployed PreHeat in five homes, three in the ... Keywords: energy, environment, home heating, prediction, sensing

James Scott; A.J. Bernheim Brush; John Krumm; Brian Meyers; Michael Hazas; Stephen Hodges; Nicolas Villar

2011-09-01T23:59:59.000Z

10

Overview: Home Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 8:17am Addthis Home heating accounts for about 30 percent of the energy used in the home. | Photo courtesy iStockphoto.com Home heating accounts for about 30 percent of the...

11

Northeast Home Heating Oil Reserve now focuses on New England ...  

U.S. Energy Information Administration (EIA)

The Northeast Home Heating Oil Reserve (NHHOR) will be reduced to one million barrels, half its original size, as the stockpile's holdings are converted to ultra-low ...

12

Economic Analysis of Home Heating and Cooling  

E-Print Network (OSTI)

Over the last eleven years Houston Lighting & Power has raised utility rates an average of 17% per year. Over the last 3 1/2 years the utility rates have doubled. According to Houston City Magazine, Houstonians can expect future raises of 20-25% annually due to required construction of new utility plants to accommodate Houston's future growth. Utility costs could, and in many cases do, exceed the monthly mortgage payment. This has caused all to become concerned with what can be done to lower the utility bill for homes. In a typical Gulf Coast home approximately 50% of household utility costs are due to the air conditioning system, another 15-20% of utility costs are attributed to hot water heating. The remaining items in the home including lights, toaster, washer, dryer, etc. are relatively minor compared to these two "energy gulpers". Reducing air conditioning and hot water heating costs are therefore the two items on which homeowners should concentrate.

Wagers, H. L.

1984-01-01T23:59:59.000Z

13

Northeast Home Heating Oil Reserve - Guidelines for Release ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating Oil Reserve Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release Petroleum Reserves Strategic...

14

Evaluating home heating options in Krakow  

SciTech Connect

The city of Krakow, Poland, has poor air quality due, in part, to widespread use of coal for heating. Engineering analyses have been conducted to determine the technical feasibility and capital costs for a number of options for reducing pollution from home heating sources. Capital costs range from $90 per kilowatt (kW) to connect local boiler-houses to the district heating system to $227/kW to upgrade the electrical system and convert coal stoves to electric heat. Air quality analyses have estimated the reduction in pollutant emissions as well as in pollutant concentrations that would result from implementing the options under consideration. Significant reductions can be obtained at a lower cost by using briquettes instead of coal in home stoves than by converting the stoves to electricity or gas. Finally, incentives analyses are examining the cost-effectiveness of the various alternatives and identifying possible incentives that the city could provide to encourage adoption of less-polluting technologies and practices.

Bleda, J.; Nedoma, J.; Bardel, J.; Pierce, B.

1995-08-01T23:59:59.000Z

15

Energy Saver 101: Home Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Saver 101: Home Heating Energy Saver 101: Home Heating Energy Saver 101: Home Heating Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That means making smart decisions about your home's heating system can have a big impact on your energy bills. Our Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. Download individual sections of the infographic or a high resolution version now. homeHeating.pdf homeHeating_slide-01.png homeHeating_slide-02.png homeHeating_slide-03.png homeHeating_slide-04.png homeHeating_slide-05.png

16

Energy Saver 101: Home Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Energy Saver 101: Home Heating Energy Saver 101: Home Heating Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That means making smart decisions about your home's heating system can have a big impact on your energy bills. Our Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. Download individual sections of the infographic or a high resolution version now. homeHeating.pdf homeHeating_slide-01.png homeHeating_slide-02.png homeHeating_slide-03.png homeHeating_slide-04.png homeHeating_slide-05.png

17

Home Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by automatically setting back your thermostat when you are asleep or away. Read more Wood and Pellet Heating Wood and pellets are renewable fuel sources, and modern wood and...

18

New York Home Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 of 15 5 of 15 Notes: The severity of this spot price increase is causing dramatic changes in residential home heating oil prices, although residential price movements are usually a little slower and spread out over time compared to spot prices. Wholesale prices increased over 50 cents from January 17 to January 24, while retail increased 44 cents in New York. Diesel prices are showing a similar pattern to residential home heating oil prices, and are indicating that home heating oil prices may not have peaked yet, although spot prices are dropping. Diesel prices in New England and the Mid-Atlantic increased 30-40 cents January 24 over the prior week, and another 13-15 cents January 31. Spot prices plummeted January 31, closing at 82 cents per gallon, indicating the worst part of the crisis may be over, but it is still a

19

STEO October 2012 - home heating supplies  

U.S. Energy Information Administration (EIA) Indexed Site

Natural gas, propane, and electricity supplies seen plentiful Natural gas, propane, and electricity supplies seen plentiful this winter for U.S. home heating Supplies of the major heating fuels used by most U.S. households are expected to be plentiful this winter, with the possible exception of heating oil, which is consumed mostly by households in the Northeast. Heating oil stocks are expected to be low in the East Coast and Gulf Coast states. And with New York state requiring heating oil with lower sulfur levels for the first time, the heating oil market is expected to be tighter this winter, according to the U.S. Energy Information Administration's new winter fuels forecast. However, U.S. inventories of natural gas, the most common primary heating fuel used by households and a key fuel for electricity generation, is expected to reach 3.9 trillion cubic feet by

20

Lower residential energy use reduces home energy expenditures as ...  

U.S. Energy Information Administration (EIA)

Aggregate home energy expenditures by U.S. households fell $12 billion in 2012 ... households spent $1,945 on heating, cooling, appliances, electronics, and lighting ...

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve March 14, 2011 - 1:00pm Addthis Washington,...

22

Northeast Home Heating Oil Reserve - Guidelines for Release ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release Petroleum Reserves Strategic Petroleum Reserve Heating Oil Reserve Naval Reserves International...

23

DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Northeast Home Heating Oil Reserve for Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve March 14, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy, through its agent, DLA Energy, has issued a solicitation for new contracts to store two million barrels of ultra low sulfur distillate for the Northeast Home Heating Oil Reserve in New York Harbor and New England. Offers are due no later than 9:00 a.m. EDT on March 29, 2011. Of the U.S. households that use heating oil to heat their homes, 69% reside in the Northeast. The Northeast Home Heating Oil Reserve was established by the Energy Policy Act of 2000 to provide an emergency buffer that can supplement commercial fuel supplies in the event of an actual or imminent severe supply disruption. The Reserve can provide supplemental supplies for

24

Heat pumps and manufactured homes: Making the marriage work  

SciTech Connect

Manufactured homes make up over 7% of the US housing stock, including over 15% of the homes in North Carolina. As more of these homes are being equipped with heat pumps, it becomes important to figure out how to make these systems efficient. This article describes a number of ways of increasing the efficiency. The following topics are included: heat pump actual and rated capacity; heat pump sizing; air flow to the coil; indoor thermostat placement; outdoor thermostat; condensate; leaky ducts; pressure boundary breaches; pressure problems; what you should look for in heat pumps; manufactured housing - an evolutionary home.

Conlin, F.; Neal, C.L. [North Carolina Alternative Energy Corp., Raleigh, NC (United States)

1996-11-01T23:59:59.000Z

25

New York Home Heating Oil Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The severity of this spot price increase is causing dramatic changes in residential home heating oil prices, although residential price movements are usually a ...

26

Energy Saver 101 Infographic: Home Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saver 101 Infographic: Home Heating Saver 101 Infographic: Home Heating Energy Saver 101 Infographic: Home Heating December 16, 2013 - 10:48am Addthis Our new Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. | Infographic by Sarah Gerrity, Energy Department. Our new Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. | Infographic by Sarah Gerrity, Energy Department. Rebecca Matulka Rebecca Matulka

27

Our winters of discontent: Addressing the problem of rising home-heating costs1  

E-Print Network (OSTI)

on fossil fuels by using solar energy, reducing residential energy demand, and promoting district heating. 1ERG/200602 Our winters of discontent: Addressing the problem of rising home-heating costs1 Larry Residential space heating is a necessity in northern countries such as Canada. With over 70 percent

Hughes, Larry

28

Reduce Radiation Losses from Heating Equipment  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

Not Available

2006-01-01T23:59:59.000Z

29

DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Purchase Heating Oil for the Northeast Home Heating Oil Purchase Heating Oil for the Northeast Home Heating Oil Reserve DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve June 23, 2008 - 1:29pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today issued a solicitation seeking to purchase heating oil for the Northeast Home Heating Oil Reserve (NEHHOR) using $3 million in appropriated funds. The Northeast Home Heating Oil Reserve provides an important safety cushion for millions of Americans residing in the Northeast region of the country. Due to the modest volume of heating oil expected to be purchased with the available funds, no impact on market prices is expected. In 2007 a 35,000 barrel sale was conducted to raise funds necessary to award new long-term storage contracts to fill NEHHOR to its authorized

30

Federal Agencies Combine Efforts to Protect Environment and Reduce Home  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Agencies Combine Efforts to Protect Environment and Reduce Federal Agencies Combine Efforts to Protect Environment and Reduce Home Energy Bills Federal Agencies Combine Efforts to Protect Environment and Reduce Home Energy Bills July 11, 2005 - 2:07pm Addthis Department of Housing and Urban Development; Department of Energy; Environmental Protection Agency WASHINGTON, DC- The Bush administration today announced a major new partnership aimed at reducing household energy costs by 10 percent over the next decade. The Partnership for Home Energy Efficiency will provide energy saving solutions for all households across the country and support research and implementation of a new generation of energy efficiency technologies. The Department of Energy (DOE), the Department of Housing and Urban Development (HUD) and the Environmental Protection Agency (EPA) will

31

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

Choice in Home Heating and Cooling D.J. Wood, H. Ruderman,IN HOME HEATING AND COOLING* David J. Wood, Henry RudermanIN HOME HEATING AND COOLING David J. Wood, Henry Ruderman,

Wood, D.J.

2010-01-01T23:59:59.000Z

32

A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT  

E-Print Network (OSTI)

Home Heating and Cooling Equipment D.J. Wood, H. Ruderman,on home heating appliance choice are referred to Wood,FOR HOME HEATING AND COOLING EQUIPMENT David J. Wood, Henry

Wood, D.J.

2010-01-01T23:59:59.000Z

33

A Feasibility Study: Mining Daily Traces for Home Heating Control  

E-Print Network (OSTI)

home time and dynamically controls the HVAC system [8]. In general, automated home heating control Department of Computer Science University of Virginia {hong, whitehouse}@virginia.edu ABSTRACT HVAC systems nationwide. Recent work has been focused on auto- mated control based on occupancy prediction, where some

Whitehouse, Kamin

34

Economics of the attached solar greenhouse for home heating  

SciTech Connect

For several years, passive solar heating has been considered to be very attractive (economically and otherwise) for home heating in the U.S. Unfortunately passive systems are not as easily analyzed as active systems from an engineering and economic performance point of view. This problem is addressed, and an economic assessment of the solar greenhouse is given. Using simple heat balance analysis, a greenhouse performance model is developed for assessing heat available for home space conditioning from an add-on solar greenhouse. This forms the basis for an engineering-economic model for assessing the economic viability of the add-on solar greenhouse for home heating. Model variables include climatic factors, local costs, alternate fuels and system size. This model is then used to examine several locations in the U.S. for the economic attractiveness of the add-on solar greenhouse for space heating.

Kolstad, C.D.

1978-01-01T23:59:59.000Z

35

Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Additional Storage Contracts Awarded for Northeast Home Heating Oil Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve September 30, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) has completed the acquisition of commercial storage services for the one million barrel Northeast Home Heating Oil Reserve (NEHHOR). Two awards totaling 350,000 barrels have been made to companies that had earlier received storage contracts totaling 650,000 barrels. Hess Corporation in Groton, CT has been awarded a second contract for 100,000 barrels, increasing its storage obligation to 500,000 barrels. Global Companies LLC in Revere, MA was awarded a second contract for 250,000 barrels, increasing its obligation to 500,000 barrels.

36

Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Facility Hillbrook Nursing Home Sector Geothermal energy Type Space Heating Location Clancy, Montana Coordinates 46.4652096°, -111.9863826° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

37

DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards Storage Contracts for Northeast Home Heating Oil Reserve Awards Storage Contracts for Northeast Home Heating Oil Reserve DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve August 18, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today announced that new contracts have been awarded for commercial storage of 650,000 barrels of ultra low sulfur distillate (ULSD) for the Northeast Home Heating Oil Reserve (NEHHOR). Awards were made to two companies for storage in New England--Hess Corporation in Groton, CT for 400,000 barrels, and Global Companies LLC in Revere, MA for 250,000 barrels. The procurement was conducted by the Defense Logistics Agency (DLA Energy), acting as the agent for DOE. Acquisition of storage services for an additional 350,000 barrels is planned to complete the establishment of a

38

Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Additional Storage Contracts Awarded for Northeast Home Heating Oil Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve September 30, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) has completed the acquisition of commercial storage services for the one million barrel Northeast Home Heating Oil Reserve (NEHHOR). Two awards totaling 350,000 barrels have been made to companies that had earlier received storage contracts totaling 650,000 barrels. Hess Corporation in Groton, CT has been awarded a second contract for 100,000 barrels, increasing its storage obligation to 500,000 barrels. Global Companies LLC in Revere, MA was awarded a second contract for 250,000 barrels, increasing its obligation to 500,000 barrels.

39

Northeast Home Heating Oil Reserve- Guidelines for Release  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Policy and Conservation Act, as amended, sets conditions for the release of the Northeast Home Heating Oil Reserve. The Secretary of Energy has the authority to sell, exchange, or...

40

Northeast Home Heating Oil Reserve - Online Bidding System | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Petroleum Reserves » Heating Oil Reserve » Northeast Services » Petroleum Reserves » Heating Oil Reserve » Northeast Home Heating Oil Reserve - Online Bidding System Northeast Home Heating Oil Reserve - Online Bidding System The U.S. Department of Energy has developed an on-line bidding system - an anonymous auction program - for the sale of product from the one million barrel Northeast Home Heating Oil Reserve. We invite prospective bidders and other interested parties to try out this system and give us your views. You must register to use the system to practice or to participate in an actual emergency sale. Registration assures that you will receive e-mail alerts of sales or other pertinent news. You will also have the opportunity to establish a user ID and password to submit bids. If you establish a user ID, you will receive a temporary password by

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

STEO October 2012 - home heating use  

U.S. Energy Information Administration (EIA) Indexed Site

Last year's warm U.S. winter temperatures to give way to Last year's warm U.S. winter temperatures to give way to normal, increasing household heating fuel use U.S. households will likely burn more heating fuels to stay warm this winter compared with last year Average household demand for natural gas, the most common primary heating fuel, is expected to be up 14 percent this winter, according to the U.S. Energy Information Administration's new winter fuels forecast. Demand for electricity will be up 8 percent. And demand for heating oil, used mainly in the Northeast, is expected to be 17 percent higher with propane, used mostly in rural areas, also up 17 percent. The primary reason for the boost in heating fuel demand is weather, which is expected to be 20 to 27 percent colder than last winter's unusually warm temperatures in regions of the country

42

Field Measurements of Heating System Efficiency in Nine Electrically-Heated Manufactured Homes.  

Science Conference Proceedings (OSTI)

This report presents the results of field measurements of heating efficiency performed on nine manufactured homes sited in the Pacific Northwest. The testing procedure collects real-time data on heating system energy use and heating zone temperatures, allowing direct calculation of heating system efficiency.

Davis, Bob; Siegel, J.; Palmiter, L.; Baylon, D.

1996-07-01T23:59:59.000Z

43

Question of the Week: How Do You Reduce Your Water Heating Costs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduce Your Water Heating Costs Reduce Your Water Heating Costs Question of the Week: How Do You Reduce Your Water Heating Costs February 19, 2009 - 1:39pm Addthis Water heating can account for a significant portion of your energy costs. Purchasing a new ENERGY STAR® water heater is just one way to save on your water heating bills. The Energy Savers Tips site lists other strategies you can use to cut your water heating costs. How do you reduce your water heating costs? E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Question of the Week: How Do You Reduce Your Water Heating Costs Energy Savers Guide: Tips on Saving Money and Energy at Home How Do You Save on Lighting Costs? Question of the Week: How Do You Reduce Your Water Heating Costs

44

Energy conservation and solar heating for mobile homes  

DOE Green Energy (OSTI)

Project activities consisted of retro-fitting six (6) mobile homes with extensive energy-conservation improvements and installing solar-space-heating systems on four (4) of these homes. The intent of the project was to evaluate the potential of mobile homes as a low-cost energy-efficient housing option for low- to moderate income families. Using both hard and soft data, it is estimated that an average fuel reduction in excess of 35% was achieved by the conservation improvements alone. The project lacked the expertise and monitoring instruments to properly evaluate the effectiveness of the four solar installations and had to rely on the personal observations of the four families that received the units.

None

45

Industrial Uses of Vegetable OilsChapter 5 Biofuels for Home Heating Oils  

Science Conference Proceedings (OSTI)

Industrial Uses of Vegetable Oils Chapter 5 Biofuels for Home Heating Oils Processing eChapters Processing Press Downloadable pdf of Chapter 5 Biofuels for Home Heating Oils from the book ...

46

#tipsEnergy: Saving on Home Heating Costs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

tipsEnergy: Saving on Home Heating Costs tipsEnergy: Saving on Home Heating Costs November 23, 2012 - 3:37pm Addthis Rebecca Matulka Rebecca Matulka Digital Communications...

47

Heat Pump Water Heaters and American Homes: A Good Fit?  

SciTech Connect

Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

2010-05-14T23:59:59.000Z

48

OpenEI/PageKeyword solar home heating | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search A list of all pages that have property "OpenEIPageKeyword" with value "solar home heating" Gateway:Solar + Property: OpenEIPageKeyword Value: solar home...

49

New York Home Heating Oil Prices - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

The severity of this spot price increase is causing dramatic changes in residential home heating oil prices, although residential price movements are usually a ...

50

#tipsEnergy: Saving on Home Heating Costs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving on Home Heating Costs Saving on Home Heating Costs #tipsEnergy: Saving on Home Heating Costs November 23, 2012 - 3:37pm Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs #tipsEnergy: Saving on Home Heating Costs A feature on the Energy Department's Twitter account, #tipsEnergy highlights ways to save energy and money at home. Once a month, we ask you to share your energy-saving tips so the larger energy community can learn from you, and we feature some of the best tips in a Storify. Storified by Energy Department · Fri, Nov 23 2012 12:37:07 As we head into December, the cold weather season is officially upon us, and nowhere is that more evident than on your utility bills. Home heating and cooling uses more energy than any other

51

Lower residential energy use reduces home energy expenditures as ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum Weekly Petroleum Status Report Weekly Natural Gas Storage ... households spent $1,945 on heating, cooling, appliances, electronics, and ...

52

Design and Development of an Intelligent Energy Controller for Home Energy Saving in Heating/Cooling System .  

E-Print Network (OSTI)

??Energy is consumed every day at home as we perform simple tasks, such as watching television, washing dishes and heating/cooling home spaces during season of (more)

Abaalkhail, Rana

2012-01-01T23:59:59.000Z

53

Field Measurements of Heating Efficiency of Electric Forced-Air Furnaces in Six Manufactured Homes.  

Science Conference Proceedings (OSTI)

This report presents the results of field measurements of heating efficiency for six manufactured homes in the Pacific Northwest heated with electric forced-air systems. This is the first in a series of regional and national efforts to measure in detail the heating efficiency of manufactured homes. Only six homes were included in this study because of budgetary constraints; therefore this is not a representative sample. These investigations do provide some useful information on the heating efficiency of these homes. Useful comparisons can be drawn between these study homes and site-built heating efficiencies measured with a similar protocol. The protocol used to test these homes is very similar to another Ecotope protocol used in the study conducted in 1992 and 1993 for the Bonneville Power Administration to test the heating efficiency of 24 homes. This protocol combined real-time power measurements of furnace energy usage with energy usage during co-heat periods. Accessory data such as house and duct tightness measurements and tracer gas measurements were used to describe these homes and their heating system efficiency. Ensuring that manufactured housing is constructed in an energy and resource efficient manner is of increasing concern to manufactured home builders and consumers. No comparable work has been done to measure the heating system efficiency of MCS manufactured homes, although some co-heat tests have been performed on manufactured homes heated with natural gas to validate HUD thermal standards. It is expected that later in 1994 more research of this kind will be conducted, and perhaps a less costly and less time-consuming method for testing efficiencies will be develops.

Davis, Bob; Palmiter, Larry S.; Siegel, Jeff

1994-07-26T23:59:59.000Z

54

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Will Convert Northeast Home Heating Oil Reserve to Ultra Low Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said today. The State of New York and other Northeastern states are implementing more stringent fuel standards that require replacement of high sulfur (2,000 parts per million) heating oil to ultra low sulfur fuel (15 parts per million). As a result, DOE will sell the current inventory of the Northeast Home Heating Oil Reserve, a total of approximately 2 million barrels, and

55

Villa Trieste Homes Building Reduced-Energy Homes in the Southwest U.S. Desert  

E-Print Network (OSTI)

, and a HERS rating of 36-39 including the PV system impact. Standard features o A tankless water heater o and o Photovoltaic units for solar energy on the roofs of these homes. o A system that allowsVilla TriesteRomaNVLas VegasNV #12;Design Details Center for Energy Research at UNLV Solar Energy Each

Hemmers, Oliver

56

DOE Accepts Bids for Northeast Home Heating Oil Stocks | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accepts Bids for Northeast Home Heating Oil Stocks Accepts Bids for Northeast Home Heating Oil Stocks DOE Accepts Bids for Northeast Home Heating Oil Stocks February 3, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today has awarded contracts to three companies who successfully bid for the purchase of 984,253 barrels of heating oil from the Northeast Home Heating Oil Reserve. Awardee Amount Morgan Stanley 500,000 barrels Shell Trading U.S. Company 250,000 barrels George E. Warren Corporation 234,253 barrels Today's sale was the first held as part of the Department's initiative to convert the current 1,984,253-barrel heating oil reserve to cleaner burning ultra low sulfur distillate. Contracts for the heating oil will be executed upon final payment to DOE; final payment is required no later than

57

DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sell 35,000 Barrels of Oil from the Northeast Home Heating Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve May 24, 2007 - 4:16pm Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that it will sell approximately 35,000 barrels of home heating oil from the Northeast Home Heating Oil Reserve (NEHHOR). The Reserve's current 5-year storage contracts expire on September 30, 2007 and market conditions have caused new storage costs to rise to a level that exceeds available funds. Revenue from the sale will be used to supplement funds for the award of new long-term storage contracts that will begin on October 1, 2007. The Department will work with Congress to resolve these funding issues in order to restore the inventory of the Reserve to its full authorized size.

58

DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Sell 35,000 Barrels of Oil from the Northeast Home Heating to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve May 24, 2007 - 4:16pm Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that it will sell approximately 35,000 barrels of home heating oil from the Northeast Home Heating Oil Reserve (NEHHOR). The Reserve's current 5-year storage contracts expire on September 30, 2007 and market conditions have caused new storage costs to rise to a level that exceeds available funds. Revenue from the sale will be used to supplement funds for the award of new long-term storage contracts that will begin on October 1, 2007. The Department will work with Congress to resolve these funding issues in order

59

DOE Completes Sale of Northeast Home Heating Oil Stocks | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Sale of Northeast Home Heating Oil Stocks Completes Sale of Northeast Home Heating Oil Stocks DOE Completes Sale of Northeast Home Heating Oil Stocks February 10, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today has awarded contracts to four companies who successfully bid for the purchase of 1,000,000 barrels of heating oil from the Northeast Home Heating Oil Reserve storage sites in Groton and New Haven, CT. Hess Groton Terminal, Groton, CT Shell Trading U.S. Company 150,000 barrels Sprague Energy Corp. 100,000 barrels Magellan New Haven Terminal, New Haven, CT Hess Corporation 300,000 barrels Morgan Stanley 450,000 barrels Today's sale was the second held as part of the Department's initiative to convert the 1,984,253 barrel heating oil reserve to cleaner burning

60

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said today. The State of New York and other Northeastern states are implementing more stringent fuel standards that require replacement of high sulfur (2,000 parts per million) heating oil to ultra low sulfur fuel (15 parts per million). As a result, DOE will sell the current inventory of the Northeast

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sulfur content of heating oil to be reduced in northeastern states ...  

U.S. Energy Information Administration (EIA)

Also, the Northeast Home Heating Oil Reserve has switched to ULSD. The Northeast is the largest regional consumer of heating oil in the United States.

62

Geothermal greenhouse-heating facilities for the Klamath County Nursing Home, Klamath Falls, Oregon  

DOE Green Energy (OSTI)

The Klamath County Nursing Home, located in Klamath Falls, Oregon, was constructed in 1976. The building of 55,654 square feet currently houses care facilities for approximately 120 persons. During the initial planning for the Nursing Home, the present site was selected primarily on the basis of its geothermal resource. This resource (approx. 190/sup 0/F) currently provides space and domestic hot water heating for the Nursing Home, Merle West Medical Center and the Oregon Institute of Technology. The feasibility of installing a geothermal heating system in a planned greenhouse for the Nursing Home is explored. The greenhouse system would be tied directly to the existing hot water heating system for the Nursing Home.

Not Available

1982-02-01T23:59:59.000Z

63

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network (OSTI)

2001. Residential Heat Pump Water Heater (HPWH) DevelopmentKelso, J. 2003. Incorporating Water Heater Replacement into2005. Residential Heat Pump Water Heaters: Energy Efficiency

Franco, Victor

2011-01-01T23:59:59.000Z

64

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

Home Heating Anderson [21 Oil Price Electric Share Gas ShareBaughman and Joskow [3] Oil Price Gas Price Lin, Hirst,and Cohn [10] Gas Price Oil Price Hartman and Hollyer [8] (

Wood, D.J.

2010-01-01T23:59:59.000Z

65

What is the outlook for home heating fuel prices this winter ...  

U.S. Energy Information Administration (EIA)

What is the outlook for home heating fuel prices this winter? According to EIA's Short Term Energy Outlook released on August 6, 2013, the projections for U.S ...

66

DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Complete Fill of Northeast Home to Complete Fill of Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve August 26, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy (DOE), through its agent DLA Energy, has issued a solicitation seeking commercial storage contracts for the remaining 350,000 barrels of ultra low sulfur distillate needed to complete the fill of the Northeast Home Heating Oil Reserve. Offers are due no later than 9:00 a.m., August 31, 2011. Earlier this year, DOE sold its entire inventory of heating oil stocks with plans to replace it with cleaner burning ultra low sulfur distillate. New storage contracts were awarded in August 2011 for 650,000 barrels, and awards from this solicitation will complete the fill of the one million

67

Heat Pump Water Heaters and American Homes: A Good Fit?  

NLE Websites -- All DOE Office Websites (Extended Search)

can be cost effective in all regionsfor most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most...

68

Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleanup Project Cleanup Project Search Login Home News News Inside the ICP articles About Us About Us Our Mission Facility Factsheets History of the Site Safety Working with CWI/Property Sales Working with CWI Subcontracting & Small Business Academic Internship Program Property Sales Outreach Community Outreach Stakeholders Education and Research Transfer Program AR-IR Administration Contact Us Industry leader in safe performance CWI's worker-owned safety culture has been the cornerstone for delivering work at the Idaho Cleanup Project. Since contract inception in May 2005, the CWI team has reduced recordable injuries by more than 70 percent. Video Feature: Waste Management Treatment of sodium-contaminated waste using a distillation process (9:47) Terms Of Use Privacy Statement If you have a disability and need an

69

Homes  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) improves home energy performance by developing and demonstrating advanced energy efficiency technologies and practices that make homes in the United States more...

70

Measure Guideline: Heat Pump Water Heaters in New and Existing Homes  

Science Conference Proceedings (OSTI)

This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH products) installed in existing homes in the northeast region of the United States.

Shapiro, C.; Puttagunta, S.; Owens, D.

2012-02-01T23:59:59.000Z

71

Most homes have central thermostats on heating and cooling ...  

U.S. Energy Information Administration (EIA)

... solar, wind , geothermal ... Quarterly Coal Report Monthly Energy Review Residential Energy ... main heating equipment is a portable heater, ...

72

Reduce Your Heating Bills with Better Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation October 3, 2008 - 11:09am Addthis John Lippert If you pay your own energy bills, you don't need to be reminded that energy prices are escalating. Energy price projections for this coming winter are not encouraging. According to the Energy Information Administration, residential natural gas prices during the upcoming heating season (October though March) are projected to average $14.93 per Mcf, an increase of about 17% compared to last year's heating season. Residential heating oil prices are projected to average $4.13 per gallon this winter, an increase of about 25%. What if you live in an all-electric house? Many utilities are continuing to pursue retail electricity rate increases in response to power generation

73

Reduce Your Heating Bills with Better Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation October 3, 2008 - 11:09am Addthis John Lippert If you pay your own energy bills, you don't need to be reminded that energy prices are escalating. Energy price projections for this coming winter are not encouraging. According to the Energy Information Administration, residential natural gas prices during the upcoming heating season (October though March) are projected to average $14.93 per Mcf, an increase of about 17% compared to last year's heating season. Residential heating oil prices are projected to average $4.13 per gallon this winter, an increase of about 25%. What if you live in an all-electric house? Many utilities are continuing to pursue retail electricity rate increases in response to power generation

74

Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip Navigation Links Home Newsroom About INL Careers Research Programs Facilities Education Distinctive Signature: ICIS Environment, Safety & Health Research Library Technology...

75

Investigations of novel heat pump systems for low carbon homes.  

E-Print Network (OSTI)

??The European standard EN15450 states that the Coefficient of Performance (COP) target range for a Ground Source Heat Pump (GSHP) installation should lie within the (more)

Mempouo, B.

2011-01-01T23:59:59.000Z

76

Factors affecting the adoption of home-heating energy-conservation measures: a behavioral approach  

SciTech Connect

The basic aim of this research is to better understand homeowners' adoption of home-heating energy-conservation measures by analyzing a number of factors that are thought to be underlying determinants of adoption behavior. The basic approach is behavioral drawing on the knowledge built up in behavioral geography through studies on natural hazards and innovation diffusion, and borrowing from psychological theories of attitude formation and decision making. In particular, six factors (information, environmental personality, socio-economic and demographic factors, dwelling unit characteristics, psychological variables, and past experience) are shown to directly and indirectly affect adoption behavior. By this means, differences between adopters and nonadopters in the underlying cognitive structures and in the situational factors that affect their decisions are identified. The study focuses on the adoption of three measures: reducing winter night-time thermostat settings, changing or cleaning furnace filters, and installing an automatic setback thermostat. Personal interviews with a random sample of 159 homeowners in Decatur, Illinois serve as the main data base. Results indicate that adoption behavior is determined more by past experience, than by intention. Beliefs, attitudes, and social influences affect behavior indirectly through intention. These psychological variables also act as mediators between information, knowledge, environmental personality, situational variables and behavior. In particular, respondent's age, previous home ownership, and length of residence act indirectly on adoption behavior. Each of these reflects the amount of past experience the respondent is likely to have.

Macey, S.M.

1982-01-01T23:59:59.000Z

77

Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment  

SciTech Connect

The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment', ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations. All system options were scored by the ORNL building equipment research team and by William Goetzler of Navigant Consulting. These scores were reviewed by DOE/BT's Residential Integration program leaders and Building America team members. Based on these results, the two centrally ducted integrated heat pump (IHP) systems (air source and ground source versions) were selected for advancement to Stage 2 (Exploratory Development) business case assessments in FY06. This report describes results of these business case assessments. It is a compilation of three separate reports describing the initial business case study (Baxter 2006a), an update to evaluate the impact of an economizer cooling option (Baxter 2006b), and a second update to evaluate the impact of a winter humidification option (Baxter 2007). In addition it reports some corrections made subsequent to release of the first two reports to correct so

Baxter, Van D [ORNL

2007-05-01T23:59:59.000Z

78

How Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? How Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? September 23, 2010 - 7:30am Addthis On Monday, Chris told you about his new ceiling fan and how it's changed the way he cools his home. In warm weather, ceiling fans cool people (not rooms) by producing a wind-chill effect-which is why you should turn off fans when you leave the room. A ceiling fan allows you to raise the thermostat setting about 4°F with no reduction in comfort. Ceiling fans don't just cool in the summer; you can also reverse the direction in the winter to provide an updraft and force warm air down into the room. How has a ceiling fan affected the way you heat and cool your home? Each Thursday, you have the chance to share your thoughts on a question

79

How Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? How Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? September 23, 2010 - 7:30am Addthis On Monday, Chris told you about his new ceiling fan and how it's changed the way he cools his home. In warm weather, ceiling fans cool people (not rooms) by producing a wind-chill effect-which is why you should turn off fans when you leave the room. A ceiling fan allows you to raise the thermostat setting about 4°F with no reduction in comfort. Ceiling fans don't just cool in the summer; you can also reverse the direction in the winter to provide an updraft and force warm air down into the room. How has a ceiling fan affected the way you heat and cool your home? Each Thursday, you have the chance to share your thoughts on a question

80

Solar heating and cooling of mobile homes, Phase II. Final report  

DOE Green Energy (OSTI)

The specific objectives of the Phase II program were: (1) through system testing, confirm the feasibility of a solar heated and cooled mobile home; (2) update system performance analysis and provide solar heating and cooling computer model verification; (3) evaluate the performance of both an absorption and a Rankine air conditioning system; (4) perform a consumer demand analysis through field survey to ascertain the acceptance of solar energy into the mobile home market; and (5) while at field locations to conduct the consumer demand analysis, gather test data from various U.S. climatic zones. Results are presented and discussed. (WHK)

Jacobsen, A.A.

1976-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.  

SciTech Connect

This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.

ANDREWS,J.

2001-01-01T23:59:59.000Z

82

Solar-assisted electric clothes dryer using a home attic as a heat source  

DOE Green Energy (OSTI)

This study was undertaken to determine the suitability of using a southeastern home attic as a means of reducing the energy consumption of an electric clothes dryer. An inexpensive duct (duplicable for $25) was constructed to collect hot attic air from the peak of a south facing roof and introduce it into the dryer inlet. Instrumentation was added to measure inlet temperatures and operating time/energy consumption of the dryer. Standardized test loads, in addition to normal laundry, were observed over the period of one year. The heat-on time of the dryer tested was shown to be reduced .16 to .35 minutes per /sup 0/C rise in inlet temperature. Inlet temperatures produced by the attic duct peaked at 56/sup 0/C(133/sup 9/F) in May/June and 40/sup 0/C(104/sup 0/F) in February. Based on peak temperatures available between 2 and 4 pm each month, a potential 20% yearly average savings could be realized. Economic viability of the system, dependant primarily on dryer usage, can be computed using a formula derived from the test results and included in the report.

Stana, J.M.

83

EERE: Homes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RENEWABLE ENERGY AND BEING ENERGY EFFICIENT AT HOME Incentives Tax Credits, Rebates, and Savings Save Money and Energy at Home Appliances Energy Assessments Water Heating Using...

84

Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes  

SciTech Connect

Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

Backman, C.; German, A.; Dakin, B.; Springer, D.

2013-12-01T23:59:59.000Z

85

Comparison of actual and predicted energy savings in Minnesota gas-heated single-family homes  

Science Conference Proceedings (OSTI)

Data available from a recent evaluation of a home energy audit program in Minnesota are sufficient to allow analysis of the actual energy savings achieved in audited homes and of the relationship between actual and predicted savings. The program, operated by Northern States Power in much of the southern half of the state, is part of Minnesota's version of the federal Residential Conservation Service. NSP conducted almost 12 thousand RCS audits between April 1981 (when the progam began) and the end of 1982. The data analyzed here, available for 346 homes that obtained an NSP energy audit, include monthly natural gas bills from October 1980 through April 1983; heating degree day data matched to the gas bills; energy audit reports; and information on household demographics, structure characteristics, and recent conservation actions from mail and telephone surveys. The actual reduction in weather-adjusted natural gas use between years 1 and 3 averaged 19 MBtu across these homes (11% of preprogram consumption); the median value of the saving was 16 MBtu/year. The variation in actual saving is quite large: gas consumption increased in almost 20% of the homes, while gas consumption decreased by more than 50 MBtu/year in more than 10% of the homes. These households reported an average expenditure of almost $1600 for the retrofit measures installed in their homes; the variation in retrofit cost, while large, was not as great as the variation in actual natural gas savings.

Hirst, E.; Goeltz, R.

1984-03-01T23:59:59.000Z

86

Assessment of National Benefits from Retrofitting Existing Single-Family Homes with Ground Source Heat Pump Systems  

Science Conference Proceedings (OSTI)

This report assesses the potential national benefits of retrofitting U.S. single-family homes with state-of-the-art GSHP systems at various penetration rates. The benefits considered include energy savings, reduced summer electrical peak demand, consumer utility bill savings, and reduced carbon dioxide (CO2) emissions. The assessment relies heavily on energy consumption and other data obtained from the Residential Energy Consumption Survey conducted by the U.S. Department of Energy s Energy Information Administration. It also considers relative differences in energy consumption between a state-of-the-art GSHP system and existing residential space-heating, space-cooling, and water-heating (SH SC WH) systems, which were determined with a well-established energy analysis program for residential SH SC WH systems. The impacts of various climate and geological conditions, as well as the efficiency and market share of existing residential SH SC WH systems, have been taken into account in the assessment.

Liu, Xiaobing [ORNL

2011-01-01T23:59:59.000Z

87

Model of home heating and calculation of rates of return to household energy conservation investment  

Science Conference Proceedings (OSTI)

This study attempts to find out if households' investments on energy conservation yield expected returns. It first builds a home-heating regression model, then uses the results of the model to calculate the rates of return for households' investments on the energy conservation. The home heating model includes housing characteristics, economic and demographic variables, appliance related variables, and regional dummy variables. Housing characteristic variables are modeled according to the specific physical relationship between the house and its heating requirement. Data from the Residential Energy Consumption Survey (RECS) of 1980-1981 is used for the empirical testing of the model. The model is estimated for single-detached family houses separately for three major home-heating fuel types: electricity, natural gas and fuel oil. Four scenarios are used to calculate rates of return for each household. The results show in the Northern areas the rates of return in most of the cases are a lot higher than market interest rates. In the Western and Southern areas, with few exceptions, the rates of return are lower than market interest rates. The variation of heating degree days and energy prices can affect the rates of return up to 20 percentage points.

Hsueh, L.M.

1984-01-01T23:59:59.000Z

88

Reduced-risk HTGR concept for industrial-heat application  

SciTech Connect

The industrial process heat market has been identified as major market for the High Temperature Gas-Cooled Reactor (HTGR), however, this market introduces stringent availability requirements on the reactor system relative to electric plants which feed a large existing grid. The characteristics and requirements of the industrial heat markets are summarized; the risks associated with serving this market with a single large HTGR will be discussed; and the modular concept, which has the potential to reduce both safety and investment risks, will be described. The reference modular concept described consists of several small, relatively benign nuclear heat sources linked together to supply heat energy to a balance-of-plant incorporating a process gas train/thermochemical pipe line system and a normal steam-electric plant.

Boardman, C.E.; Lipps, A.J.

1982-06-01T23:59:59.000Z

89

Overall U-values and heating/cooling loads: Manufactured homes  

SciTech Connect

This manual specifies a method for calculating the overall thermal transmittance (also referred to as the overall U-value or U{sub o}), heating load, and cooling load of a manufactured (mobile) home. Rules, examples, and data required by the method are also presented. Compliance with the Department of Housing and Urban Development`s (HUD) U{sub o} and load calculation regulations contained in Sections 3280.506, 3280.510 and 3280.511 of the Manufactured Home Construction and Safety Standards must be demonstrated through the application of the method provided herein.

Conner, C.C.; Taylor, Z.T.

1992-02-01T23:59:59.000Z

90

Overall U-values and heating/cooling loads: Manufactured homes  

SciTech Connect

This manual specifies a method for calculating the overall thermal transmittance (also referred to as the overall U-value or U{sub o}), heating load, and cooling load of a manufactured (mobile) home. Rules, examples, and data required by the method are also presented. Compliance with the Department of Housing and Urban Development's (HUD) U{sub o} and load calculation regulations contained in Sections 3280.506, 3280.510 and 3280.511 of the Manufactured Home Construction and Safety Standards must be demonstrated through the application of the method provided herein.

Conner, C.C.; Taylor, Z.T.

1992-02-01T23:59:59.000Z

91

Overall U-values and heating/cooling loads: Manufactured homes  

SciTech Connect

This manual specifies a method for calculating the overall thermal transmittance (also referred to as the overall U-value or U{sub o}), heating load, and cooling load of a manufactured (mobile) home. Rules, examples, and data required by the method are also presented. Compliance with the Department of Housing and Urban Development's (HUD) U{sub o} and load calculation regulations contained in Sections 3280.506, 3280.510 and 3280.511 of the Manufactured Home Construction and Safety Standards must be demonstrated through the application of the method provided herein.

Conner, C.C.; Taylor, Z.T.

1992-02-01T23:59:59.000Z

92

A Prototype Roof Deck Designed to Self-Regulate Deck Temperature and Reduce Heat Transfer  

SciTech Connect

A prototype roof and attic assembly exploits the use of radiation, convection and insulation controls to reduce the heat transfer penetrating its roof deck by almost 85% of the heat transfer crossing a conventional roof and attic assembly. The assembly exhibited attic air temperatures that did not exceed the peak day outdoor ambient temperature. The design includes a passive ventilation scheme that pulls air from the soffit and attic into an inclined air space above the deck. The design complies with fire protection codes because the air intake is internal and closed to the elements. Field data were benchmarked against an attic computer tool and simulations made for new and retrofit home constructions in hot, moderate and cold climates to access economics for the assembly.

Miller, William A [ORNL

2011-01-01T23:59:59.000Z

93

Home > Home  

NLE Websites -- All DOE Office Websites (Extended Search)

or the information, products or services contained therein by the DOE Oak Ridge Office. Home Home Contact Infomation Background Reference Documents Pre-Solicitation Notice Final...

94

New waste-heat refrigeration unit cuts flaring, reduces pollution  

Science Conference Proceedings (OSTI)

Planetec Utility Services Co. Inc. and Energy Concepts Co. (ECC), with the help of the US Department of Energy (DOE), developed and commissioned a unique waste-heat powered LPG recovery plant in August 1997 at the 30,000 b/d Denver refinery, operated by Ultramar Diamond Shamrock (UDS). This new environmentally friendly technology reduces flare emissions and the loss of salable liquid-petroleum products to the fuel-gas system. The waste heat ammonia absorption refrigeration plant (Whaarp) is the first technology of its kind to use low-temperature waste heat (295 F) to achieve sub-zero refrigeration temperatures ({minus}40 F) with the capability of dual temperature loads in a refinery setting. The ammonia absorption refrigeration is applied to the refinery`s fuel-gas makeup streams to condense over 180 b/d of salable liquid hydrocarbon products. The recovered liquid, about 64,000 bbl/year of LPG and gasoline, increases annual refinery profits by nearly $1 million, while substantially reducing air pollution emissions from the refinery`s flare.

Brant, B.; Brueske, S. [Planetec Utility Services Co., Inc., Evergreen, CO (United States); Erickson, D.; Papar, R. [Energy Concepts Co., Annapolis, MD (United States)

1998-05-18T23:59:59.000Z

95

Home systems research house: Gas heat pump cooling characterization test results. Topical report, July-September 1991  

Science Conference Proceedings (OSTI)

Cooling performance characterization tests were performed at the GRI Home Systems Research House located in the NAHB Research Home Park in Prince George's County, Maryland. Test protocols followed guidelines set forth in GRI's Research House Utilization Plan (RHUP). A combination of minute-by-minute and hourly average data consisting of weather, comfort, and energy parameters was collected by using an automated data acquisition system. The tests were performed from July 1991 through September 1991. The gas heat pump (GHP) had an average daily gas coefficient of performance (COP) value of 1.49 at an outdoor temperature of 72.8 F and 0.84 at an outdoor temperature of 83.9 F. The average test period gas COP was 1.13. The GHP peak cooling capacity achieved was approximately 34,000 Btuh. The GHP provided good overall thermal comfort control on the first-floor and moderate thermal comfort control on the second floor. Reduced second floor performance was primarily due to thermostat location and the stack effect. Good latent heat removal existed throughout the test period. Unit modulation kept room air stratification to a minimum. Thermostat setback saved energy at high average daily outdoor temperatures and used more energy at lower average daily outdoor temperatures, compared to a constant thermostat setpoint control, due to changes in unit gas COP values from low-speed to high-speed operation.

Reigel, H.D.; Kenney, T.M.; Liller, T.C.

1993-01-01T23:59:59.000Z

96

In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes  

DOE Green Energy (OSTI)

CARB partnered with WPPI Energy to answer key research questions on in-field performance of ground-source heat pumps and LAMELs through extensive field monitoring at two WPPI GreenMax demonstration homes in Wisconsin. These two test home evaluations provided valuable data on the true in-field performance of various building mechanical systems and lighting, appliances, and miscellaneous loads (LAMELs).

Puttagunta, S.; Shapiro, C.

2012-04-01T23:59:59.000Z

97

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.  

E-Print Network (OSTI)

in homes compared to traditional electric resistance water heaters. Researchers at the National Renewable is a function of surrounding air temperature, humidity, hot water usage, and the logic controlling the heat pump

98

Demonstration and Performance Monitoring of Foundation Heat Exchangers in Low Load, High Performance Research Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration and Performance Monitoring of Foundation Heat Exchangers (FHX) in Low Load, High Performance Research Homes Piljae Im, Ph.D. Oak Ridge National Laboratory Building America Technical Update Meeting April 29 - 30, Denver, Colorado ACKNOWLEDGEMENT * This project was sponsored by the Building Technologies Office of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy and the Tennessee Valley Authority (TVA). Managed by UT-Battelle for the U.S. Department of Energy 2 PRESENTATION OVERVIEW * INTRODUCTION * FIELD TEST OF THE FOUNDATION HEAT EXCHANGER (FHX) CONCEPT * FOUNDATION HEAT EXCHANGER PERFORMANCE MEASUREMENTS * ADDITIONAL FINDINGS AND COST COMPARISON * SUMMARY Managed by UT-Battelle for the U.S. Department of Energy

99

System manual for the University of Pennsylvania retrofitted solar heated Philadelphia row home (SolaRow)  

DOE Green Energy (OSTI)

The University of Pennsylvania SolaRow house, an urban row home retrofitted for comfort and domestic hot water heating, was extensively instrumented for performance monitoring and acquisition of weather and solar radiation data. This report describes the heating and instrumentation systems, provides the details for instrumentation, piping and valve identification, and specifies the operation and maintenance of the heating and data acquisition systems. The following are included: (1) system flow diagrams; (2) valve and cable identification tables; (3) wiring diagrams; and (4) start-up, normal operation, shut-down, maintenance and trouble-shooting procedures. It thus provides the necessary technical information to permit system operation and monitoring, overall system performance analysis and optimization, and acquisition of climatological data.

Zinnes, I.; Lior, N.

1980-05-01T23:59:59.000Z

100

O&M First! Actions You Can Take to Reduce Heating Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheet Actions You Can Take to Reduce Heating Costs Heating accounts for a significant energy load and usually presents a number of opportunities to improve performance and...

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Boiler Blowdown Heat Recovery Project Reduces Steam System Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

produced. Much of this heat can be recovered by routing the blown down liquid through a heat exchanger that preheats the boiler's makeup water. A boiler blowdown heat recovery...

102

Non-Space Heating Electrical Consumption in Manufactured Homes: Residential Construction Demonstration Project Cycle II : Final Report.  

SciTech Connect

This report summarizes submeter data of the non-space heating electrical energy use in a sample of manufactured homes. These homes were built to Super Good Cents insulation standards in 1988 and 1989 under the auspices of RCDP Cycle 2 of the Bonneville Power Administration. They were designed to incorporate innovations in insulation and manufacturing techniques developed to encourage energy conservation in this important housing type. Domestic water heating (DWH) and other non-space heat energy consumption, however, were not generally affected by RCDP specifications. The purpose of this study is to establish a baseline for energy conservation in these areas and to present a method for estimating total energy saving benefits associated with these end uses. The information used in this summary was drawn from occupant-read submeters and manufacturersupplied specifications of building shell components, appliances and water heaters. Information was also drawn from a field review of ventilation systems and building characteristics. The occupant survey included a census of appliances and occupant behavior in these manufactured homes. A total of 150 manufactured homes were built under this program by eight manufacturers. An additional 35 homes were recruited as a control group. Of the original 185 houses, approximately 150 had some usable submeter data for domestic hot water and 126 had usable submeter data for all other nonheating consumption. These samples were used as the basis for all consumption analysis. The energy use characteristics of these manufactured homes were compared with that of a similar sample of RCDP site-built homes. In general, the manufactured homes were somewhat smaller and had fewer occupants than the site-built homes. The degree to which seasonal variations were present in non-space heat uses was reviewed.

Onisko, Stephen A.; Roos, Carolyn; Baylon, David

1993-06-01T23:59:59.000Z

103

Sealing Your Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sealing Your Home Sealing Your Home Sealing Your Home Caulking can reduce heating and cooling costs and improve comfort in your home. Caulking can reduce heating and cooling costs and improve comfort in your home. Air leakage, or infiltration, occurs when outside air enters a house uncontrollably through cracks and openings. Properly air sealing can significantly reduce heating and cooling costs, improve building durability, and create a healthier indoor environment. In addition to air sealing, you'll also want to consider adding additional insulation and moisture control and ventilation strategies to ensure your home is comfortable and efficient. Featured Detecting Air Leaks For a thorough and accurate measurement of air leakage in your home, hire a qualified technician to conduct an energy assessment, particularly a blower door test.

104

Coal home heating and environmental tobacco smoke in relation to lower respiratory illness in Czech children, from birth to 3 years of age  

E-Print Network (OSTI)

in the Czech setting, where coal is still com- monly used inwe found exposure to coal home heating and ETS increasewell studied, residential coal combustion in economically

2006-01-01T23:59:59.000Z

105

Market share elasticities for fuel and technology choice in home heating and cooling  

Science Conference Proceedings (OSTI)

A new technique for estimating own- and cross-elasticities of market share for fuel and technology choices in home heating and cooling is presented. We simulate changes in economic conditions and estimate elasticities by calculating predicted changes in fuel and technology market shares. Elasticities are found with respect to household income, equipment capital cost, and equipment capital cost, and equipment operating cost (including fuel price). The method is applied to a revised and extended version of a study by the Electric Power Research Institute (EPRI). Data for that study are drawn primarily from the 1975--1979 Annual Housing Surveys. Results are generally similar to previous studies, although our estimates of elasticities are somewhat lower. We feel the superior formulation of consumer choice and the currency of data in EPRI's work produce reliable estimates of market share elasticities. 18 refs., 1 fig., 6 tabs.

Wood, D.J.; Ruderman, H.; McMahon, J.E.

1989-05-01T23:59:59.000Z

106

Heating and cooling no longer majority of U.S. home energy use ...  

U.S. Energy Information Administration (EIA)

Consumption & Efficiency. Energy use in homes, commercial buildings, manufacturing, and transportation. Coal.

107

Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes  

SciTech Connect

The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment,' ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations.

Baxter, Van D [ORNL

2006-11-01T23:59:59.000Z

108

Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes: Tucson, Arizona and Chico, California (Fact Sheet)  

SciTech Connect

Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

Not Available

2013-11-01T23:59:59.000Z

109

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.  

E-Print Network (OSTI)

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S in the U.S. market--to evaluate the cost of saved energy as a function of climate. The performance of HPWHs laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

110

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

Science Conference Proceedings (OSTI)

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

111

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

Price Cap Cost Gas Heat Cap Cost Oil Heat Electric Share GasPrice Cap Cost Gas Heat Cap Cost Oil Heat 3. Summary of WorkEPRI [this study] Cap Cost Elec Heat Oil Price Income Gas

Wood, D.J.

2010-01-01T23:59:59.000Z

112

Incremental cost of electricity used as backup for passive heated homes  

DOE Green Energy (OSTI)

The impact of passive technologies on a north-central US utility has been studied. A method of utility cost and fuel use analysis, developed at Brookhaven National Laboratory, was used to compute the long run incremental costs and incremental fuel use required for supplementary electricity to houses with Trombe walls or with direct gain features. For comparison, a reference house with no passive features and a house with an energy conservation design were also analyzed. The results show that the total long run incremental cost to the utility of providing supplementary power to the passive houses costs no more than the cost to supply electricity to heat the reference house or the conservation house. An analysis of the annual homeowner costs for the various types of heating systems suggests that the Trombe wall technology is not promising for use in this climate. The passive technologies, as modelled in this study reduced the requirements for conventional energy by about 10% (7 to 10 kilojoules/year). For all of the house types studied, the use of electricity for heating, instead of oil or gas, reduced the overall (utility plus residential) use of oil or gas by only about 30 to 40% even out through the 1990's.

Martorella, J; Bright, R; Davitian, H

1980-08-01T23:59:59.000Z

113

Air Sealing Your Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Sealing Your Home Air Sealing Your Home Air Sealing Your Home November 26, 2013 - 6:22pm Addthis Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. What does this mean for me? Save money and energy by air sealing your house. Caulking and weatherstripping are simple, effective ways of sealing air leaks in your home. Reducing the amount of air that leaks in and out of your home is a cost-effective way to cut heating and cooling costs, improve durability, increase comfort, and create a healthier indoor environment. Caulking and weatherstripping are two simple and effective air-sealing techniques that offer quick returns on investment, often one year or less. Caulk is

114

Air Sealing Your Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Your Home Your Home Air Sealing Your Home November 26, 2013 - 6:22pm Addthis Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. What does this mean for me? Save money and energy by air sealing your house. Caulking and weatherstripping are simple, effective ways of sealing air leaks in your home. Reducing the amount of air that leaks in and out of your home is a cost-effective way to cut heating and cooling costs, improve durability, increase comfort, and create a healthier indoor environment. Caulking and weatherstripping are two simple and effective air-sealing techniques that offer quick returns on investment, often one year or less. Caulk is

115

A study of aggregation bias in estimating the market for home heating and cooling equipment  

SciTech Connect

Econometricians frequently propose parametric models which are contingent on an underlying assumption of rational economic agents maximizing their utility. Accurate estimation of the parameters of these models depends on using data disaggregated to the level of the actual agents, usually individual consumers or firms. Using data at some other level of aggregation introduces bias into the inferences made from the data. Unfortunately, properly disaggregated data is often unavailable, or at least, much more costly to obtain than aggregate data. Research on consumer choice of home heating equipment has long depended on state-level cross-sectional data. Only recently have investigators been able to build up and successfully use data on consumer attributes and choices at the household level. A study estimated for the Electric Power Research Institute REEPS model is currently one of the best of these. This paper examines the degree of bias that would be introduced in that study if only average data across SMSAs or states were used at several points in the investigation. We examine the market shares and elasticities estimated from that model using only the mean values of the exogenous variables, and find severe errors to be possible. However, if the models were calibrated on only aggregate data originally, we find that proper treatment allows market shares and elasticities to be found with little error relative to the disaggregate models. 22 refs., 4 figs., 10 tabs.

Wood, D.J.; Ruderman, H.; McMahon, J.E.

1989-05-01T23:59:59.000Z

116

How Do You Use Daylighting While Reducing Excess Heat from Windows? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do You Use Daylighting While Reducing Excess Heat from Windows? Do You Use Daylighting While Reducing Excess Heat from Windows? How Do You Use Daylighting While Reducing Excess Heat from Windows? June 16, 2011 - 7:30am Addthis On Monday, Elizabeth discussed her south-facing windows and her difficulties balancing the nice daylighting advantages with the excess heat that can come through these windows in the summer. How do you use daylighting while reducing excess heat from windows? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Fighting with South-Facing Windows This Month on Energy Savers: June 2011 Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.com/eyedias.

117

Persuading consumers to reduce their consumption of electricity in the home  

Science Conference Proceedings (OSTI)

Previous work has identified that providing real time feedback or interventions to consumers can persuade consumers to change behaviour and reduce domestic electricity consumption. However, little work has investigated what exactly those feedback mechanisms ...

Alan F. Smeaton, Aiden R. Doherty

2013-04-01T23:59:59.000Z

118

Monitored energy use of homes with geothermal heat pumps: A compilation and analysis of performance. Final report  

SciTech Connect

The performance of residential geothermal heat pumps (GHPs) was assessed by comparing heating, ventilation, and air conditioning (HVAC) system and whole house energy use of GHP houses and control houses. Actual energy savings were calculated and compared to expected savings (based on ARI ratings and literature) and predicted savings (based on coefficient of performance - COP - measurements). Differences between GHP and control houses were normalized for heating degree days and floor area or total insulation value. Predicted savings were consistently slightly below expected savings but within the range of performance cited by the industry. Average rated COP was 3.4. Average measured COP was 3.1. Actual savings were inconsistent and sometimes significantly below predicted savings. No correlation was found between actual savings and actual energy use. This suggests that factors such as insulation and occupant behavior probably have greater impact on energy use than type of HVAC equipment. There was also no clear correlation between climate and actual savings or between climate and actual energy use. There was a trend between GHP installation date and savings. Newer units appear to have lower savings than some of the older units which is opposite of what one would expect given the increase in rated efficiencies of GHPs. There are a number of explanations for why actual savings are repeatedly below rated savings or predicted savings. Poor ground loop sizing or installation procedures could be an issue. Given that performance is good compared to ASHPs but poor compared to electric resistance homes, the shortfall in savings could be due to duct leakage. The takeback effect could also be a reason for lower than expected savings. Occupants of heat pump homes are likely to heat more rooms and to use more air-conditioning than occupants of electric resistance homes. 10 refs., 17 figs., 10 tabs.

Stein, J.R.; Meier, A.

1997-12-01T23:59:59.000Z

119

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

Own-Elasticities for Space Conditioning Equipment Equipmentthe choice of a space heat/air conditioning combination. Theutility from air conditioning and space heating alternative

Wood, D.J.

2010-01-01T23:59:59.000Z

120

Home Energy Checklist | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Checklist Home Energy Checklist Home Energy Checklist October 7, 2013 - 4:46pm Addthis This checklist outlines actions that conserve energy within homes. Today Checkbox Turn down the temperature of your water heater to the warm setting (120°F). You'll save energy and avoid scalding your hands. Checkbox Check if your water heater has an insulating blanket. An insulating blanket will pay for itself in one year or less! Checkbox Heating can account for almost half of the average family's winter energy bill. Make sure your furnace or heat pump receives professional maintenance each year. And look for the ENERGY STAR® label when replacing your system. Checkbox Review additional strategies to reduce your water heating bills. Water heating can account for 14%-25% of the energy consumed in your home.

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Heater Heat Pumps Replacing Your Electric Furnace and CAC with a Heat Pump Sealing Home Air Leaks LPG Furnaces Efficient LPG-fired Water Heaters Oil Furnaces Efficient...

122

Building America Top Innovations Hall of Fame Profile … High-Performance with Solar Electric Reduced Peak Demand: Premier Homes Rancho Cordoba, CA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

95 homes in Premier Gardens are 95 homes in Premier Gardens are equipped with photovoltaic panels that take advantage of solar energy to offset peak power loads during the hottest part of the day. As the housing market continues to evolve toward zero net-energy ready homes, Building America research has provided essential guidance for integrating renewable energy systems with high-performance homes and showing how they align with utility peak-demand reduction interests. Solar photovoltaic technology is an attractive option for utilities because they can reduce reliance on fossil-fuel energy. More significantly, it reduces peak demand because systems produce the most power on sunny summer afternoons coincident with the highest demand for air conditioning. Photovoltaic systems have been a part of several research projects conducted by

123

The Pacific Northwest residential consumer: Perceptions and preferences of home heating fuels, major appliances, and appliance fuels  

SciTech Connect

In 1983 the Bonneville Power Administration contracted with the Pacific Northwest Laboratory (PNL) to conduct an analysis of the marketing environment for Bonneville's conservation activities. Since this baseline residential study, PNL has conducted two follow up market research projects: Phase 2 in 1985, and Phase 3, in 1988. In this report the respondents' perceptions, preferences, and fuel switching possibilities of fuels for home heating and major appliances are examined. To aid in effective target marketing, the report identifies market segments according to consumers' demographics, life-cycle, attitudes, and opinions.

Harkreader, S.A.; Hattrup, M.P.

1988-09-01T23:59:59.000Z

124

Baltimore Gas and Electric Company - Home Performance with Energy Star  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Baltimore Gas and Electric Company - Home Performance with Energy Baltimore Gas and Electric Company - Home Performance with Energy Star Rebates Baltimore Gas and Electric Company - Home Performance with Energy Star Rebates < Back Eligibility Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Sealing Your Home Ventilation Manufacturing Heating Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate HVAC (Equipment Installation/Duct Sealing/Tune-up): $1,150 Air Sealing/Insulation/Gas Tankless Water Heater: $2,000 Total: $3,150 Program Info Funding Source Maryland Energy Administration State Maryland Program Type Utility Rebate Program Rebate Amount Comprehensive Home Energy Audit: Reduced cost of $100

125

A scheme for reducing experimental heat capacity data of gas hydrates  

SciTech Connect

Experimental heat capacity data of simple gas hydrates on xenon, methane, ethane, and propane are reduced by application of classical thermodynamics and the ideal solid solution theory. It is shown that calculated heat capacities of the empty hydrate lattices of the structure 1 and 2 hydrates can be higher or lower than the heat capacity of ice. Similarly, the calculated partial molar heat capacity of the enclathrated gases are higher or lower than the corresponding experimental ideal gas heat capacity. These differences depend on the size of the guest relative to the cavity, the hydrate number, and the temperature. For estimation of the thermodynamic properties of the empty hydrate lattice, further experimental work is recommended. Within the present limitations, a consistent methodology is applied for the prediction of the heat capacity of a natural gas hydrate.

Avlonitis, D. (Aero-engines Factory, Elefsis (Greece). Division of Chemistry)

1994-12-01T23:59:59.000Z

126

NGNP/HTE full-power operation at reduced high-temperature heat exchanger temperatures.  

Science Conference Proceedings (OSTI)

Operation of the Next Generation Nuclear Plant (NGNP) with reduced reactor outlet temperature at full power was investigated for the High Temperature Electrolysis (HTE) hydrogen-production application. The foremost challenge for operation at design temperature is achieving an acceptably long service life for heat exchangers. In both the Intermediate Heat Exchanger (IHX) and the Process Heat Exchanger (PHX) (referred to collectively as high temperature heat exchangers) a pressure differential of several MPa exists with temperatures at or above 850 C. Thermal creep of the heat exchanger channel wall may severely limit heat exchanger life depending on the alloy selected. This report investigates plant performance with IHX temperatures reduced by lowering reactor outlet temperature. The objective is to lower the temperature in heat transfer channels to the point where existing materials can meet the 40 year lifetime needed for this component. A conservative estimate for this temperature is believed to be about 700 C. The reactor outlet temperature was reduced from 850 C to 700 C while maintaining reactor power at 600 MWt and high pressure compressor outlet at 7 MPa. We included a previously reported design option for reducing temperature at the PHX. Heat exchanger lengths were adjusted to reflect the change in performance resulting from coolant property changes and from resizing related to operating-point change. Turbomachine parameters were also optimized for the new operating condition. An integrated optimization of the complete system including heat transfer equipment was not performed. It is estimated, however, that by performing a pinch analysis the combined plant efficiency can be increased from 35.5 percent obtained in this report to a value between 38.5 and 40.1 percent. Then after normalizing for a more than three percent decrease in commodities inventory compared to the reference plant, the commodities-normalized efficiency lies between 40.0 and 41.3. This compares with a value of 43.9 for the reference plant. This latter plant has a reactor outlet temperature of 850 C and the two high temperature heat exchangers. The reduction in reactor outlet temperature from 850 C to 700 C reduces the tritium permeability rate in the IHX metal by a factor of three and thermal creep by five orders of magnitude. The design option for reducing PHX temperature from 800 C to 200 C reduces the permeability there by three orders of magnitude. In that design option this heat exchanger is the single 'choke-point' for tritium migration from the nuclear to the chemical plant.

VIlim, R.; Nuclear Engineering Division

2009-03-12T23:59:59.000Z

127

Adding Insulation to an Existing Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Adding Insulation to an Existing Home Adding Insulation to an Existing Home Adding Insulation to an Existing Home May 23, 2013 - 1:44pm Addthis Adding insulation in an existing home saves money and improves comfort. | Photo courtesy of Dennis Schroeder, NREL. Adding insulation in an existing home saves money and improves comfort. | Photo courtesy of Dennis Schroeder, NREL. What does this mean for me? Adding insulation to your home saves money and improves comfort. Adding insulation to your home is a sound investment that is likely pay for itself quickly in reduced utility bills. Insulation inhibits heat flow through the building envelope of your home, saving money and improving comfort. Unless your home was specially constructed for energy efficiency, you can probably reduce your energy bills by adding more insulation. Many older

128

Heating and cooling no longer majority of U.S. home energy use ...  

U.S. Energy Information Administration (EIA)

For decades, space heating and cooling (space conditioning) accounted for more than half of all residential energy consumption. Estimates from the ...

129

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

of space heating to air conditioning choice; 3) explicitthe presence of central air conditioning, it seems unwise tonot to have central air conditioning. Statistical evidence

Wood, D.J.

2010-01-01T23:59:59.000Z

130

Heating and cooling no longer majority of U.S. home energy use ...  

U.S. Energy Information Administration (EIA)

Tools; Glossary All Reports ... Non-weather related energy use for appliances, electronics, water heating, and lighting now accounts for 52% of total consumption, ...

131

What is the outlook for home heating fuel prices this winter ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

132

Home and Building Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home and Building Technologies Home and Building Technologies Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for...

133

Israeli manufacturer introduces solar heating for home use in Greece and Turkey  

SciTech Connect

Miromit Ltd. of Tel Aviv, Israel's principal developer and producer of solar heating equipment, said to be the world's large manufacturer in the field, recently announced the completion of a marketing agreement with major heating companies in Greece and Turkey which are introducing solar energy for hot water heating in their countries. Both of these countries will benefit from continuous Miromit research and development in new Sun heating applications, including central hot water installations for apartment buildings and solar-heating systems for swimming pools, sport halls, and agricultural and industrial buildings. Israeli solar equipment has been installed in a research model apartment building at the Goddard Space Flight Center of NASA in Green Belt, Md. (MCW)

1976-05-01T23:59:59.000Z

134

Demonstration and Performance Monitoring of Foundation Heat Exchangers (FHX) in Ultra-High Energy Efficient Research Homes  

DOE Green Energy (OSTI)

The more widespread use of Ground Source Heat Pump (GSHP) systems has been hindered by their high first cost, which is mainly driven by the cost of the drilling and excavation for installation of ground heat exchangers (GHXs). A new foundation heat exchanger (FHX) technology was proposed to reduce first cost by placing the heat exchanger into the excavations made during the course of construction (e.g., the overcut for the basement and/or foundation and run-outs for water supply and the septic field). Since they reduce or eliminate the need for additional drilling or excavation, foundation heat exchangers have the potential to significantly reduce or eliminate the first cost premium associated with GSHPs. Since December 2009, this FHX technology has been demonstrated in two ultra-high energy efficient new research houses in the Tennessee Valley, and the performance data has been closely monitored as well. This paper introduces the FHX technology with the design, construction and demonstration of the FHX and presents performance monitoring results of the FHX after one year of monitoring. The performance monitoring includes hourly maximum and minimum entering water temperature (EWT) in the FHX compared with the typical design range, temperature difference (i.e., T) across the FHX, and hourly heat transfer rate to/from the surrounding soil.

Im, Piljae [ORNL; Hughes, Patrick [ORNL; Liu, Xiaobing [ORNL

2012-01-01T23:59:59.000Z

135

The evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana: Final Report  

SciTech Connect

This report documents an independent evaluation of an energy retrofit of 4,003 family housing units at Fort Polk, Louisiana, under an energy savings performance contract (ESPC). Replacement of the heating, cooling, and water heating systems in these housing units with geothermal heat pumps (GHPs) anchored the retrofit; low-flow shower heads and compact fluorescent lighting were also installed, as well as attic insulation where needed. Statistically valid findings indicate that the project will save 25.8 million kWh, or 32.5% of the pre-retrofit whole-community electrical consumption, and 100% of the whole-community natural gas previously used for space conditioning and water heating (260,000 therms) in a typical meteorological year. At the end-use level, the GHPs were found to save about 42% of the pre-retrofit electrical consumption for heating, cooling, and water heating in housing units that were all-electric in the pre-retrofit period. This report also demonstrates an improved method of predicting energy savings. Using an engineering model calibrated to pre-retrofit energy use data collected in the field, the method predicted actual energy savings on one of the electric feeders at Fort Polk with a very high degree of accuracy. The accuracy of this model was in turn dependent on data-calibrated models of the geothermal heat pump and ground heat exchanger that are described in this report. In addition this report documents the status of vertical borehole ground heat exchanger (BHEx) design methods at the time this project was designed, and demonstrates methods of using data collected from operating GHP systems to benchmark BHEx design methods against a detailed engineering model calibrated to date. The authors also discuss the ESPC`s structure and implementation and how the experience gained here can contribute to the success of future ESPCs.

Hughes, P.J.; Shonder, J.A.

1998-03-01T23:59:59.000Z

136

Reducing heat loss from the energy absorber of a solar collector  

DOE Patents (OSTI)

A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.

Chao, Bei Tse (Urbana, IL); Rabl, Ari (Downers Grove, IL)

1976-01-01T23:59:59.000Z

137

Design Approach and Performance Analysis of a Small Integrated Heat Pump (IHP) for Net Zero Energy Homes (ZEH)  

SciTech Connect

This paper describes the design and performance analysis of a variable-capacity heat pump system developed for a small [1800ft2 (167 m2)] prototype net ZEH with an average design cooling load of 1.25 tons (4.4 kW) in five selected US climates. The heat pump integrates space heating and cooling, water heating, ventilation, and humidity control (humidification and dehumidification) functions into a single integrated heat pump (IHP) unit. The design approach uses one small variable-capacity compressor to meet all the above functions in an energy efficient manner. Modal performance comparisons to an earlier IHP product are shown relative to the proposed new design for net ZEH application. The annual performance analysis approach using TRNSYS in conjunction with the ORNL Heat Pump Design Model is discussed. Annual performance projections for a range of locations are compared to those of a base system consisting of separate pieces of equipment to perform the same functions. The ZEH IHP is projected to reduce energy use for space heating & cooling, water heating, dehumidification, and ventilation for a net ZEH by about 50% compared to that of the base system.

Rice, C Keith [ORNL; Murphy, Richard W [ORNL; Baxter, Van D [ORNL

2008-01-01T23:59:59.000Z

138

Home Energy Yardstick : ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Home Improvement > Home Energy Yardstick Home > Home Improvement > Home Energy Yardstick Home Energy Yardstick Assess the energy efficiency of your home and see how it measures up: EPA's Home Energy Yardstick provides a simple assessment of your home's annual energy use compared to similar homes. By answering a few basic questions about your home, you can get: Your home's Home Energy Yardstick score (on a scale of 1 to 10); Insights into how much of your home's energy use is related to heating and cooling versus other everyday uses like appliances, lighting, and hot water; Links to guidance from ENERGY STAR on how to increase your home's score, improve comfort, and lower utility bills; and An estimate of your home's annual carbon emissions. Learn more about how the Home Energy Yardstick works.

139

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

level, the choice alternatives are cooling and no cooling.to zero in central cooling alternative Income ($1000) in airalternatives are conventional air conditioning and heat pump, given the cooling

Wood, D.J.

2010-01-01T23:59:59.000Z

140

Home Heating Systems Design using PHP and MySQL Databases  

E-Print Network (OSTI)

This paper presents the use of a computer application based on a MySQL database, managed by PHP programs, allowing the selection of a heating device using coefficient-based calculus.

Karnyanszky, Tiberiu Marius

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Home Energy Solutions for Existing Homes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Solutions for Existing Homes Home Energy Solutions for Existing Homes Home Energy Solutions for Existing Homes < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Heat Pumps Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info Funding Source Public Benefits Fund State Oregon Program Type State Rebate Program Rebate Amount Air Sealing: $150 Duct Insulation: 50% of cost up to $100 Gas Boiler: $200 Direct Vent Gas Fireplace: $200-$250 Direct Vent Gas Unit Heater: $100 Heat Pumps: $250 - $450, depending on efficiency and previous heating system Heat Pump Test: $150 Heat Pump Advanced Controls: $250 Ductless Heat Pump: $800

142

Energy Basics: Home and Building Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Cooling Water Heating Home and Building Technologies Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for...

143

Adding Insulation to an Existing Home | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

is a sound investment that is likely pay for itself quickly in reduced utility bills. Insulation inhibits heat flow through the building envelope of your home, saving money and...

144

Results of a field test of heating system efficiency and thermal distribution system efficiency in a manufactured home  

SciTech Connect

A two-day test using electric coheating was performed on a manufactured home in Watertown, New York. The main objective of the test was to evaluate planned procedures for measuring thermal distribution system efficiency. (Thermal distribution systems are the ductwork or piping used to transport heat or cooling effect from the equipment that produces it to the building spaces in which it is used.) These procedures are under consideration for a standard method of test now being prepared by a special committee of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers. The ability of a coheating test to give a credible and repeatable value for the overall heating system efficiency was supported by the test data. Distribution efficiency is derived from system efficiency by correcting for energy losses from the equipment. Alternative means for achieving this were tested and assessed. The best value for system efficiency in the Watertown house was 0.53, while the best value for distribution efficiency was 0.72.

Andrews, J.W.; Krajewski, R.F.; Strasser, J.J. [Brookhaven National Lab., Upton, NY (United States); Kinney, L.; Lewis, G. [Synertech Systems Corp., Syracuse, NY (United States)

1995-05-01T23:59:59.000Z

145

A Reduced-Boundary-Function Method for Convective Heat Transfer With Axial Heat Conduction and Viscous Dissipation  

Science Conference Proceedings (OSTI)

We introduce a new method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field T(x,r,t) is reduced to seek the solutions of T at the boundary (r = a or r = 0, r is the distance from the centerline shown in Fig. 1), i.e., the boundary functions T{sub a}(x,t) {triple_bond} T(x,r=a,t) and/or T{sub 0}(x,t) {triple_bond} T(x,r=0,t). In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field T(x,r,t) can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady-state problem using the proposed method.

Zhijie Xu

2012-07-01T23:59:59.000Z

146

A Reduced-Boundary-Function Method for Convective Heat Transfer with Axial Heat Conduction and Viscous Dissipation  

Science Conference Proceedings (OSTI)

We introduce a method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field is reduced to seek the solutions of T at the boundary (r=a or r=0, r is the distance from the centerline shown in Fig. 1), i.e. the boundary functions and/or . In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady state problem using the proposed method.

Xu, Zhijie

2012-07-01T23:59:59.000Z

147

Heating & Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Cooling Heating & Cooling Heating and cooling account for about 56% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. Learn more about the principles of heating and cooling. Heating and cooling account for about 56% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. Learn more about the principles of heating and cooling. Did you know that heating and cooling accounts for more than half of the energy use in a typical U.S. home, making it the largest energy expense for most homes? Energy Saver shares tips and advice on ways you can reduce your heating and cooling costs, putting more money in your wallet.

148

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Watt about Water? Watt about Water? Water uses energy. Energy uses water. The "water-energy nexus" - as it has come to be known - is one of the emerging hot topics when it comes to making homes greener and more resource-efficient. The Home Energy Saver does not currently provide recommendations for reducing water use, but it does help you understand where your water is currently going (see the Appliances drill-down report from the Compare > Summary page). The material on this page provides some more background and resources for you to keep in mind. Water uses energy The most tangible link is that when your water is heated, every drop contains a hidden "drop" of energy. Saving hot water translates directly into water-heating energy savings. Such savings are available at hot water

149

Insulation for New Home Construction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation for New Home Construction Insulation for New Home Construction Insulation for New Home Construction June 20, 2012 - 7:59pm Addthis Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL. Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL. What does this mean for me? Adding extra insulation in a new home is more cost-effective than retrofitting insulation after the home is completed. Insulation is a key component of the systems that work together to create a comfortable, energy-efficient home that is affordable to heat and

150

Do Households Smooth Small Consumption Shocks? Evidence from Anticipated and Unanticipated Variation in Home Energy Costs  

E-Print Network (OSTI)

natural gas, and home heating oil prices averaged over thein 2000 and 2001. Home heating oil prices show a similarstate. Information on home heating oil prices comes from

Cullen, Julie Berry; Friedberg, Leora; Wolfram, Catherine

2005-01-01T23:59:59.000Z

151

National Residential Efficiency Measures Database Reduces Risk for Home Retrofit Industry (Fact Sheet), NREL Highlights, Research & Development  

SciTech Connect

A new database of residential building measures and estimated costs helps the U.S. building industry determine the most cost-effective means of improving efficiency of existing homes.

Not Available

2011-05-01T23:59:59.000Z

152

Using the sun and waste wood to heat a central Ohio home. Final technical report  

DOE Green Energy (OSTI)

The description of a house in Ohio built on a south facing slope with two levels above ground on the north, east, and west sides and three levels exposed to the southern winter Sun is presented. The floor plan, a general history of the project, the operation of the system, the backup heat source (wood), the collection of data, and the procedure for determining actual heat loss are described. Additionally, the calculation of the solar contribution percentage and the amount of mass to be included in the greenhouse and problems with an indirect gain wall are discussed. The location of the wood stove in the system is noted. The east wall temperature data are given. Soil temperature, air infiltration, thermal comfort, and energy usage are discussed. (MCW).

Not Available

1981-01-01T23:59:59.000Z

153

Coal, Smoke, and Death: Bituminous Coal and American Home Heating, 1920-1959  

E-Print Network (OSTI)

Air pollution was severe in many parts of the United States in the first half of the twentieth century. Much of the air pollution was attributable to bituminous coal. This paper uses newly digitized state-month mortality data to estimate the effects of bituminous coal consumption for heating on mortality rates in the U.S. between 1920 and 1959. The use of coal for heating was high until the mid-1940s, and then declined sharply. The switch to cleaner fuels was driven by plausibly exogenous changes in the availability of natural gas, the end of war-related supply restrictions, and a series of coal strikes from 1946-1950. The identification strategy leverages the fact that coal consumption for heating increases during cold weather. Specifically, the mortality effects are identified from differences in the temperature-mortality response functions in state-years with greater coal consumption. Cold weather spells in high coal state-years saw greater increases in the mortality rates than cold weather spells in low coal state-years. Our estimates suggest that reductions in the use of bituminous coal for heating between 1945 and 1959 decreased average annual mortality by 2.2-3.5 percent, January mortality by 3.2-5.1 percent, average annual infant mortality by 1.6-2.8 percent, and January infant mortality by 3.1-4.6 percent. Our estimates are likely to be a lower-bound, since they only capture short-run relationships between coal and mortality. We thank Leila Abu-Orf, Paula Levin, and Katherine Rudolph for excellent research assistance. We are grateful to

Alan Barreca

2012-01-01T23:59:59.000Z

154

Methodology for the evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana  

Science Conference Proceedings (OSTI)

The US Army and a private energy service company are developing a comprehensive energy efficiency project to upgrade the family housing at Fort Polk, Louisiana. The project includes converting the space conditioning systems of more than 4,000 housing units to geothermal (or ground-source) heat pumps (GHPs). This interim report describes the methodology of the evaluation associated with this project, including the field monitoring that has been conducted at the base.

Hughes, P.J.; Shonder, J.A.; White, D.L.; Huang, H.L.

1998-03-01T23:59:59.000Z

155

Roof shading and wall glazing techniques for reducing peak building heating and cooling loads. Final report  

SciTech Connect

The roof shading device proved to be effective in reducing peak building cooling loads under both actual testing conditions and in selected computer simulations. The magnitude of cooling load reductions varied from case to case depending on individual circumstances. Key variables that had significant impacts on its thermal performance were the number of months of use annually, the thermal characteristics of the roof construction, hours of building use, and internal gains. Key variables that had significant impacts upon economic performance were the costs of fuel energy for heating and cooling, and heating and cooling equipment efficiency. In general, the more sensitive the building is to climate, the more effective the shading device will be. In the example case, the annual fuel savings ($.05 psf) were 6 to 10% of the estimated installation costs ($.50 to .75 psf). The Trombe wall installation at Roxborough High School proved to be effective in collecting and delivering significant amounts of solar heat energy. It was also effective in conserving heat energy by replacing obsolete windows which leaked large amounts of heat from the building. Cost values were computed for both solar energy contributions and for heat loss reductions by window replacement. Together they amount to an estimated three hundred and ninety dollars ($390.00) per year in equivalent electric fuel costs. When these savings are compared with installation cost figures it is apparent that the Trombe wall installation as designed and installed presents a potentially cost-effective method of saving fuel costs. The study results indicate that improved Trombe wall efficiency can be achieved by making design and construction changes to reduce or eliminate outside air leakage into the system and provide automatic fan control.

Ueland, M.

1981-08-01T23:59:59.000Z

156

City of Chicago - Green Permit and Green Homes Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Chicago - Green Permit and Green Homes Programs City of Chicago - Green Permit and Green Homes Programs City of Chicago - Green Permit and Green Homes Programs < Back Eligibility Commercial Industrial Institutional Residential Schools Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Illinois Program Type Green Building Incentive Provider City of Chicago The City of Chicago encourages building design, construction and renovation in a manner that provides healthier environments, reduces operating costs and conserves energy and resources through their Green Permit Program. The

157

Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks  

Science Conference Proceedings (OSTI)

The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger

D. Magnetto; G. Vidiella

2012-01-01T23:59:59.000Z

158

Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes -- Update to Include Analyses of an Economizer Option and Alternative Winter Water Heating Control Option  

Science Conference Proceedings (OSTI)

The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment, ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. In 2006, the two top-ranked options from the 2005 study, air-source and ground-source versions of an integrated heat pump (IHP) system, were subjected to an initial business case study. The IHPs were subjected to a more rigorous hourly-based assessment of their performance potential compared to a baseline suite of equipment of legally minimum efficiency that provided the same heating, cooling, water heating, demand dehumidification, and ventilation services as the IHPs. Results were summarized in a project report, Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes, ORNL/TM-2006/130 (Baxter 2006). The present report is an update to that document. Its primary purpose is to summarize results of an analysis of the potential of adding an outdoor air economizer operating mode to the IHPs to take advantage of free cooling (using outdoor air to cool the house) whenever possible. In addition it provides some additional detail for an alternative winter water heating/space heating (WH/S

Baxter, Van D [ORNL

2006-12-01T23:59:59.000Z

159

Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating/Cooling Systems  

E-Print Network (OSTI)

Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating solution is developed as a promising working fluid for district heating/cooling systems (DHCs). It can systems. A promising application of DR fluids is in district heating/ cooling systems (DHCs)9

Raghavan, Srinivasa

160

Design and Predictive Control of a Net Zero Energy Home  

E-Print Network (OSTI)

This paper analyzes two methods to reduce residential energy consumption for a Net Zero home in Austin, Texas. The first method seeks to develop a control algorithm that actively engages environmental conditioning. The home must preserve user-defined comfort while minimizing energy consumption. An optimization function governed by user input chooses the degree to which various comfort-defining systems are active, optimizing comfort while maintaining minimal energy usage. These systems include a geothermal heat pump and ceiling fans to effect convection, humidity, and dry bulb temperature. The second method reflects an analysis towards augmenting traditional home systems with modern and efficient counterparts. Electrochromic glass is used to attenuate heat transfer from outside the home envelope. A thermal chimney passively removes heat from the home while increasing convection. Replacing conventional incandescent bulbs with compact fluorescent and LED illumination reduces lighting energy waste.

Morelli, F.; Abbarno, N.; Boese, E.; Bullock, J.; Carter, B.; Edwards, R.; Lapite, O.; Mann, D.; Mulvihill, C.; Purcell, E.; Stein, M. IV; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Water Heating: Energy-efficient strategies for supplying hot water in the home (BTS Technology Fact Sheet)  

SciTech Connect

Fact sheet for homeowners and contractors on how to supply hot water in the home while saving energy.

NAHB Research Center; Southface Energy Institute; U.S. Department of Energy' s Oak Ridge Laboratory; U.S. Department of Energy' s National Renewable Energy Laboratory

2001-08-15T23:59:59.000Z

162

Ultra-Efficient Home Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Efficient Home Design Ultra-Efficient Home Design Ultra-Efficient Home Design April 26, 2012 - 9:52am Addthis All Kaupuni Village homes in Oahu, Hawaii, incorporate energy efficiency and renewable energy technologies to produce as much energy as they consume. Credit: Kenneth Kelly, NREL. All Kaupuni Village homes in Oahu, Hawaii, incorporate energy efficiency and renewable energy technologies to produce as much energy as they consume. Credit: Kenneth Kelly, NREL. What does this mean for me? Lower energy bills and improved comfort Energy reliability and security Environmental sustainability How does it work? Ultra-efficient home design reduces home energy use and meets all or part of the reduced energy requirements with on-site renewable energy systems, such as solar water heating and solar electricity.

163

From Tragedy to Triumph - Rebuilding Green Homes after Disaster (Revised) (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tragedy Tragedy to Triumph- Rebuilding Green Homes after Disaster About Green Homes A green home can save you thousands in utility bills and make your home a healthier and more comfortable place to live. Green homes save money with energy-saving features such as effective insulation, high-performance windows, tight construction, and efficient heating and cooling equipment and appliances. Green homes are healthier because they perform better and use green products, protecting homeowners against cold, heat, drafts, moisture, indoor pollutants, and noise. Green homes also protect homeowners against future utility rate increases for gas and electricity. Green homes encourage the use of renewable energy, which can reduce your home's impact on the environment

164

A Prototype Roof Deck Designed to Self-Regulate Deck Temperature and Reduce Heat Transfer  

Science Conference Proceedings (OSTI)

A prototype roof and attic assembly exploits the use of radiation, convection and insulation controls to reduce its peak day heat transfer by almost 85 percent of the heat transfer crossing a conventional roof and attic assembly. The assembly exhibits attic air temperatures that do not exceed the maximum daily outdoor ambient temperature. The design includes a passive ventilation scheme that pulls air from the soffit and attic into an inclined air space above the roof deck. The design complies with fire protection codes because the air intake is internal and closed to the elements. Field data were benchmarked against an attic computer tool and simulations made for new and retrofit constructions in hot, moderate and cold climates to gauge the cost of energy savings and potential payback.

Miller, William A [ORNL

2011-01-01T23:59:59.000Z

165

Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Update to Include Evaluation of Impact of Including a Humidifier Option  

SciTech Connect

The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment, ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. In 2006, the two top-ranked options from the 2005 study, air-source and ground-source versions of a centrally ducted integrated heat pump (IHP) system, were subjected to an initial business case study. The IHPs were subjected to a more rigorous hourly-based assessment of their performance potential compared to a baseline suite of equipment of legally minimum efficiency that provided the same heating, cooling, water heating, demand dehumidification, and ventilation services as the IHPs. Results were summarized in a project report, Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes, ORNL/TM-2006/130 (Baxter 2006a). The present report is an update to that document which summarizes results of an analysis of the impact of adding a humidifier to the HVAC system to maintain minimum levels of space relative humidity (RH) in winter. The space RH in winter has direct impact on occupant comfort and on control of dust mites, many types of disease bacteria, and 'dry air' electric shocks. Chapter 8 in ASHRAE's 2005 Handbook of Fundamentals (HOF) suggests a 30% lower limit on RH for indoor temperatures in the range of {approx}68-69F based on comfort (ASHRAE 2005). Table 3 in chapter 9 of the same reference suggests a 30-55% RH range for winter as established by a Canadian study of exposure limits for residential indoor environments (EHD 1987). Harriman, et al (2001) note that for RH levels of 35% or higher, electrostatic shocks are minimized and that dust mites cannot live at RH levels below 40%. They also indicate that many disease bacteria life spans are minimized when space RH is held within a 30-60% range. From the foregoing it is reasonable to assume that a winter space RH range of 30-40% would be an acceptable compromise between comfort considerations and limitation of growth rates for dust mites and many bacteria. In addition it reports som

Baxter, Van D [ORNL

2007-02-01T23:59:59.000Z

166

EPA_T1542_SECTOR_ResHomeImprv  

NLE Websites -- All DOE Office Websites (Extended Search)

to improve energy efficiency at home: > ENERGY STAR's Home Energy Yardstick > The DIY Guide to ENERGY STAR Home Sealing > ENERGY STAR's Guide to Energy-Efficient Heating and...

167

Columbia Water & Light - New Home Energy Star Rebate | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Home Energy Star Rebate Columbia Water & Light - New Home Energy Star Rebate Eligibility Construction Residential Savings For Heating & Cooling Home Weatherization Construction...

168

Home and Building Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home and Building Technology Basics Home and Building Technology Basics Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water,...

169

Energy-Efficient Home Design | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

more light and absorb less heat from sunlight, which keeps homes cooler during hot weather. Passive Solar Home Design Passive solar home design takes advantage of climatic...

170

The End-Use Technology Assessment Project: A Load-Shape Analysis of Ground Source Heat Pumps and Good Cents Homes  

Science Conference Proceedings (OSTI)

Interest is growing in end-use technology applications that promote overall energy efficiency through increased electricity use. This study will help utilities understand the impacts of such applications by providing load-shape information on ground source heat pumps as well as energy-efficient appliances promoted through Good Cents Homes programs. This report is available only to funders of Program 101A or 101.001. Funders may download this report at http://my.primen.com/Applications/DE/Community/index...

1995-05-27T23:59:59.000Z

171

Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

A variety of heating technologies are available today. In addition to heat pumps, which are discussed separately, many homes and buildings use the following approaches:

172

Electric co-heating in the ASHRAE standard method of test for thermal distribution efficiency: Test results on two New York State homes  

SciTech Connect

Electric co-heating tests on two single-family homes with forced-air heating systems were carried out in March 1995. The goal of these tests was to evaluate procedures being considered for incorporation in a Standard Method of Test for thermal distribution system efficiency now being developed by ASHRAE. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling effect from the building equipment that produces this thermal energy to the spaces in which it is used. Furthering the project goal, the first objective of the tests was to evaluate electric co-heating as a means of measuring system efficiency. The second objective was to investigate procedures for obtaining the distribution efficiency, using system efficiency as a base. Distribution efficiencies of 0.63 and 0.70 were obtained for the two houses.

Andrews, J.W.; Krajewski, R.F.; Strasser, J.J.

1995-10-01T23:59:59.000Z

173

Proposed Design for a Coupled Ground-Source Heat Pump/Energy Recovery Ventilator System to Reduce Building Energy Demand.  

E-Print Network (OSTI)

??The work presented in this thesis focuses on reducing the energy demand of a residential building by using a coupled ground-source heat pump/energy recovery ventilation (more)

McDaniel, Matthew Lee

2011-01-01T23:59:59.000Z

174

Energy Basics: Home and Building Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Home and Building Technologies Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for appliances and electronics. Today's...

175

Incentives for reducing emissions in Krakow  

SciTech Connect

This effort is identifying, specific incentives that may be used by Krakow city officials to encourage, residents to change the way they heat their homes and businesses in order to reduce pollution. This paper describes the incentives study for converting small coal or coke-fired boilers to gas in the Old Town area. A similar study looked at incentives for expanding the district heating system and future analyses will be performed for home stove options.

Uberman, R. [Polinvest Ltd., Krakow (Poland); Pierce, B. [Brookhaven National Lab., Upton, NY (United States); Lazecki, A. [Biuro Rozwoju Krakowa, Krakow (Poland)

1994-06-01T23:59:59.000Z

176

DOE Seeks Commercial Storage to Complete Fill of Northeast Home...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve August 26,...

177

Isochoric heating of reduced mass targets by ultra-intense laser produced relativistic electrons  

Science Conference Proceedings (OSTI)

We present measurements of the chlorine K-alpha emission from reduced mass targets, irradiated with ultra-high intensity laser pulses. Chlorinated plastic targets with diameters down to 50 micrometers and mass of a few 10{sup -8} g were irradiated with up to 7 J of laser energy focused to intensities of several 10{sup 19} W/cm{sup 2}. The conversion of laser energy to K-alpha radiation is measured, as well as high resolution spectra that allow observation of line shifts, indicating isochoric heating of the target up to 18 eV. A zero-dimensional 2-temperature equilibration model, combined with electron impact K-shell ionization and post processed spectra from collisional radiative calculations reproduces the observed K-alpha yields and line shifts, and shows the importance of target expansion due to the hot electron pressure.

Neumayer, P; Lee, H J; Offerman, D; Shipton, E; Kemp, A; Kritcher, A L; Doppner, T; Back, C A; Glenzer, S H

2009-02-04T23:59:59.000Z

178

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

No-Regrets Remodeling No-Regrets Remodeling Excerpts from No-Regrets Remodeling by the people at Home Energy magazine. Note: This book was published in 1997. While most of the information is timeless, some items may be out-dated. Your Kitchen Cooking Appliances Electric or Gas Kitchen Ranges? Refrigerators Your Home Office Home Office Equipment Power Ratings of Office Equipment Your Heating Heating: General Home Performance Contractors Oil System Upgrades Combined (Indirect) Hot Water & Heating Systems Combined (Integrated) Space & Water Heating The Thermostat is in Control Time for an Energy Switch? Your Cooling Tips for Buying a New Air Conditioner Cool Roofs for Hot Climates Evaporative Cooler Tips Ventilation, Ducts, Moisture, and Air Leakage Common Air Leakage Sites in the Home

179

Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Heat Pumps Heat Pumps Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Learn more about how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. In moderate climates, heat pumps can be an energy-efficient alternative to furnaces and air conditioners. Several types of heat pumps are available, including air-source; geothermal; ductless, mini-split; and absorption heat pumps. Learn more about the different options and how to use your heat pump efficiently to save money and energy at home. Featured Heat Pump Systems A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

180

Home Energy Rebate Option (HERO) - Existing Homes Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Home Energy Rebate Option (HERO) - Existing Homes Program Home Energy Rebate Option (HERO) - Existing Homes Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Maximum Rebate $3,000 Program Info Funding Source American Recovery and Reinvestment Act Expiration Date 06/11/2013 State Louisiana Program Type State Rebate Program Rebate Amount 20% of improvement costs Provider Louisiana Department of Natural Resources '''''NOTE: All HERO program funding has been allocated as of December 6, 2012. Important dates related to the closure of the program have been announced. Please see summary below for more information. '''''

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Passive Solar Home Design | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Passive Solar Home Design Passive Solar Home Design June 24, 2013 - 7:18pm Addthis This North Carolina home gets most of its space heating from the passive solar design, but the...

182

Home Energy Audits: Making Homes More Energy Efficient and Comfortable |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Audits: Making Homes More Energy Efficient and Home Energy Audits: Making Homes More Energy Efficient and Comfortable Home Energy Audits: Making Homes More Energy Efficient and Comfortable March 21, 2013 - 12:00pm Q&A Have a story about improving your home's energy efficiency? Share your story with us & it could be the next one we profile on energy.gov! Share your story Addthis Learn how a home energy audit is helping Seth Budick and his family save money on their energy bills, reduce their carbon footprint and make their home more comfortable. | Photo courtesy of Seth Budick. Learn how a home energy audit is helping Seth Budick and his family save money on their energy bills, reduce their carbon footprint and make their home more comfortable. | Photo courtesy of Seth Budick. Rebecca Matulka Rebecca Matulka

183

Home Energy Audits: Making Homes More Energy Efficient and Comfortable |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Audits: Making Homes More Energy Efficient and Home Energy Audits: Making Homes More Energy Efficient and Comfortable Home Energy Audits: Making Homes More Energy Efficient and Comfortable March 21, 2013 - 12:00pm Q&A Have a story about improving your home's energy efficiency? Share your story with us & it could be the next one we profile on energy.gov! Share your story Addthis Learn how a home energy audit is helping Seth Budick and his family save money on their energy bills, reduce their carbon footprint and make their home more comfortable. | Photo courtesy of Seth Budick. Learn how a home energy audit is helping Seth Budick and his family save money on their energy bills, reduce their carbon footprint and make their home more comfortable. | Photo courtesy of Seth Budick. Rebecca Matulka Rebecca Matulka

184

Home Energy Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Loan Program Home Energy Loan Program Home Energy Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Solar Buying & Making Electricity Maximum Rebate $6,000 from LA DNR Program Info State Louisiana Program Type State Loan Program Rebate Amount 50% of loan amount subsidized by LA DNR Provider Louisiana Department of Natural Resources The Home Energy Loan Program (HELP), administered by the Louisiana Department of Natural Resources (DNR), allows homeowners to get a five-year loan to improve the energy efficiency of their existing home. DNR

185

EPA_T1542_SECTOR_ResHomeImprv  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Improvement: An Overview of Home Improvement: An Overview of Energy Use and Energy Efficiency Opportunities Energy Use in Residential Home Improvement American homes account for 21 percent of the nation's energy use; in fact, the average home releases twice as much harmful greenhouse gas into the atmosphere as the average vehicle. The residential sector contributes 335 million metric tons of carbon to the atmosphere each year. A typical household spends $1,900 per year on energy bills, half of which are heating and cooling costs. Fortunately, there are many cost-effective opportunities to reduce energy use in homes. The U.S. Environmental Protection Agency (EPA) estimates that homeowners can save up to 30 percent on energy bills with ENERGY STAR. Energy Efficiency Opportunities

186

GREEN HOMES LONG ISLAND  

E-Print Network (OSTI)

developed a program that enables residents to make improvements that will decrease their home energy usage energy bill, reduce your carbon footprint... at little or no cost to you. #12;A Message From Supervisor energy-efficient and reduce our community's carbon footprint. Why do we call it Long Island Green Homes

Kammen, Daniel M.

187

Low-cost passive solar-retrofit options for mobile homes  

DOE Green Energy (OSTI)

Passive solar heating and cooling retrofit options can significantly reduce the energy consumption of new and existing mobile homes. The initial efforts of the Solar Energy Research Institute to explore the solar potential for the existing stock of mobile homes and those in the production stage are described.

Brant, S.; Holtz, M.; Tasker, M.

1981-03-01T23:59:59.000Z

188

Performance of Home Smoke Alarms  

Science Conference Proceedings (OSTI)

... 72 Figure 86. Heating ignition source with cooking oil . ... Estimated particle size from cooking oil fire scenario . . ... Performance of Home Smoke Alarms ...

2012-10-15T23:59:59.000Z

189

Solar Hot Water for Your Home  

DOE Green Energy (OSTI)

A brochure describing the cost-saving and energy-saving benefits of using solar heated water in your home.

American Solar Energy Society

2001-06-19T23:59:59.000Z

190

Rapid Metal Heating: Reducing Energy Consumption and Increasing Productivity in the Thermal Processing of Metals  

Science Conference Proceedings (OSTI)

Energy intensive manufacturing operations, such as iron and steel production, forging, and heat treating, are attempting to increase productivity while decreasing energy consumption.

2000-05-08T23:59:59.000Z

191

Visualization of flow boiling in an annular heat exchanger under reduced gravity conditions.  

E-Print Network (OSTI)

??This work examines the effects of gravitational acceleration on the flow boiling process. A test facility focusing on an annular heat exchanger was designed, built (more)

Westheimer, David Thomas

2012-01-01T23:59:59.000Z

192

Energy Basics: Radiant Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

low heat capacity and have the quickest response time of any heating technology. More Information Visit the Energy Saver website for more information about radiant heating in homes...

193

Energy Savers Guide: Tips on Saving Money and Energy at Home | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Savers Guide: Tips on Saving Money and Energy at Home Energy Savers Guide: Tips on Saving Money and Energy at Home Energy Savers Guide: Tips on Saving Money and Energy at Home November 19, 2013 - 9:16am Addthis Energy Savers Guide: Tips on Saving Money and Energy at Home Energy Savers provides homeowners with tips for saving money and energy at home and on the road. By following just a few of the simple tips here in the Energy Savers guide section of the website, you can make your home more comfortable and easier to heat and cool -- while you save money. We bring you the latest information on energy-saving, efficient technologies. We even give tips for using clean, renewable energy to power your home. Right in your own home, you have the power to save money and energy. Saving energy reduces our nation's overall demand for resources needed to make

194

Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment  

SciTech Connect

This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute to reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.

Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

2012-06-01T23:59:59.000Z

195

Low income home energy assistance  

Science Conference Proceedings (OSTI)

The Low Income Home Energy Assistance Program provides eligible households with assistance for home energy costs. Assistance is available to (1) help families pay heating and cooling costs, (2) prevent energy cutoff in crisis situations, and (3) help families make their homes more energy efficient. This report provides background information on the program in preparation for the program's reauthorization in 1990.

Not Available

1990-10-01T23:59:59.000Z

196

Secretary Chu Announces More Stringent Appliance Standards for Home Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stringent Appliance Standards for Home Stringent Appliance Standards for Home Water Heaters and Other Heating Products Secretary Chu Announces More Stringent Appliance Standards for Home Water Heaters and Other Heating Products April 1, 2010 - 12:00am Addthis WASHINGTON - U.S. Department of Energy Secretary Steven Chu announced today that the Department has finalized higher energy efficiency standards for a key group of heating appliances that will together save consumers up to $10 billion and prevent up to 164 million metric tons of carbon dioxide emissions over 30 years. These new standards - for residential water heaters, pool heaters and direct heating equipment such as gas fireplaces - will reduce air pollution, prevent the release of harmful nitrogen oxides and mercury, and avoid emissions equivalent to taking 46 million cars off

197

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Questions and Answers about the Home Energy Saver Questions and Answers about the Home Energy Saver What is the Home Energy Saver? Home Energy Saver is a Web site for homeowners and renters who want to reduce their energy bills. This home energy information resource employs advanced simulation software with an easy-to-use interface that tells the user how much money he or she spends on the house's energy bills, and how much he or she could save by installing energy-efficient measures and technology. Home Energy Saver is the first site of its kind on the Internet. The site also provides links to many other Web sites to help make these improvements happen, and an email link to experts at the Department of Energy who can answer home energy-related questions. What is the Web site address? http://HES.lbl.gov

198

Federal Energy Management Program: Home Energy Checklist  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Energy Checklist Home Energy Checklist This checklist outlines actions that conserve energy within homes. Today Turn down the temperature of your water heater to the warm setting (120°F). You'll save energy and avoid scalding your hands. Check if your water heater has an insulating blanket. An insulating blanket will pay for itself in one year or less! Heating can account for almost half of the average family's winter energy bill. Make sure your furnace or heat pump receives professional maintenance each year. And look for the ENERGY STAR® label when replacing your system. Review additional strategies to reduce your water heating bills. Water heating can account for 14%-25% of the energy consumed in your home. Survey your incandescent lights for opportunities to replace them with compact fluorescent lights (CFLs) or light-emitting diodes (LEDs). CFLs can save three-quarters of the electricity used by incandescents. The best targets are 60-100 W bulbs used several hours a day.

199

Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States  

DOE Green Energy (OSTI)

Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

Denholm, P.

2007-03-01T23:59:59.000Z

200

BCP Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Boulder Canyon Project Remarketing Effort HOME Home Page Image WELCOME Boulder Canyon Information Module Federal Register Notices Public Forums Correspondence and Presentations...

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

202

Building Technologies Office: Home Energy Score: Information...  

NLE Websites -- All DOE Office Websites (Extended Search)

home, lower your utility bills, improve the comfort of your home, or reduce your energy usage. The Home Energy Score can help you understand how to integrate energy upgrades into...

203

Insulated Concrete Homes Increase Durability and Energy Efficiency  

DOE Green Energy (OSTI)

New houses designed by Mercedes Homes in Melbourne, Florida, with technical support from the U.S. Department of Energy's Building America Program, save their homeowners money by using energy efficient features such as a high performance heat pump and solar control glazing to reduce cooling costs.

Building America; Hendron, B.; Poole, L.

2001-06-05T23:59:59.000Z

204

Insulated Concrete Homes Increase Durability and Energy Efficiency  

SciTech Connect

New houses designed by Mercedes Homes in Melbourne, Florida, with technical support from the U.S. Department of Energy's Building America Program, save their homeowners money by using energy efficient features such as a high performance heat pump and solar control glazing to reduce cooling costs.

Building America; Hendron, B.; Poole, L.

2001-06-05T23:59:59.000Z

205

Rocky Mountain Power - New Homes Program for Builders | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - New Homes Program for Builders Rocky Mountain Power - New Homes Program for Builders Rocky Mountain Power - New Homes Program for Builders < Back Eligibility Construction Installer/Contractor Multi-Family Residential Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State Utah Program Type Utility Rebate Program Rebate Amount '''New Construction Whole Home Options''' Home Performance ENERGY STAR Version 3 Certified Home: $500 (Single Family); $200 (Multifamily) ENERGY STAR Version 3 Certified Home: $250 (Single Family); $150 (Multifamily)

206

Evidence for ultra-fast heating in intense-laser irradiated reduced-mass targets  

Science Conference Proceedings (OSTI)

We report on an experiment irradiating individual argon droplets of 20 {mu}m diameter with laser pulses of several Joule energy at intensities of 10{sup 19} W/cm{sup 2}. K-shell emission spectroscopy was employed to determine the hot electron energy fraction and the time-integrated charge-state distribution. Spectral fitting indicates that bulk temperatures up to 160 eV are reached. Modelling of the hot-electron relaxation and generation of K-shell emission with collisional hot-electron stopping only is incompatible with the experimental results, and the data suggest an additional ultra-fast (sub-ps) heating contribution. For example, including resistive heating in the modelling yields a much better agreement with the observed final bulk temperature and qualitatively reproduces the observed charge state distribution.

Neumayer, P.; Gumberidze, A.; Hochhaus, D. C. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, 60438 Frankfurt am Main (Germany); Aurand, B.; Stoehlker, T. [Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Costa Fraga, R. A.; Kalinin, A. [Institut fuer Kernphysik, J. W. Goethe University Frankfurt, 60438 Frankfurt am Main (Germany); Ecker, B. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Grisenti, R. E. [Institut fuer Kernphysik, J. W. Goethe University Frankfurt, 60438 Frankfurt am Main (Germany); Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Kaluza, M. C. [Helmholtz Institute Jena, 07743 Jena (Germany); IOQ Institute of Optics and Quantum Electronics, University of Jena (Germany); Kuehl, T. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany); Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Polz, J. [IOQ Institute of Optics and Quantum Electronics, University of Jena (Germany); Reuschl, R. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Winters, D.; Winters, N.; Yin, Z. [Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany)

2012-12-15T23:59:59.000Z

207

Cullman Electric Cooperative - Energy Efficient Homes Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cullman Electric Cooperative - Energy Efficient Homes Program Cullman Electric Cooperative - Energy Efficient Homes Program Cullman Electric Cooperative - Energy Efficient Homes Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Appliances & Electronics Water Heating Program Info State Alabama Program Type Utility Rebate Program Rebate Amount Energy Efficient Home: $200 Energy Efficient Water Heater: $100 Cullman Electric Cooperative offers rebates to residential customers that make certain energy efficiency improvements to newly constructed, all electric homes. Up to $200 is available per home. Qualifying homes must have electric water heatng, clothes drying, cooking, and a heat pump. A

208

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Saver(tm) (HES) empowers homeowners and renters to save Saver(tm) (HES) empowers homeowners and renters to save money, live better, and help the earth by reducing energy use in their homes. HES recommends energy-saving upgrades that are appropriate to the home and make sense for the home's climate and local energy prices. The money invested in these upgrades commonly earns "interest" in the form of energy bill savings, at an annual rate of 20% or more (see examples). HES also estimates the home's carbon footprint and shows how much it can be reduced. For professional users, we also offer HESpro and teachers and students can check out Energized Learning. The upgrades recommended by HES offer other benefits as well. Depending on the type of improvement made, the home can achieve better comfort (warmer

209

Cascade Natural Gas - Conservation Incentives for New Homes | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cascade Natural Gas - Conservation Incentives for New Homes Cascade Natural Gas - Conservation Incentives for New Homes Cascade Natural Gas - Conservation Incentives for New Homes < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Heating Appliances & Electronics Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount High Efficiency Natural Gas Furnace: $150 High Efficiency Natural Gas Hearth: $70 Conventional Natural Gas Water Heater: $40 Condensing Tankless Water Heater: $200 Combined Domestic Water/Hydronic Space Heating System (usingTankless Water Heater): $800 Energy Star Certified Home: $350 Energy Star Certified Plus Home: $750

210

Reduced heat flow in light water (H2O) due to heavy water (D2O)  

E-Print Network (OSTI)

The flow of heat, from top to bottom, in a column of light water can be decreased by over 1000% with the addition of heavy water. A column of light water cools from 25 C to 0 C in 11 hours, however, with the addition of heavy water it takes more than 100 hours. There is a concentration dependence where the cooling time increases as the concentration of added (D2O) increases, with a near maximum being reached with as little as 2% of (D2O) added. This phenomenon will not occur if the water is mixed after the heavy water is added.

William R. Gorman; James D. Brownridge

2008-09-04T23:59:59.000Z

211

Drain Water Heat Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

212

Drain Water Heat Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

213

Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application  

E-Print Network (OSTI)

Based on an experimental residential retrofit incorporating thermal storage, and extensive subsequent modeling, a commercial design was developed and implemented to use hot thermal storage to significantly reduce electric demand and utility energy costs during the cooling season as well as the heating season. To achieve air conditioning savings, the system separates dehumidification from sensible cooling; dehumidifies by desiccant absorption, using heat from storage to dry the desiccant; and then cools at an elevated temperature improving overall system efficiency. Efficient heat for desiccant regeneration is provided by a selective-energy system coupled with thermal storage. The selective-energy system incorporates diesel cogeneration, solar energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility energy for refrigeration; 10 to 20% in refrigeration equipment; and space savings due to smaller ductwork and equipment.

Meckler, G.

1985-01-01T23:59:59.000Z

214

An Evaluation of the Placement of the Placement of Radiant Barriers on their Effectiveness in Reducing Heat Transfer in Attics  

E-Print Network (OSTI)

Experimental tests were conducted to measure the influence of radiant barriers and the effect of the radiant barrier location on attic heat transfer. All the tests were conducted in an attic simulator at a steady state. The heat flux through the attic floor was measured at two different roof deck temperatures (120F and 140F). The temperature distribution within the base fibrous insulation was also measured. Three different solid kraft laminates with aluminum foil backing were tested. There was a 34 percent reduction (sample A) in heat flux through the ceiling for the case where the radiant barrier was placed 6 inches below the roof deck in addition to the base fibrous insulation (R-11), with the roof deck at 140 F. The reduction for the same sample with the radiant barrier placed on the studs of the attic floor was 46 percent. For all the three samples, the heat flux through the attic floor was reduced when the radiant barrier was placed on the attic floor studs.

Katipamula, S.; O'Neal, D.

1986-01-01T23:59:59.000Z

215

IMPLEMENTING HEAT SEALED BAG RELIEF & HYDROGEN & METANE TESTING TO REDUCE THE NEED TO REPACK HANFORD TRANSURANIC (TRU) WASTE  

DOE Green Energy (OSTI)

The Department of Energy's site at Hanford has a significant quantity of drums containing heat-sealed bags that required repackaging under previous revisions of the TRUPACT-II Authorized Methods for Payload Control (TRAMPAC) before being shipped to the Waste Isolation Pilot Plant (WIPP). Since glovebox repackaging is the most rate-limiting and resource-intensive step for accelerating Hanford waste certification, a cooperative effort between Hanford's TRU Program and the WIPP site significantly reduced the number of drums requiring repackaging. More specifically, recent changes to the TRAMPAC (Revision 19C), allow relief for heat-sealed bags having more than 390 square inches of surface area. This relief is based on data provided by Hanford on typical Hanford heat-sealed bags, but can be applied to other sites generating transuranic waste that have waste packaged in heat-sealed bags. The paper provides data on the number of drums affected, the attendant cost savings, and the time saved. Hanford also has a significant quantity of high-gram drums with multiple layers of confinement including heat-scaled bags. These higher-gram drums are unlikely to meet the decay-heat limits required for analytical category certification under the TRAMPAC. The combination of high-gram drums and accelerated reprocessing/shipping make it even more difficult to meet the decay-heat limits because of necessary aging requirements associated with matrix depletion. Hydrogen/methane sampling of headspace gases can be used to certify waste that does not meet decay-heat limits of the more restrictive analytical category using the test category. The number of drums that can be qualified using the test category is maximized by assuring that the detection limit for hydrogen and methane is as low as possible. Sites desiring to ship higher-gram drums must understand the advantages of using hydrogen/methane sampling and shipping under the test category. Headspace gas sampling, as specified by the WIPP Waste Analysis Plan, provides the sample necessary for hydrogen/methane analysis. Most Hanford drums are not equipped with a filter through which a headspace gas sample can be obtained. A pneumatic system is now used to insert ''dart'' filters. The filters were developed by the vendor and approved for WIPP certification at the request of the Hanford Site. The same pneumatic system is used to install septum-type sample ports to allow the headspace to be sampled. Together, these steps allow the Hanford Site to avoid repackaging a large percentage of drums, and thus accelerate certification of waste destined for WIPP.

MCDONALD, K.M.

2005-01-20T23:59:59.000Z

216

Home Energy Saver for Consumers  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Energy Saver for Consumers Home Energy Saver for Consumers The Home Energy Saver(tm) (HES) empowers homeowners and renters to save money, live better, and help the earth by reducing energy use in their homes. HES recommends energy-saving upgrades that are appropriate to the home and make sense for the home's climate and local energy prices. The money invested in these upgrades commonly earns "interest" in the form of energy bill savings, at an annual rate of 20% or more. Depending on the type of improvement made, the home can achieve better comfort (warmer in winter, cooler in summer), fewer drafts, lower maintenance costs, and improved security and fire safety-all of which improve life and increase the home's value. HES computes a home's energy use on-line in a matter of seconds based on

217

Trends in Out-of-Home and At-Home Activities  

E-Print Network (OSTI)

T. F. Golob. Will Electronic Home Shopping Reduce Travel?An Investigation of Electronic Home Shopping. Institute of2006. 9. Ferrell, C. E. Home-Based Teleshoppers and Shopping

Wilson, Ryan; Krizek, Kevin J.; Handy, Susan L

2008-01-01T23:59:59.000Z

218

Challenge Home  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Challenge Home DOE Challenge Home Sam Rashkin Building Technologies Office samuel.rashkin@ee.doe.gov/202-2897-1994 April 3, 2013 DOE Challenge Home: Leveraging Our Nation's Investment in High-Performance Home Innovations 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: The U.S. Housing industry is extremely slow to adopt proven innovations from DOE's Building America program that provide compelling benefits to

219

Diverse Power - Energy Efficient Existing Homes Rebate Program (Georgia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Homes Rebate Program Existing Homes Rebate Program (Georgia) Diverse Power - Energy Efficient Existing Homes Rebate Program (Georgia) < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Heating Appliances & Electronics Water Heating Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Electric Heat Pump: $100/system Gas to Electric Heat Pump Switch: $300 Dual Fuel Heat Pump: $250/system Geothermal Heat Pump: $250/ton Electric Water Heaters: $75 - $150/unit Gas to Electric Water Heater Switch: $300 - $500 Waste Heat Recovery Unit: $250/house Provider Diverse Power Diverse Power is a member-owned electric cooperative that provides electric

220

Passive Solar Home Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Passive Solar Home Design Passive Solar Home Design Passive Solar Home Design June 24, 2013 - 7:18pm Addthis This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography. This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography. What does this mean for me? A passive solar home means a comfortable home that gets at least part of its heating, cooling, and lighting energy from the sun. How does it work?

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Water Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Water Heating Water Heating Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs Read more Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right type of energy-efficient water heater for your needs. Read more Sizing a New Water Heater When buying a new water heater, bigger is not always better. Learn how to buy the right size of water heater. Read more You can reduce your monthly water heating bills by selecting the appropriate water heater for your home or pool and by using some energy-efficient water heating strategies. Some simple do-it-yourself projects, like insulating hot water pipes and lowering your water heating temperature, can also help you save money and energy on your water heating.

222

Berkeley Electric Cooperative -HomeAdvantage Efficiency Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Berkeley Electric Cooperative -HomeAdvantage Efficiency Loan Berkeley Electric Cooperative -HomeAdvantage Efficiency Loan Program Berkeley Electric Cooperative -HomeAdvantage Efficiency Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Other Windows, Doors, & Skylights Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Program Info State South Carolina Program Type Utility Loan Program Rebate Amount HomeAdvantage Loans: $15,000 Provider Berkeley Electric Cooperative Berkeley Electric Cooperative provides HomeAdvantage Loans to qualifying homeowners for energy efficiency upgrades to residences. Measures typically

223

Loveland Water & Power - Home Energy Audit Rebate Program (Colorado) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loveland Water & Power - Home Energy Audit Rebate Program Loveland Water & Power - Home Energy Audit Rebate Program (Colorado) Loveland Water & Power - Home Energy Audit Rebate Program (Colorado) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Heating Heat Pumps Insulation Maximum Rebate $500 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount 50% of the cost up to $500 Loveland Water and Power (LWP) is providing an incentive for customers living in single-family detached homes or attached townhouses that wish to upgrade the energy efficiency of eligible homes. Customers can schedule a

224

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network (OSTI)

A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver, Colorado. The refrigeration unit is designed to provide refrigeration for two process units at the refinery while utilizing waste heat as the energy source. The added refrigeration capacity benefits the refinery by recovering salable products, debottlenecking process units, avoiding additional electrical demand, and reducing the refinery Energy Intensity Index. In addition, the WHAARP unit lowers air pollutant emissions by reducing excess fuel gas that is combusted in the refinery flare. A comprehensive utility and process efficiency Master Plan developed for the Denver refinery by Planetec provided the necessary platform for implementing this distinctive project. The $2.3 million WHAARP system was paid for in part by a $760,000 grant from the U.S. Department of Energy, as part of their "Industry of the Future Program". Total combined benefits are projected to be approximately $1 million/year with a 1.6 year simple payback including the grant funding.

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

1998-04-01T23:59:59.000Z

225

Cleco Power - Power Miser New Home Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleco Power - Power Miser New Home Program Cleco Power - Power Miser New Home Program Cleco Power - Power Miser New Home Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Sealing Your Home Windows, Doors, & Skylights Ventilation Heating Heat Pumps Water Heating Program Info State Louisiana Program Type Utility Rate Discount Rebate Amount Discount: 10% discount on energy from November through April for the first five years that the customer lives in participating house. Heat Pump Bonus: Up to $1,000 for eligible heat pump installations Provider Cleco Power Louisiana's Cleco Power offers energy efficiency incentives to eligible

226

Multifamily Home Energy Solutions Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Multifamily Home Energy Solutions Program Multifamily Home Energy Solutions Program < Back Eligibility Commercial Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Manufacturing Water Heating Program Info Funding Source Public Benefit Fund State Oregon Program Type State Rebate Program Rebate Amount Windows: $2-$3/sq ft, depending on U-value, glazing and type of heating Heat Pumps: $200 - $600, varies by efficiency and original heating type High-Efficiency Gas Boiler: $200 Gas Furnace: $150 Insulation: $0.30-$4 per square foot Exterior Doors: $25

227

Progress Energy Florida - Home Energy Check Audit and Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Progress Energy Florida - Home Energy Check Audit and Rebate Program Progress Energy Florida - Home Energy Check Audit and Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Ventilation Heat Pumps Insulation Design & Remodeling Windows, Doors, & Skylights Maximum Rebate Duct Test: $$150 Duct Repair: $100 per unit Reflective Roof: $150 Wall Insulation: $300 Replacement Windows - $250 Window Films/Screens - $100 Program Info State Florida Program Type Utility Rebate Program Rebate Amount Heat Pump (Heat Pump Replacement): $100 - $150 Heat Pump (Strip Heat Replacement): $250 - $350

228

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools of the Trade Tools of the Trade Clockwise: IR thermograph, IR camera, Air flow measurement, Blower door, Combustion test for water heater A hammer and a saw used to be the key tools for home contractors. Today, the best-in-breed also use high-tech equipment while performing a professional energy audit or verifying that construction has been done correctly. Infrared cameras can "see" heat loss and find hidden energy savings opportunities. PFT tests or blower door tests measure a homes air leakage and tell you when sealing has been successful. Combustion monitoring equipment and indoor-air pollution detectors ensure that a heating system is not only efficient but also not dumping dangerous pollutants into the home. All of these practices should be conducted with a

229

Technology Solutions for New Manufactured Homes: Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet)  

SciTech Connect

The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

Not Available

2013-11-01T23:59:59.000Z

230

Behavioral Perspectives on Home Energy Audits: The Role of Auditors, Labels, Reports, and Audit Tools on Homeowner Decision Making  

E-Print Network (OSTI)

data for homes using oil for heating was not oil, gas, and electricity as primary sources of heating my home. of homes that used fuel oil as a primary heating

Ingle, Aaron

2013-01-01T23:59:59.000Z

231

Delmarva Power - Home Performance with Energy Star Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delmarva Power - Home Performance with Energy Star Incentive Delmarva Power - Home Performance with Energy Star Incentive Program Delmarva Power - Home Performance with Energy Star Incentive Program < Back Eligibility Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Other Sealing Your Home Ventilation Manufacturing Heating Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Recommended measures resulting from Energy Audit: $2000 Program Info Funding Source Maryland Energy Administration State Maryland Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Cost discounted to $100 HVAC and Envelope upgrades: up to $2000 Provider

232

Local Energy Alliance Program - Home Performance with ENERGY STAR  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Energy Alliance Program - Home Performance with ENERGY STAR Local Energy Alliance Program - Home Performance with ENERGY STAR (Virginia) Local Energy Alliance Program - Home Performance with ENERGY STAR (Virginia) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Water Heating Windows, Doors, & Skylights Maximum Rebate LEAP Program: $500 Rappahannock Electric Cooperative: $600 Program Info Funding Source Local Energy Alliance Program State Virginia Program Type Local Rebate Program Rebate Amount LEAP Program LEAP Home Energy Improvement Program : 20% of cost up to $500 Rappahannock Electric Cooperative Incentives Heat Pump Tune-Up: $75 Duct Sealing: $200

233

Michigan Saves - Home Energy Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Michigan Saves - Home Energy Loan Program Michigan Saves - Home Energy Loan Program Michigan Saves - Home Energy Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Other Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Insulation Water Heating Solar Buying & Making Electricity Program Info State Michigan Program Type State Loan Program Rebate Amount $1,000-$20,000 Provider Michigan Saves Michigan Saves is a non-profit that offers financing options for energy efficiency improvements throughout Michigan. The Home Energy Loan Program was started with seed funding from the Michigan Public Service Commission.

234

Interactions between fuel choice and energy-efficiency in new homes in the Pacific Northwest  

SciTech Connect

In recent years the Bonneville Power Administration has instituted programs to prompt the implementation of the residential Model Conservation Standards (MCS) issued by the Northwest Power Planning Council (Council) in 1983. These standards provide alternative methods for designing and constructing homes to cost effectively reduce residential energy consumption. Authority exists to apply them only to new, electrically heated homes. Because they apply to electrically heated homes, concerns have arisen about how the standards might affect buyers' decisions to purchase a new home, in particular, their choice of a heating fuel. Early data suggested that electricity started losing market share in Tacoma about when the MCS went into effect in 1984, and recent data have shown that about half of electricity's share of the new home market has shifted to natural gas. This decline in electric heating was consistent with concerns about the possible detrimental effect of the cost of MCS on sales of electrically heated homes. A desire to understand the causes of the perceived decline in electricity's market share was part of the impetus for this study. Multiple techniques and data sources are used in this study to examine the relationship between residential energy-efficiency and fuel choice in the major metropolitan areas in Washington: Spokane, Clark, Pierce, and King Counties. Recent regional surveys have shown that electricity is the predominant space heating fuel in the Pacific Northwest, but it appears to be losing its dominance in some markets such as Tacoma.

Lee, A.D.; Englin, J.E.; Bruneau, C.L.

1990-12-01T23:59:59.000Z

235

Interactions between fuel choice and energy-efficiency in new homes in the Pacific Northwest  

SciTech Connect

In recent years the Bonneville Power Administration has instituted programs to prompt the implementation of the residential Model Conservation Standards (MCS) issued by the Northwest Power Planning Council (Council) in 1983. These standards provide alternative methods for designing and constructing homes to cost effectively reduce residential energy consumption. Authority exists to apply them only to new, electrically heated homes. Because they apply to electrically heated homes, concerns have arisen about how the standards might affect buyers' decisions to purchase a new home, in particular, their choice of a heating fuel. Early data suggested that electricity started losing market share in Tacoma about when the MCS went into effect in 1984, and recent data have shown that about half of electricity's share of the new home market has shifted to natural gas. This decline in electric heating was consistent with concerns about the possible detrimental effect of the cost of MCS on sales of electrically heated homes. A desire to understand the causes of the perceived decline in electricity's market share was part of the impetus for this study. Multiple techniques and data sources are used in this study to examine the relationship between residential energy-efficiency and fuel choice in the major metropolitan areas in Washington: Spokane, Clark, Pierce, and King Counties. Recent regional surveys have shown that electricity is the predominant space heating fuel in the Pacific Northwest, but it appears to be losing its dominance in some markets such as Tacoma.

Lee, A.D.; Englin, J.E.; Bruneau, C.L.

1990-12-01T23:59:59.000Z

236

LEED for Homes Program Review  

E-Print Network (OSTI)

Are you ready to enter the rapidly growing green building market? Attend the LEED for Homes Program Review presented by the U.S. Green Building Council. Gain the knowledge needed for successful participation in the LEED for Homes initiative. WHY LEARN ABOUT LEED? LEED for Homes is a voluntary rating system that promotes the design and construction of high performance "green " homes. A green home uses less energy, water, and natural resources; creates less waste; and is healthier and more comfortable for the occupants. Benefits of a LEED home include lower energy and water bills; reduced greenhouse gas emissions; and less exposure to mold, mildew and other indoor toxins. LEED certification recognizes and rewards builders for meeting the highest performance standards, and gives homeowners confidence that their home is durable, healthy, and environmentally friendly WHO SHOULD ATTEND? Industry professionals seeking to increase their understanding of the LEED for Homes Rating System and green building strategies, benefits and resources:

unknown authors

2008-01-01T23:59:59.000Z

237

Newer U.S. homes are 30% larger but consume about as much energy ...  

U.S. Energy Information Administration (EIA)

*Note: Averages for space heating and air conditioning reflect only those households that heated or cooled their homes in 2009.

238

DEMCO- Touchstone Energy Home Program  

Energy.gov (U.S. Department of Energy (DOE))

DEMCO, a Touchstone Energy Cooperative, provides residential customers who have a qualified Touchstone Energy Home, a rebate of up to $0.10 per square foot of living area for electric heat pumps...

239

Assisted Home Performance Grants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assisted Home Performance Grants Assisted Home Performance Grants Assisted Home Performance Grants < Back Eligibility Low-Income Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Manufacturing Commercial Lighting Lighting Cooling Water Heating Maximum Rebate Single-family: $5,000 Multi-family (2-4 units): $10,000 per building Program Info Funding Source Energy Efficiency Portfolio Standard (EEPS) State New York Program Type State Grant Program Rebate Amount 50% of costs Provider New York State Energy Research and Development Authority The Assisted Home Performance Program provides grants to low-income home owners in 1-4 family buildings for up to 50% of costs for energy efficient

240

TVA Partner Utilities - Energy Right New Homes Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Right New Homes Program Right New Homes Program TVA Partner Utilities - Energy Right New Homes Program < Back Eligibility Construction Installer/Contractor Multi-Family Residential Residential Utility Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Heat Pumps Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Site Built New Homes Plan: $100-$800 depending on local power company and home efficiency Manufactured Home Heat Pump: $500 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) ''energy right'' New Homes Plan provides incentives for all-electric, energy-efficient new homes by offering graduated rebates for new homes. Homes built at least 7% better

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

TVA Partner Utilities - Energy Right New Homes Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TVA Partner Utilities - Energy Right New Homes Program TVA Partner Utilities - Energy Right New Homes Program TVA Partner Utilities - Energy Right New Homes Program < Back Eligibility Construction Installer/Contractor Multi-Family Residential Residential Utility Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Heat Pumps Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Site Built New Homes Plan: $100-$800 depending on local power company and home efficiency Manufactured Home Heat Pump: Up to $500 The Tennessee Valley Authority (TVA) energy right New Homes Plan provides incentives for all-electric, energy-efficient new homes by offering graduated rebates for new homes. Homes built at least 7% better than code

242

TVA Partner Utilities - Energy Right' New Homes Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Right' New Homes Program Right&#039; New Homes Program TVA Partner Utilities - Energy Right' New Homes Program < Back Eligibility Construction Installer/Contractor Multi-Family Residential Residential Utility Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Heat Pumps Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount Site Built New Homes Plan: $100-$800 depending on local power company and home efficiency Manufactured Home Heat Pump: Up to $500 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) ''energy right'' New Homes Plan provides incentives for all-electric, energy-efficient new homes by offering graduated rebates for new homes. Homes built at least 7% better

243

Challenge Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Innovations 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: The U.S. Housing industry is extremely slow to adopt...

244

Building America Top Innovations Hall of Fame Profile … Affordable High Performance in Production Homes: Artistic Homes, Albuquerque, NM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

help from Building America, Artistic help from Building America, Artistic Homes built affordable, high-performance homes in New Mexico and Colorado with HERS scores of 0 to 60. Many builders remain resistant to adopting high-performance innovations based on misconceptions about high cost and design challenges. Thus, Building America projects such as Artistic Homes have had an extraordinary impact, demonstrating the mainstream builder's business case for adopting proven innovations such as efficient thermal enclosures and ducts inside the conditioned space, even in entry-level homes. The U.S. Department of Energy's Building America program has helped develop best practices for creating efficient thermal enclosures and locating HVAC ducts inside the conditioned space. These measures cost-effectively reduce heating and

245

Energy Savers Tips on Saving Energy& Money at Home  

SciTech Connect

Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances

Not Available

2003-06-01T23:59:59.000Z

246

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

DOE Green Energy (OSTI)

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

247

A novel isolation curtain to reduce turbine ingress heating and an advanced model for honeycomb labyrinth seals  

E-Print Network (OSTI)

A combination of 3-D and 2-D computational fluid dynamics (CFD) modeling as well as experimental testing of the labyrinth seal with hexagonal honeycomb cells on the stator wall was performed. For the 3-D and 2-D CFD models, the hexagonal honeycomb structure was modeled using the concept of the baffle (zero-thickness wall) and the simplified 2-D fin, respectively. The 3-D model showed that even a small axial change of the tooth (or honeycomb wall) location, or a small circumferential change of the honeycomb wall location significantly affected the flow patterns and leakage characteristics especially for small tooth tip clearance. Also, the local details of the flow field were investigated. The seven basic procedural steps to develop a 2-D axisymmetric honeycomb labyrinth seal leakage model were shown. Clearly demonstrated for varying test conditions was the 2-D model capability to predict the 3-D honeycomb labyrinth flow that had been measured at different operating conditions from that used in developing the 2-D model. Specifically, the 2-D model showed very close agreement with measurements. In addition, the 2-D model greatly reduced the computer resource requirement needed to obtain a solution of the 3-D honeycomb labyrinth seal leakage. The novel and advanced strategy to reduce the turbine ingress heating, and thus the coolant requirement, by injecting a ?coolant isolation curtain? was developed numerically using a 3-D CFD model. The coolant isolation curtain was applied under the nozzle guide vane platform for the forward cavity of a turbine stage. Specifically, the isolation curtain serves to isolate the hot mainstream gas from the turbine outer region. The effect of the geometry change, the outer cavity axial gap clearance, the circumferential location of the injection curtain slot and the injection fluid angle on the ingress heating was investigated. Adding the chamfer to the baseline design gave a similar or higher maximum temperature T* max than did the baseline design without chamfer, but implementation of the injection curtain slot reduced substantially T* max of the outer region. In addition, a more desirable uniform adiabatic wall temperature distribution along the outer rotor and stator surfaces was observed due to the presence of the isolation curtain.

Choi, Dong Chun

2005-05-01T23:59:59.000Z

248

Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Idaho Program Type Utility Rebate Program Rebate Amount New Construction Home Options Builder Option Package 1: $50 (single family), $50 (multifamily) Builder Option Package 2: $100 (single family), $100 (multifamily) Energy Star 3.0: $300 (single family), $200 (multifamily) High Performance Home: $500 (single family), $300 (multifamily)

249

Energy Efficiency Fund (Electric) - Home Energy Solutions and Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric) - Home Energy Solutions and Electric) - Home Energy Solutions and Performance Programs Energy Efficiency Fund (Electric) - Home Energy Solutions and Performance Programs < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Other Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info Funding Source Energy Efficiency Fund State Connecticut Program Type Utility Rebate Program Rebate Amount Varies Provider Customer Service The Energy Efficiency Fund, funded by Connecticut's public benefits charge, provides home energy efficiency rebate programs to customers of The

250

Singing River Electric Power Association - Comfort Advantage Home Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Singing River Electric Power Association - Comfort Advantage Home Singing River Electric Power Association - Comfort Advantage Home Program Singing River Electric Power Association - Comfort Advantage Home Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount Contact Singing River Electric Power Association Provider Singing River Electric Power Association Singing River Electric Power Association provides rebates on energy efficiency measures in new homes and heat pumps that meet [http://www.comfortadvantage.com/Comfort%20Advantage%20brochure.pdf Comfort Advantage] weatherization standards. To qualify for this rebate the home

251

Coal home heating and environmental tobacco smoke in relation to lower respiratory illness in Czech children, from birth to 3 years of age  

E-Print Network (OSTI)

The coefficient for wood as a heating source was elevated,distant heating) Natural gas Electricity Coal Wood Unknown/distant heating and use of natural gas, electricity, or wood

2006-01-01T23:59:59.000Z

252

EnergySavers: Tips on Saving Money & Energy at Home (Brochure)  

SciTech Connect

The U.S. Department of Energy's consumer guide to saving money and energy at home and on the road. It consists of the following articles: (1) Save Money and Energy Today - Get started with things you can do now, and use the whole-house approach to ensure that your investments are wisely made to save you money and energy; (2) Your Home's Energy Use - Find out how your home uses energy, and where it's losing the most energy so you can develop a plan to save in the short and long term; (3) Air Leaks and Insulation - Seal air leaks and insulate your home properly so your energy dollars don't seep through the cracks; (4) Heating and Cooling - Use efficient systems to heat and cool your home, and save money and increase comfort by properly maintaining and upgrading equipment; (5) Water Heating - Use the right water heater for your home, insulate it and lower its temperature, and use less water to avoid paying too much; (6) Windows - Enjoy light and views while saving money by installing energy-efficient windows, and use strategies to keep your current windows from losing energy; (7) Lighting - Choose today's energy-efficient lighting for some of the easiest and cheapest ways to reduce your electric bill; (8) Appliances - Use efficient appliances through-out your home, and get greater performance with lower energy bills; (9) Home Office and Electronics - Find out how much energy your electronics use, reduce their out-put when you're not using them, and choose efficient electronics to save money; (10) Renewable Energy - Use renewable energy at home such as solar and wind to save energy dollars while reducing environmental impact; (11) Transportation - Choose efficient transportation options and drive more efficiently to save at the gas pump; and (12) References - Use our reference list to learn more about energy efficiency and renewable energy.

Not Available

2011-12-01T23:59:59.000Z

253

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Profitability of Energy Efficiency Upgrades Profitability of Energy Efficiency Upgrades Application of these 10 energy efficiency measures in a typical home yields nearly $600 in annual bill savings, and an impressive 16% overall return on investment. Diagram providing a representative view of the high profitability of energy efficiency upgrades This diagram provides a representative view of the high profitability of energy efficiency upgrades. Note that the home evaluated here is located in an average U.S. climate and has a heat pump, electric water heater, clothes washer, clothes dryer, and dishwasher. The example cost-effectively surpasses the 30% savings target for existing homes under PATH (The Partnership for Advancing Technology in Housing). In fact, all of these measures yield a higher return on investment than an

254

Home Page  

Gasoline and Diesel Fuel Update (EIA)

Electronic Access and Related Reports The AEO98 will be available on CD-ROM and the EIA Home Page on the Internet (http:www.eia.govoiafaeo98homepage.html), including text,...

255

Water Conservation Checklist for the Home  

E-Print Network (OSTI)

Modifying water use in the home can reduce water waste and save energy and money. This publication explains how to conserve water while doing various activities around the home. Tips are also given on inspecting plumbing.

Harris, Janie; Kellner, Bev

2002-08-10T23:59:59.000Z

256

How to Build a Better Home  

DOE Green Energy (OSTI)

Brochure about combining three types of solar technology (PV, solar thermal, and passive solar design) into one home to greatly improve efficiency of the home and reduce its environmental impact.

Poole, L.

2000-06-19T23:59:59.000Z

257

Western Riverside Council of Governments - Home Energy Renovation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Renovation Home Energy Renovation Opportunity (HERO) Financing Program (California) Western Riverside Council of Governments - Home Energy Renovation Opportunity (HERO) Financing Program (California) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Sealing Your Home Cooling Other Design & Remodeling Windows, Doors, & Skylights Commercial Weatherization Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Solar Buying & Making Electricity Water Heating Wind Program Info State California Program Type PACE Financing Provider WRCOG HERO Financing Program (Residential) Western Riverside Council of Governments (WRCOG) is offering homeowners in WRCOG participating jurisdictions an opportunity to finance energy and

258

Cooling your home naturally  

SciTech Connect

This fact sheet describes some alternatives to air conditioning which are common sense suggestions and low-cost retrofit options to cool a house. It first describes how to reflect heat away from roofs, walls, and windows. Blocking heat by using insulation or shading are described. The publication then discusses removing built-up heat, reducing heat-generating sources, and saving energy by selecting energy efficient retrofit appliances. A resource list is provided for further information.

NONE

1994-10-01T23:59:59.000Z

259

Energy-Efficient Home Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Design Home Design Energy-Efficient Home Design April 13, 2012 - 11:39am Addthis The Home Energy Score is a national rating system developed by the U.S. Department of Energy. The Score reflects the energy efficiency of a home based on the home's structure and heating, cooling, and hot water systems. The Home Facts provide details about the current structure and systems. Recommendations show how to improve the energy efficiency of the home to achieve a higher score and save money. The Home Energy Score is a national rating system developed by the U.S. Department of Energy. The Score reflects the energy efficiency of a home based on the home's structure and heating, cooling, and hot water systems. The Home Facts provide details about the current structure and systems.

260

Energy-Efficient Home Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Design Home Design Energy-Efficient Home Design April 13, 2012 - 11:39am Addthis The Home Energy Score is a national rating system developed by the U.S. Department of Energy. The Score reflects the energy efficiency of a home based on the home's structure and heating, cooling, and hot water systems. The Home Facts provide details about the current structure and systems. Recommendations show how to improve the energy efficiency of the home to achieve a higher score and save money. The Home Energy Score is a national rating system developed by the U.S. Department of Energy. The Score reflects the energy efficiency of a home based on the home's structure and heating, cooling, and hot water systems. The Home Facts provide details about the current structure and systems.

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Labeling and advertising of home insulation  

SciTech Connect

This staff report, prepared by the F.T.C.'s Bureau of Consumer Protection for Commission review, includes recommendations as to the final form of a trade regulation rule relating to the labeling and advertising of home insulation. Because of marketing abuses which accompanied the rising demand for home insulation, there has been broad support for a rule requiring information disclosures to help purchasers of home insulation to make an informed decision. The Commission, to provide such rule as quickly as possible, undertook its rulemaking proceeding under its new expedited rulemaking procedure. The rule was proposed on November 18, 1977, and, following a two-month period for written comments, four weeks of hearings were held in Washington, D.C. in February 1978. The record, contributed to by a variety of interests, shows that consumers do not know how to shop for home insulation. The staff-recommended rule, among other things, would require that insulation be tested and R-values (a measure of insulation's ability to retain heat) disclosed on labels and in advertising. To facilitate comparison shopping, the industry would also be required to furnish consumers with fact sheets describing, on a product-to-product basis, factors that can reduce the R-value of insulation.

1978-07-01T23:59:59.000Z

262

Energy-Efficient New Homes Tax Credit for Home Builders | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient New Homes Tax Credit for Home Builders Energy-Efficient New Homes Tax Credit for Home Builders Energy-Efficient New Homes Tax Credit for Home Builders < Back Eligibility Construction Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate $2,000 Program Info Start Date 1/1/2006 Expiration Date 12/31/2013 Program Type Corporate Tax Credit Rebate Amount $1,000 - $2,000 (depends on energy savings and home type) Provider U.S. Internal Revenue Service '''''This credit expired at the end of 2011. The American Taxpayer Relief Act of 2012 retroactively renewed this tax credit effective January 1, 2012, expiring again on December 31, 2013. Any qualified home constructed and purchased in 2012 or 2013 is eligible for this credit. '''''

263

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Lowest-Hanging Fruit Lowest-Hanging Fruit Get the Weekly Energy Saving Tip widget and many other great free widgets at Widgetbox! Not seeing a widget? (More info) The analysis you've done in the Home Energy Saver is a great beginning, but not the end of your quest. You now know where you stand and how much you can improve. Time to get started. In the following links you will find dozens of no-cost tips for things you can do to start saving energy immediately, many of which can be done without even opening your wallet! Air Leaks Home office electronics Lighting Heating & cooling Water heating Windows Making it Happen Roadmap to Results Seasons of Life The Lowest-Hanging Fruit Investing for Profit and Comfort Creating Successful Projects Financial Incentives Watt About Water? Choosing a Good Contractor

264

Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal...  

Open Energy Info (EERE)

Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow,...

265

Home Energy Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Home Energy Loan Program Home Energy Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Other Ventilation Heat Pumps Appliances & Electronics Water Heating Maximum Rebate $30,000 Program Info Funding Source American Recovery and Reinvestment Act of 2009 Start Date 01/2011 State Maryland Program Type State Loan Program Rebate Amount Loans from $1,500 - $30,000 Provider Maryland Clean Energy Center Note: The eligible technologies listed above are only examples of some improvements that might be supported under this program as detailed on the program web site. Other improvements may be eligible and not all

266

Coast Electric Power Association - Comfort Advantage Home Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coast Electric Power Association - Comfort Advantage Home Program Coast Electric Power Association - Comfort Advantage Home Program Coast Electric Power Association - Comfort Advantage Home Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount 300 - 500, varies by home efficiency 150 per additional qual$300 - $500, varies by home efficiency Geothermal Heat Pumps: $400 - $500 Additional Heat Pump Units (When Required): $150ified heat pump system Provider Coast Electric Power Association Coast Electric Power Association (CEPA) provides rebates on heat pumps to new homes which meet certain weatherization standards. To qualify for this rebate the home must have: * Attic insulation of at least R-38 or encapsulated foam attic insulation

267

Heating  

SciTech Connect

According to The Hydronics Institute, the surge in gas-fired boiler shipments brought about 3 years ago by high oil prices and the availability of natural gas after years of curtailment has almost competely subsided. Gas prices continue to escalate and the threat of decontrol by 1985 continues. Likewise, the Gas Appliance Manufacturers Association reports that shipments of gas-fired unit heaters, duct furnaces, and wall furnaces have also dropped as homeowners adopt a wait-and-see attitude toward conversion. However, the market for high- and ultra-high-efficiency furnaces appears to hold potential for expansion. Because of the rebounding home market, a steady replacement market, and increased sales for reasons of efficiency, GAMA expects the total (gas, oil, and electric) central furnace market to increase by 16% in 1983.

1983-04-04T23:59:59.000Z

268

Energy Basics: Solar Air Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes & Buildings Printable Version Share this resource Lighting & Daylighting Passive Solar Design Space Heating & Cooling Cooling Systems Heating Systems Furnaces & Boilers Wood...

269

Energy Basics: Solar Liquid Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes & Buildings Printable Version Share this resource Lighting & Daylighting Passive Solar Design Space Heating & Cooling Cooling Systems Heating Systems Furnaces & Boilers Wood...

270

Tips: Passive Solar Heating and Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Passive Solar Heating and Cooling Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling April 24, 2012 - 4:18pm Addthis Tips: Passive Solar Heating and Cooling Using passive solar design to heat and cool your home can be both environmentally friendly and cost effective. In many cases, your heating costs can be reduced to less than half the cost of heating a typical home. Passive solar design can also help lower your cooling costs. Passive solar cooling techniques include carefully designed overhangs and using reflective coatings on windows, exterior walls, and roofs. Newer techniques include placing large, insulated windows on south-facing walls and putting thermal mass, such as a concrete slab floor or a heat-absorbing wall, close to the windows. A passive solar house requires careful design and siting, which vary by

271

Tips: Passive Solar Heating and Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling April 24, 2012 - 4:18pm Addthis Tips: Passive Solar Heating and Cooling Using passive solar design to heat and cool your home can be both environmentally friendly and cost effective. In many cases, your heating costs can be reduced to less than half the cost of heating a typical home. Passive solar design can also help lower your cooling costs. Passive solar cooling techniques include carefully designed overhangs and using reflective coatings on windows, exterior walls, and roofs. Newer techniques include placing large, insulated windows on south-facing walls and putting thermal mass, such as a concrete slab floor or a heat-absorbing wall, close to the windows. A passive solar house requires careful design and siting, which vary by

272

Home Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Cooling Home Cooling Ventilation Systems for Cooling Learn how to avoid heat buildup and keep your home cool with ventilation. Read more Cooling with a Whole House Fan A whole-house fan, in combination with other cooling systems, can meet all or most of your home cooling needs year round. Read more Although your first thought for cooling may be air conditioning, there are many alternatives that provide cooling with less energy use. You might also consider fans, evaporative coolers, or heat pumps as your primary means of cooling. In addition, a combination of proper insulation, energy-efficient windows and doors, daylighting, shading, and ventilation will usually keep homes cool with a low amount of energy use in all but the hottest climates. Although ventilation is not an effective cooling strategy in hot, humid

273

Newer U.S. homes are 30% larger but consume about as much ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... These new homes consumed 21% less energy for space heating on average than older homes ...

274

New Homes Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Homes Program New Homes Program New Homes Program < Back Eligibility Installer/Contractor Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info Start Date 07/01/2012 State Wisconsin Program Type State Rebate Program Rebate Amount Varies based on efficiency level Provider Focus on Energy Focus on Energy's New Homes Program certifies homes that are built more efficient than the current [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=WI13R&re=0&ee=0 Wisconsin Building Code]. Incentives are available depending on the level of efficiency that the new home achieves, and are claimed by the builder or the homeowner that serves as the general contractor and holds the permits.

275

Entergy Texas - Energy Star Homes Program for Builders | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy Texas - Energy Star Homes Program for Builders Entergy Texas - Energy Star Homes Program for Builders Entergy Texas - Energy Star Homes Program for Builders < Back Eligibility Construction Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Texas Program Type Utility Rebate Program Rebate Amount Single-Family Homes - Tier I (ENERGY STAR V-2.0): $150 per home Single-Family Homes - Tier II (ENERGY STAR V-2.5): $300 per home Attached Homes: 50% of single-family incentive per housing unit Advanced Lighting Package: $50 per single-family home ENERGY STAR V-3.0 HVAC Check Lists: $150 per single-family home Provider Entergy Texas Entergy Texas offers an incentive to builders in its service territory for

276

Home Page > Business > Industrial > Global Trade Of Wood Chips Down 26% In 2009 As Pulpmills Reduce Production Worldwide, Reports Wood Resources International  

E-Print Network (OSTI)

Poster Explore Strategies in Technical Analysis from Experienced Brokers. www.Lind-Waldock.com , USA financial crises and the reduced demand for paper products worldwide. This year, only an estimated 25 worldwide, European demand for pellets and biomass chips, outlook for plantation wood chip supply, ocean

277

Super Energy Efficiency Design (S.E.E.D.) Home Evaluation  

SciTech Connect

This report describes the results of evaluation by the Alliance for Residential Building Innovation (ARBI) Building America team of the 'Super Energy Efficient Design' (S.E.E.D) home, a 1,935 sq. ft., single-story spec home located in Tucson, AZ. This prototype design was developed with the goal of providing an exceptionally energy efficient yet affordable home and includes numerous aggressive energy features intended to significantly reduce heating and cooling loads such as structural insulated panel (SIP) walls and roof, high performance windows, an ERV, an air-to-water heat pump with mixed-mode radiant and forced air delivery, solar water heating, and rooftop PV. Source energy savings are estimated at 45% over the Building America B10 Benchmark. System commissioning, short term testing, long term monitoring and detailed analysis of results was conducted to identify the performance attributes and cost effectiveness of the whole house measure package.

German, A.; Dakin, B.; Backman, C.; Weitzel, E.; Springer, D.

2012-12-01T23:59:59.000Z

278

Dominion East Ohio (Gas) - Home Performance Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dominion East Ohio (Gas) - Home Performance Program Dominion East Ohio (Gas) - Home Performance Program Dominion East Ohio (Gas) - Home Performance Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Furnace: $300-$400 Boiler: $250-$300 Duct Sealing: $40/hour Air Sealing: $40/hour Programmable Thermostat: $30/thermostat Storage Water Heater: $100 Tankless Water Heater: $150 Condensing Water Heater: $125 Water Heater Tank Insulation: $10 Attic Access Insulation: $30 Wall/Attic/Duct Insulation: $0.30/sq. ft.

279

Columbia Gas of Virginia - Home Savings Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Gas of Virginia - Home Savings Rebate Program Columbia Gas of Virginia - Home Savings Rebate Program Columbia Gas of Virginia - Home Savings Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Virginia Program Type Utility Rebate Program Rebate Amount Energy Star Gas Storage Water Heater: $50 Energy Star Gas Tankless Water Heater: $300 High Efficiency Gas Furnace: $300 High Efficiency Windows (Replacement): $1/sq. ft. Attic and Floor Insulation (Replacement): $0.30/sq. ft. Duct Insulation (Replacement): $200 - $250/site Provider Columbia Gas of Virginia

280

Empire District Electric - Low Income New Homes Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Low Income New Homes Program Empire District Electric - Low Income New Homes Program Empire District Electric - Low Income New Homes Program < Back Eligibility Construction Low-Income Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Total: $1,100 Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Insulation: full incremental cost above the appropriate baseline Heat Pumps: $400 Central AC: $400 Refrigerator: $200 Lighting: $100 Provider Empire District Electric Empire District Electric offers rebates for the utilization of energy efficient measures and appliances in new, low-income homes. Rebates are

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Georgia Power - Energy Efficiency Home Improvement Rebates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Power - Energy Efficiency Home Improvement Rebates Georgia Power - Energy Efficiency Home Improvement Rebates Georgia Power - Energy Efficiency Home Improvement Rebates < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Sealing Your Home Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate All Incentives: 50% of cost Whole House Improvements: $2,200 Individual Improvements: $700 Program Info Start Date 1/1/2011 Expiration Date 12/31/2012 State Georgia Program Type Utility Rebate Program Rebate Amount Programmable Thermostat: $100 BPI Assessment: $200 Whole House Improvements: 50% Air Sealing: $400 Attic Insulation: $300

282

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

User's Guide User's Guide 5 STEPS TO SAVINGS & SUSTAINABILITY: Begin by entering your zip code or previous session number to see a typical home's baseline energy use and potential savings. Provide more information to estimate energy cost, consumption, and greenhouse-gas emissions for a specific home and to receive a detailed list of savings recommendations. Visit the Learn area for information to help implement the recommendations. See typical energy use in a specific zip code Describe a home Compare current use with potential savings View recommended energy saving actions Learn about measuring & reducing energy use Input your zip code or existing session ID. Once you've entered the information and selected "Go", you will receive a breakdown of the energy

283

Where to Insulate in a Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Where to Insulate in a Home Where to Insulate in a Home Where to Insulate in a Home November 26, 2013 - 1:34pm Addthis Examples of where to insulate. 1. In unfinished attic spaces, insulate between and over the floor joists to seal off living spaces below. (1A) attic access door 2. In finished attic rooms with or without dormer, insulate (2A) between the studs of "knee" walls, (2B) between the studs and rafters of exterior walls and roof, (2C) and ceilings with cold spaces above. (2D) Extend insulation into joist space to reduce air flows. 3. All exterior walls, including (3A) walls between living spaces and unheated garages, shed roofs, or storage areas; (3B) foundation walls above ground level; (3C) foundation walls in heated basements, full wall either interior or exterior.

284

Where to Insulate in a Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Where to Insulate in a Home Where to Insulate in a Home Where to Insulate in a Home November 26, 2013 - 1:34pm Addthis Examples of where to insulate. 1. In unfinished attic spaces, insulate between and over the floor joists to seal off living spaces below. (1A) attic access door 2. In finished attic rooms with or without dormer, insulate (2A) between the studs of "knee" walls, (2B) between the studs and rafters of exterior walls and roof, (2C) and ceilings with cold spaces above. (2D) Extend insulation into joist space to reduce air flows. 3. All exterior walls, including (3A) walls between living spaces and unheated garages, shed roofs, or storage areas; (3B) foundation walls above ground level; (3C) foundation walls in heated basements, full wall either interior or exterior.

285

Methods for reducing heat losses from flat plate solar collectors: Phase II. Final report, February 1, 1976--August 31, 1977  

DOE Green Energy (OSTI)

Improvements to flat plate solar collectors for heating and cooling of buildings were investigated through two parallel studies. The first study, which deals with the free convective heat loss from V-corrugated absorber plate to a plane glass cover, has shown that, for the same average spacing, the free convective heat loss is greater for a V-corrugated absorber plate than for a plane absorber plate. However, provided the average spacing is large enough, the amount of increase is slight. The second study, which deals with the free convective heat loss in a honeycomb solar collector in which the honeycomb consists of a set of horizontal partitions, or slits, has shown that provided the solar collector is tilted to near vertical, such a honeycomb gives equivalent or superior free convective loss suppression than does a square-celled honeycomb having the same amount of material. Correlation equations for the free convective heat loss are given for both studies.

Hollands, K.G.T.; Raithby, G.D.; Unny, T.E.

1978-03-01T23:59:59.000Z

286

Home Automation  

E-Print Network (OSTI)

In this paper I briefly discuss the importance of home automation system. Going in to the details I briefly present a real time designed and implemented software and hardware oriented house automation research project, capable of automating house's electricity and providing a security system to detect the presence of unexpected behavior.

Ahmed, Zeeshan

2010-01-01T23:59:59.000Z

287

Future Advanced Windows for Zero-Energy Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Advanced Windows for Zero-Energy Homes Future Advanced Windows for Zero-Energy Homes Title Future Advanced Windows for Zero-Energy Homes Publication Type Conference Paper LBNL Report Number LBNL-51913 Year of Publication 2002 Authors Apte, Joshua S., Dariush K. Arasteh, and Yu Joe Huang Conference Name ASHRAE Transactions Volume 109, pt 2 Date Published 06/2003 Conference Location Kansas City, MO Call Number LBNL-51913 Abstract Over the past 15 years, low-emissivity and other technological improvements have significantly improved the energy efficiency of windows sold in the United States. However, as interest increases in the concept of zero-energy homes-buildings that do not consume any nonrenewable or net energy from the utility grid-even today's highest-performance window products will not be sufficient. This simulation study compares today's typical residential windows, today's most efficient residential windows, and several options for advanced window technologies, including products with improved fixed or static properties and products with dynamic solar heat gain properties. Nine representative window products are examined in eight representative U.S. climates. Annual energy and peak demand impacts are investigated. We conclude that a new generation of window products is necessary for zero-energy homes if windows are not to be an energy drain on these homes. Windows with dynamic solar heat gain properties are found to offer significant potential in reducing energy use and peak demands in northern and central climates, while windows with very low (static) solar heat gain properties offer the most potential in southern climates.

288

Space Heating & Cooling Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating & Cooling Research Space Heating & Cooling Research Space Heating & Cooling Research The Emerging Technology team conducts research in space heating and cooling technologies, with a goal of realizing aggregate energy savings of 20% relative to a 2010 baseline. In addition to work involving the development of products, the U.S. Department of Energy (DOE), along with industry partners and researchers, develops best practices, tests, and guides designed to reduce market barriers and increase public awareness of these energy saving technologies. Research is currently focusing on: Geothermal Heat Pumps Photo of a home with a geothermal heat pump, showing how it can regulate the temperature of a home using the temperature underground to cool warm air or heat cold air.

289

TVA Partner Utilities - Energy Right New Homes Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Residential Utility Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Heat Pumps Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Site Built New Homes Plan: $100-$800 depending on local power company and home efficiency Manufactured Home Heat Pump: up to $500 The Tennessee Valley Authority (TVA) ''energy right'' New Homes Plan provides incentives for all-electric, energy-efficient new homes by offering graduated rebates for new homes. Homes built at least 7% better than code qualify for the entry level of the program while those built 15% better qualify as energy right Platinum or Platinum Certified (ENERGY STAR Certified). A variety of efficiency standards must be met in order to reach

290

Questar Gas - Home Builder Gas Appliance Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info Start Date 7/1/2009 State Wyoming Program Type Utility Rebate Program Rebate Amount Energy Star Home Certification: $500 Storage Water Heater: $50 Tankless Water Heater: $300 Furnace: $300 Boiler: $400 Provider Questar Gas Questar Gas provides incentives for home builders to construct energy efficient homes. Rebates are provided for both energy efficient gas equipment and whole home Energy Star certification. All equipment and

291

BCP Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Boulder Canyon Project Information Module Boulder Canyon Project Information Module HOME MODULE OVERVIEW LEGISLATION TIMELINE TIMELINE SUMMARY CASE LAW PROJECT HISTORY MISC. DOCUMENTS RELATED LINKS Home Page Image Welcome Hoover Dam is the highest and third largest concrete dam in the United States. The dam, power plant, and high-voltage switchyards are located in the Black Canyon of the Colorado River on the Arizona-Nevada state line. Lake Mead, the reservoir behind the dam, will hold the average two-year flow of the Colorado River. Hoover Dam´s authorized purposes are: first, river regulation, improvement of navigation, and flood control; second, delivery of stored water for irrigation and other domestic uses; and third, power generation. This Page was last modified on : 05-12-2009

292

Homes Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

homes-blog Office of Energy Efficiency & Renewable homes-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Mississippi Adopts New Rules to Save Energy, Money http://energy.gov/eere/articles/mississippi-adopts-new-rules-save-energy-money-0 Mississippi Adopts New Rules to Save Energy, Money

293

Flathead Electric Cooperative - New and Manufactured Home Incentive Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flathead Electric Cooperative - New and Manufactured Home Incentive Flathead Electric Cooperative - New and Manufactured Home Incentive Program Flathead Electric Cooperative - New and Manufactured Home Incentive Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Montana Program Type Utility Rebate Program Rebate Amount New Montana Home: $1,500 NEEM Home: $750 (homeowner), $150 (sales representative) Provider Flathead Electric Cooperative Flathead Electric encourages its residential customers to occupy energy efficient homes. Owners and builders of new homes which meet the "Montana Homes" requirements listed on the program web site are eligible for a rebate of $1,500. All application information and home testing must be

294

First Energy Ohio - New Home Builder Incentive Program (Ohio) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Energy Ohio - New Home Builder Incentive Program (Ohio) First Energy Ohio - New Home Builder Incentive Program (Ohio) First Energy Ohio - New Home Builder Incentive Program (Ohio) < Back Eligibility Construction Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate $1,200/home Program Info State Ohio Program Type Utility Rebate Program Rebate Amount New Home: $400, plus $0.10/kWh saved annually over the reference home, as calculated by REM/Rate Ohio subsidiaries of FirstEnergy (Ohio Edison, The Illuminating Company, Toledo Edison) offer rebates for builders of new, energy efficient homes. Each newly built home is eligible for a rebate of $400, plus $0.10/kWh saved annually over the reference home, as calculated by REM/Rate. The

295

PNM - Energy Star Home Builder Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PNM - Energy Star Home Builder Rebate Program PNM - Energy Star Home Builder Rebate Program PNM - Energy Star Home Builder Rebate Program < Back Eligibility Construction Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info Expiration Date 12/31/2012 State New Mexico Program Type Utility Rebate Program Rebate Amount Energy Star for Homes Version 2.5: $750/home Provider PNM PNM is offering home builders a rebate for each Energy Star-qualified home they build in PNM service areas. Every Energy Star-qualified home must include effective insulation and air sealing, high performance windows, doors and skylights, tight construction and ducts, and independent testing and inspection. The builder must arrange for a qualified Home Energy Rater

296

Satilla REMC - HomePlus Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Satilla REMC - HomePlus Loan Program Satilla REMC - HomePlus Loan Program Satilla REMC - HomePlus Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Design & Remodeling Windows, Doors, & Skylights Heat Pumps Heating Program Info State Georgia Program Type Utility Loan Program Rebate Amount Loans $500 - $3,000 at 7.9% APR up to 24 months Loans $3,001 - $7,500 at 7.9% APR, 25 - 60 months Loans $7,502 - $25,000 at 6.5% APR, 61 - 84 months Provider Satilla Rural Electric Membership Corporation Satilla Rural Electric Member Corporation offers the HomePlus Loan Program to members to install energy efficient improvements in their homes. Members can receive financing for improvements in areas such as heating and

297

Home Energy Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Rebate Program Energy Rebate Program Home Energy Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Maximum Rebate $10,000 for energy efficiency improvements (plus $500 for energy audit); $7,500 qualified new 5 Star Plus homes Program Info Funding Source Alaska Housing Finance Corporation State Alaska Program Type State Rebate Program Rebate Amount Varies, depending on energy efficiency improvements made Provider Alaska Housing Finance Corporation Under the Home Energy Rebate Program, homeowners who want to make their own energy efficiency improvements on their home can receive a rebate for some of their expenditures. The program requires a home energy rater to evaluate

298

Home Energy Saver | Open Energy Information  

Open Energy Info (EERE)

Home Energy Saver Home Energy Saver Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Home Energy Saver Agency/Company /Organization: Lawrence Berkeley National Laboratory (LBNL) Sector: Energy Focus Area: Buildings - Residential Phase: Evaluate Effectiveness and Revise as Needed Topics: Opportunity Assessment & Screening Resource Type: Online calculator User Interface: Website Website: hes.lbl.gov/consumer/ OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Equivalent URI: cleanenergysolutions.org/content/home-energy-saver Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance References: Home Energy Saver[1] Quickly compute a home's energy use for all end uses, including heating, cooling, water heating, appliances, and lighting; get recommended

299

Massachusetts New Homes with ENERGY STAR | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts New Homes with ENERGY STAR Massachusetts New Homes with ENERGY STAR Massachusetts New Homes with ENERGY STAR < Back Eligibility Construction Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate $8,000 Program Info Funding Source Energy Efficiency Fund (Public Benefits Fund) Expiration Date 12/2013 State Massachusetts Program Type State Rebate Program Rebate Amount Varies depending on type of housing (single or multi-family) and level achieved Provider ICF International Program Incentives may change in 2013; contact the program administrators to confirm. In Massachusetts, home builders constructing new homes in territories of sponsoring utilities and energy efficiency service providers* can receive

300

The Evolution of the U.S. Heat Pump Market  

Science Conference Proceedings (OSTI)

The heating and cooling equipment market in the United States (U.S.) evolved in the last two decades affected by the housing market and external market conditions. The average home size increased by 25% since 1999, contributing to increased average equipment size of heat pumps (HPs) and air conditioners (ACs). The home size increase did not correlate with higher residential energy used. The last decade is recognized for improved home insulation and equipment efficiency, which has made up for the larger home size and still yielded lower residential energy use. The lower energy use coincides with more homes using HPs. HP growth was supported by the price stability and affordability of electricity. The heating and cooling equipment market also seems to be rebounding faster than the housing market after the economic crises. In 2009 only 22% of HPs were sold to new homes, reflecting increased heat pump sales for add-on and replacement applications. HPs are growing in popularity and becoming an established economic technology. The increased usage of HPs will result in reduced residential heating energy use and carbon dioxide emissions.

Lapsa, Melissa Voss [ORNL; Khowailed, Gannate [Sentech, Inc.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Space Heating and Cooling  

Energy.gov (U.S. Department of Energy (DOE))

A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain supporting equipment in common, such as...

302

Measured Cooling Performance of Two-story Homes in Dallas, Texas; Insulated Concrete Form Versus Frame Construction  

E-Print Network (OSTI)

Four occupied homes near Dallas, Texas were monitored to compare heating and cooling energy use. Two homes were built with typical wood frame construction, the other two with insulated concrete form (ICF) construction. Remote data loggers collected average hourly indoor and outdoor temperature, relative humidity, furnace runtime fraction, total building electrical energy and HVAC energy use. The loggers recorded data from November 1999 through August 2000. Results show that insulated concrete form construction can reduce cooling energy use 17 to 19% in two-story homes in the north Texas climate. Two adjustments to the measured data were made to compensate for differences between the homes: (1) cooling energy use was normalized to remove the impact of miscellaneous energy use that introduces heat into the home (e.g. lights & appliances), and (2) duct leakage differences simulated in a DOE2-based software reduced the measured savings for ICF construction by 4%. Other differences noted between the homes that were not quantified included occupant impacts, exterior wall color (or absorptance) and an attic radiant barrier absent in one of the homes.

Chasar, D.; Moyer, N.; Rudd, A. F.; Parker, D.; Chandra, S.

2002-01-01T23:59:59.000Z

303

Foundation Insulation for Existing Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Do We Retrofit Tough Buildings? Foundation Insulation for Existing Homes Building America Technical Update April 29 & 30, 2013 Patrick H. Huelman Cold Climate Housing Coordinator University of Minnesota Extension Foundation Insulation for Existing Homes * Context - Focused on basements and crawlspaces. - Aimed at cold climates (Climate Zones 6 & 7). - Generally aimed at liquid active walls. * Approach - Managing risks - Current solutions & best practices - Evaluating new approaches * Primary focus is to reduce energy use by 30 to 50% with emphasis on existing homes. * Promote building science solutions using a systems engineering and integrated design approach. * "Do no harm" => must ensure that safety, health, and durability are maintained or improved.

304

A Reduced-Order Model of a Chevron Plate Heat Exchanger for Rapid Thermal Management by Using Thermo-Chemical Energy Storage  

E-Print Network (OSTI)

The heat flux demands for electronics cooling applications are quickly approaching the limits of conventional thermal management systems. To meet the demand of next generation electronics, a means for rejecting high heat fluxes at low temperatures in a compact system is an urgent need. To answer this challenge, in this work a gasketed chevron plate heat exchanger in conjunction with a slurry consisting of highly endothermic solid ammonium carbamate and a heat transfer fluid. A reduced-order 1-dimensional model was developed and used to solve the coupled equations for heat, mass, and momentum transfer. The feasibility of this chosen design for satisfying the heat rejection load of 2kW was also explored in this study. Also, a decomposition reaction using acetic acid and sodium bicarbonate was conducted in a plate heat exchanger (to simulate a configuration similar to the ammonium carbamate reactions). This enabled the experimental validation of the numerical predictions for the momentum transfer correlations used in this study (which in turn, are closely tied to both the heat transfer correlations and chemical kinetics models). These experiments also reveal important parameters of interest that are required for the reactor design. A numerical model was developed in this study and applied for estimating the reactor size required for achieving a power rating of 2 kW. It was found that this goal could be achieved with a plate heat exchanger weighing less than 70 kg (~100 lbs) and occupying a volume of 29 L (which is roughly the size of a typical desktop printer). Investigation of the hydrodynamic phenomena using flow visualization studies showed that the flow patterns were similar to those described in previous studies. This justified the adaptation of empirical correlations involving two-phase multipliers that were developed for air-water two-phase flows. High-speed video confirmed the absence of heterogeneous flow patterns and the prevalence of bubbly flow with bubble sizes typically less than 0.5 mm, which justifies the use of homogenous flow based correlations for vigorous gas-producing reactions inside a plate heat exchanger. Absolute pressure measurements - performed for experimental validation studies - indicate a significant rise in back pressure that are observed to be several times greater than the theoretically estimated values of frictional and gravitational pressure losses. The predictions from the numerical model were found to be consistent with the experimental measurements, with an average absolute error of ~26%

Niedbalski, Nicholas

2012-08-01T23:59:59.000Z

305

A Power Plant for the Home  

Science Conference Proceedings (OSTI)

The use of energy in American homes is still being developed for better efficiency. The idea of having a power plant in your home's basement instead is a consideration. Combined heat and power (CHP) systems can utilize up to 90 percent of a fossil fuel's ...

P. P. Predd

2007-04-01T23:59:59.000Z

306

Impacts of Mixing on Acceptable Indoor Air Quality in Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts of Mixing on Acceptable Indoor Air Quality in Homes Impacts of Mixing on Acceptable Indoor Air Quality in Homes Title Impacts of Mixing on Acceptable Indoor Air Quality in Homes Publication Type Journal Article LBNL Report Number LBNL-3048E Year of Publication 2010 Authors Sherman, Max H., and Iain S. Walker Journal HVAC & Research Journal Keywords air distribution, indoor air quality, mechanical ventilation, mixing, other, resave, residential ventilation, ventilation effectiveness Abstract Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi-zone environment such as a house, every zone will have different dilution rates and contaminant source strengths. The total ventilation rate is the most important factor in determining occupant exposure to given contaminant sources, but the zone-specific distribution of exhaust and supply air and the mixing of ventilation air can play significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage, air distribution system, and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus, the indoor air in different zones tends to be well mixed for significant fractions of the year. This article reports recent results of investigations to determine the impact of air mixing on exposures of residential occupants to prototypical contaminants of concern. We summarize existing literature and extend past analyses to determine the parameters than affect air mixing as well as the impacts of mixing on occupant exposure, and to draw conclusions that are relevant for standards development and for practitioners designing and installing home ventilation systems. The primary conclusion is that mixing will not substantially affect the mean indoor air quality across a broad population of occupants, homes, and ventilation systems, but it can reduce the number of occupants who are exposed to extreme pollutant levels. If the policy objective is to minimize the number of people exposed above a given pollutant threshold, some amount of mixing will be of net benefit even though it does not benefit average exposure. If the policy is to minimize exposure on average, then mixing air in homes is detrimental and should not be encouraged. We also conclude that most homes in the US have adequate mixing already, but that new, high-performance homes may require additional mixing. Also our results suggest that some differentiation should be made in policies and standards for systems that provide continuous exhaust, thereby reducing relative dose for occupants overall

307

Energy Efficiency Fund (Gas) - Home Energy Solutions and Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas) - Home Energy Solutions and Gas) - Home Energy Solutions and Performance Programs Energy Efficiency Fund (Gas) - Home Energy Solutions and Performance Programs < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Other Ventilation Appliances & Electronics Water Heating Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Varies Provider Customer Service The Energy Efficiency Fund, funded by Connecticut's public benefits charge, provides home energy efficiency rebate programs to customers of The Connecticut Light and Power Company and The United Illuminating Company, Connecticut Natural Gas, Southern Connecticut Gas, and Yankeegas customers. The Home Energy Solutions Program provides weatherization assistance to any

308

Water Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Water Heating August 19, 2013 - 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional Storage Water...

309

DOE Challenge Home | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

for Parking Lots Lighten Energy Load The GE GeoSpring(tm) Electric Heat Pump Water Heater is readily integrated into new and existing home designs. Taking up the same...

310

Cumberland EMC - Energy Efficient New Homes Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cumberland EMC - Energy Efficient New Homes Program Cumberland EMC - Energy Efficient New Homes Program Cumberland EMC - Energy Efficient New Homes Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Single Family Home greater than 1,500 square feet: $500 Single Family Home less than 1,500 square feet: $200 Multi-Family Home: $100 Provider Cumberland Electric Membership Corporation Cumberland Electric Membership Corporation (CEMC), in collaboration with [http://www.tva.gov/ The Tennessee Valley Authority] provides a financial incentive for its customers to build new energy efficient homes through the

311

Benton PUD - Energy Efficient Manufactured Homes Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufactured Homes Rebate Program Manufactured Homes Rebate Program Benton PUD - Energy Efficient Manufactured Homes Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info Expiration Date 09/31/2015 State District of Columbia Program Type Utility Rebate Program Rebate Amount $750 Provider Benton PUD Benton PUD offers a $750 rebate to purchasers of Energy Star manufactured homes. Homes must be electrically heated and located in Benton PUD's service territory to receive the rebate. The rebate application is located on the program website. The website also offers a list of mobile home dealers in the area that offer Energy Star manufactured homes. Contact

312

Be SMART Home Efficiency Rebate Program (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Program (Maryland) Rebate Program (Maryland) Be SMART Home Efficiency Rebate Program (Maryland) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Heating Heat Pumps Water Heating Maximum Rebate Total: $4,250 Building Envelope Improvements: $2,000 Program Info State Maryland Program Type State Rebate Program Rebate Amount Energy Audit: $300 (paid to contractor) Building Envelope Improvements: 50% of cost HVAC Equipment: varies by measure, $25 - $500 Water Heating: varies by measure, $25 - $350 Appliances: varies by measure, $75 - $150 Provider Maryland Department of Housing and Community Development '''''Note: This program is expiring. Homeowner rebate applications and

313

Study Estimates Energy Savings From Bringing All U.S. Homes Up to Code  

NLE Websites -- All DOE Office Websites (Extended Search)

Study Estimates Energy Savings From Bringing All U.S. Homes Up to Code Study Estimates Energy Savings From Bringing All U.S. Homes Up to Code October 2013 October-November Special Focus: Energy Efficiency, Buildings, the Electric Grid Throughout October and November, EETD presents a special series of articles, research highlights, and social media posts addressing some of its recent research on energy efficiency and other buildings-related topics, and the electric grid. Tightening the envelope of homes should save energy by reducing the loss of heat when the exterior is cold, and the loss of cooled air when it is hot. Until now, it has not been clear for the current housing stock how much potential for energy savings exists in the U.S. stock of homes if all were brought up to codes requiring the tightening of the building envelope.

314

Energy Department Awards $92.5 Million to 19 States to Weatherize Homes of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

92.5 Million to 19 States to Weatherize 92.5 Million to 19 States to Weatherize Homes of Low-Income Families Energy Department Awards $92.5 Million to 19 States to Weatherize Homes of Low-Income Families July 18, 2005 - 2:22pm Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman announced that $92.5 million has been awarded to 19 states to improve the energy efficiency of low-income family homes. The Department of Energy's (DOE) Weatherization Assistance Program makes improvements such as plugging air leaks, improving insulation and tuning air conditioning and heating systems, which reduces energy waste and lowers energy bills. Through DOE's weatherization program, approximately 92,300 homes will be upgraded this year. "The Department of Energy's Weatherization Assistance Program helps

315

Financing Energy-Efficient Homes | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

heaters. | Chart credit ENERGY STAR Estimating the Cost and Energy Efficiency of a Solar Water Heater Financing Energy-Efficient Homes Tips: Passive Solar Heating and Cooling...

316

Insulation for New Home Construction | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

of your home by resisting heat flow through the building envelope. State and local building codes typically include minimum insulation requirements, but your...

317

Home Performance with Energy Star High Efficiency Measure Incentive (HEMI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Performance with Energy Star High Efficiency Measure Incentive Home Performance with Energy Star High Efficiency Measure Incentive (HEMI) Home Performance with Energy Star High Efficiency Measure Incentive (HEMI) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Sealing Your Home Ventilation Manufacturing Commercial Lighting Lighting Water Heating Maximum Rebate $3,000 Program Info State New York Program Type State Rebate Program Rebate Amount 10% of project costs Provider New York State Energy Research and Development Authority The New York State Research and Development Authority (NYSERDA) offers an incentive for homeowners of 1-4 homes that participate in the Home Performance with Energy Star program. The program entitles the participant

318

First Electric Cooperative - Home Improvement Loans | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Electric Cooperative - Home Improvement Loans First Electric Cooperative - Home Improvement Loans First Electric Cooperative - Home Improvement Loans < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate $15,000 Program Info State Arkansas Program Type Utility Loan Program Rebate Amount $500 - $15,000 Provider First Electric Cooperative First Electric Cooperative, a Touchstone Energy® Cooperative, serves over 85,000 member accounts throughout parts of seventeen counties in central and southeast Arkansas. The Home Improvement Loan Program allows members to borrow between $500 and $15,000 for energy efficiency home improvements

319

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multifamily Individual Heating Multifamily Individual Heating and Ventilation Systems Lawrence, Massachusetts PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: Merrimack Valley Habitat for Humanity (MVHfH) www.merrimackvalleyhabitat.org Size: 840 to 1,170 ft 2 units Price Range: $125,000-$130,000 Date completed: Slated for 2014 Climate Zone: Cold (5A) PERFORMANCE DATA HERS Index Range: 48 to 63 Projected annual energy cost savings: $1,797 Incremental cost of energy efficiency measures: $3,747 Incremental annual mortgage: $346 Annual cash flow: $1,451 Billing data: Not available The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley

320

City of San Marcos - Energy Efficient Home Rebate Program (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of San Marcos - Energy Efficient Home Rebate Program (Texas) City of San Marcos - Energy Efficient Home Rebate Program (Texas) City of San Marcos - Energy Efficient Home Rebate Program (Texas) < Back Eligibility Residential Savings Category Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Texas Program Type Utility Rebate Program Rebate Amount Air Conditioner SEER 14.5: $75/ton Air Conditioner SEER 15.0: $100/ton Air Conditioner SEER 16.0: $125/ton Air Conditioner SEER 17.0: $150/ton Heat Pump SEER 14.5: $100/ton Heat Pump SEER 15.0: $125/ton Heat Pump SEER 16.0: $150/ton Heat Pump SEER 17.0: $175/ton Attic Floor Insulation: (square feet of application area)x(R-value added)x(0.0075) Attic Spray Foam Insulation: (square feet of application area)x(R-value

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Idaho Power - Rebate Advantage for New Manufactured Homes | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Advantage for New Manufactured Homes Rebate Advantage for New Manufactured Homes Idaho Power - Rebate Advantage for New Manufactured Homes < Back Eligibility Construction Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Idaho Program Type Utility Rebate Program Rebate Amount $1000 rebate to the home buyer $200 bonus to the sales consultant Provider Idaho Power Company Idaho Power is offering a $1000 sales rebate to customers who purchase a new ENERGY STAR all-electric manufactured home and connect that home to an Idaho Power residential account. In addition, the sales consultant who sells the home will be eligible for a $200 sales bonus. ENERGY STAR manufactured homes are designed to be more energy efficient than standard

322

First Energy Ohio - New Home Builder Incentive Program (Ohio) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Energy Ohio - New Home Builder Incentive Program (Ohio) First Energy Ohio - New Home Builder Incentive Program (Ohio) First Energy Ohio - New Home Builder Incentive Program (Ohio) < Back Eligibility Construction Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate $1,200/home Program Info Funding Source Ohio Edison, The Illuminating Company, Toledo Edison State Ohio Program Type Utility Rebate Program Rebate Amount New Home: $400, plus $0.10/kWh saved annually over the reference home, as calculated by REM/Rate Ohio subsidiaries of FirstEnergy (Ohio Edison, The Illuminating Company, Toledo Edison) offer rebates for builders of new, energy efficient homes. Each newly built home is eligible for a rebate of $400, plus $0.10/kWh

323

Benton PUD - Energy Efficient Home Builders Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Builders Rebate Program Home Builders Rebate Program Benton PUD - Energy Efficient Home Builders Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info Expiration Date 9/30/2015 State District of Columbia Program Type Utility Rebate Program Rebate Amount Energy Star Homes Northwest: $1,000 Provider Benton PUD Benton PUD offers rebates to builders of homes which meet Energy Star Northwest Home standards. Qualified homes are independently verified to be at least 30% more energy efficient than homes built to the 1993 national Model Energy Code or 15% more efficient than the state energy code, whichever standard is higher. Typically these standards may be met through

324

NYSERDA - Energy Star Home Builders | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NYSERDA - Energy Star Home Builders NYSERDA - Energy Star Home Builders NYSERDA - Energy Star Home Builders < Back Eligibility Construction Installer/Contractor Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate Cooperative Advertising Incentive: $5,000 (1-9 homes); $50,000 (10 - 49 homes); $100,000 (50+ homes) Other Incentives: determined by standardized incentive schedule Program Info Funding Source System Benefits Charge (SBC); Energy Efficiency Portfolio Standard (EEPS) Start Date 01/01/2012 Expiration Date 12/31/2015 State New York Program Type Industry Recruitment/Support Rebate Amount General Builder Home Incentive (BHI): $1,250 (upstate); $1,500 (downstate) Model Home: $3,000

325

At Home  

NLE Websites -- All DOE Office Websites (Extended Search)

21, 1997 21, 1997 Number 6 A profile of the Fermilab user community At Home and Loved by Judy Jackson, Fermilab Office of Public Affairs They come from Texas and from Turkey; from Colombia the country and Columbia the university; from as nearby as Elmhurst, Illinois and as far away as Beijing, China; from Oxford, England to Oxford, Mississippi; from university groups as large as 50 and as small as one. Figures recently released by the Laboratory's Office of Program Planning show Fermilab's users as a diverse and growing community of physicists and students engaged in a range of experiments aimed at discovering the fundamental nature of matter at the frontiers of particle physics research. What is a user? It seems obvious, but defining a labora- tory user is harder than it looks. Different

326

heating oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... Home; Browse by Tag; Most Popular Tags. ... High heating oil prices discourage heating oil supply contracts for the ...

327

Energy resource alternatives competition. Progress report for the period February 1, 1975--December 31, 1975. [Space heating and cooling, hot water, and electricity for homes, farms, and light industry  

DOE Green Energy (OSTI)

This progress report describes the objectives and results of the intercollegiate Energy Resource Alternatives competition. The one-year program concluded in August 1975, with a final testing program of forty student-built alternative energy projects at the Sandia Laboratories in Albuquerque, New Mexico. The goal of the competition was to design and build prototype hardware which could provide space heating and cooling, hot water, and electricity at a level appropriate to the needs of homes, farms, and light industry. The hardware projects were powered by such nonconventional energy sources as solar energy, wind, biologically produced gas, coal, and ocean waves. The competition rules emphasized design innovation, economic feasibility, practicality, and marketability. (auth)

Matzke, D.J.; Osowski, D.M.; Radtke, M.L.

1976-01-01T23:59:59.000Z

328

Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology  

SciTech Connect

The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

Not Available

1993-11-01T23:59:59.000Z

329

Energy Efficient Home Improvements Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficient Home Improvements Loan Program Energy Efficient Home Improvements Loan Program Energy Efficient Home Improvements Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Other Ventilation Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Loans: Up to $20,000 for 100% of cost as long as 85% of work is for qualifying home improvements Homeowner Energy Efficient Rebates (in lieu of loans): 20% of qualifying improvements up to $2,000 Program Info State Kentucky Program Type State Loan Program Rebate Amount 100% of costs up to $20,000 '''''Note: This program is currently unavailable. Check the program web site for more information regarding future funding.'''''

330

Hamilton County - Home Improvement Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hamilton County - Home Improvement Program Hamilton County - Home Improvement Program Hamilton County - Home Improvement Program < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heating Heat Pumps Insulation Solar Lighting Buying & Making Electricity Water Heating Wind Maximum Rebate $50,000 Program Info State Ohio Program Type Local Loan Program Rebate Amount $1,500-$50,000 Provider Hamilton County Department of Planning and Development The Hamilton County, Ohio, Home Improvement Program (HIP) was originally initiated in 2002, and then reinstated in May 2008. The HIP loan allows homeowners in Hamilton County communities to borrow money to repair or

331

Energy Efficient Home Improvements Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficient Home Improvements Program Energy Efficient Home Improvements Program Energy Efficient Home Improvements Program < Back Eligibility Installer/Contractor Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Other Ventilation Heat Pumps Appliances & Electronics Water Heating Program Info State Kentucky Program Type State Rebate Program Rebate Amount Homeowner energy efficient improvements (in lieu of loans): 20% of qualifying costs up to $2,000 Whole-house evaluation: $150 for the first 1000 customers '''''Note: This program is currently unavailable. Check the program web site for more information regarding future funding.''''' Kentucky offers ENERGY STAR Home Performance rebates and loans for

332

Alliant Energy Interstate Power and Light - New Home Construction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light - New Home Construction Alliant Energy Interstate Power and Light - New Home Construction Incentives Alliant Energy Interstate Power and Light - New Home Construction Incentives < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Builder Option Package: Up to $2,000 Advanced Builder Option Package: Up to $2,800 Energy Star Qualified Home: Up to $3,500 Multi-Family Incentives: See program web site Provider

333

Energy Savers---Tips on Saving Energy and Money at Home (Fifth Printing)  

Science Conference Proceedings (OSTI)

Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

DOE Office of Building Technology, State and Community Programs

2001-08-13T23:59:59.000Z

334

A REDUCED ORDER MODEL OF TWO-PHASE FLOW, HEAT TRANSFER AND COMBUSTION IN CIRCULATING FLUIDIZED-BEDS  

SciTech Connect

This report summarizes the objectives, tasks and accomplishments of the second year of this research project. The report presents the following program deliverables: (1) visualization tools for reconstructing simulated data; (2) algorithms for reducing the partial differential equations to ordinary differential equations; and (3) visualization tools for Galerkin ordinary differential equations.

Paul Cizmas

2002-12-01T23:59:59.000Z

335

Energy Basics: Wood and Pellet Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heating & Cooling Systems Water Heating Wood and Pellet Heating Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood-...

336

Combi Systems for Low Load homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

text styles text styles Combi Systems for Low Load Homes Center for Energy and Environment, NorthernSTAR, Ben Schoenbauer * Low load homes are more common than ever. * Typical space heating and DHW equipment have capacities larger than necessary * A single heating plant could provide high efficiency heat at lower costs, increased durability and improved combustion safety Context Technical Approach * A condensing water heater and hydronic air handler will used to provide space and water heating loads in almost 300 weatherized homes. * System specifications, sizing, and installation optimization guidelines were all developed. * Contractor capability was developed in MN market, but may not be developed in all local. 4 Recommended Guidance * Determine peak load on system: - Space heating design load (ie 40,000 Btu/hr)

337

heating | OpenEI Community  

Open Energy Info (EERE)

heating heating Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid).

338

DEMCO - Touchstone Energy Home Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEMCO - Touchstone Energy Home Program DEMCO - Touchstone Energy Home Program DEMCO - Touchstone Energy Home Program < Back Eligibility Residential Savings Category Other Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Louisiana Program Type Utility Rebate Program Rebate Amount Electric Heat Pump: $0.10 per square foot of living area Water Heater: $125 DEMCO, a Touchstone Energy Cooperative, provides residential customers who have a qualified Touchstone Energy Home, a rebate of up to $0.10 per square foot of living area for electric heat pumps and $125 for electric water heaters. The special one-time rebate is not a permanent offer. The main Touchstone Energy Home features are: * R-19 composite wall insulation * R-30 ceiling insulation

339

Independence Power and Light - New Homes Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independence Power and Light - New Homes Rebate Program Independence Power and Light - New Homes Rebate Program Independence Power and Light - New Homes Rebate Program < Back Eligibility Construction Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Energy Star Certification Cost: $500 Central air conditioner: $300 Central heat pump (fossil fuel back-up): $600 Central heat pump system (electric back-up): $700 Central heat pump system (fossil fuel back-up); electric water heater: $700 Central heat pump system (electric back-up); electric water heater: $800 Provider Independence Power and Light

340

ENERGY STAR Update: EPA Announces Updated Home Energy Yardstick for Assessing Home Energy Use (April 18, 2013)  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2013 8, 2013 EPA Announces Updated Home Energy Yardstick for Assessing Home Energy Use American homeowners can see how their home energy use measures up by using EPA's free online energy assessment tool called the Home Energy Yardstick. The Yardstick is a simple performance-based tool that compares a home's annual energy use to other similar homes. Since 2010, nearly a quarter of a million Americans have used the Yardstick to better understand the energy consumption of their homes. By answering a few basic questions, a homeowner can get: - The home's Yardstick score (on a scale of 1 to 10); - Insights into how much of the home's energy use is related to heating and cooling versus other everyday uses like appliances, lighting, and hot water; - Links to guidance from EPA's ENERGY STAR program on how to increase the home's score, improve comfort,

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Going Home Again  

E-Print Network (OSTI)

Wolfe, T. 1940. You cant go home again. New York: HarperSusan J. 2007. You Cant Go Home Again: Homesickness andwork, and as such, I cannot go home. William Riggs is a PhD

Riggs, William

2010-01-01T23:59:59.000Z

342

Review of home phototherapy  

E-Print Network (OSTI)

Moderate to severe psoriasis: Home UVB equipment. 2010 [Phototherapy Units for Home Use. 2010 [cited 2010 May 1];]94. UVBioTek. Home Phototherapy Equipment. 2010 [cited 2010

Rajpara, Anand N; O'Neill, Jenna L; Nolan, Bridgit V; Yentzer, Brad A; Feldman, Steven R

2010-01-01T23:59:59.000Z

343

DOE Announces Award of a Contract to Repurchase Heating Oil for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating...

344

Anaheim Public Utilities - Residential Home Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Home Efficiency Rebate Residential Home Efficiency Rebate Program Anaheim Public Utilities - Residential Home Efficiency Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate Air Duct Repair: $300 Ceiling Fan: 3 fans Program Info State California Program Type Utility Rebate Program Rebate Amount Refrigerator: $50 Refrigerator Recycling: $50 Dishwasher: $50 Room A/C: $50 Central A/C: $100/ton High Performance windows: $1/sq ft Air Duct Repair: 50% of repair cost Ceiling Fan: $20 Whole House Fan: $100

345

Lane Electric Cooperative - Manufactured Homes Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lane Electric Cooperative - Manufactured Homes Rebate Program Lane Electric Cooperative - Manufactured Homes Rebate Program Lane Electric Cooperative - Manufactured Homes Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Oregon Program Type Utility Rebate Program Rebate Amount $500 Provider Lane Electric Cooperative Lane Electric Cooperative offers customers an incentive for buying a new EnergyStar manufactured home. These properties must be within the eligible service area and must be a permanent residence. Qualifying customers may receive up to $500 if they submit to Lane Electric the following documentation: The Energy-Star rebate coupon, a copy of the sales receipt,

346

A REDUCED ORDER MODEL OF TWO-PHASE FLOW, HEAT TRANSFER AND COMBUSTION IN CIRCULATING FLUIDIZED-BEDS  

SciTech Connect

The report summarizes the objectives, tasks and accomplishments of this research project. The report presents the following program deliverables: (1) database generation using MFIX code, (2) development and implementation of an algorithm to calculate the proper orthogonal decomposition (POD) basis functions, (3) visualization tools for reconstructing simulated data, (4) algorithms for reducing the partial differential equations to ordinary differential equations, (5) visualization tools for Galerkin ordinary differential equations, (6) verification and validation of the code by comparing POD and conventional solution results, and (7) development of POD strategy for best energy cut-off values.

Paul Cizmas

2003-12-01T23:59:59.000Z

347

Grant County PUD - EnergyStar New Home Certification Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergyStar New Home Certification Program EnergyStar New Home Certification Program Grant County PUD - EnergyStar New Home Certification Program < Back Eligibility Construction Residential Savings Category Appliances & Electronics Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Energy Star Manufactured Homes: $500 Site-Built Energy Star NW Homes with Heat Pump: $2,100 Heat Pumps: $200/ton Clothes Washers: $70 Provider Grant County PUD Grant County PUD offers incentives to qualifying customers through the Energy Star Home Certification Program. The Energy Star certification is available for both new site-built homes and new manufactured homes.

348

Geothermal: Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Home Page Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced...

349

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

conference, and provides training and information on cost-effectively implementing home energy savings. American Society of Home Inspectors (ASHI) - some homeinspectors have...

350

Home retrofitting for energy conservation and solar considerations  

DOE Green Energy (OSTI)

This manual explains both the key concepts behind our need for and our impact on energy usage, as well as a nuts-and-bolts explanation of how to improve the energy efficiency of your home. By reviewing both the concepts and practices of energy conservation, the manual presents a comprehensive picture of how home energy use is effected by the inhabitants and by the structure itself. The manual begins with an explanation of why we are looking at energy, then proceeds to explain how the heat transfer occurs between houses and humans. Next is a chapter on energy audits and how to use them, followed by a comprehensive section on energy conservation actions to do now to reduce energy use. Conservation actions include low cost/no cost measures, schemes to reduce infiltration, how to increase insulation, and what to do with windows and doors, heating and heat distribution systems, and water heaters. Solar energy options are then briefly explained, as well as the all important issues of financing and tax credits. The manual concludes with a bibliography to direct the reader to more sources of information.

Not Available

1981-10-01T23:59:59.000Z

351

Modesto Irrigation District - New Home Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modesto Irrigation District - New Home Energy Efficiency Rebate Modesto Irrigation District - New Home Energy Efficiency Rebate Program Modesto Irrigation District - New Home Energy Efficiency Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State California Program Type Utility Rebate Program Rebate Amount Single-Family Dwelling: $500 Multi-Family Dwelling: $250 Provider Energy Management Department Modesto Irrigation District's MPower New Home Program provides incentives to builders and homeowners for designing and building energy-efficient homes. Eligible homes must meet the guidelines for California Energy Star Qualified New Homes, listed on the program application. Each qualified new

352

TVA Partner Utilities - Energy Right New Homes Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Alabama Program Type Utility Rebate Program Rebate Amount Site Built New Homes Plan: $100 - $800 Manufactured Home Heat Pump: Up to $500 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) ''energy right'' New Homes Plan provides incentives for all-electric, energy-efficient new homes by offering graduated rebates for new homes. Homes built at least 7% better than code qualify for the entry level of the program while those built 15% better qualify as energy right Platinum or Platinum Certified (ENERGY STAR Certified). A variety of efficiency standards must be met in order to reach the specified levels. In addition, incentives are offered for advanced water heaters installed in new homes. The energy right New Manufactured Homes Program promotes the installation of electric heat pumps in new

353

Springfield Utility Board - Super Good Cents Manufactured Homes Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Springfield Utility Board - Super Good Cents Manufactured Homes Springfield Utility Board - Super Good Cents Manufactured Homes Rebate Program Springfield Utility Board - Super Good Cents Manufactured Homes Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Oregon Program Type Utility Rebate Program Rebate Amount $600 Provider Springfield Utility Board The Springfield Utility Board offers a $600 incentive for the purchase of a Super Good Cents Manufactured Home. Super Good Cents Manufactured Homes offer improve comfort and efficiency. The incentive can be sent to the dealer or to the home buyer, depending on what the home buyer indicates on the application form. The [http://www.subutil.com/pdfs/sgcincentiveform.pdf

354

State Home Oil Weatherization (SHOW) Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Oil Weatherization (SHOW) Program Home Oil Weatherization (SHOW) Program State Home Oil Weatherization (SHOW) Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Maximum Rebate $500/household Program Info State Oregon Program Type State Rebate Program Rebate Amount Blower-door test - 100% of the cost up to $100. All other technologies are 25% of the total cost, up to $150 or $500, depending on the upgrade. Provider Oregon Department of Energy Oregon homeowners and renters who heat with oil, wood, propane, kerosene, or butane are eligible for home weatherization rebates of up to $500. A

355

Questar Gas - Home Builder Gas Appliance Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info State Utah Program Type Utility Rebate Program Rebate Amount Exterior Wall Insulation: $350 (single family), $150 (multifamily) Windows: $2.50/sq. ft. Gas Furnace: $200 - $400 Gas Storage Water Heater: $50-$100 Gas Condensing Water Heater: $350 Gas Boiler: $400 -$600 Tankless Gas Water Heater: $350 Single Family Homes (New Construction): $50 - $500 Multifamily Homes (New Construction): $50 - $300/unit

356

High heating oil prices discourage heating oil supply contracts ...  

U.S. Energy Information Administration (EIA)

EIA's Short-Term Energy and Winter Fuels Outlook expects the U.S. home heating oil price will average $3.71 per gallon for the season, ...

357

Biodiesel Blends in Space Heating Equipment: January 31, 2001 -- September 28, 2001  

DOE Green Energy (OSTI)

This report documents an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications.

Krishna, C. R.

2004-05-01T23:59:59.000Z

358

Masco Home Services/WellHome | Open Energy Information  

Open Energy Info (EERE)

Masco Home ServicesWellHome Jump to: navigation, search Name Masco Home ServicesWellHome Place Taylor, MI Website http:www.mascohomeserviceswe References Masco Home Services...

359

JEA - New Home Build Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

JEA - New Home Build Rebate Program JEA - New Home Build Rebate Program JEA - New Home Build Rebate Program < Back Eligibility Construction Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Solar Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount Heat pumps and central air conditioning: $125 - $200 Pin-based lighting fixtures: $10 per fixture Clothes Washers: $25 Refrigerators: $25 Solar Water Heaters: $800 Provider JEA JEA's New Home Build Program is an incentive program offered by JEA to promote the use of energy efficient equipment in new single family homes constructed in Northeast Florida. rebates are available for certain energy efficient products. See the program web site for complete details.

360

Fort Collins Utilities - Home Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Efficiency Program Home Efficiency Program Fort Collins Utilities - Home Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Windows, Doors, & Skylights Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Lighting: See Program Website Air Sealing: $200 - $500 Conditioned Crawl Space Insulation: $0.30/sq ft. - $0.75/sq ft. Cold Crawl Space: $0.30/sq ft. - $0.45/sq ft. Basement Wall Insulation:$0.50/sq ft. - $1.00/sq ft., Cantilever Floor Insulation: $0.50/sq ft. - $0.75/sq ft. Frame Floor Insulation Over Garage: $0.50/sq ft. - $0.75/sq ft.

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Home Performance with Energy Star | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Performance with Energy Star Home Performance with Energy Star Home Performance with Energy Star < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Other Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Water Heating Program Info Funding Source Focus On Energy Program State Wisconsin Program Type State Rebate Program Rebate Amount Air Sealing, Attic Insulation, Exterior Wall Insulation, Sill Box Insulation, Interior Foundation Insulation: 33.3% of improvement costs up to $1,500 Bonus for 15% Energy Savings: $200 Bonus for 25% Energy Savings: $700 Free installation of CFLs, faucet aerators, shower heads, and pipe wraps

362

Cascade Natural Gas - Conservation Incentives for Existing Homes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Homes Existing Homes Cascade Natural Gas - Conservation Incentives for Existing Homes < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Floor Insulation: $0.45 per sq. ft. Wall Insulation: $0.40 per sq. ft. Ceiling or Attic Insulation: $0.25 per sq. ft. High Efficiency Natural Gas Furnace: $150 Duct Sealing: $150 High Efficiency Natural Gas Furnace and Duct Sealing: $400 High Efficiency Natural Gas Hearth: $70 Conventional Natural Gas Water Heater: $40 Combination Domestic Water/Hydronic Space Heating System (using Tankless

363

Home Performance with Energy Star Financing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Performance with Energy Star Financing Home Performance with Energy Star Financing Home Performance with Energy Star Financing < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Other Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Heat Pumps Commercial Lighting Lighting Water Heating Bioenergy Solar Program Info Funding Source Energy Efficiency Portfolio Standard (EEPS)/Regional Greenhouse Gas Initiative (RGGI) State New York Program Type State Loan Program Rebate Amount Up to 100% of costs; loans from $3,000 - $25,000 (minimum loan of $1,500 for income qualified customers); loan limit is $13,000 for projects with a

364

Energy Efficiency in Log Homes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency in Log Homes Energy Efficiency in Log Homes Energy Efficiency in Log Homes April 13, 2012 - 11:29am Addthis Consider energy efficiency when designing or purchasing a log home. | Photo courtesy of ©iStockphoto.com/tinabelle Consider energy efficiency when designing or purchasing a log home. | Photo courtesy of ©iStockphoto.com/tinabelle What does this mean for me? Before designing or purchasing a log home, you should consider several factors related to energy efficiency. Log homes may be site-built or pre-cut in a factory for delivery to the site. Some log home manufacturers can also customize their designs. Before designing or purchasing a manufactured log home, you should consider several factors related to energy efficiency. The R-Value of Wood A material's thermal resistance or resistance to heat flow is measured by

365

Energy Efficiency in Log Homes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency in Log Homes Energy Efficiency in Log Homes Energy Efficiency in Log Homes April 13, 2012 - 11:29am Addthis Consider energy efficiency when designing or purchasing a log home. | Photo courtesy of ©iStockphoto.com/tinabelle Consider energy efficiency when designing or purchasing a log home. | Photo courtesy of ©iStockphoto.com/tinabelle What does this mean for me? Before designing or purchasing a log home, you should consider several factors related to energy efficiency. Log homes may be site-built or pre-cut in a factory for delivery to the site. Some log home manufacturers can also customize their designs. Before designing or purchasing a manufactured log home, you should consider several factors related to energy efficiency. The R-Value of Wood A material's thermal resistance or resistance to heat flow is measured by

366

Admin@TMS Home  

Science Conference Proceedings (OSTI)

TMS BOARD OF DIRECTORS TMS TECHNICAL DIVISIONS COMMITTEE HOME PAGES. TOOLS AND RESOURCES. TECHNICAL COMMITTEE TOOLKIT.

367

Vice President Biden Launches Home Energy Scoring Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Home Energy Scoring Program Launches Home Energy Scoring Program Vice President Biden Launches Home Energy Scoring Program November 9, 2010 - 12:00am Addthis WASHINGTON - Vice President Biden joined U.S. Department of Energy Secretary Steven Chu today to announce the launch of the Home Energy Score pilot program. The Home Energy Score will offer homeowners straightforward, reliable information about their homes' energy efficiency. A report provides consumers with a home energy score between 1 and 10, and shows them how their home compares to others in their region. The report also includes customized, cost-effective recommendations that will help to reduce their energy costs and improve the comfort of their homes. DOE today also released the Workforce Guidelines for Home Energy Upgrades,

368

State-of-the-Art Building Concepts Lower Energy Bills: Pulte Homes -- Las Vegas, Nevada: Building America Project Summary, Hot/Dry Climates  

SciTech Connect

Houses built by Pulte Homes as part of DOE's Building America program in Las Vegas, Nevada, save money for the homeowners by reducing electric air conditioning costs and gas heating costs with little or no additional investment. And, the houses have better indoor air quality than typical new construction.

Hendron, B.

2000-08-15T23:59:59.000Z

369

Emissions reductions in coal-fired home heating stoves through use of briquettes. Quarterly report, January 1, 1995--March 31, 1995  

Science Conference Proceedings (OSTI)

The purpose of this program is to encourage the formation of commercial ventures between the U.S. and Polish firms to provide equipment and /or services to reduce pollution from low emission sources in Krakow, Poland. This period has seen additional briquette testing at Akademia Gorniczo Hutnicza (AGH). In addition, Euromining has begun large-scale briquette production. The initial multi-ton batches were delivered as this period ended. Acurex Environmental Corporation has delivered a sampling crew and equipment to Krakow. Testing at INCO Veritas (INCO) has not started due to delays in the delivery of briquettes by Euromining but is expected to begin with the new quarter. Arrangements are in place for the product market testing to begin as soon as the briquettes are available.

NONE

1995-04-27T23:59:59.000Z

370

ENERGY STAR Homes Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENERGY STAR Homes Program ENERGY STAR Homes Program ENERGY STAR Homes Program < Back Eligibility Installer/Contractor Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate Single-Family: $26,000 per unit Multiple Single-Family (townhomes): $17,000 per unit Multi-Family Buildings: $12,000 per unit Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund) State New Jersey Program Type State Rebate Program Rebate Amount Varies by efficiency level and type of residence Provider New Jersey Clean Energy Program : Note: The Smart Growth requirement for incentive eligibility has been removed in areas affected by Hurricane Sandy, for projects enrolled from

371

Expert Meeting Report: Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems  

SciTech Connect

Water heating represents a major residential energy end use, especially in highly efficient homes where space conditioning loads and energy use has been significantly reduced. Future efforts to reduce water heating energy use requires the development of an improved understanding of equipment performance, as well as recognizing system interactions related to the distribution system and the fixture use characteristics. By bringing together a group of water heating experts, we hope to advance the shared knowledge on key water heating performance issues and identify additional data needs that will further this critical research area.

Hoeschele, M.; Weitzel, E.

2013-05-01T23:59:59.000Z

372

The Confusing Allure of Combined Heat and Power: The Financial Attraction and Management Challenge of Reducing Energy Spend and Resulting Carbon Emissions Through Onsite Power Generation  

E-Print Network (OSTI)

Sixty-one percent of global executives surveyed by McKinsey & Co. (in 2008) expect the issues associated with climate change to boost profitsif managed well. What these executives recognize is that new regulations, higher energy costs, and increased scrutiny by private gate-keepers (such as Wal-Mart) offer an opportunity to identify and implement more efficient practices in commercial and industrial environments. One of the most impactful solutions for the industrial sectorfrom the perspective of reducing energy spending and energy-related carbon emissionsis combined heat and power ("CHP"), sometimes referred to as cogeneration. However, the results of CHP deployment to date have been mixedlargely because companies do not fully appreciate the challenges of maintaining and operating a CHP system, optimizing its performance, and taking full advantage of the many benefits it offers. Despite these challenges, the slogan for CHP should perhaps be: "CHP, now more than ever".

Davis, R.

2009-05-01T23:59:59.000Z

373

A study of the utility of heat collectors in reducing the response time of automatic fire sprinklers located in production modules of Building 707  

Science Conference Proceedings (OSTI)

Several of the ten production Modules in Building 707 at the Department of Energy Rocky Flats Plant recently underwent an alteration which can adversely affect the performance of the installed automatic fire sprinkler systems. The Modules have an approximate floor to ceiling height of 17.5 ft. The alterations involved removing the drop ceilings in the Modules which had been at a height of 12 ft above the floor. The sprinkler systems were originally installed with the sprinkler heads located below the drop ceiling in accordance with the nationally recognized NFPA 13, Standard for the Installation of Automatic Sprinkler Systems. The ceiling removal affects the sprinkler`s response time and also violates NFPA 13. The scope of this study included evaluation of the feasibility of utilizing heat collectors to reduce the delays in sprinkler response created by the removal of the drop ceilings. The study also includes evaluation of substituting quick response sprinklers for the standard sprinklers currently in place, in combination with a heat collector.

Shanley, J.H. Jr.; Budnick, E.K. Jr. [Hughes Associates, Inc., Wheaton, MD (United States)

1990-01-01T23:59:59.000Z

374

Columbia Gas of Ohio - Home Performance Solutions Loan Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Gas of Ohio - Home Performance Solutions Loan Program Columbia Gas of Ohio - Home Performance Solutions Loan Program Columbia Gas of Ohio - Home Performance Solutions Loan Program < Back Eligibility Installer/Contractor Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Program Info State Ohio Program Type Utility Loan Program Rebate Amount Amount remaining after Home Performance Solution Program Rebates Provider Columbia Gas of Ohio Columbia Gas of Ohio (CGO) partners with Huntington National Bank's Energy Performance Solutions program to offer a loan complementing rebates for energy efficient equipment to residential customers. Rebates may be available if a customer purchases or installs measures recommended by an

375

Consumers Power, Inc. - New Homes Energy Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumers Power, Inc. - New Homes Energy Efficiency Program Consumers Power, Inc. - New Homes Energy Efficiency Program Consumers Power, Inc. - New Homes Energy Efficiency Program < Back Eligibility Commercial Construction Fed. Government Local Government Nonprofit State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Program Info State Oregon Program Type Utility Rebate Program Rebate Amount $1500 Consumer's Power, Inc.(CPI) offers a $1,500 incentive for homes which attain Northwest Energy Star Certification. To qualify, homes must use CPI electricity, be new construction (remodels do not qualify), and be approved for the incentive before construction begins. Builders must be Energy Star qualified to participate in this program. Detailed steps on becoming an

376

Passive solar potential of a conventional home. Final report  

SciTech Connect

A conventional home not designed for passive solar heating was found to use an average of 61% less natural gas for space heating when compared to four similarly used control homes of identical design during the 1979-1980 heating season in Fort Collins, Colorado. The significant savings are attributed to: (1) passive solar gain through conventional windows; (2) optimum orientation of the home placing windows and doors away from prevailing winds; (3) the use of low-cost insulating window shutters; (4) conventional winterization; and (5) energy-conscious life-styles of the occupants. The payback period for the minor investment made by the owners of the demonstration home was estimated to be approximately two years. The results demonstrate that passive solar has a much greater potential in a conventional home than is currently believed and suggest that all future homes be oriented and constructed for maximum solar exposure.

Waterman, E.L.

1981-01-31T23:59:59.000Z

377

City of Tallahassee Utilities - Energy Star Certified New Homes Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tallahassee Utilities - Energy Star Certified New Homes Tallahassee Utilities - Energy Star Certified New Homes Rebate Program City of Tallahassee Utilities - Energy Star Certified New Homes Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate $2,000 Program Info State Florida Program Type Utility Rebate Program Rebate Amount $1 per square foot Provider City of Tallahassee Utilities The City of Tallahassee Utilities offers a rebate of $1 per square foot (up to $2,000) for ENERGY STAR qualified new homes. Qualifying housing types include single-family detached, single-family attached, low-rise multifamily, and existing-home renovations. To earn the ENERGY STAR, a home

378

Pend Oreille PUD - Manufactured Home Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pend Oreille PUD - Manufactured Home Rebate Program Pend Oreille PUD - Manufactured Home Rebate Program Pend Oreille PUD - Manufactured Home Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate $800 Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Up to $800 Provider Pend Oreille PUD Pend Oreille PUD offers cash incentives up to $800 to residential customers who purchase a qualifying energy-efficient manufactured home. Homes must meet Energy Star certification to qualify. All program requirements must be met in order to receive rebate. See the program web site for more information. Other Information Manufactured home must achieve Energy Star certification

379

Minnesota Energy Resources (Gas) - Energy Star New Homes Program For  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Energy Resources (Gas) - Energy Star New Homes Program Minnesota Energy Resources (Gas) - Energy Star New Homes Program For Builders Minnesota Energy Resources (Gas) - Energy Star New Homes Program For Builders < Back Eligibility Construction Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount 500, 1,000, or 5/MCF saved Provider Minnesota Energy Resources Minnesota Energy Resources offers the Home Energy Excellence Program to encourage builders to build energy efficient homes. As part of the program, Minnesota Energy Resources will review the home blueprints and make recommendations prior to construction; perform up to three on-site inspections with more recommendations and improvements during construction;

380

South River EMC - Energy Star Homes Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South River EMC - Energy Star Homes Rebate Program South River EMC - Energy Star Homes Rebate Program South River EMC - Energy Star Homes Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Single-Family Homes New Energy Star Home (Builder): $400 New Energy Star Home (Resident): $350 - $750 Multi-Family Homes New Energy Star Multi-Family Apartments (Builder): $375/unit New Energy Star Multi-Family Condominiums (Builder): $200/unit New Energy Star Multi-Family Condominiums (Owner): $175/unit Manufactured Homes New Energy Star Manufactured Home (Owner): $400 Provider South River EMC South River EMC offers incentives to home buyers and builders who purchase

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development  

SciTech Connect

The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

Hewes, T.; Peeks, B.

2013-11-01T23:59:59.000Z

382

Homes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Energy Efficiency » Homes Science & Innovation » Energy Efficiency » Homes Homes New Savings Projects provide step-by-step instructions on home energy efficiency improvements. Learn how to weatherstrip double-hung (or sash) windows. Also check out our guide to sealing air leaks with caulk. New Savings Projects provide step-by-step instructions on home energy efficiency improvements. Learn how to weatherstrip double-hung (or sash) windows. Also check out our guide to sealing air leaks with caulk. Our homes are a major source of energy use in the U.S. Improving the

383

Next Generation Roofs and Attics for Homes  

SciTech Connect

Prototype residential roof and attic assemblies were constructed and field tested in a mixed-humid U.S. climate. Summer field data showed that at peak day irradiance the heat transfer penetrating the roof deck dropped almost 90% compared with heat transfer for a conventional roof and attic assembly. The prototype assemblies use a combination of strategies: infrared reflective cool roofs, radiant barriers, above-sheathing ventilation, low-emittance surfaces, insulation, and thermal mass to reduce the attic air temperature and thus the heat transfer into the home. The prototype assemblies exhibited attic air temperatures that did not exceed the peak day outdoor air temperature. Field results were benchmarked against an attic computer tool and simulations made for the densely populated, hot and dry southeastern and central-basin regions of California. New construction in the central basin could realize a 12% drop in ceiling and air-conditioning annual load compared with a code-compliant roof and attic having solar reflectance of 0.25 and thermal emittance of 0.75. In the hot, dry southeastern region of California, the combined ceiling and duct annual load drops by 23% of that computed for a code-compliant roof and attic assembly. Eliminating air leakage from ducts placed in unconditioned attics yielded savings comparable to the best simulated roof and attic systems. Retrofitting an infrared reflective clay tile roof with 1 -in (0.032-m) of EPS foam above the sheathing and improving existing ductwork by reducing air leakage and wrapping ducts with insulation can yield annual savings of about $200 compared with energy costs for pre-1980 construction.

Miller, William A [ORNL; Kosny, Jan [ORNL

2008-01-01T23:59:59.000Z

384

Sustainable Energy Utility (SEU) - Green for Green Home Rebate | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Energy Utility (SEU) - Green for Green Home Rebate Sustainable Energy Utility (SEU) - Green for Green Home Rebate Sustainable Energy Utility (SEU) - Green for Green Home Rebate < Back Eligibility Construction Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Maximum Rebate $2,5000 Program Info Funding Source Regional Greenhouse Gas Initiative (RGGI) Start Date 02/01/2013 State Delaware Program Type State Rebate Program Rebate Amount varies The Delaware Sustainable Energy Utility, in partnership with the Delaware Department of Natural Resources and Environmental Control (DNREC) and the Home Builders Association of Delaware, is offering rebates ranging from

385

Xcel Energy - Residential and Low Income Home Energy Service | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Xcel Energy - Residential and Low Income Home Energy Service Xcel Energy - Residential and Low Income Home Energy Service Xcel Energy - Residential and Low Income Home Energy Service < Back Eligibility Installer/Contractor Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info Start Date 1/1/2011 Expiration Date 12/31/2012 State New Mexico Program Type Utility Rebate Program Rebate Amount Evaporative Cooling: $200-$1000/unit Saver's Switch A/C Cycling: $20/ton of enrolled air conditioning Refrigerator Recycling: $75 CFLs: $1/bulb LED's: $10/bulb

386

Active Solar Heating | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Solar Heating Active Solar Heating June 24, 2012 - 5:58pm Addthis This North Carolina home gets most of its space heating from the passive solar design, but the solar...

387

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

Science Conference Proceedings (OSTI)

Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.

Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

2011-05-25T23:59:59.000Z

388

TVA Partner Utilities - Energy Right New Homes Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Virginia Program Type Utility Rebate Program Rebate Amount Site Built New Homes Plan: $100-$800 depending on local power company and home efficiency Manufactured Home Heat Pump: up to $500 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) energy right New Homes Plan provides incentives for all-electric, energy-efficient new homes by offering graduated rebates for new homes. Homes built at least 7% better than code qualify for the entry level of the program while those built 15% better qualify as energy right Platinum or Platinum Certified (ENERGY STAR Certified). A variety of efficiency standards must be met in order to reach the specified levels. In addition, incentives are offered for advanced water heaters installed in new homes.

389

TVA Partner Utilities - Energy Right New Homes Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tennessee Tennessee Program Type Utility Rebate Program Rebate Amount Site Built New Homes Plan: $100-$800 depending on local power company and home efficiency Manufactured Home Heat Pump: Up to $500 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) energy right New Homes Plan provides incentives for all-electric, energy-efficient new homes by offering graduated rebates for new homes. Homes built at least 7% better than code qualify for the entry level of the program while those built 15% better qualify as energy right Platinum or Platinum Certified (ENERGY STAR Certified). A variety of efficiency standards must be met in order to reach the specified levels. In addition, incentives are offered for advanced water heaters installed in new homes.

390

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Polls Polls Poll questions What kind of energy improvements have you done on your home? If you have a ceiling fan, how many hours per day do you use it? (average summer and winter) Have you tried LED lights in your home? What is your experience using spray foam insulation? How often do you use a home clothesdryer (rather than air drying)? Do you think your home's energy efficiency influences its resale value? More ... Poll questions What kind of energy improvements have you done on your home? If you have a ceiling fan, how many hours per day do you use it? (average summer and winter) Have you tried LED lights in your home? What is your experience using spray foam insulation? How often do you use a home clothesdryer (rather than air drying)? Do you think your home's energy efficiency influences its resale value?

391

EERE: Multimedia Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on Digg Find More places to share EERE: Multimedia Home Page on AddThis.com... Home Animations Photographs Videos Audio Contacts On this site you'll find links to the animations,...

392

Processing Poultry at Home  

E-Print Network (OSTI)

With hot water for scalding, ice water for chilling and a sharp knife, poultry can be processed at home for dressed poultry shows or home consumption. This publication discusses facilities and equipment, New York dressing, evisceration, chilling, packing and skinning.

Davis, Michael

2006-01-04T23:59:59.000Z

393

David Gates home page  

NLE Websites -- All DOE Office Websites (Extended Search)

Gates home page http:www.pppl.gov%7EdgatesSiteDr.DavidA.Gates.html (1 of 4) 8302012 9:47:58 AM David Gates home page Dr. David A. Gates Princeton Plasma Physics...

394

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

The State of the Art Home performance contractor A small but growing cadre of "Home Performance Professionals" is rising to the challenge of putting america back on the energy...

395

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Energy Saver Awards and Accolades Media Coverage and other references to the Home Energy Saver. 2010 R&D 100 award R&D 100 Logo R&D 100: One of the best 100 inventions of 2009...

396

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of the Home Energy Saver (HES) Do-it-Yourself Home Energy Audit Developed primarily with DOE funding, HES is the first and most widely used on-line energy audit and...

397

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Footprint Footprint Map | Carbon-IQ Nationally: the Zip-code pins summarize Home Energy Saver user results for 6 homes by Zip. The individual house-shaped pins display...

398

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Over 6 million visits Save money, live better, help the earth Go Look up zip code Import Home Energy Score Inputs Case Studies "Home Energy Saver helped me save thousands of...

399

Smart Home Concepts: Current Trends  

E-Print Network (OSTI)

bills), improved security, upgradeable home appliances,and smart homes could introduce new security holes notsmart home features are in the area of safety and security (

Venkatesh, Alladi

2003-01-01T23:59:59.000Z

400

Pacific Power - Energy Star New Homes Program For Builders | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Power - Energy Star New Homes Program For Builders Pacific Power - Energy Star New Homes Program For Builders Pacific Power - Energy Star New Homes Program For Builders < Back Eligibility Construction Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount ENERGY STAR Home with heat pump: $1,000 Heat Pump with proper installation and sizing: $325 Ductless Heat Pump (Multi-Head): $800 Dishwasher: $20 Refrigerators: $35 CFL's: $25 New Home Windows (Electrically Heated/Cooled): $0.75 - $1/sq. ft.

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Committee Home Page - TMS  

Science Conference Proceedings (OSTI)

The committee home pages are designed to facilitate communication among committee members while simultaneously educating all members about the...

402

TMS Proceedings Home Page  

Science Conference Proceedings (OSTI)

TMS Proceedings Home. This site contains all the information and support material relevant to publishing symposium proceedings volumes, textbooks, and

403

TMS Publications Home  

Science Conference Proceedings (OSTI)

TMS Publications Home. TMS publishes numerous journals, conference proceedings volumes, textbooks, and other print and electronic publications designed...

404

TMS Continuing Education Home  

Science Conference Proceedings (OSTI)

TMS Continuing Education Home. TMS is dedicated to encouraging the lifelong education of materials science and engineering professionals through...

405

NREL Evaluates Performance of Heat Pump Water Heaters (Fact Sheet)  

SciTech Connect

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.

Not Available

2012-02-01T23:59:59.000Z

406

Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces  

SciTech Connect

This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

Not Available

1993-11-01T23:59:59.000Z

407

Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Free Forced Air Furnace: $400 Dual Fuel Furnace: $300 Tankless Water Heater: $300 Tank Water Heater: $200 Power Vent Water Heater: $250 Space Heater: $100 Provider Columbia Gas of Kentucky Columbia Gas of Kentucky offers rebates to residential customers for the purchase and installation of energy efficient appliances and equipment. Water heaters, furnaces and space heating equipment are available for cash

408

Report on Solar Water Heating Quantitative Survey  

DOE Green Energy (OSTI)

This report details the results of a quantitative research study undertaken to better understand the marketplace for solar water-heating systems from the perspective of home builders, architects, and home buyers.

Focus Marketing Services

1999-05-06T23:59:59.000Z

409

Austin Energy - Solar Water Heating Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Marketing Administration Other Agencies You are here Home Savings Austin Energy - Solar Water Heating Rebate Austin Energy - Solar Water Heating Rebate Eligibility...

410

Energy 101: Geothermal Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Addthis Description An energy-efficient...

411

White County REMC - Residential Geothermal Heat Pump Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings White County REMC - Residential Geothermal Heat Pump Rebate Program White County REMC - Residential Geothermal Heat Pump Rebate...

412

Near-Instantaneous Microwave Heating and Cooling for Microfluidic ...  

home \\ technologies \\ microwave heating of microfluidics. Technologies: Ready-to-Sign Licenses: Software: Patents: Near-Instantaneous Microwave Heating and Cooling ...

413

Energy Department Invests to Save on Heating, Cooling and Lighting |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Save on Heating, Cooling and Lighting to Save on Heating, Cooling and Lighting Energy Department Invests to Save on Heating, Cooling and Lighting August 14, 2013 - 1:39pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's efforts to reduce energy bills for American families and businesses and reduce greenhouse gas emissions, the Energy Department today announced 12 projects to develop innovative heating, cooling and insulation technologies as well as open source energy efficiency software to help homes and commercial buildings save energy and money. These projects will receive an approximately $11 million Energy Department investment, matched by about $1 million in private sector funding. "Energy efficient technologies - from improved heating and cooling

414

Strategy Guideline: Demonstration Home  

SciTech Connect

This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

Savage, C.; Hunt, A.

2012-12-01T23:59:59.000Z

415

Home Network Security  

E-Print Network (OSTI)

Home computers that are connected to the Internet are under attack and need to be secured. That process is relatively well understood, even though we do not have perfect solutions today and probably never will. Meanwhile, however, the home computing environment is evolving into a home network of multiple devices, which will also need to be secured. We have little experience with these new home networks and much research needs to be done in this area. This paper gives a view of the requirements and some of the techniques available for securing home networks.

Technology Journal Interoperable; Carl M. Ellison; Corporate Technology Group; Intel Corporation

2002-01-01T23:59:59.000Z

416

5 Cool Things about Solar Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 Cool Things about Solar Heating 5 Cool Things about Solar Heating March 26, 2013 - 3:08pm Addthis Solar heating systems can be a cost-effective way to heat your home. | Photo...

417

Reducing Your Electricity Use | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reducing Your Electricity Use Reducing Your Electricity Use Reducing Your Electricity Use July 15, 2012 - 4:11pm Addthis An energy audit can help you find the most effective ways to save money and reduce energy use in your home. | Photo courtesy of Dennis Schroeder, NREL. An energy audit can help you find the most effective ways to save money and reduce energy use in your home. | Photo courtesy of Dennis Schroeder, NREL. What are the key facts? Reducing energy saves money and reduces pollution. When considering a renewable energy system purchase for your home, the first step is to lower your energy use through efficiency measures. Energy audits can help point you to the most effective ways to reduce energy in your home. Reducing energy use in your home saves you money, increases our energy

418

Reducing Your Electricity Use | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reducing Your Electricity Use Reducing Your Electricity Use Reducing Your Electricity Use July 15, 2012 - 4:11pm Addthis An energy audit can help you find the most effective ways to save money and reduce energy use in your home. | Photo courtesy of Dennis Schroeder, NREL. An energy audit can help you find the most effective ways to save money and reduce energy use in your home. | Photo courtesy of Dennis Schroeder, NREL. What are the key facts? Reducing energy saves money and reduces pollution. When considering a renewable energy system purchase for your home, the first step is to lower your energy use through efficiency measures. Energy audits can help point you to the most effective ways to reduce energy in your home. Reducing energy use in your home saves you money, increases our energy

419

Homes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Homes Homes Homes EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

420

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQs FAQs Most answers to questions about home energy use depend heavily on details for the specific home in question - the climate where the home is located, it's energy usage patterns, home size, configuration and features. For this reason, we can give general guidance here, but for a more definitive answer use the Home Energy Saver. Not finding what you need here? Try DOE's Information Center. General How can I save energy in my second home, which is unoccupied a large part of the year? What's the most common mistake people make in trying to save energy around the house? We don't own a home; we rent an apartment. What can we do? We have an older house. Which should we do first: insulate or replace the furnace? My neighbor's bills are much lower than mine, even though they have

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A model for improvement of water heating heat exchanger designs for residential heat pump water heaters.  

E-Print Network (OSTI)

??Heat pump water heaters are a promising technology to reduce energy use and greenhouse gas emissions. A key component is the water heating heat exchanger. (more)

Weerawoot, Arunwattana

2010-01-01T23:59:59.000Z

422

AlabamaWISE Home Energy Program (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AlabamaWISE Home Energy Program (Alabama) AlabamaWISE Home Energy Program (Alabama) AlabamaWISE Home Energy Program (Alabama) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Maximum Rebate $750 Program Info Funding Source The American Reinvestment and Recovery Act (ARRA) of 2009; Alabama Department of Economic and Community Affairs Start Date 01/01/2010 State Alabama Program Type Local Rebate Program The WISE Home Energy Program provides up to $750 in energy efficiency rebates for homeowners in Cullman, Madison, Jefferson, Shelby, Morgan, Limestone and Lawrence counties. A $350 rebate is available to homeowners

423

MetTrans Journal Home  

Science Conference Proceedings (OSTI)

Metallurgical and Materials Transactions Home Page ... MET. TRANS. HOME Journal descriptions and information [MORE]; SUBMIT A PAPER Review author...

424

Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate  

SciTech Connect

This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

Mittereder, N.; Poerschke, A.

2013-11-01T23:59:59.000Z

425

A Novel Adaptive Home Migration Protocol in Home-based DSM  

E-Print Network (OSTI)

Home migration is used to tackle the home assignment problem in home-based software distributed shared memory systems. We propose an adaptive home migration protocol to optimize the single-writer pattern which occurs frequently in distributed applications. Our approach is unique in its use of a per-object threshold which is continuously adjusted to facilitate home migration decisions. This adaptive threshold is monotonously decreasing with increased likelihood that a particular object exhibits a lasting single-writer pattern. The threshold is tuned according to the feedback of previous home migration decisions at runtime. We implement this new adaptive home migration protocol in a distributed Java Virtual Machine that supports truly parallel execution of multi-threaded Java applications on clusters. The analysis and the experiments show that our new home migration protocol demonstrates both the sensitivity to the lasting single-writer pattern and the robustness against the transient single-writer pattern. In the latter case, the protocol inhibits home migration in order to reduce the home redirection overhead.

Weijian Fang Cho-Li; Cho-li Wang; Wenzhang Zhu; Francis C. M. Lau

2004-01-01T23:59:59.000Z

426

Columbia Gas of Ohio - Home Performance Solutions Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Gas of Ohio - Home Performance Solutions Program Columbia Gas of Ohio - Home Performance Solutions Program Columbia Gas of Ohio - Home Performance Solutions Program < Back Eligibility Installer/Contractor Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Maximum Rebate 70% Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Energy Audit: $50 cost Attic Insulation: $0.30-$0.50/sq. ft. Wall Insulation: $0.40/sq. ft. Air sealing: $40/air sealing hour Furnace: $200 Boiler: $200 Bonus Incentives: Varies by equipment-type Provider Columbia Gas of Ohio Columbia Gas of Ohio (CGO) offers a number of rebates on energy efficient equipment and measures to residential customers. Rebates may be available

427

ComEd - Smart Ideas for Your Home Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Ideas for Your Home Efficiency Program Smart Ideas for Your Home Efficiency Program ComEd - Smart Ideas for Your Home Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Weatherization Manufacturing Heating Commercial Lighting Lighting Maximum Rebate Refrigerator/Freezer Recycling: $50 In-store CFL Discounts: 12 bulbs and 6 fixtures Weatherization Incentives: 50% Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) surcharge State Illinois Program Type Utility Rebate Program Rebate Amount Lighting In-store Discounts: varies Refrigerator/Freezer Recycling: $35 Energy Star Clothes Washer Rebate: $75

428

Home Energy Audits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 4, 2012 April 4, 2012 This Month on Energy Savers: March 2012 We also covered some driving tips to help save money at the pump, ideas for new parents, and unveiled how you can connect with energy savings tips on the go. April 2, 2012 Energy 101: Home Energy Checkup (Text Version) The text version for the Home Energy Checkup 101 video. April 2, 2012 Blower door test during a home energy audit. Credit: Holtkamp Heating & A/C, Inc. Blower Door Tests Professional energy auditors use blower door tests to help determine a home's airtightness. April 2, 2012 The Brookhaven National Laboratory developed the PFT (PerFluorocarbon tracer gas) technique to measure changes over time when determining a building's air-infiltration rate. PFT Air Infiltration Measurement Technique

429

Tips: Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Heat Pumps Tips: Heat Pumps June 24, 2013 - 5:48pm Addthis Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps are the most efficient form of electric heating in moderate climates. Because they move heat rather than generate heat, heat pumps can provide equivalent space conditioning at as little as one quarter of the cost of operating conventional heating or cooling appliances. A heat pump does double duty as a central air conditioner by collecting the heat inside your house and pumping it outside. There are three types of heat pumps: air-to-air, water source, and geothermal. They collect heat from the air, water, or ground outside your

430

Home Performance with ENERGY STAR® | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Performance with ENERGY STAR® Home Performance with ENERGY STAR® Home Performance with ENERGY STAR® Homeowners across the United States can find trusted contractors who follow a comprehensive approach, recommended by ENERGY STAR®, to save money on energy bills while improving home comfort. The Home Performance with ENERGY STAR (HPwES) program provides homeowners with resources to identify trusted contractors that can help them understand their home's energy use, as well as identify home improvements that increase energy performance and improve comfort. Participating contractors can recommend and perform energy improvements, such as air sealing, insulation that can fix drafty and uncomfortable rooms, and install high efficiency heating and cooling equipment. These improvements can lower utility bills.

431

ENERGY EFFICIENCY IN HOMES: AN INTRODUCTION AND STUDY PROPOSAL  

E-Print Network (OSTI)

ENERGY EFFICIENCY IN HOMES: AN INTRODUCTION AND STUDY PROPOSAL MAY 2, 2006 PREPARED BY MEMBERS;Weiss Urban Livability Fellowship Report ­ 1 ­ Energy Efficiency Overview and Case Study ENERGY EFFICIENCY: AN OVERVIEW In homes across the country, energy is wasted prolifically. In the winter, heat wafts

Crews, Stephen

432

Tips: Home Office and Electronics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Office and Electronics Home Office and Electronics Tips: Home Office and Electronics April 24, 2012 - 6:52pm Q&A How do you save energy when working at home? Ask Us Addthis Keep Your Home Office Efficient with ENERGY STAR. 1 of 2 Keep Your Home Office Efficient with ENERGY STAR. Laptops are far more efficient than desktop computers, especially ENERGY STAR qualified models. Use Smart Power Strips to Save Energy. 2 of 2 Use Smart Power Strips to Save Energy. Many electronics go into standby mode when you turn them off. Reduce wasted (vampire) power by plugging electronics into a smart power strip, which can turn your electronics off completely. Shop for ENERGY STAR® Office Products Computers Imaging equipment (copiers, printers, fax machines, scanners) Monitors and other displays Many people work from home at least one day per week. Working from home

433

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

E-Print Network (OSTI)

coating comparison of air-conditioning energy usage for bothtemperature, heat flux, and air conditioning electricity useHourly time series of air conditioning and non-conditioning

Akbari, Hashem

2011-01-01T23:59:59.000Z

434

Home Performance with ENERGY STAR | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

for Parking Lots Lighten Energy Load The GE GeoSpring(tm) Electric Heat Pump Water Heater is readily integrated into new and existing home designs. Taking up the same footprint...

435

Solar energy and your home: questions and answers  

DOE Green Energy (OSTI)

This fact sheet provides a basic introduction to solar heating and cooling systems. It is intended for the many homeowners who could benefit from living in a solar home.

Not Available

1984-01-01T23:59:59.000Z

436

Solar Energy and Your Home: Questions and Answers  

DOE R&D Accomplishments (OSTI)

This fact sheet provides a basic introduction to solar heating and cooling systems. It is intended for the many homeowners who could benefit from living in a solar home.

1984-01-00T23:59:59.000Z

437

Be SMART Home Efficiency Loan Program (Maryland) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

terms of 3, 5, or 10 years. Interest rates vary depending on which type of loan a homeowner chooses: Be SMART Home Energy Star, which supports appropriate heating and cooling...

438

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Hidden Cost of Home Energy Use Hidden Cost of Home Energy Use By improving your home's energy efficiency, you can profit in three ways: save money, improve your life, and help the earth, and making your home safer and more comfortable. Annual Carbon Dioxide Emissions from the Average House vs. the Average Car: Each year the average house releases over twice as much greenhouse gases as the typical car. House: 22,000 lbs/CO2 Car: 10,000 lbs/CO2 Many people believe that their car is the largest single source of air pollution for which they are personally responsible. But in fact, the average home causes the emission of more than twice as much carbon dioxide-the principal greenhouse gas-as the average car. This is because most of the energy consumed in our homes is produced by burning fossil fuels like coal, oil, and natural gas. This pollution is actually a

439

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Media Coverage and Other References to the Home Energy Saver Media Coverage and Other References to the Home Energy Saver Following are examples of the media coverage being received by the Home Energy Saver (HES). A large number of organizations and blogs link to the Home Energy Saver from their web sites. These include media companies, consumer-oriented web sites, energy utilities, state energy offices, educational institutions, and energy consulting firms. Print and Other Media MSN Real Estate - February Home-Maintenance Checklist, February 3, 2012 [PDF] GreenBuildingAdvisor.com - Weighing the Merits of Spray-Foam Insulation, January 23, 2012 [PDF] Bing - The Sun Rises on Solar Power, January 19, 2012 [PDF] Mother Nature Network - How to Save Energy at Home, January 17, 2012 [PDF] Case Remodeling - 10 Green Analysis Online Tools and Job

440

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

What's New at the Home Energy Saver What's New at the Home Energy Saver Home Energy Saver 2.0! We have relaunched the Home Energy Saver. Enjoy the new-and-improved user interface, major data updates, and a ten-times improvement in run time. Keep your eyes open for new features in the coming months. We're on cloud 9(99999999): We have migrated all HES infrastructure to a cloud computing platform, which provides virtually perfect reliability, scalability, and improved performance. Runtime cut 90%. Thanks to our crack programmers, the 40-second runtimes that HES users may have become (somewhat) used to, have been slashed to about 4 seconds. 6 million and counting. The 6-millionth person visited HES in January 2010. Home Energy Saver Pro: We have created a new version of Home Energy Saver for building professionals: HESpro. It currently has limited functionality,

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Readings Readings No-Regrets Remodeling Selected excerpts from the book DIY from Home Energy magazine Roofs: Snowy and icy indicators of wasted money. Benchmarking: Compare a home's energy usage to that of similar homes. Air Sealing: Frozen pipe dilemnas. Refrigeration: Eight year olds burn a lot of energy. Walls and Windows: Sealing up a home's leaks. Energy Myths: Special web preview from Home Energy magazine Sept./Oct. 2001. Optimizing Your Ceiling Fan: Be more comfortable and save energy. Better Breathing: How to avoid mold, mildew, and that cave-like feeling. Beware the Closed Bedroom Door: It seems like such a simple act, but carbon monixde poisoning, smoke, and mold may follow. Sucking in Health Hazards: Does a house smell like a sewer? Energy Efficient Lighting: Can homes save money with compact

442

Pacific Power - Energy Star New Homes Program For Builders | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Power - Energy Star New Homes Program For Builders Pacific Power - Energy Star New Homes Program For Builders Pacific Power - Energy Star New Homes Program For Builders < Back Eligibility Construction Installer/Contractor Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info Start Date 3/12/2010 State California Program Type Utility Rebate Program Rebate Amount Energy Efficient Home (Electrically Heated): $1500 Provider Pacific Power Pacific Power provides an incentive for home builders in California to build energy efficient houses through the Energy Star New Homes Program. Rebates are available through this program for homes which are built to the specifications of NW BOP Energy Star. See Equipment information table for

443

Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes  

E-Print Network (OSTI)

induction heating elements. Gas usage was more prevalent forsubstantially during gas range usage. Formaldehyde exceededrange hood usage were similar in gas and electric homes. Gas

Less, Brennan

2012-01-01T23:59:59.000Z

444

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

445

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

446

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

icicles), that will eventually cause serious roof damage. Source: Home Energy magazine (DIY section, homeenergy.org) A roof with extremely large icicles. Severe rooftop...

447

TMS 2011: Exhibit Home  

Science Conference Proceedings (OSTI)

Technical Program Home Exhibit Info Housing and Travel ... Benefits include the following: Company listing and hypertext link on this Web sitea $500 value!

448

Home | Better Buildings Workforce  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Better Buildings Workforce Home Framework Resources Projects Participate Home Framework Resources Projects Better Buildings Workforce Guidelines Buildings Re-tuning Training ANSI Energy Efficiency Standards Collaborative Energy Performance-Based Acquisition Training Participate For a detailed project overview, download the Better Buildings Workforce Guidelines Fact Sheet Home The Better Buildings Initiative is a broad, multi-strategy initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years. DOE is currently pursuing strategies across five pillars to catalyze change and accelerate private sector investment in energy

449

tms web events home  

Science Conference Proceedings (OSTI)

TMS Web events make authoritative research, technical applications and novel solutions available to you without leaving your home or office. The following Web

450

The Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

The Home Energy Saver: Interactive Energy Information and Calculations on the Web The Internet is an important new resource for information about energy efficiency. While many...

451

Homes | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

One Milwaukee Homeowner Shares Her Experience Milwaukee solar installers putting in a rooftop solar energy system on Dr. Paula Papanek's home. | Photo courtesy of Dr. Paula...

452

TMS 2012: Exhibit Home  

Science Conference Proceedings (OSTI)

Meeting Home Meeting Registration Housing and Travel Exhibit Info ... name and booth number; aisle carpeting; security throughout the exhibition (setup, show...

453

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

(HES) Licensing Information The Home Energy Saver is a web-based residential energy calculator and web service that provides customized estimates of residential energy use, energy...

454

The Home Stretch - CECM  

E-Print Network (OSTI)

The Home Stretch. [Annotate] [Shownotes]. Around 1980, we purchased a share in a VAX-11/780 with the intention of running long mathematical programs...

455

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Achieving high levels of energy efficiency during constuction or remodeling of a home requires careful planning, attention to details, and skilled workmanship. In-the-know...

456

When I Get Home.  

E-Print Network (OSTI)

??"When I Get Home" is a collection of essays that intertwines the personal narrative of the author's relationship with place, change, statis, and movement. Told (more)

Button, Rachael

2011-01-01T23:59:59.000Z

457

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Product recycling Weatherization Assistance Program for Low-Income Persons Low-Income Home EnergyAssistance Program Searchable databases of incentives Database of State...

458

TMS Membership Home  

Science Conference Proceedings (OSTI)

TMS Membership The Professional Home for Materials Scientists and Engineers. The TMS membership is comprised of a select group of 12,000 professionals...

459

TMS Membership Home  

Science Conference Proceedings (OSTI)

TMS Membership Home. The Minerals, Metals & Materials Society (TMS) is a member-driven professional society consisting largely of scientists and engineers

460

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy NewsWire Energy Savers Blog ENERGY STAR podcasts Twitter feed from Home Energy magazine Readings & Resources Readings No-Regrets Remodeling Energy NewsWire Wikipedia...

Note: This page contains sample records for the topic "reducing home heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Resources Readings ACEEE Consumer Guide to Home Energy Savings Appliance energy use by model number (from the Federal Trade Commission) CoolCalifornia.org - A comprehensive...

462

Water Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous)...

463

Preparation of Hydroxyapatite by Microwave Heating  

Science Conference Proceedings (OSTI)

HAP powders were successfully prepared in a 2.45 GHz - 900W multimode home model microwave oven. The HAP powder was prepared by microwave heating...

464

Columbia Water and Light - New Home Energy Star Rebate | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Water and Light - New Home Energy Star Rebate Columbia Water and Light - New Home Energy Star Rebate Columbia Water and Light - New Home Energy Star Rebate < Back Eligibility Construction Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Program Info State Missouri Program Type Utility Rebate Program Rebate Amount 1,000 Provider Columbia Water and Light Columbia Water and Light offers a $1,000 rebate to customers for the construction of new homes that achieve certification as Energy Star homes. The Energy Star designation is given to homes that receive an 85 or less on the Home Energy Rating System (HERS) index, meaning that they can be expected to use 15% less energy on average than a standard home (i.e., the

465

Sealing Your Home | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Properly air sealing can significantly reduce heating and cooling costs, improve building durability, and create a healthier indoor environment. In addition to air...

466

An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California  

E-Print Network (OSTI)

is to reduce their electricity bills. However, homeownersinvestment through electricity bill savings. The decision toal. , 2010. reduced electricity bills of PV homes, which can

Hoen, Ben

2011-01-01T23:59:59.000Z

467

Passive Solar Design for the Home  

SciTech Connect

This fact sheet provides homeowners with an introduction to passive solar design, which is also called climatic design. It explains how they can use windows, walls, and floors to collect, store, and distribute solar energy to heat their homes in the winter, as well as reject solar heat in the summer. It includes information on heat-movement physics; basic solar design techniques--direct gain, indirect gain (Trombe walls), isolated gain (sunspaces), and design for summer comfort; window options for passive solar; and design cost.

Krigger, J. [Saturn Resource Management (US); Waggoner, T. [National Renewable Energy Lab., Golden, CO (US)

2001-02-14T23:59:59.000Z

468

Carbon footprints of heating oil and LPG heating systems  

SciTech Connect

For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

Johnson, Eric P., E-mail: ejohnson@ecosite.co.uk

2012-07-15T23:59:59.000Z

469

System Effects of High Efficiency Filters in Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

System Effects of High Efficiency Filters in Homes System Effects of High Efficiency Filters in Homes Title System Effects of High Efficiency Filters in Homes Publication Type Conference Paper LBNL Report Number LBNL-6144E Year of Publication 2013 Authors Walker, Iain S., Darryl J. Dickerhoff, David Faulkner, and William J. N. Turner Conference Name ASHRAE Annual Conference Date Published 03/2013 Abstract Occupant concern about indoor air quality (IAQ) issues has led to the increased use of more effective air filters in residential heating and cooling systems. A drawback of improved filtration is that better filters tend to have more flow resistance. This can lead to lower system airflows that reduce heat exchanger efficiency, increase duct pressure that leads to increased air leakage for ducts and, in some case s, increased blower power consumption. There is currently little knowledge on the magnitude of these effects. In this study, the performance of ten central forced air systems was monitored for a year. The systems used either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) blower. Each system was operated with a range of filter efficiencies ranging from MERV 6 (the lowest currently permitted in ASHRAE Standard 62.2) up to MERV 16. Measurements were recorded every ten seconds for blower power, filter pressure drop, supply and return plenum pressures together with plenum and indoor temperatures. These detailed continuous measurements allowed observation of filter loading effects as well as the initial change in system performance when filters were swapped. The results of the field measurements were used in simulations to examine more general system performance effects for a wider range of climates. The field tests showed that system static pressures were highly influenced by filter selection, filter loading rates varied more from house to house than by MERV rating and overall were quite low in many of the homes. PSC motors showed reduced power and airflow as the filters loaded, but BPM motors attempted to maintain a constant airflow and increased their power to do so. The combined field test and simulation results from this study indica