Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

How to Reduce Energy Supply Costs  

E-Print Network [OSTI]

Rising energy costs have many businesses looking for creative ways to reduce their energy usage and lower the costs of energy delivered to their facilities. This paper explores innovative renewable and alternative energy technologies that can help...

Swanson, G.

2007-01-01T23:59:59.000Z

2

Project Profile: Reducing the Cost of Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

3

Reducing Power Factor Cost | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |Reducing LED Costs ThroughReducing Power

4

Reducing Photovoltaic Costs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |Reducing LED Costs Through

5

Reducing "Search Cost" and Risk in Energy-efficiency Investments  

E-Print Network [OSTI]

Reducing "Search Cost" and Risk in Energy-efficiency Investments: Two Success Stories Philip E "search Cost"and Risk in Energy-Eficiency Investments: Two Success Stories - 4.91 #12;Perspectives significant transaction costs related to searching for and analyzing information on prospective energy

6

PET: Reducing Database Energy Cost via Query Optimization  

E-Print Network [OSTI]

PET: Reducing Database Energy Cost via Query Optimization Zichen Xu The Ohio State University xuz not necessarily have the shortest processing time. This demo proposal introduces PET ­ an energy-aware query op- timization framework that is built as a part of the PostgreSQL ker- nel. PET, via its power cost estimation

Tu, Yicheng

7

Sandia National Laboratories: reduce wind energy costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskite oxideplatform size requirements

8

DOE Announces $27 Million to Reduce Costs of Solar Energy Projects...  

Energy Savers [EERE]

DOE Announces 27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations DOE Announces 27 Million to Reduce Costs of Solar Energy Projects,...

9

Reducing LED Costs Through Innovation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |Reducing LED Costs Through Innovation

10

Reducing Energy Costs and Rebuilding the Past | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumpingStudy |Reducing

11

Reduce Operating Costs with an EnergySmart School Project  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ballasts can reduce lighting energy by 20 to 30 percent. * ENERGY STAR light-emitting diode (LED) exit signs can last 25 years without lamp replacement. Compact...

12

Reducing Life Cycle Cost By Energy Saving in Pump Systems  

E-Print Network [OSTI]

% by the available NPSH. The system should provide the highest NPSHA that is cost effective. Losses in the pump suction line are therefore even more wasteful of energy than those on the discharge ? Suction pipes should avoid restrictions which can cause gas...

Bower, J. R.

13

Reducing energy use comes at a costReducing energy use comes at a cost ----the EU casethe EU case  

E-Print Network [OSTI]

Deputy Director and Chief Economist Centre for Global Energy StudiesCentre for Global Energy Studies Athens emissions, which are deemed to cause globalemissions, which are deemed to cause global warming regions ofsupplies (especially oil) from unstable regions of the world.the world. Why reduce energy use

14

Reduce Pumping Costs Through Optimum Pipe Sizing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumping Costs Through

15

Title: Digital Infrastructure: Reducing Energy Cost and Environmental Impacts of Information Processing and Communications Systems  

E-Print Network [OSTI]

Title: Digital Infrastructure: Reducing Energy Cost and Environmental Impacts of Information of various societal and environmental mandates followed by a review of technologies, systems, and hardware

16

Reducing Energy Costs for IBM Blue Gene/P via Power-Aware Job Scheduling  

E-Print Network [OSTI]

Reducing Energy Costs for IBM Blue Gene/P via Power-Aware Job Scheduling Zhou Zhou1 , Zhiling Lan1 scheduling approach for HPC systems based on variable energy prices and job power profiles. In particular, we from produc- tion systems show that our power-aware job scheduling approach can reduce the energy cost

Feitelson, Dror

17

Implementing Energy Efficiency in Wastewater to Reduce Costs  

E-Print Network [OSTI]

In the industrial world creating a quality product at minimum cost is the goal. In this environment all expenses are scrutinized, when they are part of the manufacturing process. However, even at the most conscientious facility the wastewater system...

Cantwell, J. C.

2008-01-01T23:59:59.000Z

18

Understanding and reducing energy and costs in industrial cooling systems  

E-Print Network [OSTI]

Industrial cooling remains one of the largest potential areas for electrical energy savings in industrial plants today. This is in spite of a relatively small amount of attention paid to it by energy auditors and rebate program designers. US DOE...

Muller, M.R.; Muller, M.B.

2012-01-01T23:59:59.000Z

19

Chicago Solar Express Reduces Costs, Wait Times | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLE FORSuperior Energy5-1 Chapter 5 Loswhen toEnergyThe

20

Reducing LED Costs Through Innovation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Department Announces New Investment to Reduce Fuel Cell Costs |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ ContractEndstatesEnergyWeatherized Three Months AheadtoBiofuels

22

Special Feature: Reducing Energy Costs with Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher,Future |CarlosSpeakers Bureau SpeakersEnergy -

23

Reducing Non-Hardware Costs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and Launches theResidentialRecoveryWaste and Save Energy

24

Energy Detectives Help Pennsylvania Town Reduce Costs | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department ofto

25

10 Strategic Steps to Reducing Your Energy Costs  

E-Print Network [OSTI]

to replace standard ?V? belt drives (save up to 6%) and synthetic oil in compressors and chillers (saves up to 7%). 5. Maximize Utility Rebates and Programs?Many utilities and states offer rebates, audits and incentive programs that can pay for up... to 50% of an energy conservation project. In many cases, you already are paying into these programs through your utility bills. It is in your best interest to get your money back (or even more then you paid into the programs). Rebate amounts...

Swanson, G. A.; Haley, M.

2005-01-01T23:59:59.000Z

26

EECBG Success Story: Reducing Energy Costs and Rebuilding the Past |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 ClosingA Tradition ofOregonPower

27

Helping Alaska Native Communities Reduce Their Energy Costs | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossary ofGroundwaterHCHearingsHeatingAffairs

28

Carbon Dioxide Capture at a Reduced Cost - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N-Capture ofCaptureIndustrial

29

Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps More Documents &Small2011 DOETheNationalWeMessage fromin Process

30

Reducing Energy Costs in Internet-Scale Distributed Systems Using Load Shifting  

E-Print Network [OSTI]

-response technique where the system temporarily reduces its energy usage in response to pricing signals from a smart offline algorithm can achieve 12% energy cost savings for time-of-use electricity pricing, even when only-efficiency techniques. These include the availability of novel electricity pricing models to encourage greater energy

Massachusetts at Amherst, University of

31

Reducing the Cost of Energy from Parabolic Trough Solar Power Plants: Preprint  

SciTech Connect (OSTI)

Parabolic trough solar technology is the most proven and lowest cost large-scale solar power technology available today, primarily because of the nine large commercial-scale solar power plants that are operating in the California Mojave Desert. However, no new plants have been built during the past ten years because the cost of power from these plants is more expensive than power from conventional fossil fuel power plants. This paper reviews the current cost of energy and the potential for reducing the cost of energy from parabolic trough solar power plant technology based on the latest technological advancements and projected improvements from industry and sponsored R&D. The paper also looks at the impact of project financing and incentives on the cost of energy.

Price, H.; Kearney, D.

2003-01-01T23:59:59.000Z

32

Reducing Building Energy Costs Using Optimized Operation Strategies for Constant Volume Air Handling Systems  

E-Print Network [OSTI]

SDCVP 67.380 $153.200 $41.800 $195.000 $2.89 measured energy consumption for each building. The horizontal axis is the ambient temperature. The venical axis is the average daily energy consumption in MMBtulhr. Figure 5 compares the predicted...REDUCING BUILDING ENERGY COSTS USING OPTIMIZED OPERATION STRATEGIES FOR CONSTANT VOLUME AIR HANDLING SYSTEMS Mingsheng Liu, her Atha, Agarni Reddy Ed White David Claridge and Jeff Haberl Department of Physical Plant Texas A&M University...

Liu, M.; Athar, A.; Reddy, A.; Claridge, D. E.; Haberl, J. S.; White, E.

1994-01-01T23:59:59.000Z

33

Energy Conservation Fund: Helping Corporations Develop Energy Conservation Strategies and Reduce Utility Costs  

E-Print Network [OSTI]

Energy conservation projects can save companies significant money over time and often pay for themselves very quickly. This is especially true with the dramatic increase in energy costs over the past few years. Yet convincing corporate decision...

Swanson, G. A.; Houston, W.

2005-01-01T23:59:59.000Z

34

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network [OSTI]

patterns. The ownership costs of fuel cells fall in between.reduce the ownership cost of the fuel cell technologies byalternative options. Fuel cells cost the most, between $500~

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

35

Additional Resources for Estimating Building Energy and Cost Savings to Reduce Greenhouse Gases  

Broader source: Energy.gov [DOE]

For evaluating greenhouse gas reduction strategies and estimating costs, the following information resources can help Federal agencies estimate energy and cost savings potential by building type.

36

Beyond Energy Savings: Case Studies on Enhancing Productivity and Reducing Costs Through Energy Efficiency Investments  

E-Print Network [OSTI]

productivity. Anheuser-Busch Companies. Inc. Bio-Energy Recoverv In response to rising fuel prices in the hite 1970s, Anheuser-Busch looked for ways to gain control over energy and other utility costs. The company began exploring anaerobic treatment... of organic nutrients in wastewater, in which bacteria consume organic compounds under water, releasing biogas that bubbles to the top of the tank. The biogas (mostly methane) is collected and used for fuel (bio-energy recovery), and solid waste...

Pye, M.

37

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network [OSTI]

MANUFACTURING THROUGH AN ALTERNATIVE ENERGY SUPPLY Chris Y.Footprint, Alternative Energy, Cost of Ownership ABSTRACTmanufacturing is to use alternative energies to partially

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

38

Reducing Energy Costs And Minimizing Capital Requirements: Case Studies of Thermal Energy Storage (TES)  

E-Print Network [OSTI]

, and thus during those times when power has its highest cost or value. Thermal Energy Storage (TES) provides a means of de-coupling the generation of cooling from the provision of cooling to the peak cooling loads. In this manner, peak power demand...

Andrepont, J. S.

2007-01-01T23:59:59.000Z

39

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

SciTech Connect (OSTI)

The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the energy savings. Commissioning also improves worker comfort, mitigates indoor air quality problems

Mills, Evan

2009-07-16T23:59:59.000Z

40

On-Site Diesel Generation- How You Can Reduce Your Energy Costs  

E-Print Network [OSTI]

Interruptible power rates, Utility special rate negotiations, and the emergence of a spot electrical power market all can lead to lower industrial energy costs. The installation of low cost on-site diesel powered generation, or the proposed...

Charles, D.

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs (Fact Sheet)  

SciTech Connect (OSTI)

As part of a two-year project to demonstrate energy efficiency measures, renewable energy generation, and energy systems integration, the National Renewable Energy Laboratory (NREL) has identified advanced plug load controls as a promising technology for reducing energy use and related costs in the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) office spaces.

Not Available

2014-04-01T23:59:59.000Z

42

Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications  

SciTech Connect (OSTI)

The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

2013-08-01T23:59:59.000Z

43

Reducing Power Factor Cost  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof EnergyReducing Peak DemandLow

44

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich; Dunham Whitehead, Camilla; Brown, Rich

2010-09-30T23:59:59.000Z

45

Energy Assessment Training Reduces Energy Costs for the U.S. Coast Guard Sector Guam: Success Stories (Fact Sheet)  

SciTech Connect (OSTI)

U.S. Coast Guard Sector Guam experiences considerable energy cost and use savings after implementing training from NREL's energy assessment training.

Not Available

2013-05-01T23:59:59.000Z

46

Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy  

SciTech Connect (OSTI)

Currently, installation, operation, and maintenance (IO&M) costs contribute approximately 30% to the LCOE of offshore wind plants. To reduce LCOE while ensuring safety, this paper identifies principal cost drivers associated with IO&M and quantifies their impacts on LCOE. The paper identifies technology improvement opportunities and provides a basis for evaluating innovative engineering and scientific concepts developed subsequently to the study. Through the completion of a case study, an optimum IO&M strategy for a hypothetical offshore wind project is identified.

Maples, B.; Saur, G.; Hand, M.; van de Pieterman, R.; Obdam, T.

2013-07-01T23:59:59.000Z

47

Reducing Customer Acquisition Costs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof Energy Redefining9 *America

48

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants  

SciTech Connect (OSTI)

Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

Gawlik, Keith

2013-06-25T23:59:59.000Z

49

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network [OSTI]

cost of ownership and environmental savings analyses: solar photovoltaic, wind, and fuel cellscost. ENVIRONMENTAL SAVINGS ANALYSIS Solar, wind, and fuel cellsanalysis results favor wind over solar and fuel cells in terms of both ownership cost and

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

50

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network [OSTI]

option. Solar photovoltaic needs to cut the cost by 50% orcost of ownership and environmental savings analyses: solar photovoltaic,

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

51

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network [OSTI]

Energy Tax Credit, Renewable Energy Production Incentive,Renewable Energy Systems and Energy Efficiency Improvement Incentive,renewable energies, both federal and state governments provide a number of incentives

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

52

Reduce generating costs and eliminate brownouts  

SciTech Connect (OSTI)

Improving the manoeuverability of a coal-fired plant to allow it to participate in primary frequency support will reduce generation cost and minimize brownouts. The challenge is to do so without compromising efficiency or emissions. This article describes an approach - activation of stored energy - that is cost-effective and applicable to both greenfield and brownfield installations. It requires a new control philosophy, plus the correct application of new level and flow measurement 'best practices'. 4 refs., 1 tab.

Nogaja, R.; Menezes, M. [Emerson Process Management (United States)

2007-06-15T23:59:59.000Z

53

A Comprehensive Approach to Reduce the Energy Cost of Network of Datacenters Baris Aksanli, Jagannathan Venkatesh, Tajana Rosing  

E-Print Network [OSTI]

in the energy cost estimation by 2.6x. Keywords- Datacenter, energy, green energy, job migration I. INTRODUCTION energy [10]. Renewable energy prediction can be used to decrease the variability of local green energy the impact of new technology and policies in datacenter WAN, such as energy- proportional routing and green

Simunic, Tajana

54

Energy costs of heating and cooling homes continue to increase. Both rural and urban homeowners can reduce these costs by strategically planting trees in their landscape. In  

E-Print Network [OSTI]

Energy costs of heating and cooling homes continue to increase. Both rural and urban homeowners can save energy costs while beautifying your property. Summer Cooling: In the summer months we want to keep to the south, we want our south facing windows to be un-obstructed by trees so passive solar energy from

Blanchette, Robert A.

55

Reducing Energy Costs in the Texas State Agencies: Conservation and Policy Options: Volume II – Final Report  

E-Print Network [OSTI]

Under Professional Services Agreement Contract #4017 by Energy Management Group Department of Mechanical Engineering Texas Engineering Experiment Station Texas A&M University System College Station, TX 77843 Authors: W. D. Turner D. L. O'Neal W. E...-30 Cogeneration Opportunities 2-40 Energy Recovery from Burning of Municipal Solid Waste 2-58 Formation of Power Agencies and Geographic Load Management 2-65 References . 2-67 Climatic Analysis of Agency Energy Consumption Data A-l Annual Agency Energy Data...

Turner, W. D.; O'Neal, D. L.; Murphy, W. E.; Subramanian, S. T.

1984-01-01T23:59:59.000Z

56

Reduce Operating Costs with an EnergySmart School Project | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReport # INL/EXT-06-11478RailcarsJuneRedox

57

Reduce Your Company's Energy Costs and Carbon Emissions with DOE Tools and Resources (Revised)  

SciTech Connect (OSTI)

A two-page overview fact sheet that describes the Industrial Technologies Program's Save Energy Now initiative and voluntary pledge program.

Not Available

2009-09-01T23:59:59.000Z

58

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network [OSTI]

IN SOLAR, WIND, AND FUEL CELL POWER PLANTS. Unit: g/$1000OF FUEL CELL POWER PLANTS. Wind Turbine Height (m) Windwind energy density (Slaymaker where W: actual output of the solar power plant,

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

59

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network [OSTI]

has utility-scale wind potential around its urban area. WindMichigan has high wind energy potential. The most wind-richsolar photovoltaic, wind, and fuel cells, as potential power

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

60

Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklinStatusJ.R. Simplot

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE Announces $27 Million to Reduce Costs of Solar Energy Projects,  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird QuarterintoCurrent JuneEfficiencyStreamline

62

Energy Department Announces $7 Million to Reduce Non-Hardware Costs of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ ContractEndstatesEnergy CorridorsSolar Power | DepartmentSolar

63

Energy Department Announces Up to $25 Million to Reduce Costs of Algal  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department ofto Cellulosic Bioenergy | Department of Energy

64

Industrial Approaches to Reducing Energy Costs in a Restructuring Electric Industry  

E-Print Network [OSTI]

. Although many electricity providers will offer their services in a restructure U.S. electricity market, it is not clear which pow r producers industrial customers wil1 buy from. James Rouse, associate director of energy policy for Praxair, Inc., thinks...

Lowe, E. T.

65

Energy Department Awards Nearly $7 Million for Research to Reduce Costs of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness Competition |Storage Technologies in Fuel CellElectric

66

NREL: Technology Deployment - U.S. Coast Guard Sees Reduced Energy Costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz, Ph.D.SolarRequestEffortLeading

67

New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarkets withCohenNew Partners for

68

Minnesota Company 3M Awarded $3 Million by Energy Department to Reduce Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0 AlabamaYear [2002]of Advanced Fuel Cells |

69

Reducing Enzyme Costs Increases Market Potential of Biofuels, The Spectrum of Clean Energy Innovation (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 RevisionDivisionReducedof

70

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment ofAnnouncementAugust 30,PowerJuneenabled Wind

71

New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas Emissions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership Program | Departmentof Energy

72

Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499  

SciTech Connect (OSTI)

Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

Smith, K.

2013-10-01T23:59:59.000Z

73

Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program  

SciTech Connect (OSTI)

The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

Langner, R.; Hendron, B.; Bonnema, E.

2014-08-01T23:59:59.000Z

74

New Process for Producing Styrene Cuts Costs, Saves Energy, and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas Emissions New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas...

75

Plant Energy Cost Optimization Program (PECOP)  

E-Print Network [OSTI]

The Plant Energy Cost Optimization Program (PECOP) is a Management System designed to reduce operating cost in a continuous operating multi product plant by reviewing all cost factors and selecting plant wide production schedules which are most...

Robinson, A. M.

1980-01-01T23:59:59.000Z

76

Estimating Renewable Energy Costs  

Broader source: Energy.gov [DOE]

Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

77

Reduces electric energy consumption  

E-Print Network [OSTI]

BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

78

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

31, 2010. ) U.S. DOE Energy Efficiency & Renewable Energy (3, 2010. ) Northwest Energy Efficiency Alliance, ElectricEPRI. 1997. Quality Energy Efficiency Retrofits for Water

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

79

Low-Cost Packaged CHP System with Reduced Emissions - Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by...

80

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

in a strategic energy management program are depicted inof a strategic energy management program A successful

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Department Announces $7 Million to Reduce Non-Hardware...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7 Million to Reduce Non-Hardware Costs of Solar Energy Systems Energy Department Announces 7 Million to Reduce Non-Hardware Costs of Solar Energy Systems November 15, 2011 -...

82

Reducing the Cost of Solar Cells  

SciTech Connect (OSTI)

Solar-powered electricity prices could soon approach those of power from coal or natural gas thanks to collaborative research with solar startup Ampulse Corporation at the National Renewable Energy Laboratory. Silicon wafers account for almost half the cost of today's solar photovoltaic panels, so reducing or eliminating wafer costs is essential to bringing prices down. Current crystalline silicon technology converts energy in a highly efficient manner; however, that technology is manufactured with processes that could stand some improvement. The industry needs a method that is less complex, creates less waste and uses less energy. First, half the refined silicon is lost as dust in the wafer-sawing process, driving module costs higher. Wafers are sawn off of large cylindrical ingots, or boules, of silicon. A typical 2-meter boule loses as many as 6,000 potential wafers during sawing. Second, the wafers produced are much thicker than necessary. To efficiently convert sunlight into electricity, the wafers need be only one-tenth the typical thickness. NREL, the Oak Ridge National Laboratory and Ampulse have partnered on an approach to eliminate this waste and dramatically lower the cost of the finished solar panels. By using a chemical vapor deposition process to grow the silicon on inexpensive foil, Ampulse is able to make the solar cells just thick enough to convert most of the solar energy into electricity. No more sawdust - and no more wasting refined silicon materials. NREL developed the technology to grow high-quality silicon and ORNL developed the metal foil that has the correct crystal structure to support that growth. Ampulse is installing a pilot manufacturing line in NREL's Process Development Integration Laboratory, where solar companies can work closely with lab scientists on integrated equipment to answer pressing questions related to their technology development, as well as rapidly overcoming R and D challenges and risk. NREL's program is focused on transformative innovation in the domestic PV industry. With knowledge and expertise acquired from the PDIL pilot production line tools, Ampulse plans to design a full-scale production line to accommodate long rolls of metal foil. The Ampulse process 'goes straight from pure silicon-containing gas to high-quality crystal silicon film,' said Brent Nelson, the operational manager for the Process Development Integration Laboratory. 'The advantage is you can make the wafer just as thin as you need it - 10 microns or less.' Most of today's solar cells are made out of wafer crystalline silicon, though thin-film cells made of more exotic elements such as copper, indium, gallium, arsenic, cadmium, tellurium and others are making a strong push into the market. The advantage of silicon is its abundance, because it is derived from sand. Silicon's disadvantage is that purifying it into wafers suitable for solar cells can be expensive and energy intensive. Manufacturers add carbon and heat to sand to produce metallurgical-grade silicon, which is useful in other industries, but not yet suitable for making solar cells. So this metallurgical-grade silicon is then converted to pure trichlorosilane (SiCl3) or silane (SiH4) gas. Typically, the purified gas is then converted to create a silicon feedstock at 1,000 degrees Celsius. This feedstock is melted at 1,414 C and recrystallized into crystal ingots that are finally sawed into wafers. The Ampulse method differs in that it eliminates the last two steps in the traditional process and works directly with the silane gas growing only the needed silicon right onto a foil substrate. A team of NREL scientists had developed a way to use a process called hot-wire chemical vapor deposition to thicken silicon wafers with near perfect crystal structure. Using a hot tungsten filament much like the one found in an incandescent light bulb, the silane gas molecules are broken apart and deposited onto the wafer using the chemical vapor deposition technique at about 700 C - a much lower temperature than needed to make the wafer. The hot filament dec

Scanlon, B.

2012-04-01T23:59:59.000Z

83

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

2009. Handbook of Energy Audits, Eighth Edition. Associationbent is the Handbook of Energy Audits, Eighth Edition. 2009.Investment Grade Energy Audit. Available at bookstores or:

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

84

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

2005. Navigating Energy Management: A Roadmap for Business.Characteristics and Energy Management Opportunities. BurtonCaffal, C. 1995. Energy Management in Industry. Centre for

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

85

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

representatives. Next Steps Energy Awareness None conducted.PowerPoint presentation on energy awareness and Excel filesdegree Occasional energy efficiency awareness campaigns.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

86

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Agriculture (USDA). USDA’s Rural Energy for America Program/to rural businesses, for instance for energy audits. Inrural small businesses and agricultural producers for energy

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

87

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Energy efficiency integrated into organizational culture.use and organizational goals for energy efficiency. Stafforganizational commitment to continuous improvement of energy efficiency.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

88

A New Method of Low Cost Production of Ti Alloys to Reduce Energy Cpnsumption of Mechanical Systems  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionof Energy 5ofA BoostNationalZak Fang, PI,

89

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Best Practices. Case Study–The Challenge: Improving Ventilation System Energy EfficiencyEnergy Efficiency & Renewable Energy (EERE), Office of Industrial Technologies. 2000. Best PracticesEnergy Efficiency Actions for Plant Personnel96   iii Appendix D: Assessing Energy Management Systems for Best Practices .

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

90

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

American Council for an Energy Efficient Economy (ACEEE).and S. Nadel. 2002. Energy-Efficient Motor Systems: ACouncil for an Energy-Efficient Economy. Washington, D.C.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

91

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Determining Electric Motor Load and Efficiency. Among theEnergy Efficiency Alliance, Electric Motor Management. 2001.Energy Efficiency Alliance, Electric Motor Management. 2001.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

92

RESEARCH Open Access Autonomous exoskeleton reduces metabolic cost  

E-Print Network [OSTI]

phase. We measured the metabolic energy consumption of seven subjects walking on a level treadmill at 1RESEARCH Open Access Autonomous exoskeleton reduces metabolic cost of human walking during load. In this study, the design and testing of an autonomous leg exoskeleton is presented. The aim of the device

Herr, Hugh

93

Energy-Smart Building Choices: How School Facilities Managers and Business Officials Are Reducing Operating Costs and Saving Money (Revision)  

SciTech Connect (OSTI)

Operating a typical school today is no easy task for facilities managers and business officials. You're expected to deliver increased services with constrained operating budgets. Many schools stay open for longer hours to accommodate community use of the facilities. Dilapidated buildings and systems gobble up energy, yet in many districts, maintenance needs are overshadowed by the need for expansion or new construction to serve growing student populations and changing educational needs.

Not Available

2002-02-01T23:59:59.000Z

94

Reduce Pumping Costs through Optimum Pipe Sizing: Industrial Technologies Program (ITP) Energy Tips - Pumping Systems Tip Sheet #9 (Fact Sheet).  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof Energy Redefining9 * October

95

RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions  

SciTech Connect (OSTI)

In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. A major thrust of the campaign was to ensure that the nation's natural gas supplies would be adequate for all Americans, especially during home heating seasons. In a presentation to the National Press Club on October 3, 2005, Secretary Bodman said: 'America's businesses, factories, and manufacturing facilities use massive amounts of energy. To help them during this period of tightening supply and rising costs, our Department is sending teams of qualified efficiency experts to 200 of the nation's most energy-intensive factories. Our Energy Saving Teams will work with on-site managers on ways to conserve energy and use it more efficiently.' DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy assessments. The approach for these assessments drew heavily on the existing resources of ITP's Technology Delivery component. Over the years, ITP-Technology Delivery had worked with industry partners to assemble a suite of respected software decision tools, proven assessment protocols, training curricula, certified experts, and strong partnerships for deployment. Because of the program's earlier activities and the resources that had been developed, ITP was prepared to respond swiftly and effectively to the sudden need to promote improved industrial energy efficiency. Because of anticipated supply issues in the natural gas sector, the Save Energy Now initiative strategically focused on natural gas savings and targeted the nation's largest manufacturing plants--those that consume a total of 1 trillion British thermal units (Btu) or more annually. The approximately 6800 U.S. facilities that fall into this category collectively account for about 53% of all energy consumed by industry in the United States. The 2006 Save Energy Now energy assessments departed from earlier DOE plant assessments by concentrating solely on steam and process heating systems, which are estimated to account for approximately 74% of all natural gas use for manufacturing. The assessments also integrated a strong training component designed to teach industrial plant personnel how to use DOE's steam or process heating opportunity assessment software tools. This approach had the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the assessment process at the company's other facilities. The Save Energy Now initiative also included provisions to help plants that applied for but did not qualify for assessments (based on the 1 trillion Btu criterion). Services offered to these plants included (1) an assessment by one of DOE's 26 university-based Industrial Assessment Centers (IACs), (2) a telephone consultation with a systems expert at the DOE's Energy Efficiency and Renewable Energy Information Center, or (3) other technical materials and services available through ITP (e.g., the Save Energy Now CD). By the end of 2006, DOE had completed all 200 of the promised assessments, identifying potential natural gas savings of more than 50 trillion Btu and energy cost savings of about $500 million. These savings, if fully implemented, could reduce CO2 emissions by 4.04 million metric tons annually. These results, along with the fact that a large percentage of U.S. energy is used by a relatively small number of very large plants, clearly suggest that assessments are an expedient and cost-effective way to significantly affect large amounts of energy use. Building on the success of the 2006 initiative, ITP has expanded the effort in 2007 with the goal of conducting 250 more asse

Wright, Anthony L [ORNL; Martin, Michaela A [ORNL; Gemmer, Bob [U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Scheihing, Paul [U.S. Department of Energy, Industrial Technologies Program; Quinn, James [U.S. Department of Energy

2007-09-01T23:59:59.000Z

96

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

3. defining the performance indicator(s) to use to measureand targets; 6. performance indicators; 7. appropriateManager/Energy Performance Indicators. Extensive regular

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

97

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

1.pdf. (Last accessed September 2, 2010. ) EPRI. 1997.Retrofits for Water Systems. EPRI with the California EnergyFoundation Project # 298. EPRI report CR-107838. Palo Alto,

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

98

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

energy consumed by an incandescent bulb is emitted in thefluorescent (CFL), and incandescent lights typically arelamps in place of incandescent bulbs in most cases; and

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

99

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Building Energy Use Unaccounted-for Water Demand Managementdetermine whether its unaccounted-for losses exceed typicalof distribution zones Unaccounted-for treated water Units

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

100

Sandia National Laboratories: reduce overall costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskite oxide High-Efficiencynitrousoverall costs

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Treatment Resin Reduces Costs, Materials in Hanford Groundwater...  

Office of Environmental Management (EM)

Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup - Efficiency delivered more than 6 million in cost savings, 3 million in annual savings Treatment Resin...

102

Cost Effectiveness NW Energy Coalition  

E-Print Network [OSTI]

1 Action 8 Cost Effectiveness Manual Kim Drury NW Energy Coalition Context · Inconsistent understanding of cost effectiveness contributed to under performing conservation E.g: individual measures vs Action Plan for Energy Efficiency published a comprehensive guide on cost effectiveness: best practices

103

ALTERNATE POWER AND ENERGY STORAGE/REUSE FOR DRILLING RIGS: REDUCED COST AND LOWER EMISSIONS PROVIDE LOWER FOOTPRINT FOR DRILLING OPERATIONS  

E-Print Network [OSTI]

on alternate drilling energy sources which can make entire drilling process economic and environmentally friendly. One of the major ways to reduce the footprint of drilling operations is to provide more efficient power sources for drilling operations...

Verma, Ankit

2010-07-14T23:59:59.000Z

104

Risk management: Reducing brownfield cleanup costs  

SciTech Connect (OSTI)

Balancing environmental protection with economic vitality is crucial to maintaining competitiveness in world markets. One key initiative that has been identified as important to both environmental protection and the economy is the redevelopment of brownfields. Brownfield redevelopment can stimulate local economies that have been devastated by lost jobs and can recycle industrial land use, thereby preserving undeveloped lands. Many existing brownfield sites appear on the US Environmental Protection Agency`s (EPA) National Priority List (NPL), which designates over 1200 sites and is expected to grow to more than 2000 by the end of the decade. EPA estimates the cost of remediating the sites on the current list will approach $30 billion, with the average cost of remediating a site close to $25 million. Thousands of additional brownfield sites that do not appear on the NPL are listed under state cleanup programs.

Graves, N.

1997-08-01T23:59:59.000Z

105

Task force reduces stuck-pipe costs  

SciTech Connect (OSTI)

A task-force approach to stuck pipe has produced more than a 70% reduction in BP Exploration Operating Co.'s worldwide stuck-pipe costs during 1989 and 1990. We believe that these results have been primarily due to focusing our attention on improving personnel performance rather than to the introduction of new technology. Key elements in this paper of the efforts involved: Recognizing the importance of the drilling contractor and the service company staff's role in helping control stuck pipe; Promoting a rig-team approach to tackling the problem; Providing training on rig-team, stuck-pipe problem solving; and raising awareness of stuck pipe through a coordinated worldwide communications program among BP, contractors, and service companies.

Bradley, W.B. (BP Research, Houston, TX (US)); Jarman, D. (BP Exploration Operation Co., Aberdeen (GB)); Auflick, R.A.; Plott, R.S. (BP Exploration Operating Co., Houston, TX (US)); Wood, R.D. (BP Exploration Operating Co., London (GB)); Schofield, T.R. (BP Exploration Operating Co., Beijing (CN)); Cocking, D. (BP Exploration Operating Co., Ho Chi Minh City (CN))

1991-05-27T23:59:59.000Z

106

Lower Cost Energy Options  

E-Print Network [OSTI]

ttle b1t about Abbott Laborator1es. Abbott 1s a world-w1de health care company w1th 27 manufactur1ng and research fac111t1es 1n the U.S. and Puerto R1co totall1ng more than 10,000,000 square feet of floor space. The company has also has manufactur1...ch ranks 96th 1n the Furtune 500. .uaan L.UOU.TO_IU OOMESTIC ENEllGY CONSEllVATION ~~ n ~~~ ~~ a M m M ~ ? " YEn F1gure 1: Energy Conservat10n U.S. & Puerto R1co The Abbott energy conservat10n program started 1n 1973 as d1d many compan1es. We...

Maze, M. E.

107

Reducing biosolids disposal costs using land application in forested areas  

SciTech Connect (OSTI)

Switching biosolids land application from a reclamation site to a forested site significantly reduced the cost of biosolids disposal at the Savannah River Site. Previous beneficial reuse programs focused on reclamation of existing borrow pits. While extremely beneficial, this program became very costly due to the regulatory requirements for groundwater monitoring, soil monitoring and frequent biosolids analyses. A new program was developed to reuse biosolids in forested areas where the biosolids could be used as a soil conditioner and fertilizer to enhance timber yield. The forested land application site was designed so that groundwater monitoring and soil monitoring could be eliminated while biosolids monitoring and site maintenance were minimized. Monitoring costs alone were reduced by 80%. Capital costs for site preparation were also significantly reduced since there was no longer a need for expensive groundwater monitoring wells.

Huffines, R.L.

1995-11-01T23:59:59.000Z

108

Continuous Improvement Energy Projects Reduce Energy Consumption  

E-Print Network [OSTI]

Continuous Improvement Energy Projects Reduce Energy Consumption Eric Niemeyer, Operations Superintendent Drilling Specialties Company A division of Chevron Phillips Chemical Company LP ESL-IE-14-05-31 Proceedings of the Thrity...

Niemeyer, E.

2014-01-01T23:59:59.000Z

109

To send or not to send: Reducing the cost of data transmission  

E-Print Network [OSTI]

such as energy, where companies are billed by the total volume of utility consumed. For network bandwidth the 95th percentile) cost model. In other words, the time slots with the top 5 percent (in the case of 95To send or not to send: Reducing the cost of data transmission Leana Golubchik, Samir Khuller

Khuller, Samir

110

NUCLEAR ENERGY SYSTEM COST MODELING  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an island’s cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

Francesco Ganda; Brent Dixon

2012-09-01T23:59:59.000Z

111

Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful  

E-Print Network [OSTI]

Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful emissions, and minimizes the cost of providing energy to the campus. As a result of energy conservation initiatives that have been implemented over the past 20 years, growth in the average demand per

112

NREL Improves System Efficiency and Increases Energy Transfer with Wind2H2 Project, Enabling Reduced Cost Electrolysis Production (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes NREL's accomplishments in improving energy transfer within a wind turbine-based hydrogen production system. Work was performed by the Wind2H2 Project team at the National Wind Technology Center in partnership with Xcel Energy.

Not Available

2010-11-01T23:59:59.000Z

113

Cost of Offshore Wind Energy Charlene Nalubega  

E-Print Network [OSTI]

Cost of Offshore Wind Energy and Industrial Engineering The focus of my research is to estimate the cost of floating offshore wind turbines water as well as on land based wind farms. The specific offshore wind energy case under consideration

Mountziaris, T. J.

114

A Manager's Approach to Energy Cost Management  

E-Print Network [OSTI]

A major responsibility of management is the control and containment of operating costs. Energy costs are a major portion of the industrial budget. GM has developed a 3 phase approach to energy conservation. Phase I -Administrative Controls...

Spencer, R. J.

115

Financing; A Cost Effective Alternative When Upgrading Energy Efficient Systems  

E-Print Network [OSTI]

in order to effectively compete in the marketplace. One obvious method of reducing costs and improving productivity is to upgrade old, antiquated equipment such as lighting to more modern energy efficient systems. Most projects provide a return...

Ertle, J. M.

116

Energy Department Announces New Investments to Drive Cost-Competitive...  

Energy Savers [EERE]

over the next two decades could save the U.S. 250 billion in energy costs and reduce electricity consumption for lighting by nearly 50 percent. By 2030, LED lighting is...

117

Computational Energy Cost of TCP Bokyung Wang  

E-Print Network [OSTI]

present results from a detailed energy measurement study of TCP. We focus on the node- level cost have characterized the cost of the primary TCP functions; (3) our node-level energy models canComputational Energy Cost of TCP Bokyung Wang Telecommunications System Division SAMSUNG

Singh, Suresh

118

Reducing Energy Demand in Buildings Through State Energy Codes...  

Energy Savers [EERE]

Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building...

119

Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems; Industrial Technologies Program (ITP) BestPractices: Process Heating (Fact sheet)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |Charles Page -toMetabolicHydrogen

120

Excitation energies with cost-reduced variant of the active-space EOMCCSDT method: the EOMCCSDt-(3) over-bar approach  

SciTech Connect (OSTI)

In this paper we discuss the performance of the several simplified variants of equation-of-motion coupled cluster method (EOMCC) with iterative inclusion of singles, doubles and active-space triples (EOMCCSDt). In particular, we explore simplified EOMCCSDt approaches which enable one to generate the triply excited amplitudes in on-the-fly manner. The original EOMCCSDt formulation has already demonstrated a great success in encapsulating the most important excited-state correlation effects due to triples. In analogy to the original EOMCCSDT formulation, the proposed approach can by-pass the typical bottlenecks associated with the need for storing triply-excited amplitudes. In this paper, we illustrate the performance of several approximate EOMCCSDt methods, named EOMCCSDt-3 and EOMCCSdt-3x, on typical benchmark systems including C2, N2, and the ozone molecules. These new methods yield excitation energies close to the EOMCCSDt ones. The extrapolation of excitation energies for basis sets ranging from cc-pVDZ to cc-pV6Z for N2 and C2 shows very good convergence to the experimental results for states dominated by single excitations.

Hu, Hanshi; Kowalski, Karol

2013-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Audit Costs for the 1986 Texas Energy Cost Containment Program  

E-Print Network [OSTI]

Direct program costs for detailed audits of 13.5 million square feet of institutional building space in the 1986 Texas Energy Cost Containment Program were $0.047/SF. The building area was 63 percent simple (offices, schools, and universities...

Heffington, W. M.; Lum, S. K.; Bauer, V. A.; Turner, W. D.

1987-01-01T23:59:59.000Z

122

Low Cost 2014, UMass Cranberry Station 1 REDUCING COSTS IN CRANBERRY MANAGEMENT 2014  

E-Print Network [OSTI]

2014, UMass Cranberry Station 1 REDUCING COSTS IN CRANBERRY MANAGEMENT 2014 These are general the flood. Research has shown that holding LW for the full 4 weeks eliminates all overwintering cranberry at this link: http://scholarworks.umass.edu/cranberry_community_presentations/1/ Fertilizer Analyze all your

Massachusetts at Amherst, University of

123

Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)  

SciTech Connect (OSTI)

No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

2012-10-01T23:59:59.000Z

124

2010 Cost of Wind Energy Review  

SciTech Connect (OSTI)

This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

2012-04-01T23:59:59.000Z

125

Reducing Energy Loss | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumpingStudyReducing

126

Reducing Energy Consumption on Process Ovens & Oxidation Systems  

E-Print Network [OSTI]

recovery systems are capable of metals in the heat exchangers along with stresses recovering up to 97% of the energy used in the induced by changing process conditions can oxidation process. Most units on the market severely reduce the life...REDUCING ENERGY CONSUMPTION ON PROCESS OVENS & OXIDATION SYSTEMS Chris Worachek Design Engineer MEGTEC Systems De Pere, WI ABSTRACT With the uncertain cost of energy, optimizing the use of air in process dryers, ovens and air pollution...

Worachek, C.

127

Reducing the Energy Usage of Oce Applications  

E-Print Network [OSTI]

Reducing the Energy Usage of OĆce Applications Jason Flinn 1 , Eyal de Lara 2 , M. Satyanarayanan 1 of the energy usage of Microsoft's PowerPoint application and show that adaptive policies can reduce energy research e#11;ort, no silver bullet for reducing energy usage has yet been found. Instead, a comprehensive

Flinn, Jason

128

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

Developments in the Levelized Cost of Energy From U.S. Windreducing the levelized cost of energy (LCOE) for onshore

Wiser, Ryan

2013-01-01T23:59:59.000Z

129

Time-Energy Costs of Quantum Measurements  

E-Print Network [OSTI]

Time and energy of quantum processes are a tradeoff against each other. We propose to ascribe to any given quantum process a time-energy cost to quantify how much computation it performs. Here, we analyze the time-energy costs for general quantum measurements, along a similar line as our previous work for quantum channels, and prove exact and lower bound formulae for the costs. We use these formulae to evaluate the efficiencies of actual measurement implementations. We find that one implementation for a Bell measurement is optimal in time-energy. We also analyze the time-energy cost for unambiguous state discrimination and find evidence that only a finite time-energy cost is needed to distinguish any number of states.

Chi-Hang Fred Fung; H. F. Chau

2014-05-08T23:59:59.000Z

130

Minimum cost model energy code envelope requirements  

SciTech Connect (OSTI)

This paper describes the analysis underlying development of the U.S. Department of Energy`s proposed revisions of the Council of American Building Officials (CABO) 1993 Model Energy Code (MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. This analysis resulted in revised MEC envelope conservation levels based on an objective methodology that determined the minimum-cost combination of energy efficiency measures (EEMs) for residences in different locations around the United States. The proposed MEC revision resulted from a cost-benefit analysis from the consumer`s perspective. In this analysis, the costs of the EEMs were balanced against the benefit of energy savings. Detailed construction, financial, economic, and fuel cost data were compiled, described in a technical support document, and incorporated in the analysis. A cost minimization analysis was used to compare the present value of the total long-nm costs for several alternative EEMs and to select the EEMs that achieved the lowest cost for each location studied. This cost minimization was performed for 881 cities in the United States, and the results were put into the format used by the MEC. This paper describes the methodology for determining minimum-cost energy efficiency measures for ceilings, walls, windows, and floors and presents the results in the form of proposed revisions to the MEC. The proposed MEC revisions would, on average, increase the stringency of the MEC by about 10%.

Connor, C.C.; Lucas, R.G.; Turchen, S.J.

1994-08-01T23:59:59.000Z

131

Question of the Week: How Do You Reduce Your Water Heating Costs...  

Broader source: Energy.gov (indexed) [DOE]

Reduce Your Water Heating Costs Question of the Week: How Do You Reduce Your Water Heating Costs February 19, 2009 - 1:39pm Addthis Water heating can account for a significant...

132

Soft Costs | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The U.S. Department of Energy (DOE) SunShot Initiative accelerates the adoption of solar energy technologies in the marketplace. In support of SunShot Initiative goals, the solar...

133

Energy Management System Lowers U.S. Navy Energy Costs Through PV System Interconnection (Fact Sheet)  

SciTech Connect (OSTI)

To meet the U.S. Navy's energy goals, the National Renewable Energy Laboratory (NREL) and the Naval Facilities Engineering Command (NAVFAC) spent two years collaborating on demonstrations that tested market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - an energy management system - was identified as a promising method for reducing energy use and costs, and can contribute to increasing energy security.

Not Available

2014-04-01T23:59:59.000Z

134

Financing Energy Cost Savings | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an overview of funding energy savings, specifically Energy Saving Performance Contracting in relation to energy and water conservation measures, operation and maintenance...

135

Energy efficiency improvement and cost saving opportunities forpetroleum refineries  

SciTech Connect (OSTI)

The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

Worrell, Ernst; Galitsky, Christina

2005-02-15T23:59:59.000Z

136

Wind Plant Cost of Energy: Past and Future (Presentation)  

SciTech Connect (OSTI)

This presentation examines trends in wind plant cost of energy over the last several decades and discusses methods and examples of projections for future cost trends. First, the presentation explores cost trends for wind energy from the 1980s, where there had been an overall downward trend in wind plant energy costs. Underlying factors that influenced these trends, including turbine technology innovation for lower wind speed sites, are explored. Next, the presentation looks at projections for the future development of wind energy costs and discusses a variety of methods for establishing these projections including the use of learning curves, qualitative assessment using expert elicitation, and engineering-based analysis. A comparison of the methods is provided to explore their relative merits. Finally, a brief introduction is provided for the U.S. Department of Energy program-wide shift towards an integrative use of qualitative and quantitative methods for assessing the potential impacts of wind plant technology innovations on reducing the wind plant cost of energy.

Hand, M.

2013-03-01T23:59:59.000Z

137

Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost  

E-Print Network [OSTI]

Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost Omur Ozel Khurram with an energy harvesting transmitter with non-negligible processing circuitry power and a hybrid energy storage for energy storage while the battery has unlimited space. The transmitter stores the harvested energy either

Ulukus, Sennur

138

Conservation Cores: Reducing the Energy of  

E-Print Network [OSTI]

1 Conservation Cores: Reducing the Energy of Mature Computations Ganesh Venkatesh, Jack Sampson! Dark Silicon #12;9 Conservation Cores Specialized cores for reducing energy ­ Automatically generated Conservation Core Architecture & Synthesis Patchable Hardware Results Conclusions #12;12 Constructing a C

Wang, Deli

139

Renewable Energy Planning: Multiparametric Cost Optimization; Preprint  

SciTech Connect (OSTI)

This paper describes a method for determining the combination of renewable energy technologies that minimize life-cycle cost at a facility, often with a specified goal regarding percent of energy use from renewable sources. Technologies include: photovoltaics (PV); wind; solar thermal heat and electric; solar ventilation air preheating; solar water heating; biomass heat and electric (combustion, gasification, pyrolysis, anaerobic digestion); and daylighting. The method rests upon the National Renewable Energy Laboratory's (NREL's) capabilities in characterization of technology cost and performance, geographic information systems (GIS) resource assessment, and life-cycle cost analysis. The paper discusses how to account for the way candidate technologies interact with each other, and the solver routine used to determine the combination that minimizes life-cycle cost. Results include optimal sizes of each technology, initial cost, operating cost, and life-cycle cost, including incentives from utilities or governments. Results inform early planning to identify and prioritize projects at a site for subsequent engineering and economic feasibility study.

Walker, A.

2008-05-01T23:59:59.000Z

140

2011 Cost of Wind Energy Review  

SciTech Connect (OSTI)

This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Element One Reduces Cost of Hydrogen Leak Detection Systems ...  

Energy Savers [EERE]

Begins for "America's Next Top Energy Innovator" SiNode Systems - Advanced silicon graphene batteries. | Photo courtesy of Sinode Systems. Startup Success: Energy Department...

142

Extreme Temperature Energy Storage and Generation, for Cost and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Extreme Temperature Energy Storage and Generation, for Cost and Risk Reduction in Geothermal Exploration Extreme Temperature Energy Storage and Generation, for Cost and Risk...

143

Best Practices for Controlling Capital Costs in Net Zero Energy...  

Energy Savers [EERE]

Best Practices for Controlling Capital Costs in Net Zero Energy Design and Construction - 2014 BTO Peer Review Best Practices for Controlling Capital Costs in Net Zero Energy...

144

Improved System Performance and Reduced Cost of a Fuel Reformer...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An advanced exhaust aftertreatment system developed to meet EPA 2010 and final Tier 4 emission regulations show substantial improvements in system performance while reducing system...

145

An advanced control method for cascaded SMPS to reduce the energy storage requirements  

E-Print Network [OSTI]

An advanced control method for cascaded SMPS to reduce the energy storage requirements Damien Frost supplies con- tain large energy storage components that filter the pulsating power that is created by an AC strategies to reduce the size of those energy storage components to reduce the overall size and cost

Prodiæ, Aleksandar

146

NASA Technical Memorandum 107050 An Accelerated Development,Reduced Cost  

E-Print Network [OSTI]

in a "building block" fashion, a variety of single and multi-engine lunar and Mars vehicles can be configured, a single launch Mars cargo vehicle capable of -------______-_-_------ *Nuclear Propulsion Office "'Cost klbf NTR engines and the two standardized LH2 tank sizes developed for lunar and Mars cargo vehicle

Rathbun, Julie A.

147

Wind Program Manufacturing Research Advances Processes and Reduces Costs |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy This webinar is part of the U.S.The

148

Resin Wafer Electrodeionization Technology Reduces the Cost of Clean  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffectquestionnairesU.S. EnergyEnergy53Energy, Chemicals,

149

Somniloquy: Augmenting Network Interfaces to Reduce PC Energy Usage Yuvraj Agarwal  

E-Print Network [OSTI]

Somniloquy: Augmenting Network Interfaces to Reduce PC Energy Usage Yuvraj Agarwal , Steve Hodges@cs.ucsd.edu Abstract Reducing the energy consumption of PCs is becoming in- creasingly important with rising energy costs and environmen- tal concerns. Sleep states such as S3 (suspend to RAM) save energy, but are often

Zhou, Yuanyuan

150

Thermal Energy Storage: It's not Just for Electric Cost Savings Anymore  

E-Print Network [OSTI]

Large cool Thermal Energy Storage (TES), typically ice TES or chilled water (CHW) TES, has traditionally been thought of, and used for, managing time-of-day electricity use to reduce the cost associated with electric energy and demand charges...

Andrepont, J. S.

2014-01-01T23:59:59.000Z

151

Identifying and Evaluating Energy Cost Reduction Opportunities for Harvesters - The Community Food Network  

E-Print Network [OSTI]

The purpose of this project is to identify and evaluate opportunities where energy costs can be reduced for Harvesters - The Community Food Network. This is accomplished by conducting an energy audit, analyzing the data collected during the audit...

Miller, Aaron M.

2011-05-20T23:59:59.000Z

152

Hidden Costs of Energy Chris Field  

E-Print Network [OSTI]

#12;What are the real costs of energy? · Unpriced components · Production · Distribution · Consumption2 fertilization #12;Electricity #12;#12;Injuries #12;#12;#12;#12;Other electricity · Nuclear · Wind in Africa · Regression analysis: T & P vs conflict ­ 100 deaths in a year, at least one government ­Range

Kammen, Daniel M.

153

Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup -  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 thFuel27, 2008,Inc. | Department

154

Breakthrough Cutting Technology Promises to Reduce Solar Costs...  

Broader source: Energy.gov (indexed) [DOE]

Silicon Genesis is a San Jose, Calif., company that is advancing the field of solar energy by developing a process that will virtually eliminate all waste when cutting materials...

155

Energy Policy 34 (2006) 32183232 Beyond the learning curve: factors influencing cost reductions  

E-Print Network [OSTI]

Energy Policy 34 (2006) 3218­3232 Beyond the learning curve: factors influencing cost reductions-reducing improvements in low-carbon energy systems are important sources of uncertainty in future levels of greenhouse-gas emissions. Models that assess the costs of climate change mitigation policy, and energy policy in general

Kammen, Daniel M.

2006-01-01T23:59:59.000Z

156

Cutting Down Electricity Cost in Internet Data Centers by Using Energy Storage  

E-Print Network [OSTI]

Cutting Down Electricity Cost in Internet Data Centers by Using Energy Storage Yuanxiong Guo energy storage capability in data centers to reduce electricity bill under real-time electricity market between cost saving and energy storage capacity. As far as we know, our work is the first to explore

Latchman, Haniph A.

157

High Energy Cost Grants | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health and Productivity Questionnaire (HPQ) SurveyHelpHelping

158

Renewable Energy Can Help Reduce Oil Dependency  

ScienceCinema (OSTI)

In a speech to the Economic Club of Kansas City on June 23, 2010, NREL Director Dan Arvizu takes a realistic look at how renewable energy can help reduce America's dependence on oil, pointing out that the country gets as much energy from renewable sources now as it does from offshore oil production. For a transcript, visit http://www.nrel.gov/director/pdfs/energy_overview_06_10.pdf

Arvizu, Dan

2013-05-29T23:59:59.000Z

159

New Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 PrintingNeed for AnDepartment ofTreatment | Department of

160

New Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 PrintingNeed for AnDepartment ofTreatment | Department

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Reducing Regulatory Burden | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReport #Study | Department of EnergyReducingBurden

162

Soil Segregation Methods for Reducing Transportation and Disposal Costs - 13544  

SciTech Connect (OSTI)

At Formerly Utilized Sites Remedial Action Program (FUSRAP) sites where the selected alternative for contaminated soil is excavation and off-site disposal, the most significant budget items of the remedial action are the costs for transportation and disposal of soil at an off-site facility. At these sites, the objective is to excavate and dispose of only those soils that exceed derived concentration guideline levels. In situ soil segregation using gross gamma detectors to guide the excavation is often challenging at sites where the soil contamination is overlain by clean soil or where the contaminated soil is located in isolated, subsurface pockets. In addition, data gaps are often identified during the alternative evaluation and selection process, resulting in increased uncertainty in the extent of subsurface contamination. In response, the U.S. Army Corps of Engineers, Buffalo District is implementing ex situ soil segregation methods. At the remediated Painesville Site, soils were excavated and fed through a conveyor-belt system, which automatically segregated them into above- and below-cleanup criteria discharge piles utilizing gamma spectroscopy. At the Linde Site and the Shallow Land Disposal Area (SLDA) Site, which are both in the remediation phase, soils are initially segregated during the excavation process using gross gamma detectors and then transported to a pad for confirmatory manual surveying and sampling. At the Linde Site, the ex situ soils are analyzed on the basis of a site-specific method, to establish compliance with beneficial reuse criteria that were developed for the Linde remediation. At the SLDA Site, the ex situ soils are surveyed and sampled based on Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) final status survey guidance to demonstrate compliance with the derived concentration guideline levels. At all three sites, the ex situ soils that meet the site- specific DCGLs are retained on-site and used as backfill material. This paper describes the ex situ soil segregation methods, the considerations of each method, and the estimated cost savings from minimizing the volume of soil requiring transportation and off-site disposal. (authors)

Frothingham, David; Andrews, Shawn; Barker, Michelle; Boyle, James; Buechi, Stephen; Graham, Marc; Houston, Linda; Polek, Michael; Simmington, Robert; Spector, Harold [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States)] [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Elliott, Robert 'Dan' [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States)] [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States); Durham, Lisa [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)] [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

2013-07-01T23:59:59.000Z

163

Sandia National Laboratories: reduce operations & maintenance costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskite oxide High-Efficiencynitrous

164

Sandia National Laboratories: reduce the cost of solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskite oxideplatform size requirements Studythe

165

Energy Department Invests to Drive Down Costs of Carbon Capture...  

Energy Savers [EERE]

Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions...

166

Sandia National Laboratories: Analysis, Modeling, Cost of Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProgramsAnalysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 The "20% Wind Energy by...

167

The Cost of Conserved Energy As An Investment Statistic  

E-Print Network [OSTI]

The cost of conserved energy (CCE) is an investment statistic that simplifies comparison of conservation measures among themselves and against competing energy supplies. A formula for calculating the cost of conserved energy formula is presented. A...

Meier, A. K.

1984-01-01T23:59:59.000Z

168

Lowering Drilling Cost, Improving Operational Safety, and Reducing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration -Lowell L. Wood, 1981 The ErnestLower

169

Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane Tank Overfill SafetyVehicle FuelEVs

170

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

2008-03-01T23:59:59.000Z

171

Development of a fixed abrasive slicing technique (FAST) for reducing the cost of photovoltaic wafers  

SciTech Connect (OSTI)

This report examines a wafer slicing technique developed by Crystal Systems, Inc. that reduces the cost of photovoltaic wafers. This fixed, abrasive slicing technique (FAST) uses a multiwire bladepack and a diamond-plated wirepack; water is the coolant. FAST is in the prototype production stage and reduces expendable material costs while retaining the advantages of a multiwire slurry technique. The cost analysis revealed that costs can be decreased by making more cuts per bladepack and slicing more wafers per linear inch. Researchers studied the degradation of bladepacks and increased wirepack life. 21 refs.

Schmid, F. (Crystal Systems, Inc., Salem, MA (United States))

1991-12-01T23:59:59.000Z

172

Reducing Regulatory Burden | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |Rebecca MatulkaDeliveryUpdatedRFI ReducingBurden Reducing

173

Assessing the Costs and Benefits of the Superior Energy Performance...  

Broader source: Energy.gov (indexed) [DOE]

the Costs and Benefits of the Superior Energy Performance Program Presentation Nine companies certified under the U.S. Department of Energy (DOE) Superior Energy Performance...

174

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

2009). Technology Roadmap – Wind Energy. Paris, France:5) Ceńa, A; Simonot, E. (2011). The Cost of Wind Energy.Spanish Wind Energy Association (AEE) contribution to IEA

Wiser, Ryan

2013-01-01T23:59:59.000Z

175

Project Cost Profile Spreadsheet | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSEEnergy ProgressProject Cost Profile

176

The effect of ankle foot orthosis stiffness on the energy cost of walking: A simulation study  

E-Print Network [OSTI]

The effect of ankle foot orthosis stiffness on the energy cost of walking: A simulation study D sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost

Collins, Steven H.

177

Reducing Enzyme Costs Increases the Market Potential of Biofuels (Fact Sheet)  

SciTech Connect (OSTI)

Cellulosic ethanol prices depend heavily on the cost of the cellulase enzymes used to break down the biomass into fermentable sugars. To reduce these costs, NREL partnered with two leading enzyme companies, Novozymes and Genencor, to engineer new cellulase enzymes that are exceptionally good at breaking down cellulose. Genencor is now part of DuPont Industrial Biosciences.

Not Available

2013-08-01T23:59:59.000Z

178

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

2008-03-01T23:59:59.000Z

179

Reducing Regulatory Burden | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof EnergyReducing PeakReducing

180

Energy information systems (EIS): Technology costs, benefit, and best  

E-Print Network [OSTI]

LBNL-6476E 1 Energy information systems (EIS): Technology costs, benefit, and best practice uses, Lin, G, Piette, MA. Energy information systems (EIS): Technology costs, benefits, and best practice

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Reducing energy usage in a manufacturing facility through a behavior change based approach  

E-Print Network [OSTI]

Many companies have developed energy reduction programs for their manufacturing facilities to reduce their operational costs while also decreasing their greenhouse gas emissions. The majority of these manufacturing facilities ...

Norelli, Michael A., IV (Michael Anthony)

2010-01-01T23:59:59.000Z

182

Cost Study Manual | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorkingCooking UpCorrectiveCost

183

Low Cost, Durable Seal | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term Storage ofEnergy HighCost, Durable Seal

184

Solution to time-energy costs of quantum channels  

E-Print Network [OSTI]

We derive a formula for the time-energy costs of general quantum channels proposed in [Phys. Rev. A 88, 012307 (2013)]. This formula allows us to numerically find the time-energy cost of any quantum channel using positive semidefinite programming. We also derive a lower bound to the time-energy cost for any channels and the exact the time-energy cost for a class of channels which includes the qudit depolarizing channels and projector channels as special cases.

Chi-Hang Fred Fung; H. F. Chau; Chi-Kwong Li; Nung-Sing Sze

2014-12-16T23:59:59.000Z

185

Cost Savings and Energy Reduction: Bi-Level Lighting Retrofits in Multifamily Buildings  

E-Print Network [OSTI]

Community Environmental Center implements Bi- Level Lighting fixtures as a component of cost-effective multifamily retrofits. These systems achieve substantial energy savings by automatically reducing lighting levels when common areas are unoccupied...

Ackley, J.

2010-01-01T23:59:59.000Z

186

New Water Booster Pump System Reduces Energy Consumption by 80...  

Broader source: Energy.gov (indexed) [DOE]

Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases...

187

Reducing Regulatory Burden | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |Rebecca MatulkaDeliveryUpdatedRFI Reducing

188

A Walking Model with No Energy Cost M. W. Gomes  

E-Print Network [OSTI]

on a frictional surface. Can legged transport over level ground be similarly energy-cost free? NatureA Walking Model with No Energy Cost M. W. Gomes Mechanics, Cornell University; now at Mechanical these minor friction losses, is a zero- energy-cost walking mechanism possible? Consider walking mechanisms

Ruina, Andy L.

189

Reducing Your Electricity Use | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartment ofManagementManagementReduce Hot Water Use

190

Energy Smart Guide to Campus Cost Savings: Executive Summary  

SciTech Connect (OSTI)

Summary of The Energy Smart Guide to Campus Cost Savings, an energy efficiency guidebook for College and University business and facility managers.

Not Available

2003-07-01T23:59:59.000Z

191

Analysis of Energy, Environmental and Life Cycle Cost Reduction...  

Broader source: Energy.gov (indexed) [DOE]

Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Analysis of Energy, Environmental and Life...

192

Energy Department Invests Over $7 Million to Commercialize Cost...  

Energy Savers [EERE]

Energy Department Invests Over 7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies Energy Department Invests Over 7 Million to Commercialize...

193

Multiple oligo nucleotide arrays: Methods to reduce manufacture time and cost  

E-Print Network [OSTI]

The customized multiple arrays are becoming vastly used in microarray experiments for varies purposes, mainly for its ability to handle a large quantity of data and output high quality results. However, experimenters who use customized multiple arrays still face many problems, such as the cost and time to manufacture the masks, and the cost for production of the multiple arrays by costly machines. Although there is some research on the multiple arrays, there is little concern on the manufacture time and cost, which is actually important to experimenters. In this paper, we have proposed methods to reduce the time and cost for the manufacture of the customized multiple arrays. We have first introduced a heuristic algorithm for the mask decomposition problem for multiple arrays. Then a streamline method is proposed for the integration of different steps of manufacture on a higher level. Experiments show that our methods are very effective in reduction of the time and cost of manufacture of multiple arrays.

Ning, Kang

2010-01-01T23:59:59.000Z

194

Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)  

SciTech Connect (OSTI)

As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

Not Available

2014-04-01T23:59:59.000Z

195

Review of cost estimates for reducing CO2 emissions. Final report, Task 9  

SciTech Connect (OSTI)

Since the ground breaking work of William Nordhaus in 1977, cost estimates for reducing CO{sub 2} emissions have been developed by numerous groups. The various studies have reported sometimes widely divergent cost estimates for reducing CO{sub 2} emissions. Some recent analyses have indicated that large reductions in CO{sub 2} emissions could be achieved at zero or negative costs (e.g. Rocky Mountain Institute 1989). In contrast, a recent study by Alan Manne of Stanford and Richard Richels of the Electric Power Research Institute (Manne-Richels 1989) concluded that in the US the total discounted costs of reducing CO{sub 2} emissions by 20 percent below the 1990 level could be as much as 3.6 trillion dollars over the period from 1990 to 2100. Costs of this order of magnitude would represent about 5 percent of US GNP. The purpose of this briefing paper is to summarize the different cost estimates for CO{sub 2} emission reduction and to identify the key issues and assumptions that underlie these cost estimates.

Not Available

1990-10-01T23:59:59.000Z

196

Department of Energy Environmental Management cost infrastructure development program: Cost analysis requirements  

SciTech Connect (OSTI)

This report was prepared to support development of the Department of Energy Environmental Management cost infrastructure -- a new capability to independently estimate and analyze costs. Currently, the cost data are reported according to a structure that blends level of effort tasks with product and process oriented tasks. Also. the budgetary inputs are developed from prior year funding authorizations and from contractor-developed parametric estimates that have been adjusted to planned funding levels or appropriations. Consequently, it is difficult for headquarters and field-level activities to use actual cost data and technical requirements to independently assess the costs generated and identify trends, potential cost savings from process improvements, and cost reduction strategies.

Custer, W.R. Jr.; Messick, C.D.

1996-03-31T23:59:59.000Z

197

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

SciTech Connect (OSTI)

The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

2011-12-01T23:59:59.000Z

198

Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

2003-09-01T23:59:59.000Z

199

Analysis of TCP's Computational Energy Cost for Mobile [Extended Abstract  

E-Print Network [OSTI]

a wire- less link. Our primary goal was on obtaining a breakdown of the computational energy cost of TCP this cost in actual systems. We analyzed the energy consumption of TCP in FreeBSD 5 running on a wireless the energy consumed by TCP. Prior work in this do- main has has looked at the energy consumption of various

Singh, Suresh

200

Impact of Financial Structure on the Cost of Solar Energy  

SciTech Connect (OSTI)

To stimulate investment in renewable energy generation projects, the federal government developed a series of support structures that reduce taxes for eligible investors--the investment tax credit, the production tax credit, and accelerated depreciation. The nature of these tax incentives often requires an outside investor and a complex financial arrangement to allocate risk and reward among the parties. These financial arrangements are generally categorized as 'advanced financial structures.' Among renewable energy technologies, advanced financial structures were first widely deployed by the wind industry and are now being explored by the solar industry to support significant scale-up in project development. This report describes four of the most prevalent financial structures used by the renewable sector and evaluates the impact of financial structure on energy costs for utility-scale solar projects that use photovoltaic and concentrating solar power technologies.

Mendelsohn, M.; Kreycik, C.; Bird, L.; Schwabe, P.; Cory, K.

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Cost analysis of energy storage systems for electric utility applications  

SciTech Connect (OSTI)

Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

1997-02-01T23:59:59.000Z

202

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

SciTech Connect (OSTI)

Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

2010-10-27T23:59:59.000Z

203

Energy and Demand Savings from Implementation Costs in Industrial Facilities  

E-Print Network [OSTI]

1 ENERGY AND DEMAND SAVINGS FROM IMPLEMENTATION COSTS IN INDUSTRIAL FACILITIES 1 Razinha, J.A. and Heffington, W.M. Industrial Assessment Center and Mechanical Engineering Department Texas A&M University, College Station, Texas 77843.... noted that a direct calculation of cost savings from the implementation cost could eliminate as much as 30% of the preparation time (and associated cost) for the LoanSTAR reports. The savings result from not having to calculate energy or demand...

Razinha, J. A.; Heffington, W. M.

204

Reducing the cost of CO{sub 2} capture from flue gases using membrane technology  

SciTech Connect (OSTI)

Studies of CO{sub 2} capture using membrane technology from coal-fired power-plant flue gas typically assume compression of the feed to achieve a driving force across the membrane. The high CO{sub 2} capture cost of these systems reflects the need to compress the low-pressure feed gas (1 bar) and the low CO{sub 2} purity of the product stream. This article investigates how costs for CO{sub 2} capture using membranes can be reduced by operating under vacuum conditions. The flue gas is pressurized to 1.5 bar, whereas the permeate stream is at 0.08 bar. Under these operating conditions, the capture cost is U.S. $54/tonne CO{sub 2} avoided compared to U.S. $82/tonne CO{sub 2} avoided using membrane processes with a pressurized feed. This is a. reduction of 35%. The article also investigates the effect on the capture cost of improvements in CO{sub 2} permeability and selectivity. The results show that the capture cost can be reduced to less than U.S. $25/tonne CO{sub 2} avoided when the CO{sub 2} permeability is 300 bar, CO{sub 2}/N{sub 2} selectivity is 250, and the membrane cost is U.S. $10/m{sup 2}.

Ho, M.T.; Allinson, G.W.; Wiley, D.E. [University of New South Wales, Kensington, NSW (Australia)

2008-03-15T23:59:59.000Z

205

Coal flow aids reduce coke plant operating costs and improve production rates  

SciTech Connect (OSTI)

Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

2005-06-01T23:59:59.000Z

206

ocietal pressures to reduce healthcare costs, coupled with the pharmaceutical industry's need to maintain its eco-  

E-Print Network [OSTI]

ocietal pressures to reduce healthcare costs, coupled with the pharmaceutical industry's need. Augsburger, PhD, is Shangraw Professor of Industrial Pharmacy and Pharmaceutics, all in the Department to maintain its eco- nomic incentive to develop new drugs, have required that the industry increase speed

Peng, Yun

207

Examining the Costs and Benefits of Technology Pathways for Reducing Fuel  

E-Print Network [OSTI]

Examining the Costs and Benefits of Technology Pathways for Reducing Fuel Use and Emissions from On policy harmonized Tax credits Anti-idling Low Carbon Fuel Standard #12;Lifecycle Emissions Modeled in TOP-HDV 5 Fuel production, refining, and distribution Material acquisition, processing, and vehicle assembly

California at Davis, University of

208

Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants  

SciTech Connect (OSTI)

OAK-B135 This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

Camillo A. DiNunzio Framatome ANP DE& S; Dr. Abhinav Gupta Assistant Professor NCSU; Dr. Michael Golay Professor MIT Dr. Vincent Luk Sandia National Laboratories; Rich Turk Westinghouse Electric Company Nuclear Systems; Charles Morrow, Sandia National Laboratories; Geum-Taek Jin, Korea Power Engineering Company Inc.

2002-11-30T23:59:59.000Z

209

UNDP-Energy Costing Tool | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump to: navigation,EnergyAgency/CompanyCosting

210

The role of technology in reducing health care costs. Phase II and phase III.  

SciTech Connect (OSTI)

In Phase I of this project, reported in SAND97-1922, Sandia National Laboratories applied a systems approach to identifying innovative biomedical technologies with the potential to reduce U.S. health care delivery costs while maintaining care quality. The effort provided roadmaps for the development and integration of technology to meet perceived care delivery requirements and an economic analysis model for development of care pathway costs for two conditions: coronary artery disease (CAD) and benign prostatic hypertrophy (BPH). Phases II and III of this project, which are presented in this report, were directed at detailing the parameters of telemedicine that influence care delivery costs and quality. These results were used to identify and field test the communication, interoperability, and security capabilities needed for cost-effective, secure, and reliable health care via telemedicine.

Cilke, John F.; Parks, Raymond C.; Funkhouser, Donald Ray; Tebo, Michael A.; Murphy, Martin D.; Hightower, Marion Michael; Gallagher, Linda K.; Craft, Richard Layne, II; Garcia, Rudy John

2004-04-01T23:59:59.000Z

211

Benefits and Costs of Aggressive Energy Efficiency Programs and...  

Open Energy Info (EERE)

Area: Energy Efficiency Topics: Policy Impacts Website: eetd.lbl.goveaempreportslbnl-3833e.pdf Equivalent URI: cleanenergysolutions.orgcontentbenefits-and-costs-aggressiv...

212

Energy Department Announces $25 Million to Lower Cost of Concentrating...  

Energy Savers [EERE]

clean and renewable energy, even at night, by storing the heat generated by the sun. "Investments to improve the efficiency and lower the costs of concentrating solar...

213

Developing a Lower Cost and Higher Energy Density Alternative...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Advanced Batteries ADVANCED MANUFACTURING OFFICE Developing a Lower Cost and Higher Energy Density Alternative to Lithium-Ion Batteries Introduction As the world moves toward...

214

Assessing the Costs and Benefits of the Superior Energy Performance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

This paper focuses on the business value of Superior Energy Performance (SEP(tm)) and ISO 50001, providing an assessment of the costs and benefits associated with SEP...

215

Analysis of Energy, Environmental and Life Cycle Cost Reduction...  

Broader source: Energy.gov (indexed) [DOE]

Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Principal Investigator: Y.-X. Tao Florida International...

216

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

2010-10-21T23:59:59.000Z

217

SEE Action Webinar on Energy Efficiency Measure Cost Studies  

Broader source: Energy.gov [DOE]

Presented by State and Local Energy Efficiency Action Network (SEE Action), this webinar will explain the importance of measure cost studies, review the current "state of the science" of measure cost development and estimation, and explore opportunities for future collaboration and advancement of measure cost research.

218

Draft Submission; Social Cost of Energy Generation  

SciTech Connect (OSTI)

This report is intended to provide a general understanding of the social costs associated with electric power generation. Based on a thorough review of recent literature on the subject, the report describes how these social costs can be most fully and accurately evaluated, and discusses important considerations in applying this information within the competitive bidding process. [DJE 2005

None

1990-01-05T23:59:59.000Z

219

Reduce Risk, Increase Clean Energy: How States and Cities are...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reduce Risk, Increase Clean Energy: How States and Cities are Using Old Finance Tools to Scale Up a New Industry Reduce Risk, Increase Clean Energy: How States and Cities are Using...

220

Energy Department Partners with Industry to Train Federal Energy...  

Energy Savers [EERE]

Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs...

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Reducing Industrial Energy Intensity in the Southeast Project...  

Broader source: Energy.gov (indexed) [DOE]

Industrial Energy Intensity in the Southeast Project Fact Sheet Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet This fact sheet contains details regarding...

222

EECBG Success Story: Ormond Beach Triples Energy Cost Savings...  

Office of Environmental Management (EM)

Program, Ormond Beach was able to make energy efficiency upgrades to 16 city-owned buildings and is now saving more than 45,000 a year on its energy costs. | Photo courtesy of...

223

A High Performance, Energy Efficient GALS Processor Microarchitecture with Reduced Implementation Complexity  

E-Print Network [OSTI]

A High Performance, Energy Efficient GALS Processor Microarchitecture with Reduced Implementation Complexity ÂŁ YongKang Zhu , David H. Albonesi Ăť and Alper Buyuktosunoglu Ă? Department of Electrical, achieves impressive energy savings for a relatively low per- formance cost. However, the approach requires

Albonesi, David H.

224

Energy Innovator Drops Costs for Titanium Metalwork | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37 EastEIA-64A Annual ReportInnovator Drops Costs

225

New ultra-deepwater rig with dual rotaries will reduce costs  

SciTech Connect (OSTI)

The Discoverer Enterprise, a next generation, ultra-deepwater drill ship with a dual rotary system, will decrease drilling and completion costs by reducing bottom hole assembly (BHA) and tubular preparation time. Transocean Offshore received a contract from Amoco Corp. to build the ultra-deep floating rig and is scheduled to spud its first well in July 1998. It will generally work in water deeper than 6,000 ft. The rig design involves a new approach that addresses the overall well-construction process and equipment required to decrease significantly deepwater drilling time. The Discoverer is the first ultra-deepwater rig designed specifically for handling subsea completions and extended well tests. The paper discusses increased deepwater rig demand, rig construction costs, drillship design, well construction, development drilling, and cost justification.

Cole, J.C.; Herrmann, R.P.; Scott, R.J. [Transocean Offshore Inc., Houston, TX (United States); Shaughnessy, J.M. [Amoco Corp., Houston, TX (United States)

1997-05-26T23:59:59.000Z

226

Cost and benefit of energy efficient buildings  

E-Print Network [OSTI]

A common misconception among developers and policy-makers is that "sustainable buildings" may not be financially justified. However, this report strives to show that building green is cost-effective and does make financial ...

Zhang, Wenying, S.B. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

227

Updating Texas Energy Cost Containment Audit Reports  

E-Print Network [OSTI]

In 1984 and 1986, 35.3 million square feet of state owned buildings were audited to identify cost saving retrofit projects. Originally intended for direct legislative funding or bond sales, funding became available in 1989 through oil overcharge...

Burke, T. E.; Heffington, W. M.

1989-01-01T23:59:59.000Z

228

Reducing the cost of CO{sub 2} capture from flue gases using pressure swing adsorption  

SciTech Connect (OSTI)

Pressure swing adsorption (PSA) processes have been used extensively for gas separation, especially in the separation of hydrogen from CO{sub 2}, and in air purification. The objective of this paper is to examine the economic feasibility of pressure swing adsorption (PSA) for recovering CO{sub 2} from postcombustion power plant flue gas. The analysis considers both high-pressure feed and vacuum desorption using commercial adsorbent 13X, which has a working capacity of 2.2 mol/kg and CO{sub 2}/N{sub 2} selectivity of 54. The results show that using vacuum desorption reduces the capture cost from US$57 to US$51 per ton of CO{sub 2} avoided and is comparable in cost to CO{sub 2} capture using conventional MEA absorption of US$49 per ton of CO{sub 2} avoided. In this paper, a sensitivity analysis is also presented showing the effect on the capture cost with changes in process cycle; feed pressure and evacuation pressure; improvements the adsorbent characteristics; and selectivity and working capacity. The results show that a hypothetical adsorbent with a working capacity of 4.3 mol/kg and a CO{sub 2}/N{sub 2} selectivity of 150 can reduce the capture cost to US$30 per ton of CO{sub 2} avoided.

Ho, M.T.; Allinson, G.W.; Wiley, D.E. [University of New South Wales, Sydney, NSW (Australia)

2008-07-15T23:59:59.000Z

229

Veeco Develops a Tool to Reduce Epitaxy Costs and Increase LED Brightness  

Broader source: Energy.gov [DOE]

With the help of DOE funding, Veeco is working on reducing epitaxy costs and increasing LED efficiency by developing a physical vapor deposition (PVD) tool for depositing aluminum nitride buffer layers on LED substrates. PVD, also known as "sputtering," is an alternative to metal-organic chemical vapor deposition (MOCVD). PVD is a purely physical process that involves plasma sputter bombardment rather than a chemical reaction at the surface to be coated, as in MOCVD.

230

Ormond Beach Triples Energy Cost Savings Projections  

Broader source: Energy.gov [DOE]

With the help of the Energy Department's Energy Efficiency and Conservation Block Grant (EECBG) Program, the city of Ormond Beach, Florida is saving energy and encouraging its residents to do the same through an environmental education program.

231

Increasing Underwater Vehicle Autonomy by Reducing Energy Consumption  

E-Print Network [OSTI]

: Autonomous Underwater Vehicle, Minimum Energy Consumption, Optimal Control, Experiments. 1 IntroductionIncreasing Underwater Vehicle Autonomy by Reducing Energy Consumption M. Chybaa , T. Haberkornd , S, we concern ourselves with finding a control strategy that minimizes energy consumption along

Chyba, Monique

232

Reported Energy and Cost Savings from the DOE ESPC Program  

SciTech Connect (OSTI)

The objective of this work was to determine the realization rate of energy and cost savings from the Department of Energy's Savings Performance Contract (ESPC) program based on information reported by the energy services companies (ESCOs) that are carrying out ESPC projects at federal sites. Information was extracted from 134 Measurement and Verification (M&V) reports to determine reported, estimated, and guaranteed cost savings and reported and estimated energy savings for the previous contract year. Because the quality of the reports varied, it was not possible to determine all of these parameters for each project. For 133 of the 134 projects, there was sufficient information to compare estimated, reported, and guaranteed cost savings. For this group, the total estimated cost savings for the reporting periods addressed were $95.7 million, total reported cost savings were $96.8 million, and total guaranteed cost savings were $92.1 million. This means that on average: ESPC contractors guaranteed 96% of the estimated cost savings, projects reported achieving 101% of the estimated cost savings, and projects reported achieving 105% of the guaranteed cost savings. For 129 of the projects examined, there was sufficient information to compare estimated and reported energy savings. On the basis of site energy, estimated savings for those projects for the previous year totaled 5.371 million MMBtu, and reported savings were 5.374 million MMBtu, just over 100% of the estimated energy savings. On the basis of source energy, total estimated energy savings for the 129 projects were 10.400 million MMBtu, and reported saving were 10.405 million MMBtu, again, just over 100.0% of the estimated energy savings.

Shonder, John A [ORNL; Slattery, Bob S [ORNL; Atkin, Erica [ORNL

2012-01-01T23:59:59.000Z

233

REDUCING ENERGY USE IN FLORIDA BUILDINGS  

E-Print Network [OSTI]

to determine the energy saving features available which are, in most cases, stricter than the current Florida Building Code. The energy savings features include improvements to building envelop, fenestration, lighting and equipment, and HVAC efficiency...

Raustad, R.; Basarkar, M.; Vieira, R.

234

Carbon Offsets as a Cost Containment Instrument: A Case Study of Reducing Emissions from Deforestation and Forest Degradation  

E-Print Network [OSTI]

Carbon Offsets as a Cost Containment Instrument: A Case Study of Reducing Emissions from and Policy Program #12;2 #12;3 Carbon Offsets as a Cost Containment Instrument: A Case Study of Reducing in Technology and Policy Abstract Carbon offset is one type of flexibility mechanism in greenhouse gas emission

235

People are willing to bear costs to reduce emissions, but they are only willing to go so far.  

E-Print Network [OSTI]

People are willing to bear costs to reduce emissions, but they are only willing to go so far a small fraction of its subsidies on kerosene, diesel, and petroleum, with the inevitable result being. It says that even if people are willing to bear some costs to reduce emissions (and experience shows

Colorado at Boulder, University of

236

Cost-Energy Dynamics: An Engineering - Economic Basis for Industrial Energy Conservation Policies  

E-Print Network [OSTI]

This paper develops a theory called cost-energy dynamics that can be used to shape policies for industrial energy conservation. It is built on two hypotheses commonly observed in process engineering; namely, cost varies as positive power function...

Phung, D. L.; van Gool, W.

1980-01-01T23:59:59.000Z

237

Reduce Hot Water Use for Energy Savings | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartment ofManagementManagementReduce Hot Water Use for

238

Cost effectiveness of long life incandescent lamps and energy buttons  

SciTech Connect (OSTI)

Long-life replacement lamps for the incandescent lamp have been evaluated with regard to their cost effectiveness. The replacements include the use of energy buttons that extend lamp life as well as an adaptive fluorescent circline lamp that will fit into existing incandescent lamp sockets. The initial, operating, and replacement costs for one million lumen hours are determined for each lamp system. It is found that the most important component lighting cost is the operating cost. Using lamps that are less efficient or devices that cause lamps to operate less efficiently are not cost-effective. The adaptive fluorescent circline lamp, even at an initial unit cost of $20.00, is the most cost-effective source of illumination compared to the incandescent lamp and lamp systems examined.

Verderber, R.; Morse, O.

1980-04-07T23:59:59.000Z

239

Special Feature: Reducing Energy Costs with Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scientific Computing Center (NERSC) are working to achieve this goal. New Anode Boots Capacity of Lithium-Ion Batteries Lithium-ion batteries are everywhere- in smart...

240

Recommendations to Reduce Light Pollution and Energy Costs on the  

E-Print Network [OSTI]

(PAT18, PAT19, PAT27, PAT28, PAT29 - CL14): #12;· Change class #15, and class #20, incandescent bulbs with exterior fluorescent bulbs: · Change class #18 incandescent flood-light bulbs with fluorescent flood

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Metal and Glass Manufacturers Reduce Costs by Increasing Energy...  

Broader source: Energy.gov (indexed) [DOE]

in Process Heating Systems Process heating plays a key role in producing steel, aluminum, and glass and in manufacturing products made from these materials. Faced with...

242

EECBG Success Story: Energy Detectives Help Pennsylvania Town Reduce Costs  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirantPartners, Inc. | DepartmentEA-98-G-EECBGEnergy|

243

E-Print Network 3.0 - achieve cost-effective energy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy rating; Cost-effective energy efficiency improvements; Public and private sector... , the availability of an appropriate cost-effective energy efficiency...

244

The role of technology in reducing health care costs. Final project report  

SciTech Connect (OSTI)

Sandia National Laboratories applied a systems approach to identifying innovative biomedical technologies with the potential to reduce U.S. health care delivery costs while maintaining care quality. This study was conducted by implementing both top-down and bottom-up strategies. The top-down approach used prosperity gaming methodology to identify future health care delivery needs. This effort provided roadmaps for the development and integration of technology to meet perceived care delivery requirements. The bottom-up approach identified and ranked interventional therapies employed in existing care delivery systems for a host of health-related conditions. Economic analysis formed the basis for development of care pathway interaction models for two of the most pervasive, chronic disease/disability conditions: coronary artery disease (CAD) and benign prostatic hypertrophy (BPH). Societal cost-benefit relationships based on these analyses were used to evaluate the effect of emerging technology in these treatment areas. 17 figs., 48 tabs.

Sill, A.E.; Warren, S.; Dillinger, J.D.; Cloer, B.K.

1997-08-01T23:59:59.000Z

245

Reducing the Energy Consumption of Mobile Applications Behind the Scenes  

E-Print Network [OSTI]

Reducing the Energy Consumption of Mobile Applications Behind the Scenes Young-Woo Kwon and Eli, an increasing number of perfective maintenance tasks are concerned with optimizing energy consumption. However, optimizing a mobile application to reduce its energy consumption is non-trivial due to the highly volatile

Tilevich, Eli

246

GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS  

E-Print Network [OSTI]

GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS Maha IDRISSI AOUAD.loria.fr/zendra Keywords: Energy consumption reduction, Genetic heuristics, memory allocation management, optimizations on heuristic methods for SPMs careful management in order to reduce memory energy consumption. We propose

Schott, René - Institut de Mathématiques �lie Cartan, Université Henri Poincaré

247

Reducing Network Energy Consumption via Sleeping and Rate-Adaptation  

E-Print Network [OSTI]

Reducing Network Energy Consumption via Sleeping and Rate-Adaptation Sergiu Nedevschi Lucian Popa of two forms of power management schemes that reduce the energy consumption of networks. The first the energy consumed when actively processing packets. For real-world traffic workloads and topologies and us

California at Irvine, University of

248

Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet, 2014 |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslieEnergy LoanOfficialLow-CostALTEXDepartment

249

IRS Parking Facility Lighting Retrofit Reduces Annual Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in Kansas City, Missouri. The retrofit resulted in annual energy savings of 2 million kWh, annual cost savings of over 122,000, and a simple payback of 2.5 years....

250

NREL's Renewable Energy Development Expertise Reduces Project Risks (Fact Sheet)  

SciTech Connect (OSTI)

This National Renewable Energy Laboratory (NREL) success story fact sheet highlights a June 2012 solar power purchase agreement between the Virgin Islands Water and Power Authority and three corporations. The fact sheet describes how technical assistance from DOE's National Renewable Energy Laboratory enabled the U.S. Virgin Islands to realistically assess its clean energy resources and identify the most viable and cost-effective solutions to its energy challenges--resulting in a $65 million investment in solar energy in the territory.

Not Available

2012-12-01T23:59:59.000Z

251

Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543  

SciTech Connect (OSTI)

Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle-necks in the process causes increased space requirements and will have negative impact on the project schedule, which increases not only the cost but also the dose exposure to personnel. For these reasons it is critical to create a process that transfers material into conditioned waste ready for disposal as quickly as possible. To a certain extent the decommissioning program should be led by the waste management process. With the objective to reduce time for handling of dismantled material at site and to efficiently and environmental-friendly use waste management methods (clearance for re-use followed by clearance for recycling), the costs for the plant decommissioning could be reduced as well as time needed for performing the decommissioning project. Also, risks for delays would be reduced with a well-defined handling scheme which limits surprises. Delays are a major cost driver for decommissioning projects. (authors)

Larsson, Arne; Lidar, Per [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden)] [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden); Bergh, Niklas; Hedin, Gunnar [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)] [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)

2013-07-01T23:59:59.000Z

252

Optimal Power Cost Management Using Stored Energy in Data Centers  

E-Print Network [OSTI]

the aver- age price of 1 MW-Hour of electricity. Consequently, mini- mization of energy consumption needOptimal Power Cost Management Using Stored Energy in Data Centers Rahul Urgaonkar, Bhuvan Urgaonkar that arise by the use of uninterrupted power supply (UPS) units as energy storage devices. This rep- resents

Urgaonkar, Bhuvan

253

Demonstrating Innovative Low-Cost Carbon Fiber for Energy and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstrating Innovative Low-Cost Carbon Fiber for Energy and National Security Applications Front-end creel for processing precursor in tow format In-line melt spinning for...

254

A Low Cost Energy Management Program at Engelhard Industries Division  

E-Print Network [OSTI]

in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

Brown, T. S.; Michalek, R.; Reiter, S.

1982-01-01T23:59:59.000Z

255

Energy Information: The Key to Cost-Effective Conservation  

E-Print Network [OSTI]

This paper analyzes the cost-effectiveness- simple payback, Net Present Value (NPV) and Return on Investment (ROI) -of permanently installed energy consumption monitoring equipment used as the basis for applying value-added engineering services...

McBride, J. R.; Flanagan, D. E.

256

Low Cost Durable Seal | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term Storage of Cesium1940sofof10 DOEofCost

257

Hydrogen Pathway Cost Distributions | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmapNear-term CostHydrogen: Over1Pathway

258

Energy Management and Cost Analysis (A case study)  

E-Print Network [OSTI]

Abstract — Lighting constitutes a main portion of energy consumption in commercial and industrial sector. The Energy Auditing is the key of the consumption which stabilize the situation of energy crisis by providing the conservation schemes. Any organization so called bulk consumer of electrical energy propose to adopt suitable technology or scheme of energy conservation to minimize the unwanted power shutdown either incidentally or by load shedding. In educational buildings a significant component of the energy used is spent in illuminating the interior of the building. As the energy costs increases, possible efforts are to be done to minimize the energy consumption of lighting installations. This follow three basic directions: new more efficient equipment (lamps, control gear, etc.), utilization of improved lighting design practices, improvements in lighting control systems to avoid energy waste for unoccupied and daylight hours. In this paper an Energy audit has been conducted in the educational Institute to estimate the Energy consumption. In this Energy audit the cost analysis and pay back periods have been calculated by replacing the higher consumption lamps with Energy efficient Lightning. The profit of implementing the energy efficiency measures in buildings are considerable both in terms of energy savings and cost savings.

unknown authors

259

Pantex installs new meters to help to reduce energy consumption...  

National Nuclear Security Administration (NNSA)

installs new meters to help to reduce energy consumption | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

260

PPPL wins Department of Energy award for reducing greenhouse...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an executive order signed on Oct. 5, 2009, to reduce energy consumption in federal buildings by 30 percent by 2015. "Today's Sustainability Award winners are leading by...

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Impact of Utility Costs on the Economics of Energy Cost Reduction & Conservation Technologies  

E-Print Network [OSTI]

IMPACT OF UTILITY COSTS ON THE ECONOMICS OF ENERGY COST REDUCTION & CONSERVATION TECHNOLOGIES Saidas M. Ranade Senior Process Engineer ARCO Chemical Company Channelview,Texas ABSTRACT This paper summarizes some key results obtained from... to ARCO Chemical Company for providing the time and space required to complete thi paper. REFERENCES 1. N. R. Friedman, Co eneration: Impacts on Utility Operations and Marketing. EPRI Conference on Placing Industrial Cogeneration in Perspective...

Ranade, S. M.; Chao, Y. T.

262

Using Batteries to Reduce the Power Costs of Internet-scale Distributed  

E-Print Network [OSTI]

Cost of Running an Internet-Scale Network 4 Server Cost (CapEx) Bandwidth From network provider Example

Berger, Emery

263

Starship Sails Propelled by Cost-Optimized Directed Energy  

E-Print Network [OSTI]

Microwave propelled sails are a new class of spacecraft using photon acceleration. It is the only method of interstellar flight that has no physics issues. Laboratory demonstrations of basic features of beam-driven propulsion, flight, stability ('beam-riding'), and induced spin, have been completed in the last decade, primarily in the microwave. It offers much lower cost probes after a substantial investment in the launcher. Engineering issues are being addressed by other applications: fusion (microwave, millimeter and laser sources) and astronomy (large aperture antennas). There are many candidate sail materials: carbon nanotubes and microtrusses, graphene, beryllium, etc. For acceleration of a sail, what is the cost-optimum high power system? Here the cost is used to constrain design parameters to estimate system power, aperture and elements of capital and operating cost. From general relations for cost-optimal transmitter aperture and power, system cost scales with kinetic energy and inversely with sail di...

Benford, James

2011-01-01T23:59:59.000Z

264

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

costs, and increased energy awareness among employees (Wyethimprove the awareness of personnel with regard to energy useawareness Build capacity Not addressed No promotion of energy

Galitsky, Christina

2008-01-01T23:59:59.000Z

265

Unique University and Utility Team Reduces Energy and Pollutants  

E-Print Network [OSTI]

In 1992 the Center for Energy Systems Research of the College of Engineering and Applied Sciences and the Arizona State University (ASU) Facilities Management Department formed a unique Demand Side Management (DSM) team dedicated to reducing energy...

Smith, K. L.; Traill, D. A.; Sears, R. L.; Spielman, M.

266

Strategies for reducing energy demand in the materials sector  

E-Print Network [OSTI]

This research answers a key question - can the materials sector reduce its energy demand by 50% by 2050? Five primary materials of steel, cement, aluminum, paper, and plastic, contribute to 50% or more of the final energy ...

Sahni, Sahil

2013-01-01T23:59:59.000Z

267

How Do You Reduce Energy Use from Computers and Electronics?...  

Energy Savers [EERE]

Energy Use from Computers and Electronics? How Do You Reduce Energy Use from Computers and Electronics? December 16, 2010 - 6:30am Addthis On Monday, John discussed some ways to...

268

U.S. Department of Energy Hydrogen Storage Cost Analysis  

SciTech Connect (OSTI)

The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a â��bottom-upâ� costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with DFMA�® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target. In general, tank costs are the largest component of system cost, responsible for at least 30 percent of total system cost, in all but two of the 12 systems. Purchased BOP cost also drives system cost, accounting for 10 to 50 percent of total system cost across the various storage systems. Potential improvements in these cost drivers for all storage systems may come from new manufacturing processes and higher production volumes for BOP components. In addition, advances in the production of storage media may help drive down overall costs for the sodium alanate, SBH, LCH2, MOF, and AX-21 systems.

Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

2013-03-11T23:59:59.000Z

269

Computerized Energy and Treatment Cost Calculations  

E-Print Network [OSTI]

6 summarizes the products and control limits that would be necessary to control scale and corrosion throughout the boiler system. DE!\\i1N ERALIZAnON Let us now consider using the same raw water analysis, but using demineralization as treatment... - Demineralization Energy and Material Balance 55 ESL-IE-81-04-09 Proceedings from the Third Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 PIEPAIl?lI FOa. IIIIlUSfIIUL EIlElClY CUiFElEM:E FOIl 5VSIUc JllOlIIII IiIIILITE Y5 DBl...

Trace, W. L.

1981-01-01T23:59:59.000Z

270

Hydrogen Threshold Cost Calculation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy EmbrittlementFactEducation »Clean Coal »Threshold

271

Facilitating Sound, Cost-Effective Federal Energy Management (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet is an overview of the U.S. Department of Energy's Federal Energy Management Program (FEMP). The Federal Government, as the nation's largest energy consumer, has a tremendous opportunity and acknowledged responsibility to lead by example. The U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) plays a critical role in this effort. FEMP facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. FEMP does this by focusing on the needs of its Federal customers, delivering an array of services across a variety of program areas.

Not Available

2012-03-01T23:59:59.000Z

272

Exposing Datapath Elements to Reduce Microprocessor Energy Consumption  

E-Print Network [OSTI]

to Reduce Microprocessor Energy Consumption by Mark Jerome Hampton Submitted to the Department of ElectricalExposing Datapath Elements to Reduce Microprocessor Energy Consumption by Mark Jerome Hampton B Submitted to the Department of Electrical Engineering and Computer Science in partial ful llment

273

Measuring the Costs of U.S. Oil Dependence and the Benefits of Reducing It  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies | Department ofMeasuring the Costs of U.S.

274

PAFC Cost Challenges | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergy

275

Capturing Waste Gas: Saves Energy, Lower Costs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of EnergyLANDSCAPEDepartment ofDepartment of

276

Biotrans: Cost Optimization Model | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER(RedirectedBiomass:

277

Property:Cost | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug PowerAddress JumpFloorAreaTotal

278

Interruption Cost Estimate Calculator | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load)International AssociationServicesforInterproject

279

Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew HampshireValero Refining Company -

280

Sandia National Laboratories: reduce energy consumption  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskite oxide High-Efficiency Solaremissions

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Scheduling in an Energy Cost Aware Environment The energy cost aware scheduling problem (ECASP) is concerned with variable electricity tariffs, where the price of  

E-Print Network [OSTI]

Scheduling in an Energy Cost Aware Environment The energy cost aware scheduling problem (ECASP) is concerned with variable electricity tariffs, where the price of electricity changes over time depending because a schedule without considering variable energy charges might significantly increase

282

Optimal Power Cost Management Using Stored Energy in Data Centers  

E-Print Network [OSTI]

Optimal Power Cost Management Using Stored Energy in Data Centers Rahul Urgaonkar, Bhuvan Urgaonkar of uninterrupted power supply (UPS) units as energy storage devices. This rep- resents a deviation from the usual average electric utility bill in a data center. Us- ing the technique of Lyapunov optimization, we develop

Giles, C. Lee

283

Assessing the Energy Costs of Computing Devices in Developing Countries  

E-Print Network [OSTI]

Assessing the Energy Costs of Computing Devices in Developing Countries K. Gopinath1 and Rahul to power these devices in developing countries. (2) the energy-efficient design of large information@gwu.edu Abstract Competition, technological developments, and economies of scale have together brought down

Simha, Rahul

284

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

Neelis, Maarten; Worrell, Ernst; Masanet, Eric

2008-09-01T23:59:59.000Z

285

Hydrogen and Infrastructure Costs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013DepartmentAgenda for theTrucksEvaluation71Fred

286

PHEV Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D at the DOE7-A2

287

PHEV Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D at the DOE7-A21

288

PHEV Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D at the

289

PHEV Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D at the09 DOE

290

2013 Cost of Wind Energy Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H. I. Park,October 2013Agenda3 201332013

291

2011 Cost of Wind Energy Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable7O(α,5March0JuneLab1 Ceremony The2011

292

Microsoft Word - Levelized Cost of Energy Analysis  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps MoreWSRC-STI-2007-00250 Rev. 0 MayOE-781RComparingSandiaStorageMarch 28,

293

Integrated supercritical water gasification combined cycle (IGCC) systems for improved performance and reduced operating costs in existing plants  

SciTech Connect (OSTI)

A revolutionary hydrothermal heat recovery steam generator (HRSG) is being developed to produce clean fuels for gas turbines from slurries and emulsions of opportunity fuels. Water can be above 80% by weight and solids below 20%, including coal fines, coal water fuels, biomass, composted municipal refuse, sewage sludge and bitumen/Orimulsion. The patented HRSG tubes use a commercial method of particle scrubbing to improve heat transfer and prevent corrosion and deposition on heat transfer surfaces. A continuous-flow pilot plant is planned to test the HRSG over a wide range of operating conditions, including the supercritical conditions of water, above 221 bar (3,205 psia) and 374 C (705 F). Bench scale data shows, that supercritical water gasification below 580 C (1,076 F) and low residence time without catalysts or an oxidizer can produce a char product that can contain carbon up to the amount of fixed carbon in the proximate analysis of the solids in the feed. This char can be burned with coal in an existing combustion system to provide the heat required for gasification. The new HRSG tubes can be retrofitted into existing power plant boilers for repowering of existing plants for improved performance and reduced costs. A special condensing turbine allows final low-temperature cleaning and maintains quality and combustibility of the fuel vapor for modern gas turbine in the new Vapor Transmission Cycle (VTC). Increased power output and efficiency can be provided for existing plants, while reducing fuel costs. A preliminary computer-based process simulation model has been prepared that includes material and energy balances that simulate commercial-scale operations of the VTC on sewage sludge and coal. Results predict over 40% HHV thermal efficiency to electric power from sewage sludge at more than 83% water by weight. The system appears to become autothermal (no supplemental fuel required) at about 35% fixed carbon in the feed. Thus, bituminous and lignite coal slurries could be gasified at less than 25% coal and more than 75% water. Preliminary life cycle cost analyses indicate that disposal fees for sewage sludge improve operating economics over fuel that must be purchased, the cost and schedule advantages of natural gas-fired combined cycle systems are preserved. Sensitivity analyses show that increasing capital costs by 50% can be offset by an increase in sewage sludge disposal fees of $10/metric ton.

Tolman, R.; Parkinson, W.J.

1999-07-01T23:59:59.000Z

294

Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage  

SciTech Connect (OSTI)

This report provides an update on the previous cost model for thermal energy storage (TES) systems. The update allows NREL to estimate the costs of such systems that are compatible with the higher operating temperatures associated with advanced power cycles. The goal of the Department of Energy (DOE) Solar Energy Technology Program is to develop solar technologies that can make a significant contribution to the United States domestic energy supply. The recent DOE SunShot Initiative sets a very aggressive cost goal to reach a Levelized Cost of Energy (LCOE) of 6 cents/kWh by 2020 with no incentives or credits for all solar-to-electricity technologies.1 As this goal is reached, the share of utility power generation that is provided by renewable energy sources is expected to increase dramatically. Because Concentrating Solar Power (CSP) is currently the only renewable technology that is capable of integrating cost-effective energy storage, it is positioned to play a key role in providing renewable, dispatchable power to utilities as the share of power generation from renewable sources increases. Because of this role, future CSP plants will likely have as much as 15 hours of Thermal Energy Storage (TES) included in their design and operation. As such, the cost and performance of the TES system is critical to meeting the SunShot goal for solar technologies. The cost of electricity from a CSP plant depends strongly on its overall efficiency, which is a product of two components - the collection and conversion efficiencies. The collection efficiency determines the portion of incident solar energy that is captured as high-temperature thermal energy. The conversion efficiency determines the portion of thermal energy that is converted to electricity. The operating temperature at which the overall efficiency reaches its maximum depends on many factors, including material properties of the CSP plant components. Increasing the operating temperature of the power generation system leads to higher thermal-to-electric conversion efficiency. However, in a CSP system, higher operating temperature also leads to greater thermal losses. These two effects combine to give an optimal system-level operating temperature that may be less than the upper operating temperature limit of system components. The overall efficiency may be improved by developing materials, power cycles, and system-integration strategies that enable operation at elevated temperature while limiting thermal losses. This is particularly true for the TES system and its components. Meeting the SunShot cost target will require cost and performance improvements in all systems and components within a CSP plant. Solar collector field hardware will need to decrease significantly in cost with no loss in performance and possibly with performance improvements. As higher temperatures are considered for the power block, new working fluids, heat-transfer fluids (HTFs), and storage fluids will all need to be identified to meet these new operating conditions. Figure 1 shows thermodynamic conversion efficiency as a function of temperature for the ideal Carnot cycle and 75% Carnot, which is considered to be the practical efficiency attainable by current power cycles. Current conversion efficiencies for the parabolic trough steam cycle, power tower steam cycle, parabolic dish/Stirling, Ericsson, and air-Brayton/steam Rankine combined cycles are shown at their corresponding operating temperatures. Efficiencies for supercritical steam and carbon dioxide (CO{sub 2}) are also shown for their operating temperature ranges.

Glatzmaier, G.

2011-12-01T23:59:59.000Z

295

Low to No Cost Strategy for Energy Efficiency in Public Buildings...  

Broader source: Energy.gov (indexed) [DOE]

Low to No Cost Strategy for Energy Efficiency in Public Buildings (Text Version) Low to No Cost Strategy for Energy Efficiency in Public Buildings (Text Version) Electronic Voice:...

296

SciTech Connect: Cost analysis of energy storage systems for...  

Office of Scientific and Technical Information (OSTI)

Cost analysis of energy storage systems for electric utility applications Citation Details In-Document Search Title: Cost analysis of energy storage systems for electric utility...

297

Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint  

SciTech Connect (OSTI)

This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

2014-08-01T23:59:59.000Z

298

Energy Cost Reduction Measures Identified for Texas State Agencies  

E-Print Network [OSTI]

conservation opportunities and capital intensive energy cost reduction measures. Though more square feet was audited in 1984, more utility cost savings per square foot were identified in 1986. Changes in the screening process, the audit report format... square foot for the audited facilities by building type. Maintenance and operation savings are included in this table. A sufficient number of academic buildings, medical research facilities, libraries, hospitals, and office buildings were audited...

Grigg, T. J.; Verdict, M. E.

1987-01-01T23:59:59.000Z

299

A hypothetical profile of ordinary steam turbines with reduced cost and enhanced reliability for contemporary conditions  

SciTech Connect (OSTI)

Power steam turbines should be characterized with the reduced cost and enhanced reliability and designed on the basis of experience in steam turbine design and operation accumulated in the world`s practice for the latest years. Currently, such turbines have to be particularly matched with requirements of operation for deregulated power systems; so they should be capable of operating in both base-load and cycling modes. It seems reasonable to have such turbines with the single capacity about 250--400 MW, supercritical main steam pressure, and single steam reheat. This makes it possible to design such turbines with the minimum specific metal amount and length, with the integrated HP-IP and one two-flow LP cylinders. With existing ferritic and martensitic-class steels, the main and reheat steam temperatures can be chosen at the level of 565--580 C (1050--1075 F) without remarkable supplemental expenditures and a sacrifice of reliability. To reduce the capital cost and simplify operation and maintenance, the turbine`s regenerative system can be designed deaeratorless with motor-driven boiler-feed pumps. Such turbines could be used to replace existing old turbines with minimum expenditures. They can also be combined with large high-temperature gas-turbine sets to shape highly efficient combined-cycle units. There exist various design and technological decisions to enhance the turbine reliability and efficiency; they are well worked up and verified in long-term operation practice of different countries. For reliable and efficient operation, the turbine should be furnished with advanced automatic and automated control, diagnostic monitoring, and informative support for the operational personnel.

Leyzerovich, A.S. [Actinium Corp., St. Louis, MO (United States)

1998-12-31T23:59:59.000Z

300

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

SciTech Connect (OSTI)

Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

2008-01-01T23:59:59.000Z

302

Nodes Placement for reducing Energy Consumption in Multimedia Transmissions  

E-Print Network [OSTI]

quality of multimedia traffic. Index Terms--Wireless Sensor Networks, Multimedia, Energy Saving, Quality on the energy saving by extending the lifetime of the network up to more than 15% while preserving video qualityNodes Placement for reducing Energy Consumption in Multimedia Transmissions Pasquale Pace Valeria

Paris-Sud XI, Université de

303

Reduced Space-Time and Time Costs Using Dislocation Codes and Arbitrary Ancillas  

E-Print Network [OSTI]

We propose two distinct methods of improving quantum computing protocols based on surface codes. First, we analyze the use of dislocations instead of holes to produce logical qubits, potentially reducing spacetime volume required. Dislocations induce defects which, in many respects, behave like Majorana quasi-particles. We construct circuits to implement these codes and present fault-tolerant measurement methods for these and other defects which may reduce spatial overhead. One advantage of these codes is that Hadamard gates take exactly $0$ time to implement. We numerically study the performance of these codes using a minimum weight and a greedy decoder using finite-size scaling. Second, we consider state injection of arbitrary ancillas to produce arbitrary rotations. This avoids the logarithmic (in precision) overhead in online cost required if $T$ gates are used to synthesize arbitrary rotations. While this has been considered before, we consider also the parallel performance of this protocol. Arbitrary ancilla injection leads to a probabilistic protocol in which there is a constant chance of success on each round; we use an amortized analysis to show that even in a parallel setting this leads to only a constant factor slowdown as opposed to the logarithmic slowdown that might be expected naively.

M. B. Hastings; A. Geller

2014-08-14T23:59:59.000Z

304

Gelatin/graphene systems for low cost energy storage  

SciTech Connect (OSTI)

In this work, we introduce the possibility to use a low cost, biodegradable material for temporary energy storage devices. Here, we report the use of biologically derived organic electrodes composed of gelatin ad graphene. The graphene was obtained by mild sonication in a mixture of volatile solvents of natural graphite flakes and subsequent centrifugation. The presence of exfoliated graphene sheets was detected by atomic force microscopy (AFM) and Raman spectroscopy. The homogeneous dispersion in gelatin demonstrates a good compatibility between the gelatin molecules and the graphene particles. The electrical characterization of the resulting nanocomposites suggests the possible applications as materials for transient, low cost energy storage device.

Landi, Giovanni [Faculty of Mathematics and Computer Science, FernUniversität Hagen, 58084 Hagen (Germany); Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore [Institute for Composite and Biomedical Materials (IMCB-CNR), Piazzale Enrico Fermi 1, 80055 Portici (Italy); Neitzert, Heinz C. [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

2014-05-15T23:59:59.000Z

305

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

2008-01-01T23:59:59.000Z

306

Costs of chronic disease and an alternative to reduce these costs: case study of End Stage Renal Disease (ESRD)  

E-Print Network [OSTI]

the efficiency of water supply systems taking into account water pricing, marketing, and treatment costs is proposed. This system treats and supplies water differently depending on the source of the water and if the end-use of the water is a potable or non...

Jang, Won-Ik

2005-02-17T23:59:59.000Z

307

Cost effectiveness of the 1993 Model Energy Code in Colorado  

SciTech Connect (OSTI)

This report documents an analysis of the cost effectiveness of the Council of American Building Officials` 1993 Model Energy Code (MEC) building thermal-envelope requirements for single-family homes in Colorado. The goal of this analysis was to compare the cost effectiveness of the 1993 MEC to current construction practice in Colorado based on an objective methodology that determined the total life-cycle cost associated with complying with the 1993 MEC. This analysis was performed for the range of Colorado climates. The costs and benefits of complying with the 1993 NIEC were estimated from the consumer`s perspective. The time when the homeowner realizes net cash savings (net positive cash flow) for homes built in accordance with the 1993 MEC was estimated to vary from 0.9 year in Steamboat Springs to 2.4 years in Denver. Compliance with the 1993 MEC was estimated to increase first costs by $1190 to $2274, resulting in an incremental down payment increase of $119 to $227 (at 10% down). The net present value of all costs and benefits to the home buyer, accounting for the mortgage and taxes, varied from a savings of $1772 in Springfield to a savings of $6614 in Steamboat Springs. The ratio of benefits to costs ranged from 2.3 in Denver to 3.8 in Steamboat Springs.

Lucas, R.G.

1995-06-01T23:59:59.000Z

308

Program Potential: Estimates of Federal Energy Cost Savings from Energy Efficient Procurement  

E-Print Network [OSTI]

Water Heaters ..Table 7: Annual energy and cost savings of water heaters (Boilers Commercial Water Heater See Appendix F for

Taylor, Margaret

2014-01-01T23:59:59.000Z

309

Reduced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 RevisionDivisionReduced intermittency in

310

Reducing 3G energy consumption on mobile devices  

E-Print Network [OSTI]

The 3G wireless interface is a significant contributor to battery drain on mobile devices. This paper describes the design, implementation, and experimental evaluation of methods to reduce the energy consumption of the 3G ...

Deng, Shuo

2012-01-01T23:59:59.000Z

311

Reducing Air-Conditioning System Energy Using a PMV Index  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Maximize Comfort: Temperature, Humidity and IAQ Vol.I-4-1 Reducing Air-Conditioning System Energy Using a PMV Index Hui Li Qingfan Zhang Associate professor...

Li, H.; Zhang, Q.

2006-01-01T23:59:59.000Z

312

Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.  

SciTech Connect (OSTI)

This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

2011-04-01T23:59:59.000Z

313

Maximum Residual Energy Routing with Reverse Energy Cost  

E-Print Network [OSTI]

energy consumption is present in transmission (i.e. the receiving end consumes energy), finding an MRE in energy conservation. This issue has been studied extensively in the past. A central part of any routing is present in transmission (i.e. the receiving end consumes energy), finding an MRE path that has enough

Fleischer, Rudolf

314

Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California  

SciTech Connect (OSTI)

Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs and energy savings potential of emerging technologies applicable to California is the focus of this report. The overall goal of the project is to identify and select a set of emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. Specifically, this report contains the results from performing Task 3 Technology Characterization for California Industries for the project titled Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies, sponsored by California Energy Commission (CEC) and managed by California Institute for Energy and Environment (CIEE). The project purpose is to characterize energy savings, technology costs, market potential, and economic viability of newly selected technologies applicable to California. In this report, LBNL first performed technology reviews to identify new or under-utilized technologies that could offer potential in improving energy efficiency and additional benefits to California industries as well as in the U.S. industries, followed by detailed technology assessment on each targeted technology, with a focus on California applications. A total of eleven emerging or underutilized technologies applicable to California were selected and characterized with detailed information in this report. The outcomes essentially include a multi-page summary profile for each of the 11 emerging or underutilized technologies applicable to California industries, based on the formats used in the technology characterization reports (Xu et al. 2010; Martin et al. 2000).

Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

2010-12-15T23:59:59.000Z

315

Some Observations on Energy Efficiency and Capital Cost  

E-Print Network [OSTI]

SO~ffi OBSERVATIONS ON ENERGY EFFICIENCY AND CAPITAL COST William F. Kenney Exxon Chemical Company Florham Park, ABSTRACT The usual expectation in the process indus tries is that improved energy efficiency requires increased investment..., ACS Symposium Series ~. (3) Exxon Chemical Internal Studies. ACKNOWLEDGEMENT The author is grateful to Exxon Chemical for permission to publish this study. Particular thanks go to A. P. Durso and W. J. O'Brien of the Central Engineering...

Kenney, W. F.

1982-01-01T23:59:59.000Z

316

Demonstrating Innovative Low-Cost Carbon Fiber for Energy  

E-Print Network [OSTI]

Demonstrating Innovative Low-Cost Carbon Fiber for Energy and National Security Applications #12 posttreatment for various resin systems Winding and packaging Carbon fiber is a strong, stiff, lightweight of today's relatively high price. Current methods for manufacturing carbon fiber and carbon-fiber

Pennycook, Steve

317

Costs of Generating Electrical Energy 1.0 Overview  

E-Print Network [OSTI]

uranium (3.5% U-235) in a light water reactor has an energy content of 960MWhr/kg [2], or multiplying by 3.41 MBTU/MWhr, we get 3274MBTU/kg. The total cost of bringing uranium to the fuel rods of a nuclear power plant, considering mining, transportation, conversion1 , enrichment, and fabrication, has been estimated

McCalley, James D.

318

Costs of Generating Electrical Energy 1.0 Overview  

E-Print Network [OSTI]

. Enriched uranium (3.5% U-235) in a light water reactor has an energy content of 960MWhr/kg [2], or multiplying by 3.41 MBTU/MWhr, we get 3274MBTU/kg. The total cost of bringing uranium to the fuel rods of a nuclear power plant, considering mining, transportation, conversion1 , enrichment, and fabrication, has

McCalley, James D.

319

Towards Optimizing Energy Costs of Algorithms for Shared Memory Architectures  

E-Print Network [OSTI]

Towards Optimizing Energy Costs of Algorithms for Shared Memory Architectures Vijay Anand Korthikanti Department of Computer Science University of Illinois Urbana-Champaign vkortho2@illinois.edu Gul Agha Department of Computer Science University of Illinois Urbana-Champaign agha@illinois.edu ABSTRACT

Marchal, Loris

320

Energy Use and Costs in Texas Schools and Hospitals  

E-Print Network [OSTI]

performance indices among the participating institutions. For participating elementary schools, the annual electrical energy use/area ranged from 5.52 to 16.84 kwh/ft^2, the gas use from 9,363 to 66,639 Btu/ft^2, the electrical cost/area from 0.29 to 0.98 $/ft...

Dunn, J. R.

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

for  any net energy consumption with solar panels, the cost energy generation technologies (such as solar panels).   

Al-Beaini, S.

2010-01-01T23:59:59.000Z

322

Wind Energy Technology Trends: Comparing and Contrasting Recent Cost and Performance Forecasts (Poster)  

SciTech Connect (OSTI)

Poster depicts wind energy technology trends, comparing and contrasting recent cost and performance forecasts.

Lantz, E.; Hand, M.

2010-05-01T23:59:59.000Z

323

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-07-01T23:59:59.000Z

324

Energy Policy 34 (2006) 16451658 Technological learning and renewable energy costs: implications for  

E-Print Network [OSTI]

electricity cost estimates used in energy policy planning models. Sensitivities of the learning rates: Learning by doing; Renewable energy costs; Research expenditures 1. Introduction Changes in the electricity,000 MW by 2000 (McVeigh et al., 1999). Analysts in the private sector produced similar scenarios

Vermont, University of

325

Battery energy storage systems life cycle costs case studies  

SciTech Connect (OSTI)

This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

1998-08-01T23:59:59.000Z

326

Energy conservation and cost benefits in the dairy processing industry  

SciTech Connect (OSTI)

Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

none,

1982-01-01T23:59:59.000Z

327

High-albedo materials for reducing building cooling energy use  

SciTech Connect (OSTI)

One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building`s envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

Taha, H.; Sailor, D.; Akbari, H.

1992-01-01T23:59:59.000Z

328

Evaluation of Global Onshore Wind Energy Potential and Generation Costs  

SciTech Connect (OSTI)

In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind potential under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the potential at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.

2012-06-20T23:59:59.000Z

329

Costs of Generating Electrical Energy 1.0 Overview  

E-Print Network [OSTI]

be divided into two broad areas: ownership or sunk costs and operating or avoidable costs. These costs (sunk) costs Operating (avoidable) costs Interest on bonds Return to stockholders Property taxes

McCalley, James D.

330

Cost effectiveness of the 1995 model energy code in Massachusetts  

SciTech Connect (OSTI)

This report documents an analysis of the cost effectiveness of the Council of American Building Officials` 1995 Model Energy Code (MEC) building thermal-envelope requirements for single-family houses and multifamily housing units in Massachusetts. The goal was to compare the cost effectiveness of the 1995 MEC to the energy conservation requirements of the Massachusetts State Building Code-based on a comparison of the costs and benefits associated with complying with each.. This comparison was performed for three cities representing three geographical regions of Massachusetts--Boston, Worcester, and Pittsfield. The analysis was done for two different scenarios: a ``move-up`` home buyer purchasing a single-family house and a ``first-time`` financially limited home buyer purchasing a multifamily condominium unit. Natural gas, oil, and electric resistance heating were examined. The Massachusetts state code has much more stringent requirements if electric resistance heating is used rather than other heating fuels and/or equipment types. The MEC requirements do not vary by fuel type. For single-family homes, the 1995 MEC has requirements that are more energy-efficient than the non-electric resistance requirements of the current state code. For multifamily housing, the 1995 MEC has requirements that are approximately equally energy-efficient to the non-electric resistance requirements of the current state code. The 1995 MEC is generally not more stringent than the electric resistance requirements of the state code, in fact; for multifamily buildings the 1995 MEC is much less stringent.

Lucas, R.G.

1996-02-01T23:59:59.000Z

331

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

E-Print Network [OSTI]

heating, given the higher cost per KWh for electricity, aaverage cost of electrical energy per kilowatt-hour (kWh) is

Logue, J.M.

2012-01-01T23:59:59.000Z

332

Department of Energy Geo-Environmental Engineering Spring 2012 Diesel Engine Cost and Quality Improvement  

E-Print Network [OSTI]

PENNSTATE Department of Energy Geo-Environmental Engineering Spring 2012 Diesel Engine Cost and Quality Improvement Overview Tasked with improving cost and quality throughout the Volvo diesel engine

Demirel, Melik C.

333

California: Energy-Efficient Glass Saves Energy Costs, Increases Personal  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (AprilBiden2 Categorical ExclusionOrderEconomy HigherComfort |

334

NREL-Levelized Cost of Energy Calculator | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Informationof Energy Calculator Jump to: navigation, search

335

National Energy and Cost Savings for New Single- and Multifamily Homes: A Comparison of the 2006, 2009, and 2012 Editions of the IECC  

SciTech Connect (OSTI)

The 2009 and 2012 International Energy Conservation Code (IECC) yield positive benefits for U.S. homeowners and significant energy savings for the nation. Moving from a baseline of the 2006 IECC to the 2009 IECC reduces average annual energy costs by 10.8%, while moving from the same baseline to the 2012 IECC reduces them by 32.1%. These reductions amount to annual energy cost savings of $168 and $497, respectively. The 2012 IECC saves $329 in energy costs compared to the 2009 IECC.

Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

2012-04-01T23:59:59.000Z

336

Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies  

SciTech Connect (OSTI)

The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting iron ore to metallic iron nodules. Various types of coals including a bio-coal produced though torrefaction can result in production of NRI at reduced GHG levels. The process results coupled with earlier already reported developments indicate that this process technique should be evaluated at the next level in order to develop parameter information for full scale process design. Implementation of the process to full commercialization will require a full cost production analysis and comparison to other reduction technologies and iron production alternatives. The technical results verify that high quality NRI can be produced under various operating conditions at the pilot level.

Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

2011-12-22T23:59:59.000Z

337

Integrated Ice Storage/Sprinkler HVAC System Sharply Cuts Energy Costs and Air-Distribution First Costs  

E-Print Network [OSTI]

Integrated ice thermal storage/sprinkler HVAC systems developed and applied by the author in several commercial applications shift a major portion of electric utility demand to cheaper off-peak hours, while also reducing significantly the first cost...

Meckler, G.

1986-01-01T23:59:59.000Z

338

Breakthrough in platinum structures maintains high catalytic activity and could lead to reduced costs for  

E-Print Network [OSTI]

costs for hydrogen fuel cells, which hold the promise of powering vehicles and buildings. Hydrogen fuel be useful in hydrogen fuel cells while sharply driving down the cost compared to an all-platinum catalyst cells could power the vehicles of tomorrow. With platinum an essential catalyst in fuel cells

339

Reduce Radiation Losses from Heating Equipment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumping Costs

340

Reducing Energy Demand in Buildings Through State Energy Codes | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumpingStudy

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy and Demand Savings from Implementation Costs in Industrial Facilities  

E-Print Network [OSTI]

Improve Lubrication Practices 0.91 4 na 3 na 0 24 16 487 Use Waste Heat from Hot Flue Gases to Preheat Combustion Air 0.29 483 na 2 0.31 449 25 11 464 Use Synthetic Lubricant 0.03 198 0.03 198 na 0 5 Table 3. National IAC... 2 25 11 Use Synthetic Lubricant 0.00 159 0.00 24 6 Table 4. Texas A&M University IAC Energy Conservation - Implementation Cost Correlations Rank No. TAMU Assessment Recommendation (AR) Total Energy Electrical Consumption Natural...

Razinha, J. A.; Heffington, W. M.

342

Solar at the cost of coal | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 SolarPVSolar Viewed asat the cost of

343

Cost Effective Water Heating Solutions | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate EarthEnergyDistrict EnergyCensus,Core5intoNovemberCost

344

Alpaca Farmers Shearing Energy Costs with Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed.9-0s) All Other Edi~imsEnergy Efficiency

345

Energy Cost Calculator for Commercial Ice Machines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of Energy benchmarking.Department ofcapacity size,

346

Energy Cost Calculator for Compact Fluorescent Lamps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of Energy benchmarking.Department ofcapacity size,This

347

Energy Cost Calculator for Faucets and Showerheads | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of Energy benchmarking.Department ofcapacityutility

348

Energy Cost Calculator for Urinals | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of Energy benchmarking.Department

349

Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on U.S. Electric Generation Efficiency  

E-Print Network [OSTI]

Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on U.S. Electric-of-service regulation to market-oriented environments for many U.S. electric generating plants. Our estimates of input their wholesale electricity markets improved the most. The results suggest modest medium-term efficiency benefits

Kammen, Daniel M.

350

Reach: A low cost-approach to reducing stack emissions and improving the performance of oil-fired boilers  

SciTech Connect (OSTI)

Improved oil combustion technology, based upon optimization of oil atomizer and flame stabilizer design, has been retrofit to oil-fired boilers to reduce NO{sub x} emissions, particulate matter emissions, and opacity, and to provide operational and performance benefits. This technology, referred to as REACH, can be retrofit to wall-fired and tangential-fired boilers at a cost of less than $0.75/kW, a fraction of the cost of installing new burners. The technology is compatible with conventional NO{sub x} controls such as overfire air, flue gas recirculation, and low-NO{sub x} burners, and can be combined with these techniques to further reduce NO{sub x} emissions. REACH has been applied to eighty boilers representing over 14,000 MW of generating capacity. This paper describes REACH technology, its applicability and cost, and the emissions and performance results achieved in full scale applications.

Giovanni, D.V.; McElroy, M.W.; Kerho, S.E. [Electric Power Technologies, Inc., Menlo Park, CA (United States)

1996-01-01T23:59:59.000Z

351

Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers  

SciTech Connect (OSTI)

The International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers'' was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries.

Sathaye, J.; Goldman, N. (eds.)

1991-06-01T23:59:59.000Z

352

Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers  

SciTech Connect (OSTI)

The ``International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers`` was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries.

Sathaye, J.; Goldman, N. [eds.

1991-06-01T23:59:59.000Z

353

Renewable Energy Cost Modeling: A Toolkit for Establishing Cost-Based Incentives in the United States; March 2010 -- March 2011  

SciTech Connect (OSTI)

This report is intended to serve as a resource for policymakers who wish to learn more about establishing cost-based incentives. The report will identify key renewable energy cost modeling options, highlight the policy implications of choosing one approach over the other, and present recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, feed-in tariffs (FITs), or similar policies. These recommendations will be utilized in designing the Cost of Renewable Energy Spreadsheet Tool (CREST). Three CREST models will be publicly available and capable of analyzing the cost of energy associated with solar, wind, and geothermal electricity generators. The CREST models will be developed for use by state policymakers, regulators, utilities, developers, and other stakeholders to assist them in current and future rate-setting processes for both FIT and other renewable energy incentive payment structures and policy analyses.

Gifford, J. S.; Grace, R. C.; Rickerson, W. H.

2011-05-01T23:59:59.000Z

354

Cost-and Energy-Aware Load Distribution Across Data Centers  

E-Print Network [OSTI]

centers powered by green energy (possibly limited) Solution approaches Optimization-based Heuristic that particular hour Policy GreenDC Cost of green energy, if green energy not yet exhausted Cost of energy during;Effect of Green Data Centers 35% brown = 3% cost 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Cost Brown Energy

355

Reducing Waste and Harvesting Energy This Halloween | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research | DepartmentDepartmentHatch,DepartmentDeliveryMay 1,HereWrap yourAs''This

356

Reducing Energy Demand in Buildings Through State Energy Codes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof Energy Redefining9Codes

357

Cost Effectiveness of Electricity Energy Efficiency Programs | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric Coop,Cosmo Powertech Pvt Ltd

358

Ormond Beach Triples Energy Cost Savings Projections | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on Our National-Projects inDepartmentOrmond Beach

359

Energy and Cost Savings Calculators for Energy-Efficient Products |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClick on the graphic to learn more

360

California Biomass Collaborative Energy Cost Calculators | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: Crystalline RockCaldera2 2013Calhoun

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Price Indices and Discount Factors for Life-Cycle Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis-2014 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis-2014 Handbook describes the...

362

Low-to-No Cost Strategy for Energy Efficiency in Public Buildings...  

Broader source: Energy.gov (indexed) [DOE]

Low-to-No Cost Strategy for Energy Efficiency in Public Buildings Low-to-No Cost Strategy for Energy Efficiency in Public Buildings Blue version of the EERE PowerPoint template,...

363

Energy Department Awards $3.5 Million to Develop Cost-Competitive...  

Broader source: Energy.gov (indexed) [DOE]

3.5 Million to Develop Cost-Competitive Algal Biofuels Energy Department Awards 3.5 Million to Develop Cost-Competitive Algal Biofuels July 17, 2014 - 11:52am Addthis The Energy...

364

GAO Cost Estimating and Assessment Guide | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.FinancialofFuel CycleDepartmentG. BrianCost

365

Low Cost Nanostructured Smart Window Coatings | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveragingLindseyLong-TermLosof EnergyLow Cost

366

Advanced Biofuels Cost of Production | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuels Cost of Production Advanced

367

Property:Geothermal/AwardeeCostShare | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug PowerAddressDataFormat JumpNercMroURL.AwardeeCostShare Jump

368

Costs of Storing and Transporting Hydrogen | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate EarthEnergyDistrictAssistance RecipientsDepartmentCosts

369

Cost Effective Production of Giant Magneto-Caloric Materials - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on γ-Al2O3. |ID#: 19834 Title: CorrelationCost

370

Cost and Performance Comparison Baseline for Fossil Energy Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on γ-Al2O3. |ID#: 19834 Title:Cost Study ManualBaseline

371

Cost and Performance Comparison Baseline for Fossil Energy Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on γ-Al2O3. |ID#: 19834 Title:Cost Study ManualBaseline,

372

Cost and Performance Comparison Baseline for Fossil Energy Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on γ-Al2O3. |ID#: 19834 Title:Cost Study

373

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

cost levelized using 15% per year levelizing factor (3) Energycost levelized using 15% per year levelizing factor (3) Energy

Mills, Andrew D.

2009-01-01T23:59:59.000Z

374

Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction: July 9, 2005 - July 8, 2006  

SciTech Connect (OSTI)

This report analyzes the status of wind energy technology in 2002 and describes the potential for technology advancements to reduce the cost and increase the performance of wind turbines.

Cohen, J.; Schweizer, T.; Laxson, A.; Butterfield, S.; Schreck, S.; Fingersh, L.; Veers, P.; Ashwill, T.

2008-02-01T23:59:59.000Z

375

The cost of reducing utility S02 emissions : not as low as you might think  

E-Print Network [OSTI]

A common assertion in public policy discussions is that the cost of achieving the SO2 emissions reductions under the acid rain provisions of the Clean Air Act ("Title IV") has been only one-tenth or less of what Title IV ...

Smith, Anne E.

1998-01-01T23:59:59.000Z

376

Reducing Regulatory Burden EO 13563 Third RFI | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |Rebecca MatulkaDeliveryUpdatedRFI Reducing Regulatory

377

Energy spectrum, dissipation, and spatial structures in reduced Hall magnetohydrodynamic  

SciTech Connect (OSTI)

We analyze the effect of the Hall term in the magnetohydrodynamic turbulence under a strong externally supported magnetic field, seeing how this changes the energy cascade, the characteristic scales of the flow, and the dynamics of global magnitudes, with particular interest in the dissipation. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics are performed, for different values of the Hall parameter (the ratio of the ion skin depth to the macroscopic scale of the turbulence) controlling the impact of the Hall term. The Hall effect modifies the transfer of energy across scales, slowing down the transfer of energy from the large scales up to the Hall scale (ion skin depth) and carrying faster the energy from the Hall scale to smaller scales. The final outcome is an effective shift of the dissipation scale to larger scales but also a development of smaller scales. Current sheets (fundamental structures for energy dissipation) are affected in two ways by increasing the Hall effect, with a widening but at the same time generating an internal structure within them. In the case where the Hall term is sufficiently intense, the current sheet is fully delocalized. The effect appears to reduce impulsive effects in the flow, making it less intermittent.

Martin, L. N.; Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Gomez, D. O. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, CONICET, Buenos Aires (Argentina)

2012-05-15T23:59:59.000Z

378

Past and Future Cost of Wind Energy: Preprint  

SciTech Connect (OSTI)

The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions.

Lantz, E.; Hand, M.; Wiser, R.

2012-08-01T23:59:59.000Z

379

City of Healdsburg Green Building Ordinance Energy Cost-Effectiveness Study  

E-Print Network [OSTI]

City of Healdsburg Green Building Ordinance Energy Cost-Effectiveness Study April 21, 2011 Scott-3346 sward@ci.healdsburg.ca.us #12;Energy Cost-Effectiveness Study for City of Healdsburg Green Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 #12;Energy Cost-Effectiveness Study for City of Healdsburg Green Building Ordinances, 4

380

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes 1 fey, 1David Feasibility of Achieving a ZeroNetEnergy, ZeroNetCost Homes 1 #12;2 ACKNOWLEDGEMENTS The material reduction, by requiring design entries to meet "zero net energy" and "zero net cost" criteria

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Labeling energy cost on light bulbs lowers implicit discount rates Jihoon Min a  

E-Print Network [OSTI]

levels that could be achieved if the most energy-efficient and cost-effective end-use technologiesAnalysis Labeling energy cost on light bulbs lowers implicit discount rates Jihoon Min a , Inęs L of five, lowering barriers to adoption of energy efficient alternatives with higher up-front costs

Michalek, Jeremy J.

382

Toward zero net energy buildings : optimized for energy use and cost  

E-Print Network [OSTI]

Recently, there has been a push toward zero net energy buildings (ZNEBs). While there are many options to reduce the energy used in buildings, it is often difficult to determine which are the most appropriate technologies ...

Brown, Carrie Ann, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

383

Selected bibliography: cost and energy savings of conservation and renewable energy technologies  

SciTech Connect (OSTI)

This bibliography is a compilation of reports on the cost and energy savings of conservation and renewable energy applications throughout the United States. It is part of an overall effort to inform utilities of technological developments in conservation and renewable energy technologies and so aid utilities in their planning process to determine the most effective and economic combination of capital investments to meet customer needs. Department of Energy assessments of the applications, current costs and cost goals for the various technologies included in this bibliography are presented. These assessments are based on analyses performed by or for the respective DOE Program Offices. The results are sensitive to a number of variables and assumptions; however, the estimates presented are considered representative. These assessments are presented, followed by some conclusions regarding the potential role of the conservation and renewable energy alternative. The approach used to classify the bibliographic citations and abstracts is outlined.

None

1980-05-01T23:59:59.000Z

384

Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency  

SciTech Connect (OSTI)

The DOE has set aggressive goals for solid state lighting (SSL) adoption, which require manufacturing and quality improvements for virtually all process steps leading to an LED luminaire product. The goals pertinent to this proposed project are to reduce the cost and improve the quality of the epitaxial growth processes used to build LED structures. The objectives outlined in this proposal focus on achieving cost reduction and performance improvements over state-of-the-art, using technologies that are low in cost and amenable to high efficiency manufacturing. The objectives of the outlined proposal focus on cost reductions in epitaxial growth by reducing epitaxy layer thickness and hetero-epitaxial strain, and by enabling the use of larger, less expensive silicon substrates and would be accomplished through the introduction of a high productivity reactive sputtering system and an effective sputtered aluminum-nitride (AlN) buffer/nucleation layer process. Success of the proposed project could enable efficient adoption of GaN on-silicon (GaN/Si) epitaxial technology on 150mm silicon substrates. The reduction in epitaxy cost per cm{sup 2} using 150mm GaN-on-Si technology derives from (1) a reduction in cost of ownership and increase in throughput for the buffer deposition process via the elimination of MOCVD buffer layers and other throughput and CoO enhancements, (2) improvement in brightness through reductions in defect density, (3) reduction in substrate cost through the replacement of sapphire with silicon, and (4) reduction in non-ESD yield loss through reductions in wafer bow and temperature variation. The adoption of 150mm GaN/Si processing will also facilitate significant cost reductions in subsequent wafer fabrication manufacturing costs. There were three phases to this project. These three phases overlap in order to aggressively facilitate a commercially available production GaN/Si capability. In Phase I of the project, the repeatability of the performance was analyzed and improvements implemented to the Veeco PVD-AlN prototype system to establish a specification and baseline PVD-AlN films on sapphire and in parallel the evaluation of PVD AlN on silicon substrates began. In Phase II of the project a Beta tool based on a scaled-up process module capable of depositing uniform films on batches of 4”or 6” diameter substrates in a production worthy operation was developed and qualified. In Phase III, the means to increase the throughput of the PVD-AlN system was evaluated and focused primarily on minimizing the impact of the substrate heating and cooling times that dominated the overall cycle time.

Cerio, Frank

2013-09-14T23:59:59.000Z

385

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

World Best Practice Energy Intensity Values for SelectedChina’s Target for Energy Intensity Reduction in 2010: Angoal of reducing energy intensity, defined as energy

Price, Lynn

2008-01-01T23:59:59.000Z

386

SunShot: Making Solar Energy Cost Competitive Throughout the United States (Fact Sheet)  

SciTech Connect (OSTI)

The U.S. Department of Energy's SunShot Initiative focuses on making solar energy cost competitive throughout the United States.

McCamey, D.

2011-03-01T23:59:59.000Z

387

California Federal Facilities: Rate-Responsive Buidling Operating for Deeper Cost and Energy Savings  

Broader source: Energy.gov [DOE]

Fact sheet from the Federal Energy Management Program (FEMP) describes rate-responsive building operations for cost and energy savings in California federal facilities.

388

Energy Price Indices and Discount Factors for Life-Cycle Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2010 Report describes the 2010 edition of energy price indices and discount factors for performing...

389

SunShot: Making Solar Energy Cost Competitive Throughout the United States (Fact Sheet)  

SciTech Connect (OSTI)

The U.S. Department of Energy's SunShot Initiative focuses on making solar energy cost competitive throughout the United States.

Not Available

2011-06-01T23:59:59.000Z

390

Shifting the Paradigm for Long Term Monitoring at Legacy Sites to Improve Performance while Reducing Cost  

SciTech Connect (OSTI)

A major issue facing many government and private industry sites that were previously contaminated with radioactive and chemical wastes is that often the sites cannot be cleaned up enough to permit unrestricted human access. These sites will require long-term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality in a cost effective manner. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site (SRS), the larger DOE complex, and many large federal and private sites. Currently, most monitoring strategies are focused on laboratory measurements of contaminants measured in groundwater samples collected from wells. This approach is expensive, and provides limited and lagging information about the effectiveness of cleanup activities and the behavior of the residual contamination. Over the last twenty years, DOE and other federal agencies have made significant investments in the development of various types of sensors and strategies that would allow for remote analysis of contaminants in groundwater, but these approaches do not promise significant reductions in risk or cost. Scientists at SRS have developed a new paradigm to simultaneously improve the performance of long term monitoring systems while lowering the overall cost of monitoring. This alternative approach incorporates traditional point measurements of contaminant concentration with measurements of controlling variables including boundary conditions, master variables, and traditional plume/contaminant variables. Boundary conditions are the overall driving forces that control plume movement and therefore provide leading indication to changes in plume stability. These variables include metrics associated with meteorology, hydrology, hydrogeology, and land use. Master variables are the key variables that control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. A robust suite of relatively inexpensive tools is commercially available to measure these variables. Traditional plume/contaminant variables are various measures of contaminant concentration including traditional analysis of chemicals in groundwater samples. An innovative long term monitoring strategy has been developed for acidic or caustic groundwater plumes contaminated with metals and/or radionuclides. Not only should the proposed strategy be more effective at early identification of potential risks, this strategy should be significantly more cost effective because measurement of controlling boundary conditions and master variables is relatively simple. These variables also directly reflect the evolution of the plume through time, so that the monitoring strategy can be modified as the plume 'ages'. This transformational long-term monitoring paradigm will generate significant cost savings to DOE, other federal agencies and industry and will provide improved performance and leading indicators of environmental management performance.

Eddy-Dilek, Carol A.; Looney, Brian B.; Seaman, John; Kmetz, Thomas

2013-01-10T23:59:59.000Z

391

Construction of energy-stable Galerkin reduced order models.  

SciTech Connect (OSTI)

This report aims to unify several approaches for building stable projection-based reduced order models (ROMs). Attention is focused on linear time-invariant (LTI) systems. The model reduction procedure consists of two steps: the computation of a reduced basis, and the projection of the governing partial differential equations (PDEs) onto this reduced basis. Two kinds of reduced bases are considered: the proper orthogonal decomposition (POD) basis and the balanced truncation basis. The projection step of the model reduction can be done in two ways: via continuous projection or via discrete projection. First, an approach for building energy-stable Galerkin ROMs for linear hyperbolic or incompletely parabolic systems of PDEs using continuous projection is proposed. The idea is to apply to the set of PDEs a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. The resulting ROM will be energy-stable for any choice of reduced basis. It is shown that, for many PDE systems, the desired transformation is induced by a special weighted L2 inner product, termed the %E2%80%9Csymmetry inner product%E2%80%9D. Attention is then turned to building energy-stable ROMs via discrete projection. A discrete counterpart of the continuous symmetry inner product, a weighted L2 inner product termed the %E2%80%9CLyapunov inner product%E2%80%9D, is derived. The weighting matrix that defines the Lyapunov inner product can be computed in a black-box fashion for a stable LTI system arising from the discretization of a system of PDEs in space. It is shown that a ROM constructed via discrete projection using the Lyapunov inner product will be energy-stable for any choice of reduced basis. Connections between the Lyapunov inner product and the inner product induced by the balanced truncation algorithm are made. Comparisons are also made between the symmetry inner product and the Lyapunov inner product. The performance of ROMs constructed using these inner products is evaluated on several benchmark test cases.

Kalashnikova, Irina; Barone, Matthew Franklin; Arunajatesan, Srinivasan; van Bloemen Waanders, Bart Gustaaf

2013-05-01T23:59:59.000Z

392

3800 Green Series Cost Elements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

(formerly EPP) Program 3800 Green Series Cost Elements 06112014 (Rev. 7) 3800 Green Series Cost Elements More Documents & Publications 1 OPAM Policy Acquisition Guides...

393

Calculating Wind Integration Costs: Separating Wind Energy Value from Integration Cost Impacts  

SciTech Connect (OSTI)

Accurately calculating integration costs is important so that wind generation can be fairly compared with alternative generation technologies.

Milligan, M.; Kirby, B.

2009-07-01T23:59:59.000Z

394

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

of current energy costs in Illinois).     To compare energy Energy Conservation  Code for Residential Buildings in Illinois.  Energy Conservation  Code for Residential Buildings in Illinois.  

Al-Beaini, S.

2010-01-01T23:59:59.000Z

395

Measuring the Costs of U.S. Oil Dependence and the Benefits of Reducing It  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007Naval Reactors'InformationSOLAR MARKET0 HSSWorkMAY oof(IDIQ|

396

New membranes could speed the biofuels conversion process and reduce cost  

ScienceCinema (OSTI)

ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.

Hu, Michael

2014-08-06T23:59:59.000Z

397

New membranes could speed the biofuels conversion process and reduce cost  

SciTech Connect (OSTI)

ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.

Hu, Michael

2014-07-23T23:59:59.000Z

398

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

SciTech Connect (OSTI)

The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions. Our findings indicate that steady cost reductions were interrupted between 2004 and 2010, but falling turbine prices and improved turbine performance are expected to drive a historically low LCOE for current installations. In addition, the majority of studies indicate continued cost reductions on the order of 20%-30% through 2030. Moreover, useful cost projections are likely to benefit from stronger consideration of the interactions between capital cost and performance as well as trends in the quality of the wind resource where projects are located, transmission, grid integration, and other cost variables.

NREL,; Wiser, Ryan; Lantz, Eric; Hand, Maureen

2012-03-26T23:59:59.000Z

399

Lazy Means Smart: Reducing Repair Bandwidth Costs in Erasure-coded Distributed Storage  

E-Print Network [OSTI]

- ditional bandwidth savings. 1. INTRODUCTION Erasure coding schemes, e.g. Reed-Solomon (RS) codes on the example of Reed-Solomon codes, and then explain the repair bandwidth problem. In an RS(n,k) stor- age scheme. 4. EVALUATION METHODOLOGY Evaluating the efficacy of lazy recovery in reducing repair bandwidth

Alvisi, Lorenzo

400

Abstract --Photonic integration significantly reduces power consumption, cost, and size while it  

E-Print Network [OSTI]

for cooling: instead of many thermoelectric (TE) coolers used in many packaged chips, a single TE cooler can the network operators to equip itself with a large cooling system, and spend ~$1.5 million per year, just (thousands!) discrete modules. 1. Reduced optical power losses: the optical signal stays on-chip all the time

Kolner, Brian H.

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,FermiJoshuaAugust 2006 OfficeOil and7-11.docJuly 25, 2012Principalfrom

402

Low-cost methods for reducing heating consumption in FSILGs at MIT  

E-Print Network [OSTI]

Rising energy prices and increasing price volatility present a problem for many fraternities, sororities, and independent living groups (FSILGs) at MIT. The buildings they occupy are typically quite old, with little ...

Stoddard, Steven J

2006-01-01T23:59:59.000Z

403

Method for reducing energy losses in laser crystals  

DOE Patents [OSTI]

A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light. 12 figs.

Atherton, L.J.; DeYoreo, J.J.; Roberts, D.H.

1992-03-24T23:59:59.000Z

404

Cost-efficiency analysis in support of the energy conservation standards for refrigerator/freezers  

SciTech Connect (OSTI)

The National Appliance Energy Conservation At (NAECA) of 1987 requires the Department of Energy (DOE) to consider new or amended energy-efficiency standards for refrigerators and freezers along with several other appliances. This paper describes the cost-efficiency analysis of design options carried out in support of the proposed 1998 standards for refrigerator/freezers. These proposed standards are unique in that they have been reached by a consensus of various interested parties including the trade association of refrigerator and freezer manufacturers, environmental groups, state energy offices, and utility companies. In large part, these consensus standards are based on the analysis described in this paper. The analysis shows that, for example, for a 515-liter (18.2-ft{sup 3}) top-mount automatic-defrost refrigerator-freezer, the annual energy consumption can be reduced from 700 kWh/yr (2.52 GJ/yr) to 484 kWh/yr (1.74 GJ/yr) (30.9%) by the use of more efficient fan motors and compressors, improved gaskets, and insulation that is {1/2}-inch (12.7 mm) thicker. The energy use can be further reduced to 422 kWh/yr (1.52 GJ/yr) (39.8%) by employing improved heat exchangers, switching to adaptive defrost, and employing vacuum panel insulation instead of thicker walls and doors.

Hakim, S.H.; Turiel, I. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

1996-12-31T23:59:59.000Z

405

Wind Turbine Control Design to Reduce Capital Costs: 7 January 2009 - 31 August 2009  

SciTech Connect (OSTI)

This report first discusses and identifies which wind turbine components can benefit from advanced control algorithms and also presents results from a preliminary loads case analysis using a baseline controller. Next, it describes the design, implementation, and simulation-based testing of an advanced controller to reduce loads on those components. The case-by-case loads analysis and advanced controller design will help guide future control research.

Darrow, P. J.

2010-01-01T23:59:59.000Z

406

Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The team’s design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

None

2011-02-01T23:59:59.000Z

407

Solar Projects to Reduce Non-Hardware Balance of System Costs | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 SolarPV Incentive ProgramsSolarSBof

408

Utilization of UV or EB Curing Technology to Significantly Reduce Costs and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2Contract (UESC) is notthe CaseVOCs in the

409

Reduced density matrix hybrid approach: Application to electronic energy transfer  

SciTech Connect (OSTI)

Electronic energy transfer in the condensed phase, such as that occurring in photosynthetic complexes, frequently occurs in regimes where the energy scales of the system and environment are similar. This situation provides a challenge to theoretical investigation since most approaches are accurate only when a certain energetic parameter is small compared to others in the problem. Here we show that in these difficult regimes, the Ehrenfest approach provides a good starting point for a dynamical description of the energy transfer process due to its ability to accurately treat coupling to slow environmental modes. To further improve on the accuracy of the Ehrenfest approach, we use our reduced density matrix hybrid framework to treat the faster environmental modes quantum mechanically, at the level of a perturbative master equation. This combined approach is shown to provide an efficient and quantitative description of electronic energy transfer in a model dimer and the Fenna-Matthews-Olson complex and is used to investigate the effect of environmental preparation on the resulting dynamics.

Berkelbach, Timothy C.; Reichman, David R. [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Markland, Thomas E. [Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305 (United States)

2012-02-28T23:59:59.000Z

410

The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs  

SciTech Connect (OSTI)

End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new construction, commercial/industrial custom rebate programs). In this report, the focus is on gross energy savings and the costs borne by the program administrator—including administration, payments to implementation contractors, marketing, incentives to program participants (end users) and both midstream and upstream trade allies, and evaluation costs. We collected data on net savings and costs incurred by program participants. However, there were insufficient data on participant cost contributions, and uncertainty and variability in the ways in which net savings were reported and defined across states (and program administrators).

Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

2014-03-19T23:59:59.000Z

411

Using Pinch Technology to Explore Trade-Offs Between Energy Cost, Capital Cost, Process Modifications, and Utility Selection  

E-Print Network [OSTI]

USING PINCH TECHNOLOGY TO EXPLORE TRADE-OFFS BETWEEN ENERGY COST, CAPITAL COST, PROCESS MODIFICATIONS, AND UTILITY SELECTION A.S. McMullan, Consultant and H.D. Spriggs, President Linnhoff March, Inc., Leesburg, Virginia ABSTRACT Process... (3), predict payback targets in retrofit situations (4), and design flexible heat exchanger networks (5). The most recent developments enable the process designer to explore the interactions and trade-offs between design variables, prior...

McMullan, A. S.

412

Energy Department Announces up to $4 Million to Advance Low-Cost...  

Broader source: Energy.gov (indexed) [DOE]

to Advance Low-Cost Hydrogen Production from Renewable and Low Carbon Sources Energy Department Announces up to 4 Million to Advance Low-Cost Hydrogen Production from Renewable...

413

Energy Price Indices and Discount Factors for Life-Cycle Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2012 Report provides tables of present-value factors for use in the life-cycle cost analysis of capital...

414

Reducing communication costs in the conjugate gradient algorithm on distributed memory multiprocessors  

SciTech Connect (OSTI)

The standard formulation of the conjugate gradient algorithm involves two inner product computations. The results of these two inner products are needed to update the search direction and the computed solution. In a distributed memory parallel environment, the computation and subsequent distribution of these two values requires two separate communication and synchronization phases. In this paper, we present a mathematically equivalent rearrangement of the standard algorithm that reduces the number of communication phases. We give a second derivation of the modified conjugate gradient algorithm in terms of the natural relationship with the underlying Lanczos process. We also present empirical evidence of the stability of this modified algorithm.

D`Azevedo, E.F.; Romine, C.H.

1992-09-01T23:59:59.000Z

415

Integrated Chiller System Reduce Building Operation and Maintenance Costs in Cold Climates  

E-Print Network [OSTI]

Although water-cooled chillers are more energy efficient than air-cooled chillers, a majority of chilled water systems use air-cooled chillers. In cold weather climates, air-cooled chillers are capable of functioning in low ambient temperatures...

Sheets, N.; Liu, M.

2003-01-01T23:59:59.000Z

416

SciTech Connect: Reducing Energy Use in Existing Homes by 30...  

Office of Scientific and Technical Information (OSTI)

Reducing Energy Use in Existing Homes by 30%: Learning From Home Performance with ENERGY STAR Citation Details In-Document Search Title: Reducing Energy Use in Existing Homes by...

417

Energy Policy The university is committed to reducing its consumption of energy and promoting low carbon, energy  

E-Print Network [OSTI]

Energy Policy June 2009 The university is committed to reducing its consumption of energy and promoting low carbon, energy saving and energy efficiency initiatives as part of its Sustainable Development programme. Tackling climate change is one of our highest priorities and this reflects UK policy. Our Energy

Haase, Markus

418

Wind Turbine Towers Establish New Height Standards and Reduce...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Case study that...

419

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network [OSTI]

compressor); total cost of materials for the water pump, the hydrogencost); the initial temperature and pressure of hydrogen; the compressorcompressor cost per unit of output ($/hp/million standard ft3 [SCF] of hydrogen/

Delucchi, Mark

2005-01-01T23:59:59.000Z

420

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

Monitoring of Direct Energy Consumption in Long-Term2007. “Constraining Energy Consumption of China’s LargestProgram: Reducing Energy Consumption of the 1000 Largest

Price, Lynn

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Steam turbine maintenance and repair technology: Reducing planned-outage costs  

SciTech Connect (OSTI)

The North American Electric Reliability Council (NAERC) reported that the average loss of equivalent availability per outage for a major fossil turbine overhaul is 323,000 MW-HR. The Electric Power Research Institute (EPRI) Generation and Storage Division, is in the first phase of a major research project to reduce the duration and/or frequency of steam turbine maintenance outages. This project consists of an assessment of the current state-of-the-art turbine maintenance and repair techniques and technologies. It is based on a review of current turbine maintenance practices of the US, European, Japanese, and Australian utility industries. Emphasized are maintenance and repair activities that have the most significant impact on outage duration or frequency. Twenty-six key turbine maintenance activities and the current best techniques were identified for use by utility maintenance personnel. Overall outage durations could be reduced if the duration of these activities were shortened or if they were performed more effectively. Recommended projects for development of advanced steam turbine maintenance technology were identified. 29 refs., 46 figs., 9 tabs.

Grace, H.P.; McClintock, M. (General Physics Corp., Columbia, MD (USA)); Lamping, G. (Southwest Research Inst., San Antonio, TX (USA))

1990-04-01T23:59:59.000Z

422

Abbreviated epitaxial growth mode (AGM) method for reducing cost and improving quality of LEDs and lasers  

DOE Patents [OSTI]

The use of an abbreviated GaN growth mode on nano-patterned AGOG sapphire substrates, which utilizes a process of using 15 nm low temperature GaN buffer and bypassing etch-back and recovery processes during epitaxy, enables the growth of high-quality GaN template on nano-patterned AGOG sapphire. The GaN template grown on nano-patterned AGOG sapphire by employing abbreviated growth mode has two orders of magnitude lower threading dislocation density than that of conventional GaN template grown on planar sapphire. The use of abbreviated growth mode also leads to significant reduction in cost of the epitaxy. The growths and characteristics of InGaN quantum wells (QWs) light emitting diodes (LEDs) on both templates were compared. The InGaN QWs LEDs grown on the nano-patterned AGOG sapphire demonstrated at least a 24% enhancement of output power enhancement over that of LEDs grown on conventional GaN templates.

Tansu, Nelson; Chan, Helen M; Vinci, Richard P; Ee, Yik-Khoon; Biser, Jeffrey

2013-09-24T23:59:59.000Z

423

Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project  

SciTech Connect (OSTI)

The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL reduce its overall utility costs by decreasing the amount of fuel used to generate steam. Reduced fuel consumption also decreased air emissions. These improvements also helped lower the risk of burn injuries to workers and helped prevent shrapnel injuries resulting from missiles produced by pressurized component failures. In most cases, the economic benefit and cost effectiveness of the SPRS Safety and Energy Efficiency Improvement Project is reflected in payback periods of 1 year or less.

Lower, Mark D [ORNL; Christopher, Timothy W [ORNL; Oland, C Barry [ORNL

2011-06-01T23:59:59.000Z

424

Energy Efficiency Improvements and Cost Saving Opportunities in the Corn Wet Milling Industry  

E-Print Network [OSTI]

Corn wet milling is the most energy intensive industry in the food and kindred products group (SIC 20). Plants typically spend approximately $15 to 25 million per year on energy, one of its largest operating costs, making energy efficiency...

Galitsky, C.; Worrell, E.

425

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

near zero” energy definitions exist.    EnEV Compliant to differing definitions of zero  energy, methods for cost to the “net zero” definitions, a range of “low energy” or “

Al-Beaini, S.

2010-01-01T23:59:59.000Z

426

Energy and Energy Cost Savings Analysis of the IECC for Commercial Buildings  

SciTech Connect (OSTI)

The purpose of this analysis is to assess the relative energy and energy cost performance of commercial buildings designed to meet the requirements found in the commercial energy efficiency provisions of the International Energy Conservation Code (IECC). Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. As many states have historically adopted the IECC for both residential and commercial buildings, PNNL has evaluated the impacts of the commercial provisions of the 2006, 2009, and 2012 editions of the IECC. PNNL also compared energy performance with corresponding editions of ANSI/ASHRAE/IES Standard 90.1 to help states and local jurisdictions make informed decisions regarding model code adoption.

Zhang, Jian; Athalye, Rahul A.; Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Goel, Supriya; Mendon, Vrushali V.; Liu, Bing

2013-08-30T23:59:59.000Z

427

An Evaluation of the Sustainability and Scalability of Business Models that Support Low-cost Assisted Home Energy Assessments Using A Cost Benefit Analysis.  

E-Print Network [OSTI]

??Energy costs and forecasted climate change have recently prompted organizations withinthe residential building sector and homeowners alike to increase their attention towards reducingresidential energy consumption.… (more)

Hinsey, Jason

2012-01-01T23:59:59.000Z

428

Element One Reduces Cost of Hydrogen Leak Detection Systems | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatementNOTElectricity TransmissionofAprilStandard

429

Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023Department ofSmartMethodEnergy 2SCR

430

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 |and Analysis |3 WindEnergy

431

Solid-state neutron detector offers high sensitivity with reduced cost -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment2) 1/8Advanced

432

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry  

SciTech Connect (OSTI)

The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-07-01T23:59:59.000Z

433

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry  

SciTech Connect (OSTI)

The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-07-01T23:59:59.000Z

434

Development of a fixed abrasive slicing technique (FAST) for reducing the cost of photovoltaic wafers. Final subcontract report, 9 January 1991--14 April 1991  

SciTech Connect (OSTI)

This report examines a wafer slicing technique developed by Crystal Systems, Inc. that reduces the cost of photovoltaic wafers. This fixed, abrasive slicing technique (FAST) uses a multiwire bladepack and a diamond-plated wirepack; water is the coolant. FAST is in the prototype production stage and reduces expendable material costs while retaining the advantages of a multiwire slurry technique. The cost analysis revealed that costs can be decreased by making more cuts per bladepack and slicing more wafers per linear inch. Researchers studied the degradation of bladepacks and increased wirepack life. 21 refs.

Schmid, F. [Crystal Systems, Inc., Salem, MA (United States)

1991-12-01T23:59:59.000Z

435

Mass independent kinetic energy reducing inlet system for vacuum environment  

DOE Patents [OSTI]

A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

Reilly, Peter T.A.

2014-05-13T23:59:59.000Z

436

Mass independent kinetic energy reducing inlet system for vacuum environment  

DOE Patents [OSTI]

A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

Reilly, Peter T. A. [Knoxville, TN

2010-12-14T23:59:59.000Z

437

Mass independent kinetic energy reducing inlet system for vacuum environment  

DOE Patents [OSTI]

A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

Reilly, Peter T.A.

2013-12-03T23:59:59.000Z

438

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

Sustainable Energy (4) Danish Energy Agency (DEA). (1999).al. [3] and the Danish Energy Agency (DEA) [4], illustrate

Wiser, Ryan

2013-01-01T23:59:59.000Z

439

On the Cost and Quality Tradeoff in Constructing Minimum-Energy Broadcast Trees in Wireless Ad  

E-Print Network [OSTI]

On the Cost and Quality Tradeoff in Constructing Minimum-Energy Broadcast Trees in Wireless Ad Hoc], each having a different complexity and produc- ing a broadcast tree with a different energy cost. Thus to the quality of the trees constructed. II. BUILDING BLOCKS The three ingredients that constitute any minimum-energy

Hu, Y. Charlie

440

Net Energy Costs of Skylights Peter Kleinhenz, Rizwan Syed, and Kelly Kissock,  

E-Print Network [OSTI]

Net Energy Costs of Skylights Peter Kleinhenz, Rizwan Syed, and Kelly Kissock, University of Dayton, it is also useful to consider the net energy costs associated with skylights. This paper describes a methodology for calculating net energy savings from skylights as a function of skylight area, the required

Kissock, Kelly

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

LEARNING-BY-DOING AND THE COSTS OF A BACKSTOP FOR ENERGY TRANSITION AND SUSTAINABILITY?  

E-Print Network [OSTI]

LEARNING-BY-DOING AND THE COSTS OF A BACKSTOP FOR ENERGY TRANSITION AND SUSTAINABILITY? Pierre-by-doing and the Costs of a Backstop for Energy Transition and Sustainability Pierre-Andr´e Jouvet Ingmar Schumacher.2 Energy transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Impact

Boyer, Edmond

442

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

with the National Renewable Energy Laboratory and underLehmann, H. (2008). Renewable Energy Outlook 2030 – EnergyWatch Group Global Renewable Energy Scenarios. Berlin,

Wiser, Ryan

2013-01-01T23:59:59.000Z

443

A Novel, Low-Cost, Reduced-Sensor Approach for Providing Smart Renote Monitoring and Diagnostics for Packaged Air Conditioners and Heat Pumps  

SciTech Connect (OSTI)

This report describes conceptually an approach to providing automated remote performance and conditioning monitoring and fault detection for air conditioners and heat pumps that shows great promise to reduce the capital and installation costs of such systems from over $1000 per unit to $200 to $400 per unit. The approach relies on non-intrusive electric load monitoring (NIELM) to enable separation of the power use signals of compressors and fans in the air conditioner or heat pump. Then combining information on the power uses and one or two air temperature measurements, changes in energy efficiency and occurrence of major faults would be detected. By decreasing the number of sensors used from between ten and twenty in current diagnostic monitoring systems to three for the envisaged system, the capital cost of the monitoring system hardware and the cost of labor for installation would be decreased significantly. After describing the problem being addressed and the concept for performance monitoring and fault detection in more detail, the report identifies specific conditions and faults that the proposed method would detect, discusses specific needs for successful use of the NIELM approach, and identifies the major elements in the path from concept to a commercialized monitoring and diagnostic system.

Brambley, Michael R.

2009-09-01T23:59:59.000Z

444

Reducing Energy Use in Existing Homes by 30%: Learning From Home Performance with ENERGY STAR  

SciTech Connect (OSTI)

The improvement of existing homes in the United States can have a much greater impact on overall residential energy use than the construction of highly efficient new homes. There are over 130 million existing housing units in the U.S., while annually new construction represents less than two percent of the total supply (U.S. Census Bureau, 2013). Therefore, the existing housing stock presents a clear opportunity and responsibility for Building America (BA) to guide the remodeling and retrofit market toward higher performance existing homes. There are active programs designed to improve the energy performance of existing homes. Home Performance with ENERGY STAR (HPwES) is a market-rate program among them. BARA's research in this project verified that the New Jersey HPwES program is achieving savings in existing homes that meet or exceed BA's goal of 30%. Among the 17 HPwES projects with utility data included in this report, 15 have actual energy savings ranging from 24% to 46%. Further, two of the homes achieved that level of energy savings without the costly replacement of heating and cooling equipment, which indicates that less costly envelope packages could be offered to consumers unable to invest in more costly mechanical packages, potentially creating broader market impact.

Liaukus, C.

2014-12-01T23:59:59.000Z

445

Impacts of increased outdoor air flow rates on annual HVAC energy costs in office environment.  

E-Print Network [OSTI]

??The use of different ventilation systems has an important impact on the energy cost of office buildings. This paper examines the relationship between heating and… (more)

Destrez, Adrien

2011-01-01T23:59:59.000Z

446

Quantifying the system balancing cost when wind energy is incorporated into electricity generation system.  

E-Print Network [OSTI]

??Incorporation of wind energy into the electricity generation system requires a detailed analysis of wind speed in order to minimize system balancing cost and avoid… (more)

Issaeva, Natalia

2009-01-01T23:59:59.000Z

447

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

technologies (such as solar panels).   Combined with energy wind turbine height,  solar panel visibility, etc. ).   In consumption with solar panels, the cost may determine 

Al-Beaini, S.

2010-01-01T23:59:59.000Z

448

Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios Hydrogen Pathways: Cost,...

449

Money for Research, Not Energy Bills: Finding Energy and Cost Savings in  

E-Print Network [OSTI]

an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly energy consumption. Numerous efforts are underway to redesign supercomputers to work more efficiently

450

SEE Action Webinar - Energy Efficiency Measure Cost Studies ...  

Broader source: Energy.gov (indexed) [DOE]

and program planning applications of measure cost data, explain the limitations of ad hoc sources of such data, and provide examples of successful development of ex ante...

451

IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2  

SciTech Connect (OSTI)

Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

Lantz, E.; Wiser, R.; Hand, M.

2012-05-01T23:59:59.000Z

452

Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility.  

E-Print Network [OSTI]

Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer.Controllingthecollectionandminimizingthetrappingofchargecarriersattheseboundariesiscrucialtoefficiency. Materials interface engineering for solution-processed photovoltaics Michael Graetzel1 , René A. J. Janssen2

453

Using occupancy to reduce energy consumption of buildings  

E-Print Network [OSTI]

inaccuracies. However, we do waste energy when a vacant roombuildings, thus indicating energy waste. In order to makein each room. The energy waste information gives feedback to

Balaji, Bharathan

2011-01-01T23:59:59.000Z

454

Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet  

Broader source: Energy.gov [DOE]

This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Mississippi.

455

Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012  

SciTech Connect (OSTI)

The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawai�¢����i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

2012-06-30T23:59:59.000Z

456

Teamwork Plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility  

E-Print Network [OSTI]

Suncor Energy Inc. developed a long term plan to expand production from its oil sands operation north of Fort McMurray, Alberta up to 500,000 to 550,000 barrels/day in 2010-2012, while reducing the per barrel energy usage, emissions, and long term...

Booker, G.; Robinson, J.

457

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

2009). Technology Roadmap – Wind Energy. Paris, France:EWEA. (2011). Pure Power – Wind Energy Targets for 2020 andBelgium: European Wind Energy Association (19) Electric

Wiser, Ryan

2013-01-01T23:59:59.000Z

458

The Cost of Enforcing Building Energy Codes: Phase 1  

E-Print Network [OSTI]

the Community Energy Challenge in Illinois. Washington, DC:Improving Energy Code Compliance in Illinois's Buildings.Improving Energy Code Compliance in Illinois's Buildings.

Williams, Alison

2013-01-01T23:59:59.000Z

459

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

08-GO28308 with the National Renewable Energy Laboratory andS. ; Lehmann, H. (2008). Renewable Energy Outlook 2030 –Watch Group Global Renewable Energy Scenarios. Berlin,

Wiser, Ryan

2013-01-01T23:59:59.000Z

460

Annual Federal Government Energy Use and Costs by Agency, 1975...  

Open Energy Info (EERE)

energy use, and is further broken down by energy type, electricity, natural gas, petroleum types, coal, steam, and others. Data and Resources Annual Federal Government Energy...

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Question of the Week: How Do You Reduce the Energy Used by Computers...  

Broader source: Energy.gov (indexed) [DOE]

Question of the Week: How Do You Reduce the Energy Used by Computers and Office Electronics? Question of the Week: How Do You Reduce the Energy Used by Computers and Office...

462

Case Studies of Energy Information Systems and Related Technology: Operational Practices, Costs, and Benefits  

E-Print Network [OSTI]

Energy Information Systems (EIS), which can monitor and analyze building energy consumption and related data throughout the Internet, have been increasing in use over the last decade. Though EIS developers describe the capabilities, costs...

Motegi, N.; Piette, M. A.; Kinney, S.; Dewey, J.

2003-01-01T23:59:59.000Z

463

Facilitating Sound, Cost-Effective Federal Energy Management (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet is an overview of the U.S. Department of Energy's Federal Energy Management Program (FEMP).

Not Available

2012-12-01T23:59:59.000Z

464

Capital, labor, and energy cost prediction in timber harvesting: a microcomputer solution  

E-Print Network [OSTI]

Organization Capital. 17 17 Labor 22 Energy. III. CAPITAL COST CALCULATION. 22 25 Depreciation. Taxes, Insurance, and Interest. 25 30 IV. LABOR COST CALCULATION. 36 Nages and Salaries. Fringe Benefits. 36 38 Chapter Page V. ENERGY COST... Summary for Champion International Corporation's Harvesting Unit g2 60 15 List of Equipment in Champion's Harvesting Unit N2 61 Table page 16 Breakdown of Workers in Champion's Harvesting Unit 42 and Their Respective Salary or Wage. . 62 17 Monthly...

Kusmertz, Timothy Jon

1983-01-01T23:59:59.000Z

465

Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort (Brochure)  

SciTech Connect (OSTI)

Brochure on Vehicle Testing and Integration Facility, featuring the Vehicle Modification Facility, Vehicle Test Pad and ReCharge Integrated Demonstration System. Plug-in electric vehicles (PEVs) offer the opportunity to shift transportation energy demands from petroleum to electricity, but broad adoption will require integration with other systems. While automotive experts work to reduce the cost of PEVs, fossil fueled cars and trucks continue to burn hundreds of billions of gallons of petroleum each year - not only to get from point A to point B, but also to keep passengers comfortable with air conditioning and heat. At the National Renewable Energy Laboratory (NREL), three installations form a research laboratory known as the Vehicle Testing and Integration Facility (VTIF). At the VTIF, engineers are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle-grid integration and minimizing fuel consumption related to vehicle climate control. Part of NREL's Center for Transportation Technologies and Systems (CTTS), the VTIF is dedicated to renewable and energy efficient solutions. This facility showcases technology and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for electric vehicle (EV) components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies and industry partners. Research conducted at the VTIF examines the interaction of building energy systems, utility grids, renewable energy sources and PEVs, integrating energy management solutions, and maximizing potential greenhouse gas (GHG) reduction, while smoothing the transition and reducing costs for EV owners. NREL's collaboration with automakers, charging station manufacturers, utilities and fleet operators to assess technologies using VTIF resources is designed to enable PEV communication with the smart grid and create opportunities for vehicles to play an active role in building and grid management. Ultimately, this creates value for the vehicle owner and will help renewables be deployed faster and more economically, making the U.S. transportation sector more flexible and sustainable.

Not Available

2012-01-01T23:59:59.000Z

466

Hybrid GA-SA Algorithms for Reducing Energy Consumption in Embedded Systems  

E-Print Network [OSTI]

Hybrid GA-SA Algorithms for Reducing Energy Consumption in Embedded Systems Maha IDRISSI AOUAD Vandoeuvre-L`es-Nancy, France. Email: Rene.Schott@loria.fr Abstract--Reducing energy consumption in embedded algorithms based on Simulated An- nealing (SA) and Genetic Algorithm (GA) for reducing energy consumption

Schott, René - Institut de Mathématiques �lie Cartan, Université Henri Poincaré

467

Energy-Aware Scheduling of MapReduce Jobs for Big Data Applications  

E-Print Network [OSTI]

IEEEProof Energy-Aware Scheduling of MapReduce Jobs for Big Data Applications Lena Mashayekhy the energy consumption when executing each MapReduce job is a critical concern for data centers of a single MapReduce job as an Integer Program. We then propose two heuristic algorithms, called energy

Shi, Weisong

468

Feasibility of Achieving Net-Zero-Energy Net-Zero-Cost  

E-Print Network [OSTI]

1 Feasibility of Achieving Net- Zero-Energy Net-Zero-Cost Homes I.S. Walker, Al-Beaini, SSimjanovic,JohnStanley,BretStrogen,IainWalker FeasibilityofAchieving ZeroNetEnergy,Zero NetCostHomes #12;4 ACKNOWLEDGEMENTS

469

Capacity and Energy Cost of Information in Biological and Silicon Photoreceptors  

E-Print Network [OSTI]

Capacity and Energy Cost of Information in Biological and Silicon Photoreceptors PAMELA ABSHIRE of infor- mation capacity (in bits per second) versus energy cost of infor- mation (in joules per bit levels of abstraction. At the functional level, we ex- amine the operational and task specification

Maryland at College Park, University of

470

Literature Review of Data on the Incremental Costs to Design and Build Low-Energy Buildings  

SciTech Connect (OSTI)

This document summarizes findings from a literature review into the incremental costs associated with low-energy buildings. The goal of this work is to help establish as firm an analytical foundation as possible for the Building Technology Program's cost-effective net-zero energy goal in the year 2025.

Hunt, W. D.

2008-05-14T23:59:59.000Z

471

Petroleum Refinery Catalytic Reforming -- Cutting High Energy Costs  

E-Print Network [OSTI]

. It is essential that the operation and maintenance of these furnaces be optimized to minimize production costs. This paper describes the performance testing and evaluation of a set of ten refinery furnaces used to thermally drive several reforming reactors...

Viar, W. L.

1979-01-01T23:59:59.000Z

472

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network [OSTI]

stack); fuel-cell salvage value (fraction of initial coststack); total cost of vehicle electronics needed specifically for the fuel-cellcosts, expressed as a wage multiplier); specific weight of the fuel-cell stack (

Delucchi, Mark

2005-01-01T23:59:59.000Z

473

The Cost of Superconducting Magnets as a Function of Stored Energy and Design Magnetic Induction Times the Field Volume  

E-Print Network [OSTI]

the Cost of Large Superconducting Thin Solenoid Magnets,"The Economics of Large Superconducting Toroidal Magnets forEnergy (MJ) Fig. 2. Superconducting magnet costs (M$) versus

Green, M.A.

2008-01-01T23:59:59.000Z

474

Analysis of Potential Benefits and Costs of Adopting a Commercial Building Energy Standard in South Dakota  

SciTech Connect (OSTI)

The state of South Dakota is considering adopting a commercial building energy standard. This report evaluates the potential costs and benefits to South Dakota residents from requiring compliance with the most recent edition of the ANSI/ASHRAE/IESNA 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings. These standards were developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The quantitative benefits and costs of adopting a commercial building energy code are modeled by comparing the characteristics of assumed current building practices with the most recent edition of the ASHRAE Standard, 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in this analysis. Energy and economic impacts are estimated using results from a detailed building simulation tool (Building Loads Analysis and System Thermodynamics [BLAST] model) combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits.

Belzer, David B.; Cort, Katherine A.; Winiarski, David W.; Richman, Eric E.

2005-03-04T23:59:59.000Z

475

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative  

SciTech Connect (OSTI)

This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

Busche, S.; Hockett, S.

2010-06-01T23:59:59.000Z

476

Using architecture information and real-time resource state to reduce power consumption and communication costs in parallel applications.  

SciTech Connect (OSTI)

As computer systems grow in both size and complexity, the need for applications and run-time systems to adjust to their dynamic environment also grows. The goal of the RAAMP LDRD was to combine static architecture information and real-time system state with algorithms to conserve power, reduce communication costs, and avoid network contention. We devel- oped new data collection and aggregation tools to extract static hardware information (e.g., node/core hierarchy, network routing) as well as real-time performance data (e.g., CPU uti- lization, power consumption, memory bandwidth saturation, percentage of used bandwidth, number of network stalls). We created application interfaces that allowed this data to be used easily by algorithms. Finally, we demonstrated the benefit of integrating system and application information for two use cases. The first used real-time power consumption and memory bandwidth saturation data to throttle concurrency to save power without increasing application execution time. The second used static or real-time network traffic information to reduce or avoid network congestion by remapping MPI tasks to allocated processors. Results from our work are summarized in this report; more details are available in our publications [2, 6, 14, 16, 22, 29, 38, 44, 51, 54].

Brandt, James M.; Devine, Karen D. [Sandia National Laboratories, Albuquerque, NM; Gentile, Ann C. [Sandia National Laboratories, Albuquerque, NM; Leung, Vitus J. [Sandia National Laboratories, Albuquerque, NM; Olivier, Stephen Lecler [Sandia National Laboratories, Albuquerque, NM; Pedretti, Kevin [Sandia National Laboratories, Albuquerque, NM; Rajamanickam, Sivasankaran [Sandia National Laboratories, Albuquerque, NM; Bunde, David P. [Sandia National Laboratories, Albuquerque, NM; Deveci, Mehmet; Catalyurek, Umit V.

2014-09-01T23:59:59.000Z

477

Using occupancy to reduce energy consumption of buildings  

E-Print Network [OSTI]

Meter allows us to study the energy consumption patterns onThis allows us to study the energy consumption of individualgives us a good framework to study the energy consumption

Balaji, Bharathan

2011-01-01T23:59:59.000Z

478

Revisiting Modes of energy generation in sulfate reducing bacteria  

E-Print Network [OSTI]

ro ge Py Py r rm H Energy Production and Conversion: NumberGenes Up- regulated Energy Production and Conversion: NumberFo rm Py Fo yd ro Energy Production and ate uv La ate La

Joachimiak, Marcin

2010-01-01T23:59:59.000Z

479

Energy Management and Cost Analysis in Residential Houses using Batteries  

E-Print Network [OSTI]

prices when the demand is expected to be low and higher prices when the demand is higher. Energy arbitrage leverages these different energy prices by buying the extra energy when the prices are low, storing it in an energy storage device and then using the stored energy when the price is higher. Several

Simunic, Tajana

480

Using occupancy to reduce energy consumption of buildings  

E-Print Network [OSTI]

4.2 Smart Energy Meter . . . . . . 4.2.1 Hardwareconsumption provided the Smart Meter installed can send datahave developed the Smart Energy Meter to monitor and actuate

Balaji, Bharathan

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reducing energy costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

2008-01-01T23:59:59.000Z

482

The Cost of Enforcing Building Energy Codes: Phase 1  

E-Print Network [OSTI]

Summer Study on Energy Efficiency in Buildings (pp. 5-387 -Summer Study on Energy Efficiency in Buildings. pp. 8-249Summer Study on Energy Efficiency in Buildings. pp. 4-275 -

Williams, Alison

2013-01-01T23:59:59.000Z

483

The Cost of Enforcing Building Energy Codes: Phase 1  

E-Print Network [OSTI]

Best Practices: Sharing Local and State Successes in Energy EfficiencyBest Practices from the Southwest. Boulder, CO : Southwest Energy EfficiencyBest Practices from the Southwest. Boulder, CO: Southwest Energy Efficiency

Williams, Alison

2013-01-01T23:59:59.000Z

484

Hybrid Solar Lighting Provides Energy Savings and Reduces Waste Heat  

SciTech Connect (OSTI)

ABSTRACT Artificial lighting is the largest component of electricity use in commercial U.S. buildings. Hybrid solar lighting (HSL) provides an exciting new means of reducing energy consumption while also delivering significant ancillary benefits associated with natural lighting in buildings. As more than half of all federal facilities are in the Sunbelt region (defined as having an average direct solar radiation of greater than 4 kWh/m2/day) and as more than half of all square footage available in federal buildings is also in the Sunbelt, HSL is an excellent technology fit for federal facilities. The HSL technology uses a rooftop, 4-ft-wide dish and secondary mirror that track the sun throughout the day (Fig. 1). The collector system focuses the sunlight onto 127 optical fibers. The fibers serve as flexible light pipes and are connected to hybrid light fixtures that have special diffusion rods that spread out the light in all directions. One collector powers about eight hybrid light fixtures-which can illuminate about 1,000 square feet. The system tracks at 0.1 accuracy, required by the two-mirror geometry to keep the focused beam on the fiber bundle. When sunlight is plentiful, the optical fibers in the luminaires provide all or most of the light needed in an area. During times of little or no sunlight, a sensor controls the intensity of the artificial lamps to maintain a desired illumination level. Unlike conventional electric lamps, the natural light produces little to no waste heat and is cool to the touch. This is because the system's solar collector removes the infrared light-the part of the spectrum that generates a lot of the heat in conventional bulbs-from the sunlight.

Lapsa, Melissa Voss [ORNL; Maxey, L Curt [ORNL; Earl, Dennis Duncan [ORNL; Beshears, David L [ORNL; Ward, Christina D [ORNL; Parks, James Edgar [ORNL

2006-01-01T23:59:59.000Z

485

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

WIND ENERGY by as much as 270% when comparing today’s turbinesTurbines in Denmark. Presentation to IEA Wind Task 26 (12) European Wind Energy

Wiser, Ryan

2013-01-01T23:59:59.000Z

486

Identifying Cost-Effective Residential Energy Efficiency Opportunities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative This analysis is an update to the Energy Efficiency Potential report completed by KEMA for the...

487

The Cost of Enforcing Building Energy Codes: Phase 1  

E-Print Network [OSTI]

B. (2005). Residential Energy Code Evaluatinons: Review andProvidence, RI: Building Codes Assistance Project. ZING2007 Commercial Energy Code Compliance Study. Calgary, AB:

Williams, Alison

2013-01-01T23:59:59.000Z

488

Energy Department Report Calculates Emissions and Costs of Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal...

489

Conservation Cores: Reducing the Energy of Mature Computations  

E-Print Network [OSTI]

speed at one time. In this regime, specialized, energy-efficient processors can increase parallelism

490

Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California  

E-Print Network [OSTI]

Cost Effectiveness Investment cost Demonstration in salad2015 Cost Effectiveness Investment cost Type of cost Change2015 Cost Effectiveness Investment cost Type of cost Change

Xu, Tengfang

2011-01-01T23:59:59.000Z

491

Energy Efficiency of MapReduceEnergy Efficiency of MapReduce Laura Keys, Yanpei Chen, Randy H. Katz  

E-Print Network [OSTI]

job run on Atom cluster used around 2/3 the energy of the R Cluster! Energy Measurement SetupPerformance Metrics · Total energy · Aggregate power · Power per machine · Job duration time WorkloadsWorkloads Real 6000000 Total Energy (J) Sort Nutch Web Crawl Conclusions · Shorter job duration less energy · From Sort

California at Berkeley, University of

492

Cost and Reliability Improvement for CIGS-Based PV on Flexible Substrate: Annual Technical Report, 24 May 2006 - 25 September 2007  

SciTech Connect (OSTI)

Global Solar Energy has enhanced module reliability, reduced cost and improved performance of its CIGS deposition process, and reduced cost of materials and processes for contacts.

Weideman, S.

2008-08-01T23:59:59.000Z

493

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 19, NO. 1, MARCH 2004 151 Production Cost Analysis of Dispersed Generation  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 19, NO. 1, MARCH 2004 151 Production Cost Analysis the appli- cability and production cost analysis of dispersed generation (DG) resources in a transmission economics, production costing, transmission-constrained interconnected system. I. INTRODUCTION

Gross, George

494

Low-Cost Titanium Powder for Feedstock | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-Cost Production of Hydrogen and ElectricityLow-Cost

495

Lower Cost Carbon Fiber Precursors | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-Cost Production ofModeling AssessmentLower Cost

496

Lower Cost, Higher Performance Carbon Fiber | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-Cost Production ofModeling AssessmentLower CostLower

497

COST-BENEFIT ANALYSIS OF A WASTE TO ENERGY PLANT FOR MONTEVIDEO; AND WASTE TO  

E-Print Network [OSTI]

1 COST-BENEFIT ANALYSIS OF A WASTE TO ENERGY PLANT FOR MONTEVIDEO; AND WASTE TO ENERGY IN SMALL-benefit analysis by the author of a waste to energy (WTE) plant in Montevideo, Uruguay; the second part are that it is the most proven waste- to-energy technology in the world, has demonstrated high plant availability (>90

498

On the Energy Cost of Robustness and Resiliency in IP Networks , A. Caponea,  

E-Print Network [OSTI]

approaches in saving energy. We propose novel optimization models to minimize the energy consumption of IP protocols (like MPLS) allow us to quantitatively analyze the trade-off between energy cost and level Both network operators and device manufacturers agree that the energy consumption of communications

Paris-Sud XI, Université de

499

A Multi-objective Approach to Balance Buildings Construction Cost and Energy Efficiency  

E-Print Network [OSTI]

The continuous rise of energy consumption is a global concern. On the one hand, energy is still mainly coming rate, estimated at around 40% of the total energy used worldwide. Surprisingly, the resulting carbonA Multi-objective Approach to Balance Buildings Construction Cost and Energy Efficiency ´Alvaro

Hamadi, Yousseff

500

New Jersey: Reducing Energy Bills for Camden's Families | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2Energy SecondWells |Energy