National Library of Energy BETA

Sample records for reduces vehicle idling

  1. Alternative Fuels Data Center: Students Reduce Vehicle Idling in San

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Antonio, Texas Students Reduce Vehicle Idling in San Antonio, Texas to someone by E-mail Share Alternative Fuels Data Center: Students Reduce Vehicle Idling in San Antonio, Texas on Facebook Tweet about Alternative Fuels Data Center: Students Reduce Vehicle Idling in San Antonio, Texas on Twitter Bookmark Alternative Fuels Data Center: Students Reduce Vehicle Idling in San Antonio, Texas on Google Bookmark Alternative Fuels Data Center: Students Reduce Vehicle Idling in San Antonio, Texas on

  2. Idling Reduction for Personal Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    - Idling Reduction for Personal Vehicles Idling your vehicle-running your engine when you're not driving it-truly gets you nowhere. Idling reduces your vehicle's fuel economy, costs you money, and creates pollution. Idling for more than 10 seconds uses more fuel and produces more emissions that contribute to smog and climate change than stopping and restarting your engine does. Researchers estimate that idling from heavy-duty and light- duty vehicles combined wastes about 6 billion gallons of

  3. Idling Reduction for Personal Vehicles

    SciTech Connect (OSTI)

    2015-05-07

    Fact sheet on reducing engine idling in personal vehicles. Idling your vehicle--running your engine when you're not driving it--truly gets you nowhere. Idling reduces your vehicle's fuel economy, costs you money, and creates pollution. Idling for more than 10 seconds uses more fuel and produces more emissions that contribute to smog and climate change than stopping and restarting your engine does.

  4. Reducing Vehicle Idling Time at School Helps Kids-and Parents-Breathe

    Energy Savers [EERE]

    Easier | Department of Energy Reducing Vehicle Idling Time at School Helps Kids-and Parents-Breathe Easier Reducing Vehicle Idling Time at School Helps Kids-and Parents-Breathe Easier August 11, 2016 - 12:22pm Addthis Reducing Vehicle Idling Time at School Helps Kids—and Parents—Breathe Easier Kay Kelly Clean Cities Project Leader, National Renewable Energy Laboratory How can I participate? Accept the challenge to improve the quality of the air in your school zone Access training

  5. Vehicle Technologies Office: Idle Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency & Emissions » Vehicle Technologies Office: Idle Reduction Vehicle Technologies Office: Idle Reduction Idle reduction, or limiting the amount of time that vehicles idle unnecessarily, can be a key strategy for increasing fuel efficiency and reducing petroleum use. The Vehicle Technologies Office supports research on idle reduction and provides a variety of technical resources to help fleets and individuals reduce idling. Research and Development As part of its broader efforts

  6. Vehicle Technologies Office: National Idling Reduction Network...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Idling Reduction Network News Archives Vehicle Technologies Office: National Idling Reduction Network News Archives The National Idling Reduction Network brings together ...

  7. Idling Reduction for Emergency and Other Service Vehicles

    SciTech Connect (OSTI)

    2015-05-07

    This is a fact sheet about reducing idling for emergency and service vehicles. Emergency vehicles, such as police cars, ambulances, and fire trucks, along with other service vehicles such as armored cars, are often exempt from laws that limit engine idling. However, these vehicles can save fuel and reduce emissions with technologies that allow them to perform vital services without idling.

  8. Idling Reduction for Emergency and Other Service Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    VEHICLE TECHNOLOGIES OFFICE Idling Reduction for Emergency and Other Service Vehicles Emergency vehicles, such as police cars, ambulances, and fire trucks, along with other service vehicles such as armored cars, are often exempt from laws that limit engine idling. However, these vehicles can save fuel and reduce emissions with technologies that allow them to perform vital services without idling. Police Vehicles Police cruisers spend much of their time parked and running while offcers monitor

  9. Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Strategies Medium-Duty Vehicle Idle Reduction Strategies to someone by E-mail Share Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction Strategies on Facebook Tweet about Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction Strategies on Twitter Bookmark Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction Strategies on Google Bookmark Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction Strategies on Delicious Rank Alternative Fuels Data

  10. Vehicle Technologies Office: National Idling Reduction Network News

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Archives | Department of Energy National Idling Reduction Network News Archives Vehicle Technologies Office: National Idling Reduction Network News Archives The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators); nonprofit organizations; and national research laboratories to identify consistent, workable solutions to heavy-vehicle idling for the

  11. Vehicle Technologies Office: National Idling Reduction Network News |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Idling Reduction Network News Vehicle Technologies Office: National Idling Reduction Network News The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators); nonprofit organizations; and national research laboratories to identify consistent, workable solutions to vehicle idling for the entire United States. Below is the most recent

  12. DOE Awards Grants to Evaluate Technologies that Reduce Truck Idling - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL DOE Awards Grants to Evaluate Technologies that Reduce Truck Idling January 29, 2004 Golden, Colo. - The U.S. Department of Energy's Advanced Vehicle Testing Activity has awarded separate project grants to Caterpillar Inc. and Schneider National Inc. to investigate technologies that reduce truck idling. According to industry experts, truck idling consumes more than 800 million gallons of fuel each year. Reducing the amount of fuel needed to support idling activities, such as

  13. Alternative Fuels Data Center: Delaware Reduces Truck Idling With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electrified Parking Areas Delaware Reduces Truck Idling With Electrified Parking Areas to someone by E-mail Share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Facebook Tweet about Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Twitter Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Google Bookmark Alternative Fuels Data Center: Delaware

  14. Summary of OEM Idling Recommendations from Vehicle Owner's Manuals

    SciTech Connect (OSTI)

    Keel-Blackmon, Kristy; Curran, Scott; Lapsa, Melissa Voss

    2016-01-01

    The project upon which this report is based was conceived in 2012 during discussions between the East Tennessee Clean Fuels Coalition (ETCleanFuels) and Oak Ridge National Laboratory (ORNL) who both noted that a detailed summary of idling recommendations for a wide variety of engines and vehicles were not available in the literature. The two organizations agreed that ETCleanFuels would develop a first-of-its-kind collection of idling recommendations from the owner’s manuals of modern production vehicles. Vehicle engine idling, a subject that has long been debated, is largely shrouded in misinformation. The justifications for idling seem to be many: driver comfort, waiting in lines, and talking on cell phones to name a few. Assuredly, a great number of people idle because of the myths and misinformation surrounding this issue. This report addresses these myths by turning to statements taken directly from the automobile and engine manufacturers themselves.

  15. Case Study – Idling Reduction Technologies for Emergency Service Vehicles

    SciTech Connect (OSTI)

    Laughlin, Michael; Owens, Russell J.

    2016-01-01

    This case study explores the use of idle reduction technologies (IRTs) on emergency service vehicles in police, fire, and ambulance applications. Various commercially available IRT systems and approaches can decrease, or ultimately eliminate, engine idling. Fleets will thus save money on fuel, and will also decrease their criteria pollutant emissions, greenhouse gas emissions, and noise.

  16. Comparing Emissions Benefits from Regulating Heavy Vehicle Idling |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Emissions Benefits from Regulating Heavy Vehicle Idling Comparing Emissions Benefits from Regulating Heavy Vehicle Idling 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_gaines.pdf (2.42 MB) More Documents & Publications Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 3-D Printed Molds Hold Promise for Enhanced Wind Energy Manufacturing 3-D Printed Molds Hold Promise for Enhanced Wind

  17. Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Light-Duty Vehicle Idle Reduction Strategies to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Delicious Rank Alternative Fuels Data Center: Light-Duty

  18. IDL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IDL IDL Description and Overview IDL's primary use is in the analysis and display of scientific data through its programming, plotting, and image display facilities. Features * 2-D Plotting & Contouring * Surface Plotting & 3-D Graphics * Graphic Effects * Color Systems * Curve & Surface Fitting * Image and Signal Processing * Eigensystems * Linear Systems * Sparse Linear Systems * Nonlinear Systems and Root Finding * Multi-Dimensional Optimization * Special & Transcendental

  19. Driving/Idling Resources

    Broader source: Energy.gov [DOE]

    While transportation efficiency policies are often implemented under local governments, national and state programs can play supportive roles in reducing vehicle miles traveled. Find driving/idling...

  20. Comparing Emissions Benefits from Regulating Heavy Vehicle Idling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idling 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and ... Molds Hold Promise for Enhanced Wind Energy Manufacturing 3-D Printed Molds Hold ...

  1. Application of Sleeper Cab Thermal Management Technologies to Reduce Idle Climate Control Loads in Long-Haul Trucks

    SciTech Connect (OSTI)

    Lustbader, J. A.; Venson, T.; Adelman, S.; Dehart, C.; Yeakel, S.; Castillo, M. S.

    2012-10-01

    Each intercity long-haul truck in the U.S. idles approximately 1,800 hrs per year, primarily for sleeper cab hotel loads. Including workday idling, over 2 billion gallons of fuel are used annually for truck idling. NREL's CoolCab project works closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling and fuel use. The impact of thermal load reduction technologies on idle reduction systems were characterized by conducting thermal soak tests, overall heat transfer tests, and 10-hour rest period A/C tests. Technologies evaluated include advanced insulation packages, a solar reflective film applied to the vehicle's opaque exterior surfaces, a truck featuring both film and insulation, and a battery-powered A/C system. Opportunities were identified to reduce heating and cooling loads for long-haul truck idling by 36% and 34%, respectively, which yielded a 23% reduction in battery pack capacity of the idle-reduction system. Data were also collected for development and validation of a CoolCalc HVAC truck cab model. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches.

  2. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Based on a worksheet developed by Argonne National Laboratory, the idle fuel consumption rate for selected gasoline and diesel vehicles with no load (no use of accessories such as air conditioners,...

  3. New Truck Stop Electrification Station Maps Help Truckers Reduce...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capabilities because reducing heavy-duty truck idling is an important step in reducing ... fuels and vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction

  4. Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks

    SciTech Connect (OSTI)

    F. Stodolsky; L. Gaines; A. Vyas

    2000-06-01

    Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

  5. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    SciTech Connect (OSTI)

    Jeff Wishart; Matthew Shirk

    2012-12-01

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real

  6. Idling - cruising the fuel inefficiency highway.

    SciTech Connect (OSTI)

    Gaines, L.; Levinson, T.

    2011-06-30

    What is the purpose of idling? The scale of idling can be small, as when parents idle their vehicles while waiting for their children outside of school, or it can be large, as when ocean liners are in port. In many cases, the primary purpose for idling is to control the temperature of a passenger or freight compartment. Large line-haul trucks idle overnight to keep fuel and the engine warm, for the resting driver's comfort, to mask out noises and smells, and for safety. In addition, all classes of trucks idle during the workday at ports and terminals, busy delivery sites, border crossings, and other work sites. They may be idling to enable slow movement in a queue (creep idling) or to provide other services. Bus drivers also idle their vehicles while they wait for passengers and to warm up in the morning. Even locomotive engines are idled so they start, for hotel load, to keep the battery charged, to keep the toilet water from freezing, and for air brakes, or because the operator idles out of habit. Although this document focuses on long-haul trucks, much of the information applies to other vehicles as well. The impacts of idling are substantial, with as much as 6 billion gallons of fuel burned unnecessarily each year in the United States at a cost of over $20 billion. The extra hours of engine operation also cost the owners money for more frequent maintenance and overhauls. In addition, idling vehicles emit particulates (PM{sub 10}), nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and carbon dioxide (CO{sub 2}). These emissions, along with noise from idling vehicles, have led to many local and state restrictions on idling. Two main factors have combined to create a surge of interest in idling reduction (IR): (1) Increasing restrictions on idling for heavy vehicles and (2) The price of diesel fuel. Because stakeholders focus their efforts on improving different factors (air quality, fuel economy, noise level), they do not necessarily agree on the most

  7. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles Fact 861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles ...

  8. Alternative Fuels Data Center: Idle Reduction Benefits and Considerati...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    A photo of an open vehicle trunk with a black auxiliary battery pack inside. Air ... Idle reduction strategies also reduce noise pollution. In some areas, heavy-duty trucks ...

  9. Fact #787: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Transportation mandates that truckers rest for 10 hours after driving for 11 hours, during which time they often park at truck stops idling the engines to provide heating,...

  10. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles - Dataset Fact 861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel ...

  11. Idling is Not the Way to Go

    SciTech Connect (OSTI)

    2013-06-01

    Researchers estimate that idling from heavy-duty and light-duty vehicles combined wastes about 6 billion gallons of fuel annually. Many states have put restrictions on idling, especially in metropolitan areas. Clearly, idling is not the way to go.

  12. Evaluating Benefits of Idling Restrictions in a Large Northern City

    Broader source: Energy.gov [DOE]

    While an anti-idling law in a large northern city has brought about the deployment of anti-idling technologies in city vehicles, it has not had the same effect on some classes of private vehicles.

  13. National Idling Reduction Network News - January 2012

    Energy Savers [EERE]

    ... Air at Schools: Engines Off (CASEO) Caution: Children Breathing-An Overview of Air Pollution and Idling Vehicles at Colorado Schools http:enginesoff.compdfs...

  14. Device for reducing vehicle aerodynamic resistance

    DOE Patents [OSTI]

    Graham, Sean C.

    2005-02-15

    A device for a vehicle with a pair of swinging rear doors, which converts flat sheets of pliable material hinged to the sides of the vehicle adjacent the rear thereof into effective curved airfoils that reduce the aerodynamic resistance of the vehicle, when the doors are closed by hand, utilizing a plurality of stiffeners disposed generally parallel to the doors and affixed to the sheets and a plurality of collapsible tension bearings struts attached to each stiffener and the adjacent door.

  15. EV Everywhere: Reducing Pollution with Electric Vehicles | Department...

    Energy Savers [EERE]

    Benefits of Electric Vehicles EV Everywhere: Reducing Pollution with Electric Vehicles ... All-electric vehicles produce zero direct emissions, which specifically helps improve air ...

  16. Evaluating Benefits of Idling Restrictions in a Large Northern...

    Broader source: Energy.gov (indexed) [DOE]

    While an anti-idling law in a large northern city has brought about the deployment of anti-idling technologies in city vehicles, it has not had the same effect on some classes of ...

  17. Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs As part of a two-year project to demonstrate energy efficiency measures, renewable energy generation, and energy systems integration, the National Renewable Energy Laboratory (NREL) has identified advanced plug load controls as a promising technology for reducing energy use and related costs in the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) office spaces. The demonstration was one of eight

  18. Device for reducing vehicle aerodynamic resistance

    DOE Patents [OSTI]

    Graham, Sean C.

    2006-08-22

    A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular body disposed above rear wheels, comprising a plurality of load bearing struts attached to the bottom of the rectangular body adjacent its sides, a plurality of opposing flat sheets attached to the load bearing struts, and angled flaps attached to the lower edge of the opposing sheets defining an obtuse angle with the opposing flat sheets extending inwardly with respect to the sides of the rectangular body to a predetermined height above the ground, which, stiffen the opposing flat sheets, bend to resist damage when struck by the ground, and guide airflow around the rear wheels of the vehicle to reduce its aerodynamic resistance when moving.

  19. Reducing Vehicle Idling Time at School Helps Kids-and Parents...

    Office of Environmental Management (EM)

    ... Many more drivers choose to turn their engines off in the carpool lanes, and this prevents a lot of pollution from getting into the air our children breathe every afternoon as they ...

  20. February 2016 National Idling Reduction Network News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 2016 National Idling Reduction Network News February 2016 National Idling Reduction Network News April 5, 2016 - 10:05am Addthis The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators); nonprofit organizations; and national research laboratories to identify consistent, workable solutions to heavy-vehicle idling for the entire United States. Below

  1. August 2015 National Idling Reduction Network News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2015 National Idling Reduction Network News August 2015 National Idling Reduction Network News October 6, 2015 - 10:26am Addthis The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators); nonprofit organizations; and national research laboratories to identify consistent, workable solutions to heavy-vehicle idling for the entire United States. Below is

  2. December 2015 National Idling Reduction Network News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 National Idling Reduction Network News December 2015 National Idling Reduction Network News February 1, 2016 - 12:59pm Addthis The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators); nonprofit organizations; and national research laboratories to identify consistent, workable solutions to heavy-vehicle idling for the entire United States. Below is the

  3. June 2015 National Idling Reduction Network News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2015 National Idling Reduction Network News June 2015 National Idling Reduction Network News August 7, 2015 - 1:00pm Addthis The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators); nonprofit organizations; and national research laboratories to identify consistent, workable solutions to heavy-vehicle idling for the entire United States. Below is the

  4. March 2015 National Idling Reduction Network News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 National Idling Reduction Network News March 2015 National Idling Reduction Network News May 6, 2015 - 10:12am Addthis The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators); nonprofit organizations; and national research laboratories to identify consistent, workable solutions to heavy-vehicle idling for the entire United States. Below is the March 2015

  5. May 2015 National Idling Reduction Network News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 National Idling Reduction Network News May 2015 National Idling Reduction Network News July 2, 2015 - 4:19pm Addthis The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators); nonprofit organizations; and national research laboratories to identify consistent, workable solutions to heavy-vehicle idling for the entire United States. Below is the May 2015

  6. August 2014 National Idling Reduction Network News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2014 National Idling Reduction Network News August 2014 National Idling Reduction Network News October 3, 2014 - 12:11pm Addthis The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators); nonprofit organizations; and national research laboratories to identify consistent, workable solutions to heavy-vehicle idling for the entire United States. Below is

  7. July 2014 National Idling Reduction Network News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 National Idling Reduction Network News July 2014 National Idling Reduction Network News September 3, 2014 - 3:43pm Addthis The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators); nonprofit organizations; and national research laboratories to identify consistent, workable solutions to heavy-vehicle idling for the entire United States. Below is the July

  8. June 2014 National Idling Reduction Network News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2014 National Idling Reduction Network News June 2014 National Idling Reduction Network News September 3, 2014 - 2:54pm Addthis The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators); nonprofit organizations; and national research laboratories to identify consistent, workable solutions to heavy-vehicle idling for the entire United States. Below is

  9. October 2014 National Idling Reduction Network News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 National Idling Reduction Network News October 2014 National Idling Reduction Network News December 9, 2014 - 10:39am Addthis The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators); nonprofit organizations; and national research laboratories to identify consistent, workable solutions to heavy-vehicle idling for the entire United States. Below is the

  10. October 2015 National Idling Reduction Network News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 National Idling Reduction Network News October 2015 National Idling Reduction Network News December 4, 2015 - 7:53pm Addthis The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators); nonprofit organizations; and national research laboratories to identify consistent, workable solutions to heavy-vehicle idling for the entire United States. Below is the

  11. Device for reducing vehicle aerodynamic resistance

    DOE Patents [OSTI]

    Graham, Sean C.

    2006-03-07

    A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular flat front face comprising a plurality of load bearing struts of a predetermined size attached to the flat front face adjacent the sides and top thereof, a pair of pliable opposing flat sheets having an outside edge portion attached to the flat front face adjacent the sides thereof and an upper edge with a predetermined curve; the opposing flat sheets being bent and attached to the struts to form effective curved airfoil shapes, and a top pliable flat sheet disposed adjacent the top of the flat front face and having predetermined curved side edges, which, when the top sheet is bent and attached to the struts to form an effective curved airfoil shape, mate with the curved upper edges of the opposing sheets to complete the aerodynamic device.

  12. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Vehicles - Dataset | Department of Energy 1 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles - Dataset Fact #861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles - Dataset Excel file and dataset for Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles fotw#861_web.xlsx (17.63 KB) More Documents & Publications Fact #917: March 21, 2016 Work Truck Daily Idle Time by Industry - Dataset Fact #916: March 14,

  13. To Idle or Not to Idle: That is the Question | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To Idle or Not to Idle: That is the Question To Idle or Not to Idle: That is the Question Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-04_gaines.pdf (185.08 KB) More Documents & Publications A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements. Development of Artificial Ash Accelerated Accumulation Test An Analytical Approach for Tail-Pipe Emissions

  14. Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled

    Broader source: Energy.gov [DOE]

    For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to reduce vehicle miles traveled, as well as guidance and best practices for each strategy.

  15. Reducing Vehicle Emissions to Meet Environmental Goals | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Vehicle Emissions to Meet Environmental Goals Reducing Vehicle Emissions to Meet Environmental Goals Now that both gasoline and diesel vehicles have been cleaned up, it's time to turn to the new challenge of climate change and its effect on California. deer09_cackette.pdf (1.3 MB) More Documents & Publications The Path to Low Carbon Passenger Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles

  16. Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Greenhouse Gas Emissions: The Combined Potential of Hybrid Technology and Behavioral Adaptation Title Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

  17. National Idling Reduction Network News- November 2009

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  18. National Idling Reduction Network News- September 2013

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  19. National Idling Reduction Network News- October 2013

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  20. National Idling Reduction Network News- May 2013

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  1. National Idling Reduction Network News- November 2012

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  2. National Idling Reduction Network News- January 2013

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  3. National Idling Reduction Network News- June 2011

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  4. National Idling Reduction Network News- July 2011

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  5. National Idling Reduction Network News- October 2011

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  6. National Idling Reduction Network News- July 2012

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  7. National Idling Reduction Network News- July 2013

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  8. National Idling Reduction Network News- March 2010

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  9. National Idling Reduction Network News- September 2011

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  10. National Idling Reduction Network News- October 2012

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  11. National Idling Reduction Network News- November 2010

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  12. National Idling Reduction Network News- March 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  13. National Idling Reduction Network News- July 2010

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  14. National Idling Reduction Network News- July 2009

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  15. National Idling Reduction Network News- May 2012

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  16. National Idling Reduction Network News- September 2009

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  17. National Idling Reduction Network News- April 2011

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  18. National Idling Reduction Network News- February 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  19. National Idling Reduction Network News- June 2010

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  20. National Idling Reduction Network News- September 2012

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  1. National Idling Reduction Network News- April 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  2. National Idling Reduction Network News- January 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  3. National Idling Reduction Network News- March 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  4. National Idling Reduction Network News- December 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  5. National Idling Reduction Network News- June 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  6. National Idling Reduction Network News- November 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  7. National Idling Reduction Network News- March 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  8. National Idling Reduction Network News- February 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  9. National Idling Reduction Network News- April 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  10. National Idling Reduction Network News- February 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  11. National Idling Reduction Network News- March 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  12. National Idling Reduction Network News- January 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  13. National Idling Reduction Network News- December 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  14. National Idling Reduction Network News- May 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  15. National Idling Reduction Network News- November 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  16. National Idling Reduction Network News- April 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  17. Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action

  18. Idle hands: New and improved IdleBox tool to aid in reduction of idling |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Idle hands: New and improved IdleBox tool to aid in reduction of idling Mississippi State University EcoCAR 3 team members help conduct an IdleBox campaign at New Hope Middle School in Columbus, Mississippi. Mississippi State University EcoCAR 3 team members help conduct an IdleBox campaign at New Hope Middle School in Columbus, Mississippi. Idle hands: New and improved IdleBox tool to aid in reduction of idling By Scott Jones * July 25, 2016 Tweet EmailPrint The

  19. Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    As part of a two-year project to demonstrate energy efficiency measures, renewable energy generation, and energy systems integration, the National Renewable Energy Laboratory (NREL) has identified advanced plug load controls as a promising technology for reducing energy use and related costs in the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) office spaces.

  20. Vehicle Technologies Program - Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil

    SciTech Connect (OSTI)

    2011-08-01

    R&D drives innovation while lowering technology costs, which then enables the private sector to accelerate clean technology deployment. Along with R&D, DOE's Vehicles Technologies Program deploys clean, efficient vehicle technologies and renewable fuels, which reduce U.S. demand for petroleum products.

  1. Methods of reducing vehicle aerodynamic drag

    SciTech Connect (OSTI)

    Sirenko V.; Rohatgi U.

    2012-07-08

    A small scale model (length 1710 mm) of General Motor SUV was built and tested in the wind tunnel for expected wind conditions and road clearance. Two passive devices, rear screen which is plate behind the car and rear fairing where the end of the car is aerodynamically extended, were incorporated in the model and tested in the wind tunnel for different wind conditions. The conclusion is that rear screen could reduce drag up to 6.5% and rear fairing can reduce the drag by 26%. There were additional tests for front edging and rear vortex generators. The results for drag reduction were mixed. It should be noted that there are aesthetic and practical considerations that may allow only partial implementation of these or any drag reduction options.

  2. SEP Success Story: "Idle Free Systems" Does Not Stand Idly by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Idle Free Systems" Does Not Stand Idly by SEP Success Story: "Idle Free Systems" Does Not Stand Idly by March 12, 2012 - 2:12pm Addthis Idle Free System's frame rail unit mounted ...

  3. Fact #853 December 29, 2014 Stop/Start Technology is in nearly 5% of All New Light Vehicles Produced

    Broader source: Energy.gov [DOE]

    Stop/Start technology improves fuel economy by reducing engine idle time. As a vehicle slows to a stop, the engine is shut down but then immediately restarts when the break pedal is released so...

  4. Alternative Fuels Data Center: Idle Reduction

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction on Google Bookmark Alternative Fuels Data Center: Idle Reduction on Delicious Rank Alternative Fuels Data Center: Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction on AddThis.com... More in this section... Idle Reduction Benefits

  5. Vehicle Technologies Office: Parasitic Loss Reduction Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Vehicles Home About the Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction ...

  6. National Idling Reduction Network News- Early Spring 2009

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  7. Gasoline Hybrid Electric Delivery Vehicles Reduce Tailpipe Emissions While

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 07/22/16 07/29/16 08/05/16 08/12/16 08/19/16 08/26/16 View History U.S. 24.8 24.4 24.1 23.8 23.9 24.0 1991 Maintaining Fuel Economy - News Releases | NREL

    Gasoline Hybrid Electric Delivery Vehicles Reduce Tailpipe Emissions While Maintaining Fuel Economy February 23, 2011 The U.S. Department of Energy's (DOE) National Renewable Energy

  8. Diesel Idling Reduction | Open Energy Information

    Open Energy Info (EERE)

    Idling Reduction Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Diesel Idling Reduction AgencyCompany Organization: US EPA, NY SERDA Focus Area: Fuels & Efficiency...

  9. "Idle Free Systems" Does Not Stand Idly by | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Idle Free Systems" Does Not Stand Idly by "Idle Free Systems" Does Not Stand Idly by March 12, 2012 - 6:50pm Addthis Idle Free System's frame rail unit mounted onto the chassis rail of a truck. Idle Free produces battery-powered, idle-elimination systems that lower fuel costs and CO2 emissions while retaining power to a truck’s cab. | Courtesy of Idle Free Systems. Idle Free System's frame rail unit mounted onto the chassis rail of a truck. Idle Free produces

  10. Long-Haul Truck Idling Burns Up Profits

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Long-Haul Truck Idling Burns Up Profits Long-haul truck drivers perform a vitally important service. In the course of their work, they must take rest periods as required by federal law. Most drivers remain in their trucks, which they keep running to provide power for heating, cooling, and other necessities. Such idling, however, comes at a cost; it is an expensive and polluting way to keep drivers safe and comfortable. Increasingly affordable alternatives to idling not only save money and reduce

  11. Multiyear Program Plan: Reducing Friction and Wear in Heavy Vehicles

    SciTech Connect (OSTI)

    R.R. Fessler; G.R. Fenske

    1999-12-13

    As described in its multiyear program plan for 1998-2000, the Office of Heavy Vehicle Technologies (OHVT) envisions the development of a fuel-flexible, energy-efficient, near-zero-emissions, heavy-duty U.S. diesel engine technology devolving into all truck classes as a real and viable strategy for reducing energy requirements for commercial transport services and the rapidly growing multipurpose vehicle market (pickups, vans, and sport utility vehicles). Implementation of the OHVT program plan will have significant national benefits in energy savings, cleaner air, more jobs, and increased gross domestic product (GDP). Successful implementation will reduce the petroleum consumption of Class 1-8 trucks by 1.4 million barrels of oil per day by 2020 and over 1.8 million by 2030, amounting to a reduction in highway petroleum consumption of 13.2% and 18.6%, respectively. All types of regulated emissions will be reduced, that is, 20% drop in PM10 emissions (41,000 metric tons per year) by 203 0, 17% reduction in CO2 greenhouse gases (205 million metric tons per year), 7% reduction in NOx, 20% reduction in NMHC, and 30% reduction in CO. An increase of 15,000 jobs by 2020 is expected, as is an increase of $24 billion in GDP. The strategy of OHVT is to focus primarily on the diesel engine since it has numerous advantages. It has the highest efficiency of any engine today, 45% versus 30% for production gasoline engines; and it can be made more efficient at least to 55% and possibly up to 63%. It is the engine of choice for heavy vehicles (trucks), because it offers power, efficiency, durability, and reliability and is used extensively in rail, marine, and off-road applications. Its emission can be ultra-low to near zero, and the production infrastructure is already in place. The primary goals of OHVT are as follows: (1) Develop by 2002 the diesel-engine enabling technologies to support large-scale industry dieselization of light trucks, achieving a 35% fuel efficiency

  12. Caterpillar MorElectric DOE Idle Reduction Demonstration Program

    SciTech Connect (OSTI)

    John Bernardi

    2007-09-30

    This project titled 'Demonstration of the New MorElectric{trademark} Technology as an Idle Reduction Solution' is one of four demonstration projects awarded by the US Department of Energy in 2002. The goal of these demonstration and evaluation projects was to gather objective in-use information on the performance of available idle reduction technologies by characterizing the cost; fuel, maintenance, and engine life savings; payback; and user impressions of various systems and techniques. In brief, the Caterpillar Inc. project involved applying electrically driven accessories for cab comfort during engine-off stops and for reducing fuel consumption during on-highway operation. Caterpillar had equipped and operated five new trucks with the technology in conjunction with International Truck and Engine Corporation and COX Transfer. The most significant result of the project was a demonstrated average idle reduction of 13.8% for the 5 truck MEI fleet over the control fleet. It should be noted that the control fleet trucks were also equipped with an idle reduction device that would start and stop the main engine automatically in order to maintain cab temperature. The control fleet idle usage would have been reduced by 3858 hours over the 2 year period with the MEI system installed, or approximately 2315 gallons of fuel less (calculations assume a fuel consumption of 0.6 gallons per hour for the 13 liter engine at idle). The fuel saved will be significantly larger for higher displacement engines without idle reduction equipment such as the engine auto start/stop device used by COX Transfer. It is common for engines to consume 1.0 gallons per hour which would increase the fuel savings to approximately 1260 gallons per truck per year of typical idling (1800 hours idle/yr).

  13. Sleeper Cab Climate Control Load Reduction for Long-Haul Truck Rest Period Idling

    SciTech Connect (OSTI)

    Lustbader, J. A.; Kreutzer, C.; Adelman, S.; Yeakel, S.; Zehme, J.

    2015-04-29

    Annual fuel use for long-haul truck rest period idling is estimated at 667 million gallons in the United States. The U.S. Department of Energy’s National Renewable Energy Laboratory’s CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck climate control systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In order for candidate idle reduction technologies to be implemented at the original equipment manufacturer and fleet level, their effectiveness must be quantified. To address this need, a number of promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. For this study, load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, and conductive pathways. The technologies selected for a complete-cab package of technologies were “ultra-white” paint, advanced insulation, and advanced curtains. To measure the impact of these technologies, a nationally-averaged solar-weighted reflectivity long-haul truck paint color was determined and applied to the baseline test vehicle. Using the complete-cab package of technologies, electrical energy consumption for long-haul truck daytime rest period air conditioning was reduced by at least 35% for summer weather conditions in Colorado. The National Renewable Energy Laboratory's CoolCalc model was then used to extrapolate the performance of the thermal load reduction technologies nationally for 161 major U.S. cities using typical weather conditions for each location over an entire year.

  14. Vehicles

    Broader source: Energy.gov [DOE]

    Vehicles, and the fuel it takes to power them, are an essential part of our American infrastructure and economy. The Energy Department works to develop transportation technologies that will reduce our dependence on foreign oil.

  15. Method and system for reducing errors in vehicle weighing systems

    DOE Patents [OSTI]

    Hively, Lee M.; Abercrombie, Robert K.

    2010-08-24

    A method and system (10, 23) for determining vehicle weight to a precision of <0.1%, uses a plurality of weight sensing elements (23), a computer (10) for reading in weighing data for a vehicle (25) and produces a dataset representing the total weight of a vehicle via programming (40-53) that is executable by the computer (10) for (a) providing a plurality of mode parameters that characterize each oscillatory mode in the data due to movement of the vehicle during weighing, (b) by determining the oscillatory mode at which there is a minimum error in the weighing data; (c) processing the weighing data to remove that dynamical oscillation from the weighing data; and (d) repeating steps (a)-(c) until the error in the set of weighing data is <0.1% in the vehicle weight.

  16. National Idling Reduction Network News Compendium | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compendium National Idling Reduction Network News Compendium Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. idling_newsletter_portfolio.pdf (35.23 MB) More Documents & Publications National Idling Reduction Network News - January 2014 National Idling Reduction Network News - June 2012 National Idling Reduction Network News - December 2013

  17. Reducing the environmental impact of road and rail vehicles

    SciTech Connect (OSTI)

    Mayer, R.M.; Poulikakos, L.D.; Lees, A.R.; Heutschi, K.; Kalivoda, M.T.

    2012-01-15

    Methods have been developed to measure in situ the dynamic impact of both road and rail vehicles on the infrastructure and the environment. The resulting data sets have been analysed to quantify the environmental impacts in a transparent manner across both modes. A primary concern is that a small number of vehicles are being operated outside safe or regulatory limits which can have a disproportionate large impact. The analysis enables the various impacts to be ranked across both modes so enabling one to discern the benefits of intermodal transport. The impact of various policy options is considered and how to identify vehicles which can be classified as environmentally friendly. This would require European agreement as many heavy goods vehicle operate across country borders.

  18. National Idling Reduction Network News - April 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 National Idling Reduction Network News - April 2014 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. apr14_network_news.pdf (745.96 KB) More Documents & Publications National Idling Reduction Network News Compendium National Idling Reduction Network News - January 2014 National Idling Reduction Network News - December 2013

  19. National Idling Reduction Network News - August 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 National Idling Reduction Network News - August 2009 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. aug09_network_news.pdf (533.75 KB) More Documents & Publications National Idling Reduction Network News - January 2009 National Idling Reduction Network News - October 2009 National Idling Reduction Network News - July 2009

  20. National Idling Reduction Network News - August 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 National Idling Reduction Network News - August 2010 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. aug10_network_news.pdf (588.52 KB) More Documents & Publications National Idling Reduction Network News - February 2011 National Idling Reduction Network News - May 2010 National Idling Reduction Network News - August

  1. National Idling Reduction Network News - August 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 National Idling Reduction Network News - August 2011 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. aug11_network_news.pdf (332.36 KB) More Documents & Publications National Idling Reduction Network News - March 2011 National Idling Reduction Network News - January 2011 National Idling Reduction Network News - May

  2. National Idling Reduction Network News - August 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 National Idling Reduction Network News - August 2012 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. aug12_network_news.pdf (690.39 KB) More Documents & Publications National Idling Reduction Network News - January 2013 National Idling Reduction Network News - March 2012 National Idling Reduction Network News - June 2012

  3. National Idling Reduction Network News - August 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 National Idling Reduction Network News - August 2013 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. aug13_network_news.pdf (757.15 KB) More Documents & Publications National Idling Reduction Network News - October 2013 National Idling Reduction Network News - January 2013 National Idling Reduction Network News - August 2011

  4. National Idling Reduction Network News - December 2009 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 09 National Idling Reduction Network News - December 2009 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. dec09_network_news.pdf (462.62 KB) More Documents & Publications National Idling Reduction Network News - March 2011 National Idling Reduction Network News - December 2011 National Idling Reduction Network News - October 2009

  5. National Idling Reduction Network News - December 2010 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 0 National Idling Reduction Network News - December 2010 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. dec10_network_news.pdf (607.18 KB) More Documents & Publications National Idling Reduction Network News - August 2011 National Idling Reduction Network News - May 2010 National Idling Reduction Network News - January 2013

  6. National Idling Reduction Network News - December 2012 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2 National Idling Reduction Network News - December 2012 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. dec12_network_news.pdf (619.31 KB) More Documents & Publications National Idling Reduction Network News - June 2011 National Idling Reduction Network News - April 2011 National Idling Reduction Network News - July 2010

  7. National Idling Reduction Network News - February 2010 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 0 National Idling Reduction Network News - February 2010 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. feb10_network_news.pdf (328.52 KB) More Documents & Publications National Idling Reduction Network News - March 2012 National Idling Reduction Network News - May 2010 National Idling Reduction Network News - July 2010

  8. National Idling Reduction Network News - February 2014 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4 National Idling Reduction Network News - February 2014 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. feb14_network_news.pdf (579.38 KB) More Documents & Publications National Idling Reduction Network News Compendium National Idling Reduction Network News - April 2014 National Idling Reduction Network News - July 2013

  9. National Idling Reduction Network News - January 2009 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 09 National Idling Reduction Network News - January 2009 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. jan09_network_news.pdf (284.59 KB) More Documents & Publications National Idling Reduction Network News - Early Spring 2009 National Idling Reduction Network News - October 2009 National Idling Reduction Network News - September 2009

  10. National Idling Reduction Network News - January 2010 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 0 National Idling Reduction Network News - January 2010 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. jan10_network_news.pdf (341.47 KB) More Documents & Publications National Idling Reduction Network News - February 2012 National Idling Reduction Network News - September 2010 National Idling Reduction Network News - March

  11. National Idling Reduction Network News - January 2014 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4 National Idling Reduction Network News - January 2014 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. jan14_network_news.pdf (619.84 KB) More Documents & Publications National Idling Reduction Network News Compendium National Idling Reduction Network News - June 2012 National Idling Reduction Network News - January 2009

  12. National Idling Reduction Network News - June 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 National Idling Reduction Network News - June 2009 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. june09_network_news.pdf (204.81 KB) More Documents & Publications National Idling Reduction Network News - January 2009 National Idling Reduction Network News - Early Spring 2009 National Idling Reduction Network News - October

  13. National Idling Reduction Network News - June 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 National Idling Reduction Network News - June 2012 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. june12_network_news.pdf (593.22 KB) More Documents & Publications National Idling Reduction Network News - December 2013 National Idling Reduction Network News Compendium National Idling Reduction Network News - November 2010

  14. National Idling Reduction Network News - May 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 National Idling Reduction Network News - May 2011 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. may11_network_news.pdf (616.02 KB) More Documents & Publications National Idling Reduction Network News - October 2011 National Idling Reduction Network News - March 2012 National Idling Reduction Network News - February 2011

  15. National Idling Reduction Network News - October 2009 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 09 National Idling Reduction Network News - October 2009 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. oct09_network_news.pdf (466.62 KB) More Documents & Publications National Idling Reduction Network News - January 2009 National Idling Reduction Network News - December 2011 National Idling Reduction Network News - November

  16. National Idling Reduction Network News - October 2010 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 10 National Idling Reduction Network News - October 2010 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. oct10_network_news.pdf (671.41 KB) More Documents & Publications National Idling Reduction Network News - July 2010 National Idling Reduction Network News - May 2010 National Idling Reduction Network News - October

  17. National Idling Reduction Network News - September 2010 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 0 National Idling Reduction Network News - September 2010 Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. sep10_network_news.pdf (789.02 KB) More Documents & Publications National Idling Reduction Network News - August 2010 National Idling Reduction Network News - May 2010 National Idling Reduction Network News - August 2011

  18. Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_zirker.pdf (247.36 KB) More Documents & Publications Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles Development of Partial Filter Technology for HDD Retrofit Comparing Emissions Benefits from Regulating

  19. NREL Reduces Climate Control Loads in Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    NREL demonstrates that zonal climate control can reduce air conditioning power and improve range while maintaining driver thermal sensation.

  20. Long-Haul Truck Idling Burns Up Profits

    SciTech Connect (OSTI)

    2015-08-12

    Long-haul truck drivers perform a vitally important service. In the course of their work, they must take rest periods as required by federal law. Most drivers remain in their trucks, which they keep running to provide power for heating, cooling, and other necessities. Such idling, however, comes at a cost; it is an expensive and polluting way to keep drivers safe and comfortable. Increasingly affordable alternatives to idling not only save money and reduce pollution, but also help drivers get a better night's rest.

  1. NREL: Transportation Research - Vehicle Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transported across the United States each year. Idling these vehicles to heat and cool cabsleeper spaces improves driver comfort and safety, but consumes large quantities of...

  2. Vietnam-Integrated Action Plan to Reduce Vehicle Emissions |...

    Open Energy Info (EERE)

    and reduce air pollution. Furthermore, they are required to ensure that Viet Nam's air quality meets the average standards set by the Association of Southeast Asian Nation...

  3. July 2016 National Idling Reduction Network News

    Broader source: Energy.gov [DOE]

    The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators)...

  4. March 2016 National Idling Reduction Network News

    Broader source: Energy.gov [DOE]

    The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators)...

  5. National Idling Reduction Network News - January 2013

    Energy Savers [EERE]

    ... INTEREST SOURCE TITLE WEBSITE OR CONTACT Fleet Equipment Magazine Idling ... Project Final Report http:info.ornl.govsitespublicationsFilesPub39145.pdf Trucking ...

  6. June 2016 National Idling Reduction Network News

    Office of Energy Efficiency and Renewable Energy (EERE)

    The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators)...

  7. Challenges and Potential Solutions for Reducing Climate Control Loads in Conventional and Hybrid Vehicles

    SciTech Connect (OSTI)

    Farrington, R.B., Anderson, R., Blake, D.M., Burch, S.D.; Cuddy, M.R., Keyser, M.A., Rugh, J.P.

    1999-01-01

    The National Renewable Energy Laboratory, a U.S. Department of Energy national laboratory, is collaborating with U.S. automotive manufacturers to develop innovative techniques to reduce national fuel consumption and vehicle tailpipe emissions by reducing vehicle climate control loads. A new U.S. emissions test, the Supplemental Federal Test Procedure (SFTP), will soon begin measuring tailpipe emissions with the air conditioning system operating. Modeled results show that emissions of oxides of nitrogen (NOx) and carbon monoxide (CO) more than double during the air conditioning part of the SFTP. Reducing the transmittance of the glazing can have a greater impact on the cabin soak temperature than ventilating the vehicle during a hot soak. Reducing the amount of outside air can decrease cooling and heating loads but requires that the recirculated air be cleaned. We discuss a photocatalytic oxidation air-cleaning process for removing volatile organic compounds and bioareosols. We conclude with an example of modeling the thermal comfort of the occupants. An auxiliary load increase of only 400 Watts (W) results in a 0.4 km/L (1 mpg) decrease for a conventional 11.9-L/100-km (28-mpg) vehicle. If every vehicle in the United States were to save only 0.4 km/L (1 mpg), $4 billion (U.S. dollars) would be saved annually in gasoline and oil costs. Further information can be found at http://www.ctts.nrel.gov/auxload.html.

  8. Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle

    SciTech Connect (OSTI)

    Jehlik, Forrest; LaClair, Tim J.

    2014-04-01

    Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

  9. National Idling Reduction Network News - April 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and anti-idling equipment on 26 school buses 70,228 Zane Trace Local School District (Ross County, Ohio) Ohio EPA Installation of emission control equipment on 8 school buses and ...

  10. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  11. Alternative Fuels Data Center: Idle Reduction Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conserve Fuel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Idle Reduction Related Links to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Related Links on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Related Links on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Related Links on Google Bookmark Alternative Fuels Data Center: Idle Reduction Related Links on Delicious Rank Alternative Fuels Data

  12. Alternative Fuels Data Center: Onboard Idle Reduction Equipment for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Heavy-Duty Trucks Onboard Idle Reduction Equipment for Heavy-Duty Trucks to someone by E-mail Share Alternative Fuels Data Center: Onboard Idle Reduction Equipment for Heavy-Duty Trucks on Facebook Tweet about Alternative Fuels Data Center: Onboard Idle Reduction Equipment for Heavy-Duty Trucks on Twitter Bookmark Alternative Fuels Data Center: Onboard Idle Reduction Equipment for Heavy-Duty Trucks on Google Bookmark Alternative Fuels Data Center: Onboard Idle Reduction Equipment for

  13. Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Broader source: Energy.gov [DOE]

    Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel efficiency...

  14. Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight PI: Tim Donley Cooper Tire & Rubber Company June 19, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project ID: VSS083 Overview Timeline * Project start date: Oct. 1, 2011 * Project end date: Sept. 30, 2014 * Project complete: 85% Barriers 1) Cost / Premium Product 2) Manufacturability Budget * Total project funding: $3,679,309 - DOE share: $1,500,000 -

  15. Hydrogen-Enhanced Natural Gas Vehicle Program

    SciTech Connect (OSTI)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  16. Which is Greener: Idle, or Stop and Restart?

    Broader source: Energy.gov [DOE]

    This poster presents data comparing fuel use and emissions for short passenger-car stops vs. idling. Fuel use is always greater for idling over 6 seconds; crossover times vary by pollutant.

  17. Hybrid options for light-duty vehicles.

    SciTech Connect (OSTI)

    An, F., Stodolsky, F.; Santini, D.

    1999-07-19

    Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

  18. Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Vehicle Technologies Office: News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    News Vehicle Technologies Office: News The Vehicle Technologies Office regularly reports on news and success stories from our research, development, and deployment efforts. Along with the below news articles and the success stories database, find out more about the latest in idle reduction through the National Idle Reduction Network News; workplace charging through the Workplace Charging Challenge News; EcoCAR 3 through the Green Garage Blog; Clean Cities through Clean Cities Now and the Clean

  1. Reducing Petroleum, One Billion Gallons at a Time | Department...

    Office of Environmental Management (EM)

    ... The Parks Service will install four electric vehicle charging stations (two of which will be open to the public), acquire two plug-in electric vehicles, and use idle reduction ...

  2. Locomotive Emission and Engine Idle Reduction Technology Demonstration Project

    SciTech Connect (OSTI)

    John R. Archer

    2005-03-14

    In response to a United States Department of Energy (DOE) solicitation, the Maryland Energy Administration (MEA), in partnership with CSX Transportation, Inc. (CSXT), submitted a proposal to DOE to support the demonstration of Auxiliary Power Unit (APU) technology on fifty-six CSXT locomotives. The project purpose was to demonstrate the idle fuel savings, the Nitrous Oxide (NOX) emissions reduction and the noise reduction capabilities of the APU. Fifty-six CSXT Baltimore Division locomotives were equipped with APUs, Engine Run Managers (ERM) and communications equipment to permit GPS tracking and data collection from the locomotives. Throughout the report there is mention of the percent time spent in the State of Maryland. The fifty-six locomotives spent most of their time inside the borders of Maryland and some spent all their time inside the state borders. Usually when a locomotive traveled beyond the Maryland State border it was into an adjoining state. They were divided into four groups according to assignment: (1) Power Unit/Switcher Mate units, (2) Remote Control units, (3) SD50 Pusher units and (4) Other units. The primary data of interest were idle data plus the status of the locomotive--stationary or moving. Also collected were main engine off, idling or working. Idle data were collected by county location, by locomotive status (stationary or moving) and type of idle (Idle 1, main engine idling, APU off; Idle 2, main engine off, APU on; Idle 3, main engine off, APU off; Idle 4, main engine idle, APU on). Desirable main engine idle states are main engine off and APU off or main engine off and APU on. Measuring the time the main engine spends in these desirable states versus the total time it could spend in an engine idling state allows the calculation of Percent Idle Management Effectiveness (%IME). IME is the result of the operation of the APU plus the implementation of CSXT's Warm Weather Shutdown Policy. It is difficult to separate the two. The units

  3. Case Study - Idle Reduction Technologies for Emergency Service Vehicles |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNG ........................................................................................................................................ 4 Financial Benefits ........................................................................................................................................................... 4 Environment and Energy Benefits .............................................................................................................................. 4 Other Benefits

  4. Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi

    ScienceCinema (OSTI)

    Michael Wang

    2013-06-05

    To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continued to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.

  5. Which Idling Reduction Technologeis are the Best? | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel Trucks: A Comparison of Full-Fuel-Cycle Emissions, Energy Use, and Proximity to ...

  6. Rocky Flats Environmental Technology Site Idle Equipment, August...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Management Plan for Material Contained in Idle ... be enforceable as a requirement of this Order on ... through the RFCA budget planning process. * If ...

  7. A Municipal Official's Guide to Diesel Idling Reduction | Open...

    Open Energy Info (EERE)

    Planning Federation Sector: Climate, Energy Focus Area: Transportation Resource Type: Lessons learnedbest practices Website: www.nyserda.orgpublications09-06GuidetoDieselIdl...

  8. Battery Electric Vehicles can reduce greenhouse has emissions and make renewable energy cheaper in India

    SciTech Connect (OSTI)

    Gopal, Anand R; Witt, Maggie; Sheppard, Colin; Harris, Andrew

    2015-07-01

    India's National Mission on Electric Mobility (NMEM) sets a countrywide goal of deploying 6 to 7 million hybrid and electric vehicles (EVs) by 2020. There are widespread concerns, both within and outside the government, that the Indian grid is not equipped to accommodate additional power demand from battery electric vehicles (BEVs). Such concerns are justified on the grounds of India's notorious power sector problems pertaining to grid instability and chronic blackouts. Studies have claimed that deploying BEVs in India will only

  9. EERE Success Story—Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  10. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such

  11. Fact #787: July 8, 2013 Truck Stop Electrification Reduces Idle...

    Broader source: Energy.gov (indexed) [DOE]

    0 Michigan 0 Minnesota 1 Mississippi 0 Missouri 2 Montana 0 Nebraska 2 Nevada 0 New Hampshire 0 New Jersey 2 New Mexico 1 New York 3 North Carolina 2 North Dakota 0 Ohio 2 ...

  12. National Idling Reduction Network News - November 2011

    Energy Savers [EERE]

    ...www.pca.state.mn.usindex. phpairair-quality-and- pollutantsgeneral-air- qualitymotor-vehicle- pollutiongrantsfinancial- assistance-for-clean-diesel- projects.html U.S. ...

  13. National Idling Reduction Network News - April 2013

    Energy Savers [EERE]

    ...www.navigantresearch.comresearchelectric-vehicle- drive-motors San Diego County Air Pollution Control District Cleaner Air Thanks to Shore Power video www.countynewscenter.co...

  14. A comparison of estimates of cost-effectiveness of alternative fuels and vehicles for reducing emissions

    SciTech Connect (OSTI)

    Hadder, G.R.

    1995-11-01

    The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain reductions in emissions of air pollutants. The CER can lead to selection of the most effective sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER estimates for alternative fuel vehicles (AFVs) have varied widely among pervious studies. In one of several explanations of LCER differences, this report uses a consistent basis for fuel price to re-estimate CERs for AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton includes compressed natural gas and ed Petroleum gas vehicles; and E85 flexible-fueled vehicles (with fuel mixture of 85 percent cellulose-derived ethanol in gasoline). The E85 system would be much less attractive if corn-derived ethanol were used. The CER for E85 (corn-derived) is higher with higher values placed on the reduction of gas emissions. CER estimates are relative to conventional vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 RFG program will be implemented before significant market penetration by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV type. The relative differences in cost and emissions reduction assumptions can be large, and the effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that methodological differences can make large contributions to CER differences among studies.

  15. September 2015 National Idling Reduction Network News | Department...

    Energy Savers [EERE]

    ... IdleAir recently announced a number of achievements, including a second wave of ... Justice regarding Clean Air Act (CAA) violations at eight of its coal-fired power plants. ...

  16. Idling Emissions Reduction Technology with Low Temperature Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion of DI Biodiesel and PFI n-Butanol Idling Emissions Reduction Technology with Low Temperature Combustion of DI Biodiesel and PFI n-Butanol Results from an ...

  17. Alternative Fuels Data Center: Idle Reduction Research and Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Pollution and energy analyses of different idle-reduction technologies are often limited ... In-Cab Air Quality of Trucks Air-Conditioned at Electrified Truck Stops Different methods ...

  18. Fact #917: March 21, 2016 Work Truck Daily Idle Time by Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 7: March 21, 2016 Work Truck Daily Idle Time by Industry Fact #917: March 21, 2016 Work Truck Daily Idle Time by Industry SUBSCRIBE to the Fact of the Week Results of the 2015 Work Truck Electrification and Idle Management Study showed the daily idle time for work truck fleets. Daily idle times by industry show that the truck fleets in the utility/telecommunications industry had the longest idle times. Thirty-nine percent of respondents indicated that their fleets idled

  19. Anti-Idling Battery for Truck Applications

    SciTech Connect (OSTI)

    Keith Kelly

    2011-09-30

    In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

  20. Plug-in hybrid electric vehicles : How does one determine their potential for reducing U.S. oil dependence?

    SciTech Connect (OSTI)

    Vyas, A.; Santini, D.; Duoba, M.; Alexander, M.; Energy Systems; EPRI

    2008-09-01

    Estimation of the potential of plug-in hybrid electric vehicles (PHEV's) ability to reduce U.S. gasoline use is difficult and complex. Although techniques have been proposed to estimate the vehicle kilometers of travel (VKT) that can be electrified, these methods may be inadequate and/or inappropriate for early market introduction circumstances. Factors that must be considered with respect to the PHEV itself include (1) kWh battery storage capability; (2) kWh/km depletion rate of the vehicle (3) liters/km use of gasoline (4) average daily kilometers driven (5) annual share of trips exceeding the battery depletion distance (6) driving cycle(s) (7) charger location [i.e. on-board or off-board] (8) charging rate. Each of these factors is actually a variable, and many interact. Off the vehicle, considerations include (a) primary overnight charging spot [garage, carport, parking garage or lot, on street], (b) availability of primary and secondary charging locations [i.e. dwellings, workplaces, stores, etc] (c) time of day electric rates (d) seasonal electric rates (e) types of streets and highways typically traversed during most probable trips depleting battery charge [i.e. city, suburban, rural and high vs. low density]; (f) cumulative trips per day from charger origin (g) top speeds and peak acceleration rates required to make usual trips. Taking into account PHEV design trade-off possibilities (kW vs. kWh of battery, in particular), this paper attempts to extract useful information relating to these topics from the 2001 National Household Travel Survey (NHTS), and the 2005 American Housing Survey (AHS). Costs per kWh of PHEVs capable of charge depleting (CD) all-electric range (CDE, or AER) vs. those CD in 'blended' mode (CDB) are examined. Lifetime fuel savings of alternative PHEV operating/utilization strategies are compared to battery cost estimates.

  1. Linda Gaines | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linda Gaines Transportation System Analyst News Idle hands: New and improved IdleBox tool to aid in reduction of idling E-mail lgaines@anl.gov Publications View Publications Projects Idle Reduction Publications Idle Reduction Research Idle Reduction Tools and Outreach Materials Lithium-Ion Battery Recycling Publications Lithium-Ion Battery Recycling and Life Cycle Analysis Reducing Vehicle Idling

  2. Idling Emissions Reduction Technology with Low Temperature Combustion of DI Biodiesel and PFI n-Butanol

    Broader source: Energy.gov [DOE]

    Results from an idling strategy using PCCI coupled with LTC indicate that, when used with n-butanol, it can be very promising for extended idling including the LTC regimes.

  3. Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants for Improved Energy Efficiency and Reduced Emissions in Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  4. Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications

    SciTech Connect (OSTI)

    Daniel T. Hennessy

    2010-06-15

    Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

  5. Reduced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reduce Waste and Save Energy this Holiday Season Reduce Waste and Save Energy this Holiday Season December 5, 2014 - 9:55am Addthis Wrap your gifts with recycled paper to reduce waste and save money. | Photo courtesy of istockphoto/diane555 Wrap your gifts with recycled paper to reduce waste and save money. | Photo courtesy of istockphoto/diane555 Paige Terlip Paige Terlip Former Communicator, National Renewable Energy Laboratory What are the key facts? Reduce waste and save energy this holiday

  6. Vehicle Technologies Office Merit Review 2016: GEFORCE: Gasoline Engine and Fuels Offering Reduced Fuel Consumption and Emissions

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Fuel...

  7. Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback

    SciTech Connect (OSTI)

    Gonder, J.; Earleywine, M.; Sparks, W.

    2012-06-01

    Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behavior influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.

  8. Fact #917: March 21, 2016 Work Truck Daily Idle Time by Industry - Dataset

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 7: March 21, 2016 Work Truck Daily Idle Time by Industry - Dataset Fact #917: March 21, 2016 Work Truck Daily Idle Time by Industry - Dataset Excel file and dataset for Work Truck Daily Idle Time by Industry fotw#917_web.xlsx (15.85 KB) More Documents & Publications Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies - Dataset Fact #833: August 11, 2014 Fuel Economy

  9. NREL Reduces Climate Control Loads in Electric Vehicles (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demonstrates that zonal climate control can reduce air conditioning power and improve range while maintaining driver thermal sensation. When the climate control system in an electric-drive vehicle (EDV) is operating, the energy consumed has a significant impact on range. Researchers at the National Renewable Energy Laboratory (NREL) are seeking to increase in-use EDV range by minimizing climate control energy requirements. The goal is to increase EDV range by 10% during operation of the climate

  10. Vehicle Technologies Office Merit Review 2014: Improving Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Presentation given by Cooper Tire at 2014 DOE ...

  11. Alternative Fuels Data Center: Idle-Reduction Efforts Cut Emissions...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... GE Showcases Innovation in Alternative Fuel Vehicles July 15, 2015 Photo of a locomotive engine carrying passenger cars. New Hampshire Railway Makes Tracks With Biodiesel June 27, ...

  12. August 2015 National Idling Reduction Network News | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Other Resources of Interest Advanced Energy Storage for Automotive Applications: Lithium Ion Batteries for Battery, Plug-In Hybrid, and Hybrid Electric Vehicles and...

  13. xdamp An IDL-based data and image manipulation program

    Energy Science and Technology Software Center (OSTI)

    2002-06-26

    xdamp is a graphical user interface (GUI) designed to allow the user to manipulate two-dimensional waveforms (data vs. time) and images (usually digitized radiographic film or digital camera outputs)that are typical of electrical engineering applications. A typical single data set from these applications will generate ~ 100 time-dependent waveforms and possibly a few images. xdamp can manipulate waveforms both in time and in amplitude. Typical operations are: time shifting, truncating before or after a specificmore » time, adding, multiplying, integrating, and averaging. When manipulating images, the spatial dimensions are maintained as important data. Standard electrical engineering quantities (maximum, minimum, fully-width-at-half-maximum, rise-time, mean, standard deviation) are calculated for each waveform and automatically displayed. Annotation can be added to each waveform and/or image and the overall file so that the data contains full documentation. PostScript printing is supported. xdamp supports full audit trail information on each waveform. Data are saved using the Hierarchical Data Format (HDF) from the National Center for Supercomputing Applications. xdamp uses the Interactive Data Language (IDL) from Research Systems, Inc., a Xerox company, as the processing engine. The entire program is written inthe IDL macro language to enhance portability. IDL is currently supported on the macintosh, alpha computers, Windows-based computers, and on virtually all UNIX platforms. Portability to all of these platforms has been verified. xdamp has a full internal language for creating macros useful for repetitive data reduction and analysis. xdamp can manipulate waveforms both in time and in amplitude. Some advanced features included are: the ability to compare waveforms in time and amplitude, the ability to generate high-frequence cable compensators, both integration and differentiation of waveforms, Fourier transforms of waveforms, and automatic execution of

  14. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    Police cars in Tallahassee, FL are using EECBG funding from the Recovery Act to reduce idle time and save fuel and taxpayer money. | Courtesy of Tallahassee Police Department. Police cars in Tallahassee, FL are using EECBG funding from the Recovery Act to reduce idle time and save fuel and taxpayer money. | Courtesy of Tallahassee Police Department. John Johansen If you've ever watched an episode of the TV show "Cops," you might have noticed that police cars are often idling - whether

  15. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  16. Vehicle Technologies Office: Key Activities in Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy About the Vehicle Technologies Office » Vehicle Technologies Office: Key Activities in Vehicles Vehicle Technologies Office: Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean

  17. Vehicle Technologies Office: Natural Gas Vehicle Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (R&D) | Department of Energy Alternative Fuels » Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) Natural gas offers opportunities for reducing the use of petroleum in transportation, especially in medium- and heavy-duty vehicles. These fleets, which include a variety of vehicles such as transit buses, refuse haulers, delivery trucks, and long-haul trucks, currently

  18. Energy 101: Electric Vehicles

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  19. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  20. xdamp Version 6 : an IDL-based data and image manipulation program.

    SciTech Connect (OSTI)

    Ballard, William Parker

    2012-04-01

    The original DAMP (DAta Manipulation Program) was written by Mark Hedemann of Sandia National Laboratories and used the CA-DISSPLA{trademark} (available from Computer Associates International, Inc., Garden City, NY) graphics package as its engine. It was used to plot, modify, and otherwise manipulate the one-dimensional data waveforms (data vs. time) from a wide variety of accelerators. With the waning of CA-DISSPLA and the increasing popularity of Unix(reg sign)-based workstations, a replacement was needed. This package uses the IDL(reg sign) software, available from Research Systems Incorporated, a Xerox company, in Boulder, Colorado, as the engine, and creates a set of widgets to manipulate the data in a manner similar to the original DAMP and earlier versions of xdamp. IDL is currently supported on a wide variety of Unix platforms such as IBM(reg sign) workstations, Hewlett Packard workstations, SUN(reg sign) workstations, Microsoft(reg sign) Windows{trademark} computers, Macintosh(reg sign) computers and Digital Equipment Corporation VMS(reg sign) and Alpha(reg sign) systems. Thus, xdamp is portable across many platforms. We have verified operation, albeit with some minor IDL bugs, on personal computers using Windows 7 and Windows Vista; Unix platforms; and Macintosh computers. Version 6 is an update that uses the IDL Virtual Machine to resolve the need for licensing IDL.

  1. Vehicle Technologies Office Merit Review 2016: UV Curable Binder Technology to Reduce Manufacturing Cost and Improve Performance of LiB Electrodes

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Miltec UV International at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  2. Vehicle Technologies Office Merit Review 2015: Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low-Pressure Drop Systems to Reduce Engine Fuel Consumption

    Broader source: Energy.gov [DOE]

    Presentation given by Filter Sensing Technologies, Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development...

  3. Vehicle Technologies Office Merit Review 2014: Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low-Pressure Drop Systems to Reduce Engine Fuel Consumption

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Filter Sensing Technologies, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development...

  4. How Do You Reduce the Time You Spend Idling? | Department of Energy

    Energy Savers [EERE]

    Solar Energy | Department of Energy Halfway There But Far From Done: SunShot Surges Ahead on Path to Affordable Solar Energy Halfway There But Far From Done: SunShot Surges Ahead on Path to Affordable Solar Energy May 18, 2016 - 10:35am Addthis Halfway There But Far From Done: SunShot Surges Ahead on Path to Affordable Solar Energy What are the key facts? The SunShot Initiative has grown significantly in the last five years and is 70% of the way toward its goal to make solar fully

  5. Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel Trucks:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Comparison of Full-Fuel-Cycle Emissions, Energy Use, and Proximity to Urban Populations in Five States | Department of Energy Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel Trucks: A Comparison of Full-Fuel-Cycle Emissions, Energy Use, and Proximity to Urban Populations in Five States Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel Trucks: A Comparison of Full-Fuel-Cycle Emissions, Energy Use, and Proximity to Urban Populations in Five States Poster

  6. July 2015 National Idling Reduction Network News | Department...

    Energy Savers [EERE]

    ... U.S. EPA and the Port Authority of New York & New Jersey (PANYNJ) have reached an agreement to reduce air pollution at PANYNJ. The agreement includes a provision to reduce truck ...

  7. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  8. Vehicle underbody fairing

    DOE Patents [OSTI]

    Ortega, Jason M.; Salari, Kambiz; McCallen, Rose

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  9. Hybrid and Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  10. Vehicle Technologies Office Merit Review 2015: Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Miltec UV International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about utilization of UV or...

  11. Vehicle Technologies Office Merit Review 2014: Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Miltec UV International at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the utilization of UV...

  12. DIESEL TRUCK IDLING EMISSIONS - MEASUREMENTS AT A PM2.5 HOT SPOT

    SciTech Connect (OSTI)

    Parks, II, James E; Miller, Terry L.; Storey, John Morse; Fu, Joshua S.; Hromis, Boris

    2007-01-01

    The University of Tennessee and Oak Ridge National Laboratory conducted a 5-month long air monitoring study at the Watt Road interchange on I-40 in Knoxville Tennessee where there are 20,000 heavy-duty trucks per day traveling the interstate. In addition, there are 3 large truck stops at this interchange where as many as 400 trucks idle engines at night. As a result, high levels of PM2.5 were measured near the interchange often exceeding National Ambient Air Quality Standards. This paper presents the results of the air monitoring study illustrating the hourly, day-of-week, and seasonal patterns of PM2.5 resulting from diesel truck emissions on the interstate and at the truck stops. Surprisingly, most of the PM2.5 concentrations occurred during the night when the largest contribution of emissions was from idling trucks rather than trucks on the interstate. A nearby background air monitoring site was used to identify the contribution of regional PM2.5 emissions which also contribute significantly to the concentrations measured at the site. The relative contributions of regional background, local truck idling and trucks on the interstate to local PM2.5 concentrations are presented and discussed in the paper. The results indicate the potential significance of diesel truck idling emissions to the occurrence of hot-spots of high PM2.5 concentrations near large truck stops, ports or border crossings.

  13. Alternative Fuels Data Center: County Fleet Goes Big on Idle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... budget with minimal disruptions to ongoing operations, reducing our dependence on foreign oil, shrinking our environmental footprint, and serving as an example for other fleets." ...

  14. Schools Move Forward with Idle Reduction | Department of Energy

    Energy Savers [EERE]

    As children are particularly susceptible to pollution, reducing these emissions can help improve air quality and students' health. Thankfully, various Clean Cities coalitions, ...

  15. Alternative Fuels Data Center: Idle Reduction Programs at Tennessee...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    In addition, this will help to improve our local air quality and reduce oil consumption," Keel said. But the impact is being felt inside the classroom too. Drawing upon research ...

  16. Stop and Restart Effects on Modern Vehicle Starting System Components

    SciTech Connect (OSTI)

    Windover, Paul R.; Owens, Russell J.; Levinson, Terry M.; Laughlin, Michael; Gaines, Linda

    2015-01-01

    Many drivers of personal and commercial vehicles believe that turning the vehicle off and on frequently instead of idling will cause premature wear of the starter system (starter motor and starter battery). As a result, they are concerned that the replacement cost of the starter motor and/or battery due to increased manual engine cycling would be more than the cumulative cost of the fuel saved by not idling unnecessarily. A number of variables play a role in addressing this complex concern, including the number of starting cycles per day, the time between starting cycles, the intended design life of the starting system, the amount of fuel used to restart an engine, and the cumulative cost of the saved fuel. Qualitative and quantitative information from a variety of sources was used to develop a life-cycle economic model to evaluate the cost and quantify the realistic factors that are related to the permissible frequency of starter motor cycles for the average vehicle to economically minimize engine idle time. Annual cost savings can be calculated depending on shutdown duration and the number of shutdown cycles per day. Analysis shows that cost savings are realized by eliminating idling exceeding one minute by shutting down the engine and restarting it. For a typical motorist, the damage to starting system components resulting from additional daily start cycles will be negligible. Overall, it was found that starter life is mostly dependent on the total number of start cycles, while battery life is more dependent on ensuring a full charge between start events.

  17. National Parks Move Forward on Sustainable Transportation in...

    Office of Environmental Management (EM)

    The park has also installed two electric vehicle charging stations and is educating staff members, concessionaires, and the public on the benefits of reducing vehicle idling. ...

  18. Vehicle Crashworthiness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Idle Reduction Weight Exemption A vehicle equipped with a fully functional idle reduction system designed to reduce fuel use and emissions from engine idling may exceed the maximum weight limitations by up to 400 pounds to accommodate the added weight of the idle reduction technology. (Reference Oregon Revised Statutes 818.03

  20. Characterization of high level nuclear waste glass samples following extended melter idling

    SciTech Connect (OSTI)

    Fox, K.

    2015-06-16

    The Savannah River Site Defense Waste Processing Facility (DWPF) melter was recently idled with glass remaining in the melt pool and riser for approximately three months. This situation presented a unique opportunity to collect and analyze glass samples since outages of this duration are uncommon. The objective of this study was to obtain insight into the potential for crystal formation in the glass resulting from an extended idling period. The results will be used to support development of a crystal-tolerant approach for operation of the high level waste melter at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Two glass pour stream samples were collected from DWPF when the melter was restarted after idling for three months. The samples did not contain crystallization that was detectible by X-ray diffraction. Electron microscopy identified occasional spinel and noble metal crystals of no practical significance. Occasional platinum particles were observed by microscopy as an artifact of the sample collection method. Reduction/oxidation measurements showed that the pour stream glasses were fully oxidized, which was expected after the extended idling period. Chemical analysis of the pour stream glasses revealed slight differences in the concentrations of some oxides relative to analyses of the melter feed composition prior to the idling period. While these differences may be within the analytical error of the laboratories, the trends indicate that there may have been some amount of volatility associated with some of the glass components, and that there may have been interaction of the glass with the refractory components of the melter. These changes in composition, although small, can be attributed to the idling of the melter for an extended period. The changes in glass composition resulted in a 70-100 °C increase in the predicted spinel liquidus temperature (TL) for the pour stream glass samples relative to the analysis of the melter feed prior to

  1. Vehicle Technologies Office: Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: Events Vehicle Technologies Office: Events The Vehicle Technologies Office holds a number of events to advance research, development and deployment of vehicles that can reduce the use of petroleum in transportation. The Vehicle Technologies Office holds an Annual Merit Review and Peer Evaluation each year, where advanced vehicle technologies projects funded by VTO are presented and reviewed for their merit. The Merit Review presentations and reports from past years

  2. Vehicle Technologies Office: Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicles & Batteries » Vehicle Technologies Office: Batteries Vehicle Technologies Office: Batteries Vehicle Technologies Office: Batteries Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) cars, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas

  3. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  4. Electric Vehicles

    Broader source: Energy.gov [DOE]

    This album contains a variety of all-electric, plug-in hybrid electric and fuel cell electric vehicles. For a full list of all electric vehicles visit the EV Everywhere website.

  5. Vehicle Aerodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Aerodynamics Background Tougher emissions standards, as well as industry demands for more powerful engines and new vehicle equipment, continue to increase the heat rejection requirements of heavy-duty vehicles. However, changes in the physical configuration and weight of these vehicles can affect how they handle wind resistance and energy loss due to aerodynamic drag. Role of High-Performance Computing The field of computational fluid dynamics (CFD) offers researchers the ability to

  6. Illinois Accelerator Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VEHICLE TECHNOLOGIES OFFICE Idling Reduction for Emergency and Other Service Vehicles Emergency vehicles, such as police cars, ambulances, and fire trucks, along with other service vehicles such as armored cars, are often exempt from laws that limit engine idling. However, these vehicles can save fuel and reduce emissions with technologies that allow them to perform vital services without idling. Police Vehicles Police cruisers spend much of their time parked and running while offcers monitor

  7. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Connected and Automated Vehicles Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connected and Automated Vehicles Chapter 8: Technology Assessments Introduction to Connected and Automated Vehicles Summary Connected vehicles are able to communicate with other vehicles and infrastructure automatically to improve transportation system function. Vehicle automation refers to the ability of a vehicle to operate with reduced or without direct human operation. Using a combination of advanced sensors and controls, sophisticated learning algorithms, and GPS and mapping technologies,

  8. Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies

  9. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  10. vehicle technologies office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Technologies Office The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the U.S. Department of Energy has reduced the costs of producing electric vehicle batteries by more than 35%. DOE has also pioneered better combustion engines that have saved billions of gallons of petroleum fuel, while making diesel vehicles as clean as

  11. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  12. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  13. Alternative Fuels Data Center: Vehicle Parts and Equipment to...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... By reducing the speed limit of their vehicles from 70 to 65 miles per hour, Braun's vehicles are now saving 0.5 miles per gallon of fuel for each vehicle. Synthetic Oil Synthetic ...

  14. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and ...

  15. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: AVTA - Electric Vehicle Community and Fleet Readiness Data and Reports Making plug-in electric vehicles (PEVs, also known as electric cars) as ...

  16. Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office is developing more energy efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  17. The Path to Low Carbon Passenger Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Path to Low Carbon Passenger Vehicles The Path to Low Carbon Passenger Vehicles Technology to reduce GHG emissions by 40% available by 2025, and cost effective. deer10_cackette.pdf (665.34 KB) More Documents & Publications Reducing Vehicle Emissions to Meet Environmental Goals Moving toward a commercial market for hydrogen fuel cell vehicles A View From The Bridge

  18. Aerodynamic Drag Reduction Apparatus For Wheeled Vehicles In Ground Effect

    DOE Patents [OSTI]

    Ortega, Jason M.; Salari, Kambiz

    2005-12-13

    An apparatus for reducing the aerodynamic drag of a wheeled vehicle in a flowstream, the vehicle having a vehicle body and a wheel assembly supporting the vehicle body. The apparatus includes a baffle assembly adapted to be positioned upstream of the wheel assembly for deflecting airflow away from the wheel assembly so as to reduce the incident pressure on the wheel assembly.

  19. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  20. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  1. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  2. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  3. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  4. AVTA: Quantifying the Effects of Idle Stop Systems on Fuel Economy

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. This report gives an overall analysis of stop-start technology. This research was conducted by Idaho National Laboratory.

  5. Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles Development of Partial Filter Technology for HDD ...

  6. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles Advanced Soft Switching Inverter for Reducing Switching and Power Losses

  7. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C. |

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  8. Throttle valve position-detecting device for a vehicle engine

    SciTech Connect (OSTI)

    Minagawa, K.

    1987-08-25

    A throttle valve position-detecting device is described for a vehicle, for detecting the position of a throttle valve in a throttle body provided for an engine mounted on the vehicle, by detecting rotation of a throttle shaft of the throttle valve, and in which the throttle shaft is supported to the throttle body through a bearing. The throttle valve position-detecting device consists of: a first rotary element fixed to the throttle shaft for rotating together with the throttle shaft; a second rotary element contacting the first rotary element for rotating with the first rotary element by receiving rotary power from the first rotary element; spring means for pressing the second rotary element towards the first rotary element against the rotary power; and detecting means for detecting from a rotary position of the second rotary element at least a position of the throttle valve corresponding to an idling condition of the engine; the first and second rotary elements being positioned with such a relationship as a crossing angle of a moving direction of the throttle shaft by clearance between the throttle shaft and the bearing and a transmitting direction of the rotary power from the first rotary element to the second rotary element during the idling condition of the engine being within a range from 45 to 90 degrees.

  9. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE has also pioneered better combustion engines that have saved billions of gallons of petroleum fuel, while making diesel vehicles as clean as gasoline-fueled vehicles. Vehicle ...

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.