National Library of Energy BETA

Sample records for reduces vehicle idling

  1. Comparing Emissions Benefits from Regulating Heavy Vehicle Idling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Regulating Heavy Vehicle Idling Comparing Emissions Benefits from Regulating Heavy Vehicle Idling 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  2. Vehicle Technologies Office: National Idling Reduction Network...

    Energy Savers [EERE]

    Past Newsletters The National Idling Reduction Network News is currently sent as an HTML newsletter and issues starting with the May 2014 newsletter can be searched via the...

  3. TECHNICAL NOTE HEAVY-DUTY DIESEL VEHICLE (HDDV) IDLING ACTIVITY AND

    E-Print Network [OSTI]

    #12;#12;TECHNICAL NOTE HEAVY-DUTY DIESEL VEHICLE (HDDV) IDLING ACTIVITY AND EMISSIONS STUDY: PHASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Current Diesel Idling Emissions Factors

  4. Reduction in Vehicle Idling Emissions Using RFID Parking Permits Dawson, Pakes-Ahlman, Graham, Gutierrez, Vilasdaechanont

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    1 Reduction in Vehicle Idling Emissions Using RFID Parking Permits 9/20/13 Dawson, Pakes consumption and vehicle emissions. RFID Background RFID tags contain electronically stored data that can's entrance and exit from parking ramps. Table 1. Average Idle Emission Rates by Pollutant and Vehicle Type

  5. Supplement for "Secondary organic aerosol1 formation from idling gasoline passenger vehicle2

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    40 °C. This facilitates evaporation and1 degradation of organic contaminants on the chamber walls passenger vehicles were tested at idling, the three cars selected8 represented three different European emission classes. All tested vehicles used three way9 catalysts. In the idling case, the cars were driven

  6. IDL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower, Wave andTechnicalBrief History ofIDL

  7. Application of Sleeper Cab Thermal Management Technologies to Reduce Idle Climate Control Loads in Long-Haul Trucks

    SciTech Connect (OSTI)

    Lustbader, J. A.; Venson, T.; Adelman, S.; Dehart, C.; Yeakel, S.; Castillo, M. S.

    2012-10-01

    Each intercity long-haul truck in the U.S. idles approximately 1,800 hrs per year, primarily for sleeper cab hotel loads. Including workday idling, over 2 billion gallons of fuel are used annually for truck idling. NREL's CoolCab project works closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling and fuel use. The impact of thermal load reduction technologies on idle reduction systems were characterized by conducting thermal soak tests, overall heat transfer tests, and 10-hour rest period A/C tests. Technologies evaluated include advanced insulation packages, a solar reflective film applied to the vehicle's opaque exterior surfaces, a truck featuring both film and insulation, and a battery-powered A/C system. Opportunities were identified to reduce heating and cooling loads for long-haul truck idling by 36% and 34%, respectively, which yielded a 23% reduction in battery pack capacity of the idle-reduction system. Data were also collected for development and validation of a CoolCalc HVAC truck cab model. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches.

  8. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles

    Broader source: Energy.gov [DOE]

    Based on a worksheet developed by Argonne National Laboratory, the idle fuel consumption rate for selected gasoline and diesel vehicles with no load (no use of accessories such as air conditioners,...

  9. Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsasIdle ReductionLight-Duty Vehicle Idle

  10. Diesel Engine Idling Test

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  11. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    SciTech Connect (OSTI)

    Jeff Wishart; Matthew Shirk

    2012-12-01

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.

  12. Alternative Fuels Data Center: Students Reduce Vehicle Idling in San

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA IMarylandOrleansRentalSantaBiodieselAntonio,

  13. Idling - cruising the fuel inefficiency highway.

    SciTech Connect (OSTI)

    Gaines, L.; Levinson, T.

    2011-06-30

    What is the purpose of idling? The scale of idling can be small, as when parents idle their vehicles while waiting for their children outside of school, or it can be large, as when ocean liners are in port. In many cases, the primary purpose for idling is to control the temperature of a passenger or freight compartment. Large line-haul trucks idle overnight to keep fuel and the engine warm, for the resting driver's comfort, to mask out noises and smells, and for safety. In addition, all classes of trucks idle during the workday at ports and terminals, busy delivery sites, border crossings, and other work sites. They may be idling to enable slow movement in a queue (creep idling) or to provide other services. Bus drivers also idle their vehicles while they wait for passengers and to warm up in the morning. Even locomotive engines are idled so they start, for hotel load, to keep the battery charged, to keep the toilet water from freezing, and for air brakes, or because the operator idles out of habit. Although this document focuses on long-haul trucks, much of the information applies to other vehicles as well. The impacts of idling are substantial, with as much as 6 billion gallons of fuel burned unnecessarily each year in the United States at a cost of over $20 billion. The extra hours of engine operation also cost the owners money for more frequent maintenance and overhauls. In addition, idling vehicles emit particulates (PM{sub 10}), nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and carbon dioxide (CO{sub 2}). These emissions, along with noise from idling vehicles, have led to many local and state restrictions on idling. Two main factors have combined to create a surge of interest in idling reduction (IR): (1) Increasing restrictions on idling for heavy vehicles and (2) The price of diesel fuel. Because stakeholders focus their efforts on improving different factors (air quality, fuel economy, noise level), they do not necessarily agree on the most advantageous technological alternatives to implement. In addition, although many equipment manufacturers have tried to educate customers and government agencies, they often provide conflicting claims about the comparative merits of different devices. This makes it difficult for truck owners to choose the right equipment for their needs. In this study, we present the first comparison of IR technologies with each other and with idling on the basis of both costs and full fuel-cycle emissions, for different locations, fuel prices, and idling patterns. The preferences described are for the technologies that reduce total emissions the most and cost truck owners the least. We also discuss how regulatory issues and legislation affect IR, what financial incentives help to promote IR, and how outreach and education approaches can be adopted to reduce the need to idle. Finally, we offer a prediction of how future research and development (R&D), regulations, and citizen involvement can help to improve fuel economy and clean the air.

  14. November 2014 National Idling Reduction Network News | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle operators. Plugging in rather than idling saves fuel and reduces emissions and engine wear. In New York City, a project is underway to test the viability of ambulances...

  15. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles Fact 861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles...

  16. Study of Oil Degradation in Extended Idle Operation Heavy Duty Vehicles 

    E-Print Network [OSTI]

    Kader, Michael Kirk

    2013-01-18

    Advances in engine oil technology and increased combustion efficiency has resulted in the longer oil intervals in vehicles. Current oil change interval practice only takes into account the mileage a vehicle has driven and ...

  17. Device for reducing vehicle aerodynamic resistance

    DOE Patents [OSTI]

    Graham, Sean C.

    2005-02-15

    A device for a vehicle with a pair of swinging rear doors, which converts flat sheets of pliable material hinged to the sides of the vehicle adjacent the rear thereof into effective curved airfoils that reduce the aerodynamic resistance of the vehicle, when the doors are closed by hand, utilizing a plurality of stiffeners disposed generally parallel to the doors and affixed to the sheets and a plurality of collapsible tension bearings struts attached to each stiffener and the adjacent door.

  18. Reducing Vehicle Emissions to Meet Environmental Goals | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Emissions to Meet Environmental Goals Reducing Vehicle Emissions to Meet Environmental Goals Now that both gasoline and diesel vehicles have been cleaned up, it's time to...

  19. Idling is Not the Way to Go

    SciTech Connect (OSTI)

    2013-06-01

    Researchers estimate that idling from heavy-duty and light-duty vehicles combined wastes about 6 billion gallons of fuel annually. Many states have put restrictions on idling, especially in metropolitan areas. Clearly, idling is not the way to go.

  20. National Idling Reduction Network News - April 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    go to http:www.transportation.anl.govenginesidlingtools.html. The idling reduction Web pages of DOE's Alternative Fuels and Advanced Vehicles Data Center website have also...

  1. Device for reducing vehicle aerodynamic resistance

    DOE Patents [OSTI]

    Graham, Sean C.

    2006-08-22

    A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular body disposed above rear wheels, comprising a plurality of load bearing struts attached to the bottom of the rectangular body adjacent its sides, a plurality of opposing flat sheets attached to the load bearing struts, and angled flaps attached to the lower edge of the opposing sheets defining an obtuse angle with the opposing flat sheets extending inwardly with respect to the sides of the rectangular body to a predetermined height above the ground, which, stiffen the opposing flat sheets, bend to resist damage when struck by the ground, and guide airflow around the rear wheels of the vehicle to reduce its aerodynamic resistance when moving.

  2. Device for reducing vehicle aerodynamic resistance

    DOE Patents [OSTI]

    Graham, Sean C.

    2006-03-07

    A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular flat front face comprising a plurality of load bearing struts of a predetermined size attached to the flat front face adjacent the sides and top thereof, a pair of pliable opposing flat sheets having an outside edge portion attached to the flat front face adjacent the sides thereof and an upper edge with a predetermined curve; the opposing flat sheets being bent and attached to the struts to form effective curved airfoil shapes, and a top pliable flat sheet disposed adjacent the top of the flat front face and having predetermined curved side edges, which, when the top sheet is bent and attached to the struts to form an effective curved airfoil shape, mate with the curved upper edges of the opposing sheets to complete the aerodynamic device.

  3. Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled

    Broader source: Energy.gov [DOE]

    For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to reduce vehicle miles traveled, as well as guidance and best practices for each strategy.

  4. National Idling Reduction Network News - July 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the battery state of charge. If the state of charge falls below a predetermined level, IdleWatch II automatically restarts the vehicle to recharge the battery (or notifies...

  5. Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Greenhouse Gas Emissions: The Combined Potential of Hybrid Technology and Behavioral Adaptation Title Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

  6. Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

  7. Strategic Use of Electric Vehicle Charging to Reduce Renewable Energy

    E-Print Network [OSTI]

    Strategic Use of Electric Vehicle Charging to Reduce Renewable Energy Curtailment on Oahu An analysis of the use of electric vehicle charging to mitigate renewable energy curtailment based on detailed using petroleum is typically used to fill the gap. When the renewable energy supply exceeds that which

  8. Vehicle Technologies Program - Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil

    SciTech Connect (OSTI)

    2011-08-01

    R&D drives innovation while lowering technology costs, which then enables the private sector to accelerate clean technology deployment. Along with R&D, DOE's Vehicles Technologies Program deploys clean, efficient vehicle technologies and renewable fuels, which reduce U.S. demand for petroleum products.

  9. Methods of reducing vehicle aerodynamic drag

    SciTech Connect (OSTI)

    Sirenko V.; Rohatgi U.

    2012-07-08

    A small scale model (length 1710 mm) of General Motor SUV was built and tested in the wind tunnel for expected wind conditions and road clearance. Two passive devices, rear screen which is plate behind the car and rear fairing where the end of the car is aerodynamically extended, were incorporated in the model and tested in the wind tunnel for different wind conditions. The conclusion is that rear screen could reduce drag up to 6.5% and rear fairing can reduce the drag by 26%. There were additional tests for front edging and rear vortex generators. The results for drag reduction were mixed. It should be noted that there are aesthetic and practical considerations that may allow only partial implementation of these or any drag reduction options.

  10. Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    As part of a two-year project to demonstrate energy efficiency measures, renewable energy generation, and energy systems integration, the National Renewable Energy Laboratory (NREL) has identified advanced plug load controls as a promising technology for reducing energy use and related costs in the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) office spaces.

  11. Fact #853 December 29, 2014 Stop/Start Technology is in nearly 5% of All New Light Vehicles Produced

    Broader source: Energy.gov [DOE]

    Stop/Start technology improves fuel economy by reducing engine idle time. As a vehicle slows to a stop, the engine is shut down but then immediately restarts when the break pedal is released so...

  12. Idling Reduction for Personal Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on asPublicationsFuelsSchool BusFuel-

  13. An Introduction to IDL Instructor

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Fanning, IDL Programming Techniques, 2nd Edition. ­ Liam E. Gumley, Practical IDL Programming #12 Basic syntax (variable types, loops, program control) Program structure (procedure and subroutines programs from IDL #12;Advantages of IDL Optimized for array operations ­ Independent operations

  14. IDL Syllabus Week 1 (September 29): Introduction

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    .google.com/group/comp.lang.idl-pvwave/topics?pli=1 http://idlastro.gsfc.nasa.gov/idl_html_help/Functional_List_of_IDL_Routines.html Books: David

  15. Multiyear Program Plan: Reducing Friction and Wear in Heavy Vehicles

    SciTech Connect (OSTI)

    R.R. Fessler; G.R. Fenske

    1999-12-13

    As described in its multiyear program plan for 1998-2000, the Office of Heavy Vehicle Technologies (OHVT) envisions the development of a fuel-flexible, energy-efficient, near-zero-emissions, heavy-duty U.S. diesel engine technology devolving into all truck classes as a real and viable strategy for reducing energy requirements for commercial transport services and the rapidly growing multipurpose vehicle market (pickups, vans, and sport utility vehicles). Implementation of the OHVT program plan will have significant national benefits in energy savings, cleaner air, more jobs, and increased gross domestic product (GDP). Successful implementation will reduce the petroleum consumption of Class 1-8 trucks by 1.4 million barrels of oil per day by 2020 and over 1.8 million by 2030, amounting to a reduction in highway petroleum consumption of 13.2% and 18.6%, respectively. All types of regulated emissions will be reduced, that is, 20% drop in PM10 emissions (41,000 metric tons per year) by 203 0, 17% reduction in CO2 greenhouse gases (205 million metric tons per year), 7% reduction in NOx, 20% reduction in NMHC, and 30% reduction in CO. An increase of 15,000 jobs by 2020 is expected, as is an increase of $24 billion in GDP. The strategy of OHVT is to focus primarily on the diesel engine since it has numerous advantages. It has the highest efficiency of any engine today, 45% versus 30% for production gasoline engines; and it can be made more efficient at least to 55% and possibly up to 63%. It is the engine of choice for heavy vehicles (trucks), because it offers power, efficiency, durability, and reliability and is used extensively in rail, marine, and off-road applications. Its emission can be ultra-low to near zero, and the production infrastructure is already in place. The primary goals of OHVT are as follows: (1) Develop by 2002 the diesel-engine enabling technologies to support large-scale industry dieselization of light trucks, achieving a 35% fuel efficiency improvement over equivalent gasoline-fueled trucks. (2) Develop by 2004 the enabling technology for a Class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) that will meet prevailing emission standards, using either diesel or a liquid alternative fuel. (3) Develop by 2006 diesel engines with fuel flexibility and a thermal efficiency of 55% with liquid alternative fuels, and a thermal efficiency of 55% with dedicated gaseous fuels. (4) Develop a methodology for analyzing and evaluating the operation of a heavy vehicle as an integrated system, considering such factors as engine efficiency; emissions; rolling resistance; aerodynamic drag; friction, wear, and lubrication effects; auxiliary power units; material substitutions for reducing weight; and other sources of parasitic energy losses. Overarching these considerations is the need to preserve system functionality, cost, competitiveness, reliability, durability, and safety.

  16. Alternative Fuels Data Center: Idle Reduction

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More places toEthanolVehiclesHydrogenIdle

  17. Drive-by Motor Vehicle Emissions: Immediate Feedback in Reducing Air

    E-Print Network [OSTI]

    Denver, University of

    Drive-by Motor Vehicle Emissions: Immediate Feedback in Reducing Air Pollution G A R Y A . B I S H, Denver, Colorado 80208 L E N O R A B O H R E N The National Center for Vehicle Emissions Control & Safety of vehicle emissions information system has been developed which utilizes an innovative variable message sign

  18. Which Idling Reduction Technologeis are the Best? | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idling Reduction Technologeis are the Best? Which Idling Reduction Technologeis are the Best? Benefits due to idling reduction depend on fuel and capital cost of equipment, idling...

  19. Method and system for reducing errors in vehicle weighing systems

    DOE Patents [OSTI]

    Hively, Lee M. (Philadelphia, TN); Abercrombie, Robert K. (Knoxville, TN)

    2010-08-24

    A method and system (10, 23) for determining vehicle weight to a precision of <0.1%, uses a plurality of weight sensing elements (23), a computer (10) for reading in weighing data for a vehicle (25) and produces a dataset representing the total weight of a vehicle via programming (40-53) that is executable by the computer (10) for (a) providing a plurality of mode parameters that characterize each oscillatory mode in the data due to movement of the vehicle during weighing, (b) by determining the oscillatory mode at which there is a minimum error in the weighing data; (c) processing the weighing data to remove that dynamical oscillation from the weighing data; and (d) repeating steps (a)-(c) until the error in the set of weighing data is <0.1% in the vehicle weight.

  20. Caterpillar MorElectric DOE Idle Reduction Demonstration Program

    SciTech Connect (OSTI)

    John Bernardi

    2007-09-30

    This project titled 'Demonstration of the New MorElectric{trademark} Technology as an Idle Reduction Solution' is one of four demonstration projects awarded by the US Department of Energy in 2002. The goal of these demonstration and evaluation projects was to gather objective in-use information on the performance of available idle reduction technologies by characterizing the cost; fuel, maintenance, and engine life savings; payback; and user impressions of various systems and techniques. In brief, the Caterpillar Inc. project involved applying electrically driven accessories for cab comfort during engine-off stops and for reducing fuel consumption during on-highway operation. Caterpillar had equipped and operated five new trucks with the technology in conjunction with International Truck and Engine Corporation and COX Transfer. The most significant result of the project was a demonstrated average idle reduction of 13.8% for the 5 truck MEI fleet over the control fleet. It should be noted that the control fleet trucks were also equipped with an idle reduction device that would start and stop the main engine automatically in order to maintain cab temperature. The control fleet idle usage would have been reduced by 3858 hours over the 2 year period with the MEI system installed, or approximately 2315 gallons of fuel less (calculations assume a fuel consumption of 0.6 gallons per hour for the 13 liter engine at idle). The fuel saved will be significantly larger for higher displacement engines without idle reduction equipment such as the engine auto start/stop device used by COX Transfer. It is common for engines to consume 1.0 gallons per hour which would increase the fuel savings to approximately 1260 gallons per truck per year of typical idling (1800 hours idle/yr).

  1. Shaping the Terms of Competition: Environmental Regulation and Corporate Strategies to Reduce Diesel Vehicle Emissions

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Diesel Vehicle Emissions by Christine Bik-Kay Ng B.S., Civil and Environmental Engineering University Strategies to Reduce Diesel Vehicle Emissions by Christine Bik-Kay Ng Submitted to the Engineering Systems. This research explains the conditions under which competitive regulatory strategies are pursued in the diesel

  2. NREL Reduces Climate Control Loads in Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    NREL demonstrates that zonal climate control can reduce air conditioning power and improve range while maintaining driver thermal sensation.

  3. Future vehicle types and characteristics : reducing fuel consumption through shifts in vehicle segments and operating characteristics

    E-Print Network [OSTI]

    Perlman, David (David Lee)

    2015-01-01

    Light duty vehicles represent a notable target of regulation in the United States due to their environmental, safety, and economic externalities. Fuel economy regulation represents one of the more prominent attempts to ...

  4. Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden

    E-Print Network [OSTI]

    Klier, Thomas

    France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 2005–2010, a vehicle’s tax is negatively correlated with its ...

  5. National Idling Reduction Network News - April 2011 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. apr11networknews.pdf More...

  6. National Idling Reduction Network News - April 2010 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. apr10networknews.pdf More...

  7. National Idling Reduction Network News - October 2009 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. oct09networknews.pdf More...

  8. National Idling Reduction Network News - December 2009 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events. dec09networknews.pdf More...

  9. Zero Emission Vehicle Program Changes In 1990, California embarked on a plan to reduce vehicle emissions to zero through the gradual introduction of

    E-Print Network [OSTI]

    Gille, Sarah T.

    12/10/01 Zero Emission Vehicle Program Changes In 1990, California embarked on a plan to reduce vehicle emissions to zero through the gradual introduction of zero emission vehicles (ZEVs). Specifically, the Air Resources Board mandated that at least 2 percent, 5 percent and 10 percent of new car sales

  10. Examining the Costs and Benefits of Technology Pathways for Reducing Fuel

    E-Print Network [OSTI]

    California at Davis, University of

    Examining the Costs and Benefits of Technology Pathways for Reducing Fuel Use and Emissions from On policy harmonized Tax credits Anti-idling Low Carbon Fuel Standard #12;Lifecycle Emissions Modeled in TOP-HDV 5 Fuel production, refining, and distribution Material acquisition, processing, and vehicle assembly

  11. Power Capping Via Forced Idleness Anshul Gandhi

    E-Print Network [OSTI]

    Harchol-Balter, Mor

    Power Capping Via Forced Idleness Anshul Gandhi Carnegie Mellon University anshulg@cs.cmu.edu Mor@us.ibm.com Abstract We introduce a novel power capping technique, IdleCap, that achieves higher effective server frequency for a given power constraint than existing techniques. IdleCap works by repeatedly alternating

  12. Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle

    SciTech Connect (OSTI)

    Jehlik, Forrest; LaClair, Tim J

    2014-01-01

    Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

  13. The Cost of Reduced Visibility Due to Particulate Air Pollution From Motor Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark A.; Murphy, James; McCubbin, Donald R.; Kim, Jin

    1996-01-01

    of all anthropogenic TSP pollution, and of motor-vehicle TSPPARTICULATE AIR POLLUTION FROM MOTOR VEHICLES Report #13 inPOLLUTION FROM MOTOR VEHICLES

  14. Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Broader source: Energy.gov [DOE]

    Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel efficiency...

  15. National Idling Reduction Network News - December 2009

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ssprogramssblilp.htm Environmental Finance Center, University of Maryland Port of Baltimore Clean Diesel Program (including Locomotive Engine Idle Reduction Grant Sub- Program)...

  16. National Idling Reduction Network News - January 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ogramssblilp.htm Environmental Finance Center, University of Maryland Port of Baltimore Clean Diesel Program (including Locomotive Engine Idle Reduction Grant Sub- Program)...

  17. National Idling Reduction Network News - November 2009

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    essprogramssblilp.htm Environmental Finance Center, University of Maryland Port of Baltimore Clean Diesel Program (including Locomotive Engine Idle Reduction Grant Sub-Program)...

  18. Idling is Not the Way to Go

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    idling around schools can contribute to asthma and other ailments, as children's lungs are more susceptible to damage than adults' bodies. Unfortunately, there are a few...

  19. National Idling Reduction Network News - August 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    awareness in the state's drivers manual; 2. Increase idling awareness, along with other eco-driving behaviors, in drivers education curricula; and 3. Work with Vermont's science...

  20. Which is Greener: Idle, or Stop and Restart? | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is Greener: Idle, or Stop and Restart? This poster presents data comparing fuel use and emissions for short passenger-car stops vs. idling. Fuel use is always greater for idling...

  1. Evaluating Benefits of Idling Restrictions in a Large Northern...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluating Benefits of Idling Restrictions in a Large Northern City While an anti-idling law in a large northern city has brought about the deployment of anti-idling technologies...

  2. Hydrogen-Enhanced Natural Gas Vehicle Program

    SciTech Connect (OSTI)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  3. Idling Emissions Reduction Technology with Low Temperature Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idling Emissions Reduction Technology with Low Temperature Combustion of DI Biodiesel and PFI n-Butanol Idling Emissions Reduction Technology with Low Temperature Combustion of DI...

  4. Emissions from Idling Trucks for Extended Time Periods | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idling Trucks for Extended Time Periods Emissions from Idling Trucks for Extended Time Periods 2002 DEER Conference Presentation: Oak Ridge National Laboratory 2002deerlewis.pdf...

  5. Systematic approach to analyzing and reducing aerodynamic drag of heavy vehicles

    SciTech Connect (OSTI)

    McCallen, R.; Browand, F.; Leonard, A.; Rutledge, W.

    1997-09-16

    This paper presents an approach for reducing aerodynamic drag of heavy vehicles by systematically analyzing trailer components using existing computational tools and moving on to the analyses of integrated tractor-trailers using advanced computational tools. Experimental verification and validation are also an important part of this approach. The project is currently in the development phase while we are in the process of constructing a Multi-Year Program Plan. Projects I and 2 as described in this paper are the anticipated project direction. Also included are results from past and current related activities by the project participants which demonstrate the analysis approach.

  6. Use of a Reduced IMU to Aid a GPS Receiver with Adaptive Tracking Loops for Land Vehicle Navigation

    E-Print Network [OSTI]

    Calgary, University of

    Use of a Reduced IMU to Aid a GPS Receiver with Adaptive Tracking Loops for Land Vehicle Navigation D. Sun, M. G. Petovello, and M. E. Cannon Position, Location And Navigation (PLAN) Group Department the performance of the TLA GPS/reduced IMU in both navigation performance and PLL tracking ability. Keywords GPS

  7. National Idling Reduction Network News - July 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    http:wedc.orgsep and select the second video. More information is available at http:energy.govarticlesidle-free-systems-does-not-stand-idly and http:idlefreesystems.com....

  8. National Idling Reduction Network News - April 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EBINAR&utmcampaignCH+Robinson+follo wup+2&utmmediumemail DieselProgress Nickel Supercapacitors as Part of an Idle-Reduction Strategy http:www.dpna- digital.comdpna...

  9. Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi

    SciTech Connect (OSTI)

    Michael Wang

    2012-07-25

    To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continued to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.

  11. Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi

    ScienceCinema (OSTI)

    Michael Wang

    2013-06-05

    To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continued to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.

  12. Self-Adaptive Power Management of Idle Nodes in Large Scale Systems

    E-Print Network [OSTI]

    Zhu, Hong

    Self-Adaptive Power Management of Idle Nodes in Large Scale Systems YONGPENG LIU(1) , HONG ZHU(2 with multiple level dynamic sleep mechanisms to reduce power consumption. However, awaking sleeping nodes takes to balance between the systems energy consumption and the response time is a key problem in the power

  13. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

  14. Idling Pushes Profits out the Tailpipe

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlenderBusiness Case forbutton highlighted BrakingIdling

  15. National Idling Reduction Network News - April 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are "smart," which means that they detect which vehicles need the most charge and meter out power accordingly. Project partner Alaska Airlines has 204 electric GSE vehicles...

  16. A comparison of estimates of cost-effectiveness of alternative fuels and vehicles for reducing emissions

    SciTech Connect (OSTI)

    Hadder, G.R.

    1995-11-01

    The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain reductions in emissions of air pollutants. The CER can lead to selection of the most effective sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER estimates for alternative fuel vehicles (AFVs) have varied widely among pervious studies. In one of several explanations of LCER differences, this report uses a consistent basis for fuel price to re-estimate CERs for AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton includes compressed natural gas and ed Petroleum gas vehicles; and E85 flexible-fueled vehicles (with fuel mixture of 85 percent cellulose-derived ethanol in gasoline). The E85 system would be much less attractive if corn-derived ethanol were used. The CER for E85 (corn-derived) is higher with higher values placed on the reduction of gas emissions. CER estimates are relative to conventional vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 RFG program will be implemented before significant market penetration by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV type. The relative differences in cost and emissions reduction assumptions can be large, and the effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that methodological differences can make large contributions to CER differences among studies.

  17. Locomotive Emission and Engine Idle Reduction Technology Demonstration Project

    SciTech Connect (OSTI)

    John R. Archer

    2005-03-14

    In response to a United States Department of Energy (DOE) solicitation, the Maryland Energy Administration (MEA), in partnership with CSX Transportation, Inc. (CSXT), submitted a proposal to DOE to support the demonstration of Auxiliary Power Unit (APU) technology on fifty-six CSXT locomotives. The project purpose was to demonstrate the idle fuel savings, the Nitrous Oxide (NOX) emissions reduction and the noise reduction capabilities of the APU. Fifty-six CSXT Baltimore Division locomotives were equipped with APUs, Engine Run Managers (ERM) and communications equipment to permit GPS tracking and data collection from the locomotives. Throughout the report there is mention of the percent time spent in the State of Maryland. The fifty-six locomotives spent most of their time inside the borders of Maryland and some spent all their time inside the state borders. Usually when a locomotive traveled beyond the Maryland State border it was into an adjoining state. They were divided into four groups according to assignment: (1) Power Unit/Switcher Mate units, (2) Remote Control units, (3) SD50 Pusher units and (4) Other units. The primary data of interest were idle data plus the status of the locomotive--stationary or moving. Also collected were main engine off, idling or working. Idle data were collected by county location, by locomotive status (stationary or moving) and type of idle (Idle 1, main engine idling, APU off; Idle 2, main engine off, APU on; Idle 3, main engine off, APU off; Idle 4, main engine idle, APU on). Desirable main engine idle states are main engine off and APU off or main engine off and APU on. Measuring the time the main engine spends in these desirable states versus the total time it could spend in an engine idling state allows the calculation of Percent Idle Management Effectiveness (%IME). IME is the result of the operation of the APU plus the implementation of CSXT's Warm Weather Shutdown Policy. It is difficult to separate the two. The units demonstrated an IME of 64% at stationary idle for the test period. The data collected during calendar year 2004 demonstrated that 707,600 gallons of fuel were saved and 285 tons of NOX were not emitted as a result of idle management in stationary idle, which translates to 12,636 gallons and 5.1 tons of NOx per unit respectively. The noise reduction capabilities of the APU demonstrated that at 150 feet from the locomotive the loaded APU with the main engine shut down generated noise that was only marginally above ambient noise level.

  18. Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles

    E-Print Network [OSTI]

    Evans, Christopher W. (Christopher William)

    2008-01-01

    The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

  19. Vehicle Technologies Office: National Idling Reduction Network News

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryinEnable Low TemperaturePlug-inofFuelDepartmentArchives |

  20. Vehicle Technologies Office: Idle Reduction | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedofDepartmentVOICESEnergyAboutDepartment

  1. Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentives Gonatural-gasAlternative Fuels

  2. Idling Reduction for Emergency and Other Service Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on asPublicationsFuelsSchool BusFuel

  3. Vehicle Technologies Office: National Idling Reduction Network News |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopment | DepartmentDepartment

  4. Reducing Idle Listening during Data Collection in Wireless Sensor Networks

    E-Print Network [OSTI]

    Erlebach, Thomas

    the data; if all nodes send their data to the base station, the result is an over-consumption of energy due slots may occur, which lead to a waste of energy and an increase in latency. To alleviate these problems to function. Therefore, careful control of energy consumption is a very significant factor in WSNs and poses

  5. Alternative Fuels Data Center: Delaware Reduces Truck Idling With

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I NLoans TheCountyCitiesDrivingElectrified Parking

  6. Efficient Management of Idleness in Systems Ningfang Mi

    E-Print Network [OSTI]

    Riska, Alma

    operate 24 hours a day, 7 days a week, it is becoming common to schedule maintenance jobs during idle is critical to system operation, yet their priority is not as high as that of foreground jobs, i are also collected. Resource management of idle times is now done in a dynamic way, using statistical

  7. National Idling Reduction Network News - December 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    outlet, is designed to power vehicles' nonpropulsion functions, such as booms. If the battery charge falls below a certain level, the system automatically starts the engine to...

  8. National Idling Reduction Network News - February 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generators and ambulances with auxiliary batteries, allowing these vehicle engines to be shut down and power provided from less fuel-intensive and polluting sources. While the...

  9. National Idling Reduction Network News - November 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    22, 2011 http:www.pca.state.mn.usindex. phpairair-quality-and- pollutantsgeneral-air- qualitymotor-vehicle- pollutiongrantsfinancial- assistance-for-clean-diesel-...

  10. Alternative Fuels Data Center: Idle Reduction Research and Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsasIdle Reduction Programs atIdle

  11. Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants for Improved Energy Efficiency and Reduced Emissions in Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  12. National Idling Reduction Network News - October 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    temperature is below 32 F or above 90 F. Additionally, the ordinance does not apply to emergency and airport-support vehicles, among others, or to in-traffic situations, such as...

  13. Anti-Idling Battery for Truck Applications

    SciTech Connect (OSTI)

    Keith Kelly

    2011-09-30

    In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

  14. Reduce growth rate of light-duty vehicle travel to meet 2050 global climate goals This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Reduce growth rate of light-duty vehicle travel to meet 2050 global climate goals This article has of contents for this issue, or go to the journal homepage for more Home Search Collections Journals About) 024018 (6pp) doi:10.1088/1748-9326/6/2/024018 Reduce growth rate of light-duty vehicle travel to meet

  15. Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications

    SciTech Connect (OSTI)

    Daniel T. Hennessy

    2010-06-15

    Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

  16. Energy use and emissions of idling-reduction options for heavy-duty diesel truacks a comparison.

    SciTech Connect (OSTI)

    Gaines, L. L.; Hartman, C. J. B.; Solomon, M. J.; Energy Systems; James Madison Univ.; Northeast States for Coordinated Air Use Management

    2009-01-01

    Pollution and energy analyses of different idling-reduction (IR) technologies have been limited to localized vehicle emissions and have neglected upstream energy use and regional emissions. In light of increasing regulation and government incentives for IR, this research analyzed the full fuel cycle effects of contemporary approaches. It compared emissions, energy use, and proximity to urban populations for nine alternatives, including idling, electrified parking spaces, auxiliary power units, and several combinations of these. It also compared effects for the United States and seven states: California, Florida, Illinois, New York, Texas, Virginia, and West Virginia. U.S. average emissions impacts from all onboard IR options were found to be lower than those from a 2007-compliant idling truck. Total particulate emissions from electrified parking spaces were found to be greater than those from a 2007 truck, but such emissions generally occurred in areas with low population density. The lowest energy use, carbon dioxide emissions, and nitrogen oxide emissions are seen with a direct-fired heater combined with electrified parking spaces for cooling, and the lowest particulate-matter emissions were found with a direct-fired heater combined with an onboard device for cooling. As expected, state-to-state variations in the climate and grid fuel mix influence the impacts of the full fuel cycle from IR technologies, and the most effective choice for one location may be less effective elsewhere.

  17. Idling Emissions Reduction Technology with Low Temperature Combustion of DI Biodiesel and PFI n-Butanol

    Broader source: Energy.gov [DOE]

    Results from an idling strategy using PCCI coupled with LTC indicate that, when used with n-butanol, it can be very promising for extended idling including the LTC regimes.

  18. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01

    century. Hybrid electric vehicles (HEVs) reduce emissionsas plug-in HEVs and full electric vehicles to market. In theon their design, hybrid electric vehicles employ electric

  19. Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback

    SciTech Connect (OSTI)

    Gonder, J.; Earleywine, M.; Sparks, W.

    2012-06-01

    Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behavior influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.

  20. Theoretical and experimental investigation into anti-idling A/C system F. Bagheri

    E-Print Network [OSTI]

    Bahrami, Majid

    : Air conditioning & refrigeration Anti-idling Optimum COP a b s t r a c t In this study, a recently developed truck anti-idling air conditioning (A/C) system is investigated. A mathematical model is developed draw by the air conditioning system stands for 4­8 percent of the total idling GHG emission [8

  1. National Idling Reduction Network News - Early Spring 2009 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOriginMaterialsEnergy Early Spring 2009 National Idling

  2. National Idling Reduction Network News - January 2013 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOriginMaterialsEnergy EarlyEnergy 3 National Idling

  3. National Idling Reduction Network News - October 2010 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOriginMaterialsEnergyEnergy 10 National Idling

  4. Alternative Fuels Data Center: Idle Reduction Benefits and Considerations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas aEthanolAFDCHydrogenProductionIdle

  5. Alternative Fuels Data Center: Idle Reduction Programs at Tennessee Schools

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsasIdle Reduction Programs at Tennessee

  6. Alternative Fuels Data Center: Idle Reduction Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsasIdle Reduction Programs at

  7. 21 2008, 12:00, Idle Gear Rattle in Manual Automotive Transmissions

    E-Print Network [OSTI]

    Psarrakos, Panayiotis

    21 2008, 12:00, , (). Idle Gear Rattle in Manual Automotive Transmissions) phenomena in Automotive Powertrain Systems, dynamic analysis of medical devices and virtual prototype

  8. Energy 101: Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  9. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  10. Transport Layer Approaches for Improving Idle Energy in Challenged Sensor Networks

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    Transport Layer Approaches for Improving Idle Energy in Challenged Sensor Networks Yong Wang, Chieh Terms Design, Performance Keywords DTN, challenged sensor networks, idle energy, transport protocol, the study of energy efficient networking solutions in sensor networks has been focusing on networks

  11. Exploiting Idle Communication Power to Improve Wireless Network Performance and Energy Efficiency

    E-Print Network [OSTI]

    Chen, Songqing

    low and high channel rate stations. I. INTRODUCTION Mobile devices are usually driven by battery power, which we call the idle communication power of a station. In addition to battery power, mobile devicesExploiting Idle Communication Power to Improve Wireless Network Performance and Energy Efficiency

  12. Easy Web Interfaces to IDL Code for NSTX Data Analysis W. M. Davisa

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Easy Web Interfaces to IDL Code for NSTX Data Analysis W. M. Davisa * a Princeton Plasma Physics and debugging time. A variety of "Web Tools" for the analysis and display of raw and analyzed physics data are in use on NSTX [1], and new ones can be produced quickly from existing IDL [2] code. A Web Tool with only

  13. Vehicle Technologies Office Merit Review 2015: Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low-Pressure Drop Systems to Reduce Engine Fuel Consumption

    Broader source: Energy.gov [DOE]

    Presentation given by Filter Sensing Technologies, Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development...

  14. Vehicle Technologies Office Merit Review 2014: Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low-Pressure Drop Systems to Reduce Engine Fuel Consumption

    Broader source: Energy.gov [DOE]

    Presentation given by Filter Sensing Technologies, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development...

  15. Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California

    E-Print Network [OSTI]

    Burke, Andy

    2004-01-01

    modern clean diesel engines and hybrid-electric powertrainsare advanced, clean diesel engines and hybrid-electricmarkets for diesel powered and hybrid-electric vehicles in

  16. August 2015 National Idling Reduction Network News | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Other Resources of Interest Advanced Energy Storage for Automotive Applications: Lithium Ion Batteries for Battery, Plug-In Hybrid, and Hybrid Electric Vehicles and...

  17. Improving Vehicle Fuel Efficiency Through Tire Design, Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight 2012 DOE Hydrogen...

  18. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01

    Car problems Pollution from motor vehicles Crude oil,the pollution from any one new motor vehicle is slight,of hybrid vehicles will reduce oil use and pollution in the

  19. SOCIALLY OPTIMAL CHARGING STRATEGIES FOR ELECTRIC VEHICLES

    E-Print Network [OSTI]

    Ciocan-Fontanine, Ionut

    SOCIALLY OPTIMAL CHARGING STRATEGIES FOR ELECTRIC VEHICLES ELENA YUDOVINA AND GEORGE MICHAILIDIS Abstract. Electric vehicles represent a promising technology for reducing emissions and dependence. This pa- per studies decentralized policies that assign electric vehicles to a network of charging

  20. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  1. Hybrid and Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  2. Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Trucks: A Comparison of Full-Fuel-Cycle Emissions, Energy Use, and Proximity to Urban Populations in Five States Predicted Impact of Idling Reduction Options for Heavy-Duty...

  3. On the Nature of Particulate Emissions from DISI Engines at Cold-Fast-Idle

    E-Print Network [OSTI]

    Ketterer, Justin E.

    Particulate emissions from a production gasoline direct injection spark ignition engine were studied under a typical cold-fast-idle condition (1200 rpm, 2 bar NIMEP). The particle number (PN) density in the 22 to 365 nm ...

  4. Reducing Your Leak Rate Without Repairing Leaks 

    E-Print Network [OSTI]

    Beals, C.

    2005-01-01

    below the header pressure have the added advantage of reducing the air consumption of equipment, as well as reducing the leak rate. Turn Off the Air to Idle Equipment In most plants, when production equipment operators shut off their equipment... of the reason why plant personnel often find leak repair unproductive. The other reason relates to the compressor controls. If the plant had several lubricated rotary screw compressors operating in modulation, repairing 2,000 cfm in leaks may only reduce...

  5. Vehicle Technologies Office Merit Review 2015: Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Miltec UV International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about utilization of UV or...

  6. Vehicle Technologies Office Merit Review 2014: Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Miltec UV International at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the utilization of UV...

  7. Vehicle underbody fairing

    DOE Patents [OSTI]

    Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  8. Performance targets for electric vehicle batteries

    E-Print Network [OSTI]

    Chang, Michael Tse-Gene

    2015-01-01

    Light-duty vehicle transportation accounted for 17.2% of US greenhouse gas emissions in 2012 [95]. An important strategy for reducing CO? emissions emitted by light-duty vehicles is to reduce per-mile CO? emissions. While ...

  9. How Do You Reduce the Time You Spend Idling? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORKof Energy BeforeSavingss g n i rOn Tuesday, Shannon

  10. Fact #787: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 20111,FY 2007Traffic Congestion,

  11. California Motor Vehicle Standards and Federalism: Lessons for the European Union

    E-Print Network [OSTI]

    Carlson, Ann E.

    2008-01-01

    to Reduce Motor Vehicle Emissions in Major Metropolitanin establishing motor vehicle emissions controls. The stateprocess in setting motor vehicle emissions standards has led

  12. xdamp Version 6 : an IDL-based data and image manipulation program.

    SciTech Connect (OSTI)

    Ballard, William Parker

    2012-04-01

    The original DAMP (DAta Manipulation Program) was written by Mark Hedemann of Sandia National Laboratories and used the CA-DISSPLA{trademark} (available from Computer Associates International, Inc., Garden City, NY) graphics package as its engine. It was used to plot, modify, and otherwise manipulate the one-dimensional data waveforms (data vs. time) from a wide variety of accelerators. With the waning of CA-DISSPLA and the increasing popularity of Unix(reg sign)-based workstations, a replacement was needed. This package uses the IDL(reg sign) software, available from Research Systems Incorporated, a Xerox company, in Boulder, Colorado, as the engine, and creates a set of widgets to manipulate the data in a manner similar to the original DAMP and earlier versions of xdamp. IDL is currently supported on a wide variety of Unix platforms such as IBM(reg sign) workstations, Hewlett Packard workstations, SUN(reg sign) workstations, Microsoft(reg sign) Windows{trademark} computers, Macintosh(reg sign) computers and Digital Equipment Corporation VMS(reg sign) and Alpha(reg sign) systems. Thus, xdamp is portable across many platforms. We have verified operation, albeit with some minor IDL bugs, on personal computers using Windows 7 and Windows Vista; Unix platforms; and Macintosh computers. Version 6 is an update that uses the IDL Virtual Machine to resolve the need for licensing IDL.

  13. Stop and Restart Effects on Modern Vehicle Starting System Components

    SciTech Connect (OSTI)

    Windover, Paul R.; Owens, Russell J.; Levinson, Terry M.; Laughlin, Michael; Gaines, Linda

    2015-01-01

    Many drivers of personal and commercial vehicles believe that turning the vehicle off and on frequently instead of idling will cause premature wear of the starter system (starter motor and starter battery). As a result, they are concerned that the replacement cost of the starter motor and/or battery due to increased manual engine cycling would be more than the cumulative cost of the fuel saved by not idling unnecessarily. A number of variables play a role in addressing this complex concern, including the number of starting cycles per day, the time between starting cycles, the intended design life of the starting system, the amount of fuel used to restart an engine, and the cumulative cost of the saved fuel. Qualitative and quantitative information from a variety of sources was used to develop a life-cycle economic model to evaluate the cost and quantify the realistic factors that are related to the permissible frequency of starter motor cycles for the average vehicle to economically minimize engine idle time. Annual cost savings can be calculated depending on shutdown duration and the number of shutdown cycles per day. Analysis shows that cost savings are realized by eliminating idling exceeding one minute by shutting down the engine and restarting it. For a typical motorist, the damage to starting system components resulting from additional daily start cycles will be negligible. Overall, it was found that starter life is mostly dependent on the total number of start cycles, while battery life is more dependent on ensuring a full charge between start events.

  14. Modeling the vehicle cycle impacts of hybrid electric vehicles

    SciTech Connect (OSTI)

    Wang, M.Q.; Gaines, L.; Cuenca, R. [Argonne National Lab., IL (United States). Center for Transportation Research

    1997-03-13

    Pure and hybrid electric vehicles, considered environmentally benign, are being developed to reduce urban air pollutant emissions. The obvious emissions benefit of pure electric vehicles is that they produce no tailpipe emissions. Hybrid electric vehicles have the potential of improving fuel economy and reducing emissions. However, both electric vehicles and hybrid electric vehicles (HEVs) do have their own environmental impacts. In order to quantify the potential benefits from introducing such vehicles, it is necessary to compare their impacts with those from the conventional vehicles they would replace. These impacts include energy use and emissions from the entire energy cycle, including fuel production, vehicle and battery production and recycling, and vehicle operation. Argonne`s previous work in collaboration with other national laboratories analyzed the total energy cycle of electric vehicles; this paper compares energy use and emissions for the total energy cycles of several HEV designs with those from modern conventional vehicles. The estimates presented indicate that use of HEVs can reduce energy use and emissions of greenhouse gases, volatile organic gases, carbon monoxide, and particulate matter smaller than 10 micrometers. HEVs may, in some cases, increase emissions of nitrogen oxides and sulfur oxides. Although some of the HEV designs illustrated in this paper could run a significant proportion of annual miles in all electric operation, no calculation of the emission reductions that result from using electricity from the utility grid is presented in this paper.

  15. The Path to Low Carbon Passenger Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Reducing Vehicle Emissions to Meet Environmental Goals Moving toward a commercial market for hydrogen fuel cell vehicles A View From The Bridge...

  16. A Review of the International Modeling Literature: Transit, Land Use, and Auto Pricing Strategies to Reduce Vehicle Miles Traveled and Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Rodier, Caroline J.

    2008-01-01

    Warming Solutions Act (AB 32) requires California’s green housewarming legislation in the U.S. California is tasked with reducing green house

  17. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

  18. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  19. Exploiting Idle Communication Power to Improve Wireless Network Performance and Energy Efficiency

    E-Print Network [OSTI]

    Wang, Haining

    rate stations. I. INTRODUCTION Mobile devices are usually driven by battery power. Due to limited communication power of a station. In addition to battery power, mobile devices are very sus- ceptibleExploiting Idle Communication Power to Improve Wireless Network Performance and Energy Efficiency

  20. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan The REVi plan addresses the electric...

  1. Development of a Microscopic Activity-Based Framework for Analyzing the Potential Impacts of Transportation Control Measures on Vehicle Emissions

    E-Print Network [OSTI]

    Recker, Wilfred W.; Parimi, A.

    2000-01-01

    Control Measures on Vehicle Emissions W. W. Recker and A.the increase in the vehicle emissions and energy consumptionalternatives in reducing vehicle emissions. Subject to this

  2. Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption

    E-Print Network [OSTI]

    McGaughey, Alan

    investment for reducing US gasoline consumption Scott B. Peterson a , Jeremy J. Michalek a,b,n a Dept per gal than oil premium estimates. c Current subsidies are misaligned with fuel savings. We discuss increased battery capacity per gallon saved, and both approaches have higher costs than US oil premium

  3. Aerodynamic Drag Reduction Apparatus For Wheeled Vehicles In Ground Effect

    DOE Patents [OSTI]

    Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA)

    2005-12-13

    An apparatus for reducing the aerodynamic drag of a wheeled vehicle in a flowstream, the vehicle having a vehicle body and a wheel assembly supporting the vehicle body. The apparatus includes a baffle assembly adapted to be positioned upstream of the wheel assembly for deflecting airflow away from the wheel assembly so as to reduce the incident pressure on the wheel assembly.

  4. VEHICLE EMISSIONS AND TRAFFIC MEASURES: EXPLORATORY ANALYSIS OF FIELD

    E-Print Network [OSTI]

    Frey, H. Christopher

    VEHICLE EMISSIONS AND TRAFFIC MEASURES: EXPLORATORY ANALYSIS OF FIELD OBSERVATIONS AT SIGNALIZED between vehicle emissions and traffic control measures is an important step toward reducing the potential roadway design and traffic control, have the ability to reduce vehicle emissions. However, current vehicle

  5. October 2014 National Idling Reduction Network News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and ReduceNovemberDOE's PrioritiesOctober 2013 News Blast October

  6. October 2015 National Idling Reduction Network News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and ReduceNovemberDOE's PrioritiesOctober 2013 News BlastOctober 2015

  7. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  8. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  9. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  10. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles Advanced Soft Switching Inverter for Reducing Switching and Power Losses...

  11. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    solar generation can reduce costs and emissions associated with supplying vehicle electricity demand dramatically. Sensitivity Analysis of Long-term

  12. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01

    and 584 for the HHDDT and Idle-creep tests respectively. Theonly the idle and creep modes of the test cycle, hereafter

  13. Assessment of Future Vehicle Transportation Options and Their...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the United States while simultaneously reducing GHGs through the expanded use of renewable electricity-fueled transportation and reduced emissions per vehicle-mile (VMT). On a...

  14. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation & Testing Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation & Testing...

  15. Clean Cities Annual Metrics Report 2009 (Revised)

    SciTech Connect (OSTI)

    Johnson, C.

    2011-08-01

    Document provides Clean Cities coalition metrics about the use of alternative fuels; the deployment of alternative fuel vehicles, hybrid electric vehicles (HEVs), and idle reduction initiatives; fuel economy activities; and programs to reduce vehicle miles driven.

  16. Alternative Fuels Data Center: Idle-Reduction Efforts Cut Emissions and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith Propane Florida Schools FirstIdle Reduction Research

  17. Vehicle Technologies Office Merit Review 2015: Dramatically Improve the Safety Performance of Li Ion Battery Separators and Reduce the Manufacturing Cost using Ultraviolet Curing and High Precision Coating Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Miltec UV International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dramatically improve...

  18. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  19. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  20. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  1. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  2. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

    2005-01-01

    of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

  3. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  4. Idle Spots

    E-Print Network [OSTI]

    Eddings, James Richard

    2009-06-02

    reacts with the clay and creates a unique glaze on the surface of the piece. Wood firing is similar to soda firing except that wood is the fuel to fire the kiln and the wood ash reacts with the clay to create a glaze on the surface of the piece. Through... soda or wood ash. The pasing of flame and the addition of soda are visualy recorded on the surface of the piece. Sandblasting, like natural erosion, takes away the outer skin and reveals the subsurface and cone 04 oxidation and painting increase...

  5. Throttle valve position-detecting device for a vehicle engine

    SciTech Connect (OSTI)

    Minagawa, K.

    1987-08-25

    A throttle valve position-detecting device is described for a vehicle, for detecting the position of a throttle valve in a throttle body provided for an engine mounted on the vehicle, by detecting rotation of a throttle shaft of the throttle valve, and in which the throttle shaft is supported to the throttle body through a bearing. The throttle valve position-detecting device consists of: a first rotary element fixed to the throttle shaft for rotating together with the throttle shaft; a second rotary element contacting the first rotary element for rotating with the first rotary element by receiving rotary power from the first rotary element; spring means for pressing the second rotary element towards the first rotary element against the rotary power; and detecting means for detecting from a rotary position of the second rotary element at least a position of the throttle valve corresponding to an idling condition of the engine; the first and second rotary elements being positioned with such a relationship as a crossing angle of a moving direction of the throttle shaft by clearance between the throttle shaft and the bearing and a transmitting direction of the rotary power from the first rotary element to the second rotary element during the idling condition of the engine being within a range from 45 to 90 degrees.

  6. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C.

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  7. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    SciTech Connect (OSTI)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

  8. Plug-in electric vehicle introduction in the EU

    E-Print Network [OSTI]

    Sisternes, Fernando J. de $q (Fernando José Sisternes Jiménez)

    2010-01-01

    Plug-in electric vehicles (PEVs) could significantly reduce gasoline consumption and greenhouse gas (GHG) emissions in the EU's transport sector. However, PEV well-towheel (WTW) emissions depend on improvements in vehicle ...

  9. Next Generation Natural Gas Vehicle (NGNGV) Program Fact Sheet

    SciTech Connect (OSTI)

    Walkowicz, K.

    2002-05-01

    Fact sheet describing U. S. DOE and NREL's development of next generation natural gas vehicles (NGVs) as a key element in its strategy to reduce oil import and vehicle pollutants.

  10. Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment

    Broader source: Energy.gov [DOE]

    As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

  11. Power Management in RAID Server Disk System Using Multiple Idle States Hogil Kim, Eun Jung Kim and Rabi N. Mahapatra

    E-Print Network [OSTI]

    Kim, Eun Jung "EJ"

    -down power management scheme. 1. Introduction Energy is a significant issue to most computer system. AlthoughPower Management in RAID Server Disk System Using Multiple Idle States Hogil Kim, Eun Jung Kim systems are no exception to low power requirements. The power management in server systems has become

  12. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  13. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  14. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (115 Newhaven Rd., Oak Ridge, TN 37830)

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  15. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  16. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies...

  17. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Energy Savers [EERE]

    AVTA - Electric Vehicle Community and Fleet Readiness Data and Reports Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as...

  18. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Evaluation Meeting arravt072vssmackie2013o.pdf More Documents & Publications Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  19. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Well-to-Wheels Analysis of Energy Use and...

  20. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report 2009avtaehvso.pdf More Documents &...

  1. Electric vehicle climate control

    SciTech Connect (OSTI)

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  2. IEEE Access 2015-000125 1 Abstract--Plug-in hybrid electric vehicles (PHEVs) offer the

    E-Print Network [OSTI]

    Eppstein, Margaret J.

    IEEE Access 2015-000125 1 Abstract-- Plug-in hybrid electric vehicles (PHEVs) offer the potential vehicles (PHEVs); agent-based model; market penetration; electric vehicle adoption; vehicle choice-in hybrid electric vehicles (PHEVs) offer the potential to significantly reduce GHG emissions [2

  3. Guaranteeing safety for heavy duty vehicle platooning: Safe set computations and experimental evaluations

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    be increased and emissions can be reduced. Additionally, when governing vehicle platoons by an automatedGuaranteeing safety for heavy duty vehicle platooning: Safe set computations and experimental December 2013 Keywords: Heavy duty vehicle Platooning Game theory Safety analysis Vehicle-to-vehicle

  4. 2010 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, Jacob; Davis, Stacy Cagle; Diegel, Susan W

    2011-06-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  5. 2008 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, J.; Davis, S.

    2009-07-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  6. AVTA: Quantifying the Effects of Idle Stop Systems on Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. This report gives an overall analysis of stop-start technology. This research was conducted by Idaho National Laboratory.

  7. Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2005deerzirker.pdf More Documents & Publications Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles Development of Partial Filter...

  8. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M. (Livermore, CA)

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  9. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, L.M.

    1998-05-05

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

  10. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview1.p...

  11. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research, Development and Deployment Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research,...

  12. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

  13. Inter-Vehicle Communication with Platooning

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    is the fossil fuel- consumption of vehicles. Hybrid-cars and all-electric cars are being developed to reduce of the disadvantages of current road systems and vehicles can be removed in the future by using appropriate information and communication technology. A disadvantage that has been considered to be a major problem for many years

  14. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema (OSTI)

    None

    2014-06-25

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  15. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect (OSTI)

    None

    2014-04-15

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  16. Heavy Vehicle Technologies Program Retrospective and Outlook

    SciTech Connect (OSTI)

    James J. Eberhardt

    1999-04-10

    OHVT Mission is to conduct, in collaboration with our heavy vehicle industry partners and their suppliers, a customer-focused national program to research and develop technologies that will enable trucks and other heavy vehicles to be more energy efficient and able to use alternative fuels while simultaneously reducing emissions.

  17. Vibro-acoustical comfort in cars at idle : human perception of simulated sounds and vibrations from three and four cylinder diesel engines

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    three and four cylinder diesel engines Etienne Parizet, Maël Amari Laboratoire Vibrations Acoustique This paper deals with comfort in diesel cars running at idle. A bench was used to reproduce the vertical

  18. Wireless Power Transfer for Electric Vehicles

    SciTech Connect (OSTI)

    Scudiere, Matthew B; McKeever, John W

    2011-01-01

    As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.

  19. Vehicle barrier

    DOE Patents [OSTI]

    Hirsh, Robert A. (Bethel Park, PA)

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  20. Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Nanolubricants for Improved Energy Efficiency and Reduced Emissions in Engines Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants for Improved Energy...

  1. Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual...

    Broader source: Energy.gov (indexed) [DOE]

    materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance,recyclabilit...

  2. 2014 Annual Merit Review, Vehicle Technologies Office - 04 Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    well. It is an excellent example of how we could reduce the fuel consumption of vehicles, light, heavy and military, by harvesting energy through waste heat recovery...

  3. Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency

    Broader source: Energy.gov [DOE]

    For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy.

  4. An Investigation on an Ethylene Gylcol/Water Nanofluid for Heavy Vehicle Cooling Applications

    Broader source: Energy.gov [DOE]

    Use of nanofluids can help reduce radiator frontal area for heavy-duty vehicles and improves fuel efficiency.

  5. Saving Fuel, Reducing Emissions

    E-Print Network [OSTI]

    Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

    2009-01-01

    and Impacts of Hybrid Electric Vehicle Options for Compactand Impacts of Hybrid Electric Vehicle Options. (EPRI: PaloEvaluation of Hybrid Electric Vehicles: Toyota’s Prius vs.

  6. February 22, 2012 Use of Small Vehicles on Sidewalks

    E-Print Network [OSTI]

    Dyer, Bill

    February 22, 2012 Use of Small Vehicles on Sidewalks Introduction: Facility Services is committed our older, larger, and less efficient vehicles with smaller, more efficient ones. These smaller vehicles limit our environmental impact by reducing raw material and energy needed for manufacturing

  7. Ford`s 1996 Crown Victoria dedicated natural gas vehicle

    SciTech Connect (OSTI)

    Lapetz, J.; Fulton, B.; LeRoux, M.; Locke, J.; Peters, E.; Roman, L.; Walsh, R. [Ford Motor Co., Dearborn, MI (United States); Beitler, J.; Wolff, W.

    1995-12-31

    Ford Motor Company has introduced a Crown Victoria dedicated natural gas vehicle (NGV) to meet rising demand for vehicles powered by cleaner burning fuels and to reduce dependency on foreign energy imports. The Crown Victoria NGS is a production vehicle maintaining Original Equipment Manufacturer (OEM) quality and warranty while complying with all applicable corporate, federal and state requirements.

  8. ELECTRIFIED VEHICLE TECHNOLOGY TRENDS, INFRASTRUCTURE IMPLICATIONS, AND COST COMPARISONS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    The motivations for developing alternative energy sources and associated vehicle powertrains1 is to reduce-market-viable plug-in electric vehicle (PEV) alternative. In this paper, the various PEV architectures are described/powertrain technologies critical for success in global vehicle markets. These alternative powertrains may, in the end

  9. Coordination of Autonomous Underwater Vehicles for Acoustic Image Acquisition

    E-Print Network [OSTI]

    Pompili, Dario

    , underwater gliders [2][5] are buoyancy-driven vehicles that alternately reduce and expand dis- placed volume are in general slower than propelled vehicles like AUVs and ROVs, they offer an energy-efficient solutionCoordination of Autonomous Underwater Vehicles for Acoustic Image Acquisition Indraneel S. Kulkarni

  10. Consumer Vehicle Choice Model Documentation

    SciTech Connect (OSTI)

    Liu, Changzheng; Greene, David L

    2012-08-01

    In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

  11. IDLE FREE CAMPAIGN Procedure: 6.12 Created: 07/01/2009 Version: 2.0 Revised: 10/10/2012

    E-Print Network [OSTI]

    Jia, Songtao

    's goals around clean air, greenhouse gas reductions, noise reduction, and efficient resource use. B to reduce your individual carbon footprint. You can also schedule personal or business meetings over and maintain a constant speed. When accelerating or decelerating your vehicle, do so gradually. When you

  12. Heavy Vehicle Essential Power Systems Workshop

    SciTech Connect (OSTI)

    Susan Rogers

    2001-12-12

    Essential power is a crosscutting technology area that addresses the efficient and practical management of electrical and thermal requirements on trucks. Essential Power Systems: any function on the truck, that is not currently involved in moving the truck, and requires electrical or mechanical energy; Truck Lights; Hotel Loads (HVAC, computers, appliances, lighting, entertainment systems); Pumps, starter, compressor, fans, trailer refrigeration; Engine and fuel heating; and Operation of power lifts and pumps for bulk fluid transfer. Transition from ''belt and gear driven'' to auxiliary power generation of electricity - ''Truck Electrification'' 42 volts, DC and/ or AC; All electrically driven auxiliaries; Power on demand - manage electrical loads; Benefits include: increased fuel efficiency, reduced emission both when truck is idling and moving down the road.

  13. Microelectromechanical accelerometer with resonance-cancelling control circuit including an idle state

    DOE Patents [OSTI]

    Chu, Dahlon D. (Albuquerque, NM); Thelen, Jr., Donald C. (Bozeman, MT); Campbell, David V. (Albuquerque, NM)

    2001-01-01

    A digital feedback control circuit is disclosed for use in an accelerometer (e.g. a microelectromechanical accelerometer). The digital feedback control circuit, which periodically re-centers a proof mass in response to a sensed acceleration, is based on a sigma-delta (.SIGMA..DELTA.) configuration that includes a notch filter (e.g. a digital switched-capacitor filter) for rejecting signals due to mechanical resonances of the proof mass and further includes a comparator (e.g. a three-level comparator). The comparator generates one of three possible feedback states, with two of the feedback states acting to re-center the proof mass when that is needed, and with a third feedback state being an "idle" state which does not act to move the proof mass when no re-centering is needed. Additionally, the digital feedback control system includes an auto-zero trim capability for calibration of the accelerometer for accurate sensing of acceleration. The digital feedback control circuit can be fabricated using complementary metal-oxide semiconductor (CMOS) technology, bi-CMOS technology or bipolar technology and used in single- and dual-proof-mass accelerometers.

  14. Commercial Vehicle Safety Alliance Commercial Vehicle Safety...

    Office of Environmental Management (EM)

    Program Update: Ensuring Safe Transportation of Radioactive Material Carlisle Smith Director, Hazardous Materials Programs Commercial Vehicle Safety Alliance Email:...

  15. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  16. Alternative Fuel Vehicle Data

    Reports and Publications (EIA)

    2013-01-01

    Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

  17. Vehicle Emissions Review- 2012

    Broader source: Energy.gov [DOE]

    Reviews vehicle emission control highlighting representative studies that illustrate the state-of-the-art

  18. Electrifying Vehicles Early Release

    E-Print Network [OSTI]

    Electrifying Vehicles Early Release Insights from the Canadian Plug-in Electric Vehicle Study #12;1 The Canadian Plug-in Electric Vehicle Study May 25 2015 Electric-mobility may be a key component-in electric vehicles will involve meaningful shifts in social and technical systems. This report considers

  19. Electric vehicles move closer to market

    SciTech Connect (OSTI)

    O`Connor, L.

    1995-03-01

    This article reports that though battery technology is currently limiting the growth of EVs, the search for improvements is spurring innovative engineering developments. As battery makers, automakers, national laboratories, and others continue their search for a practical source of electric power that will make electric vehicles (EVs) more viable, engineers worldwide are making progress in other areas of EV development. Vector control, for example, enables better regulation of motor torque and speed; composite and aluminum parts reduce the vehicle`s weight, which in turn reduces the load on the motor and battery; and flywheel energy storage systems, supercapacitors, regenerative brake systems, and hybrid/electric drive trains increase range and acceleration. Despite efforts to develop an electric vehicle from the ground up, most of the early EVs to be sold in the United States will likely be converted from gasoline-powered vehicles. Chrysler Corp., for example, is expected to sell electric versions of its minivans and build them on the same assembly line as its gasoline-powered vehicles to reduce costs. The pace of engineering development in this field is fast and furious. Indeed, it is virtually impossible to monitor all emerging EV technology. To meet their quotas, the major automakers may even consider buying credits from smaller, innovative EV manufacturers. But whatever stopgap measures vehicle makers take, technology development will be the driving force behind long-term EV growth.

  20. Petroleum Reduction Strategies to Use Alternative Fuels in Vehicles

    Broader source: Energy.gov [DOE]

    For reducing greenhouse gas emissions, the table below describes strategies to reduce petroleum through the use of alternative fuels in vehicles, as well as guidance and best practices for each strategy.

  1. The effects of driving style and vehicle performance on the real-world fuel consumption of U.S. light-duty vehicles

    E-Print Network [OSTI]

    Berry, Irene Michelle

    2010-01-01

    Even with advances in vehicle technology, both conservation and methods for reducing the fuel consumption of existing vehicles are needed to decrease the petroleum consumption and greenhouse gas emissions of the U.S. ...

  2. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  3. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  4. Market penetration scenarios for fuel cell vehicles

    SciTech Connect (OSTI)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  5. Medium Duty Electric Vehicle Demonstration Project

    SciTech Connect (OSTI)

    Mackie, Robin J. D.

    2015-05-31

    The Smith Electric Vehicle Demonstration Project (SDP) was integral to the Smith business plan to establish a manufacturing base in the United States (US) and produce a portfolio of All Electric Vehicles (AEV’s) for the medium duty commercial truck market. Smith focused on the commercial depot based logistics market, as it represented the market that was most ready for the early adoption of AEV technology. The SDP enabled Smith to accelerate its introduction of vehicles and increase the size of its US supply chain to support early market adoption of AEV’s that were cost competitive, fully met the needs of a diverse set of end users and were compliant with Federal safety and emissions requirements. The SDP accelerated the development and production of various electric drive vehicle systems to substantially reduce petroleum consumption, reduce vehicular emissions of greenhouse gases (GHG), and increase US jobs.

  6. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vssarravt066karner2010p...

  7. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

  8. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

  9. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

  10. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

  11. Emission Impacts of Electric Vehicles

    E-Print Network [OSTI]

    Wang, Quanlu; DeLuchi, Mark A.; Sperling, Daniel

    1990-01-01

    greenhouse effect, and electric vehicles," Proceedingso/9thInternational Electric Vehicles Symposium, 1988. 14. R. M.of 9th International Electric Vehicles Sympo- sium, 1988.

  12. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01

    for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

  13. The Case for Electric Vehicles

    E-Print Network [OSTI]

    Sperling, Daniel

    2001-01-01

    land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

  14. Energy Storage Fuel Cell Vehicle Analysis: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Pesaran, A.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-04-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  15. Energy Storage Fuel Cell Vehicle Analysis

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-08-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy?s Energy Storage Program.

  16. Clean Cities 2012 Vehicle Buyer's Guide (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

  17. Clean Cities Tools: Tools to Help You Save Money, Use Less Petroleum, and Reduce Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Clean Cities Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.

  18. Clean Cities Tools: Tools to Help You Drive Smarter, Use Less Petroleum, and Reduce Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Clean Cities' Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.

  19. Natural gas vehicles : Status, barriers, and opportunities.

    SciTech Connect (OSTI)

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  20. 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for passenger vehicles will improve vehicle efficiency and save Americans money at the pump, all while reducing our dependence on foreign oil and growing the U.S. economy....

  1. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    Experience with the German Hydrogen Fuel Project," HydrogenHydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would be

  2. Massachusetts Electric Vehicle Efforts

    E-Print Network [OSTI]

    California at Davis, University of

    ,500 for full battery electric vehicle (BEV) and $5,000 for plug- in hybrid electric vehicle (PHEV) · Financial 39 Tesla 39 BMW 26 Toyota 7 Honda 3 Cadillac 3 Mitsubishi 2 #12;Department of Public Utilities · DPU

  3. Vehicle & Systems Simulation & Testing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV - EVSE Interoperability Advanced Charging Grid Integration Vehicle Systems Optimization Fast and Wireless Charging Grid Integration Load Reduction, HVAC, & Preconditioning...

  4. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Washington State Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

  6. William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies

    E-Print Network [OSTI]

    Swaddle, John

    William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies Last Update: 2/14/14 W&M's vehicle use policy requires that a driver authorization form be completed and approved before driving any vehicle (including a personal vehicle) for university business or a university

  7. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    SciTech Connect (OSTI)

    Short, W.; Denholm, P.

    2006-04-01

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  8. Super-compound Engines Enable Multifuel Vehicles to Match Efficiency

    E-Print Network [OSTI]

    , as well as displace conventional gasoline by using other fuels, such as natural gas. Existing multifuel that have poor light load efficiency. To achieve broader use of natural gas vehicles, these vehicles should-2012-FS-023 bring to market advanced transportation technologies that reduce greenhouse gas emissions

  9. Lifecycle-analysis for heavy vehicles.

    SciTech Connect (OSTI)

    Gaines, L.

    1998-04-16

    Various alternative fuels and improved engine and vehicle systems have been proposed in order to reduce emissions and energy use associated with heavy vehicles (predominantly trucks). For example, oil companies have proposed improved methods for converting natural gas to zero-aromatics, zero-sulfur diesel fuel via the Fischer-Tropsch process. Major heavy-duty diesel engine companies are working on ways to simultaneously reduce particulate-matter and NOX emissions. The trend in heavy vehicles is toward use of lightweight materials, tires with lower rolling resistance, and treatments to reduce aerodynamic drag. In this paper, we compare the Mecycle energy use and emissions from trucks using selected alternatives, such as Fisher-Tropsch diesel fuel and advanced fuel-efficient engines. We consider heavy-duty, Class 8 tractor-semitrailer combinations for this analysis. The total life cycle includes production and recycling of the vehicle itself, extraction, processing, and transportation of the fuel itself, and vehicle operation and maintenance. Energy use is considered in toto, as well as those portions that are imported, domestic, and renewable. Emissions of interest include greenhouse gases and criteria pollutants. Angonne's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is used to generate per-vehicle fuel cycle impacts. Energy use and emissions for materials manufacturing and vehicle disposal are estimated by means of materials information from Argonne studies. We conclude that there are trade-offs among impacts. For example, the lowest fossil energy use does not necessarily result in lowest total energy use, and lower tailpipe emissions may not necessarily result in lower lifecycle emissions of all criteria pollutants.

  10. Advanced Technology Vehicles Manufacturing (ATVM) Loan Program...

    Office of Environmental Management (EM)

    Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan...

  11. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  12. Vehicle Technologies Office: AVTA - Evaluating Military Bases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

  13. Alternative Fuel Vehicle Forecasts Final report

    E-Print Network [OSTI]

    ....................................................................................................................................36 Commercial CNG and LNG Vehicles

  14. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  15. Vehicle Emissions Review- 2011

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and general technology approaches for heavy- and light-duty vehicle emissions control - filter technology, new catalysts, NOx control, diesel oxidation catalysts, gasoline particulate filters

  16. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    consumption improvement during European drivecycle Fuel consumption improvement during Motorway cruises for electrical heating to emulate thermal management of powertrain ·Installed in vehicle and drivecycle tested

  17. Flex Fuel Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flex Fuel Vehicle Systems * Bosch FFV Project Structure and Partners * Purpose of Work - Project Highlights * Barriers - Existing Flex Fuel Systems and Problems * Approach - Bosch...

  18. Electric Vehicle Lifecycle Cost Assessment for Hawaii

    E-Print Network [OSTI]

    to residential solar photovoltaic (PV) power to reducing EV ownership costs. In this work, extensions are made substantially brings down the cost of EV ownership, even considering the capital expenditure for PV panelsElectric Vehicle Lifecycle Cost Assessment for Hawaii Dr. Makena Coffman Dr. Paul Bernstein

  19. Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

  20. Alternative Fuel and Advanced Vehicle Tools (AFAVT), AFDC (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    The Alternative Fuels and Advanced Vehicles Web site offers a collection of calculators, interactive maps, and informational tools to assist fleets, fuel providers, and others looking to reduce petroleum consumption in the transportation sector.

  1. Laboratory to change vehicle traffic-screening regimen at vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

  2. Fuel Cell Electric Vehicles (FCEVs) to Be Displayed on June 22...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    derived from natural gas reduces emissions by half and hydrogen produced from renewables cuts total emissions by more than 90% compared to today's gasoline vehicle....

  3. Ford`s 1996 Crown Victoria dedicated natural gas vehicle. Final report, January 1991-December 1995

    SciTech Connect (OSTI)

    Dierker, J.B.; Dondlinger, K.A.

    1996-09-01

    Ford Motor Company has introduced a Crown Victoria dedicated natural gas vehicle (NGV) to meet rising demand for vehicles powered by cleaner buring fuels and to reduce dependency on foreign energy imports. The Crown Victoria NGV is a production vehicle that maintains Original Equipment Manufacturer (OEM) quality and warranty while complying with all applicable corporate, federal and state requirements.

  4. Evaluating the impact of advanced vehicle and fuel technologies in U.S. light duty vehicle fleet

    E-Print Network [OSTI]

    Bandivadekar, Anup P

    2008-01-01

    The unrelenting increase in oil use by the U.S. light-duty vehicle (LDV) fleet presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce ...

  5. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010vsstreport.pdf More Documents & Publications AVTA PHEV Demonstrations and...

  6. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  7. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    nation's vehicle fleet. VTO invested 400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10...

  8. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  9. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Testing R&D Annual Progress Report Vehicle Technologies Office Merit Review 2014: Wireless Charging Vehicle Technologies Office Merit Review 2015: Overview of the DOEVTO...

  10. Vehicle Technologies Office: Propulsion Systems

    Broader source: Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  11. Public Service Vehicles Tramcars and Trolley Vehicles: The Public Service Vehicles (Conditions of Fitness) Regulations, 1958 

    E-Print Network [OSTI]

    Watkinson, Harold

    1958-01-01

    These Regulations, which prescribe the conditions to be satisfied by a public service vehicle before a certificate of fitness (without the issue of which a vehicle may not be licensed to be used as a public service vehicle) ...

  12. Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

  13. Renting Vehicles Renting Vehicles from MSU Motor Pool

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Renting Vehicles Renting Vehicles from MSU Motor Pool Motor Pool/Transportation Services Motor Pool vehicles may ONLY be used for club-related travel). 2) Valid U.S. driver's license in good standing; 3) Completed Vehicle Use Authorization form for all drivers; and 4) Personal medical insurance

  14. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  15. Blast resistant vehicle seat

    DOE Patents [OSTI]

    Ripley, Edward B

    2013-02-12

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  16. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M. (Livermore, CA)

    1999-01-01

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  17. The influence of emissions specific characteristics on vehicle operation: A micro-simulation analysis

    E-Print Network [OSTI]

    Nesamani, K. S. ph>D; Saphores, Jean-Daniel M; McNally, Michael G.; Jayakrishnan, R.

    2011-01-01

    The Guilford Press. Kuhler, M. , Karstens, D. , 1978.and the percentage of idle time. Kuhler and Karstens (1978)

  18. Investigation of Diesel combustion using multiple injection strategies for idling after cold start of passenger-car engines

    SciTech Connect (OSTI)

    Payri, F.; Broatch, A.; Salavert, J.M.; Martin, J.

    2010-10-15

    A comprehensive investigation was carried out in order to better understand the combustion behaviour in a low compression ratio DI Diesel engine when multiple injection strategies are applied just after the engine cold starts in low temperature conditions (idling). More specifically, the aim of this study was twofold: on one hand, to understand the effect of the multiple injection strategies on the indicated mean effective pressure; on the other hand, to contribute to the understanding of combustion stability characterized by the coefficient of variation of indicated mean effective pressure. The first objective was fulfilled by analyzing the rate of heat release obtained by in-cylinder pressure diagnosis. The results showed that the timing of the pilot injection closest to the main injection was the most influential parameter based on the behaviour of the rate of heat release (regardless of the multiple injection strategy applied). For the second objective, the combustion stability was found to be correlated with the combustion centroid angle. The results showed a trend between them and the existence of a range of centroid angles where the combustion stability is strong enough. In addition, it was also evident that convenient split injection allows shifting the centroid to such a zone and improves combustion stability after start. (author)

  19. Lightweight Composite Materials for Heavy Duty Vehicles

    SciTech Connect (OSTI)

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

    2013-08-31

    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

  20. DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington D.C. vss14salari.pdf More Documents & Publications DOEs Effort to Reduce Truck Aerodynamic Drag through Joint Experiments and Computations Vehicle Technologies...

  1. DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting vss006salari2012o.pdf More Documents & Publications DOEs Effort to Reduce Truck Aerodynamic Drag through Joint Experiments and Computations Vehicle Technologies...

  2. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  3. Effects of Vehicle Speed and Engine Load on Motor Vehicle Emissions

    E-Print Network [OSTI]

    Kean, Andrew J.; Harley, Robert A.; Kendall, Gary R.

    2003-01-01

    Engine Load on Motor Vehicle Emissions ANDREW J. KEAN, † R Oknowledge regarding vehicle emissions, but questions remainbetween on-road vehicle emissions and changes in vehicle

  4. Electric-Drive Vehicle engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-driveVehicle engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

  5. Fuel and emission impacts of heavy hybrid vehicles.

    SciTech Connect (OSTI)

    An, F.; Eberhardt, J. J.; Stodolsky, F.

    1999-03-02

    Hybrid powertrains for certain heavy vehicles may improve fuel economy and reduce emissions. Of particular interest are commercial vehicles, typically in Classes 3-6, that travel in urban areas. Hybrid strategies and associated energy/emissions benefits for these classes of vehicles could be significantly different from those for passenger cars. A preliminary analysis has been conducted to investigate the energy and emissions performance of Class 3 and 6 medium-duty trucks and Class 6 school buses under eight different test cycles. Three elements are associated with this analysis: (1) establish baseline fuel consumption and emission scenario's from selected, representative baseline vehicles and driving schedules; (2) identify sources of energy inefficiency from baseline technology vehicles; and (3) assess maximum and practical potentials for energy savings and emissions reductions associated with heavy vehicle hybridization under real-world driving conditions. Our analysis excludes efficiency gains associated with such other measures as vehicle weight reduction and air resistance reduction, because such measures would also benefit conventional technology vehicles. Our research indicates that fuel economy and emission benefits of hybridization can be very sensitive to different test cycles. We conclude that, on the basis of present-day technology, the potential fuel economy gains average about 60-75% for Class 3 medium-duty trucks and 35% for Class 6 school buses. The fuel economy gains can be higher in the future, as hybrid technology continues to improve. The practical emissions reduction potentials associated with vehicle hybridization are significant as well.

  6. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    fuel cost and emissions with a conventional vehicle. Select FuelTechnology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20)...

  7. Hybrid vehicle control

    DOE Patents [OSTI]

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  8. Clean Cities: Building Partnerships to Reduce Petroleum Use in Transportation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Clean Cities program, which builds partnerships to reduce petroleum use in transportation in communities across the country. The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to reduce petroleum consumption in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge. Clean Cities overarching goal is to reduce U.S. petroleum use by 2.5 billion gallons per year by 2020. To achieve this goal, Clean Cities employs three strategies: (1) Replace petroleum with alternative and renewable fuels, including natural gas, propane, electricity, ethanol, biodiesel, and hydrogen; (2) Reduce petroleum consumption through smarter driving practices and fuel economy improvements; and (3) Eliminate petroleum use through idle reduction and other fuel-saving technologies and practices.

  9. Retrofiting survivability of military vehicles

    SciTech Connect (OSTI)

    Canavan, Gregory H [Los Alamos National Laboratory

    2009-01-01

    In Iraq the terrain was such that vehicles could be distributed horizontally, which reduced the effectiveness of mines. In the mountainous terrain of Pakistan and Afghanistan vehicles are forced to use the few, passable roads, which are dirt and easily seeded with plentiful, cheap, intelligent mines. It is desirable to reduce the losses to such mines, preferably by retrofit means that do not greatly increase weight or cost or reduce maneuverability. V-bottom vehicles - A known approach to reducing vulnerability is the Buffalo, a large vehicle developed by South Africa to address mine warfare. It has large tires, high axles, and a reinforced, v-shaped bottom that deflects the blast from explosions below. It is developed and tested in combat, but is expensive and has reduced off-road mobility. The domestic MRAP has similar cost and mobility issue. The addition of v-shaped blast deflectors to vehicles such as Humvees could act much as the deflector on a Buffalo, but a Humvee is closer to the ground, so the explosive's expansion would be reduced. The deflector would also reduce a Humvee's clearance for rough terrain, and a deflector of adequate thickness to address the blast by itself could further increase cost and reduce mobility. Reactive armor is developed and has proven effective against shaped and explosive charges from side or top attack. It detects their approach, detonates, and defeats them by interfering with jet formation. If the threat was a shaped charge from below, they would be a logical choice. But the bulk of the damage to Humvees appears to be from the blast from high explosive mines for which the colliding shock from reactive armor could increase that from the explosive. Porous materials such as sand can strongly attenuate the kinetic energy and pressure of a strong shock. Figure 1 shows the kinetic energy (KE), momentum (Mu), velocity (u), and mass (M) of a spherically expanding shock as functions of radius for a material with a porosity of 0.5. Over the range from 0.5 to 4.5 cm the shock KE is attenuated by a factor of {approx}70, while its momentum is changed little. The shock and particle velocity falls by a factor of 200 while the mass increases by a factor of 730. In the limit of very porous media u {approx} 1/M, so KE {approx} 1/M, which falls by a factor of {approx}600, while momentum Mu does not change at all. Figure 2 shows the KE, Mu, u, and M for a material with a porosity of 1.05, for which the KE changes little. In the limit of media of very low porosity, u {approx} 1/{radical}M, so KE is constant while Mu {approx} {radical}M, which increases by a factor of 15. Thus, if the goal is to reduce the peak pressure from strong explosions below, very porous materials, which strongly reduce pressure but do not increase momentum, are preferred to non-porous materials, which amplify momentum but do not decrease pressure. These predictions are in qualitative accord with the results of experiments at Los Alamos in which projectiles from high velocity, large caliber cannons were stopped by one to two sandbags. The studies were performed primarily to determine the effectiveness of sand in stopping fragments of various sizes, but could be extended to study sand's effectiveness in attenuating blast pressure. It would also be useful to test the above predictions on the effectiveness of media with higher porosity. Water barriers have been discussed but not deployed in previous retrofit survivability studies for overseas embassies. They would detect the flash from the mine detonation below, trigger a thin layer of explosive above a layer of water, and drive water droplets into the approaching blast wave. The blast loses energy in evaporating the droplets and loses momentum in slowing them. Under favorable conditions that could attenuate the pressure in the blast enough to prevent the penetration or disruption of the vehicle. However, such barriers would depend on prompt and reliable detonation detection and water droplet dispersal, which have not been tested. There is a large literature on the theoretical effec

  10. Alternative Fuels Data Center: Dallas Police Department Reduces Vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I NLoans TheCountyCitiesDriving

  11. EV Everywhere: Reducing Pollution with Electric Vehicles | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010Mesoscopy and thermodynamics(Revised)EVonEnergy

  12. The environmental and cost impacts of vehicle electrification in the Azores

    E-Print Network [OSTI]

    Parness, Maximilian

    2011-01-01

    Electric vehicles (EVs) have the potential to reduce transportation sector CO? emissions in São Miguel, an island in the Azores, while simultaneously reducing mobility operating costs. This thesis attempts to quantify the ...

  13. Sensitivity of Battery Electric Vehicle Economics to Drive Patterns, Vehicle Range, and Charge Strategies

    SciTech Connect (OSTI)

    Neubauer, J.; Brooker, A.; Wood, E.

    2012-07-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by strong sensitivity to drive patterns, vehicle range, and charge strategies that affect vehicle utilization and battery wear. Identifying justifiable battery replacement schedules and sufficiently accounting for the limited range of a BEV add further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of BEV economics to drive patterns, vehicle range, and charge strategies when a high-fidelity battery degradation model, financially justified battery replacement schedules, and two different means of accounting for a BEV's unachievable vehicle miles traveled (VMT) are employed. We find that the value of unachievable VMT with a BEV has a strong impact on the cost-optimal range, charge strategy, and battery replacement schedule; that the overall cost competitiveness of a BEV is highly sensitive to vehicle-specific drive patterns; and that common cross-sectional drive patterns do not provide consistent representation of the relative cost of a BEV.

  14. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    . Removed grit and sludge are mixed with the waste oil. Photon-counting spectrofluorimeter Substitution 54 or composted at the stump dump. Plant Engineering grounds vehicle wash system * Waste minimization 8,000 OilsWASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2007 WASTE TYPE

  15. AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  16. Consumer Views on Transportation and Advanced Vehicle Technologies

    SciTech Connect (OSTI)

    Singer, Mark

    2015-09-01

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from countries around the globe are pursuing advanced vehicle technologies that aim to reduce gasoline and diesel consumption. This report details study findings of broad American public sentiments toward issues surrounding advanced vehicle technologies and is supported by the U.S. Department of Energy Vehicle Technology Office (VTO) in alignment with its mission to develop and deploy these technologies to improve energy security, increase mobility flexibility, reduce transportation costs, and increase environmental sustainability. Understanding and tracking consumer sentiments can influence the prioritization of development efforts by identifying barriers to and opportunities for broad acceptance of new technologies. Predicting consumer behavior toward developing technologies and products is inherently inexact. A person's stated preference given in an interview about a hypothetical setting may not match the preference that is demonstrated in an actual situation. This difference makes tracking actual consumer actions ultimately more valuable in understanding potential behavior. However, when developing technologies are not yet available and actual behaviors cannot be tracked, stated preferences provide some insight into how consumers may react in new circumstances. In this context this report provides an additional source to validate data and a new resource when no data are available. This report covers study data captured from December 2005 through June 2015 relevant to VTO research efforts at the time of the studies. Broadly the report covers respondent sentiments about vehicle fuel economy, future vehicle technology alternatives, ethanol as a vehicle fuel, plug-in electric vehicles, and willingness to pay for vehicle efficiency. This report represents a renewed effort to publicize study findings and make consumer sentiment data available to researchers, policy makers, and the public. Planned reports will follow detailing data from new studies targeting the primary challenges to and opportunities for advanced vehicle technology deployment. The effort continually refines study content to maintain and improve the relevance and validity of results.

  17. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvanced EngineFebruary 12,Modeling,Department ofIdle||

  18. Apparatus for stopping a vehicle

    DOE Patents [OSTI]

    Wattenburg, Willard H. (Walnut Creek, CA); McCallen, David B. (Livermore, CA)

    2007-03-20

    An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

  19. Vehicle Technologies Office - AVTA: All Electric USPS Long Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USPS Long Life Vehicle Conversions Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle Conversions The Vehicle Technologies Office's Advanced Vehicle Testing...

  20. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  1. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, Richard S. (Deephaven, MN); Allen, Larry N. (Excelsior, MN)

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  2. Proceedings of the Neighborhood Electric Vehicle Workshop

    E-Print Network [OSTI]

    Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

    1994-01-01

    Preferences for Electric Vehicles. Electric PowerResearchWilliam L. Garrison, "Electric Vehicle Potential in Hawaii,"Ro Warf Pacific Electric Vehicles Research and Development

  3. Proceedings of the Neighborhood Electric Vehicle Workshop

    E-Print Network [OSTI]

    Lipman, Timothy

    1994-01-01

    Preferences for Electric Vehicles. Electric Power ResearchWilliam L. Garrison, "Electric Vehicle Potential in Hawaii,"R. Warf Pacific Electric Vehicles Research and Development

  4. Vehicle Battery Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles...

  5. Vehicle Technologies Office: Events | Department of Energy

    Office of Environmental Management (EM)

    Vehicle Technologies Office: Events Vehicle Technologies Office: Events The Vehicle Technologies Office holds a number of events to advance research, development and deployment of...

  6. Commercial Vehicle Safety Alliance | Department of Energy

    Office of Environmental Management (EM)

    Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance More Documents & Publications North American Standard Level VI Inspection...

  7. Commercial Motor Vehicle Brake-Related Research

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

  8. Vehicle Technologies Office Merit Review 2015: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2015: Transportation Energy Data Book, Vehicle...

  9. Vehicle Technologies Office Merit Review 2014: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2014: Transportation Energy Data Book, Vehicle...

  10. Proceedings of the Neighborhood Electric Vehicle Workshop

    E-Print Network [OSTI]

    Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

    1994-01-01

    Ro Warf Pacific Electric Vehicles Research and DevelopmentPreferences for Electric Vehicles. Electric PowerResearchWilliam L. Garrison, "Electric Vehicle Potential in Hawaii,"

  11. Proceedings of the Neighborhood Electric Vehicle Workshop

    E-Print Network [OSTI]

    Lipman, Timothy

    1994-01-01

    R. Warf Pacific Electric Vehicles Research and DevelopmentPreferences for Electric Vehicles. Electric Power ResearchWilliam L. Garrison, "Electric Vehicle Potential in Hawaii,"

  12. Incentive Policies for Neighborhood Electric Vehicles

    E-Print Network [OSTI]

    Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

    2001-01-01

    Developmentfor Neighborhood Electric Vehicles. Institute ofPaul. "Small and Electric: Vehicles With a Future." ResearchElectric Company. Electric Vehicle Program: Exhibit III

  13. Incentive Policies for Neighborhood Electric Vehicles

    E-Print Network [OSTI]

    Lipman, Timothy E.; Kuranu, Kenneth S.; Sperling, Daniel

    1994-01-01

    Developmentfor Neighborhood Electric Vehicles. Institute ofPaul. "Small and Electric: Vehicles With a Future." ResearchElectric Company. Electric Vehicle Program: Exhibit III

  14. Inhalation of Vehicle Emissions in Urban Environments

    E-Print Network [OSTI]

    Marshall, Julian David

    2005-01-01

    distances between vehicles, and emissions from neighboringgasoline on motor vehicle emissions. 2. 6 Volatile organicgasoline on motor vehicle emissions. 1. Mass emission rates.

  15. Saving Fuel, Reducing Emissions

    E-Print Network [OSTI]

    Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

    2009-01-01

    lower greenhouse gas emissions from electricity productionAssessment of Greenhouse Gas Emissions from Plug-in Hybridof national greenhouse gas emissions. Both motor vehicle

  16. Closing the loop between traffic/pollution sensing and vehicle route control NSF CPS Workshop, March 17-18, 2011

    E-Print Network [OSTI]

    Rajkumar, Ragunathan "Raj"

    Closing the loop between traffic/pollution sensing and vehicle route control NSF CPS Workshop manager and vehicle route/speed enforcement with the aim of simultaneously reducing congestion, pollution); the on-board navigator; the vehicle control knobs (breaks, accelerator, steering wheel) and; last

  17. Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains

    E-Print Network [OSTI]

    McGaughey, Alan

    T S Electrified vehicle life cycle emissions and cost depend on driving conditions. GHGs can triple in NYC cycle, hybrid and plug-in vehicles can cut life cycle emissions by 60% and reduce costs up to 20 vehicles offer marginal emissions reductions at higher costs. NYC conditions with frequent stops triple

  18. Social Vehicle Navigation: Integrating Shared Driving Experience into Vehicle Navigation

    E-Print Network [OSTI]

    Iftode, Liviu

    Vehicle Navigation system that integrates driver-provided information into a vehicle navigation system Systems Applications]: Miscellaneous; K.4.m [Computers and Society]: Miscellaneous General Terms Design, Human Factors Keywords Social networks, vehicular networks, navigation systems, human- computer

  19. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  3. Vehicle Technologies Office: AVTA- Diesel Internal Combusion Engine Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the following vehicles is available: 2014 Chevrolet Cruze Diesel, 2013 Volkswagen Jetta TDI, and 2009 Volkswagen Jetta TDI.

  4. Specialty Vehicles The first fuel cell vehicles were specialty

    E-Print Network [OSTI]

    for space applications. Union Carbide delivered a fuel cell scooter to the U.S. Army in 1967. PEM fuel cellsSpecialty Vehicles History The first fuel cell vehicles were specialty vehicles. Allis Chalmers built and demonstrated a tractor in 1959 utilizing an alkaline fuel cell that produced 20 horsepower

  5. Project Information Form Project Title Eco-Driving to Reduce Emissions Cars (Behavioral Focus)

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Eco-Driving to Reduce Emissions ­ Cars (Behavioral Focus) presently understood potential of feedback to vehicle drivers to reduce on-road energy use and emissions

  6. USF PHYSICAL PLANT VEHICLE MAINTENANCE

    E-Print Network [OSTI]

    Meyers, Steven D.

    USF PHYSICAL PLANT VEHICLE MAINTENANCE TELEPHONE NO. 974-2500 GAS PUMP AUTHORIZATION FORM PLEASE. _____ THE FOLLOWING PERSONNEL ARE AUTHORIZED BY THIS DOCUMENT TO PUMP GASOLINE/DIESEL FUEL FOR OUR USF OWNED VEHICLES

  7. Parametrized maneuvers for autonomous vehicles

    E-Print Network [OSTI]

    Dever, Christopher W. (Christopher Walden), 1972-

    2004-01-01

    This thesis presents a method for creating continuously parametrized maneuver classes for autonomous vehicles. These classes provide useful tools for motion planners, bundling sets of related vehicle motions based on a ...

  8. VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE

    E-Print Network [OSTI]

    Ronquist, Fredrik

    VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE GENERAL INFORMATION Vehicles resposniblity and disciplinary action. Vehicles may be used by faculty or staff from other departments complete the vehicle usage agreement form certifying that they have a valid driver's license

  9. Appendix J - GPRA06 vehicle technologies program

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The target market for the Office of FreedomCAR and Vehicle Technologies (FCVT) program include light vehicles (cars and light trucks) and heavy vehicles (trucks more than 10,000 pounds Gross Vehicle Weight).

  10. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Heavy Vehicle Systems

    SciTech Connect (OSTI)

    Sid Diamond; Richard Wares; Jules Routbort

    2000-04-11

    Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

  12. Electric Vehicle Transportation Center

    E-Print Network [OSTI]

    ) power grid has been developed, which includes EV charging stations and integrated photovoltaic (PV vehicles (EVs) into power grids characterized by high penetration of intermittent renewable energy. HNEI and practices. To examine the effects of EVs on electric power systems and their operation, a Hawai

  13. Vehicle Technologies Market Report

    E-Print Network [OSTI]

    billion in 2010 · The average price of a new car is just under $25,000 · Sixteen percent of household.2% · Nearly 14% of cars sold in 2010 have continuously variable transmissions · Two-thirds of new lightVehicle Technologies Market Report February 2012 2011 #12;Quick Facts Energy and Economics

  14. Quadrennial Technology Review Vehicle Efficiency and Electrification...

    Broader source: Energy.gov (indexed) [DOE]

    QTR Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents More Documents & Publications...

  15. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  16. Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems

    SciTech Connect (OSTI)

    Peter J. Blau

    2000-04-26

    This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35 % fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and materials.

  17. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, R.S.; Allen, L.N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

  18. Scenario analysis of hybrid class 3-7 heavy vehicles.

    SciTech Connect (OSTI)

    An, F.; Stodolsky, F.; Vyas, A.; Cuenca, R.; Eberhardt, J. J.

    1999-12-23

    The effects of hybridization on heavy-duty vehicles are not well understood. Heavy vehicles represent a broader range of applications than light-duty vehicles, resulting in a wide variety of chassis and engine combinations, as well as diverse driving conditions. Thus, the strategies, incremental costs, and energy/emission benefits associated with hybridizing heavy vehicles could differ significantly from those for passenger cars. Using a modal energy and emissions model, they quantify the potential energy savings of hybridizing commercial Class 3-7 heavy vehicles, analyze hybrid configuration scenarios, and estimate the associated investment cost and payback time. From the analysis, they conclude that (1) hybridization can significantly reduce energy consumption of Class 3-7 heavy vehicles under urban driving conditions; (2) the grid-independent, conventional vehicle (CV)-like hybrid is more cost-effective than the grid-dependent, electric vehicle (EV)-like hybrid, and the parallel configuration is more cost-effective than the series configuration; (3) for CV-like hybridization, the on-board engine can be significantly downsized, with a gasoline or diesel engine used for SUVs perhaps being a good candidate for an on-board engine; (4) over the long term, the incremental cost of a CV-like, parallel-configured Class 3-4 hybrid heavy vehicle is about %5,800 in the year 2005 and $3,000 in 2020, while for a Class 6-7 truck, it is about $7,100 in 2005 and $3,300 in 2020; and (5) investment payback time, which depends on the specific type and application of the vehicle, averages about 6 years under urban driving conditions in 2005 and 2--3 years in 2020.

  19. PHEVs are More about the grid than the vehicles

    SciTech Connect (OSTI)

    NONE

    2009-01-15

    Plug-in hybrid electric vehicles (PHEVs) could be used as an effective storage medium to absorb intermittent renewable energy when it is available. Charged vehicles can run on the stored energy when needed. A recent study by the Pacific Northwest National Laboratory concluded that some 73 percent of U.S. light vehicles can be supplied with the existing utility infrastructure in place, provided the charging was restricted to off-peak periods. That would reduce U.S. oil imports by 6.2 million barrels per day, roughly 52 percent of U.S. oil imports. The limiting factors increasingly appear to be on the utility side, for example, making sure that the vehicles are charged during off-peak hours at discounted prices.

  20. Accomodating Electric Vehicles 

    E-Print Network [OSTI]

    Aasheim, D.

    2011-01-01

    ? New Building Construction & Core & Shell (SSc4.3) ? Up to 3 LEED points ? Existing Building (SSc4) ? 3-15 LEED points available Retail Benefits ? Green Differentiator ? Business associated with EV locator sites ? Vehicle GPS + websites... ? Encourage Sales Behavior ? Park/shop where EVSE is located ? Advertise on blink screen ? Discount or Free charge with minimum purchase (Host controls pricing) Recent Additions to the blink Network ? Nissan?s Smyrna Plant Solar EV Carport- Tennessee...

  1. Unmanned Aerospace Vehicle Workshop

    SciTech Connect (OSTI)

    Vitko, J. Jr.

    1995-04-01

    The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments were focused around the following sets of parameters: Clear sky, daylight; Clear-sky, night-to-day transition; Clear sky - improve/validate the accuracy of radiative fluxes derived from satellite-based measurements; Daylight, clouds of opportunity; and, Daylight, broken clouds.

  2. Vehicle Technologies Office News

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY 2009,BiofuelsLetEnergy VehicleTechnology

  3. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStates andMeasures | Department of

  4. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    E-Print Network [OSTI]

    Abbanat, Brian A.

    2001-01-01

    Infrastructure F. Current California CNG Vehicle UseCharacteristics of CNG Vehicles Review of Previous Studies/RP) Studies of AFVs/CNG Vehicles i. British Columbia, Canada

  5. Designing On-Road Vehicle Test Programs for the Development of Effective Vehicle Emission Models

    E-Print Network [OSTI]

    Younglove, T; Scora, G; Barth, M

    2005-01-01

    Uncertainty in Highway Vehicle Emission Factors,” EmissionPrograms for Effective Vehicle Emission Model DevelopmentU.S. EPA’s Mobile Vehicle Emission Simulator) are becoming

  6. Study Pinpoints Sources of Polluting Vehicle Emissions (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Unburned lubricant produces 60%-90% of organic carbon emissions. While diesel fuel is often viewed as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more significantly degrade air quality. Gasoline exhaust is at least as toxic on a per-unit-mass basis as diesel exhaust, and contributes up to 10 times more particulate matter (PM) to the emission inventory. Because emissions from both fuels can gravely impact health and the environment, researchers at the National Renewable Energy Laboratory (NREL) launched a study to understand how these pollutants relate to fuels, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE) project tested a variety of vehicles over different drive cycles at moderate (72 F) and cold (20 F) temperatures. Testing included: (1) Normal and high-emitting light-, medium-, and heavy-duty vehicles; (2) Gasoline, diesel, and compressed natural gas (CNG)-powered vehicles; (3) New and aged lubricants representative of those currently on the market; and (4) Gasoline containing no ethanol, E10, Texas-mandated low-emission diesel fuel, biodiesel, and CNG. The study confirmed that normally functioning emission control systems for gasoline light-duty vehicles are very effective at controlling organic carbon (OC) emissions. Diesel vehicles without aftertreatment emission control systems exhibited OC emissions approximately one order of magnitude higher than gasoline vehicles. High-emitter gasoline vehicles produced OC emissions similar to diesel vehicles without exhaust aftertreatment emission control. Exhaust catalysts combusted or converted more than 75% of lubricating oil components in the exhaust gases. Unburned crankcase lubricant made up 60%-90% of OC emissions. This OC represented 20%-50% of emitted PM in all but two of the vehicles. Three-way catalysts proved effective at reducing most of the OC. With high PM emitters or vehicles with deteriorated aftertreatment, high-molecular-weight fuel components and unburned lubricant were emitted at higher rates than in vehicles in good repair, with functioning emissions systems. Light-duty gasoline, medium-duty diesel, and heavy-duty natural gas vehicles produced more particles with fresh oil than with aged oil. The opposite trend was observed in light- and medium-duty high PM emitters. This effect was not readily apparent with heavy-duty diesel vehicles, perhaps because the lubricant represented a much smaller fraction of the total PM in those trucks.

  7. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

  8. Vehicle Technologies Office- AVTA: Hybrid-Electric Delivery Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing on FedEx Express and UPS hybrid-electric delivery trucks. This research was conducted by the National Renewable Energy Laboratory (NREL).

  9. Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance of Lube

    E-Print Network [OSTI]

    Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance from natural gas vehicles will help in the development of PM mitigation technologies. This in turn and help bring to market advanced transportation technologies that reduce air pollution and greenhouse gas

  10. Vehicle Technologies Office: 2012 Lightweight Materials R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of the U.S. Department of Energys (DOEs) Vehicle Technologies Office (VTO), the Lightweight Materials activity (LM) focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  11. Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)

    SciTech Connect (OSTI)

    Brennan, A.

    2011-04-01

    A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

  12. DOE Project on Heavy Vehicle Aerodynamic Drag

    SciTech Connect (OSTI)

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag coefficient of the vehicle. Furthermore, the evaluation of the impact of small changes in radiator or grille dimensions has revealed that the total drag is not particularly sensitive to those changes. This observation leads to two significant conclusions. First, a small increase in radiator size to accommodate heat rejection needs related to new emissions restrictions may be tolerated without significant increases in drag losses. Second, efforts to reduce drag on the tractor requires that the design of the entire tractor be treated in an integrated fashion. Simply reducing the size of the grille will not provide the desired result, but the additional contouring of the vehicle as a whole which may be enabled by the smaller radiator could have a more significant effect.

  13. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  14. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    have greatly furthered plug-in electric vehicle-grid connectivity, interoperability, and wireless charging. Gi-Heon Kim (National Renewable Energy Laboratory): Mr. Kim's research...

  15. Vehicle Technologies Office Merit Review 2014: Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  16. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  17. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle...

    Energy Savers [EERE]

    Data Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  18. Reduces electric energy consumption

    E-Print Network [OSTI]

    BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

  19. Data Needs for Evolving Motor Vehicle Emission Modeling Approaches

    E-Print Network [OSTI]

    Guensler, Randall

    1993-01-01

    Agency; Highway Vehicle Emission Estimates; Office offor Evolving Motor Vehicle Emission Modeling Approachesfor Evolving Motor Vehicle Emission Modeling Approaches

  20. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery

    E-Print Network [OSTI]

    Zahawi, RA; Dandois, JP; Holl, KD; Nadwodny, D; Reid, JL; Ellis, EC

    2015-01-01

    Lightweight unmanned aerial vehicles will revolutionizelightweight unmanned aerial vehicles to monitor tropicalfrom lightweight unmanned aerial vehicles (UAV) are a cost-

  1. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  2. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  3. Vehicle Technologies Office: Power Electronics Research and Developmen...

    Office of Environmental Management (EM)

    drive vehicles. Vehicle power electronics primarily process and control the flow of electrical energy in hybrid and plug-in electric vehicles, including plug-in electric vehicles....

  4. Vehicle Technologies Office AVTA: Light Duty Alternative Fuel...

    Energy Savers [EERE]

    Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data The Vehicle Technologies...

  5. International Trade in Used Vehicles: The Environmental Consequences of NAFTA

    E-Print Network [OSTI]

    Davis, Lucas

    2009-01-01

    trade  leads  average  vehicle  emissions  to  decrease  in country.  How average  vehicle emissions change in both vehicles  and  vehicle  emissions.   Our  dataset  allows 

  6. Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends have Changed Since 2008

    Broader source: Energy.gov [DOE]

    As the U.S. population has doubled from 1950 to 2012, the number of vehicles has grown nearly 6-fold and vehicle travel even more than that. The number of vehicles and vehicle travel peaked in 2007...

  7. New York State-wide Alternative Fuel Vehicle Program for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations 2011...

  8. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01

    Management for Urban EV Charging Systems”, 2013 IEEEfor Large Scale Public EV Charging Facilities”, 2013 IEEESmart Electric Vehicle (EV) Charging and Grid Integration

  9. Hybrid Vehicle Program. Final report

    SciTech Connect (OSTI)

    None

    1984-06-01

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  10. Vehicle Technologies Office: Information Resources

    Broader source: Energy.gov [DOE]

    From here you can access additional information on advanced transportation technologies; view programmatic publications and technical information; learn the basics of hybrid vehicle technology;...

  11. Online Optimal Control of Connected Vehicles for Efficient Traffic Flow at Merging Roads

    SciTech Connect (OSTI)

    Rios-Torres, Jackeline [ORNL; Malikopoulos, Andreas [ORNL; Pisu, Pierluigi [Clemson University

    2015-01-01

    This paper addresses the problem of coordinating online connected vehicles at merging roads to achieve a smooth traffic flow without stop-and-go driving. We present a framework and a closed-form solution that optimize the acceleration profile of each vehicle in terms of fuel economy while avoiding collision with other vehicles at the merging zone. The proposed solution is validated through simulation and it is shown that coordination of connected vehicles can reduce significantly fuel consumption and travel time at merging roads.

  12. NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01

    Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

  13. Hybrid vehicle motor alignment

    DOE Patents [OSTI]

    Levin, Michael Benjamin (Ann Arbor, MI)

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  14. Vehicles | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentat LENA|Upcoming PurchasingPortal Vehicles and

  15. Vehicles | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZUtility Rates APIVandana GroupVeerVehicles Jump

  16. Vehicles Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950Department of Energy Past(Advanced81 Vehicles

  17. Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  18. Experimental studies on a natural gas vehicle

    SciTech Connect (OSTI)

    Ishii, Mitsunori; Ishizawa, Shizuo; Inada, Eiji; Idoguchi, Ryuichi; Sekiba, Toru

    1994-10-01

    This paper presents the results of several studies conducted on a natural gas vehicle. In one study of engine-out emissions performance, the exhaust emissions of the CNG engine were lower than those of the base gasoline engine. In another study of the conversion characteristics of three-way catalysts, it was found that the conversion efficiency of total hydrocarbons (THCs) was much lower in the lean-mixture region for the NGV. The reduced efficiency was traced to lower conversion and poor reactivity of low-end hydrocarbons and to a higher concentration of H2O. 12 refs., 20 figs., 2 tabs.

  19. The Charging-Scheduling Problem for Electric Vehicle Networks

    E-Print Network [OSTI]

    method to reduce the total charging time for EVs. We study the Electric Vehicle Charging-Scheduling (EVCS the classic greedy nearest scheduling algorithm: assign each EV to its nearest charging station, then choose]. The capacity of EV battery is limited, which requires frequent charging. EV battery swapping is well known

  20. Vehicle Technologies Office: Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber)

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office supports research into magnesium and carbon fiber reinforced composites, which could reduce the weight of some components by 50-75 percent in the long-term.

  1. Plug-in vehicles and carsharing : user preferences, energy consumption and potential for growth

    E-Print Network [OSTI]

    Zoepf, Stephen M

    2015-01-01

    Plug-in Electric Vehicles (PEVs) are seen as a key pathway to reduce fuel consumption and greenhouse gas emissions in transportation, yet their sales are under 1% of new cars despite large incentives. Carsharing, a market ...

  2. Finding Computationally Inexpensive Methods to Model the Flow Past Heavy Vehicles and the Design of

    E-Print Network [OSTI]

    Jameson, Antony

    save 3.2 billion gallons of diesel per year and prevent 28 million tons of CO2 emissions.3 increases the pressure inside the wake and reduces the overall vehicle drag. Wind tunnel experiments using

  3. Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Lightweight Materials activity (LM) focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance,recyclability, and cost.

  4. Reduction in Vehicle Temperatures and Fuel Use from Cabin Ventilation, Solar-Reflective Paint, and a New Solar-Reflective Glazing

    SciTech Connect (OSTI)

    Rugh, J.; Chaney, L.; Meyer, J.; Rustagi, M.; Olson, K.; Kogler, R.

    2007-05-01

    An analysis to determine the impact of reducing the thermal load on a vehicle using solar-reflective paint and glazing.

  5. Vehicle Technologies Office: AVTA- Compressed Natural Gas Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the 2012 Honda Civic CNG is available in downloadable form.

  6. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  7. Lightweight materials in the light-duty passenger vehicle market: Their market penetration potential and impacts

    SciTech Connect (OSTI)

    Stodolsky, F. [Argonne National Lab., IL (United States). Center for Transportation Research]|[Argonne National Lab., Washington, DC (United States); Vyas, A.; Cuenca, R. [Argonne National Lab., IL (United States). Center for Transportation Research

    1995-06-01

    This paper summarizes the results of a lightweight materials study. Various lightweight materials are examined and the most cost effective are selected for further analysis. Aluminum and high-performance polymer matrix composites (PMCS) are found to have the highest potential for reducing the weight of automobiles and passenger-oriented light trucks. Weight reduction potential for aluminum and carbon fiber-based PMCs are computed based on a set of component-specific replacement criteria (such as stiffness and strength), and the consequent incremental cost scenarios are developed. The authors assume that a materials R and D program successfully reduces the cost of manufacturing aluminum and carbon fiber PMC-intensive vehicles. A vehicle choice model is used to project market shares for the lightweight vehicles. A vehicle survival and age-related usage model is employed to compute energy consumption over time for the vehicle stock. After a review of projected costs, the following two sets of vehicles are characterized to compete with the conventional materials vehicles: (1) aluminum vehicles with limited replacement providing 19% weight reduction (AIV-Mid), and (2) aluminum vehicles with the maximum replacement providing 31% weight reduction (AIV-Max). Assuming mass-market introduction in 2005, the authors project a national petroleum energy savings of 3% for AIV-Mid and 5% for AIV-Max in 2030.

  8. Fast Charging Electric Vehicle Research & Development Project

    SciTech Connect (OSTI)

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: - Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see Attachment A) are intended to assist future implementation of electric vehicle technology. They are based on the cited research and on the empirical data collected and presented. The report is not expected to represent the entire operating conditions of any of the equipment under consideration within this project, and tested equipment may operate differently under other conditions.

  9. Economics of Plug-In Hybrid Electric Vehicles (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Plug-In hybrid electric vehicles (PHEVs) have gained significant attention in recent years, as concerns about energy, environmental, and economic securityincluding rising gasoline prices have prompted efforts to improve vehicle fuel economy and reduce petroleum consumption in the transportation sector. PHEVs are particularly well suited to meet these objectives, because they have the potential to reduce petroleum consumption both through fuel economy gains and by substituting electric power for gasoline use.

  10. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    SciTech Connect (OSTI)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  11. Natural Gas as a Fuel Option for Heavy Vehicles

    SciTech Connect (OSTI)

    James E. Wegrzyn; Wai Lin Litzke; Michael Gurevich

    1999-04-26

    The U.S. Department of Energy (DOE), Office of Heavy Vehicle Technologies (OHVT) is promoting the use of natural gas as a fuel option in the transportation energy sector through its natural gas vehicle program [1]. The goal of this program is to eliminate the technical and cost barriers associated with displacing imported petroleum. This is achieved by supporting research and development in technologies that reduce manufacturing costs, reduce emissions, and improve vehicle performance and consumer acceptance for natural gas fueled vehicles. In collaboration with Brookhaven National Laboratory, projects are currently being pursued in (1) liquefied natural gas production from unconventional sources, (2) onboard natural gas storage (adsorbent, compressed, and liquefied), (3) natural gas delivery systems for both onboard the vehicle and the refueling station, and (4) regional and enduse strategies. This paper will provide an overview of these projects highlighting their achievements and current status. In addition, it will discuss how the individual technologies developed are being integrated into an overall program strategic plan.

  12. COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT

    E-Print Network [OSTI]

    Sin, Peter

    COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT _________________________________________________________ Applicants for positions involving the operation of a commercial motor vehicle must comply with Title 49 CFR: _______________ Please list the following information for each unexpired commercial motor vehicle operator license

  13. Digital autoland system for unmanned aerial vehicles 

    E-Print Network [OSTI]

    Wagner, Thomas William, Jr.

    2007-09-17

    Autoland controllers are prevalent for both large and small/micro unmanned aerial vehicles, but very few are available for medium sized unmanned aerial vehicles. These vehicles tend to have limited sensors and instrumentation, ...

  14. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01

    M. (2007). Battery Electric Vehicles: An Assessment of theExtended-Range Electric Vehicles: An Enabling Platform forReady Plug-in Hybrid Electric Vehicle. D.O.E. Challenge X,

  15. Vehicle Technologies Office | Department of Energy

    Energy Savers [EERE]

    Station Read more Compare MPG and Emissions for New and Used Vehicles Compare MPG and Emissions for New and Used Vehicles Read more The U.S. Department of Energy's Vehicle...

  16. Drive Cycle Powertrain Efficiencies and Trends Derived From EPA Vehicle Dynamometer Results

    SciTech Connect (OSTI)

    Thomas, John F

    2014-01-01

    Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.

  17. Evaluation of a Vehicle Visualization

    E-Print Network [OSTI]

    Kameda, Yoshinari

    , "Ergonomic Design and Evaluation of Augmented Reality Based Cautionary Warnings for Driving Assistance *1 *2 *2 *2 *1 *2 CG Evaluation of a Vehicle Visualization In this paper, we report an evaluation of the visualization method that displays a hidden vehicle

  18. Particulate matter emissions from a DISI engine under cold-fast-idle conditions for ethanol-gasoline blends

    E-Print Network [OSTI]

    Dimou, Iason

    2011-01-01

    In an effort to build internal combustion engines with both reduced brake-specific fuel consumption and better emission control, engineers developed the Direct Injection Spark Ignition (DISI) engine. DISI engines combine ...

  19. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  20. Propane Vehicle Demonstration Grant Program

    SciTech Connect (OSTI)

    Jack Mallinger

    2004-08-27

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  1. Force Modulation System for Vehicle Manufacturing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System for Vehicle Manufacturing Force Modulation System for Vehicle Manufacturing Novel Technology Enables Energy-Efficient Production of High-Strength Steel Automotive Parts...

  2. Gasoline Vehicle Exhuast Particle Sampling Study | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Exhuast Particle Sampling Study Gasoline Vehicle Exhuast Particle Sampling Study 2003 DEER Conference Presentation: University of Minnesota 2003deerkittelson.pdf More...

  3. Vehicle Modeling and Simulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling and Simulation Vehicle Modeling and Simulation Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda,...

  4. Security enhanced with increased vehicle inspections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security enhanced with increased vehicle inspections Security measures increase as of March: vehicle inspections won't delay traffic New increased security procedures meet LANL's...

  5. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The...

  6. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems (VTMS) AnalysisModeling Integrated Vehicle Thermal Management Systems (VTMS) AnalysisModeling 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

  7. Water Emissions from Fuel Cell Vehicles

    Broader source: Energy.gov [DOE]

    Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles using gasoline-powered internal combustion engines (ICEs).

  8. Vehicle Technologies Office: AVTA - Evaluating National Parks...

    Energy Savers [EERE]

    Office: AVTA - Evaluating National Parks and Forest Service Fleets for Plug-in Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating National Parks and Forest...

  9. Vehicle Technologies Office Merit Review 2014: Understanding...

    Energy Savers [EERE]

    Vehicle Technologies Office Merit Review 2014: Understanding Protective Film Formation on Magnesium Alloys in Automotive Applications Vehicle Technologies Office Merit Review 2014:...

  10. Vehicle Technologies Office: Electrical Machines | Department...

    Broader source: Energy.gov (indexed) [DOE]

    in efficiency, cost, weight, and volume for competitive future electric vehicles. Tesla Motors, a U.S. electric vehicle manufacturer, uses induction motor technology....

  11. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01

    are vehicle cost, energy cost, fuel alternatives, and energyalternatives when their needs are not adequately met by the incumbent vehicle & energy

  12. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications HYDROGEN TO THE HIGHWAYS Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Safety Analysis of Type 4 Tanks in CNG Vehicles...

  13. Investigation of Direct Injection Vehicle Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Injection Vehicle Particulate Matter Emissions Investigation of Direct Injection Vehicle Particulate Matter Emissions This study focuses primarily on particulate matter mass...

  14. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April...

  15. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Agenda...

  16. Potential Thermoelectric Applications in Diesel Vehicles | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Applications in Diesel Vehicles Potential Thermoelectric Applications in Diesel Vehicles 2003 DEER Conference Presentation: BSST, LLC 2003deercrane.pdf More...

  17. Complex System Method to Assess Commercial Vehicle Fuel Consumption

    Broader source: Energy.gov [DOE]

    Two case studies for commercial vehicle applications compare a baseline, contemporary vehicle with advanced, future options.

  18. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S....

  19. Vehicle Technologies Office- AVTA: Hybrid-Electric Tractor Vehicles

    Broader source: Energy.gov [DOE]

    The following set of reports describes performance data collected from hybrid-electric heavy-duty tractor vehicles in the Coca-Cola fleet. This research was conducted by the National Renewable Energy Laboratory (NREL).

  20. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations. 47505.pdf More Documents & Publications Fuel Economy and Emmissions...

  1. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies...

    Energy Savers [EERE]

    Office Overview Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  2. Feasibility of Thermoelectrics for Waste Heat Recovery in Conventional Vehicles

    SciTech Connect (OSTI)

    Smith, K.; Thornton, M.

    2009-04-01

    Thermoelectric (TE) generators convert heat directly into electricity when a temperature gradient is applied across junctions of two dissimilar metals. The devices could increase the fuel economy of conventional vehicles by recapturing part of the waste heat from engine exhaust and generating electricity to power accessory loads. A simple vehicle and engine waste heat model showed that a Class 8 truck presents the least challenging requirements for TE system efficiency, mass, and cost; these trucks have a fairly high amount of exhaust waste heat, have low mass sensitivity, and travel many miles per year. These factors help maximize fuel savings and economic benefits. A driving/duty cycle analysis shows strong sensitivity of waste heat, and thus TE system electrical output, to vehicle speed and driving cycle. With a typical alternator, a TE system could allow electrification of 8%-15% of a Class 8 truck's accessories for 2%-3% fuel savings. More research should reduce system cost and improve economics.

  3. Optimality for underwater vehicles Dept. of Mathematics

    E-Print Network [OSTI]

    Leonard, Naomi

    grant BES-9502477. 2Supported in part by US Air Force Grant F49620-01-1-0063 Here, we restrict de- scribe the vehicle dynamics. The con guration space of the vehicle is SE(2). Denote by (x z. The angle de- scribes the vehicle's orientation in this plane so that vehicle con guration is given by q

  4. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01

    means a crossover to sustainable mobility, the stated goalsustainable personal vehicles for their various mobility

  5. Explosion proof vehicle for tank inspection

    DOE Patents [OSTI]

    Zollinger, William T. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Bauer, Scott G. (Idaho Falls, ID)

    2012-02-28

    An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

  6. VEHICLE USAGE AGREEMENT DEPARTMENT OF BIOLOGICAL SCIENCE

    E-Print Network [OSTI]

    Ronquist, Fredrik

    VEHICLE USAGE AGREEMENT DEPARTMENT OF BIOLOGICAL SCIENCE All drivers of vehicles must certify to the following: 1. I certify that I have a valid driver's license appropriate for the vehicle type and will abide belts. 2. I have read and understand the vehicle operating policies and procedures as defined

  7. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01

    Existence. Oxford Press Benyus, J. M. (1997). Biomimicry:Vehicle Design Janine Benyus, author of Biomimicry:

  8. Method and system for vehicle refueling

    SciTech Connect (OSTI)

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Agarwal, Apoorv; Hinds, Brett Stanley

    2014-06-10

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  9. Cooperative Localization for Autonomous Underwater Vehicles

    E-Print Network [OSTI]

    Bahr, Alexander

    This paper describes an algorithm for distributed acoustic navigation for Autonomous Underwater Vehicles

  10. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  11. Method and system for vehicle refueling

    DOE Patents [OSTI]

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Argarwal, Apoorv; Hinds, Brett Stanley

    2012-11-20

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  12. Adaptive control of hypersonic vehicles

    E-Print Network [OSTI]

    Gibson, Travis Eli

    2008-01-01

    The guidance, navigation and control of hypersonic vehicles are highly challenging tasks due to the fact that the dynamics of the airframe, propulsion system and structure are integrated and highly interactive. Such a ...

  13. Greenhouse gas emission impacts of alternative-fueled vehicles: Near-term vs. long-term technology options

    SciTech Connect (OSTI)

    Wang, M.Q.

    1997-05-20

    Alternative-fueled vehicle technologies have been promoted and used for reducing petroleum use, urban air pollution, and greenhouse gas emissions. In this paper, greenhouse gas emission impacts of near-term and long-term light-duty alternative-fueled vehicle technologies are evaluated. Near-term technologies, available now, include vehicles fueled with M85 (85% methanol and 15% gasoline by volume), E85 (85% ethanol that is produced from corn and 15% gasoline by volume), compressed natural gas, and liquefied petroleum gas. Long-term technologies, assumed to be available around the year 2010, include battery-powered electric vehicles, hybrid electric vehicles, vehicles fueled with E85 (ethanol produced from biomass), and fuel-cell vehicles fueled with hydrogen or methanol. The near-term technologies are found to have small to moderate effects on vehicle greenhouse gas emissions. On the other hand, the long-term technologies, especially those using renewable energy (such as biomass and solar energy), have great potential for reducing vehicle greenhouse gas emissions. In order to realize this greenhouse gas emission reduction potential, R and D efforts must continue on the long-term technology options so that they can compete successfully with conventional vehicle technology.

  14. All-terrain vehicle

    SciTech Connect (OSTI)

    Somerton-Rayner, M.

    1986-12-16

    This patent describes an all-terrain vehicle comprising: a chassis; four road wheel axles equally spaced along the chassis; suspension means mounting the axles on the chassis; wheels mounted adjacent both ends of each of the axles, the wheels on the foremost and the rearmost axles being steerably mounted; propulsion and driving means including a single internal combustion engine and gearbox, and first and second transfer boxes both coupled to be driven by the engine through the gearbox; the first transfer box driving the first and third axles and the second transfer box driving the second and fourth axles; means for driving in the alternative all four wheels and only the center two wheels; power-assisted steering gear means operatively connected to the steerably-mounted wheels of the foremost axle; and steering coupling means extending between the steerably-mounted wheels on the foremost and rearmost axles so dimensioned that upon steering of the front wheels, the rear wheels perform castoring constrained to a smaller turning angle and a lower rate of angular movement than the front wheels.

  15. Prediction of vehicle impact forces 

    E-Print Network [OSTI]

    Kaderka, Darrell Laine

    1990-01-01

    PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject...: Civil Engineering PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Approved as to style and content by: C. Eugene Buth (Chair of Committee) W. ynn Beason (Member) I? D n E. B ay (Member) es T. P. Yao (Departmen Head) May...

  16. Best available practices for LNG fueling of fleet vehicles

    SciTech Connect (OSTI)

    Midgett, D.E. II; Echterhoff, L.W. [M.W. Kellogg Co., Houston, TX (United States); Oppenheimer, A.J. [Gas Research Inst., Chicago, IL (United States)

    1996-12-31

    For many years, natural gas has been promoted as a preferred alternative vehicle fuel. There are a variety of incentives to use natural gas including: improving national security by reducing reliance on foreign oil imports, meeting stringent air emissions guidelines, and utilizing a lower-cost fuel which is in ample domestic supply. Although liquefied natural gas (LNG) was first demonstrated as a vehicle fuel in 1965, compressed natural gas (CNG) has been the fuel with the widest use to date. However, LNG is now gaining popularity as a vehicle fuel because of its higher energy density and transportability. Known LNG projects were polled to determine a list of representative sites. These were studied in depth. Data gathered from the representative sites were summarized to describe current industry practices, and a consensus was formed of best available practices for the industry. A summary of the results of the industry assessment is presented here. Problems and successes of the industry are candidly discussed. The full results of this work and other related studies will be made available to the industry as part of GRI`s ``Best Practices for Natural Gas Transit and Fleet Operations``. The purpose of these documents is to provide the LNG vehicle industry with design and operating information, which, in turn, will improve the safety and benefits of using natural gas vehicles (NGV).

  17. Major Corporate Fleets Align to Reduce Oil Consumption

    Broader source: Energy.gov [DOE]

    President Obama launches the National Clean Fleets Partnership, an initiative that helps large companies reduce with fuel usage by incorporating electric vehicles, alternative fuels and conservation techniques into their operations. Charter partners include AT&T, FedEx, Pepsi-Co, UPS and Verizon.

  18. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    SciTech Connect (OSTI)

    Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

    2012-10-01

    In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

  19. Motor vehicle fuel economy, the forgotten HC control stragegy?

    SciTech Connect (OSTI)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  20. Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles

    SciTech Connect (OSTI)

    Neubauer, J.; Wood, E.

    2013-01-01

    Hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electric vehicles offer the potential to reduce both oil imports and greenhouse gases, as well as to offer a financial benefit to the driver. However, assessing these potential benefits is complicated by several factors, including the driving habits of the operator. We focus on driver aggression, i.e., the level of acceleration and velocity characteristic of travel, to (1) assess its variation within large, real-world drive datasets, (2) quantify its effect on both vehicle efficiency and economics for multiple vehicle types, (3) compare these results to those of standard drive cycles commonly used in the industry, and (4) create a representative drive cycle for future analyses where standard drive cycles are lacking.

  1. A Dynamic Algorithm for Facilitated Charging of Plug-In Electric Vehicles

    E-Print Network [OSTI]

    Taheri, Nicole; Ye, Yinyu

    2011-01-01

    Plug-in Electric Vehicles (PEVs) are a rapidly developing technology that can reduce greenhouse gas emissions and change the way vehicles obtain power. PEV charging stations will most likely be available at home and at work, and occasionally be publicly available, offering flexible charging options. Ideally, each vehicle will charge during periods when electricity prices are relatively low, to minimize the cost to the consumer and maximize societal benefits. A Demand Response (DR) service for a fleet of PEVs could yield such charging schedules by regulating consumer electricity use during certain time periods, in order to meet an obligation to the market. We construct an automated DR mechanism for a fleet of PEVs that facilitates vehicle charging to ensure the demands of the vehicles and the market are met. Our dynamic algorithm depends only on the knowledge of a few hundred driving behaviors from a previous similar day, and uses a simple adjusted pricing scheme to instantly assign feasible and satisfactory c...

  2. Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles: Preprint

    SciTech Connect (OSTI)

    Neubauer, J.; Wood, E.

    2013-03-01

    Hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electric vehicles offer the potential to reduce both oil imports and greenhouse gases, as well as to offer a financial benefit to the driver. However, assessing these potential benefits is complicated by several factors, including the driving habits of the operator. We focus on driver aggression, i.e., the level of acceleration and velocity characteristic of travel, to (1) assess its variation within large, real-world drive datasets, (2) quantify its effect on both vehicle efficiency and economics for multiple vehicle types, (3) compare these results to those of standard drive cycles commonly used in the industry, and (4) create a representative drive cycle for future analyses where standard drive cycles are lacking.

  3. Fact #743: September 3, 2012 Used Vehicle Sales are Three Times Higher than New Vehicle Sales

    Broader source: Energy.gov [DOE]

    From 1990 to 2008, the number of used vehicles sold was between 2.5 and 3 times higher than new vehicle sales. During the recent recession, both new and used vehicle sales declined to sales volumes...

  4. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    E-Print Network [OSTI]

    Abbanat, Brian A.

    2001-01-01

    of the Canadian Natural Gas Vehicles Survey,” SAE 892067,2000. Gushee, David E, “Natural Gas Vehicles Stall on Way toWelfare Costs of Natural Gas Vehicles,” Resources for the

  5. Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight

    Broader source: Energy.gov [DOE]

    The gross weight of a vehicle (GVW) is the weight of the empty vehicle plus the weight of the maximum payload that the vehicle was designed to carry. In cars and small light trucks, the difference...

  6. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  7. Vehicle Technologies Office: AVTA- Evaluating Military Bases and Fleet Readiness for Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. Through the AVTA, Idaho National Laboratory also does fleet and other analysis to evaluate readiness for plug-in electric vehicles and other advanced technology vehicles. The following reports describe analysis studies Idaho National Laboratory conducted for the military to evaluate readiness for plug-in electric vehicles.

  8. U32: Vehicle Stability and Dynamics: Longer Combination Vehicles

    SciTech Connect (OSTI)

    Petrolino, Joseph; Spezia, Tony; Arant, Michael; Broshears, Eric; Chitwood, Caleb; Colbert, Jameson; Hathaway, Richard; Keil, Mitch; LaClair, Tim J; Pape, Doug; Patterson, Jim; Pittro, Collin

    2011-01-01

    This study investigated the safety and stability of longer combination vehicles (LCVs), in particular a triple trailer combination behind a commercial tractor, which has more complicated dynamics than the more common tractor in combination with a single semitrailer. The goal was to measure and model the behavior of LCVs in simple maneuvers. Example maneuvers tested and modeled were single and double lane changes, a gradual lane change, and a constant radius curve. In addition to test track data collection and a brief highway test, two computer models of LCVs were developed. One model is based on TruckSim , a lumped parameter model widely used for single semitrailer combinations. The other model was built in Adams software, which more explicitly models the geometry of the components of the vehicle, in terms of compliant structural members. Among other results, the models were able to duplicate the experimentally measured rearward amplification behavior that is characteristic of multi-unit combination vehicles.

  9. Nitrogen dioxide, sulfur dioxide, and ammonia detector for remote sensing of vehicle emissions

    E-Print Network [OSTI]

    Denver, University of

    sulfur diesel fuel is less expensive due to reduced taxes and as such may be prone to illegal use in on-road November 2005; published online 18 January 2006 A remote sensor for measuring on-road vehicles passing of reducing sulfur in fuel for all mobile sources. This process begins with ultralow sulfur on-road diesel

  10. Modular Energy Storage System for Alternative Energy Vehicles

    SciTech Connect (OSTI)

    Janice Thomas; Frank Ervin

    2012-02-28

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystemsâ?? performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact of design alternatives and the impact of changes. Refinement of models was accomplished through correlation studies to measured data obtained from functioning hardware. Specifically, correlation and characterization of the boost converter resulted in a model that was effectively used to determine overall VEMS performance. The successful development of the boost converter can be attributed to utilization of previously proven technologies and adapting to meet the VEMS requirements. This program provided significant improvement in development time of various generations of boost converters. The software strategies and testing results support the development of current energy management systems and directly contribute to the future of similar, commercial products at Magna E-Car Systems. Because of this development project, Magna E-Car Systems is able to offer automotive customers a boost converter system with reduced time to market and decreased product cost, thus transferring the cost and timing benefits to the end use consumer.

  11. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    SciTech Connect (OSTI)

    Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  12. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Test Procedure Development: Hybrid System Power Rating

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle...

  13. Vehicle Technologies Office Merit Review 2015: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  14. Apps for Vehicles: What are some examples of vehicle data applications...

    Open Energy Info (EERE)

    and weather changes * Helping consumers understand the cost and overall potential of electric drive vehicles * Enhanced security with real-time notification of a vehicle...

  15. Vehicle Technologies Office Merit Review 2014: Vehicle Communications and Charging Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  16. Vehicle Technologies Office Merit Review 2014: Vehicle Thermal Systems Modeling in Simulink

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  17. Vehicle Technologies Office Merit Review 2014: Vehicle to Grid Communications and Field Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  18. Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers

    E-Print Network [OSTI]

    Heffner, Reid R.

    2007-01-01

    2003) Incentives for Alternate Fuel Vehicles: A Large-ScaleThis wasn't some sort of alternate-fuel vehicle pointing the

  19. Vehicle security apparatus and method

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    1996-02-13

    A vehicle security apparatus for use in a motor vehicle, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle.

  20. Vehicle security apparatus and method

    DOE Patents [OSTI]

    Veligdan, J.T.

    1996-02-13

    A vehicle security apparatus for use in a motor vehicle is disclosed, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle. 7 figs.

  1. PASSIVE DETECTION OF VEHICLE LOADING

    SciTech Connect (OSTI)

    Garrett, A.

    2012-01-03

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  2. Advanced Powertrain Research Facility Vehicle Test Cell Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

  3. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards

    Broader source: Energy.gov [DOE]

    The National Highway Traffic Safety Administration recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single...

  4. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01

    Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

  5. Obama Administration Takes Major Step toward Advanced Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    toward Advanced Vehicles with New Fleet Management Practices and Launch of First Federal Electric Vehicle Pilot Obama Administration Takes Major Step toward Advanced Vehicles with...

  6. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01

    Moderate Hybrid-electric Vehicles. ESScap06, Switzerland,GH. SIMPLEV: A Simple Electric Vehicle Simulation Program-Ultracapacitors in Hybrid- electric Vehicle Applications.

  7. Proton Exchange Membrane Fuel Cell Characterization for Electric Vehicle Applications

    E-Print Network [OSTI]

    Swan, D.H.; Dickinson, B.E.; Arikara, M.P.

    1994-01-01

    Fuel CelL/Battery HybridSystemfor Electric Vehicle Applications",Fuel Cell Characterization for Electric Vehicle Applicationsthe fuel cell ~stemfor electric vehicle applications. Where

  8. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    for fuel cell systems for vehicle applications, Journal ofand Fuel Cell Electric Vehicle Symposium applications. Thesewhich limits its application in fuel cell vehicles. The

  9. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01

    fraction of light-duty gasoline vehicle particulate matterQuinone emissions from gasoline and diesel motor vehicles.32 organic compounds from gasoline- powered motor vehicles.

  10. A Vehicle to Roadside Communications Architecture for ITS Applications

    E-Print Network [OSTI]

    Lo, Tetiana; Varaiya, Pravin

    2000-01-01

    c_ data_?ow pollution_ incident vehicle_ pollution_ messageEmissions (dfd) vehicle_ pollution_ alert From_ Parking_reference ?ows: • pollution_state_vehicle_log_data •

  11. Clean Cities: Land of Sky Clean Vehicles coalition (Western North...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land of Sky Clean Vehicles Coalition (Western North Carolina) The Land of Sky Clean Vehicles coalition (Western North Carolina) works with vehicle fleets, fuel providers, community...

  12. taking charge : optimizing urban charging infrastructure for shared electric vehicles

    E-Print Network [OSTI]

    Subramani, Praveen

    2012-01-01

    This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

  13. 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  14. 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  15. 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  16. Proton Exchange Membrane Fuel Cell Characterization for Electric Vehicle Applications

    E-Print Network [OSTI]

    Swan, D.H.; Dickinson, B.E.; Arikara, M.P.

    1994-01-01

    Characterization for Electric Vehicle Applications D.H. SwanHybridSystemfor Electric Vehicle Applications", SAEPaperFuel Cells for Electric Vehicles, Knowledge Gaps and

  17. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    batteries and ultracapacitors for electric vehicles. EVS24Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumpublications on electric and hybrid vehicle technology and

  18. Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol I

    E-Print Network [OSTI]

    Gris, Arturo E.

    1991-01-01

    Air Batteries for Electric Vehicles” E.J.Rudd. SAE 891660.the Soleq Evcort Electric Vehicle”. DOE/ID--10232. Preparedfor Fiscal Year 88, Electric Vehicle Program, February

  19. Interested but unsure: Public attitudes toward electric vehicles in China

    E-Print Network [OSTI]

    Lo, Kevin

    2013-01-01

    Experiencing range in an electric vehicle: Understandingto pay for electric vehicles and their attributes. Resourceownership and use of electric vehicles–a review of

  20. Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects

    E-Print Network [OSTI]

    Scott, Allen J.

    1993-01-01

    the production of electric vehicle componentswill result an1992. "Hot Sales of Electric Vehicles." p. El. Sharpe, W. ,1992. "Battery and Electric Vehicle Update." September1992.

  1. The origin of California’s zero emission vehicle mandate

    E-Print Network [OSTI]

    Sperling, Dan; Collantes, Gustavo O

    2008-01-01

    Sperling, D. , 1989. Electric vehicles: performance, life-in California: The Role of Electric Vehicles. The ClaremontGM’s Revolutionary Electric Vehicle. Random House, New York.

  2. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01

    Moderate Hybrid-electric Vehicles. ESScap06, Switzerland,GH. SIMPLEV: A Simple Electric Vehicle Simulation Program-20 th International Electric Vehicle Symposium, Long Beach,

  3. Demand for Electric Vehicles in Hybrid Households: An Exploratory Analysis

    E-Print Network [OSTI]

    Kurani, Kenneth S.; Turrentine, Tom; Sperling, Daniel

    1994-01-01

    stated they wouldlikely add an electric and vehicle to theirhouseholdsand the demand electric vehicles", Transportation1983) "A Critical Reviewof Electric Vehicle MarketStudies",

  4. Household Markets for Neighborhood Electric Vehicles in California

    E-Print Network [OSTI]

    Kurani, Kenneth S.; Sperling, Daniel; Lipman, Timothy; Stanger, Deborah; Turrentine, Thomas; Stein, Aram

    2001-01-01

    A Statewide ELECTRIC ELECTRIC and VEHICLES: Survey Sandrafor Neighborhood Electric Vehicles. Report prepared for theD. (1994). Future Drive: Electric Vehicles and Sustainable

  5. Household Markets for Neighborhood Electric Vehicles in California

    E-Print Network [OSTI]

    Kurani, Kenneth S; Sperling, Daniel; Lipman, Timothy; Stanger, Deborah; Turrentine, Thomas; Stein, Aram

    1995-01-01

    for Neighborhood Electric Vehicles. Report prepared for theD. (1994). Future Drive: Electric Vehicles and Sustainablefor Neighborhood Electric Vehicles. Report prepared for the

  6. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01

    Sealed lead-acid electric and vehicle battery development.Nasar S. A. (1982) electric vehicle technology. John Wiley &batteries fornia. for electric vehicles. Argonne National

  7. Testing and Validation of Vehicle to Grid Communication Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Validation of Vehicle to Grid Communication Standards Testing and Validation of Vehicle to Grid Communication Standards 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

  8. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations...

  9. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01

    hybrid, electric and hydrogen fuel cell vehicles, Journal ofof the Transition to Hydrogen Fuel Cell Vehicles & theof battery electric, hydrogen fuel cell and hybrid vehicles

  10. Energy Department Awards Will Promote Electric Vehicles in 24...

    Energy Savers [EERE]

    Energy Department Awards Will Promote Electric Vehicles in 24 States and Train a Workforce for Advanced Vehicle Development Energy Department Awards Will Promote Electric Vehicles...

  11. Vehicle Technologies Office: FY14 DE-FOA-0000951 Alternative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY14 DE-FOA-0000951 Alternative Fuel Vehicle Deployment Initiatives Selection Table Vehicle Technologies Office: FY14 DE-FOA-0000951 Alternative Fuel Vehicle Deployment Initiatives...

  12. Vehicle Technologies Office Merit Review 2014: Smith Electric...

    Broader source: Energy.gov (indexed) [DOE]

    Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric Vehicles:...

  13. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle Symposiumcycles. Vehicles with the fuel cell operating in the optimum

  14. Gasoline Ultra Fuel Efficient Vehicle Program Update | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Program Update Gasoline Ultra Fuel Efficient Vehicle Program Update Discusses hardware and system development activities to achieve in-vehicle fuel economy and emissions...

  15. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  16. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  17. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

  18. 2008 Annual Merit Review Results Summary - 14. Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4. Vehicle Systems and Simulation 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation DOE Vehicle Technologies Annual Merit Review 2008meritreview14.pd...

  19. AVTA: Vehicle to Grid Power Flow Regulations and Building Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review 2014: PEV Integration with Renewables Vehicle Technologies Office Merit Review 2015: Electric Vehicle Grid Integration ANSI Electric Vehicle Standards Roadmap v2.0...

  20. Measuring and Modeling Emissions from Extremely Low Emitting Vehicles

    E-Print Network [OSTI]

    Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J M

    2006-01-01

    CARB) (2005) “Motor Vehicle Emissions Inventory Modelingdynamometer test. The vehicle emission standards have beenwith the on-road vehicle emission measurement effort. This