Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Method for reducing CO2, CO, NOX, and SOx emissions  

DOE Patents [OSTI]

Industrial combustion facilities are integrated with greenhouse gas-solidifying fertilizer production reactions so that CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions can be converted prior to emission into carbonate-containing fertilizers, mainly NH.sub.4 HCO.sub.3 and/or (NH.sub.2).sub.2 CO, plus a small fraction of NH.sub.4 NO.sub.3 and (NH.sub.4).sub.2 SO.sub.4. The invention enhances sequestration of CO.sub.2 into soil and the earth subsurface, reduces N0.sub.3.sup.- contamination of surface and groundwater, and stimulates photosynthetic fixation of CO.sub.2 from the atmosphere. The method for converting CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions into fertilizers includes the step of collecting these materials from the emissions of industrial combustion facilities such as fossil fuel-powered energy sources and transporting the emissions to a reactor. In the reactor, the CO.sub.2, CO, N.sub.2, SO.sub.x, and/or NO.sub.x are converted into carbonate-containing fertilizers using H.sub.2, CH.sub.4, or NH.sub.3. The carbonate-containing fertilizers are then applied to soil and green plants to (1) sequester inorganic carbon into soil and subsoil earth layers by enhanced carbonation of groundwater and the earth minerals, (2) reduce the environmental problem of NO.sub.3.sup.- runoff by substituting for ammonium nitrate fertilizer, and (3) stimulate photosynthetic fixation of CO.sub.2 from the atmosphere by the fertilization effect of the carbonate-containing fertilizers.

Lee, James Weifu (Oak Ridge, TN); Li, Rongfu (Zhejiang, CH)

2002-01-01T23:59:59.000Z

2

Impacts of reducing shipboard NOx? and SOx? emissions on vessel performance  

E-Print Network [OSTI]

The international maritime community has been experiencing tremendous pressures from environmental organizations to reduce the emissions footprint of their vessels. In the last decade, air emissions, including nitrogen ...

Caputo, Ronald J., Jr. (Ronald Joseph)

2010-01-01T23:59:59.000Z

3

SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report  

SciTech Connect (OSTI)

Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

NONE

1995-09-01T23:59:59.000Z

4

SOx/NOx sorbent and process of use  

DOE Patents [OSTI]

An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

1993-01-19T23:59:59.000Z

5

Reducing NOx in Fired Heaters and Boilers  

E-Print Network [OSTI]

-6, 2000 Reducing NOx in Fired Heaters Air Pollution Control and Boilers Keeping the environment clean Presented by Ashutosh Garg Furnace Improvements Low cost solutions for fired heaters Trace compounds ? Nitric oxides ? Carbon monoxide ? Sulfur... it is essential to estimate accurately baseline NOx emissions. ? This will establish each units current compliance status. ? Emissions ? Current excess air level ? Carbon monoxide ? Combustibles ? NOx corrected to 3% 02 314 ESL-IE-00-04-46 Proceedings...

Garg, A.

6

Novel Application of Air Separation Membranes Reduces NOx Emissions...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Application of Air Separation Membranes Reduces NOx Emissions Technology available for licensing: Selective permeation of gases using an air separation membrane. Can be retrofitted...

7

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal  

SciTech Connect (OSTI)

The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbon‚??s catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.

Monica Zanfir; Rahul Solunke; Minish Shah

2012-06-01T23:59:59.000Z

8

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal  

SciTech Connect (OSTI)

The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

Nick Degenstein; Minish Shah; Doughlas Louie

2012-05-01T23:59:59.000Z

9

Method for reducing NOx during combustion of coal in a burner  

DOE Patents [OSTI]

An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

Zhou, Bing (Cranbury, NJ); Parasher, Sukesh (Lawrenceville, NJ); Hare, Jeffrey J. (Provo, UT); Harding, N. Stanley (North Salt Lake, UT); Black, Stephanie E. (Sandy, UT); Johnson, Kenneth R. (Highland, UT)

2008-04-15T23:59:59.000Z

10

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

Not Available

2008-12-01T23:59:59.000Z

11

UTILIZING WATER EMULSIFICATION TO REDUCE NOX AND PARTICULATE EMISSIONS ASSOCIATED WITH BIODIESEL  

SciTech Connect (OSTI)

A key barrier limiting extended utilization of biodiesel is higher NOx emissions compared to petrodiesel fuels. The reason for this effect is unclear, but various researchers have attributed this phenomena to the higher liquid bulk modulus associated with biodiesel and the additional heat released during the breaking of C-C double bonds in the methyl ester groups. In this study water was incorporated into neat biodiesel (B100) as an emulsion in an attempt to lower NOx and particulate matter (PM) emissions. A biodiesel emulsion containing 10wt% water was formulated and evaluated against an ultra-low sulfur petroleum diesel (ULSD) and neat biodiesel (B100) in a light-duty diesel engine operated at 1500RPM and at loads of 68Nm (50ft-lbs) and 102Nm (75ft-lbs). The influence of exhaust gas recirculation (EGR) was also examined. The incorporation of water was found to significantly lower the NOx emissions of B100, while maintaining fuel efficiency when operating at 0 and 27% EGR. The soot fraction of the particulates (as determined using an opacity meter) was much lower for the B100 and B100-water emulsion compared ULSD. In contrast, total PM mass (for the three fuel types) was unchanged for the 0% EGR condition but was significantly lower for the B100 and B100-emulsion during the 27% EGR condition compared to the ULSD fuel. Analysis of the emissions and heat release data indicate that water enhances air-fuel premixing to maintain fuel economy and lower soot formation. The exhaust chemistry of the biodiesel base fuels (B100 and water-emulsified B100) was found to be unique in that they contained measurable levels of methyl alkenoates, which were not found for the ULSD. These compounds were formed by the partial cracking of the methyl ester groups during combustion.

Kass, Michael D [ORNL; Lewis Sr, Samuel Arthur [ORNL; Lee, Doh-Won [ORNL; Huff, Shean P [ORNL; Storey, John Morse [ORNL; Swartz, Matthew M [ORNL; Wagner, Robert M [ORNL

2009-01-01T23:59:59.000Z

12

Catalysts, systems and methods to reduce NOX in an exhaust gas stream  

DOE Patents [OSTI]

Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.

Castellano, Christopher R. (Ringoes, NJ); Moini, Ahmad (Princeton, NJ); Koermer, Gerald S. (Basking Ridge, NJ); Furbeck, Howard (Hamilton, NJ)

2010-07-20T23:59:59.000Z

13

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: SO2, Nox, CO2  

Reports and Publications (EIA)

This report responds to a request received from Senator David McIntosh on June 29, 2000 to analyze the impacts on energy consumers and producers of coordinated strategies to reduce emissions of sulfur dioxide, nitrogen oxides, and carbon dioxide at U.S. power plants.

2001-01-01T23:59:59.000Z

14

Plant-Wide NOx Reduction Strategies  

E-Print Network [OSTI]

and the public's awareness increased, industry began looking for new strategies to curb NOx emissions. The strategies for reducing NOx are discussed next. Table 1 shows a summary of common NOx control technologies [1]. Table 1 NOx reduction technologies... for NOx Control, in Industrial Combustion Technologies, ed. by M.A. Lukasiewicz, American Society of Metals, Warren, PA, pp. 345-350, 1986. 7. A. Garg, Trimming NOx, Chem Eng., Vol. 99, No. 11, pp. 122-124, 1992. 8. C.E. Baukal, Industrial Combustion...

Baukal, C.; Waibel, D.; Webster, T.

2006-01-01T23:59:59.000Z

15

Controlling Emissions of SOx and NOx from power plants  

E-Print Network [OSTI]

#12;Sulfur Removal Sulfur is removed from crude oil by the catalytic reaction: R-S + H2 H2S + R Until the mid 1970's the H2S was mixed back into the fuel gas. The problem with this is that the H2S is burned + CO2 This is a two step process including the scrubber and the effluent hold tank. CaSO4 (gypsum

Toohey, Darin W.

16

Control of SOx emission in tail gas of the Claus Plant at Kwangyang Steel Works  

SciTech Connect (OSTI)

Pilot and/or laboratory studies were conducted in order to find methods for reducing the SOx emission in the Claus tail gas of the cokes unit. The TGT process which is based on the complete hydrogenation of the sulfur-containing compounds (SO{sub 2}, S) into H{sub 2}S and returning to the COG main line can reduce the SOx emission to zero. In case the return to the COG main is impossible, the SPOR process (Sulfur removal based on Partial Oxidation and Reduction) can be successfully applied to reduce the SOx emission.

Kang, H.S.; Park, J.W.; Hyun, H.D. [POSCO, Cheonnam (Korea, Republic of). Kwangyang Works; Lee, D.S. [RIST, Pohang (Korea, Republic of). Div. of Environmental Catalysis; Paik, S.C. [POSTECH, Pohang (Korea, Republic of). Dept. of Chemical Engineering; Chung, J.S. [RIST, Pohang (Korea, Republic of). Div. of Environmental Catalysis; [POSTECH, Pohang (Korea, Republic of). Dept. of Chemical Engineering

1995-12-01T23:59:59.000Z

17

Synovial joint morphogenesis requires the chondrogenic action of Sox5 and Sox6 in growth plate and articular cartilage  

E-Print Network [OSTI]

to this Sox5-/- 6-/- joint morphogenesis block. Sox5/6 inactivation in specified joint cells and chondrocytes (Sox5fl/fl 6fl/fl Col2Cre) also results in a joint morphogenesis block, whereas Sox5/6 inactivationSynovial joint morphogenesis requires the chondrogenic action of Sox5 and Sox6 in growth plate

18

Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction  

SciTech Connect (OSTI)

The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

Boyd, Rodney

2007-08-08T23:59:59.000Z

19

Three-Dimensional Composite Nanostructures for Lean NOx Emission...  

Broader source: Energy.gov (indexed) [DOE]

end date: 09312012 * Percent complete: 16.67% * Barriers addressed - Lean NOx emission reduction - Particulate filtering using new catalysts - New catalysts for reducing...

20

H2-Assisted NOx Traps: Test Cell Results Vehicle Installations  

Broader source: Energy.gov (indexed) [DOE]

* New Power Supply * Under 250W consumption * Minimal heat rejected * Compact transformer * High-temperature flange seals * Reduced leakage 4 H2-Assisted NOx Trap: Test...

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Low NOx combustion  

SciTech Connect (OSTI)

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi; Hisashi (Putnam Valley, NY), Bool, III; Lawrence E. (Aurora, NY)

2007-06-05T23:59:59.000Z

22

Low NOx combustion  

SciTech Connect (OSTI)

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi, Hisashi (Putnam Valley, NY); Bool, III, Lawrence E. (Aurora, NY)

2008-10-21T23:59:59.000Z

23

SCR Technologies for NOx Reduction  

Broader source: Energy.gov (indexed) [DOE]

SCR Technology for NOx Reduction Outline Necessity of NOx Exhaust Gas Aftertreatment Air-assisted Dosing Systems (HD applications) Field experience with DENOXTRONIC for MDHD...

24

Ammonia-Free NOx Control System  

SciTech Connect (OSTI)

Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the January 1 to March 31, 2004 time period.

S. Wu; Z. Fan; R. Herman

2004-03-31T23:59:59.000Z

25

Ammonia-Free NOx Control System  

SciTech Connect (OSTI)

Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the October 1 to December 31, 2003 time period.

S. Wu

2003-12-31T23:59:59.000Z

26

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2004-04-01T23:59:59.000Z

27

NOx reduction by electron beam-produced nitrogen atom injection  

DOE Patents [OSTI]

Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

Penetrante, Bernardino M. (San Ramon, CA)

2002-01-01T23:59:59.000Z

28

Durability of NOx Absorbers  

Broader source: Energy.gov (indexed) [DOE]

Exhaust Flow Through Catalyst During Regen From Engine NOx Absorber Oxidation Catalyst Reactor 1 in Sorption Mode Reactor 2 in Regen Mode Open Valve Closed Valve Diesel Fuel In...

29

Enhanced Combustion Low NOx Pulverized Coal Burner  

SciTech Connect (OSTI)

For more than two decades, ALSTOM Power Inc. (ALSTOM) has developed a range of low cost, in-furnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes ALSTOM's internally developed TFS 2000 firing system, and various enhancements to it developed in concert with the U.S. Department of Energy (DOE). As of 2004, more than 200 units representing approximately 75,000 MWe of domestic coal fired capacity have been retrofit with ALSTOM low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coals to 0.10 lb/MMBtu for subbituminous coals, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing (retrofit) boiler equipment. If enacted, proposed Clear Skies legislation will, by 2008, require an average, effective, domestic NOx emissions rate of 0.16 lb/MMBtu, which number will be reduced to 0.13 lb/MMBtu by 2018. Such levels represent a 60% and 67% reduction, respectively, from the effective 2000 level of 0.40 lb/MMBtu. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. In light of these needs, ALSTOM, in cooperation with the DOE, is developing an enhanced combustion, low NOx pulverized coal burner which, when integrated with ALSTOM's state-of-the-art, globally air staged low NOx firing systems, will provide a means to achieve less than 0.15 lb/MMBtu NOx at less than 3/4 the cost of an SCR with low to no impact on balance of plant issues when firing a high volatile bituminous coal. Such coals can be more economic to fire than subbituminous or Powder River Basin (PRB) coals, but are more problematic from a NOx control standpoint as existing firing system technologies do not provide a means to meet current or anticipated regulations absent the use of an SCR. The DOE/ALSTOM program performed large pilot scale combustion testing in ALSTOM's Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut. During this work, the near-field combustion environment was optimized to maximize NOx reduction while minimizing the impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down under globally reducing conditions. Initially, ALSTOM utilized computational fluid dynamic modeling to evaluate a series of burner and/or near field stoichiometry controls in order to screen promising design concepts in advance of the large pilot scale testing. The third and final test, to be executed, will utilize several variants of the best nozzle tip configuration and compare performance with 3 different coals. The fuels to be tested will cover a wide range of coals commonly fired at US utilities. The completion of this work will provide sufficient data to allow ALSTOM to design, construct, and demonstrate a commercial version of an enhanced combustion low NOx pulverized coal burner. A preliminary cost/performance analysis of the developed enhanced combustion low NOx burner applied to ALSTOM's state-of-the-art TFS 2000 firing system was performed to show that the burner enhancements is a cost effective means to reduce NOx.

Ray Chamberland; Aku Raino; David Towle

2006-09-30T23:59:59.000Z

30

CLEERS Activities: Diesel Soot Filter Characterization & NOx...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals CLEERS Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals 2009 DOE Hydrogen...

31

Flexible NOx Abatement from Power  

E-Print Network [OSTI]

Flexible NOx Abatement from Power Plants in the Eastern United States* Lin Sun, Mort Webster, Gary: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;Flexible NOx Abatement from Power Plants

32

Modeling The NOx Emissions In A Low NOx Burner While Fired With Pulverized Coal And Dairy Biomass Blends  

E-Print Network [OSTI]

by themselves already require cleanup technology; newer regulations will require development of new and economical technologies. Using a blend of traditional fuels & biomass is a promising technology to reduce NOX emissions. Experiments conducted previously...

Uggini, Hari

2012-07-16T23:59:59.000Z

33

Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Lean NOx Catalysis l Chemistry l Reducing Agent Effects l Collaboration with LEP CRADA l Aging Studies Plasma Initiation - + Electron Avalanche e - e - e - e - e - e - e -...

34

Enhanced Combustion Low NOx Pulverized Coal Burner  

SciTech Connect (OSTI)

For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to beh

David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

2007-06-30T23:59:59.000Z

35

SOx-NOx-Rox Box Flue Gas Cleanup Demonstration: A DOE Assessment  

SciTech Connect (OSTI)

The SNRB{trademark} test program demonstrated the feasibility of controlling multiple emissions from a coal-fired boiler in a single processing unit. The degree of emissions removals for SO{sub 2}, NO{sub x}, and particulates all exceeded the project goals. A high degree of removal for HAPs was also achieved. The SNRB system offers low space requirements, control of multiple pollutants, and operating flexibility. The pneumatic SO{sub 2} sorbent and ammonia injection systems are expected to have high reliability because of their mechanical simplicity. Despite these advantages, the SNRB process may not be an economic choice for applications involving SO{sub 2} removals above about 85%. For lower levels of SO{sub 2} removal, the projected economics for SNRB appear to be more favorable than those of existing processes which involve separate units for the same degree of control for SO{sub 2}, NO{sub x} , and particulates. Specific findings are summarized as follows: (1) SO{sub 2} removal of 85-90% was achieved at a calcium utilization of 40-45%, representing a significant improvement in performance over other dry lime injection processes. (2) When firing 3-4% sulfur coal, compliance with the 1990 CAAA Phase I SO{sub 2} emissions limit of 2.5 lb/10{sup 6} Btu was achieved with a Ca/S molar ratio of less than 1.0. For the Phase II SO{sub 2} emissions limit of 1.2 lb/10{sup 6} Btu, compliance was achieved with a Ca/S molar ratio as low as 1.5. Phase II compliance is the more relevant emissions limit. (3) When using NaHCO{sub 3} as the sorbent, the Phase II SO{sub 2} emissions limit was achieved at a Na{sub 2}/S molar ratio of less than 2.0 (NSR < 1.0). (4) Compliance with the Phase I NO{sub x} emissions limit of 0.45 lb/10{sup 6} Btu for Group 1 boilers was achieved at an NH{sub 3}/NO{sub x} ratio of 0.85, with an ammonia slip of 5 ppm or less. (5) Particulate collection efficiency averaged 99.9%, corresponding to an average emissions rate of 0.018 lb/10{sup 6} Btu. This is significantly lower than the NSPS value of 0.03 lb/10{sup 6} Btu. The high-temperature baghouse design incorporating an SCR catalyst for NO{sub x} reduction was demonstrated successfully. The technology is ready for commercial application. The key feature of the technology is control of SO{sub 2}, NO{sub x}, and particulates in a single process unit. However, this limits its commercial market to applications requiring control of all three components. Also, although the testing demonstrated greater than 90% SO{sub 2} capture, this was achieved at high sorbent/sulfur ratios. For applications requiring a high percentage of sulfur removal, a modern conventional FGD unit with LNBs for NO{sub x} control may be the preferred option.

National Energy Technology Laboratory

2000-12-15T23:59:59.000Z

36

SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report  

SciTech Connect (OSTI)

The SNRB{trademark} Flue Gas Cleanup Demonstration Project was cooperatively funded by the U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B&W, the Electric Power Research Institute (EPRI), Ohio Edison, Norton Chemical Process Products Company and the 3M Company. The SNRB{trademark} technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. Development of the SNRB{trademark} process at B&W began with pilot testing of high-temperature dry sorbent injection for SO{sub 2} removal in the 1960`s. Integration of NO{sub x} reduction was evaluated in the 1970`s. Pilot work in the 1980`s focused on evaluation of various NO{sub x} reduction catalysts, SO{sub 2} sorbents and integration of the catalyst with the baghouse. This early development work led to the issuance of two US process patents to B&W - No. 4,309,386 and No. 4,793,981. An additional patent application for improvements to the process is pending. The OCDO was instrumental in working with B&W to develop the process to the point where a larger scale demonstration of the technology was feasible. This report represents the completion of Milestone M14 as specified in the Work Plan. B&W tested the SNRB{trademark} pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R. E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B&W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB{trademark} process. The SNRB{trademark} facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993.

NONE

1995-09-01T23:59:59.000Z

37

Transcription factors SOX4 and SOX11 function redundantly to regulate the development of mouse retinal ganglion cells  

E-Print Network [OSTI]

Lerner Institute, Cleveland Clinic, Cleveland, OH 44195 4 College of Life and Environmental Sciences layer while deletion of Brn3b has no effect on the expression of Sox4 and Sox11. Taken together layers: photoreceptors (rods and cones) constitute the outer nuclear layer (ONL); horizontal, bipolar

38

Lean NOx Catalysis Research and Development  

Broader source: Energy.gov (indexed) [DOE]

4 Lean-NOx Catalyst Materials T NOx active T NOx selective Noble metals (ex. PtAl 2 O 3 ) highly active, stable narrow temperature range, poorly selective (N 2 O) ...

39

Measurement and Characterization of NOx Adsorber Regeneration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects...

40

Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration  

SciTech Connect (OSTI)

Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

Choi, Jae-Soon [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Partridge Jr, William P [ORNL] [ORNL; Parks, II, James E [ORNL; Norman, Kevin M [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Chambon, Paul H [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Proceedings: 2000 NOx Controls Workshop  

SciTech Connect (OSTI)

The 2000 EPRI workshop on nitrogen oxide (NOx) controls for utility boilers provided a medium for member utilities to augment their knowledge of recent operating experience and developments on NOx control technologies. The event focused on improving methods of compliance with emission regulations mandated by the Clean Air Act Amendments (CAAA) of 1990 without jeopardizing efficiency and plant performance.

None

2001-04-01T23:59:59.000Z

42

NOx Adsorber (Lean NOx Trap) Fundamentals (Agreement #10049 ...  

Broader source: Energy.gov (indexed) [DOE]

on catalyst structure changes * Roles of catalyst promoters (e.g., J.R. Theis, et al., "The effect of Ceria Content on the Performance of a NOx Trap", SAE 2003-01-1160) - On...

43

Reduced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 RevisionDivisionReduced intermittency in

44

Aeroderivative Gas Turbines Can Meet Stringent NOx Control Requirements  

E-Print Network [OSTI]

for controlling NOx emissions will be discussed. Steam injection has a very favorable effect on engine performance raising both the power output and efficiency. As an example, full steam injection in the GE LM5000 gas turbine :tncreases the power output from... methods for reducing the NOx levels of the LM2500 and LM5000 engines. These engines are aircraft-derivative turbine engines, which are used in a variety of industrial applications. Efforts have been concentrated on the use of water or steam injection...

Keller, S. C.; Studniarz, J. J.

45

Diesel Engine CO2 and SOx Emission Compliance Strategy for the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CO2 and SOx Emission Compliance Strategy for the Royal Navy (RN) and Royal Fleet Auxiliary (RFA) Flotillas Diesel Engine CO2 and SOx Emission Compliance Strategy for the Royal Navy...

46

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program in the seventh quarter October-December 2001 in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes, Task 3 - Economic Evaluation and Task 4 - Program Management. Computational fluid dynamic (CFD) modeling of oxygen injection strategies was performed during the quarter resulting in data that suggest the oxygen injection reduces NOx emissions while reducing LOI. Pilot-scale testing activities concluded at the University of Utah this quarter. Testing demonstrated that some experimental conditions can lead to NOx emissions well below the 0.15 lb/MMBtu limit. Evaluation of alternative OTM materials with improved mechanical properties continued this quarter. Powder procedure optimization continued and sintering trial began on an element with a new design. Several OTM elements were tested in Praxair's single tube high-pressure test facility under various conditions. A modified PSO1d element demonstrated stable oxygen product purity of >98% and oxygen flux of 68% of target. Updated test results and projected economic performance have been reviewed with the Utility Industrial Advisors. The economic comparison remains very favorable for O{sub 2} enhanced combustion. Discussions regarding possible Beta sites have been held with three other utilities in addition to the industrial advisors. Proposals will be prepared after the completion of full scale burner testing. Beta test cost estimating work has been initiated.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2002-01-01T23:59:59.000Z

47

NOx adsorber and method of regenerating same  

DOE Patents [OSTI]

New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

Endicott, Dennis L. (Peoria, IL); Verkiel, Maarten (Metamora, IL); Driscoll, James J. (Dunlap, IL)

2007-01-30T23:59:59.000Z

48

Control of NOx by combustion process modifications  

E-Print Network [OSTI]

A theoretical and experimental study was carried out to determine lower bounds of NOx emission from staged combustion of a 0.7%N #6 fuel oil. Thermodynamic and chemical kinetic calculations have shown minimum NOx emissions ...

Ber?, J. M.

1981-01-01T23:59:59.000Z

49

DNA binding shifts the redox potential of the transcription factor SoxR  

E-Print Network [OSTI]

DNA binding shifts the redox potential of the transcription factor SoxR Alon A. Gorodetsky , Lars E-modified electrodes are used to probe the effects of binding to DNA on the redox potential of SoxR, a transcription in the absence of DNA. Using Redmond red as a covalently bound redox reporter affixed above the SoxR binding site

Dietrich, Lars

50

Time and location differentiated NOX control in competitive electricity markets using cap-and-trade mechanisms  

E-Print Network [OSTI]

Due to variations in weather and atmospheric chemistry, the timing and location of nitrogen oxide (NOX) reductions determine their effectiveness in reducing ground-level ozone, which adversely impacts human health. Electric ...

Martin, Katherine C.

2007-01-01T23:59:59.000Z

51

Climate Co-benefits of Tighter SO2 and NOx Regulations in China  

E-Print Network [OSTI]

Air pollution has been recognized as a significant problem in China. In its Twelfth Five Year Plan (FYP), China proposes to reduce SO2 and NOx emissions significantly, and here we investigate the cost of achieving those ...

Nam, Kyung-Min

2012-10-01T23:59:59.000Z

52

Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines  

SciTech Connect (OSTI)

Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOEís) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

2011-06-30T23:59:59.000Z

53

NOx Reduction through Efficiency Gain  

E-Print Network [OSTI]

Approach, Fifth Edition, McGraw-Hill, June 2005 Kuo, K. K., Principles of Combustion 2 nd Edition, Wiley, January 2005 Erickson, K. T., Plant-Wide Process Control, 1 st Edition, Wiley, April 2005 ESL-IE-07-05-42 Proceedings... putting financial stress on steam generation plants to adhere to environmental regulations we provide an incentive to do so. The simplicity and elegance of the CompuNOx system minimizes system changes. Control related changes consist...

Benz, R.; Thompson, R.; Staedter, M.

2007-01-01T23:59:59.000Z

54

Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines  

SciTech Connect (OSTI)

Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions, with added EGR to prevent preignition. It was observed that the relative air/fuel ratio, injected NO quantity, added EGR fraction, and engine operating points affected the NO decomposition rates. While operating under these modified conditions, the highest NO decomposition rate of 92% was observed. In-cylinder pressure data gathered during the experiments showed minimum deviation from peak pressure as a result of NO injections into the engine. A NOx adsorption system, from Sorbent Technologies, Inc., was integrated with the Cummins engine, comprised a NOx adsorbent chamber, heat exchanger, demister, and a hot air blower. Data were gathered to show the possibility of NOx adsorption from the engine exhaust, and desorption of NOx from the sorbent material. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a benchtop adsorption system was constructed. The temperature of this apparatus was controlled while data were gathered on the characteristics of the sorbent material for development of a system model. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passed over fresh sorbent material. A mass heat transfer analysis was conducted to analyze the possibility of using hot exhaust gas for the desorption process. It was found in the adsorption studies, and through literature review, that NO adsorption was poor when the carrier gas was nitrogen, but that NO in the presence of oxygen was adsorbed at levels exceeding 1% by mass of the sorbent. From the three experimental campaigns, chemical kinetic modeling analysis, and the scaled benchtop NOx adsorption system, an overall SNR system model was developed. An economic analysis was completed, and showed that the system was impractical in cost for small engines, but that economies of scale favored the technology.

Nigel N. Clark

2006-12-31T23:59:59.000Z

55

NOx reduction in gas turbine combustors  

E-Print Network [OSTI]

NOx REDUCTION IN GAS TURBINE COMBUSTORS A Thesis by Nak Won Sung Submitted to the Graduate College of Texas A&M University in partial fullfillment of the requirement for the degree of MASTER OF SCIENCE August 1976 Major Subject: Mechanical... Engineering NOx REDUCTION IN GAS TURBINE COMBUSTORS A Thesis by Nak Won Sung Approved as to style and content by: (Chairman of Committe (Head of Department) (Member) August 1976 "40308 (Member) 1 1. 1 ABSTRACT NOx Reduction in Gas Turbine...

Sung, Nak Won

1976-01-01T23:59:59.000Z

56

Plasma Assisted Catalysis System for NOx Reduction  

Broader source: Energy.gov (indexed) [DOE]

SCHEMATIC Catalyst for NOx Reduction Plasma Region Exhaust Flow Solid State Pulser Power Modulator Motor Generator ENGINE Air Diesel Fuel Converter NO X + HC(Diesel) NO 2 +...

57

NOx Control for Utility Boiler OTR Compliance  

SciTech Connect (OSTI)

Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), the Babcock and Wilcox Company (B and W), and Fuel Tech teamed together to investigate an integrated solution for NO{sub x} control. The system is comprised of B and W's DRB-4Z{trademark} ultra low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NOxOUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. Development of the low-NO{sub x} burner technology has been a focus in B and W's combustion program. The DRB-4Z{trademark} burner is B and W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by controlled mixing of the fuel and air. Based on data from several 500 to 600 MWe boilers firing PRB coal, NOx emissions levels of 0.15 to 0.20 lb/ 106 Btu have been achieved from the DRB-4Z{trademark} burners in combination with overfire air ports. Although NOx emissions from the DRB-4Z{trademark} burner are nearing the Ozone Transport Rule (OTR) level of 0.15 lb NO{sub x}/106 Btu, the utility boiler owners can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them. Large-scale testing is planned in B and W's 100-million Btu/hr Clean Environment Development Facility (CEDF) that simulates the conditions of large coal-fired utility boilers. The objective of the project is to achieve a NO{sub x} level below 0.15 lb/106 Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B and W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign}. During this period B and W prepared and submitted the project management plan and hazardous substance plan to DOE. The negotiation of a subcontract for Fuel Tech has been started.

Hamid Farzan

2003-12-31T23:59:59.000Z

58

Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents...

59

Three-Dimensional Composite Nanostructures for Lean NOx Emission...  

Broader source: Energy.gov (indexed) [DOE]

Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Three-Dimensional Composite Nanostructures for Lean NOx Emission Control 2010 DOE Vehicle Technologies and...

60

Retrofit Diesel Emissions Control System Providing 50% NOxControl...  

Broader source: Energy.gov (indexed) [DOE]

Retrofit Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER)...

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Development on simultaneous reduction system of NOx and PM from...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications An Improvement of Diesel PM and NOx Reduction System An Improvement of Diesel PM and NOx Reduction System EPA Mobile Source Rule Update...

62

Passive Catalytic Approach to Low Temperature NOx Emission Abatement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalytic Approach to Low Temperature NOx Emission Abatement Passive Catalytic Approach to Low Temperature NOx Emission Abatement Numerically evaluated and optimized proposed...

63

Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx Abatement Catalysts Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx Abatement Catalysts Poster...

64

Measurement and Characterization of Lean NOx Adsorber Regeneration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

mode Measurement and Characterization of Lean NOx Adsorber Regeneration and Desulfation and Controlling NOx from Multi-mode 2009 DOE Hydrogen Program and Vehicle Technologies...

65

NOx Abatement Research and Development CRADA with Navistar Incorporate...  

Broader source: Energy.gov (indexed) [DOE]

NOx Abatement Research and Development CRADA with Navistar Incorporated NOx Abatement Research and Development CRADA with Navistar Incorporated 2009 DOE Hydrogen Program and...

66

Functionality of Commercial NOx Storage-Reduction Catalysts and...  

Broader source: Energy.gov (indexed) [DOE]

Catalysis Research: Fundamental SulfationDesulfation Studies of Lean NOx Traps CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines...

67

Selective reduction of NOx in oxygen rich environments with plasma...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies Selective reduction of NOx in oxygen rich environments...

68

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies A virtual O2 sensor for...

69

NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation...  

Broader source: Energy.gov (indexed) [DOE]

NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation This report provides the results of an...

70

H2-Assisted NOx Traps: Test Cell Results Vehicle Installations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

H2-Assisted NOx Traps: Test Cell Results Vehicle Installations H2-Assisted NOx Traps: Test Cell Results Vehicle Installations 2003 DEER Conference Presentation: ArvinMeritor...

71

Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction...  

Broader source: Energy.gov (indexed) [DOE]

Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor...

72

Flue Gas Purification Utilizing SOx/NOx Reactions During Compression of CO{sub 2} Derived from Oxyfuel Combustion  

SciTech Connect (OSTI)

The United States wishes to decrease foreign energy dependence by utilizing the countryís significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO{sub 2} stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO{sub 2} derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

Fogash, Kevin

2010-09-30T23:59:59.000Z

73

Flue Gas Perification Utilizing SOx/NOx Reactions During Compression of CO2 Derived from Oxyfuel Combustion  

SciTech Connect (OSTI)

The United States wishes to decrease foreign energy dependence by utilizing the countryís significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO2 stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO2 derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

Kevin Fogash

2010-09-30T23:59:59.000Z

74

SOX2 Co-Occupies Distal Enhancer Elements with Distinct POU Factors in ESCs and NPCs to Specify Cell State  

E-Print Network [OSTI]

SOX2 is a master regulator of both pluripotent embryonic stem cells (ESCs) and multipotent neural progenitor cells (NPCs); however, we currently lack a detailed understanding of how SOX2 controls these distinct stem cell ...

Lodato, Michael A.

75

The effect of reformate gas enrichment on extinction limits and NOX formation  

E-Print Network [OSTI]

premixed combustion. When the reformate gas is added, the formation of NO is reduced in a near advantage of the reformate gas enriched lean premixed combustion is that it greatly reduces the formation combustion; Fuel enrichment; NOX; Extinction limit; Reformate gas 1. Introduction Lean premixed combustion

G√ľlder, √?mer L.

76

Species-specific residues calibrate SoxR sensitivity to redox-active molecules  

E-Print Network [OSTI]

to viologens, which have redox potentials below -350 mV. Using a mutagenic approach, we pin- pointed threeSpecies-specific residues calibrate SoxR sensitivity to redox-active molecules Rebecca Sheplock,1, the transcription factor SoxR triggers a global stress response by sensing a broad spectrum of redox

Dietrich, Lars

77

MITAC Red Sox Ticket Lottery 2012: Rules & Instructions ONLINE TICKET PAYMENT! Those selected to purchase tickets will be  

E-Print Network [OSTI]

MITAC Red Sox Ticket Lottery 2012: Rules & Instructions ONLINE TICKET PAYMENT! Those selected contact us at 617-253-7990 or mitac-office@mit.edu. HOW TO ENTER THE RED SOX LOTTERY · ELIGIBILITY: Web certificates will be required to enter the lottery. Entry in the Red Sox Lottery gives MIT employees, students

Seager, Sara

78

DENSE PHASE REBURN COMBUSTION SYSTEM (DPRCS) DEMONSTRATION ON A 154 MWE TANGENTIAL FURNACE: ADDITIONAL AREA OF INTEREST-TO DEVELOP AND DEMONSTRATE AN IN-FURNACE MULTI-POLLUTANT REDUCTION TECHNOLOGY TO REDUCE NOx, SO2 & Hg  

SciTech Connect (OSTI)

Semi-dense phase pneumatic delivery and injection of calcium and sodium sorbents, and microfine powdered coal, at various sidewall elevations of an online operating coal-fired power plant, was investigated for the express purpose of developing an in-furnace, economic multi-pollutant reduction methodology for NO{sub x}, SO{sub 2} & Hg. The 154 MWe tangentially-fired furnace that was selected for a full-scale demonstration, was recently retrofitted for NO{sub x} reduction with a high velocity rotating-opposed over-fire air system. The ROFA system, a Mobotec USA technology, has a proven track record of breaking up laminar flow along furnace walls, thereby enhancing the mix of all constituents of combustion. The knowledge gained from injecting sorbents and micronized coal into well mixed combustion gases with significant improvement in particulate retention time, should serve well the goals of an in-furnace multi-pollutant reduction technology; that of reducing back-end cleanup costs on a wide variety of pollutants, on a cost per ton basis, by first accomplishing significant in-furnace reductions of all pollutants.

Allen C. Wiley; Steven Castagnero; Geoff Green; Kevin Davis; David White

2004-03-01T23:59:59.000Z

79

Cyclone Boiler Field Testing of Advanced Layered NOx Control Technology in Sioux Unit 1  

SciTech Connect (OSTI)

A four week testing program was completed during this project to assess the ability of the combination of deep staging, Rich Reagent Injection (RRI), and Selective Non-Catalytic Reduction (SNCR) to reduce NOx emissions below 0.15 lb/MBtu in a cyclone fired boiler. The host site for the tests was AmerenUE's Sioux Unit 1, a 500 MW cyclone fired boiler located near St. Louis, MO. Reaction Engineering International (REI) led the project team including AmerenUE, FuelTech Inc., and the Electric Power Research Institute (EPRI). This layered approach to NOx reduction is termed the Advanced Layered Technology Approach (ALTA). Installed RRI and SNCR port locations were guided by computational fluid dynamics (CFD) based modeling conducted by REI. During the parametric testing, NOx emissions of 0.12 lb/MBtu were achieved consistently from overfire air (OFA)-only baseline NOx emissions of 0.25 lb/MBtu or less, when firing the typical 80/20 fuel blend of Powder River Basin (PRB) and Illinois No.6 coals. From OFA-only baseline levels of 0.20 lb/MBtu, NOx emissions of 0.12 lb/MBtu were also achieved, but at significantly reduced urea flow rates. Under the deeply staged conditions that were tested, RRI performance was observed to degrade as higher blends of Illinois No.6 were used. NOx emissions achieved with ALTA while firing a 60/40 blend were approximately 0.15 lb/MBtu. NOx emissions while firing 100% Illinois No.6 were approximately 0.165 lb/MBtu. Based on the performance results of these tests, economics analyses of the application of ALTA to a nominal 500 MW cyclone unit show that the levelized cost to achieve 0.15 lb/MBtu is well below 75% of the cost of a state of the art SCR.

Marc A. Cremer; Bradley R. Adams

2006-06-30T23:59:59.000Z

80

Ability of Catalytic Converters to Reduce Air Pollution  

E-Print Network [OSTI]

NOx - 1 Ability of Catalytic Converters to Reduce Air Pollution MEASUREMENT OF SELECTED AIR POLLUTANTS IN CAR EXHAUST Last updated: June 17, 2014 #12;NOx - 2 Ability of Catalytic Converters to Reduce Air Pollution MEASUREMENT OF SELECTED AIR POLLUTANTS IN CAR EXHAUST INTRODUCTION Automobile engines

Nizkorodov, Sergey

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Ultra Low NOx Catalytic Combustion for IGCC Power Plants  

SciTech Connect (OSTI)

In order to meet DOE's goals of developing low-emissions coal-based power systems, PCI has further developed and adapted it's Rich-Catalytic Lean-burn (RCL{reg_sign}) catalytic reactor to a combustion system operating on syngas as a fuel. The technology offers ultra-low emissions without the cost of exhaust after-treatment, with high efficiency (avoidance of after-treatment losses and reduced diluent requirements), and with catalytically stabilized combustion which extends the lower Btu limit for syngas operation. Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using a two-stage (catalytic then gas-phase) combustion process for syngas fuel. In this process, the first stage consists of a fuel-rich mixture reacting on a catalyst with final and excess combustion air used to cool the catalyst. The second stage is a gas-phase combustor, where the air used for cooling the catalyst mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During testing, operating with a simulated Tampa Electric's Polk Power Station syngas, the NOx emissions program goal of less than 0.03 lbs/MMBtu (6 ppm at 15% O{sub 2}) was met. NOx emissions were generally near 0.01 lbs/MMBtu (2 ppm at 15% O{sub 2}) (PCI's target) over a range on engine firing temperatures. In addition, low emissions were shown for alternative fuels including high hydrogen content refinery fuel gas and low BTU content Blast Furnace Gas (BFG). For the refinery fuel gas increased resistance to combustor flashback was achieved through preferential consumption of hydrogen in the catalytic bed. In the case of BFG, stable combustion for fuels as low as 88 BTU/ft{sup 3} was established and maintained without the need for using co-firing. This was achieved based on the upstream catalytic reaction delivering a hotter (and thus more reactive) product to the flame zone. The PCI catalytic reactor was also shown to be active in ammonia reduction in fuel allowing potential reductions in the burner NOx production. These reductions of NOx emissions and expanded alternative fuel capability make the rich catalytic combustor uniquely situated to provide reductions in capital costs through elimination of requirements for SCR, operating costs through reduction in need for NOx abating dilution, SCR operating costs, and need for co-firing fuels allowing use of lower value but more available fuels, and efficiency of an engine through reduction in dilution flows.

Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

2008-03-31T23:59:59.000Z

82

Novel Application of Air Separation Membranes Reduces Engine NOx Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewportBig Eddyof H-2 andNot519hep-ph/0511180- Energy

83

Novel Application of Air Separation Membranes Reduces NOx Emissions |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewportBig Eddyof H-2 andNot519hep-ph/0511180-

84

Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications  

SciTech Connect (OSTI)

Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation

Parks, II, James E [ORNL; Storey, John Morse [ORNL; Theiss, Timothy J [ORNL; Ponnusamy, Senthil [ORNL; Ferguson, Harley Douglas [ORNL; Williams, Aaron M [ORNL; Tassitano, James B [ORNL

2007-09-01T23:59:59.000Z

85

NOx Control Options and Integration for US Coal Fired Boilers  

SciTech Connect (OSTI)

This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

2006-06-30T23:59:59.000Z

86

A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration...  

Broader source: Energy.gov (indexed) [DOE]

leg) 8 2004 DEER Conference September 2, 2004 Experimental Setup NOx Trap Engine Reformer Diesel Air Power NOx Trap NOx Trap Engine NOx Trap Diesel Diesel Fuel Reformer Setup...

87

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Broader source: Energy.gov (indexed) [DOE]

CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel...

88

Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine...

89

Three-Dimensional Composite Nanostructures for Lean NOx Emission Control  

SciTech Connect (OSTI)

This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

Gao, Pu-Xian

2013-07-31T23:59:59.000Z

90

Modeling of NOx formation in circular laminar jet flames  

E-Print Network [OSTI]

-premixed isolated circular laminar jet flame. The jet consists of the fuel rich inner region and the O2 rich outer region. The model estimates both thermal NOx and prompt NOx assuming single step kinetics for NOx formation and a thin flame model. Further the amount...

Siwatch, Vivek

2007-04-25T23:59:59.000Z

91

Near-Zero NOx Technology  

E-Print Network [OSTI]

Miura Boiler is a world leader in boiler technology with manufacturing facilities in Japan, China, Korea, Taiwan and Brantford, Ontario. The company, which began operations in 1927, is committed to technologies that save fuel, reduce harmful...

Utzinger, M.

2008-01-01T23:59:59.000Z

92

ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS  

SciTech Connect (OSTI)

ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and related combustion performance. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive Powder River Basin coal (PRB) to a moderately reactive Midwestern bituminous coal (HVB) to a less reactive medium volatile Eastern bituminous coal (MVB). Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis.

Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

2002-12-30T23:59:59.000Z

93

Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado  

SciTech Connect (OSTI)

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. Toward the end of the program, a Second Generation gas injection system was installed. Higher injector gas pressures were used that eliminated the need for flue gas recirculation as used in the first generation design. The Second Generation GR resulted in similar NOX reduction performance as that for the First Generation. With an improvement in the LNB performance in combination with the new gas injection system , the reburn gas could be reduced to 12.5% of the total boiler heat input to achieve al 64?40 reduction in NO, emissions. In addition, the OFA injectors were modified to provide for better mixing to lower CO emissions.

None

1998-07-01T23:59:59.000Z

94

NOx reduction methods and apparatuses  

DOE Patents [OSTI]

A NO.sub.x reduction method includes treating a first gas containing NO.sub.x, producing a second gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the second gas to N.sub.2, and producing a third gas containing less NO.sub.x than the first gas, substantially all of the third gas NO.sub.x being NO. The method also includes treating the third gas, producing a fourth gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the fourth gas to N.sub.2, and producing a fifth gas containing less NO.sub.x than the third gas, substantially all of the fifth gas NO.sub.x being NO. Treating the first and/or third gas can include treatment with a plasma. Reducing a portion of the NO.sub.2 in the second and/or fourth gas can include reducing with a catalyst. The method can further include controlling energy consumption of the plasmas independent of each other.

Tonkyn, Russell G.; Barlow, Stephan E.; Balmer, M. Lou; Maupin, Gary D.

2004-10-26T23:59:59.000Z

95

Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity  

SciTech Connect (OSTI)

Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

2012-10-01T23:59:59.000Z

96

New Houston NOx Rules: Implications and Solutions  

E-Print Network [OSTI]

Capex $MM NOx Reduction Tons/yr Net Cost NPV10 $MM Case 1 4 50 3.6 a. Defer 1 year 4.2 loss due to delay 0.6 b. Defer 2 years 5.4 loss due to delay 1.7 c. Defer 3 years 8.5 loss due to delay 4.8 Case 2 35 750 31.8 a. Defer 1 year 42...

Cascone, R.

97

Low NOx nozzle tip for a pulverized solid fuel furnace  

DOE Patents [OSTI]

A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

2014-04-22T23:59:59.000Z

98

A Numerical Investigation into the Anomalous Slight NOx Increase when Burning Biodiesel: A New (Old) Theory  

SciTech Connect (OSTI)

Biodiesel is a notable alternative to petroleum derived diesel fuel because it comes from natural domestic sources and thus reduces dependence on diminishing petroleum fuel from foreign sources, it likely lowers lifecycle greenhouse gas emissions, and it lowers an engine's emission of most pollutants as compared to petroleum derived diesel. However, the use of biodiesel often slightly increases a diesel engine's emission of smog forming nitrogen oxides (NO{sub x}) relative to petroleum diesel. In this paper, previously proposed theories for this slight NOx increase are reviewed, including theories based on biodiesel's cetane number, which leads to differing amounts of charge preheating, and theories based on the fuel's bulk modulus, which affects injection timing. This paper proposes an additional theory for the slight NO{sub x} increase of biodiesel. Biodiesel typically contains more double bonded molecules than petroleum derived diesel. These double bonded molecules have a slightly higher adiabatic flame temperature, which leads to the increase in NOx production for biodiesel. Our theory was verified using numerical simulations to show a NOx increase, due to the double bonded molecules, that is consistent with observation. Further, the details of these numerical simulations show that NOx is predominantly due to the Zeldovich mechanism.

Ban-Weiss, G A; Chen, J Y; Buchholz, B A; Dibble, R W

2007-01-30T23:59:59.000Z

99

Investigation on continuous soot oxidation and NOx reduction...  

Broader source: Energy.gov (indexed) [DOE]

4 th , 2009. Dearborn, MI Investigation on continuous soot oxidation and NOx reduction by SCR coated DPF Phillip Bush, Eminox Svetlana Iretskaya, Catalytic Solutions, Inc. Ted...

100

Effect of reductive treatments on Pt behavior and NOx storage...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

represent a promising approach to meet increasingly stringent NOx emission regulations on diesel and other lean-burn engines. Pt material properties, including dispersion and...

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Lean NOx Reduction with Dual Layer LNT/SCR Catalysts  

Broader source: Energy.gov (indexed) [DOE]

PGM & minimize fuel penalty in meeting NOx emission targets (adapted from Gandhi et al., US Patent, 2007) 3 Fundamental Issues for Dual Layer LNT - SCR proximity: Dual...

102

Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction  

Broader source: Energy.gov (indexed) [DOE]

Dynamometer Evaluation of Plasma- Catalyst for Diesel NOx Reduction February 20, 2003 CRADA Protected Document and Data 2 Introduction * Engine dynamometer evaluation of...

103

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation ace032partridge2011o.pdf More Documents & Publications CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle...

104

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Office Merit Review 2014: Cummins-ORNLFEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CumminsORNL-FEERC...

105

Spatiotemporal Distribution of NOx Storage: a Factor Controlling...  

Broader source: Energy.gov (indexed) [DOE]

LNT & SCR CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines...

106

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...  

Broader source: Energy.gov (indexed) [DOE]

2009 - Poster Session August 3 rd , Hyatt Regency Dearborn Hotel Virtual Oxygen Sensor Innovative NOx and PM Emission Control Technologies J. Seebode, E. Stlting,...

107

Lean NOx Traps - Microstructural Studies of Real World and Model...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Traps - Microstructural Studies of Real World and Model Catalysts Lean NOx Traps - Microstructural Studies of Real World and Model Catalysts 2005 Diesel Engine Emissions Reduction...

108

An Experimental Investigation of the Origin of Increased NOx...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel Optical engine experiments suggest that near stoichiometric charge-gas mixtures in the...

109

Three-Dimensional Composite Nanostructures for Lean NOx Emission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emission Control Catalysts Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts...

110

Three-Dimensional Composite Nanostructures for Lean NOx Emission...  

Broader source: Energy.gov (indexed) [DOE]

Nanowire Lean NOx Emission Control Catalysts Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts Three-Dimensional Composite Nanostructures for Lean...

111

Investigation of Aging Mechanisms in Lean NOx Traps  

Broader source: Energy.gov (indexed) [DOE]

Annual Merit Review 1 Investigation of Aging Mechanisms in Lean NOx Traps Mark Crocker Center for Applied Energy Research, University of Kentucky May 20, 2009 This presentation...

112

Fuel Processor Enabled NOx Adsorber Aftertreatment System for...  

Broader source: Energy.gov (indexed) [DOE]

4 Diesel Engine Emissions Reduction Conference Coronado, California August 29-September 2, 2004 Fuel Processor Enabled NOx Adsorber After-Treatment System for Diesel Engine...

113

NOx reduction in combustion with concentrated coal streams and oxygen injection  

DOE Patents [OSTI]

NOx formation in the combustion of solid hydrocarbonaceous fuel such as coal is reduced by obtaining, from the incoming feed stream of fuel solids and air, a stream having a ratio of fuel solids to air that is higher than that of the feed steam, and injecting the thus obtained stream and a small amount of oxygen to a burner where the fuel solids are combusted.

Kobayashi, Hisashi; Bool III, Lawrence E.; Snyder, William J.

2004-03-02T23:59:59.000Z

114

Latest developments and application of DB Riley's low NOx CCV{reg{underscore}sign} burner technology  

SciTech Connect (OSTI)

Recent developments in DB Riley (DBR) low NOx burner technology and the application of this technology in coal fired utility boilers are discussed. Since the promulgation of the Clean Air Act Amendment in 1990, DBR has sold nearly 1,500 Controlled Combustion Venturi (CCV{reg{underscore}sign}) burners on pulverized coal fired utility boilers reducing NOx emissions 50--70% from uncontrolled levels. This technology has been retrofitted on boiler designs ranging in size and type from 50 MW front wall fired boilers to 1,300 MW opposed fired cell type boilers. In DBR's latest version of the CCV{reg{underscore}sign} burner, a second controlled flow air zone was added to enhance NOx control capability. Other developments included improved burner air flow measurement accuracy and several mechanical design upgrades such as new coal spreader designs for 3 year wear life. Test results of the CCV{reg{underscore}sign} dual air zone burner in DBR's 100 million Btu/hr (29 MW) coal burner test facility are presented. In the test program, coals from four utility boiler sites were fired to provide a range of coal properties. A baseline high volatile bituminous coal was also fired to provide a comparison with 1992 test data for the CCV{reg{underscore}sign} single register burner. The tests results showed that the second air zone enhanced NOx reduction capability by an additional 20% over the single register design. Computational fluid dynamic (DFD) modeling results of the CCV{reg{underscore}sign} dual air zone burner are also presented showing near field mixing patterns conducive to low NOx firing. DBR was recently awarded Phase IV of the Low Emission Boiler System (LEBS) program by the US Department of Energy to build a proof of concept facility representing the next major advancement in pulverized coal burning technology. A key part of winning that award were test results of the CCV{reg{underscore}sign} dual air zone burner with advanced air staging and coal reburning in a 100 million Btu/hr (20 MW) U-fired slagging combustor test facility. These results showed NOx emissions of less than 0.2 lb/million Btu (0.086 g/MJ) while converting the coal ash into an inert, non-leachable solid. This results is an 80% reduction in NOx emissions from currently operating U-fired slagging boilers.

Penterson, C.; Ake, T.

1998-07-01T23:59:59.000Z

115

Electrochemical NOx Sensor for Monitoring Diesel Emissions  

SciTech Connect (OSTI)

Increasingly stringent emissions regulations will require the development of advanced gas sensors for a variety of applications. For example, compact, inexpensive sensors are needed for detection of regulated pollutants, including hydrocarbons (HCs), CO, and NO{sub x}, in automotive exhaust. Of particular importance will be a sensor for NO{sub x} to ensure the proper operation of the catalyst system in the next generation of diesel (CIDI) automobiles. Because many emerging applications, particularly monitoring of automotive exhaust, involve operation in harsh, high-temperature environments, robust ceramic-oxide-based electrochemical sensors are a promising technology. Sensors using yttria-stabilized zirconia (YSZ) as an oxygen-ion-conducting electrolyte have been widely reported for both amperometric and potentiometric modes of operation. These include the well-known exhaust gas oxygen (EGO) sensor. More recently, ac impedance-based (i.e., impedance-metric) sensing techniques using YSZ have been reported for sensing water vapor, hydrocarbons, CO, and NO{sub x}. Typically small-amplitude alternating signal is applied, and the sensor response is measured at a specified frequency. Most impedance-metric techniques have used the modulus (or magnitude) at low frequencies (< 1 Hz) as the sensing signal and attribute the measured response to interfacial phenomena. Work by our group has also investigated using phase angle as the sensing signal at somewhat higher frequencies (10 Hz). The higher frequency measurements would potentially allow for reduced sampling times during sensor operation. Another potential advantage of impedance-metric NO{sub x} sensing is the similarity in response to NO and NO{sub 2} (i.e., total-NO{sub x} sensing). Potentiometric NO{sub x} sensors typically show higher sensitivity to NO2 than NO, and responses that are opposite in sign. However, NO is more stable than NO{sub 2} at temperatures > 600 C, and thermodynamic calculations predict {approx}90% NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

Woo, L Y; Glass, R S

2008-11-14T23:59:59.000Z

116

Excellent Sulfur Resistance of Pt/BaO/CeO2 Lean NOx Trap Catalysts...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NOx Trap Catalysts. Excellent Sulfur Resistance of PtBaOCeO2 Lean NOx Trap Catalysts. Abstract: In this work, we investigated the NOx storage behavior of Pt-BaOCeO2 catalysts,...

117

Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline...

118

Task 3.15 -- Impacts of low-NOx combustion on fly ash and slagging. Semi-annual report, July 1--December 31, 1996  

SciTech Connect (OSTI)

With the advent of the Clean Air Act Amendments of 1990, the coal-fired power industry began a more accelerated move toward using low-NOx burner (LNB) technologies to reduce NOx emissions. Most LNBs incorporate less oxygen with the coal initially, creating a cooler and somewhat substoichiometric initial combustion zone, with additional oxygen added further on in the combustion process to complete char combustion. Another method used to achieve lower NOx emissions is to fire the coal substoichiometrically and add additional air through overfire air ports. Both of these methods create certain impacts on fireside performance that are different from conventional high-excess-air firing arrangements. Some of the impacts that have been noticed by the utility industry are higher levels of unburned carbon in the fly ash and bottom ash, increased boiler tube corrosion, higher particulate loadings on control devices, and changes in slagging in the main furnace. Work on the fundamental mechanisms of entrained ash and ash deposit formation during low-NOx combustion has been sparse. This project by the Energy and Environmental Research Center (EERC) focuses on the issues of entrained ash formation and slagging for low-NOx combustion systems in general. Time-resolved combustion tests under conventional and low-NOx conditions have been conducted to note particle-size formation and slagging deposition. The results from this work are yielding an increased understanding of the mechanisms of ash formation during low-NOx combustion along with methods for enhancing heat transfer and fly ash collectability. Specific objectives of this research project include (1) determining whether initial char and ash generated under low-NOx conditions have greater tendencies for slagging than conventionally generated ash and (2) determining the differences, if any, between particle size and composition for entrained ash generated under low-NOx and conventional combustion conditions.

Zygarlicke, C.J.; McCollor, D.P.

1997-08-01T23:59:59.000Z

119

METHANE de-NOX for Utility PC Boilers  

SciTech Connect (OSTI)

The primary focus for the project during the quarter was shakedown testing of the large-scale coal preheater prototype in the CBTF with non-caking PRB coal. Additional pilot-scale tests were conducted in the PSCF in support of developing a preheating system design suitable for use with caking coals. Thirty-two additional pilot tests were conducted during the quarter with caking coal. These tests further evaluated the use of the air-bleed and indirect air-cooled liner designs to reduce or eliminate combustor plugging with caking coal. The air-bleed configurations tested used air injection holes perpendicular to the liner's longitudinal axis with the number, size and air flow though the air-bleed holes varied to determine the effect on combustor plugging. The indirect cooling configurations tested included a stainless steel liner with spiral fins in the annular space between the liner and the combustor wall, and a silicon carbide liner without fins. Continuous pilot operation was maintained for up to 30 minutes at a coal feed rate of 50 lb/h with the air-bleed liner. The best result achieved was for the stainless steel indirect air-cooled liner with 20 minutes of continuous operation at 126 lb/h of coal followed by an additional 20 minutes at 150 lb/h. The NOx results from these continue to indicate that even greater NOx reduction is possible with caking coal than with the PRB coal tested. The installation of the large-scale prototype coal preheater for PRB testing in the CBTF was completed and shakedown testing with natural gas and PRB coal started during the quarter. Stable operation of the coal system, combustor and burner were achieved at coal feed rates up to 6000 lb/h (50 MMBtu/h).

Bruce Bryan; Joseph Rabovitser Serguei Nester; Stan Wohadlo

2004-06-30T23:59:59.000Z

120

Durability of NOx Absorbers | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA andDriving Innovation atDumping09of NOx

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NOx Sensor Development | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovation |NEXTDevelopment NOxAftertreatmentSensor

122

Leadership in Low NOx/ Lochinvar Corporation  

E-Print Network [OSTI]

, Texas Nashville, Tennessee On April 19, 2000, the Texas Natural Resource Conservation Commission adopted statewide NOx emission limits for all natural gas-fired water heaters, boilers and process heaters with input rates of 2 million Btu/hr or less... for the purposes of generating efficient boilers, and process heaters having a BTU rating of up and environmentally friendly hot water production. to 2,000,000 BTU/hour within the state of Texas. Some readers of this paper may already be aware It's not everyday...

Sheko, D.; Boston, S.; Moore, J.

123

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2011 Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2011...

124

Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions...  

Broader source: Energy.gov (indexed) [DOE]

vs. Plasma-Facilitated Lean NOx Catalysis Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic...

125

Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NOx Catalysis for Heavy-Duty Diesel Emissions Control Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic...

126

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the twelfth quarter, January-March 2003, in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with the objectives for the third year. Pilot scale experiments conducted at the University of Utah explored both the effectiveness of oxygen addition and the best way to add oxygen with a scaled version of Riley Power's newest low NOx burner design. CFD modeling was done to compare the REI's modeling results for James River Unit 3 with the NOx and LOI results obtained during the demonstration program at that facility. Investigation of an alternative method of fabrication of PSO1d elements was conducted. OTM process development work has concluded with the completion of a long-term test of a PSO1d element Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Proposals have been submitted for two additional beta test sites. Commercial proposals have been submitted. Economic analysis of a beta site test performance was conducted.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2003-04-01T23:59:59.000Z

127

Ultra-Low NOx Advanced Vortex Combustor  

SciTech Connect (OSTI)

An ultra lean-premixed Advanced Vortex Combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energyís National Energy Technology Laboratory (USDOE NETL) test facility in Morgantown (WV). All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx/CO/UHC emissions of 4/4/0 ppmv (all emissions are at 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated tremendous acoustic dynamic stability over a wide range of operating conditions which potentially makes this approach significantly more attractive than other lean premixed combustion approaches. In addition, a pressure drop of 1.75% was measured which is significantly lower than conventional gas turbine combustors. Potentially, this lower pressure drop characteristic of the AVC concept translates into overall gas turbine cycle efficiency improvements of up to one full percentage point. The relatively high velocities and low pressure drops achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

Edmonds, R.G. (Ramgen Power Systems, Inc., Bellevue, WA); Steele, R.C. (Ramgen Power Systems, Inc., Bellevue, WA); Williams, J.T. (Ramgen Power Systems, Inc., Bellevue, WA); Straub, D.L.; Casleton, K.H.; Bining, Avtar (California Energy Commission, Sacramento, CA)

2006-05-01T23:59:59.000Z

128

ULTRA-LOW NOX ADVANCED VORTEX COMBUSTOR  

SciTech Connect (OSTI)

An ultra lean-premixed Advanced Vortex Combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energyís National Energy Technology Laboratory (USDOE NETL) test facility in Morgantown (WV). All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx/CO/UHC emissions of 4/4/0 ppmv (all emissions are at 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated tremendous acoustic dynamic stability over a wide range of operating conditions which potentially makes this approach significantly more attractive than other lean premixed combustion approaches. In addition, a pressure drop of 1.75% was measured which is significantly lower than conventional gas turbine combustors. Potentially, this lower pressure drop characteristic of the AVC concept translates into overall gas turbine cycle efficiency improvements of up to one full percentage point. The relatively high velocities and low pressure drops achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

Ryan G. Edmonds; Robert C. Steele; Joseph T. Williams; Douglas L. Straub; Kent H. Casleton; Avtar Bining

2006-05-01T23:59:59.000Z

129

The Function and Genetic Interactions of Zebrafish atoh1 and sox2: Genes Involved in Hair Cell Development and Regeneration  

E-Print Network [OSTI]

THE FUNCTION AND GENETIC INTERACTIONS OF ZEBRAFISH atoh1 AND sox2: GENES INVOLVED IN HAIR CEL DEVELOPMENT AND REGENERATION A Disertation by BONY BUTLER MILIMAKI Submited to the Ofice of Graduate Studies of Texas A... Involved in Hair Cel Development and Regeneration. Copyright 2010 Bonny Butler Milimaki THE FUNCTION AND GENETIC INTERACTIONS OF ZEBRAFISH atoh1 AND sox2: GENES INVOLVED IN HAIR CEL DEVELOPMENT AND REGENERATION A Disertation by BONY...

Millimaki, Bonny Butler

2010-10-12T23:59:59.000Z

130

Two-stage Catalytic Reduction of NOx with Hydrocarbons  

SciTech Connect (OSTI)

A two-stage system for the catalytic reduction of NO from lean-burn natural gas reciprocating engine exhaust is investigated. Each of the two stages uses a distinct catalyst. The first stage is oxidation of NO to NO{sub 2} and the second stage is reduction of NO{sub 2} to N{sub 2} with a hydrocarbon. The central idea is that since NO{sub 2} is a more easily reduced species than NO, it should be better able to compete with oxygen for the combustion reaction of hydrocarbon, which is a challenge in lean conditions. Early work focused on demonstrating that the N{sub 2} yield obtained when NO{sub 2} was reduced was greater than when NO was reduced. NO{sub 2} reduction catalysts were designed and silver supported on alumina (Ag/Al{sub 2}O{sub 3}) was found to be quite active, able to achieve 95% N{sub 2} yield in 10% O{sub 2} using propane as the reducing agent. The design of a catalyst for NO oxidation was also investigated, and a Co/TiO{sub 2} catalyst prepared by sol-gel was shown to have high activity for the reaction, able to reach equilibrium conversion of 80% at 300 C at GHSV of 50,000h{sup -1}. After it was shown that NO{sub 2} could be more easily reduced to N{sub 2} than NO, the focus shifted on developing a catalyst that could use methane as the reducing agent. The Ag/Al{sub 2}O{sub 3} catalyst was tested and found to be inactive for NOx reduction with methane. Through iterative catalyst design, a palladium-based catalyst on a sulfated-zirconia support (Pd/SZ) was synthesized and shown to be able to selectively reduce NO{sub 2} in lean conditions using methane. Development of catalysts for the oxidation reaction also continued and higher activity, as well as stability in 10% water, was observed on a Co/ZrO{sub 2} catalyst, which reached equilibrium conversion of 94% at 250 C at the same GHSV. The Co/ZrO{sub 2} catalyst was also found to be extremely active for oxidation of CO, ethane, and propane, which could potential eliminate the need for any separate oxidation catalyst. At every stage, catalyst synthesis was guided by the insights gained through detailed characterization of the catalysts using many surface and bulk analysis techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, Temperature-programmed Reduction, Temperature programmed Desorption, and Diffuse Reflectance InfraRed Fourier Transform Spectroscopy as well as steady state reaction experiments. Once active catalysts for each stage had been developed, a physical mixture of the two catalysts was tested for the reduction of NO with methane in lean conditions. These experiments using a mixture of the catalysts produced N2 yields as high as 90%. In the presence of 10% water, the catalyst mixture produced 75% N{sub 2} yield, without any optimization. The dual catalyst system developed has the potential to be implemented in lean-burn natural gas engines for reducing NOx in lean exhaust as well as eliminating CO and unburned hydrocarbons without any fuel penalty or any system modifications. If funding continues, future work will focus on improving the hydrothermal stability of the system to bring the technology closer to application.

Umit S. Ozkan; Erik M. Holmgreen; Matthew M. Yung; Jonathan Halter; Joel Hiltner

2005-12-21T23:59:59.000Z

131

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the fourth quarter January-March 2001 in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes and Task 4 - Program Management. This report will also recap the results of the past year. The program is proceeding in accordance with the objectives for the first year. OTM material characterization was completed. 100% of commercial target flux was demonstrated with OTM disks. The design and assembly of Praxair's single tube high-pressure test facility was completed. The production of oxygen with a purity of better than 99.5% was demonstrated. Coal combustion testing was conducted at the University of Arizona. Modest oxygen enhancement resulted in NOx emissions reduction. The injector for oxygen enhanced coal based reburning was conducted at Praxair. Combustion modeling with Keystone boiler was completed. Pilot-scale combustion test furnace simulations continued this quarter.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2001-04-01T23:59:59.000Z

132

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the thirteenth quarter, April-June 2003, in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with project objectives. REI's model was modified to evaluate mixing issues in the upper furnace of a staged unit. Analysis of the results, and their potential application to this unit is ongoing. Economic evaluation continues to confirm the advantage of oxygen-enhanced combustion. A contract for a commercial demonstration has been signed with the Northeast Generation Services Company to supply oxygen and license the oxygen enhanced low NOx combustor technology for use at the 147-megawatt coal fired Mt. Tom Station in Holyoke, MA. Commercial proposals have been submitted. Economic analysis of a beta site test performance was conducted.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2003-08-01T23:59:59.000Z

133

NOx, SOx and CO2 Emissions Reduction from Continuous Commissioningģ (CCģ) Measures at the Rent-A-Car Facility in the Dallas-Fort Worth International Airport  

E-Print Network [OSTI]

- 0 . 0 7 - 0 . 3 9 7 9 2 .8 9 79 2. 8 9 0 . 4 0 NO L A N... - 0 . 0 6 - 0 . 3 3 6 7 0 .9 1 67 0. 9 1 0 . 3 4 EL L I...

Baltazar-Cervantes, J. C.; Haberl, J. S.; Yazdani, B.

2006-10-27T23:59:59.000Z

134

Ammonia Generation over TWC for Passive SCR NOX Control for Lean Gasoline Engines  

SciTech Connect (OSTI)

A commercial three-way catalyst (TWC) was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential low cost approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. NH3 generation was evaluated at different air-fuel equivalence ratios at multiple engine speed and load conditions. Near complete conversion of NOX to NH3 was achieved at =0.96 for nearly all conditions studied. At the =0.96 condition, HC emissions were relatively minimal, but CO emissions were significant. Operation at AFRs richer than =0.96 did not provide more NH3 yield and led to higher HC and CO emissions. Results of the reductant conversion and consumption processes were used to calculate a representative fuel consumption of the engine operating with an ideal passive SCR system. The results show a 1-7% fuel economy benefit at various steady-state engine speed and load points relative to a stoichiometric engine operation.

Prikhodko, Vitaly Y [ORNL] [ORNL; Parks, II, James E [ORNL; Pihl, Josh A [ORNL] [ORNL; Toops, Todd J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

135

Oxidation State Optimization for Maximum Efficiency of NOx Adsorber...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10li.pdf More Documents & Publications Lean NOx Trap...

136

Functionality of Commercial NOx Storage-Reduction Catalysts and...  

Broader source: Energy.gov (indexed) [DOE]

N.A. Ottinger, J.A. Pihl, T.J. Toops, C. Finney, M. Lance, C. Stuart Daw, "Types, Spatial Distribution, Stability, and Performance Impact of Sulfur on a Lean NOx Trap...

137

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. ace032partridge2010o.pdf More Documents & Publications CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CumminsORNL-FEERC...

138

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Broader source: Energy.gov (indexed) [DOE]

Washington D.C. ace32partridge.pdf More Documents & Publications CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CumminsORNL-FEERC...

139

Nitrogen Isotopes as Indicators of NOx Source Contributions to  

E-Print Network [OSTI]

of NOx are dominated by fossilfuelcombustion(63%)frombothstationary(e.g.,power plant electricity andassociatedatmosphericdepositionofnitrate(NO3 - )pose threats to global ecosystems and human health (2, 3). Contemporary global emissions

Elliott, Emily M.

140

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the ninth quarter April-June 2002 in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with the objectives for the third year. Full-scale testing using the Industrial Boiler Simulation Facility (ISBF) at Alstom Power was completed. The pilot scale experiments to evaluate the effect of air preheat and transport air stoichiometric ratio (SR) on NOx emissions were conducted at the University of Utah. Combustion modeling activities continued with full-scale combustion test furnace simulations. An OTM element was tested in Praxair's single tube high-pressure test facility and two thermal cycles were completed. PSO1d elements of new dimension were tested resulting in a lower flux than previous PSO1d elements of different dimensions, however, no element deformation was observed. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Two potential host beta sites have been identified and proposals submitted.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2002-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the fourth quarter January-March 2002 in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. This report will also recap the results of the past year. The program is proceeding in accordance with the objectives for the second year. The first round of pilot scale testing with 3 bituminous coals was completed at the University of Utah. Full-scale testing equipment is in place and experiments are underway. Coal combustion lab-scale testing was completed at the University of Arizona. Modest oxygen enhancement resulted in NOx emissions reduction. Combustion modeling activities continued with pilot-scale combustion test furnace simulations. 75% of target oxygen flux was demonstrated with small PSO1 tube in Praxair's single tube high-pressure test facility. The production of oxygen with a purity of better than 99.999% was demonstrated. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Two potential host sites have been identified.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2002-04-01T23:59:59.000Z

142

NO[x] production by lightning in the continental U.S. and its impacts on tropospheric chemistry  

E-Print Network [OSTI]

Nitrogen oxides (NOx) play an important role in atmospheric chemistry. High tropospheric NOx concentrations increase ozone (O?) levels via photochemical cycling of NO to NO?, whereas low NOx concentrations result in the catalytic destruction of O?...

Bond, Donald William

2001-01-01T23:59:59.000Z

143

Method for control of NOx emission from combustors using fuel dilution  

DOE Patents [OSTI]

A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels. The unique combustion characteristics associated with the use of hydrogen, particularly faster flame speed, higher reaction rates, and increased resistance to fluid-mechanical strain, alter the burner combustion characteristics sufficiently to allow operation at the desired lower temperature conditions resulting from diluent addition, without the onset of unstable combustion that can arise at lower combustor operating temperatures.

Schefer, Robert W. (Alamo, CA); Keller, Jay O (Oakland, CA)

2007-01-16T23:59:59.000Z

144

Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction. Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction. Abstract: Multiple catalytic functions...

145

Effect of BaO Morphology on NOx Abatement: NO Interaction with...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BaO Morphology on NOx Abatement: NO Interaction with Unsupported and O-Supported BaO. Effect of BaO Morphology on NOx Abatement: NO Interaction with Unsupported and O-Supported...

146

Water-induced morphology changes in BaO/?-Al2O3 NOx storage...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials. Water-induced morphology changes in BaO?-Al2O3 NOx storage materials. Abstract: Exposure of NO2-saturated BaO?-Al2O3 NOx storage materials to H2O vapour...

147

Industry-Utility Collaborative Efforts to Address Environmental Concerns- Dispatching for Localized NOx Reduction  

E-Print Network [OSTI]

these objectives. The approach involves dispatching NOx-producing equipment (e.g., boilers and gas turbines) to achieve minimum NOx production during ozone alert periods and purchasing supplemental power under a special tariff to replace any loss in self...

Hamilton, D. E.; Helmick, R. W.; Lambert, W. J.

148

Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study...  

Broader source: Energy.gov (indexed) [DOE]

Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Presentation given...

149

Development of a Stand-Alone Urea-SCR System for NOx Reduction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines Development of a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines Stand-alone urea SCR...

150

Effect of Engine-Out NOx Control Strategies on PM Size Distribution...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engine-Out NOx Control Strategies on PM Size Distribution in Heavy-Duty Diesel Engines Developed for 2010 Effect of Engine-Out NOx Control Strategies on PM Size Distribution in...

151

Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biodiesel and EGR for Low-Temperature NOx and PM Reductions Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions Poster presentation at the 2007 Diesel...

152

NH3 generation over commercial Three-Way Catalysts and Lean-NOx...  

Broader source: Energy.gov (indexed) [DOE]

NH3 generation over commercial Three-Way Catalysts and Lean-NOx Traps NH3 generation over commercial Three-Way Catalysts and Lean-NOx Traps Research to identify most promising...

153

Safe and compact ammonia storage/delivery systems for SCR-DeNOX...  

Office of Environmental Management (EM)

Safe and compact ammonia storagedelivery systems for SCR-DeNOX in automotive units Safe and compact ammonia storagedelivery systems for SCR-DeNOX in automotive units Presentation...

154

Reduced Turbine Emissions Using Hydrogen-Enriched Fuels  

E-Print Network [OSTI]

optimal use of fuel lean combustion for NOx control ­ Replaces hydrocarbon fuels for reduced CO2 emissions ­ Enables use of domestically-produced H2 #12;U.S. CO2 EmissionsU.S. CO2 Emissions by Combustion Source 0 81Reduced Turbine Emissions Using Hydrogen-Enriched Fuels Robert W. Schefer Joseph C. Oefelein Jay O

155

Reduction of NOx by plasma-assisted methods , F. Leipold1  

E-Print Network [OSTI]

acid rain and ozone production when it is released into the air. Reduction of NOx in the exhaust gas

156

Use of Simulation To Optimize NOx Abatement by Absorption and Selective Catalytic Reduction  

E-Print Network [OSTI]

Use of Simulation To Optimize NOx Abatement by Absorption and Selective Catalytic Reduction Andrew This paper describes the development of an ASPEN PLUS simulation model for a commercial NOx abatement system nitric acid production and the abatement of NOx- laden effluent streams for environmental protection.1

Liu, Y. A.

157

Quantification of Variability and Uncertainty in Hourly NOx Emissions from Coal-Fired Power Plants  

E-Print Network [OSTI]

to quantify variability and uncertainty for NOx emissions from coal-fired power plants. Data for hourly NOx emissions, heat rate, gross load and capacity factor of 32 units from 9 different power plants were analyzed Uncertainty, Variability, Emission Factors, Coal-Fired Power Plants, NOx emissions, Regression Models

Frey, H. Christopher

158

Influence of combustion parameters on NOx production in an industrial boiler  

E-Print Network [OSTI]

Influence of combustion parameters on NOx production in an industrial boiler M.A. Habib a,*, M; accepted 14 April 2007 Available online 24 June 2007 Abstract NOx formation during the combustion process occurs mainly through the oxidation of nitrogen in the combustion air (thermal NOx) and through oxidation

Aldajani, Mansour A.

159

NOx, SO{sub 3} in the spotlight at NETL's 2006 Environmental Controls conference  

SciTech Connect (OSTI)

As emissions caps drop, technological solutions must become increasingly effective and efficient. Researchers, equipment vendors, and plant operators are exploring alternatives to SCR and SNCR, with a view to reducing the overall costs of NOx reduction. They have also achieved 95% to 99% removal of SO{sub 3}, with no visible plume opacity. These topics were discussed at ECC 2006. The first conference session focussed on selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) control of nitrogen oxide emissions; the second session addressed the related issue of reducing stack emissions and flue gas concentrations of sulfur trioxide. The article summarises many papers presented. Summaries and/or full versions of all the papers mentioned, and others, are posted at www.netl.doe.gov/publications/proceedings/06/ecc/index.html. 2 figs.

Mann, A.N.; Makovsky, L.E.; Sarkus, T.A. [Technology and Management Services Inc. (United States)

2007-02-15T23:59:59.000Z

160

NOx Emission Reduction by Oscillating Combustion  

SciTech Connect (OSTI)

High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.

John C. Wagner

2004-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NOx Emission Reduction by Oscillating combustion  

SciTech Connect (OSTI)

High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.

Institute of Gas Technology

2004-01-30T23:59:59.000Z

162

LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE  

SciTech Connect (OSTI)

In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

2004-08-01T23:59:59.000Z

163

Small, Inexpensive Combined NOx Sensor and O2 Sensor  

SciTech Connect (OSTI)

It has been successfully demonstrated in this program that a zirconia multilayer structure with rhodium-based porous electrodes performs well as an amperometric NOx sensor. The sensitivity of the sensor bodies operating at 650 to 700 C is large, with demonstrated current outputs of 14 mA at 500 ppm NOx from sensors with 30 layers. The sensor bodies are small (4.5 x 4.2 x 3.1 mm), rugged, and inexpensive. It is projected the sensor bodies will cost $5 - $10 in production. This program has built on another successful development program for an oxygen sensor based on the same principles and sponsored by DOE. This oxygen sensor is not sensitive to NOx. A significant technical hurdle has been identified and solved. It was found that the 100% Rh electrodes oxidize rapidly at the preferred operating temperatures of 650 - 700 C, and this oxidation is accompanied by a volume change which delaminates the sensors. The problem was solved by using alloys of Rh and Pt. It was found that a 10%/90% Rh/Pt alloy dropped the oxidation rate of the electrodes by orders of magnitude without degrading the NOx sensitivity of the sensors, allowing long-term stable operation at the preferred operating temperatures. Degradation in the sensor output caused by temperature cycling was identified as a change in resistance at the junction between the sensor body and the external leads attached to the sensor body. The degradation was eliminated by providing strong mechanical anchors for the wire and processing the junctions to obtain good electrical bonds. The NOx sensors also detect oxygen and therefore the fully-packaged sensor needs to be enclosed with an oxygen sensor in a small, heated zirconia chamber exposed to test gas through a diffusion plug which limits the flow of gas from the outside. Oxygen is pumped from the interior of the chamber to lower the oxygen content and the combination of measurements from the NOx and oxygen sensors yields the NOx content of the gas. Two types of electronic control units were designed and built. One control unit provides independent constant voltages to the NOx and oxygen sensors and reads the current from them (that is, detects the amount of test gas present). The second controller holds the fully-assembled sensor at the desired operating temperature and controllably pumps excess oxygen from the test chamber. While the development of the sensor body was a complete success, the development of the packaging was only partially successful. All of the basic principles were demonstrated, but the packaging was too complex to optimize the operation within the resources of the program. Thus, no fully-assembled sensors were sent to outside labs for testing of cross-sensitivities, response times, etc. Near the end of the program, Sensata Technologies of Attleboro, MA tested the sensor bodies and confirmed the CeramPhysics measurements as indicated in the following attached letter. Sensata was in the process of designing their own packaging for the sensor and performing cross-sensitivity tests when they stopped all sensor development work due to the automotive industry downturn. Recently Ceramatec Inc. of Salt Lake City has expressed an interest in testing the sensor, and other licensing opportunities are being pursued.

W. N. Lawless; C. F. Clark, Jr.

2008-09-08T23:59:59.000Z

164

Nox reduction system utilizing pulsed hydrocarbon injection  

DOE Patents [OSTI]

Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

Brusasco, Raymond M. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA)

2001-01-01T23:59:59.000Z

165

Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel  

DOE Patents [OSTI]

A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

2012-11-20T23:59:59.000Z

166

Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel  

DOE Patents [OSTI]

A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

Steele, Robert C. (Woodinville, WA); Edmonds, Ryan G. (Renton, WA); Williams, Joseph T. (Kirkland, WA); Baldwin, Stephen P. (Winchester, MA)

2009-10-20T23:59:59.000Z

167

Congressionally Directed Project for Passive NOx Removal Catalysts Research  

SciTech Connect (OSTI)

The Recipient proposes to produce new scientific and technical knowledge and tools to enable the discovery and deployment of highly effective materials for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from lean combustion exhaust. A second goal is to demonstrate a closely coupled experimental and computational approach to heterogeneous catalysis research. These goals will be met through the completion of four primary technical objectives: First, an in-depth kinetic analysis will be performed on two prominent classes of NOx SCR catalysts, Fe- and Cu-exchanged beta and ZSM-5 zeolites, over a wide range of catalyst formulation and under identical, high conversion conditions as a function of gas phase composition. Second, the nanoscale structure and adsorption chemistry of these high temperature (HT) and low temperature (LT) catalysts will be determined using in situ and operando spectroscopy under the same reaction conditions. Third, first-principles molecular simulations will be used to model the metal-zeolite active sites, their adsorption chemistry, and key steps in catalytic function. Fourth, this information will be integrated into chemically detailed mechanistic and kinetic descriptions and models of the operation of these well- defined NOx SCR catalysts under practically relevant reaction conditions. The new knowledge and models that derive from this work will be published in the scientific literature.

Schneider, William

2014-08-29T23:59:59.000Z

168

The NOx system in nuclear waste. 1997 annual progress report  

SciTech Connect (OSTI)

'The authors highlight their results from the title project. The project is a coordinated effort of the three Co-PIs to assist the Safety Programs at the Hanford and other DOE Environmental Management Sites. The authors present in the report their observations and interactively discuss their implications for safety concerns. They focus on three issues: (1) Reducing radicals in the NOx system The authors show that the only reducing radical that lasts longer than a few ns in typical waste solutions, and is capable of generating hydrogen, is NO{sub 3}{sup 2-}. The authors measured the lifetime of this species across the whole pH range (3 {le} pH {le} 14) and found it to be shorter than -15 \\265s, before it dissociates to give the strongly oxidizing NO, radicals. They found that it reacts with many proton donors (H{sup +}, phosphate, borate, NH{prime}, amines) in a reaction that is not merely an acid-base equilibrium reaction but is probably a dissociative proton transfer. They estimate the redox potential from theoretical considerations and obtain an experimental verification. They conclude that it is highly unlikely, although thermodynamically possible, that this radi-cal will generate hydrogen in waste solutions. (2) Aging of organic chelators and their degradation products by NO, Methodologies to study the degradation of organic substrates (including the important waste components, formate and oxalate) to CO;, or carbonate, by NO, were developed. This radical dimerizes and disproportionates to nitrate and nitrite. Therefore, mineraliza-tion of the organic substrates competes with the disproportionation of NO,. Among the organic substrates, formate and oxalate are also mineralized but because they are of low fuel value their mineralization is not very helpful, yet it consumes NO,. (3) Interfacial processes in aqueous suspensions Yields of charge transfer from solid silica particles to water and other liquids were meas-ured. If the particles are small enough, essentially all of the charge that is originally depos-ited in the solid escapes into the liquid. This implies that the solid/liquid interface does not provide a significant barrier to the transfer of charges into the solution when the particles are very small (I 20 nm). Electrons may reach the liquid and generate hydrogen, for example. On the other hand, the same mechanism may also provide a pathway for oxidative aging of organics by holes even when the organic is dissolved in the liquid or adsorbed on the solid surface. The authors have started to study reactions of NO,. Methodology and instrumentation to measure reactions of relevant organic radicals with NO, and with its parent NO, were developed. Because of low extinction coefficients, conductivity will be the method of choice.'

Meisel, D. [Argonne National Lab., IL (US). Chemistry Div.; Camaioni, D.; Orlando, T. [Pacific Northwest National Lab., Richland, WA (US)

1997-01-01T23:59:59.000Z

169

Synergies of High-Efficiency Clean Combustion and Lean NOx Trap...  

Broader source: Energy.gov (indexed) [DOE]

Combustion and Lean NOx Trap Catalysts investigation of potential synergies of low emission advanced combustion techniques and advanced lean exhaust catalytic aftertreatment....

170

Reduction of NOx in Synthetic Diesel Exhaust via Two-Step Plasma...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Citation: Tonkyn RG, SE Barlow, and J Hoard.2003."Reduction of NOx in Synthetic Diesel Exhaust via Two-Step Plasma-Catalysis Treatment."Applied Catalysis. B,...

171

Effect of Thermal Aging on NO oxidation and NOx storage in a...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Impacts of Biodiesel on Emission Control Devices NOx Abatement Research and Development CRADA with Navistar Incorporated Thermal Deactivation...

172

Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction  

Broader source: Energy.gov (indexed) [DOE]

- Burch and Millington, Catalysis Today, 1996. - Shimizu et al., Applied Catalysis B: Environmental, 2000. * DOE NOx Discovery Project - Initiated in August of 2002, completed...

173

Flexible CHP System with Low NOx, CO and VOC Emissions - Fact...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sheet, 2014 Flexible CHP System with Low NOx, CO and VOC Emissions - Fact Sheet, 2014 The Gas Technology Institute, in collaboration with Cannon Boiler Works, Integrated CHP...

174

Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers  

SciTech Connect (OSTI)

This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of the boiler. When combined with SNCR, a NO{sub x} emission rate of 0.12-0.14 lb/MBtu can be expected when implementing a full ALTA system on this unit. Cost effectiveness of the full ALTA system was estimated at $2,152/ton NO{sub x} removed; this was less than 75% of the cost estimated for an SCR system on a unit of this size.

Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

2008-04-30T23:59:59.000Z

175

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

Increased environmental regulations will require utility boilers to reduce NO{sub x} emissions to less than 0.15lb/MMBtu in the near term. Conventional technologies such as Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) are unable to achieve these lowered emission levels without substantially higher costs and major operating problems. Oxygen enhanced combustion is a novel technology that allows utilities to meet the NO{sub x} emission requirements without the operational problems that occur with SCR and SNCR. Furthermore, oxygen enhanced combustion can achieve these NO{sub x} limits at costs lower than conventional technologies. The objective of this program is to demonstrate the use of oxygen enhanced combustion as a technical and economical method of meeting the EPA State Implementation Plan for NO{sub x} reduction to less than 0.15lb/MMBtu for a wide range of boilers and coal. The oxygen enhanced coal combustion program (Task 1) focused this quarter on the specific objective of exploration of the impact of oxygen enrichment on NO{sub x} formation utilizing small-scale combustors for parametric testing. Research efforts toward understanding any limitations to the applicability of the technology to different burners and fuels such as different types of coal are underway. The objective of the oxygen transport membrane (OTM) materials development program (Task 2.1) is to ascertain a suitable material composition that can be fabricated into dense tubes capable of producing the target oxygen flux under the operating conditions. This requires that the material have sufficient oxygen permeation resulting from high oxygen ion conductivity, high electronic conductivity and high oxygen surface exchange rate. The OTM element development program (Task 2.2) objective is to develop, fabricate and characterize OTM elements for laboratory and pilot reactors utilizing quality control parameters to ensure reproducibility and superior performance. A specific goal is to achieve a material that will sinter to desired density without compromising other variables such as reaction to binder systems or phase purity. Oxygen-enhanced combustion requires a facility which is capable of supplying high purity oxygen (>99.5%) at low costs. This goal can be achieved through the thermal integration of high temperature air separation with ceramic OTM. The objective of the OTM process development program (Task 2.3) is to demonstrate successfully the program objectives on a lab-scale single OTM tube reactor under process conditions comparable to those of an optimum large-scale oxygen facility. This quarterly technical progress report will summarize work accomplished for the Program through the first quarter April--June 2000 in the following task areas: Task 1 Oxygen Enhanced Coal Combustion; Task 2 Oxygen Transport Membranes; and Task 4 Program Management.

Lawrence E. Bool; Jack C. Chen; David R. Thompson

2000-07-01T23:59:59.000Z

176

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS  

SciTech Connect (OSTI)

This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

2001-10-10T23:59:59.000Z

177

Compact Potentiometric O2/NOx Sensor | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheat Two AluminumWHAT:Energy1 DOEO2/NOx

178

Electrochemical NOxSensor for Monitoring Diesel Emissions | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM SummaryandandElectrosynthesisDOEEnergy NOxSensor

179

NOx Adsorber Regeneration Phenomena In Heavy Duty Applications | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovation |NEXTDevelopment NOx Abatementof

180

NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovation |NEXTDevelopment NOx

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NOx Aftertreatment Using Ethanol as Reductant | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovation |NEXTDevelopment NOxAftertreatment Using

182

Experimental and numerical analysis of isothermal turbulent flows in interacting low NOx burners in coal-fired furnaces†  

E-Print Network [OSTI]

Coal firing power stations represent the second largest source of global NOx emissions. The current practice of predicting likely exit NOx levels from multi-burner furnaces on the basis of single burner test rig data has been proven inadequate...

Cvoro, Valentina

183

The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow  

E-Print Network [OSTI]

. They indicated that the addition of hydrogen to natural gas or methane resulted in an increase in NOx for most increases, and then decreases with the increase in the fraction of hydrogen. Overall, hydrogen enrichment rights reserved. Keywords: Hydrogen enrichment; NOx; Extinction limit; Ultra-lean premixed flame. 1

G√ľlder, √?mer L.

184

Effect of propene on the remediation of NOx from engine exhausts  

E-Print Network [OSTI]

been found to play an important role in the NOx conversion chemistry. Earlier studies on the effects to determine their effect on NOx conversion are input energy, gas temperature and the inlet hydrocarbon. Hydrocarbons in the exhausts have been found to play an important role in the reaction chemistry during

Kushner, Mark

185

Global impact of fossil fuel combustion on atmospheric NOx Larry W. Horowitz  

E-Print Network [OSTI]

potential than emissions in the United States to perturb the global oxidizing power of the atmosphere. #12% of NOx concentrations in the lower and middle troposphere throughout the extratropical northern of the ocean. Sources in the United States are found to contribute about half of the fossil fuel NOx over

Jacob, Daniel J.

186

Active NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade Architecture  

E-Print Network [OSTI]

Active NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade control, cogeneration, gas turbine, model based control, feed forward, cascade ABSTRACT Presented is a model based strategy for controlling the NOX concentration of natural gas turbine emissions

Cooper, Doug

187

Asian emissions of CO and NOx: Constraints from aircraft and Chinese station data  

E-Print Network [OSTI]

and chemistry; KEYWORDS: inversion, Asian emissions, carbon monoxide, nitrogen oxides Citation: Wang, Y. X., MAsian emissions of CO and NOx: Constraints from aircraft and Chinese station data Yuxuan X. Wang to constrain estimates of Asian emissions of CO and NOx. A priori emissions are based on a detailed bottom

Palmer, Paul

188

A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine  

SciTech Connect (OSTI)

Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0√?¬?√?¬į BTDC to 10√?¬?√?¬į BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

2012-04-24T23:59:59.000Z

189

Waste Coal Fines Reburn for NOx and Mercury Emission Reduction  

SciTech Connect (OSTI)

Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury capture. During July, August, and September 2007, BES designed, procured, installed, and tested the slurry injection system at Beaver Valley. Slurry production was performed by Penn State University using equipment that was moved from campus to the Beaver Valley site. Waste coal fines were procured from Headwaters Inc. and transported to the site in Super Sacks. In addition, bituminous coal was pulverized at Penn State and trucked to the site in 55-gallon drums. This system was operated for three weeks during August and September 2007. NO{sub x} emission data were obtained using the plant CEM system. Hg measurements were taken using EPA Method 30B (Sorbent Trap method) both downstream of the electrostatic precipitator and in the stack. Ohio Lumex Company was on site to provide rapid Hg analysis on the sorbent traps during the tests. Key results from these tests are: (1) Coal Fines reburn alone reduced NO{sub x} emissions by 0-10% with up to 4% heat input from the CWS. However, the NO{sub x} reduction was accompanied by higher CO emissions. The higher CO limited our ability to try higher reburn rates for further NO{sub x} reduction. (2) Coal Fines reburn with Urea (Carbon enhanced SNCR) decreased NO{sub x} emissions by an additional 30% compared to Urea injection only. (3) Coal slurry injection did not change Hg capture across the ESP at full load with an inlet temperature of 400-430 F. The Hg capture in the ESP averaged 40%, with or without slurry injection; low mercury particulate capture is normally expected across a higher temperature ESP because any oxidized mercury is thought to desorb from the particulate at ESP temperatures above 250 F. (4) Coal slurry injection with halogen salts added to the mixing tank increased the Hg capture in the ESP to 60%. This significant incremental mercury reduction is important to improved mercury capture with hot-side ESP operation and wherever hindrance from sulfur oxides limit mercury reduction, because the higher temperature is above sulfur oxide dew point interference.

Stephen Johnson; Chetan Chothani; Bernard Breen

2008-04-30T23:59:59.000Z

190

Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems  

DOE Patents [OSTI]

A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

Park, Paul W.

2004-03-16T23:59:59.000Z

191

SELECTIVE REDUCTION OF NOX IN OXYGEN RICH ENVIRONMENTS WITH PLASMA-ASSISTED CATALYSIS: CATALYST DEVELOPMENT AND MECHANISTIC STUDIES  

SciTech Connect (OSTI)

The control of NOx (NO and NO2) emissions from so-called ''lean-burn'' vehicle engines remains a challenge. In recent years, there have been a number of reports that show that a plasma device combined with a catalyst can reduce as high as 90% or more of NOx in simulated diesel and other ''lean-burn'' exhaust. In the case of propylene containing simulated diesel exhaust, the beneficial role of a plasma treatment is now thought to be due to oxidation of NO to NO2, and the formation of partially oxidized hydrocarbons that are more active for the catalytic reduction of NO2 than propylene. Thus, the overall system can be most usefully described as hydrocarbon selective catalytic reduction (SCR) enhanced by 'reforming' the exhaust with a non-thermal plasma (NTP) device. For plasma-enhanced catalysis, both zeolite- and alumina-based materials have shown high activity, albeit in somewhat different temperature ranges, when preceded by an NTP reactor. This paper will briefly describe our research efforts aimed at optimizing the catalyst materials for NTP-catalysis devices based, in part, on our continuing studies of the NTP- and catalytic-reaction mechanisms. Various alkali- and alkaline earth-cation-exchanged Y zeolites have been prepared, their material properties characterized, and they have been tested as catalytic materials for NOx reduction in laboratory NTP-catalysis reactors. Interestingly, NO2 formed in the plasma and not subsequently removed over these catalysts, will back-convert to NO, albeit to varying extents depending upon the nature of the cation. Besides this comparative reactivity, we will also discuss selected synthesis strategies for enhancing the performance of these zeolite-based catalyst materials. A particularly important result from our mechanistic studies is the observation that aldehydes, formed during the plasma treatment of simulated diesel exhaust, are the important species for the reduction of NOx to N2. Indeed, acetaldehyde has been found to be especially effective in the thermal reduction of both NO and NO2 over Ba- and Na-Y zeolite catalysts.

Peden, C; Barlow, S; Hoard, J; Kwak, J; *Balmer-Millar, M; *Panov, A; Schmieg, S; Szanyi, J; Tonkyn, R

2003-08-24T23:59:59.000Z

192

Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels  

SciTech Connect (OSTI)

This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

Srinivasan, Ram

2013-07-31T23:59:59.000Z

193

Low NOx burner retrofits and enhancements for a 518 MW oil and gas fired boiler  

SciTech Connect (OSTI)

Low NOx oil/gas burners originally supplied to Jacksonville Electric Authority, Northside No. 3 .500 MW unit, were based on a duplex air register design with lobed spray oil atomizers providing additional fuel staging. Although the burners could meet the targeted NOx levels of 0.3 and 0.2 lbs/10{sup 6} BTU on oil and gas respectively. There was insufficient margin on these NOx levels to enable continuous low NOx operation to be achieved. Further burner development was undertaken based on improved aerodynamic control within the burner design to give an approximate 25% improvement in NOx emission reduction thus providing an adequate operating margin. This `RoBTAS` (Round Burner with Tilted Air Supply) burner design based on techniques developed successfully for front wall coal firing applications achieved the required NOx reductions in full scale firing demonstrations on both heavy fuel oil and natural gas firing. The paper describes the development work and the subsequent application of the `RoBTAS` burners to the Northside No. 3 boiler. The burner will also be test fired on Orimulsion fuel and thus the comparison between heavy fuel oil firing and Orimulsion firing under ultra low NOx conditions will be made.

King, J.J. [Jacksonville Electric Authority, FL (United States); Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom). Rolls-Royce Industrial Power Group

1995-12-31T23:59:59.000Z

194

NOx Control Options and Integration for US Coal Fired Boilers  

SciTech Connect (OSTI)

This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

2003-12-31T23:59:59.000Z

195

Policy Brief October 2014  

E-Print Network [OSTI]

), particulate organic carbon (OC), oxides of nitrogen (NOx), oxides of sulfur (SOx), reactive organic gases (ROG Standard) for electricity generation, reduced fuel carbon intensity (Low Carbon Fuel Standard), improvement electrification at ports, hybrid or battery electric vehicles). Many of the AB 32 Scoping Plan measures reduce CO2

California at Davis, University of

196

Economics of pollution trading for SO{sub 2} and NOx  

SciTech Connect (OSTI)

For years economists have urged policymakers to use market-based approaches such as cap-and-trade programs or emission taxes to control pollution. The sulphur dioxide (SO{sub 2}) allowance market created by Title IV of the 1990 US Clean Air Act Amendments represents the first real test of the wisdom of economists' advice. Subsequent urban and regional applications of NOx emission allowance trading took shape in the 1990s in the United States, culminating in a second large experiment in emission trading in the eastern United States that began in 2003. This paper provides an overview of the economic rationale for emission trading and a description of the major US programs for SO{sub 2} and nitrogen oxides. These programs are evaluated along measures of performance including cost savings, environmental integrity, and incentives for technological innovation. The authors offer lessons for the design of future programs including, most importantly, those reducing carbon dioxide. 128 refs., 1 fig., 1 tab.

Dallas Burtraw; David A. Evans; Alan Krupnick; Karen Palmer; Russell Toth

2005-03-15T23:59:59.000Z

197

A design strategy applied to sulfur resistant lean NOxŐ≥ automotive catalysts  

E-Print Network [OSTI]

Catalyst poisoning due to sulfur compounds derived from fuel sulfur presents a major challenge, intractable thus far, to development of many advanced technologies for automotive catalysts such as the lean NOx, trap. Under ...

Tang, Hairong

2005-01-01T23:59:59.000Z

198

APBF-DEC Light-duty NOx Adsorber/DPF Project  

Broader source: Energy.gov (indexed) [DOE]

emission standards, the goal of this project is Tier 2 - BIN 5 limits of 0.07 gmi NOx and 0.01 gmi PM. Additionally, HC and CO emissions standards must be met....

199

Non-thermal plasma-assisted NOx reduction over Na-Y zeolites...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

investigated in the non-thermal plasma assisted NOx reduction reaction using a simulated diesel engine exhaust gas mixture. The acid sites were formed by NH4+ ion exchange and...

200

APBF-DEC NOx Adsorber/DPF Project: SUV/Pick-Up Platform  

Broader source: Energy.gov (indexed) [DOE]

Status Principal Investigators: Cynthia Webb Phillip Weber DEER August 25, 2003 APBF-DEC NOx AdsorberDPF Project: SUVPick-Up Platform Program Goals Objectives Light-Duty SUV ...

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A Cost-Effectiveness Analysis of Alternative Ozone Control Strategies: Flexible Nitrogen Oxide (NOx) Abatement  

E-Print Network [OSTI]

) Abatement from Power Plants in the Eastern United States by Lin Sun B.S. Chemistry, Peking University, China: Flexible Nitrogen Oxide (NOx) Abatement from Power Plants in the Eastern United States by Lin Sun Submitted

202

Water-induced morphology changes in BaO/?-Al2O3 NOx storage...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials: an FTIR, TPD, and time-resolved synchrotron XRD Water-induced morphology changes in BaO?-Al2O3 NOx storage materials: an FTIR, TPD, and time-resolved synchrotron...

203

Combining Low-Temperature Combustion with Lean-NOx Trap Yields...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Posters 2005deerhuff.pdf More Documents & Publications Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Reductant Utilization in a LNT + SCR...

204

Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study...  

Broader source: Energy.gov (indexed) [DOE]

Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Jim Parks (parksjeii@ornl.gov), Matt Swartz, Shean Huff, Brian West Oak Ridge National Laboratory...

205

NH3 generation over commercial Three-Way Catalysts and Lean-NOx...  

Broader source: Energy.gov (indexed) [DOE]

Gasoline Emissions Control: NH 3 generation over commercial Three-Way Catalysts and Lean-NOx Traps Todd J. Toops, James E. Parks II and Josh A. Pihl Oak Ridge National Laboratory...

206

Simultaneously Low-Engine-Out NOx and PM with Highly Diluted...  

Broader source: Energy.gov (indexed) [DOE]

Simultaneous Low-Engine-Out NOx and PM with Highly Diluted Diesel Combustion Robert M. Wagner, Johney B. Green, Thang Q. Dam, K. Dean Edwards, John M. Storey Oak Ridge National...

207

Consequences of propene and propane on plasma remediation of NOx Rajesh Doraia)  

E-Print Network [OSTI]

Consequences of propene and propane on plasma remediation of NOx Rajesh Doraia) Department exhausts with hydrocarbons propane (C3H8) and propene (C3H6) has been investigated. In general

Kushner, Mark

208

Release of Ammonium and Mercury from NOx Controlled Fly Ash  

SciTech Connect (OSTI)

One of the goals of the Department of Energy is to increase the reuse of coal utilization byproducts (CUB) to 50% by 2010. This will require both developing new markets and maintaining traditional ones such as the use of fly ash in concrete. However, the addition of pollution control devices can introduce side-effects that affect the marketability of the CUB. Such can be the case when NOx control is achieved using selective catalytic or non-catalytic reduction (SCR or SNCR). Depending on site-specific details, the ammonia slip can cause elevated levels of NH3 in the fly ash. Disposal of ammoniated fly ash can present environmental concerns related to the amount of ammonia that might be released, the amount of water that might become contaminated, and the extent to which metals might be mobilized by the presence of the ammonia. Ammonia retained in fly ash appears to be present as either an ammonium salt or as a chemisorbed species. Mercury in the leachates correlated to neither the amount of leachable ammonium nor to the total amount of Hg in the ash. The strongest correlation was between the decreases in the amount of Hg leached with increased LOI.

Schroeder, K.T.; Cardone, C.R.; Kim, A.G

2007-07-01T23:59:59.000Z

209

Method of preparing doped oxide catalysts for lean NOx exhaust  

DOE Patents [OSTI]

The lean NOx catalyst includes a substrate, an oxide support material, preferably .gamma.-alumina deposited on the substrate and a metal or metal oxide promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium cerium, and vanadium, and oxides thereof, and any combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between 80 and 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to about 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

Park, Paul W.

2004-03-09T23:59:59.000Z

210

Discovery of New NOx Reduction Catalysts for CIDI Engines Using Combinatorial Techniques  

SciTech Connect (OSTI)

This project for the discovery of new lean reduction NOx catalysts was initiated on August 16th, 2002 and is now into its fourth year. Several materials have already been identified as NOx reduction catalysts for possible future application. NOx reduction catalysts are a critical need in the North American vehicle market since these catalysts are needed to enable both diesels and lean gasoline engines to meet the 2007-2010 emission standards. Hydrocarbon selective catalytic reduction (SCR) is a preferred technology since it requires no infrastructure changes (as may be expected for urea SCR) and most likely has the simplest engine control strategy of the three proposed NOx reduction approaches. The use of fast throughput techniques and informatics greatly enhances the possibility of discovering new NOx reduction catalysts. Using fast throughput techniques this project has already screened over 3000 new materials and evaluates hundreds of new materials a month. Evaluating such a high number of new materials puts this approach into a very different paradigm than previous discovery approaches for new NOx reduction catalysts. With so much data on materials it is necessary to use statistical techniques to identify the potential catalysts and these statistical techniques are needed to optimize compositions of the multi-component materials that are identified under the program as possible new lean NOx catalysts. Several new materials have conversions in excess of 80% at temperatures above 300 C. That is more than twice the activity of previous HC SCR materials. These materials are candidates for emission control on heavy-duty systems (i.e.; over 8500 pounds gross weight). Tests of one of the downselected materials on an engine dynamometer show NOx reductions greater than 80% under some conditions even though the net NOx reductions on the HWFET and the US06 cycles were relatively low. The program is scheduled to continue until the end of the 2006 calendar year. Work in the final year will focus on continued discovery and identity of candidate materials, and also on refining the engine operating strategies to increase NOx reduction over a full engine cycle.

Blint, Richard J

2005-08-15T23:59:59.000Z

211

Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines  

SciTech Connect (OSTI)

Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer review meeting at Argonne National Laboratories, in-cylinder pressure was measured to calculate engine indicated mean effective pressure (IMEP) changes due to NOx injections and EGR variations, and to observe conditions in the cylinder. The third experimental campaign gathered NOx decomposition data at 800, 1200 and 1800 rpm. EGR was added via an external loop, with EGR ranging from zero to the point of misfire. The air/fuel ratio was set at both stoichiometric and slightly rich conditions, and NOx decomposition rates were calculated for each set of runs. Modifications were made to the engine exhaust manifold to record individual exhaust temperatures. The three experimental campaigns have provided the data needed for a comprehensive model of NOx decomposition during the combustion process, and data have confirmed that there was no significant impact of injected NO on in-cylinder pressure. The NOx adsorption system provided by Sorbent Technologies Corp. (Twinsburg, OH), comprised a NOx adsorber, heat exchanger and a demister. These components were connected to the engine, and data were gathered to show both the adsorption of NOx from the engine, and desorption of NOx from the carbon-based sorbent material back into the engine intake, using a heated air stream. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a bench top adsorption system was constructed and instrumented with thermocouples and the system output was fed into a NOx analyzer. The temperature of this apparatus was controlled while gathering data on the characteristics of the sorbent material. These data were required for development of a system model. Preliminary data were gathered in 2005, and will continue in early 2006. To assess the economic benefits of the proposed SNR technology the WVU research team has been joined in the last quarter by Dr Richard Turton (WVU-Chemical Engineering), who is modeling, sizing and costing the major components. The tasks will address modeling and preliminary design of the heat exchanger, demister and NOx sorbent chamber s

Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

2005-12-28T23:59:59.000Z

212

NOx Control Options and Integration for US Coal Fired Boilers  

SciTech Connect (OSTI)

This is the sixteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. During an unplanned outage, damage occurred to the electrochemical noise corrosion probes installed at the AEP Gavin plant; testing is expected to resume in August. The KEMCOP corrosion coupons were not affected by the unplanned outage; the coupons were removed and sent for analysis. BYU conducted a series of tests before the ISSR lab was relocated. Ammonia adsorption experiments provided clear evidence of the types of acidic sites present on catalyst surfaces. Data collected this quarter indicate that surface sulfation decreases Lewis acid site concentrations for all catalysts thus far studied, confirming that catalytic activity under commercial coal-based SCR conditions occurs primarily on Br{o}nsted acid sites and would be susceptible to basic impurities such as alkali and alkaline earth oxides, chlorides, and sulfates. SCR activity tests based on MS analysis showed that increasing sulfation generally increases NO reduction activity for both 0% and 1% vanadia catalysts. During this quarter, the slipstream reactor at Rockport operated for 720 hours on flue gas. Catalyst exposure time reached 4500 hours since installation. The reactor is out of service at the Rockport plant and plans are being made to move it to the Gadsden Plant. At Gadsden, modifications have begun in preparation for installation of the slipstream reactor next quarter.

Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

2004-06-30T23:59:59.000Z

213

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS  

SciTech Connect (OSTI)

This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates.

Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

2002-01-31T23:59:59.000Z

214

Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels  

SciTech Connect (OSTI)

This final report documents the technical results of the 3-year project entitled, ďTurbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,Ē funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

Peterson, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankat; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Camou, Alejandro; Aul, Christopher

2013-09-30T23:59:59.000Z

215

Exhaust gas fuel reforming of Diesel fuel by non-thermal arc discharge for NOx trap regeneration  

E-Print Network [OSTI]

1 Exhaust gas fuel reforming of Diesel fuel by non- thermal arc discharge for NOx trap regeneration to the reforming of Diesel fuel with Diesel engine exhaust gas using a non-thermal plasma torch for NOx trap Diesel fuel reforming with hal-00617141,version1-17May2013 Author manuscript, published in "Energy

Boyer, Edmond

216

Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls and Implications for Global Emission  

E-Print Network [OSTI]

Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls from coal-fired power plants in the U.S. at typical operating conditions with and without the presence this, a novel method for collection and isotopic analysis of coal-fired stack NOx emission samples

Elliott, Emily M.

217

Small, Inexpensive Combined NOx and O2 Sensor  

SciTech Connect (OSTI)

It has been successfully demonstrated in this program that a zirconia multilayer structure with rhodium-based porous electrodes performs well as an amperometric NO{sub x} sensor. The sensitivity of the sensor bodies operating at 650 to 700 C is large, with demonstrated current outputs of 14 mA at 500 ppm NO{sub x} from sensors with 30 layers. The sensor bodies are small (4.5 x 4.2 x 3.1 mm), rugged, and inexpensive. It is projected the sensor bodies will cost $5-$10 in production. This program has built on another successful development program for an oxygen sensor based on the same principles and sponsored by DOE. This oxygen sensor is not sensitive to NO{sub x}. A significant technical hurdle has been identified and solved. It was found that the 100% Rh electrodes oxidize rapidly at the preferred operating temperatures of 650-700 C, and this oxidation is accompanied by a volume change which delaminates the sensors. The problem was solved by using alloys of Rh and Pt. It was found that a 10%/90% Rh/Pt alloy dropped the oxidation rate of the electrodes by orders of magnitude without degrading the NO{sub x} sensitivity of the sensors, allowing long-term stable operation at the preferred operating temperatures. Degradation in the sensor output caused by temperature cycling was identified as a change in resistance at the junction between the sensor body and the external leads attached to the sensor body. The degradation was eliminated by providing strong mechanical anchors for the wire and processing the junctions to obtain good electrical bonds. The NO{sub x} sensors also detect oxygen and therefore the fully-packaged sensor needs to be enclosed with an oxygen sensor in a small, heated zirconia chamber exposed to test gas through a diffusion plug which limits the flow of gas from the outside. Oxygen is pumped from the interior of the chamber to lower the oxygen content and the combination of measurements from the NO{sub x} and oxygen sensors yields the NO{sub x} content of the gas. Two types of electronic control units were designed and built. One control unit provides independent constant voltages to the NOx and oxygen sensors and reads the current from them (that is, detects the amount of test gas present). The second controller holds the fully-assembled sensor at the desired operating temperature and controllably pumps excess oxygen from the test chamber. While the development of the sensor body was a complete success, the development of the packaging was only partially successful. All of the basic principles were demonstrated, but the packaging was too complex to optimize the operation within the resources of the program. Thus, no fully-assembled sensors were sent to outside labs for testing of cross-sensitivities, response times, etc. Near the end of the program, Sensata Technologies of Attleboro, MA tested the sensor bodies and confirmed the CeramPhysics measurements as indicated in the following attached letter. Sensata was in the process of designing their own packaging for the sensor and performing cross-sensitivity tests when they stopped all sensor development work due to the automotive industry downturn. Recently Ceramatec Inc. of Salt Lake City has expressed an interest in testing the sensor, and other licensing opportunities are being pursued.

W. Lawless; C. Clark

2008-09-01T23:59:59.000Z

218

Atmospheric Environment 38 (2004) 27792787 First detection of nitrogen from NOx in tree rings: a 15  

E-Print Network [OSTI]

abies; Air pollution; Dendroecology; Nitrogen deposition; Stable isotopes; Nitrogen dioxide 1Atmospheric Environment 38 (2004) 2779­2787 First detection of nitrogen from NOx in tree rings 2004; accepted 27 February 2004 Abstract Nitrogen isotope analysis (d15 N) of tree rings is potentially

219

tive emissions from EVs (e.g., power plant NOx) and GPVs (tailpipe and  

E-Print Network [OSTI]

a few sluggish electric vehicles would cause enough traffic slowing that the gasoline- powered fleet Analy- sis article on battery-powered vehicles (Sept. 1996, p. 402A) serves as a useful remindertive emissions from EVs (e.g., power plant NOx) and GPVs (tailpipe and associated NO.,. emissions

Denver, University of

220

Observation of NOx enhancement and ozone depletion in the Northern and Southern  

E-Print Network [OSTI]

Clarmann, G. P. Stiller, M. Ho¨pfner, S. Kellmann, and H. Fischer Institut fu¨r Meteorologie und Clarmann, G. P. Stiller, M. Ho¨pfner, S. Kellmann, H. Fischer, and C. H. Jackman (2005), Observation of NOx

Jackman, Charles H.

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Interaction between soot particles and NOx during dielectric barrier discharge plasma remediation of simulated diesel exhaust  

E-Print Network [OSTI]

of simulated diesel exhaust Rajesh Doraia) University of Illinois, Department of Chemical Engineering, 1406 from combustion effluent and from diesel exhausts in particular. Soot particles are inevitably present, a computational investigation of the effect of soot on the plasma chemistry of NOx removal in a simulated diesel

Kushner, Mark

222

NOx-Mediated Homogeneous Pathways for the Synthesis of Formaldehyde from CH4-O2 Mixtures  

E-Print Network [OSTI]

CH4 conversion, because weaker C-H bonds in HCHO and CH3OH relative to CH4 lead to their fast that the O2 distribution along a reactor will not improve HCHO yields but may prove useful to inhibit NOx losses to less reactive N-compounds. 1. Introduction The practical conversion of remote natural gas

Iglesia, Enrique

223

Procedure to Calculate NOx Reductions Using the Emissions & Generation Resource Integrated Database (E-Grid) Spreadsheet  

E-Print Network [OSTI]

energy savings in the American Electric Power West/PCA(Table 7). This was input in the last row of the American Electric Power West/PCA column in Table 9. Then, the NOx emissions reductions due to the energy savings by county were calculated as shown...

Haberl, J. S.; Im, P.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Verdict, M.; Turner, W. D.

2003-01-01T23:59:59.000Z

224

NOx reduction with the use of feedlot biomass as a reburn fuel  

E-Print Network [OSTI]

. Additional air called overfire air (about 20 % of total air) is injected in order to complete combustion. Typically reburn fuel is natural gas (NG). From previous research at TAMU, it was found that firing feedlot biomass (FB) as reburn fuel lowers the NOx...

Goughnour, Paul Gordon

2009-05-15T23:59:59.000Z

225

DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL  

SciTech Connect (OSTI)

In full-scale boilers, the effect of biomass cofiring on NO{sub x} and unburned carbon (UBC) emissions has been found to be site-specific. Few sets of field data are comparable and no consistent database of information exists upon which cofiring fuel choice or injection system design can be based to assure that NOX emissions will be minimized and UBC be reduced. This report presents the results of a comprehensive project that generated an extensive set of pilot-scale test data that were used to validate a new predictive model for the cofiring of biomass and coal. All testing was performed at the 3.6 MMBtu/hr (1.75 MW{sub t}) Southern Company Services/Southern Research Institute Combustion Research Facility where a variety of burner configurations, coals, biomasses, and biomass injection schemes were utilized to generate a database of consistent, scalable, experimental results (422 separate test conditions). This database was then used to validate a new model for predicting NO{sub x} and UBC emissions from the cofiring of biomass and coal. This model is based on an Advanced Post-Processing (APP) technique that generates an equivalent network of idealized reactor elements from a conventional CFD simulation. The APP reactor network is a computational environment that allows for the incorporation of all relevant chemical reaction mechanisms and provides a new tool to quantify NOx and UBC emissions for any cofired combination of coal and biomass.

Larry G. Felix; P. Vann Bush; Stephen Niksa

2003-04-30T23:59:59.000Z

226

Multi-Pollutant Emissions Control: Pilot Plant Study of Technologies for Reducing Hg, SO3, NOx and CO2 Emissions  

SciTech Connect (OSTI)

A slipstream pilot plant was built and operated to investigate technology to adsorb mercury (Hg) onto the existing particulate (i.e., fly ash) by cooling flue gas to 200-240 F with a Ljungstrom-type air heater or with water spray. The mercury on the fly ash was then captured in an electrostatic precipitator (ESP). An alkaline material, magnesium hydroxide (Mg(OH){sub 2}), is injected into flue gas upstream of the air heater to control sulfur trioxide (SO{sub 3}), which prevents acid condensation and corrosion of the air heater and ductwork. The slipstream was taken from a bituminous coal-fired power plant. During this contract, Plant Design and Construction (Task 1), Start Up and Maintenance (Task 2), Baseline Testing (Task 3), Sorbent Testing (Task 4), Parametric Testing (Task 5), Humidification Tests (Task 6), Long-Term Testing (Task 7), and a Corrosion Study (Task 8) were completed. The Mercury Stability Study (Task 9), ESP Report (Task 11), Air Heater Report (Task 12) and Final Report (Task 14) were completed. These aspects of the project, as well as progress on Public Outreach (Task 15), are discussed in detail in this final report. Over 90% mercury removal was demonstrated by cooling the flue gas to 200-210 F at the ESP inlet; baseline conditions with 290 F flue gas gave about 26% removal. Mercury removal is sensitive to flue gas temperature and carbon content of fly ash. At 200-210 F, both elemental and oxidized mercury were effectively captured at the ESP. Mg(OH){sub 2} injection proved effective for removal of SO{sub 3} and eliminated rapid fouling of the air heater. The pilot ESP performed satisfactorily at low temperature conditions. Mercury volatility and leaching tests did not show any stability problems. No significant corrosion was detected at the air heater or on corrosion coupons at the ESP. The results justify larger-scale testing/demonstration of the technology. These conclusions are presented and discussed in two presentations given in July and September of 2005 and are included in Appendices E and F.

Michael L. Fenger; Richard A. Winschel

2005-08-31T23:59:59.000Z

227

HYDROGEN GENERATION FROM PLASMATRON REFORMERS: A PROMISING TECHNOLOGY FOR NOX ADSORBER REGENERATION AND OTHER AUTOMOTIVE APPLICATIONS  

SciTech Connect (OSTI)

Plasmatron reformers are being developed at MIT and ArvinMeritor [1]. In these reformers a special low power electrical discharge is used to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The partial oxidation reaction of this very fuel rich mixture is difficult to initiate. The plasmatron provides continuous enhanced volume initiation. To minimize electrode erosion and electrical power requirements, a low current, high voltage discharge with wide area electrodes is used. The reformers operate at or slightly above atmospheric pressure. Plasmatron reformers provide the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels, such as diesel and bio-oils. These advantages facilitate use of onboard hydrogen-generation technology for diesel exhaust after-treatment. Plasma-enhanced reformer technology can provide substantial conversion even without the use of a catalyst. Recent progress includes a substantial decrease in electrical power consumption (to about 200 W), increased flow rate (above 1 g/s of diesel fuel corresponding to approximately 40 kW of chemical energy), soot suppression and improvements in other operational features.. Plasmatron reformer technology has been evaluated for regeneration of NOx adsorber after-treatment systems. At ArvinMeritor tests were performed on a dual-leg NOx adsorber system using a Cummins 8.3L diesel engine both in a test cell and on a vehicle. A NOx adsorber system was tested using the plasmatron reformer as a regenerator and without the reformer i.e., with straight diesel fuel based regeneration as the baseline case. The plasmatron reformer was shown to improve NOx regeneration significantly compared to the baseline diesel case. The net result of these initial tests was a significant decrease in fuel penalty, roughly 50% at moderate adsorber temperatures. This fuel penalty improvement is accompanied by a dramatic drop in slipped hydrocarbon emissions, which decreased by 90% or more. Significant advantages are demonstrated across a wide range of engine conditions and temperatures. The study also indicated the potential to regenerate NOx adsorbers at low temperatures where diesel fuel based regeneration is not effective, such as those typical of idle conditions. Two vehicles, a bus and a light duty truck, have been equipped for plasmatron reformer NOx adsorber regeneration tests.

Bromberg, L.; Crane, S; Rabinovich, A.; Kong, Y; Cohn, D; Heywood, J; Alexeev, N.; Samokhin, A.

2003-08-24T23:59:59.000Z

228

Computer simulation as a NOx reduction design tool  

SciTech Connect (OSTI)

Nalco Mobotec engineers were charged with reducing emissions on a utility boiler converted from burning oil to eastern bituminous coal using the company's Rotamix selective noncatalytic reduction (SNCR) system which injects urea into the furnace. A CFD simulation of the existing boiler was first conducted and then the furnace was simulated with the SNCR system added and the design was optimised. Operating and capital costs were minimised by optimal placement of 50 injector ports. 6 figs., 2 tabs.

Liu, G.; Higgins, B.S. [Nalco Mobotec (United States)

2008-10-15T23:59:59.000Z

229

Calculation of Integrated Nox Emissions Reductions from Energy Efficiency Renewable Energy (EE/RE) Programs across State Agencies in Texas  

E-Print Network [OSTI]

This paper presents an update of the integrated NOx emissions reductions calculations developed by the Energy Systems Laboratory (ESL) for the State of Texas to satisfy the reporting requirements for Senate Bill 5 of the Texas State Legislature...

Hberl, J.; Yazdani, B.; Baltazar, J. C.; Kim, H.; Mukhopadhyay, J.; Zilbershtein, G.; Ellis, S.; Parker, P.

2013-01-01T23:59:59.000Z

230

NOx Emissions Reduction from Continuous Commissioning(R) Measures for the Dallas-Fort Worth International Airport  

E-Print Network [OSTI]

Total NOx Reductions (lbs/day) Total NOx Reductions (Tons/day) TOT EQ ELECTRICITY (MWh) (Electricity and Chilled water) 4,761 7,278.7 3.6393 24.2 36.7 0.0184 HOT WATER (MCF) 8,358 1,170.2 0.5851 41.0 5.7 0.0029 Total 8,448.9 4.2244 42.5 0....0212 NOTES: 1) Assuming 7% for T&D losses and a Discount factor of 25%. Corresponding factors to integrated savings presented to the TCEQ. 2) A factor of 0.140 lb of NOx/MCF of Natural Gas (Controlled - Low NOx burners 140 A...

Yazdani, B.; Haberl, J. S.; Baltazar-Cervantes, J. C.

231

Chemical Consequences of Heme Distortion and the Role of Heme Distortion in Signal Transduction of H-NOX Proteins  

E-Print Network [OSTI]

of wild-type Tt H-NOX as well as energy minimizations 19with energy minimizations and visual inspection of the wild-high- energy frontier orbitals. 81 Heme distortion in wild-

Olea, Jr., Charles

2010-01-01T23:59:59.000Z

232

Heavy-duty diesel vehicle Nox? aftertreatment in 2010 : the infrastructure and compliance challenges of urea-SCR  

E-Print Network [OSTI]

Increasingly stringent heavy-duty vehicle emission regulations are prompting the use of PM and NOx aftertreatment systems in the US, the EU and Japan. In the US, the EPA Highway Diesel Rule, which will be fully implemented ...

Bodek, Kristian M

2008-01-01T23:59:59.000Z

233

An Analysis of the health impacts from PM and NOx emissions resulting from train operations in the Alameda Corridor, CA  

E-Print Network [OSTI]

2009). Estimating PM and NOx Train Emissions in the AlamedaAuthority. Number of Trains Running on the Alameda Corridor.x emissions resulting from train operations in the Alameda

Sangkapichai, Mana; Saphores, Jean-Daniel M; Ogunseitan, Oladele; Ritchie, Stephen G.; You, Soyoung Iris; Lee, Gunwoo

2010-01-01T23:59:59.000Z

234

NOx Emissions Reductions from Implementation of the 2000 IECC/IRC Conservation Code to Residential Construction in Texas  

E-Print Network [OSTI]

.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 To ns - NOx/day (average) Tons - NOX/day (p eak) Apx 2x difference 1:1 2...

Haberl, J. S.; Im, P.; Culp, C.; Yazdani, B.; Fitzpatrick, T.

2004-01-01T23:59:59.000Z

235

Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve  

DOE Patents [OSTI]

An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

2007-01-30T23:59:59.000Z

236

Controlling NOx to Obtain Offsets or Meet Compliance  

E-Print Network [OSTI]

down any of the process equipment Avoiding outage was a significant economic benefit to the refinery. The fuel used in these process heaters is a variable mixture of refinery off gas and natural gas. The refinery off gas is the principal fuel.... Natural gas is used when the volume of refinery off gas is not sufficient for good operation. In the first heater, the NO x emissions were reduced from 100 ppm to less than 30 ppm (Figures 1 and 21 or 6.21 pounds of NO x per hour. If we assume 300...

Mincy, J. E.

237

Development of METHANE de-NOX Reburn Process for Wood Waste and Biomass Fired Stoker Boilers - Final Report - METHANE de-NOX Reburn Technology Manual  

SciTech Connect (OSTI)

The overall objective of this project was to demonstrate the effectiveness of the METHANE de-NOXģ (MdN) Reburn process in the Forest Products Industry (FPI) to provide more efficient use of wood and sludge waste (biosolids) combustion for both energy generation and emissions reduction (specifically from nitrogen oxides (NOx)) and to promote the transfer of the technology to the wide range of wood waste-fired stoker boilers populating the FPI. This document, MdN Reburn Commercial Technology Manual, was prepared to be a resource to promote technology transfer and commercialization activities of MdN in the industry and to assist potential users understand its application and installation requirements. The Manual includes a compilation of MdN commercial design data from four different stoker boiler designs that were baseline tested as part of the development effort. Design information in the Manual include boiler CFD model studies, process design protocols, engineering data sheets and commercial installation drawings. Each design package is unique and implemented in a manner to meet specific mill requirements.

J. Rabovitser; B. Bryan; S. Wohadlo; S. Nester; J. Vaught; M. Tartan (Gas Technology Institute); R. Glickert (ESA Environmental Solutions)

2007-12-31T23:59:59.000Z

238

Modeling Species Inhibition of NO oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control  

SciTech Connect (OSTI)

Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbateís storage in the SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data.

Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

2010-09-15T23:59:59.000Z

239

Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control  

SciTech Connect (OSTI)

Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbateís storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of model based control design for integrated DPF-SCR aftertreatment systems.

Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

2011-04-20T23:59:59.000Z

240

UTILIZATION OF LOW NOx COAL COMBUSTION BY-PRODUCTS  

SciTech Connect (OSTI)

Low NO{sub x} combustion practices are critical for reducing NO{sub x} emissions from power plants. These low NO{sub x} combustion practices, however, generate high residual carbon contents in the fly ash produced. These high carbon contents threaten utilization of this combustion by-product. This research has successfully developed a separation technology to render fly ash into useful, quality-controlled materials. This technology offers great flexibility and has been shown to be applicable to all of the fly ashes tested (more than 10). The separated materials can be utilized in traditional fly ash applications, such as cement and concrete, as well as in nontraditional applications such as plastic fillers, metal matrix composites, refractories, and carbon adsorbents. Technologies to use beneficiated fly ash in these applications are being successfully developed. In the future, we will continue to refine the separation and utilization technologies to expand the utilization of fly ash. The disposal of more than 31 million tons of fly ash per year is an important environmental issue. With continued development, it will be possible to increase economic, energy and environmental benefits by re-directing more of this fly ash into useful materials.

J.Y. Hwang; X. Huang; M.G. McKimpson; R.E. Tieder; A.M. Hein; J.M. Gillis; D.C. Popko; K.L. Paxton; Z. Li; X. Liu; X. Song; R.I. Kramer

1998-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NOx Emissions Reduction from CPS Energy's "Save For Tomorrow Energy Plan" Within the Alamo Area Council of Governments Report to the Texas Commission on Environmental Quality  

E-Print Network [OSTI]

ESL-TR-10-10-01 NOx EMISSIONS REDUCTION FROM CPS ENERGY?S ?SAVE FOR TOMORROW ENERGY PLAN? WITHIN THE ALAMO AREA COUNCIL OF GOVERNMENTS REPORT TO THE TEXAS COMMISSION ON ENVIRONMENTAL QUALITY (TCEQ) Sung Lok Do Juan.../yr and annual NOx emissions reductions of non-residential sector were 32.01 Ton/yr. The NOx emissions reductions estimated through 2020 energy savings potential were 3,344 ton/year. Annual NOx emissions reductions of residential sector were 1,873 ton...

Do, S. L.; Baltazar, J. C.; Haberl, J.; Yazdani, B.

242

Cost analysis of NOx control alternatives for stationary gas turbines  

SciTech Connect (OSTI)

The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. Factors that are contributing to this growth include advances in turbine technology, operating and siting flexibility and low capital cost. Restructuring of the electric utility industry will provide new opportunities for on-site generation. In a competitive market, it maybe more cost effective to install small distributed generation units (like gas turbines) within the grid rather than constructing large power plants in remote locations with extensive transmission and distribution systems. For the customer, on-site generation will provide added reliability and leverage over the cost of purchased power One of the key issues that is addressed in virtually every gas turbine application is emissions, particularly NO{sub x} emissions. Decades of research and development have significantly reduced the NO{sub x} levels emitted from gas turbines from uncontrolled levels. Emission control technologies are continuing to evolve with older technologies being gradually phased-out while new technologies are being developed and commercialized. The objective of this study is to determine and compare the cost of NO{sub x} control technologies for three size ranges of stationary gas turbines: 5 MW, 25 MW and 150 MW. The purpose of the comparison is to evaluate the cost effectiveness and impact of each control technology as a function of turbine size. The NO{sub x} control technologies evaluated in this study include: Lean premix combustion, also known as dry low NO{sub x} (DLN) combustion; Catalytic combustion; Water/steam injection; Selective catalytic reduction (SCR)--low temperature, conventional, high temperature; and SCONO{sub x}{trademark}.

Bill Major

1999-11-05T23:59:59.000Z

243

JV Task 117 - Impact of Lignite Properties on Powerspan's NOx Oxidation System  

SciTech Connect (OSTI)

Powerspan's multipollutant control process called electrocatalytic oxidation (ECO) technology is designed to simultaneously remove SO{sub 2}, NO{sub x}, PM{sub 2.5}, acid gases (such as hydrogen fluoride [HF], hydrochloric acid [HCl], and sulfur trioxide [SO{sub 3}]), Hg, and other metals from the flue gas of coal-fired power plants. The core of this technology is a dielectric barrier discharge reactor composed of cylindrical quartz electrodes residing in metal tubes. Electrical discharge through the flue gas, passing between the electrode and the tube, produces reactive O and OH radicals. The O and OH radicals react with flue gas components to oxidize NO to NO{sub 2} and HNO{sub 3} and a small portion of the SO{sub 2} to SO{sub 3} and H{sub 2}SO{sub 4}. The oxidized compounds are subsequently removed in a downstream scrubber and wet electrostatic precipitator. A challenging characteristic of selected North Dakota lignites is their high sodium content. During high-sodium lignite combustion and gas cooling, the sodium vaporizes and condenses to produce sodium- and sulfur-rich aerosols. Based on past work, it was hypothesized that the sodium aerosols would deposit on and react with the silica electrodes and react with the silica electrodes, resulting in the formation of sodium silicate. The deposit and reacted surface layer would then electrically alter the electrode, thus impacting its dielectric properties and NO{sub x} conversion capability. The purpose of this project was to determine the impact of lignite-derived flue gas containing sodium aerosols on Powerspan's dielectric barrier discharge (DBD) reactor with specific focus on the interaction with the quartz electrodes. Partners in the project were Minnkota Power Cooperative; Basin Electric Power Cooperative; Montana Dakota Utilities Co.; Minnesota Power; the North Dakota Industrial Commission, the Lignite Energy Council, and the Lignite Research Council; the Energy & Environmental Research Center (EERC); and the U.S. Department of Energy. An electrocatalytic oxidation (ECO) reactor slipstream system was designed by Powerspan and the EERC. The slipstream system was installed by the EERC at Minnkota Power Cooperative's Milton R. Young Station Unit 1 downstream of the electrostatic precipitator where the flue gas temperature ranged from 300 to 350 F. The system was commissioned on July 3, 2007, operated for 107 days, and then winterized upon completion of the testing campaign. Operational performance of the system was monitored, and data were archived for postprocessing. A pair of electrodes were extracted and replaced on a biweekly basis. Each pair of electrodes was shipped to Powerspan to determine NO conversion efficiency in Powerspan's laboratory reactor. Tested electrodes were then shipped to the EERC for scanning electron microscopy (SEM) and x-ray microanalysis. Measurement of NO{sub x} conversion online in operating the slipstream system was not possible because the nitric and sulfuric acid production by the DBD reactor results in conditioning corrosion challenges in the sample extraction system and NO measurement technologies. The operational observations, performance results, and lab testing showed that the system was adversely affected by accumulation of the aerosol materials on the electrode. NO{sub x} conversion by ash-covered electrodes was significantly reduced; however, with electrodes that were rinsed with water, the NOx conversion efficiency recovered to nearly that of a new electrode. In addition, the visual appearance of the electrode after washing did not show evidence of a cloudy reacted surface but appeared similar to an unexposed electrode. Examination of the electrodes using SEM x-ray microanalysis showed significant elemental sodium, sulfur, calcium, potassium, and silica in the ash coating the electrodes. There was no evidence of the reaction of the sodium with the silica electrodes to produce sodium silicate layers. All SEM images showed a clearly marked boundary between the ash and the silica. Sodium and sulfur are the main culprits in the

Scott Tolbert; Steven Benson

2008-02-29T23:59:59.000Z

244

Near-Zero NOx Combustion Technology for ATS Mercury 50 Gas Turbine  

SciTech Connect (OSTI)

A project to demonstrate a near-zero NOx, catalytic combustion technology for natural gas-fired, industrial gas turbines is described. In a cooperative effort between Solar Turbines Incorporated and Precision Combustion Incorporated (PCI), proof-of-concept rig testing of PCI's fuel-rich catalytic combustion technology has been completed successfully. The primary technical goal of the project was to demonstrate NOx and CO emissions below 5ppm and 10 ppm, respectively, (corrected to 15% O{sub 2}) at realistic gas turbine operating conditions. The program consisted of two tasks. In the first task, a single prototype RCL{trademark} (Rich Catalytic Lean Burn) module was demonstrated at Taurus 70 (7.5 Mw) operating conditions (1.6 MPa, 16 atm) in a test rig. For a Taurus 70 engine, eight to twelve RCL modules will be required, depending on the final system design. In the second task, four modules of a similar design were adapted to a Saturn engine (1 Mw) test rig (600 kPa, 6 atm) to demonstrate gas turbine light-off and operation with an RCL combustion system. This project was initially focused on combustion technology for the Mercury 50 engine. However, early in the program, the Taurus 70 replaced the Mercury. This substitution was motivated by the larger commercial market for an ultra-low NOx Taurus 70 in the near-term. Rig tests using a single prototype RCL module at Taurus 70 conditions achieved NOx emissions as low as 0.75 ppm. A combustor turndown of approximately 110C (200F) was achieved with NOx and CO emissions below 3 ppm and 10 ppm, respectively. Catalyst light-off occurred at an inlet temperature of 310C (590F). Once lit the module remained active at inlet air temperatures as low as 204C (400F). Combustor pressure oscillations were acceptably low during module testing. Single module rig tests were also conducted with the Taurus 70 module reconfigured with a central pilot fuel injector. Such a pilot will be required in a commercial RCL system for turbine light-off and transient operation. At and near simulated full load engine conditions, the pilot operated at low pilot fueling rates without degrading overall system emissions. In the second project task, a set of four Taurus 70 modules was tested in an existing Saturn engine rig. The combustion system allowed smooth engine startup and load variation. At steady state conditions (between 82% and 89.7% engine speed; 32% and 61% load), NOx and CO emissions were below 3ppm and 10ppm, respectively. Rig limitations unrelated to the RCL technology prevented low emissions operation outside of this speed range. Combustor pressure oscillations were low, below 0.25 % (peak-to-peak) of the mean combustor pressure.

Kenneth Smith

2004-12-31T23:59:59.000Z

245

Transient Dynamometer Testing of a Single Leg NOx Adsorber Combined with a  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage ¬Ľof EnergyThe EnergyDepartment7 thFuel Processor for Enhanced NOx Control |

246

Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage ¬Ľof EnergyThe EnergyDepartment7 thFuel Processor for Enhanced NOx Control

247

Status of APBF-DEC NOx Adsorber/DPF Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage ¬Ľ SearchEnergyDepartmentScopingOverviewFranklin M.EngineReport onAPBF-DEC NOx

248

APBF-DEC NOx Adsorber/DPF Project: SUV/Pick-Up Platform | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High IntegrityEnergy NOx Adsorber/DPF Project:

249

Reduction of NOx in Synthetic Diesel Exhaust via Two-Step Plasma-Catalysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 NationalTreatment. | EMSL NOx in

250

Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeat PumpDuty HCCIModelingLean NOx

251

NOx Measurement Errors in Ammonia-Containing Exhaust | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovation |NEXTDevelopment NOxAftertreatment

252

Latest developments and application of DB Riley`s low NOx CCV{reg_sign} burner technology  

SciTech Connect (OSTI)

Recent developments in DB Riley (DBR) low NO{sub x} burner technology and the application of this technology in coal fired utility boilers are discussed. Since the promulgation of the Clean Air Act Amendment in 1990, DBR has sold nearly 1500 Controlled Combustion Venturi (CCV{reg_sign}) burners on pulverized coal fired utility boilers reducing NOx emissions 50 - 70% from uncontrolled levels. This technology has been retrofitted on boiler designs ranging in size and type from 50 MW front wall fired boilers to 1300 MW opposed fired cell type boilers. In DBR`s latest version of the CCV{reg_sign} burner, a second controlled flow air zone was added to enhance NO{sub x} control capability. Other developments included improved burner air flow measurement accuracy and several mechanical design upgrades such as new coal spreader designs for 3 year wear life. Test results of the CCV{reg_sign} dual air zone burner in DBR`s 100 million Btu/hr (29 MW) coal burner test facility are presented. In the test program, coals from four utility boiler sites were fired to provide a range of coal properties. A baseline high volatile bituminous coal was also fired to provide a comparison with 1992 test data for the CCV{reg_sign} single register burner. The test results showed that the second air zone enhanced NO{sub x} reduction capability by an additional 20% over the single register design. Computational fluid dynamic (CFD) modeling results of the CCV{reg_sign} dual air zone burner are also presented showing near field mixing patterns conducive to low NO{sub x} firing.

Penterson, C.; Ake, T. [DB Riley, Inc., Worcester, MA (United States)

1998-04-01T23:59:59.000Z

253

DistrictHeating Nuevasaladecalderasydistribucin  

E-Print Network [OSTI]

¬≠ EMISIONES SOx=0% - BAJA EMISI√?N NOx y ahorro de emisiones de 202 Ton CO2/a√Īo. - Mejora paisaj√≠stica del

Fraguela, Basilio B.

254

Environmental and In Situ Biotechnology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Specific contaminants that have been focused on include hexavalent chromium, uranium, strontium-90, hydrocarbons, chlorinated hydrocarbons, terpenes, explosives, and NOx and SOx...

255

Shell Gas to Liquids in the context of a Future Fuel Strategy...  

Broader source: Energy.gov (indexed) [DOE]

* Bulky on-board storage * Shell companies assess locally whether to supply (eg. Argentina) LPG * Lower sulphur, PM, NOx and SOx * Overall emissions similar to CNG *...

256

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

North Dakota Air Quality VIII: An International Conference on Carbon Management, Mercury, Trace Elements, SOx, NOx, EERC will prepare and coordinate the Air Quality VIII...

257

bectcom-roxbox | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Mar 1989) Comprehensive Report to Congress Comprehensive Report to Congress on the Clean Coal Technology Program: SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration Project...

258

NOx Emission Reduction and its Effects on Ozone during the 2008 Olympic Games  

SciTech Connect (OSTI)

We applied a daily-assimilated inversion method to estimate NOx (NO+NO2) emissions for June-September 2007 and 2008 on the basis of the Aura Ozone Monitoring Instrument (OMI) observations of nitrogen dioxide (NO2) and model simulations using the Regional chEmistry and trAnsport Model (REAM). Over urban Beijing, rural Beijing, and the Huabei Plain, OMI column NO2 reductions are approximately 45%, 33%, and 14%, respectively, while the corresponding anthropogenic NOx emission reductions are only 28%, 24%, and 6%, during the full emission control period (July 20 Ė Sep 20, 2008). The emission reduction began in early July and was in full force by July 20, corresponding to the scheduled implementation of emission controls over Beijing. The emissions did not appear to recover after the emission control period. Meteorological change from summer 2007 to 2008 is the main factor contributing to the column NO2 decreases not accounted for by the emission reduction. Model simulations suggest that the effect of emission reduction on ozone concentrations over Beijing is relatively minor using a standard VOC emission inventory in China. With an adjustment of the model emissions to reflect in situ observations of VOCs in Beijing, the model simulation suggests a larger effect of the emission reduction.

Yang, Qing; Wang, Yuhang; Zhao, Chun; Liu, Zhen; Gustafson, William I.; Shao, Min

2011-07-15T23:59:59.000Z

259

Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx  

SciTech Connect (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

260

Reduces electric energy consumption  

E-Print Network [OSTI]

BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Impact of different energies of precipitating particles on NOx1 generation in the middle and upper atmosphere during geomagnetic2  

E-Print Network [OSTI]

and energy spectra available today of solar proton events, auroral energy30 electrons, and relativistic1 Impact of different energies of precipitating particles on NOx1 generation in the middle a Sodankylä Geophysical Observatory, Tähteläntie 62, FI-99600 Sodankylä, Finland.8 b Earth Observation

Otago, University of

262

NOx uptake on alkaline earth oxides (BaO, MgO, CaO and SrO) supported...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

uptake on alkaline earth oxides (BaO, MgO, CaO and SrO) supported on ?-Al2O3. NOx uptake on alkaline earth oxides (BaO, MgO, CaO and SrO) supported on ?-Al2O3....

263

Increase in NOx Emissions from Indian Thermal Power Plants during 1996-2010: Unit-Based Inventories and Multisatellite Observations  

E-Print Network [OSTI]

and Multisatellite Observations Zifeng Lu* and David G. Streets Decision and Information Sciences Division, Argonne National Laboratory, Argonne, Illinois, United States *S Supporting Information ABSTRACT: Driven by rapid economic development and growing electricity demand, NOx emissions (E) from the power sector in India have

Jacob, Daniel J.

264

N-nitrosamine and N-nitramine Formation from NOx Reactions with Amines during Amine-Based CO2  

E-Print Network [OSTI]

Capture for Post-combustion Carbon Sequestration Background! Generation of electricity and heat from power- combustion carbon sequestration, the capture and underground storage of CO2 from the exhaust gases of power formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon

Mitch, William A.

265

Implications of near-term coal power plant retirement for SO2 and NOX, and life cycle GHG emissions  

E-Print Network [OSTI]

prices of electricity production Plant type Unit Price Nuclear ($/MWh) 16.51 Wind ($/MWh) 201 Hydro Top SO2 100 430 95 440 100 430 Top NOX 105 350 100 380 105 345 Small, inefficient 125 410 125 405 125) Manitoba Hydro Manitoba Hydro Undertaking # 57 http://www.pub.gov.mb.ca/exhibits/mh-83.pdf. (5) Sotkiewicz

Jaramillo, Paulina

266

Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions  

E-Print Network [OSTI]

Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions emissions in the U.S. will likely result in coal plant retirement in the near-term. Life cycle assessment for electricity generation, by comparing systems that consist of individual natural gas and coal power plants

Jaramillo, Paulina

267

DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES  

SciTech Connect (OSTI)

Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.

NEIL K. MCDOUGALD

2005-04-30T23:59:59.000Z

268

Plating under reduced pressure  

SciTech Connect (OSTI)

Plating under reduced pressure was evaluated for both electroless nickel and electrodeposited copper systems. The objective was to reduce pitting of these coatings thereby further enhancing their usage for diamond turning applications. Cursory experiments with electroless nickel showed reduced porosity when deposition was done at around 500 torr. Detailed experiments with electrodeposited copper at around 100 torr provided similar results. Scanning tunneling microscopy was effectively used to show the improvement in the copper deposits plated under reduced pressure. Benefits included reduced surface roughness and finer and denser grain structure.

Dini, J.W.; Beat, T.G.; Cowden, W.C. (Lawrence Livermore National Lab., CA (United States)); Ryan, L.E.; Hewitt, W.B. (TRW, Inc., Redondo Beach, CA (United States))

1992-06-01T23:59:59.000Z

269

Method and apparatus to selectively reduce NO.sub.x in an exhaust gas feedstream  

SciTech Connect (OSTI)

A method and apparatus are described to selectively reduce NO.sub.x emissions of an internal combustion engine. An exhaust aftertreatment system includes an injection device operative to dispense a hydrocarbon reductant upstream of a silver-alumina catalytic reactor device. A control system determines a NO.sub.x concentration and hydrocarbon/NOx ratio based upon selected parameters of the exhaust gas feedstream and dispenses hydrocarbon reductant during lean engine operation. Included is a method to control elements of the feedstream during lean operation. The hydrocarbon reductant may include engine fuel.

Schmieg, Steven J. (Troy, MI); Blint, Richard J. (Shelby Township, MI); Den, Ling (Sterling Heights, MI); Viola, Michael B. (Macomb Township, MI); Lee, Jong-Hwan (Rochester Hills, MI)

2011-08-30T23:59:59.000Z

270

A cost-effectiveness analysis of alternative ozone control strategies : flexible nitrogen oxide (NOx) abatement from power plants in the eastern United States  

E-Print Network [OSTI]

Ozone formation is a complex, non-linear process that depends on the atmospheric concentrations of its precursors, nitrogen oxide (NOx) and Volatile Organic Compounds (VOC), as well as on temperature and the available ...

Sun, Lin, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

271

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

272

Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst  

SciTech Connect (OSTI)

A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.

Sobolevskiy, Anatoly (Orlando, FL); Rossin, Joseph A. (Columbus, OH); Knapke, Michael J. (Columbus, OH)

2011-07-12T23:59:59.000Z

273

NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT  

SciTech Connect (OSTI)

This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. Previous research results have demonstrated that the inhalation of coal/MSS ash particles cause an increase in lung permeability than coal ash particles alone. Elemental analysis of the coal/MSS ash particles showed that Zn was more abundant in these ash particles than the ash particles of coal ash alone.

Jost O.L. Wendt

2003-01-31T23:59:59.000Z

274

Reducible oxide based catalysts  

DOE Patents [OSTI]

A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

2010-04-06T23:59:59.000Z

275

Reducing home lighting expenses  

SciTech Connect (OSTI)

Ways to reduce lighting expenses are summarized. These include: turning off lights when not in use; keeping fixtures and lamps clean; replacing lamps with more efficient types; using three-way bulbs; use of daylighting; buying fewer lamps and reducing lamp wattage; consider repainting rooms; replacing recessed fixtures with tracklighting; and using efficient lamps for outdoor use. (MCW)

Aimone, M.A.

1981-02-01T23:59:59.000Z

276

Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction  

SciTech Connect (OSTI)

Multiple catalytic functions (NOx conversion, NO and NH3 oxidation, NH3 storage) of a commercial Cu-zeolite urea/NH3-SCR catalyst were assessed in a laboratory fixed-bed flow reactor system after differing degrees of hydrothermal aging. Catalysts were characterized by using x-ray diffraction (XRD), 27Al solid state nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) / energy dispersive X-ray (EDX) spectroscopy to develop an understanding of the degradation mechanisms during catalyst aging. The catalytic reaction measurements of laboratory-aged catalysts were performed, which allows us to obtain a universal curve for predicting the degree of catalyst performance deterioration as a function of time at each aging temperature. Results show that as the aging temperature becomes higher, the zeolite structure collapses in a shorter period of time after an induction period. The decrease in SCR performance was explained by zeolite structure destruction and/or Cu agglomeration, as detected by XRD/27Al NMR and by TEM/EDX, respectively. Destruction of the zeolite structure and agglomeration of the active phase also results in a decrease in the NO/NH3 oxidation activity and the NH3 storage capacity of the catalyst. Selected laboratory aging conditions (16 h at 800oC) compare well with a 135,000 mile vehicle-aged catalyst for both performance and characterization criteria.

Schmieg, Steven J.; Oh, Se H.; Kim, Chang H.; Brown, David B.; Lee, Jong H.; Peden, Charles HF; Kim, Do Heui

2012-04-30T23:59:59.000Z

277

Investigation Of Synergistic NOx Reduction From Cofiring And Air Staged Combustion Of Coal And Low Ash Dairy Biomass In A 30 Kilowatt Low NOx Furnace  

E-Print Network [OSTI]

Alternate, cost effective disposal methods must be developed for reducing phosphorous and nitrogen loading from land application of animal waste. Cofiring coal with animal waste, termed dairy biomass (DB), is the proposed thermo-chemical method...

Lawrence, Benjamin Daniel

2013-08-01T23:59:59.000Z

278

EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas  

Broader source: Energy.gov [DOE]

The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflowerís Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NOx control technologies.

279

An Analysis of PM and NOx Train Emissions in the Alameda Corridor, CA  

E-Print Network [OSTI]

Environment. Estimation of Nitrogen Dioxide Concentrationsmatter, ozone, nitrogen dioxide and sulfur dioxide - Globalnitrate particles and nitrogen dioxide can reduce visibility

Sangkapichai, Mana; Saphores, Jean-Daniel M; Ritchie, Stephen G.; You, Soyoung Iris; Lee, Gunwoo

2008-01-01T23:59:59.000Z

280

Tank closure reducing grout  

SciTech Connect (OSTI)

A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr{sup 90}, the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel.

Caldwell, T.B.

1997-04-18T23:59:59.000Z

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Calculation of NOx Emission Reduction from Implementation of the 2000 IECC/IRC Conservation Code in Texas  

E-Print Network [OSTI]

building prototypes, which will be constructed to be representative of the new building construction in Texas. 12 The NAHB characteristics divided the state into east (E), and west (W) divisions: window-to-wall area E=15.28%, W=20.6%, glazing U.... Division (East and West Texas): From NAHB survey data. 17. AFUE (%),SEER and Water Heater Efficiency for 1999 standard and IECC 2000 house are 80%, 11 and 76%, respectively. Table 1: 2002 NOx emissions reductions from implementation of the 2000 IECC...

Turner, W. D.; Yazdani, B.; Im, P.; Verdict, M.; Bryant, J.; Fitzpatrick, T.; Haberl, J. S.; Culp, C.

2003-01-01T23:59:59.000Z

282

Naval electrochemical corrosion reducer  

DOE Patents [OSTI]

A corrosion reducer for use with ships having a hull, a propeller mounted a propeller shaft and extending through the hull, bearings supporting the shaft, at least one thrust bearing and one seal. The improvement includes a current collector and a current reduction assembly for reducing the voltage between the hull and shaft in order to reduce corrosion due to electrolytic action. The current reduction assembly includes an electrical contact, the current collector, and the hull. The current reduction assembly further includes a device for sensing and measuring the voltage between the hull and the shaft and a device for applying a reverse voltage between the hull and the shaft so that the resulting voltage differential is from 0 to 0.05 volts. The current reduction assembly further includes a differential amplifier having a voltage differential between the hull and the shaft. The current reduction assembly further includes an amplifier and a power output circuit receiving signals from the differential amplifier and being supplied by at least one current supply. The current selector includes a brush assembly in contact with a slip ring over the shaft so that its potential may be applied to the differential amplifier.

Clark, Howard L. (Ballston Lake, NY)

1991-10-01T23:59:59.000Z

283

Reducing Power Factor Cost  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof EnergyReducing Peak DemandLow

284

Large-Eddy Simulation of Pulverized Coal Jet Flame -Effect of Oxygen Concentration on NOx formation  

E-Print Network [OSTI]

than those by using other fossil fuels [1]. It is therefore important to develop clean coal technology for pulverized coal fired power plants, in order to control such emissions and to reduce the environmental impact. Regarding the reduction...

Muto, Masaya; Watanabe, Hiroaki; Kurose, Ryoichi; Komori, Satoru; Balusamy, Saravanan; Hochgreb, Simone

2015-01-01T23:59:59.000Z

285

Pressure reducing regulator  

DOE Patents [OSTI]

A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes.

Whitehead, John C. (Davis, CA); Dilgard, Lemoyne W. (Willits, CA)

1995-01-01T23:59:59.000Z

286

NOx enhancements in the middle atmosphere during 2003-2004 polar winter: The relative significance of Solar Proton Events and the Aurora as a source.  

E-Print Network [OSTI]

contributions of ionization due to solar proton events, energetic electron precipitation, and low energy (1 energy electron precipitation as LEE-NOx. Note also that energy spectra caused by solar wind and CME significance of Solar Proton Events and the Aurora as a source. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Otago, University of

287

Nox2 redox signaling maintains essential cell populations in the Bryan C Dickinson1, Joseph Peltier2, Daniel Stone2, David V Schaffer2, and Christopher J  

E-Print Network [OSTI]

Nox2 redox signaling maintains essential cell populations in the brain Bryan C Dickinson1, Joseph Peltier2, Daniel Stone2, David V Schaffer2, and Christopher J Chang1,3 1Department of Chemistry indicator for hydrogen peroxide (H2O2), we show that adult hippocampal stem/progenitor cells (AHPs) generate

Schaffer, David V.

288

Stewarding a Reduced Stockpile  

SciTech Connect (OSTI)

The future of the US nuclear arsenal continues to be guided by two distinct drivers: the preservation of world peace and the prevention of further proliferation through our extended deterrent umbrella. Timely implementation of US nuclear policy decisions depends, in part, on the current state of stockpile weapons, their delivery systems, and the supporting infrastructure within the Department of Defense (DoD) and the Department of Energy's National Nuclear Security Administration (NNSA). In turn, the present is a product of past choices and world events. Now more than ever, the nuclear weapons program must respond to the changing global security environment and to increasing budget pressures with innovation and sound investments. As the nation transitions to a reduced stockpile, the successes of the Stockpile Stewardship Program (SSP) present options to transition to a sustainable complex better suited to stockpile size, national strategic goals and budgetary realities. Under any stockpile size, we must maintain essential human capital, forefront capabilities, and have a right-sized effective production capacity. We present new concepts for maintaining high confidence at low stockpile numbers and to effectively eliminate the reserve weapons within an optimized complex. We, as a nation, have choices to make on how we will achieve a credible 21st century deterrent.

Goodwin, B T; Mara, G

2008-04-18T23:59:59.000Z

289

Firing microfine coal with a low NOx, RSFC burner in an industrial boiler designed for oil and gas  

SciTech Connect (OSTI)

ABB Power Plant Laboratories (ABB-PPL) working under a US Department of Energy-Pittsburgh Energy Technology Center (DOE-PETC) contract has carried out tests with the Radially Stratified Flame Core (RSFC) burner which was licensed from the Massachusetts Institute of Technology who developed and patented the RSFC burner. Tests were carried out in a small industrial boiler, designed for oil and natural gas, located at the Energy and Fuels Research Center of Penn State University who was working as a subcontractor to ABB-PPL. The paper presents results from the long-term testing task in the DOE-PETC program with particular attention being paid to the challenges faced in maintaining high combustion efficiencies while achieving low NOx in a small industrial boiler designed for firing oil or natural gas. The paper will also address the issue of ash management when firing coal in a boiler designed for fuels having essentially no ash.

Thornhock, D.E.; Patel, R.; Borio, R.W. [Combustion Engineering, Inc., Windsor, CT (United States). ABB Power Plant Labs.; Miller, B.G.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center

1996-12-31T23:59:59.000Z

290

Sulfate Fining Chemistry in Oxidized and Reduced Soda-Lime-Silica Glasses  

SciTech Connect (OSTI)

Various reducing agents were used and their additions were varied to (1) increase glass quality through eliminating defects from silica scum, (2) decrease SOx emissions through changing the kind and quantity of reducing agents, and (3) improve production efficiency through increased flexibility of glass redox control during continuous processing. The work included measuring silica sand dissolution and sulfate decomposition in melts from glass batches. Glass batches were heated at a temperature-increase rate deemed similar to that experienced in the melting furnace. The sulfate decomposition kinetics was investigated with thermogravimetric analysis-differential thermal analysis and evolved gas analysis. Sulfur concentrations in glasses quenched at different temperatures were determined using X-ray fluorescence spectroscopy. The distribution of residual sand (that which was not dissolved during the initial batch reactions) in the glass was obtained as a function of temperature with optical microscopy in thin-sections of melts. The fraction of undissolved sand was measured with X-ray diffraction. The results of the present study helped Visteon Inc. reduce the energy consumption and establish the batch containing 0.118 mass% of graphite as the best candidate for Visteon glass production. The improved glass batch has a lower potential for silica scum formation and for brown fault occurrence in the final glass product. It was established that bubbles trapped in the melt even at 1450 C have a high probability to be refined when reaching the hot zone in the glass furnace. Furthermore, silica sand does not accumulate at the glass surface and dissolves faster in the batch with graphite than in the batch with carbocite.

Matyas, Josef; Hrma, Pavel R.

2005-05-13T23:59:59.000Z

291

NOVEL DATA ANALYSIS TECHNIQUE TO EVALUATE FIELD NOx AND CO2 CONTINUOUS EMISSION DATA, BASED ON THE EVALUATION OF: (1) AN OFF-ROAD DIESEL COMPACTOR RUNNING ON THREE FUEL TYPES AND (2) TWO COMPACTORS RUNNING ON DIESEL FUEL  

E-Print Network [OSTI]

In spite of being few in number, off-road vehicles have a significant contribution to air pollutants such as NOx and CO2. Engine dynamometer test cycles have been developed in an effort to better characterize the emissions ...

Guerra, Sergio

2012-12-31T23:59:59.000Z

292

Challenges and Potential Solutions for Reducing Climate Control Loads in Conventional and Hybrid Vehicles  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory, a U.S. Department of Energy national laboratory, is collaborating with U.S. automotive manufacturers to develop innovative techniques to reduce national fuel consumption and vehicle tailpipe emissions by reducing vehicle climate control loads. A new U.S. emissions test, the Supplemental Federal Test Procedure (SFTP), will soon begin measuring tailpipe emissions with the air conditioning system operating. Modeled results show that emissions of oxides of nitrogen (NOx) and carbon monoxide (CO) more than double during the air conditioning part of the SFTP. Reducing the transmittance of the glazing can have a greater impact on the cabin soak temperature than ventilating the vehicle during a hot soak. Reducing the amount of outside air can decrease cooling and heating loads but requires that the recirculated air be cleaned. We discuss a photocatalytic oxidation air-cleaning process for removing volatile organic compounds and bioareosols. We conclude with an example of modeling the thermal comfort of the occupants. An auxiliary load increase of only 400 Watts (W) results in a 0.4 km/L (1 mpg) decrease for a conventional 11.9-L/100-km (28-mpg) vehicle. If every vehicle in the United States were to save only 0.4 km/L (1 mpg), $4 billion (U.S. dollars) would be saved annually in gasoline and oil costs. Further information can be found at http://www.ctts.nrel.gov/auxload.html.

Farrington, R.B., Anderson, R., Blake, D.M., Burch, S.D.; Cuddy, M.R., Keyser, M.A., Rugh, J.P.

1999-01-01T23:59:59.000Z

293

A Methodology for Calculating Integrated Nox Emissions Reduction from Energy Efficiency and Renewable Energy (EE/RE) Programs Across State Agencies in Texas  

E-Print Network [OSTI]

S D INTEGRATED NOx SAVINGS: Commercial Savings and Projections ē Commercial: new construction in office, assembly, education, retail, food, lodging and warehouse construction as defined by Dodge building type, using energy savings from the PNNL... Office (SECO), 2007, available at: http://www.seco.cpa.state.tx.us/ USDOE 2005. Analysis of Texas Code Adoption Analysis: Lighting Requirement, Pacific Northwest National Laboratory (PNNL), U.S.D.O.E., Washington, D.C. 9 Table 1: Final...

Gilman, D.; Yazdani, B.; Haberl, J. S.; Liu, Z.; Mukhopadhyay, J.; Culp, C.; Kim, S.; Baltazar-Cervantes, J. C.; Im, P.

294

Combustion characteristics and NOx emissions of two kinds of swirl burners in a 300-MWe wall-fired pulverized-coal utility boiler  

SciTech Connect (OSTI)

Measurements were performed in a 300-MWe wall-fired pulverized-coal utility boiler. Enhanced ignition-dual register (EI-DR) burners and centrally fuel rich (CFR) swirl coal combustion burners were installed in the bottom row of the furnace during experiments. Local mean concentrations of O{sub 2}, CO, CO{sub 2} and NOx gas species, gas temperatures, and char burnout were determined in the region of the two types of burners. For centrally fuel rich swirl coal combustion burners, local mean CO concentrations, gas temperatures and the temperature gradient are higher and mean concentrations of O{sub 2} and NOx along the jet flow direction in the burner region are lower than for the enhanced ignition-dual register burners. Moreover, the mean O{sub 2} concentration is higher and the gas temperature and mean CO concentration are lower in the side wall region. For centrally fuel rich swirl coal combustion burners in the bottom row, the combustion efficiency of the boiler increases from 96.73% to 97.09%, and NOx emission decreases from 411.5 to 355 ppm at 6% O{sub 2} compared to enhanced ignition-dual register burners and the boiler operates stably at 110 MWe without auxiliary fuel oil.

Li, Z.Q.; Jing, J.P.; Chen, Z.C.; Ren, F.; Xu, B.; Wei, H.D.; Ge, Z.H. [Harbin Institute for Technology, Harbin (China). School for Energy Science & Engineering

2008-07-01T23:59:59.000Z

295

Reduced-dimension transistors: Reduced-dimension transistors  

E-Print Network [OSTI]

1 Reduced-dimension transistors: the HEMT LECTURE 20 ¬∑ Reduced-dimension transistors ¬∑ HEMT ¬∑ 2-D;8 For a finite well ¬∑ Wavefunction not completely confined ¬∑ Use undoped spacer #12;9 Employment of a spacer scattering (¬Ķ ). ¬∑ Electrons and donors separated no I I scattering, i.e., ¬Ķ ¬∑ Undoped spacer also helps

Pulfrey, David L.

296

Oxygen-reducing catalyst layer  

DOE Patents [OSTI]

An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

O'Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O'Neill, David G. (Lake Elmo, MN)

2011-03-22T23:59:59.000Z

297

Strapinherelikethis www.chemistryworld.org  

E-Print Network [OSTI]

for solvent life are combustion impurities: air pollutants such as SOx, NOx, particulates, and HCl, HF, and the purification of O2 from air to enable clean combustion. At present, these steps rely on circulating large

Haszeldine, Stuart

298

Mesa Top Photovoltaic Array SyStem SpecificationS  

E-Print Network [OSTI]

electricity that array will provide: 7% environmental impact Annual carbon offset: 2.4 million pounds of CO2 Annual NOx offset: >3,700 pounds Annual SOx offset: >2,400 pounds TEAM Initiative & Executive Order 13423

299

December 18, 2008 Conservation  

E-Print Network [OSTI]

production of carbon dioxide or criteria air pollutants (SOx, NOx, etc.) · Ecological impacts usually avoided, procedural, technical measures enabling full use of existing system flexibility + ramp control are available

300

Hybrid heat exchange for the compression capture of CO2 from recirculated flue gas  

SciTech Connect (OSTI)

An approach proposed for removal of CO2 from flue gas cools and compresses a portion of a recirculated flue-gas stream, condensing its volatile materials for capture. Recirculating the flue gas concentrates SOx, H2O and CO2 while dramatically reducing N2 and NOx, enabling this approach, which uses readily available industrial components. A hybrid system of indirect and direct-contact heat exchange performs heat and mass transfer for pollutant removal and energy recovery. Computer modeling and experimentation combine to investigate the thermodynamics, heat and mass transfer, chemistry and engineering design of this integrated pollutant removal (IPR) system.

Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles  

SciTech Connect (OSTI)

On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissions regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low emissions, R&D activities are closely coordinated with the relevant activities of the Fuel Technologies Sub-Program, also within the Office of FreedomCAR and Vehicle Technologies. Research is also being undertaken on hydrogen-fueled internal combustion engines to provide an interim hydrogen-based powertrain technology that promotes the longer-range FreedomCAR Partnership goal of transitioning to a hydrogen-fueled transportation system. Hydrogen engine technologies being developed have the potential to provide diesel-like engine efficiencies with near-zero emissions.

None

2005-12-15T23:59:59.000Z

302

Nuclear Power PROS -`No' greenhouse gas emissions  

E-Print Network [OSTI]

uranium hexafluoride reacting with moisture in air creates the immediate danger of HF hydrogen fluoride or ammonia; hydrofluoric acid is also used in the conversion process) -CO2 emissions involved in mining gases / acid rain: emits Hg, CO2, CO, SOx, NOx (there are pollution controls on SOx and Hg which makes

Toohey, Darin W.

303

Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B  

SciTech Connect (OSTI)

This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

NONE

1998-01-01T23:59:59.000Z

304

Reduced shedding regenerator and method  

DOE Patents [OSTI]

A reduced shedding regenerator and method are disclosed with regenerator surfaces to minimize shedding of particles from the regenerator thereby alleviating a source of potential damage and malfunction of a thermal regenerative machine using the regenerator.

Qiu, Songgang (Richland, WA); Augenblick, John E. (Richland, WA); Erbeznik, Raymond M. (Kennewick, WA)

2007-05-22T23:59:59.000Z

305

Advanced In-Furnace NOx Control for Wall and Cyclone-Fired Boilers  

SciTech Connect (OSTI)

A NO{sub x} minimization strategy for coal-burning wall-fired and cyclone boilers was developed that included deep air staging, innovative oxygen use, reburning, and advanced combustion control enhancements. Computational fluid dynamics modeling was applied to refine and select the best arrangements. Pilot-scale tests were conducted by firing an eastern high-volatile bituminous Pittsburgh No.8 coal at 5 million Btu/hr in a facility that was set up with two-level overfire air (OFA) ports. In the wall-fired mode, pulverized coal was burned in a geometrically scaled down version of the B and W DRB-4Z{reg_sign} low-NO{sub x} burner. At a fixed overall excess air level of 17%, NO{sub x} emissions with single-level OFA ports were around 0.32 lb/million Btu at 0.80 burner stoichiometry. Two-level OFA operation lowered the NO{sub x} levels to 0.25 lb/million Btu. Oxygen enrichment in the staged burner reduced the NO{sub x} values to 0.21 lb/million Btu. Oxygen enrichment plus reburning and 2-level OFA operation further curbed the NO{sub x} emissions to 0.19 lb/million Btu or by 41% from conventional air-staged operation with single-level OFA ports. In the cyclone firing arrangement, oxygen enrichment of the cyclone combustor enabled high-temperature and deeply staged operation while maintaining good slag tapping. Firing the Pittsburgh No.8 coal in the optimum arrangement generated 112 ppmv NO{sub x} (0.15 lb/million Btu) and 59 ppmv CO. The optimum emissions results represent 88% NO{sub x} reduction from the uncontrolled operation. Levelized costs for additional NO{sub x} removal by various in-furnace control methods in reference wall-fired or cyclone-fired units already equipped with single-level OFA ports were estimated and compared with figures for SCR systems achieving 0.1 lb NO{sub x}/10{sup 6} Btu. Two-level OFA ports could offer the most economical approach for moderate NO{sub x} control, especially for smaller units. O{sub 2} enrichment in combination with 2-level OFA was not cost effective for wall-firing. For cyclone units, NO{sub x} removal by two-level OFA plus O{sub 2} enrichment but without coal reburning was economically attractive.

Hamid Sarv

2009-02-28T23:59:59.000Z

306

Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts  

SciTech Connect (OSTI)

Selective catalytic reduction (SCR) of NOx with ammonia using metal-exchanged molecular sieves with a chabazite (CHA) structure has recently been commercialized on diesel vehicles. One of the commercialized catalysts, i.e., Cu-SSZ-13, has received much attention for both practical and fundamental studies. For the latter, the particularly well-defined structure of this zeolite is allowing long-standing issues of the catalytically active site for SCR in metal-exchanged zeolites to be addressed. In this review, recent progress is summarized with a focus on two areas. First, the technical significance of Cu-SSZ-13 as compared to other Cu-ion exchanged zeolites (e.g., Cu-ZSM-5 and Cu-beta) is highlighted. Specifically, the much enhanced hydrothermal stability for Cu-SSZ-13 compared to other zeolite catalysts is addressed via performance measurements and catalyst characterization using several techniques. The enhanced stability of Cu-SSZ-13 is rationalized in terms of the unique small pore structure of this zeolite catalyst. Second, the fundamentals of the catalytically active center; i.e., the chemical nature and locations within the SSZ-13 framework are presented with an emphasis on understanding structure-function relationships. For the SCR reaction, traditional kinetic studies are complicated by intra-particle diffusion limitations. However, a major side reaction, nonselective ammonia oxidation by oxygen, does not suffer from mass-transfer limitations at relatively low temperatures due to significantly lower reaction rates. This allows structure-function relationships that are rather well understood in terms of Cu ion locations and redox properties. Finally, some aspects of the SCR reaction mechanism are addressed on the basis of in-situ spectroscopic studies.

Gao, Feng; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles HF

2013-11-03T23:59:59.000Z

307

Simultaneous Removal of NOx and Mercury in Low Temperature Selective Catalytic and Adsorptive Reactor  

SciTech Connect (OSTI)

The results of a 18-month investigation to advance the development of a novel Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR), for the simultaneous removal of NO{sub x} and mercury (elemental and oxidized) from flue gases in a single unit operation located downstream of the particulate collectors, are reported. In the proposed LTSCAR, NO{sub x} removal is in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The concomitant capture of mercury in the unit is achieved through the incorporation of a novel chelating adsorbent. As conceptualized, the LTSCAR will be located downstream of the particulate collectors (flue gas temperature 140-160 C) and will be similar in structure to a conventional SCR. That is, it will have 3-4 beds that are loaded with catalyst and adsorbent allowing staged replacement of catalyst and adsorbent as required. Various Mn/TiO{sub 2} SCR catalysts were synthesized and evaluated for their ability to reduce NO at low temperature using CO as the reductant. It has been shown that with a suitably tailored catalyst more than 65% NO conversion with 100% N{sub 2} selectivity can be achieved, even at a high space velocity (SV) of 50,000 h-1 and in the presence of 2 v% H{sub 2}O. Three adsorbents for oxidized mercury were developed in this project with thermal stability in the required range. Based on detailed evaluations of their characteristics, the mercaptopropyltrimethoxysilane (MPTS) adsorbent was found to be most promising for the capture of oxidized mercury. This adsorbent has been shown to be thermally stable to 200 C. Fixed-bed evaluations in the targeted temperature range demonstrated effective removal of oxidized mercury from simulated flue gas at very high capacity ({approx}>58 mg Hg/g adsorbent). Extension of the capability of the adsorbent to elemental mercury capture was pursued with two independent approaches: incorporation of a novel nano-layer on the surface of the chelating mercury adsorbent to achieve in situ oxidation on the adsorbent, and the use of a separate titania-supported manganese oxide catalyst upstream of the oxidized mercury adsorbent. Both approaches met with some success. It was demonstrated that the concept of in situ oxidation on the adsorbent is viable, but the future challenge is to raise the operating capacity beyond the achieved limit of 2.7 mg Hg/g adsorbent. With regard to the manganese dioxide catalyst, elemental mercury was very efficiently oxidized in the absence of sulfur dioxide. Adequate resistance to sulfur dioxide must be incorporated for the approach to be feasible in flue gas. A preliminary benefits analysis of the technology suggests significant potential economic and environmental advantages.

Neville G. Pinto; Panagiotis G. Smirniotis

2006-03-31T23:59:59.000Z

308

Inevitability of Engine-Out Nox Emissions from Spark-Ignition and Diesel Engines  

SciTech Connect (OSTI)

Internal combustion engines, both spark ignition and Diesel, are dominant types of vehicle power sources and also provide power for other important stationary applications. Overall, these engines are a central part of power generation in modern society. However, these engines, burning hydrocarbon fuels from natural gas to gasoline and Diesel fuel, are also responsible for a great deal of pollutant emissions to the environment, especially oxides of nitrogen (NO{sub x}) and unburned hydrocarbons (UHC). In recent years, pollutant species emissions from internal combustion engines have been the object of steadily more stringent limitations from various governmental agencies. Engine designers have responded by developing engines that reduce emissions to accommodate these tighter limitations. However, as these limits become ever more stringent, the ability of engine design modifications to meet those limits must be questioned. Production of NO{sub x} in internal combustion engines is primarily due to the high temperature extended Zeldovich reaction mechanism: (1) O + N{sub 2} = NO + N; (2) N + O{sub 2} = NO + O; and (3) N + OH = NO + H. The rates of these reactions become significant when combustion temperatures reach or exceed about 2000K. This large temperature dependence, characterized by large activation energies for the rates of the reactions listed here, is a direct result of the need to break apart the tightly bonded oxygen and nitrogen molecules. The strongest bond is the triple bond in the N {triple_bond} N molecule, resulting in an activation energy of about 75 kcal/mole for Reaction (1), which is the principal cause for the large temperature dependence of the extended Zeldovich NO{sub x} mechanism. In most engines, NO{sub x} is therefore produced primarily in the high temperature combustion product gases. Using a reliable kinetic model for NO{sub x} production such as the GRI Mechanism [1] or the Miller-Bowman model [2] with hydrocarbon products at temperatures from 1500K through 2500K, the amounts of NO{sub x} produced at a given residence time in an engine can easily be computed, as shown in Figure 1. Figure 1 depicts how temperatures such as those existing in the combustion zones of heavy-duty engines would produce NO{sub x} emissions. This figure was created assuming that a fuel/air equivalence ratio {phi} of 0.65 was used to heat the combustion air. This equivalence ratio would be similar to that of a heavy-duty lean-burn spark-ignition or diesel engine. At temperatures in the neighborhood of 2000K and residence times between 1-5 milliseconds, which are typical of residence times at these temperatures in engines, the production of NO{sub x} increases dramatically. It is evident from Fig. 1 that product temperatures must remain below approximately 2100K to achieve extremely low NO{sub x} production levels in engines. This conclusion led to a combined experimental and modeling study of product gas temperatures in engine combustion and their influence on emission levels.

Flynn, P F; Hunter, G L; Farrell, L A; Durrett, R P; Akinyemi, O C; Westbrook, C K; Pitz, W J

2000-01-11T23:59:59.000Z

309

Reduction of Stored NOx on Pt/AlO and Pt/BaO/AlO Catalysts with H and CO. |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 NationalTreatment. | EMSL NOx

310

Utility Sector Impacts of Reduced Electricity Demand  

SciTech Connect (OSTI)

This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

Coughlin, Katie

2014-12-01T23:59:59.000Z

311

Reduced Harmonic Representation of Partitions  

E-Print Network [OSTI]

In the present article the reduced integral representation of partitions in terms of harmonic products has been derived first by using hypergeometry and the new concept of fractional sum and secondly by studying the Fourier series of the kernel function appearing in the integral representation. Using the method of induction, a generalization of the theory has also been obtained.

Michalis Psimopoulos

2011-03-08T23:59:59.000Z

312

Announcing: All Recycling Reduce your  

E-Print Network [OSTI]

Announcing: All Recycling Go Green! Reduce your contribution to the landfill, by choosing to voluntarily recycle acceptable items in the green All Recycling toters and containers around campus. ONLY THE ITEMS BELOW ARE ACCEPTED FOR ALL RECYCLING Please do not contaminate the recycling containers with trash

Papautsky, Ian

313

Conservation Stand! Reducing My Commute  

E-Print Network [OSTI]

. + Diverts plastic waste for food production. + Placed beside window, replaces light input with solarConservation Stand! Reducing My Commute 72.6 mi to 5.1 mi #12;#12;Conserving Water and Energy or contribution to sedimentation. + Food produced on site without transportation costs. - Depends on energy input

Schweik, Charles M.

314

Integrated pollutant removal: modeling and experimentation  

SciTech Connect (OSTI)

Experimental and computational work at the Albany Research Center, USDOE is investigating an integrated pollutant removal (IPR) process which removes all pollutants from flue gas, including SOX, NOX, particulates, CO2, and Hg. In combination with flue gas recirculation, heat recovery, and oxy-fuel combustion, the process produces solid, gas, and liquid waste streams. The gas exhaust stream comprises O2 and N2. Liquid streams contain H2O, SOX, NOX, and CO2. Computer modeling and low to moderate pressure experimentation are defining system chemistry with respect to SOX and H2O as well as heat and mass transfer for the IPR process.

Ochs, Thomas L.; Oryshchyn, Danylo B.; Summers, Cathy A.

2005-01-01T23:59:59.000Z

315

Biomarker Response to Galactic Cosmic Ray-Induced NOx and the Methane Greenhouse Effect in the Atmosphere of an Earthlike Planet Orbiting an M-Dwarf Star  

E-Print Network [OSTI]

Planets orbiting in the habitable zone (HZ) of M-Dwarf stars are subject to high levels of galactic cosmic rays (GCRs) which produce nitrogen oxides in earthlike atmospheres. We investigate to what extent this NOx may modify biomarker compounds such as ozone (O3) and nitrous oxide (N2O), as well as related compounds such as water (H2O) (essential for life) and methane (CH4) (which has both abiotic and biotic sources) . Our model results suggest that such signals are robust, changing in the M-star world atmospheric column by up to 20% due to the GCR NOx effects compared to an M-star run without GCR effects and can therefore survive at least the effects of galactic cosmic rays. We have not however investigated stellar cosmic rays here. CH4 levels are about 10 times higher than on the Earth related to a lowering in hydroxyl (OH) in response to changes in UV. The increase is less than reported in previous studies. This difference arose partly because we used different biogenic input. For example, we employed 23% ...

Grenfell, J L; Patzer, B; Rauer, H; Segura, A; Stadelmann, A; Stracke, B; Titz, R; Von Paris, P; Grenfell, John Lee; Griessmeier, Jean-Mathias; Patzer, Beate; Rauer, Heike; Segura, Antigona; Stadelmann, Anja; Stracke, Barbara; Titz, Ruth; Paris, Philip von

2007-01-01T23:59:59.000Z

316

Reducing carbon dioxide to products  

DOE Patents [OSTI]

A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

2014-09-30T23:59:59.000Z

317

Field Demonstration of 0.2 Grams Per Horsepower-Hour (g/bhp-hr) Oxides of Nitrogen (NOx) Natural  

E-Print Network [OSTI]

Air Quality Management District (SCAQMD) which includes the Los Angeles and Long Beach ports, reduce engine fuel consumption, and add another technology available to meet the 2010 standards for new and to reduce the cost and promote the availability of non-petroleum fuels per the Energy Action Plan 2005 by

318

NOx Sensor Development  

Broader source: Energy.gov (indexed) [DOE]

zirconia (PSZ) for better mechanical properties * (bottom) Dense LSM (Strontium-doped lanthanum manganite oxide) with yttria fully- stabilized zirconia (YSZ) for...

319

NOx Sensor Development  

SciTech Connect (OSTI)

The objectives of this report are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) exhaust gas monitoring; (2) Explore and characterize novel, effective sensing methodologies based on impedance measurements; (3) Explore designs and manufacturing methods that could be compatible with mass fabrication; and (4) Collaborate with industry in order to (ultimately) transfer the technology to a supplier for commercialization.

Woo, L Y; Glass, R S

2009-10-27T23:59:59.000Z

320

Reactive based NOx sensor  

E-Print Network [OSTI]

Diesel engines exhibit better fuel economy and emit fewer greenhouse gases than gasoline engines. Modern diesel technology has virtually eliminated carbon monoxide and particulate emissions. Sulfur oxide emissions have ...

Vassiliou, Christophoros Christou

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NOx Sensor Development  

Broader source: Energy.gov (indexed) [DOE]

needed to meet emission targets and enable widespread use of diesel vehicles with better fuel economies: We are developing a novel sensor with the potential to meet OEM cost and...

322

Multiyear Program Plan: Reducing Friction and Wear in Heavy Vehicles  

SciTech Connect (OSTI)

As described in its multiyear program plan for 1998-2000, the Office of Heavy Vehicle Technologies (OHVT) envisions the development of a fuel-flexible, energy-efficient, near-zero-emissions, heavy-duty U.S. diesel engine technology devolving into all truck classes as a real and viable strategy for reducing energy requirements for commercial transport services and the rapidly growing multipurpose vehicle market (pickups, vans, and sport utility vehicles). Implementation of the OHVT program plan will have significant national benefits in energy savings, cleaner air, more jobs, and increased gross domestic product (GDP). Successful implementation will reduce the petroleum consumption of Class 1-8 trucks by 1.4 million barrels of oil per day by 2020 and over 1.8 million by 2030, amounting to a reduction in highway petroleum consumption of 13.2% and 18.6%, respectively. All types of regulated emissions will be reduced, that is, 20% drop in PM10 emissions (41,000 metric tons per year) by 203 0, 17% reduction in CO2 greenhouse gases (205 million metric tons per year), 7% reduction in NOx, 20% reduction in NMHC, and 30% reduction in CO. An increase of 15,000 jobs by 2020 is expected, as is an increase of $24 billion in GDP. The strategy of OHVT is to focus primarily on the diesel engine since it has numerous advantages. It has the highest efficiency of any engine today, 45% versus 30% for production gasoline engines; and it can be made more efficient at least to 55% and possibly up to 63%. It is the engine of choice for heavy vehicles (trucks), because it offers power, efficiency, durability, and reliability and is used extensively in rail, marine, and off-road applications. Its emission can be ultra-low to near zero, and the production infrastructure is already in place. The primary goals of OHVT are as follows: (1) Develop by 2002 the diesel-engine enabling technologies to support large-scale industry dieselization of light trucks, achieving a 35% fuel efficiency improvement over equivalent gasoline-fueled trucks. (2) Develop by 2004 the enabling technology for a Class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) that will meet prevailing emission standards, using either diesel or a liquid alternative fuel. (3) Develop by 2006 diesel engines with fuel flexibility and a thermal efficiency of 55% with liquid alternative fuels, and a thermal efficiency of 55% with dedicated gaseous fuels. (4) Develop a methodology for analyzing and evaluating the operation of a heavy vehicle as an integrated system, considering such factors as engine efficiency; emissions; rolling resistance; aerodynamic drag; friction, wear, and lubrication effects; auxiliary power units; material substitutions for reducing weight; and other sources of parasitic energy losses. Overarching these considerations is the need to preserve system functionality, cost, competitiveness, reliability, durability, and safety.

R.R. Fessler; G.R. Fenske

1999-12-13T23:59:59.000Z

323

Comprehensive Community NOx Emission Reduction Methodology: Overview and Results from the Application to a Case Study Community  

E-Print Network [OSTI]

and efficiency programs on air pollution reduction, which will help local governments and their residents understand how to reduce pollution and mange the information collection needed to accomplish this. This paper presents a broad overview of a community...

Sung, Y. H.; Haberl, J. S.

324

Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems  

SciTech Connect (OSTI)

Oxides of nitrogen in the form of nitric oxide (NO) and nitrogen dioxide (NO{sub 2}) commonly referred to as NO{sub x}, is one of the two chemical precursors that lead to ground-level ozone, a ubiquitous air pollutant in urban areas. A major source of NO{sub x} is generated by equipment and vehicles powered by diesel engines, which have a combustion exhaust that contains NO{sub x} in the presence of excess O{sub 2}. Catalytic abatement measures that are effective for gasoline-fueled engines such as the precious metal containing three-way catalytic converter (TWC) cannot be used to treat O2-laden exhaust containing NO{sub x}. Two catalytic technologies that have emerged as effective for NO{sub x} abatement are NO{sub x} storage and reduction (NSR) and selective catalytic reduction (SCR). NSR is similar to TWC but requires much larger quantities of expensive precious metals and sophisticated periodic switching operation, while SCR requires an on-board source of ammonia which serves as the chemical reductant of the NO{sub x}. The fact that NSR produces ammonia as a byproduct while SCR requires ammonia to work has led to interest in combining the two together to avoid the need for the cumbersome ammonia generation system. In this project a comprehensive study was carried out of the fundamental aspects and application feasibility of combined NSR/SCR. The project team, which included university, industry, and national lab researchers, investigated the kinetics and mechanistic features of the underlying chemistry in the lean NOx trap (LNT) wherein NSR was carried out, with particular focus on identifying the operating conditions such as temperature and catalytic properties which lead to the production of ammonia in the LNT. The performance features of SCR on both model and commercial catalysts focused on the synergy between the LNT and SCR converters in terms of utilizing the upstream-generated ammonia and alternative reductants such as propylene, representing the hydrocarbon component of diesel exhaust. First-principle models of the LNT and SCR converters, which utilized the mechanistic-based kinetics and realistic treatments of the flow and transport processes, in combination with bench-scale reactor experiments helped to identify the best designs for combining the NSR and SCR catalysts over a range of operating conditions encountered in practice. This included catalysts having multiple zones and layers and additives with the focus on determining the minimal precious metal component needed to meet emission abatement targets over a wide range of operating conditions. The findings from this study provide diesel vehicle and catalyst companies valuable information to develop more cost effective diesel emissions catalysts which helps to expand the use of more fuel efficient diesel power. The fundamental modeling and experimental tools and findings from this project can be applied to catalyst technologies used in the energy and chemical industries. Finally, the project also led to training of several doctoral students who were placed in research jobs in industry and academia.

Harold, Michael; Crocker, Mark; Balakotaiah, Vemuri; Luss, Dan; Choi, Jae-Soon; Dearth, Mark; McCabe, Bob; Theis, Joe

2013-09-30T23:59:59.000Z

325

Abdel-Aziz, A. and H.C. Frey, "Quantification of Hourly Variability in Hourly Activity and NOx Emissions for Baseload Coal-Fired Power Plants," Proceedings, Annual Meeting of the Air & Waste Management Association, Pittsburgh, PA, June 2003  

E-Print Network [OSTI]

Emissions for Baseload Coal- Fired Power Plants," Proceedings, Annual Meeting of the Air & Waste Management emission factors from coal-fired power plants vary over time due to variation in coal composition fed or to evaluate the variability of NOx emission rates for coal-fired power plants of the 100 largest electric

Frey, H. Christopher

326

Reduced Rank Models for Contingency Tables  

E-Print Network [OSTI]

Solution problem 73-14, Rank factorization of nonnegativein Great Britain Reduced rank models for contingency tablesclass analysis; Reduced rank models. 1. INTRODUCTION In

Jan de Leeuw; Peter van der Heijden

2011-01-01T23:59:59.000Z

327

Reduced vibration motor winding arrangement  

DOE Patents [OSTI]

An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

1997-11-11T23:59:59.000Z

328

The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS  

SciTech Connect (OSTI)

Life Cycle Assessment (LCA) should be used to assist carbon capture and sequestration (CCS) planners to reduce greenhouse gas (GHG) emissions and avoid unintended environmental trade-offs. LCA is an analytical framework for determining environmental impacts resulting from processes, products, and services. All life cycle stages are evaluated including raw material sourcing, processing, operation, maintenance, and component end-of-life, as well as intermediate stages such as transportation. In recent years a growing number of LCA studies have analyzed CCS systems. We reviewed 50+ LCA studies, and selected 11 studies that compared the environmental performance of 23 electric power plants with and without CCS. Here we summarize and interpret the findings of these studies. Regarding overall climatemitigation effectiveness of CCS, we distinguish between the capture percentage of carbon in the fuels, the net carbon dioxide (CO2) emission reduction, and the net GHG emission reduction. We also identify trade-offs between the climate benefits and the potential increased non-climate impacts of CCS. Emissions of non-CO2 flue gases such as NOx may increase due to the greater throughput of fuel, and toxicity issues may arise due to the use of monoethanolamine (MEA) capture solvent, resulting in ecological and human health impacts. We discuss areas where improvements in LCA data or methods are needed. The decision to implement CCS should be based on knowledge of the overall environmental impacts of the technologies, not just their carbon capture effectiveness. LCA will be an important tool in providing that knowledge.

Sathre, Roger; Masanet, Eric; Cain, Jennifer; Chester, Mikhail

2011-04-20T23:59:59.000Z

329

Biomarker Response to Galactic Cosmic Ray-Induced NOx and the Methane Greenhouse Effect in the Atmosphere of an Earthlike Planet Orbiting an M-Dwarf Star  

E-Print Network [OSTI]

Planets orbiting in the habitable zone (HZ) of M-Dwarf stars are subject to high levels of galactic cosmic rays (GCRs) which produce nitrogen oxides in earthlike atmospheres. We investigate to what extent this NOx may modify biomarker compounds such as ozone (O3) and nitrous oxide (N2O), as well as related compounds such as water (H2O) (essential for life) and methane (CH4) (which has both abiotic and biotic sources) . Our model results suggest that such signals are robust, changing in the M-star world atmospheric column by up to 20% due to the GCR NOx effects compared to an M-star run without GCR effects and can therefore survive at least the effects of galactic cosmic rays. We have not however investigated stellar cosmic rays here. CH4 levels are about 10 times higher than on the Earth related to a lowering in hydroxyl (OH) in response to changes in UV. The increase is less than reported in previous studies. This difference arose partly because we used different biogenic input. For example, we employed 23% lower CH4 fluxes compared to those studies. Unlike on the Earth, relatively modest changes in these fluxes can lead to larger changes in the concentrations of biomarker and related species on the M-star world. We calculate a CH4 greenhouse heating effect of up to 4K. O3 photochemistry in terms of the smog mechanism and the catalytic loss cycles on the M-star world differs considerably compared with the Earth.

John Lee Grenfell; Jean-Mathias Griessmeier; Beate Patzer; Heike Rauer; Antigona Segura; Anja Stadelmann; Barbara Stracke; Ruth Titz; Philip von Paris

2007-02-23T23:59:59.000Z

330

Selective catalytic reduction system and process for treating NOx emissions using a zinc or titanium promoted palladium-zirconium catalyst  

SciTech Connect (OSTI)

A process and system (18) for reducing NO.sub.x in a gas using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream (29) with a catalyst system (38) comprising sulfated zirconia washcoat particles (41), palladium, a pre-sulfated zirconia binder (44), and a promoter (45) comprising at least one of titanium, zinc, or a mixture thereof. The presence of zinc or titanium increases the resistance of the catalyst system to a sulfur and water-containing gas stream.

Sobolevskiy, Anatoly (Orlando, FL); Rossin, Joseph A. (Columbus, OH); Knapke, Michael J. (Columbus, OH)

2011-08-02T23:59:59.000Z

331

Reduced models for quantum gravity  

E-Print Network [OSTI]

The preceding talks given at this conference have dealt mainly with general ideas for, main problems of and techniques for the task of quantizing gravity canonically. Since one of the major motivations to arrange for this meeting was that it should serve as a beginner's introduction to canonical quantum gravity, we regard it as important to demonstrate the usefulness of the formalism by means of applying it to simplified models of quantum gravity, here formulated in terms of Ashtekar's new variables. From the various, completely solvable, models that have been discussed in the literature we choose those that we consider as most suitable for our pedagogical reasons, namely 2+1 gravity and the spherically symmetric model. The former model arises from a dimensional, the latter from a Killing reduction of full 3+1 gravity. While 2+1 gravity is usually treated in terms of closed topologies without boundary of the initial data hypersurface, the toplogy for the spherically symmetric system is chosen to be asymptotically flat. Finally, 2+1 gravity is more suitably quantized using the loop representation while spherically symmetric gravity is easier to quantize via the self-dual representation. Accordingly, both types of reductions, both types of topologies and both types of representations that are mainly employed in the literature in the context of the new variables come into practice. What makes the discussion especially clear is the fact that for both models the reduced phase space turns out to be finitely dimensional.

T. Thiemann

1999-10-04T23:59:59.000Z

332

Optimizing MapReduce for Multicore Architectures  

E-Print Network [OSTI]

MapReduce is a programming model for data-parallel programs originally intended for data centers. MapReduce simplifies parallel programming, hiding synchronization and task management. These properties make it a promising ...

Kaashoek, Frans

2010-05-02T23:59:59.000Z

333

Significantly reduce maintenance time Documents&Mediabecomesthekey  

E-Print Network [OSTI]

Significantly reduce maintenance time ∑ Documents&Mediabecomesthekey contactforallmaintenanceneeds. ∑ MajorpartsarestoredbyDocuments& MediaattheMissionCenter.Thisreduces thetimeneededtoorderpartsandresultsin&Mediaoffersthecampus communityaconvenientandeconomicsolution foritscopiers,multifunctiondevicesandprinter needs. Print Management Program advantages Reduce

Mullins, Dyche

334

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

to the manufacturer . Replaced with energy efficient light emitting diode (LED) signs. Project reduced risk of tritium

335

Reducing the Energy Usage of Oce Applications  

E-Print Network [OSTI]

Reducing the Energy Usage of O∆ce Applications Jason Flinn 1 , Eyal de Lara 2 , M. Satyanarayanan 1 of the energy usage of Microsoft's PowerPoint application and show that adaptive policies can reduce energy research e#11;ort, no silver bullet for reducing energy usage has yet been found. Instead, a comprehensive

Flinn, Jason

336

Kinetics of the reaction of iron blast furnace slag/hydrated lime sorbents with SO{sub 2} at low temperatures: effects of the presence of CO{sub 2}, O{sub 2}, and NOx  

SciTech Connect (OSTI)

The effects of the presence of CO{sub 2}, O{sub 2}, and NOx in the flue gas on the kinetics of the sulfation of blast furnace slag/hydrated lime sorbents at low temperatures were studied using a differential fixed-bed reactor. When O{sub 2} and NOx were not present simultaneously, the reaction kinetics was about the same as that under the gas mixtures containing SO{sub 2}, H{sub 2}O, and N{sub 2} only, being affected mainly by the relative humidity. The sulfation of sorbents can be described by the surface coverage model and the model equations derived for the latter case. When both O{sub 2} and NOx, were present, the sulfation of sorbents was greatly enhanced, forming a great amount of sulfate in addition to sulfite. The surface coverage model is still valid in this case, but the model equations obtained show a more marked effect of relative humidity and negligible effects of SO{sub 2} concentration and temperature on the reaction. The effect of sorbent composition on the reaction kinetics was entirely represented by the effects of the initial specific surface area (S{sub g0}) and the Ca molar content (M{sup -1}) of sorbent. The initial conversion rate of sorbent increased linearly with increasing S{sub g0}, and the ultimate conversion increased linearly with increasing S{sub g0}M{sup -1}. The model equations obtained in this work are applicable to describe the kinetics of the sulfation of the sorbents in the low-temperature dry and semidry fine gas desulfurization processes either with an upstream NOx, removal unit or without.111

Liu, C.F.; Shih, S.M. [Industrial Technological Research Institute, Hsinchu (Taiwan)

2009-09-15T23:59:59.000Z

337

Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler; a DOE Assessment  

SciTech Connect (OSTI)

The results from the GR-LNB technology demonstrated by EER at Cherokee Station approached, but did not meet, the CCT project's performance objectives. Acceptable unit operability was achieved with both the GR and the LNB components. The gas reburning component of the process appears to be broadly applicable for retrofit NO{sub x} control to most utility boilers and, in particular, to wet-bottom cyclone boilers, which are high NO{sub x} emitters and are difficult to control (LNB technology is not applicable to cyclone boilers). GR-LNB can reduce NO{sub x} to mandated emissions levels under Title IV of the CAAA without significant, adverse boiler impacts. The GR-LNB process may be applicable to boilers significantly larger than the demonstration unit, provided there is adequate dispersion and mixing of injected natural gas. Major results of the demonstration project are summarized as follows: NO{sub x}-emissions reductions averaging 64% were achieved with 12.5% gas heat input in long-term tests on a 158-MWe (net) wall-fired unit. The target reduction level of 70% was achieved only on a short-term basis with higher gas consumption. The thermal performance of coal-fired boilers is not significantly affected by GR-LNB. Convective section steam temperatures can be controlled within acceptable limits. Thermal efficiency is decreased by a small amount (about 0.8%), because of increased dry gas loss and higher moisture in the flue gas as a result of the GR process. Furnace slagging and convective section fouling can be adequately controlled. Because of the higher hydrogen/carbon (H/C) ratio of natural gas compared with coal, use of the GR process results in a modest reduction in CO{sub 2} emissions. SO{sub 2} and particulate emissions are reduced in direct proportion to the fraction of heat supplied by natural gas.

National Energy Technology Laboratory

2001-02-28T23:59:59.000Z

338

Catalytic hydrolysis of urea with fly ash for generation of ammonia in a batch reactor for flue gas conditioning and NOx reduction  

SciTech Connect (OSTI)

Ammonia is a highly volatile noxious material with adverse physiological effects, which become intolerable even at very low concentrations and present substantial environmental and operating hazards and risk. Yet ammonia has long been known to be used for feedstock of flue gas conditioning and NOx reduction. Urea as the source of ammonia for the production of ammonia has the obvious advantages that no ammonia shipping, handling, and storage is required. The process of this invention minimizes the risks and hazards associated with the transport, storage, and use of anhydrous and aqueous ammonia. Yet no such rapid urea conversion process is available as per requirement of high conversion in shorter time, so here we study the catalytic hydrolysis of urea for fast conversion in a batch reactor. The catalyst used in this study is fly ash, a waste material originating in great amounts in combustion processes. A number of experiments were carried out in a batch reactor at different catalytic doses, temperatures, times, and at a constant concentration of urea solution 10% by weight, and equilibrium and kinetic studies have been made.

Sahu, J.N.; Gangadharan, P.; Patwardhan, A.V.; Meikap, B.C. [Indian Institute of Technology, Kharagpur (India). Dept. of Chemical Engineering

2009-01-15T23:59:59.000Z

339

Urban Design to Reduce Automobile Dependence  

E-Print Network [OSTI]

transport energy and area of the city, but in terms oftransport energy (reduce the area for the city, i.e. ,

Newman, Peter; Kenworthy, Jeffrey

2006-01-01T23:59:59.000Z

340

Reducing Petroleum Despendence in California: Uncertainties About...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Petroleum Despendence in California: Uncertainties About Light-Duty Diesel Reducing Petroleum Despendence in California: Uncertainties About Light-Duty Diesel 2002 DEER Conference...

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Reducing Emissions Through Sustainable Transport: Proposal for...  

Open Energy Info (EERE)

Through Sustainable Transport: Proposal for a Sectoral Approach Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Reducing Emissions Through Sustainable Transport:...

342

Combustion with reduced carbon in the ash  

DOE Patents [OSTI]

Combustion of coal in which oxygen is injected into the coal as it emerges from burner produces ash having reduced amounts of carbon.

Kobayashi, Hisashi; Bool III, Lawrence E.

2005-12-27T23:59:59.000Z

343

An optimizing reduced order FDS for the tropical Pacific Ocean reduced gravity model  

E-Print Network [OSTI]

An optimizing reduced order FDS for the tropical Pacific Ocean reduced gravity model Zhendong Luoa) for the tropical Pacific Ocean reduced gravity model. Ensembles of data are compiled from transient solutions computed from the discrete equation system derived by FDS for the tropical Pacific Ocean reduced gravity

Aluffi, Paolo

344

Eliminating air heater plugging and corrosion caused by SCR/SNCR systems for NOx control on coal-fired boilers  

SciTech Connect (OSTI)

In a typical coal-fired power plant the rotary regenerative air heater is responsible for 5-10% of the boiler's total efficiency. The three biggest threats to air heater performance deterioration are corrosion of the heat exchange surfaces, plugging, and air heater leakage through the seals. The article concentrates on the vastly increased level of corrosion and plugging issues associated with installing selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) systems for controlling nitrogen oxide emissions. Some injected ammonia in the SCR process reacts with SO{sub 2} to form ammonium sulphate and bisulphate (ABS) which is deposited on the air heater element surfaces. This can be overcome by applying coatings, using corrosion-resistant steels, reconfiguring the air heaters to a two layer design, improving air heater blowers, improving technologies for removing ammonia 'slip' before it enters the air heater, and using new catalysts that reduce the oxidation of SO{sub 2} to SO{sub 3}. 4 figs.

Guffre, J. [Paragon Airheater Technologies (United States)

2007-10-15T23:59:59.000Z

345

Conservation Cores: Reducing the Energy of  

E-Print Network [OSTI]

1 Conservation Cores: Reducing the Energy of Mature Computations Ganesh Venkatesh, Jack Sampson! Dark Silicon #12;9 Conservation Cores Specialized cores for reducing energy ­ Automatically generated Conservation Core Architecture & Synthesis Patchable Hardware Results Conclusions #12;12 Constructing a C

Wang, Deli

346

Identify the Problem: Reduce Waste By  

E-Print Network [OSTI]

aims to reduce waste by banning plastic bags in light of the California state law AB 2449 which Primary energy Plastic uses 23% less Paper uses 80% less Solid waste Plastic contributes 76% less AbioticIdentify the Problem: Reduce Waste By Banning Plastic Bag Use Define Goal: Is the ban the most

Iglesia, Enrique

347

Reducing nitrogen oxides emissions from the combustion of LCV gas staged firing  

E-Print Network [OSTI]

by fluidized bed gasification at temperatures below the 1090 K (1500 F) ash fusion temperatur es. Subsequent burning of the LCV gas r esulted in the same type of severe slagging, fouling, and cor r osion pr oblems as wer e encounter ed dur ing combustion... concentrations during fuel rich combustion, can also fix N2 to give CN and HCN (Fenimore, 1971), thus contributing to the amount of fixed nitrogen available for the fuel NOx path. NOx formed by this path, suggested by Fenimore (1971), is known as "prompt...

Finch, Stanley Frank

1986-01-01T23:59:59.000Z

348

Near-Zero Emissions Oxy-Combustion Flue Gas Purification  

SciTech Connect (OSTI)

The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plants burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by-product sulfuric and nitric acids that meet the commercial product specifications. The sulfuric acid will have to be disposed of by neutralization, thus lowering the value of the technology to same level as that of the activated carbon process. Therefore, it was decided to discontinue any further efforts on sulfuric acid process. Because of encouraging results on the activated carbon process, it was decided to add a new subtask on testing this process in a dual bed continuous unit. A 40 days long continuous operation test confirmed the excellent SOx/NOx removal efficiencies achieved in the batch operation. This test also indicated the need for further efforts on optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level. The VPSA process was tested in a pilot unit. It achieved CO{sub 2} recovery of > 95% and CO{sub 2} purity of >80% (by vol.) from simulated cold box feed streams. The overall CO{sub 2} recovery from the cold box VPSA hybrid process was projected to be >99% for plants with low air ingress (2%) and >97% for plants with high air ingress (10%). Economic analysis was performed to assess value of the NZE CPU. The advantage of NZE CPU over conventional CPU is only apparent when CO{sub 2} capture and avoided costs are compared. For greenfield plants, cost of avoided CO{sub 2} and cost of captured CO{sub 2} are generally about 11-14% lower using the NZE CPU compared to using a conventional CPU. For older plants with high air intrusion, the cost of avoided CO{sub 2} and capture CO{sub 2} are about 18-24% lower using the NZE CPU. Lower capture costs for NZE CPU are due to lower capital investment in FGD/SCR and higher CO{sub 2} capture efficiency. In summary, as a result of this project, we now have developed one technology option for NZE CPU based on the activated carbon process and coldbox-VPSA hybrid process. This technology is projected to work for both low and high sulfur coal plants. The NZE CPU technology is projected to achieve near zero stack emissions

Minish Shah; Nich Degenstein; Monica Zanfir; Rahul Solunke; Ravi Kumar; Jennifer Bugayong; Ken Burgers

2012-06-30T23:59:59.000Z

349

Healthy habits: reducing our carbon footprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy or creating waste? Big changes for a smaller carbon footprint and less pollution The Lab is working to reduce emissions by nearly 30 percent from energy use in...

350

Reducing Safety Flaring through Advanced Control  

E-Print Network [OSTI]

An advanced process control application, using DMCplusģ (Aspen Technology, Inc.), was developed to substantially reduce fuel gas losses to the flare at a large integrated refining / petrochemical complex. Fluctuations in internal fuel gas system...

Hokanson, D.; Lehman, K.; Matsumoto, S.; Takai, N.; Takase, F.

2010-01-01T23:59:59.000Z

351

How to Reduce Energy Supply Costs  

E-Print Network [OSTI]

Rising energy costs have many businesses looking for creative ways to reduce their energy usage and lower the costs of energy delivered to their facilities. This paper explores innovative renewable and alternative energy technologies that can help...

Swanson, G.

2007-01-01T23:59:59.000Z

352

Continuous Improvement Energy Projects Reduce Energy Consumption  

E-Print Network [OSTI]

Continuous Improvement Energy Projects Reduce Energy Consumption Eric Niemeyer, Operations Superintendent Drilling Specialties Company A division of Chevron Phillips Chemical Company LP ESL-IE-14-05-31 Proceedings of the Thrity...

Niemeyer, E.

2014-01-01T23:59:59.000Z

353

Examples of Process Modifications that Reduce Waste  

E-Print Network [OSTI]

The ideal approach to reducing or eliminating waste products is to avoid making them in the first place. This article will examine numerous process modifications that have accomplished that goal. We'll look at changes to raw materials, reactors...

Nelson, K. E.

354

Process for reducing aqueous nitrate to ammonia  

DOE Patents [OSTI]

Powdered aluminum is added to a nitrate-containing alkaline, aqueous solution to reduce the nitrate and/or nitrite to ammonia and co-produce a sinterable ceramic product.

Mattus, Alfred J. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

355

Swimming Upstream: How to Reduce Homelessness in  

E-Print Network [OSTI]

Swimming Upstream: How to Reduce Homelessness in Tempe's Emerging Urban Setting David V. Summers will be served) Wrigley Hall, Room 481 RSVP link: Download any free QR-Code reader app to your smart phone. Scan

Zhang, Junshan

356

Technologies for Reducing Nutrients in Dairy Effluent  

E-Print Network [OSTI]

on the amount of phosphorus that the river can accept safely. These limits, or total maximum daily loads (TMDLs), require that annual loading and annual average soluble concentrations of phosphorus in the river be reduced by 50 percent. To meet these new... standards, phosphorus must be reduced from dairy effluent applied to waste application fields. Consequently, dairies will need to adopt new, more effective and more efficient waste management practices. Case studies were conducted on a Geotube ? de...

Mukhtar, Saqib; Wagner, Kevin; Gregory, Lucas

2007-01-31T23:59:59.000Z

357

A reduced Blade-Vortex Interaction rotor  

E-Print Network [OSTI]

A REDUCED BLADE - VORTEX INTERACTION ROTOR A Thesis by SOMNATH MANI . Submitted to the Offic of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1996 Major... Subject: Aerospace Engineering A REDUCED BLADE - VORTEX INTERACTION ROTOR A Thesis by SOMNATH MANI Submitted to Texas A@M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content...

Mani, Somnath

2012-06-07T23:59:59.000Z

358

Fitting Reduced Rank Regression Models by Alternating Maximum Likelihoods  

E-Print Network [OSTI]

Fitting longitudinal reduced rank regression models byA J . (1965). Reduced-rank regression for the multivariateFITTING LONGITUDINAL REDUCED RANK REGRESSION MODELS BY

Jan de Leeuw

2011-01-01T23:59:59.000Z

359

Process for reducing beta activity in uranium  

DOE Patents [OSTI]

This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

Briggs, Gifford G. (Cincinnatti, OH); Kato, Takeo R. (Cincinnatti, OH); Schonegg, Edward (Cleves, OH)

1986-01-01T23:59:59.000Z

360

Process for reducing beta activity in uranium  

DOE Patents [OSTI]

This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed. 5 tabs.

Briggs, G.G.; Kato, T.R.; Schonegg, E.

1985-04-11T23:59:59.000Z

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alternatives for reducing hot-water bills  

SciTech Connect (OSTI)

A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)

Bennington, G.E.; Spewak, P.C.

1981-06-01T23:59:59.000Z

362

Infrared photoemitting diode having reduced work function  

DOE Patents [OSTI]

In electro-optical detectors which include as elements a photoemitting photocathode and anode, a photoemitting diode is fabricated which lowers the diode's work function, thus reducing the cooling requirement typically needed for this type of device. The work function is reduced by sandwiching between the photocathode and anode a liquid meidum of the formula NR/sub 3/ and having an electron affinity for the electrons of the photocathode, which liquid medium permits free electrons leaving the photocathode to remain as stable solvated species in the liquid medium. Thus, highly light-absorbent, and therefore thin, metallic layers can be used for detection, thereby reducing dark current at a given temperature, with a consequent reduction in cooling requirements at constant detector performance.

Hirschfeld, T.B.

1982-05-06T23:59:59.000Z

363

Reduced Basis Method for Nanodevices Simulation  

SciTech Connect (OSTI)

Ballistic transport simulation in nanodevices, which involves self-consistently solving a coupled Schrodinger-Poisson system of equations, is usually computationally intensive. Here, we propose coupling the reduced basis method with the subband decomposition method to improve the overall efficiency of the simulation. By exploiting a posteriori error estimation procedure and greedy sampling algorithm, we are able to design an algorithm where the computational cost is reduced significantly. In addition, the computational cost only grows marginally with the number of grid points in the confined direction.

Pau, George Shu Heng

2008-05-23T23:59:59.000Z

364

Reducing Regulatory Burden | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |Rebecca MatulkaDeliveryUpdatedRFI ReducingBurden Reducing

365

Reducing Power Factor Cost | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |Reducing LED Costs ThroughReducing Power

366

Reducing Regulatory Burden | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof EnergyReducing PeakReducing

367

Ceramatec NOx Sensor and NOx Catalyst Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day with Secretary ChuEnergyDearborn

368

NOx Adsorber (Lean NOx Trap) Fundamentals (Agreement #10049 - PNNL Project  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department ofMovingJanuary1 | EnergyFactFluor#47120) |

369

Combination process for upgrading reduced crude  

SciTech Connect (OSTI)

A reduced crude conversion process is described for heavy oil feeds having Conradson carbon numbers above two, which process comprises contacting a heavy oil feed with a catalyst to form products comprising lower molecular weight hydrocarbons and coke-on-catalyst, the coke containing minor amounts of hydrogen, and thereafter regenerating the catalyst by removing at least a portion of the coke.

Hettinger, W.P. Jr.

1986-07-15T23:59:59.000Z

370

Reduced models of algae growth Heikki Haario,  

E-Print Network [OSTI]

Reduced models of algae growth Heikki Haario, Leonid Kalachev Marko Laine, Lappeenranta University of the phenomena studied. Here, in the case of algae growth modelling, we show how a systematic model reduction may: Algae growth modelling, asymptotic methods, model reduction, MCMC, Adaptive Markov chain Monte Carlo. 1

Bardsley, John

371

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

Fuel oil and Turkey Based Biofuel Energy Rocovery 12,000 Industrial Waste $30,000 $500 $29,500 1500WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2006 WASTE TYPE DESCRIPTION DETAILS * Aerosol Can Disposal System Recycling 528 66 pounds of hazardous waste per unit $7

372

Light gas gun with reduced timing jitter  

DOE Patents [OSTI]

Gas gun with reduced timing jitter is disclosed. A gas gun having a prepressurized projectile held in place with a glass rod in compression is described. The glass rod is destroyed with an explosive at a precise time which allows a restraining pin to be moved and free the projectile. 4 figs.

Laabs, G.W.; Funk, D.J.; Asay, B.W.

1998-06-09T23:59:59.000Z

373

Projection screen having reduced ambient light scattering  

DOE Patents [OSTI]

An apparatus and method for improving the contrast between incident projected light and ambient light reflected from a projection screen are described. The efficiency of the projection screen for reflection of the projected light remains high, while permitting the projection screen to be utilized in a brightly lighted room. Light power requirements from the projection system utilized may be reduced.

Sweatt, William C. (Albuquerque, NM)

2010-05-11T23:59:59.000Z

374

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2004 WASTE TYPE Brake Cleaner Recycling System Mercury Utility Devices Substitution 60 Hazardous Waste $1,750 $2,500 $1 of one PCB spill and clean-up event. Organic Solvents Substitution 678 Hazardous Waste $1,355 $36,500 $26

375

Kittiwakes strategically reduce investment in replacement clutches  

E-Print Network [OSTI]

Kittiwakes strategically reduce investment in replacement clutches Julien Gasparini1,*, Alexandre). In birds, egg production is lower in replacement clutches than in first clutches, but it is unknown whether the replacement clutch is produced) or from a strategic allocation of resources between the two breeding attempts

Alvarez, Nadir

376

Reduced crude processing with Ashland's RCC process  

SciTech Connect (OSTI)

Ashland Oil has long recognized the need to improve the process for the direct conversion of residual feedstocks into transportation fuels and other lighter products. The reduced crude oil conversion (RCC) unit now under construction at the Catlettsburg, Kentucky, refinery was developed to meet these demands. The facility incorporates RCC process innovations and recent catalyst technology improvements, and provides increased operating flexibility. Heavier, higher-sulfur crude oils can be processed under several economically attractive scenarios. They allow for an excellent balance between the production of transportation fuels, and reduced amounts of heavy fractions. An outstanding feature of the RCC process is the highoctane quality of full-boiling-range gasoline that results when converting residual feedstocks.

Zandona, O.J.; Busch, L.E.; Hettinger, W.P.

1982-05-01T23:59:59.000Z

377

Reduced activation ferritic alloys for fusion  

SciTech Connect (OSTI)

Reduced activation martensitic alloys can now be developed with properties similar to commercial counterparts, and oxide dispersion strengthened alloys are under consideration. However, low chromium Bainitic alloys with vanadium additions undergo severe irradiation hardening at low irradiation temperatures and excessive softening at high temperatures, resulting in a very restricted application window. Manganese additions result in excessive embrittlement, as demonstrated by post-irradiation Charpy impact testing. The best composition range for martensitic alloys appears to be 7 to 9 Cr and 2 W, with swelling of minor concern and low temperature irradiation embrittlement perhaps eliminated. Therefore, reduced activation martensitic steels in the 7 to 9 Cr range should be considered leading contenders for structural materials applications in power-producing fusion machines.

Gelles, D.S. [Pacific Northwest Lab., Richland, VA (United States)

1992-12-31T23:59:59.000Z

378

Quantum cryptographic system with reduced data loss  

DOE Patents [OSTI]

A secure method for distributing a random cryptographic key with reduced data loss is disclosed. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically. 23 figs.

Lo, H.K.; Chau, H.F.

1998-03-24T23:59:59.000Z

379

Soft torque rotary system reduces drillstring failures  

SciTech Connect (OSTI)

This paper reports that the use of the soft torque system has significantly reduced torque fluctuations (up to 80%), torsional drillstring vibrations, and bit slip-stick conditions to help reduce drillstring failures and improve penetration rates in deep directional wells. The system was instrumental in eliminating expensive ($5-10 million) drillstring failures on Well SL 531 No. 3, a complex directional well in Mobile Bay. The soft torque rotary system attenuates and interrupts the torsional oscillations of the drillstring and thus prevents the buildup of energy in torsional waves that are reflected back and forth between the bit and the rotary table. The soft torque rotary system can be installed on any rig equipped with an independent electronically driven rotary table or top drive. The system is relatively inexpensive and easy to install.

Javanmardi, K.; Gaspard, D. (Shell Offshore Inc., New Orleans, LA (United States))

1992-10-12T23:59:59.000Z

380

Methods of reducing vehicle aerodynamic drag  

SciTech Connect (OSTI)

A small scale model (length 1710 mm) of General Motor SUV was built and tested in the wind tunnel for expected wind conditions and road clearance. Two passive devices, rear screen which is plate behind the car and rear fairing where the end of the car is aerodynamically extended, were incorporated in the model and tested in the wind tunnel for different wind conditions. The conclusion is that rear screen could reduce drag up to 6.5% and rear fairing can reduce the drag by 26%. There were additional tests for front edging and rear vortex generators. The results for drag reduction were mixed. It should be noted that there are aesthetic and practical considerations that may allow only partial implementation of these or any drag reduction options.

Sirenko V.; Rohatgi U.

2012-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Device for reducing vehicle aerodynamic resistance  

DOE Patents [OSTI]

A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular body disposed above rear wheels, comprising a plurality of load bearing struts attached to the bottom of the rectangular body adjacent its sides, a plurality of opposing flat sheets attached to the load bearing struts, and angled flaps attached to the lower edge of the opposing sheets defining an obtuse angle with the opposing flat sheets extending inwardly with respect to the sides of the rectangular body to a predetermined height above the ground, which, stiffen the opposing flat sheets, bend to resist damage when struck by the ground, and guide airflow around the rear wheels of the vehicle to reduce its aerodynamic resistance when moving.

Graham, Sean C.

2006-08-22T23:59:59.000Z

382

Quantum cryptographic system with reduced data loss  

DOE Patents [OSTI]

A secure method for distributing a random cryptographic key with reduced data loss. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically.

Lo, Hoi-Kwong (1309, Low Block, Lei Moon House Ap Lei Chau Estate, Hong Kong, HK); Chau, Hoi Fung (Flat C, 42nd Floor, Tower 1, University Heights 23 Pokfield Road, Pokfulam, Hong Kong, HK)

1998-01-01T23:59:59.000Z

383

Renewable Energy Can Help Reduce Oil Dependency  

ScienceCinema (OSTI)

In a speech to the Economic Club of Kansas City on June 23, 2010, NREL Director Dan Arvizu takes a realistic look at how renewable energy can help reduce America's dependence on oil, pointing out that the country gets as much energy from renewable sources now as it does from offshore oil production. For a transcript, visit http://www.nrel.gov/director/pdfs/energy_overview_06_10.pdf

Arvizu, Dan

2013-05-29T23:59:59.000Z

384

Reduce Steam Trap Failures at Chambers Works  

E-Print Network [OSTI]

Ultrasonic Inspection At least 2 times per year Steam Trap Surveyor Submit reports to area management, energy team, and reliability engineers for each area every month Steam Trap Team Leader Control Plan ? Process Owner agrees...Reduce Steam Trap Failures at Chambers Works GB/BB Name: Cyndi Kouba Mentor/MBB: Andrew Degraff Team Members Michael Crowley(Site Energy Lead), (Charlie) Flanigan (Aramids-maintenance), Ben Snyder (Aramids-ATO), Michael Scruggs (Central...

Kouba, C.

385

Reduce generating costs and eliminate brownouts  

SciTech Connect (OSTI)

Improving the manoeuverability of a coal-fired plant to allow it to participate in primary frequency support will reduce generation cost and minimize brownouts. The challenge is to do so without compromising efficiency or emissions. This article describes an approach - activation of stored energy - that is cost-effective and applicable to both greenfield and brownfield installations. It requires a new control philosophy, plus the correct application of new level and flow measurement 'best practices'. 4 refs., 1 tab.

Nogaja, R.; Menezes, M. [Emerson Process Management (United States)

2007-06-15T23:59:59.000Z

386

Method for reducing ignition delay of fuels  

SciTech Connect (OSTI)

A method of reducing ignition delay /tau/, of fuels to negligible values and negligible differences is disclosed. Fuels conditioned to have such negligible values and differences are readily used in multiple fuel engines, such fuels self-ignite substantially instantaneously when injected into an oxidant, require substantially no heat transfer from the oxidant to effect the self-ignition, and the self-ignition is sufficient to sustain continued combustion.

Hoppie, L.O.

1984-05-15T23:59:59.000Z

387

Device for reducing vehicle aerodynamic resistance  

DOE Patents [OSTI]

A device for a vehicle with a pair of swinging rear doors, which converts flat sheets of pliable material hinged to the sides of the vehicle adjacent the rear thereof into effective curved airfoils that reduce the aerodynamic resistance of the vehicle, when the doors are closed by hand, utilizing a plurality of stiffeners disposed generally parallel to the doors and affixed to the sheets and a plurality of collapsible tension bearings struts attached to each stiffener and the adjacent door.

Graham, Sean C.

2005-02-15T23:59:59.000Z

388

Reducing Your Electricity Use | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles ¬ĽExchangeDepartment ofManagementManagementReduce Hot Water Use

389

Reducing emissions by addressing steam turbine inefficiencies  

SciTech Connect (OSTI)

This paper reports that inefficient steam turbines increase fossil plant emissions because additional fuel must be burned to meet the power output requirements. During a turbine outage, plant performance and maintenance staff make and prioritize repair decisions within tight time and budget constraints. This paper describes how Georgia Power identifies performance losses of degraded components in the steam path and determines their impact on heat rate. Turbine performance is assessed by a steam path audit program that Encotech has developed and make available to utilities. Georgia Power has conducted several operating tests that give good correlation with audit results. Georgia Power uses the audit information to make the most cost-effective repairs to maintain a low heat rate and to reduce emissions. The Clean Air Act presents electric utilities with the challenge of reducing emissions from fossil plants in the most cost-effective way possible. Meeting the stack emissions limitations often translates to large capital expenditures and increased cycle heat rate. One resource the electric utilities have to reduce the costly impact of compliance with the Clean Air Act is control over the efficiency of their steam turbines.

Harris, J.C. (Georgia Power Co., Atlanta, GA (United States)); Cioffi, D.H. (Encotech, Inc., Schenectady, NY (United States))

1992-01-01T23:59:59.000Z

390

Development of reduced crude cracking catalysts  

SciTech Connect (OSTI)

In 1974 OPEC imposed an embargo on oil to the United States and caused a rapid rise in the price of a barrel of oil. At the time of the embargo, Ashland imported a considerable portion of its oil from the Middle East, thus raising the question of oil availability. As the problem increased in severity, Messrs. George Meyer, Oliver Zandona and Llyod Busch, began to explore alternative ways of squeezing more product from a given barrel of crude. After considering many alternatives, they arrived at the innovative thought that it might be possible to catalytically crack the 1050{degree}F plus fraction of the barrel directly to gasoline which would in effect, give them an additional volume of crude oil. Also, if vacuum fractionation were eliminated and if the entire 650{degree}F plus (reduced crude) portion of the barrel processed, this would further reduce operating costs. With these objectives and some new process innovations in mind, they began reduced crude cracking experimentation in a small 12,000 B/D FCC operating unit at Louisville. It was from these goals, concepts and a small operating unit, that the RCC process was born.

Hettinger, W.P. Jr. (Ashland Petroleum Company, KY (USA))

1987-08-01T23:59:59.000Z

391

Universal decay rule for reduced widths  

SciTech Connect (OSTI)

Emission processes including {alpha} decay, heavy cluster decay, and proton and di-proton emission are analyzed in terms of the well-known factorization between the penetrability and the reduced width. By using a shifted harmonic oscillator plus Coulomb cluster-daughter interaction it is possible to derive a linear relation between the logarithm of the reduced width squared and the fragmentation potential, defined as the difference between the Coulomb barrier and the Q value. This relation is fulfilled with a good accuracy for transitions between ground states, as well as for most {alpha} decays to low-lying 2{sup +} excited states. The well-known Viola-Seaborg rule, connecting half-lives with the Coulomb parameter and the product between fragment charge numbers, as well as the Blendowske scaling rule, connecting the spectroscopic factor with the mass number of the emitted cluster, can be easily understood in terms of the fragmentation potential. It is shown that the recently evidenced two regions in the dependence of reduced proton half-lives versus the Coulomb parameter are directly connected with the corresponding regions of the fragmentation potential.

Delion, D. S. [Horia Hulubei National Institute of Physics and Nuclear Engineering, 407 Atomistilor, Bucharest-Magurele 077125 (Romania) and Academy of Romanian Scientists, 54 Splaiul Independentei, Bucharest 050094 (Romania)

2009-08-15T23:59:59.000Z

392

Turn Your Key, Be Idle Free | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

sulfur (SOx). These pollutants worsen cardiovascular and respiratory problems, such as heart disease, asthma, and bronchitis. It is particularly important to reduce diesel...

393

Zigzag laser with reduced optical distortion  

DOE Patents [OSTI]

The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends. 11 figures.

Albrecht, G.F.; Comaskey, B.; Sutton, S.B.

1994-04-19T23:59:59.000Z

394

Zigzag laser with reduced optical distortion  

DOE Patents [OSTI]

The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends.

Albrecht, Georg F. (Livermore, CA); Comaskey, Brian (Stockton, CA); Sutton, Steven B. (Manteca, CA)

1994-01-01T23:59:59.000Z

395

Reducing Regulatory Burden | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |Rebecca MatulkaDeliveryUpdatedRFI Reducing

396

Reducing Energy Loss | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumpingStudyReducing

397

Reducing Photovoltaic Costs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |Reducing LED Costs Through

398

Reducing Petroleum Despendence in California: Uncertainties About  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof EnergyReducing Peak Demand

399

Reducing Regulatory Burden | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReport #Study | Department of EnergyReducingBurden

400

Distributed Bragg Reflectors With Reduced Optical Absorption  

DOE Patents [OSTI]

A new class of distributed Bragg reflectors has been developed. These distributed Bragg reflectors comprise interlayers positioned between sets of high-index and low-index quarter-wave plates. The presence of these interlayers is to reduce photon absorption resulting from spatially indirect photon-assisted electronic transitions between the high-index and low-index quarter wave plates. The distributed Bragg reflectors have applications for use in vertical-cavity surface-emitting lasers for use at 1.55 .mu.m and at other wavelengths of interest.

Klem, John F. (Albuquerque, NM)

2005-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Recommendations for reducing ambiguity in written procedures.  

SciTech Connect (OSTI)

Previous studies in the nuclear weapons complex have shown that ambiguous work instructions (WIs) and operating procedures (OPs) can lead to human error, which is a major cause for concern. This report outlines some of the sources of ambiguity in written English and describes three recommendations for reducing ambiguity in WIs and OPs. The recommendations are based on commonly used research techniques in the fields of linguistics and cognitive psychology. The first recommendation is to gather empirical data that can be used to improve the recommended word lists that are provided to technical writers. The second recommendation is to have a review in which new WIs and OPs and checked for ambiguities and clarity. The third recommendation is to use self-paced reading time studies to identify any remaining ambiguities before the new WIs and OPs are put into use. If these three steps are followed for new WIs and OPs, the likelihood of human errors related to ambiguity could be greatly reduced.

Matzen, Laura E.

2009-11-01T23:59:59.000Z

402

How Damage Diversification Can Reduce Systemic Risk  

E-Print Network [OSTI]

We consider the problem of risk diversification in complex networks. Nodes represent e.g. financial actors, whereas weighted links represent e.g. financial obligations (credits/debts). Each node has a risk to fail because of losses resulting from defaulting neighbors, which may lead to large failure cascades. Classical risk diversification strategies usually neglect network effects and therefore suggest that risk can be reduced if possible losses (i.e., exposures) are split among many neighbors (exposure diversification, ED). But from a complex networks perspective diversification implies higher connectivity of the system as a whole which can also lead to increasing failure risk of a node. To cope with this, we propose a different strategy (damage diversification, DD), i.e. the diversification of losses that are imposed on neighboring nodes as opposed to losses incurred by the node itself. Here, we quantify the potential of DD to reduce systemic risk in comparison to ED. For this, we develop a branching proce...

Burkholz, Rebekka; Schweitzer, Frank

2015-01-01T23:59:59.000Z

403

Yellowstone Agencies Plan to Reduce Emissions | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Yellowstone Agencies Plan to Reduce Emissions Yellowstone Agencies Plan to Reduce Emissions March 15, 2010 - 11:14am Addthis Castle Geyser at Yellowstone National Park | File photo...

404

Project Profile: Reducing the Cost of Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

405

Microbial Reduction of Uranium under Iron- and Sulfate-reducing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uranium under Iron- and Sulfate-reducing Conditions: Effect of Amended Goethite on Microbial Community Microbial Reduction of Uranium under Iron- and Sulfate-reducing Conditions:...

406

Uranium immobilization by sulfate-reducing biofilms grown on...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

immobilization by sulfate-reducing biofilms grown on hematite, dolomite, and calcite. Uranium immobilization by sulfate-reducing biofilms grown on hematite, dolomite, and calcite....

407

Increasing LTC Engine Efficiency by Reducing Pressure-Oscillation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Increasing LTC Engine Efficiency by Reducing Pressure-Oscillation-Related Heat Transfer Losses Increasing LTC Engine Efficiency by Reducing Pressure-Oscillation-Related Heat...

408

Wind Program Manufacturing Research Advances Processes and Reduces...  

Energy Savers [EERE]

Wind Program Manufacturing Research Advances Processes and Reduces Costs Wind Program Manufacturing Research Advances Processes and Reduces Costs March 31, 2014 - 11:22am Addthis...

409

Reduced Gravity Education Flight Opportunity for Students at...  

Broader source: Energy.gov (indexed) [DOE]

Reduced Gravity Education Flight Opportunity for Students at Minority Serving Institutions Reduced Gravity Education Flight Opportunity for Students at Minority Serving...

410

Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8,...

411

New Water Booster Pump System Reduces Energy Consumption by 80...  

Broader source: Energy.gov (indexed) [DOE]

Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases...

412

Project Profile: Transformational Approach to Reducing the Total...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics Project Profile: Transformational Approach to Reducing the Total System Costs of...

413

Optimization of A Portable Microanalytical System to Reduce Electrode...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

System to Reduce Electrode Fouling from Proteins Associated with Biomonitoring of Optimization of A Portable Microanalytical System to Reduce Electrode Fouling from Proteins...

414

Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled  

Broader source: Energy.gov [DOE]

For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to reduce vehicle miles traveled, as well as guidance and best practices for each strategy.

415

Vehicle Electrification is Key to Reducing Petroleum Dependency...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Electrification is Key to Reducing Petroleum Dependency and Greenhouse Gas Emission Vehicle Electrification is Key to Reducing Petroleum Dependency and Greenhouse Gas...

416

Development and Validation of a Reduced Mechanism for Biodiesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Validation of a Reduced Mechanism for Biodiesel Surrogates for Compression Ignition Engine Applications Development and Validation of a Reduced Mechanism for Biodiesel Surrogates...

417

Low-Cost Packaged CHP System with Reduced Emissions - Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by...

418

Advanced Soft Switching Inverter for Reducing Switching and Power...  

Broader source: Energy.gov (indexed) [DOE]

lai.pdf More Documents & Publications Advanced Soft Switching Inverter for Reducing Switching and Power Losses Advanced Soft Switching Inverter for Reducing Switching and Power...

419

Reducing Energy Demand in Buildings Through State Energy Codes...  

Energy Savers [EERE]

Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building...

420

Redox reactions of reduced flavin mononucleotide (FMN), riboflavin...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Redox reactions of reduced flavin mononucleotide (FMN), riboflavin (RBF), and anthraquinone-2,6-disulfonate (AQDS) with Redox reactions of reduced flavin mononucleotide (FMN),...

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Device for reducing vehicle aerodynamic resistance  

DOE Patents [OSTI]

A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular flat front face comprising a plurality of load bearing struts of a predetermined size attached to the flat front face adjacent the sides and top thereof, a pair of pliable opposing flat sheets having an outside edge portion attached to the flat front face adjacent the sides thereof and an upper edge with a predetermined curve; the opposing flat sheets being bent and attached to the struts to form effective curved airfoil shapes, and a top pliable flat sheet disposed adjacent the top of the flat front face and having predetermined curved side edges, which, when the top sheet is bent and attached to the struts to form an effective curved airfoil shape, mate with the curved upper edges of the opposing sheets to complete the aerodynamic device.

Graham, Sean C.

2006-03-07T23:59:59.000Z

422

Reducing variance in batch partitioning measurements  

SciTech Connect (OSTI)

The partitioning experiment is commonly performed with little or no attention to reducing measurement variance. Batch test procedures such as those used to measure K{sub d} values (e.g., ASTM D 4646 and EPA402 -R-99-004A) do not explain how to evaluate measurement uncertainty nor how to minimize measurement variance. In fact, ASTM D 4646 prescribes a sorbent:water ratio that prevents variance minimization. Consequently, the variance of a set of partitioning measurements can be extreme and even absurd. Such data sets, which are commonplace, hamper probabilistic modeling efforts. An error-savvy design requires adjustment of the solution:sorbent ratio so that approximately half of the sorbate partitions to the sorbent. Results of Monte Carlo simulations indicate that this simple step can markedly improve the precision and statistical characterization of partitioning uncertainty.

Mariner, Paul E.

2010-08-11T23:59:59.000Z

423

Electrospray ion source with reduced analyte electrochemistry  

DOE Patents [OSTI]

An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

Kertesz, Vilmos; Van Berkel, Gary J

2013-07-30T23:59:59.000Z

424

Method of data communications with reduced latency  

DOE Patents [OSTI]

Data communications with reduced latency, including: writing, by a producer, a descriptor and message data into at least two descriptor slots of a descriptor buffer, the descriptor buffer comprising allocated computer memory segmented into descriptor slots, each descriptor slot having a fixed size, the descriptor buffer having a header pointer that identifies a next descriptor slot to be processed by a DMA controller, the descriptor buffer having a tail pointer that identifies a descriptor slot for entry of a next descriptor in the descriptor buffer; recording, by the producer, in the descriptor a value signifying that message data has been written into descriptor slots; and setting, by the producer, in dependence upon the recorded value, a tail pointer to point to a next open descriptor slot.

Blocksome, Michael A; Parker, Jeffrey J

2013-11-05T23:59:59.000Z

425

Reducing VOC Press Emission from OSB Manufacturing  

SciTech Connect (OSTI)

Current regulations require industry to meet air emission standards with regard to particulates, volatile organic compounds (VOCs), hazardous air pollutants (HAPs) and other gases. One of many industries that will be affected by the new regulations is the wood composites industry. This industry generates VOCs, HAPs, and particulates mainly during the drying and pressing of wood. Current air treatment technologies for the industry are expensive to install and operate. As regulations become more stringent, treatment technologies will need to become more efficient and cost effective. The overall objective of this study is to evaluate the use of process conditions and chemical additives to reduce VOC/HAPs in air emitted from presses and dryers during the production of oriented strand board.

Dr. Gary D. McGinnis; Laura S. WIlliams; Amy E. Monte; Jagdish Rughani: Brett A. Niemi; Thomas M. Flicker

2001-12-31T23:59:59.000Z

426

Electrospray ion source with reduced analyte electrochemistry  

DOE Patents [OSTI]

An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN

2011-08-23T23:59:59.000Z

427

Reducing the losses of optical metamaterials  

SciTech Connect (OSTI)

The field of metamaterials is driven by fascinating and far-reaching theoretical visions, such as perfect lenses, invisibility cloaking, and enhanced optical nonlinearities. However, losses have become the major obstacle towards real world applications in the optical regime. Reducing the losses of optical metamaterials becomes necessary and extremely important. In this thesis, two approaches are taken to reduce the losses. One is to construct an indefinite medium. Indefinite media are materials where not all the principal components of the permittivity and permeability tensors have the same sign. They do not need the resonances to achieve negative permittivity, {var_epsilon}. So, the losses can be comparatively small. To obtain indefinite media, three-dimensional (3D) optical metallic nanowire media with different structures are designed. They are numerically demonstrated that they are homogeneous effective indefinite anisotropic media by showing that their dispersion relations are hyperbolic. Negative group refraction and pseudo focusing are observed. Another approach is to incorporate gain into metamaterial nanostructures. The nonlinearity of gain is included by a generic four-level atomic model. A computational scheme is presented, which allows for a self-consistent treatment of a dispersive metallic photonic metamaterial coupled to a gain material incorporated into the nanostructure using the finite-difference time-domain (FDTD) method. The loss compensations with gain are done for various structures, from 2D simplified models to 3D realistic structures. Results show the losses of optical metamaterials can be effectively compensated by gain. The effective gain coefficient of the combined system can be much larger than the bulk gain counterpart, due to the strong local-field enhancement.

Fang, Anan

2010-12-15T23:59:59.000Z

428

Completely Reducible maps in Quantum Information Theory  

E-Print Network [OSTI]

In order to compute the Schmidt decomposition of $A\\in M_k\\otimes M_m$, we must consider an associated self-adjoint map. Here, we show that if $A$ is positive under partial transposition (PPT) or symmetric with positive coefficients (SPC) or invariant under realignment then its associated self-adjoint map is completely reducible. We give applications of this fact in Quantum Information Theory. We recover some theorems recently proved for PPT and SPC matrices and we prove these theorems for matrices invariant under realignment using theorems of Perron-Frobenius theory. We also provide a new proof of the fact that if $\\mathbb{C}^{k}$ contains $k$ mutually unbiased bases then $\\mathbb{C}^{k}$ contains $k+1$. We search for other types of matrices that could have the same property. We consider a group of linear transformations acting on $M_k\\otimes M_k$, which contains the partial transpositions and the realignment map. For each element of this group, we consider the set of matrices in $M_k\\otimes M_k\\simeq M_{k^2}$ that are positive and remain positive, or invariant, under the action of this element. Within this family of sets, we have the set of PPT matrices, the set of SPC matrices and the set of matrices invariant under realignment. We show that these three sets are the only sets of this family such that the associated self-adjoint map of each matrix is completely reducible. We also show that every matrix invariant under realignment is PPT in $M_2\\otimes M_2$ and we present a counterexample in $M_k\\otimes M_k$, $k\\geq 3$.

Daniel Cariello

2015-02-18T23:59:59.000Z

429

Completely Reducible maps in Quantum Information Theory  

E-Print Network [OSTI]

In order to compute the Schmidt decomposition of $A\\in M_k\\otimes M_m$, we must consider an associated self-adjoint map. Here, we show that if $A$ is positive under partial transposition (PPT) or symmetric with positive coefficients (SPC) or invariant under realignment then its associated self-adjoint map is completely reducible. We give applications of this fact in Quantum Information Theory. We recover some theorems recently proved for PPT and SPC matrices and we prove these theorems for matrices invariant under realignment using theorems of Perron-Frobenius theory. One consequence of these theorems is the fact that if $\\mathbb{C}^{k}$ contains $k$ mutually unbiased bases then $\\mathbb{C}^{k}$ contains $k+1$. We search for other types of matrices that could have the same property. We consider a group of linear transformations acting on $M_k\\otimes M_k$, which contains the partial transpositions and the realignment map. For each element of this group, we consider the set of matrices in $M_k\\otimes M_k\\simeq M_{k^2}$ that are positive and remain positive, or invariant, under the action of this element. Within this family of sets, we have the set of PPT matrices, the set of SPC matrices and the set of matrices invariant under realignment. We show that these three sets are the only sets of this family such that the associated self-adjoint map of each matrix is completely reducible. We also show that every matrix invariant under realignment is PPT in $M_2\\otimes M_2$ and we present a counterexample in $M_k\\otimes M_k$, $k\\geq 3$.

Daniel Cariello

2014-12-12T23:59:59.000Z

430

Using market-based dispatching with environmental price signals to reduce emissions and water use at power plants in the Texas grid  

E-Print Network [OSTI]

The possibility of using electricity dispatching strategies to achieve a 50% nitrogen oxide (NOx) emission reduction from electricity generating units was examined using the grid of the Electricity Reliability Council of ...

Alhajeri, Nawaf S.

431

Reducing the contribution of the power sector to ground-level ozone pollution : an assessment of time-differentiated pricing of nitrogen oxide emissions  

E-Print Network [OSTI]

Nitrogen oxide (NOx) is a prevalent air pollutant across the United States and a requisite precursor for tropospheric (ground-level) ozone formation. Both pollutants significantly impact human health and welfare, so National ...

Craig, Michael T. (Michael Timothy)

2014-01-01T23:59:59.000Z

432

Journal of the Korean Physical Society, Vol. 48, No. 1, January 2006, pp. 6774 Characteristics of a Microwave Plasma Torch with  

E-Print Network [OSTI]

torch with high gas flow rate; the flame melts molybdenum easily with an average microwave power of 200 with an average microwave power of 250 W. For good microwave power coupling into the plasma flame, the hole mobile emit- ting sources, such as NOx, SOx, and of soot emission from diesel engines [1

433

Announcement and Call for Papers IWMST 2014 The International Workshop on Modern Science and Technology 2014  

E-Print Network [OSTI]

Char, Fuel Cell, Renewable Energy, Methane Gas, Green House Gas, NOx, SOx, Natural Gas Hydrate, Marine and Technology 2014 October 30 - 31, 2014 Wuhan, China 1. SCOPE We are pleased to announce that the International, Environmental Materials, Bioimaging, Natural Resources, and Others Energy and Environment Solar Energy, Biomass

Yanai, Keiji

434

How Does Electricity Generated from Woody Biomass Fit into California's Energy Future?  

E-Print Network [OSTI]

*** PM2.5/PM10 Soot/ash VOC NOx, CO, SOx, CO2 Delivery to Grid Cement (building materials) Carbon Sequestration CO2 Enhanced Oil Recovery Coal* Power Plant Sulfur PM 2.5/10 Ammonia Chlorides Flourides Mercury

Iglesia, Enrique

435

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

of criteria air pollutants and carbon dioxide, short construction lead time, high modularity, no fuel price and siting issues · No production of carbon dioxide or criteria air pollutants (SOx, NOx, etc.) during Aggressive renewable portfolio standards and greenhouse gas control policies may lead to the need for large

436

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

. Attributes of wind power include low lifecycle emissions of criteria air pollutants and carbon dioxide (no or criteria air pollutants (SOx, NOx, etc.) · Ecological impacts usually avoided with judicious siting price uncertainty, and by risk considerations stemming from emerging greenhouse gas control measures

437

Applied Physics B manuscript No. (will be inserted by the editor)  

E-Print Network [OSTI]

to a growing aware- ness of the importance of air quality and air pollution control, many diagnostic tools and low cost instrument is a promising diagnostic tool for air quality control in urban environments. Key and techniques have been developed to detect and quantify the concentration of pollutants such as NOx, SOx, CO

Paris-Sud XI, Université de

438

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

of nuclear power plants include low lifecycle emissions of criteria air pollutants and carbon dioxide (no production of carbon dioxide · No direct production of criteria air emissions (SOx, NOx, etc.)* · Strictly enforced procedures for control, treatment and disposal of low-level radioactive and other waste streams

439

Reducing the Probability of Capture into Resonance  

E-Print Network [OSTI]

A migrating planet can capture planetesimals into mean motion resonances. However, resonant trapping can be prevented when the drift or migration rate is sufficiently high. Using a simple Hamiltonian system for first and second order resonances, we explore how the capture probability depends on the order of the resonance, drift rate and initial particle eccentricity. We present scaling factors as a function of the planet mass and resonance strength to estimate the planetary migration rate above which the capture probability drops to less than 1/2. Applying our framework to multiple extra solar planetary systems that have two planets locked in resonance, we estimate lower limits for the outer planet's migration rate allowing resonance capture of the inner planet. Mean motion resonances are comprised of multiple resonant subterms. We find that the corotation subterm can reduce the probability of capture when the planet eccentricity is above a critical value. We present factors that can be used to estimate this critical planet eccentricity. Applying our framework to the migration of Neptune, we find that Neptune's eccentricity is near the critical value that would make its 2:1 resonance fail to capture twotinos. The capture probability is affected by the separation between resonant subterms and so is also a function of the precession rates of the longitudes of periapse of both planet and particle near resonance.

Alice C. Quillen

2005-11-03T23:59:59.000Z

440

How simple regulations can deeply reduce inequality  

E-Print Network [OSTI]

Many models of market dynamics make use of the idea of wealth exchanges among economic agents. A simple analogy compares the wealth in a society with the energy in a physical system, and the trade between agents to the energy exchange between molecules during collisions. However, while in physical systems the equipartition of energy is valid, in most exchange models for economic markets the system converges to a very unequal "condensed" state, where one or a few agents concentrate all the wealth of the society and the wide majority of agents shares zero or a very tiny fraction of the wealth. Here we present an exchange model where the goal is not only to avoid condensation but also to reduce the inequality; to carry out this objective the choice of interacting agents is not at random, but follows an extremal dynamics regulated by the wealth of the agent. The wealth of the agent with the minimum capital is changed at random and the difference between the ancient and the new wealth of this poorest agent is take...

Iglesias, J R

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Reducing the Consequences of a Nuclear Detonation.  

SciTech Connect (OSTI)

The 2002 National Strategy to Combat Weapons of Mass Destruction states that 'the United States must be prepared to respond to the use of WMD against our citizens, our military forces, and those of friends and allies'. Scenario No.1 of the 15 Department of Homeland Security national planning scenarios is an improvised nuclear detonation in the national capitol region. An effective response involves managing large-scale incident response, mass casualty, mass evacuation, and mass decontamination issues. Preparedness planning activities based on this scenario provided difficult challenges in time critical decision making and managing a large number of casualties within the hazard area. Perhaps even more challenging is the need to coordinate a large scale response across multiple jurisdictions and effectively responding with limited infrastructure and resources. Federal response planning continues to make improvements in coordination and recommending protective actions, but much work remains. The most critical life-saving activity depends on actions taken in the first few minutes and hours of an event. The most effective way to reduce the enormous national and international social and economic disruptions from a domestic nuclear explosion is through planning and rapid action, from the individual to the federal response. Anticipating response resources for survivors based on predicted types and distributions of injuries needs to be addressed.

Buddemeier, B R

2007-11-09T23:59:59.000Z

442

Hamiltonian gadgets with reduced resource requirements  

E-Print Network [OSTI]

Application of the adiabatic model of quantum computation requires efficient encoding of the solution to computational problems into the lowest eigenstate of a Hamiltonian that supports universal adiabatic quantum computation. Experimental systems are typically limited to restricted forms of 2-body interactions. Therefore, universal adiabatic quantum computation requires a method for approximating quantum many-body Hamiltonians up to arbitrary spectral error using at most 2-body interactions. Hamiltonian gadgets, introduced around a decade ago, offer the only current means to address this requirement. Although the applications of Hamiltonian gadgets have steadily grown since their introduction, little progress has been made in overcoming the limitations of the gadgets themselves. In this experimentally motivated theoretical study, we introduce several gadgets which require significantly more realistic control parameters than similar gadgets in the literature. We employ analytical techniques which result in a reduction of the resource scaling as a function of spectral error for the commonly used subdivision, 3- to 2-body and $k$-body gadgets. Accordingly, our improvements reduce the resource requirements of all proofs and experimental proposals making use of these common gadgets. Next, we numerically optimize these new gadgets to illustrate the tightness of our analytical bounds. Finally, we introduce a new gadget that simulates a $YY$ interaction term using Hamiltonians containing only $\\{X,Z,XX,ZZ\\}$ terms. Apart from possible implications in a theoretical context, this work could also be useful for a first experimental implementation of these key building blocks by requiring less control precision without introducing extra ancillary qubits.

Yudong Cao; Ryan Babbush; Jacob Biamonte; Sabre Kais

2015-01-20T23:59:59.000Z

443

PERPENDICULAR ION HEATING BY REDUCED MAGNETOHYDRODYNAMIC TURBULENCE  

SciTech Connect (OSTI)

Recent theoretical studies argue that the rate of stochastic ion heating in low-frequency Alfvťn-wave turbulence is given by Q = c{sub 1}((?u){sup 3}/?)exp (Ė c{sub 2}/?), where ?u is the rms turbulent velocity at the scale of the ion gyroradius ?, ? = ?u/v{sub i}, v{sub i} is the perpendicular ion thermal speed, and c{sub 1} and c{sub 2} are dimensionless constants. We test this theoretical result by numerically simulating test particles interacting with strong reduced magnetohydrodynamic (RMHD) turbulence. The heating rates in our simulations are well fit by this formula. The best-fit values of c{sub 1} are ?1. The best-fit values of c{sub 2} decrease (i.e., stochastic heating becomes more effective) as the Reynolds number and the number of grid points in the RMHD simulations increase. As an example, in a 1024{sup 2} ◊ 256 RMHD simulation with a dissipation wavenumber of the order of the inverse ion gyroradius, we find c{sub 2} = 0.21. We show that stochastic heating is significantly stronger in strong RMHD turbulence than in a field of randomly phased Alfvťn waves with the same power spectrum, because coherent structures in strong RMHD turbulence increase orbit stochasticity in the regions where ions are heated most strongly. We find that c{sub 1} increases by a factor of ?3 while c{sub 2} changes very little as the ion thermal speed increases from values <

Xia, Qian; Perez, Jean C.; Chandran, Benjamin D. G. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Quataert, Eliot, E-mail: qdy2@unh.edu, E-mail: benjamin.chandran@unh.edu, E-mail: jeanc.perez@unh.edu, E-mail: eliot@astro.berkeley.edu [Astronomy Department and Theoretical Astrophysics Center, 601 Campbell Hall, The University of California, Berkeley, CA 94720 (United States)

2013-10-20T23:59:59.000Z

444

Method for reducing pressure drop through filters, and filter exhibiting reduced pressure drop  

DOE Patents [OSTI]

Methods for generating and applying coatings to filters with porous material in order to reduce large pressure drop increases as material accumulates in a filter, as well as the filter exhibiting reduced and/or more uniform pressure drop. The filter can be a diesel particulate trap for removing particulate matter such as soot from the exhaust of a diesel engine. Porous material such as ash is loaded on the surface of the substrate or filter walls, such as by coating, depositing, distributing or layering the porous material along the channel walls of the filter in an amount effective for minimizing or preventing depth filtration during use of the filter. Efficient filtration at acceptable flow rates is achieved.

Sappok, Alexander; Wong, Victor

2014-11-18T23:59:59.000Z

445

Winning the Future: Grand Ronde Solar Projects Reduce Pollution...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs October 20, 2014 - 5:00pm...

446

Reduce Risk, Increase Clean Energy: How States and Cities are...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reduce Risk, Increase Clean Energy: How States and Cities are Using Old Finance Tools to Scale Up a New Industry Reduce Risk, Increase Clean Energy: How States and Cities are Using...

447

Fact #787: July 8, 2013 Truck Stop Electrification Reduces Idle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption Fact 787: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption The U.S. Department of...

448

Treading Lightly Steps Toward Reducing Our Carbon Footprint  

E-Print Network [OSTI]

Treading Lightly Steps Toward Reducing Our Carbon Footprint This is one section of The University reducing the UA's carbon footprint. The Facilities Management recycling and waste department supports long

Wong, Pak Kin

449

Wind Turbine Towers Establish New Height Standards and Reduce...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Case study that...

450

Energy Department Announces $7 Million to Reduce Non-Hardware...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7 Million to Reduce Non-Hardware Costs of Solar Energy Systems Energy Department Announces 7 Million to Reduce Non-Hardware Costs of Solar Energy Systems November 15, 2011 -...

451

Dynamic reduced order modeling of entrained flow gasifiers  

E-Print Network [OSTI]

Gasification-based energy systems coupled with carbon dioxide capture and storage technologies have the potential to reduce greenhouse gas emissions from continued use of abundant and secure fossil fuels. Dynamic reduced ...

Monaghan, Rory F. D. (Rory Francis Desmond)

2010-01-01T23:59:59.000Z

452

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting...  

Broader source: Energy.gov (indexed) [DOE]

Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam This tip sheet...

453

NREL Reduces Climate Control Loads in Electric Vehicles (Fact Sheet)  

SciTech Connect (OSTI)

NREL demonstrates that zonal climate control can reduce air conditioning power and improve range while maintaining driver thermal sensation.

Not Available

2014-08-01T23:59:59.000Z

454

REDUCED RANK DETECTION SCHEMES FOR DS-CDMA COMMUNICATION SYSTEMS  

E-Print Network [OSTI]

REDUCED RANK DETECTION SCHEMES FOR DS-CDMA COMMUNICATION SYSTEMS Wanshi Chen Ericsson Wireless 90089­2565 e-mail: ubli@usc.edu Abstract -- Several reduced-rank detection schemes for direct- sequence to the multistage linear receiver scheme based on the Cayley Hamilton theorem. The analysis of the reduced rank

Southern California, University of

455

Reducing Fossil Carbon Emissions and Building Environmental Awareness at  

E-Print Network [OSTI]

Reducing Fossil Carbon Emissions and Building Environmental Awareness at Dartmouth College Summary selected the mission: "To reduce Dartmouth College's fossil carbon emissions." We believe this mission's responsibility to educate others about how it is reducing its fossil carbon emissions and encourage them to do

456

Reducing the Cost of Solar Cells  

SciTech Connect (OSTI)

Solar-powered electricity prices could soon approach those of power from coal or natural gas thanks to collaborative research with solar startup Ampulse Corporation at the National Renewable Energy Laboratory. Silicon wafers account for almost half the cost of today's solar photovoltaic panels, so reducing or eliminating wafer costs is essential to bringing prices down. Current crystalline silicon technology converts energy in a highly efficient manner; however, that technology is manufactured with processes that could stand some improvement. The industry needs a method that is less complex, creates less waste and uses less energy. First, half the refined silicon is lost as dust in the wafer-sawing process, driving module costs higher. Wafers are sawn off of large cylindrical ingots, or boules, of silicon. A typical 2-meter boule loses as many as 6,000 potential wafers during sawing. Second, the wafers produced are much thicker than necessary. To efficiently convert sunlight into electricity, the wafers need be only one-tenth the typical thickness. NREL, the Oak Ridge National Laboratory and Ampulse have partnered on an approach to eliminate this waste and dramatically lower the cost of the finished solar panels. By using a chemical vapor deposition process to grow the silicon on inexpensive foil, Ampulse is able to make the solar cells just thick enough to convert most of the solar energy into electricity. No more sawdust - and no more wasting refined silicon materials. NREL developed the technology to grow high-quality silicon and ORNL developed the metal foil that has the correct crystal structure to support that growth. Ampulse is installing a pilot manufacturing line in NREL's Process Development Integration Laboratory, where solar companies can work closely with lab scientists on integrated equipment to answer pressing questions related to their technology development, as well as rapidly overcoming R and D challenges and risk. NREL's program is focused on transformative innovation in the domestic PV industry. With knowledge and expertise acquired from the PDIL pilot production line tools, Ampulse plans to design a full-scale production line to accommodate long rolls of metal foil. The Ampulse process 'goes straight from pure silicon-containing gas to high-quality crystal silicon film,' said Brent Nelson, the operational manager for the Process Development Integration Laboratory. 'The advantage is you can make the wafer just as thin as you need it - 10 microns or less.' Most of today's solar cells are made out of wafer crystalline silicon, though thin-film cells made of more exotic elements such as copper, indium, gallium, arsenic, cadmium, tellurium and others are making a strong push into the market. The advantage of silicon is its abundance, because it is derived from sand. Silicon's disadvantage is that purifying it into wafers suitable for solar cells can be expensive and energy intensive. Manufacturers add carbon and heat to sand to produce metallurgical-grade silicon, which is useful in other industries, but not yet suitable for making solar cells. So this metallurgical-grade silicon is then converted to pure trichlorosilane (SiCl3) or silane (SiH4) gas. Typically, the purified gas is then converted to create a silicon feedstock at 1,000 degrees Celsius. This feedstock is melted at 1,414 C and recrystallized into crystal ingots that are finally sawed into wafers. The Ampulse method differs in that it eliminates the last two steps in the traditional process and works directly with the silane gas growing only the needed silicon right onto a foil substrate. A team of NREL scientists had developed a way to use a process called hot-wire chemical vapor deposition to thicken silicon wafers with near perfect crystal structure. Using a hot tungsten filament much like the one found in an incandescent light bulb, the silane gas molecules are broken apart and deposited onto the wafer using the chemical vapor deposition technique at about 700 C - a much lower temperature than needed to make the wafer. The hot filament dec

Scanlon, B.

2012-04-01T23:59:59.000Z

457

Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution  

DOE Patents [OSTI]

The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency. 15 figures.

Prueitt, M.L.; Mueller, F.M.; Smith, J.L.

1991-04-09T23:59:59.000Z

458

Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution  

DOE Patents [OSTI]

The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

Prueitt, Melvin L. (Los Alamos, NM); Mueller, Fred M. (Los Alamos, NM); Smith, James L. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

459

HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as the Project Manager. This project demonstrated the operation of the Hybrid SNCR/SCR NO{sub x} control process on a full-scale coal fired utility boiler. The hybrid technology was expected to provide a cost-effective method of reducing NO{sub x} while balancing capital and operation costs. An existing urea based SNCR system was modified with an expanded-duct catalyst to provide increased NO{sub x} reduction efficiency from the SNCR while producing increased ammonia slip levels to the catalyst. The catalyst was sized to reduce the ammonia slip to the air heaters to less than 2 ppm while providing equivalent NO{sub x} reductions. The project goals were to demonstrate hybrid technology is capable of achieving at least a 55% reduction in NO{sub x} emissions while maintaining less than 2ppm ammonia slip to the air heaters, maintain flyash marketability, verify the cost benefit and applicability of Hybrid post combustion technology, and reduce forced outages due to ammonium bisulfate (ABS) fouling of the air heaters. Early system limitations, due to gas temperature stratification, restricted the Hybrid NO{sub x} reduction capabilities to 48% with an ammonia slip of 6.1 mg/Nm{sup 3} (8 ppm) at the catalyst inlet. After resolving the stratification problem, the catalyst did not have sufficient activity in order to continue the planned test program. Arsenic poisoning was found to be the cause of premature catalyst deactivation.

Jerry B. Urbas

1999-05-01T23:59:59.000Z

460

Chemosensing strategies : utilizing the novel sulfonamidohydroxyquinoline amino acid Sox  

E-Print Network [OSTI]

Modular peptide-based fluorescent chemosensors utilizing the chelation-sensitive fluorophore 8-hydroxy-5-(N,N-dimethylsulfonamido)-2-methylquinoline are powerful tools for sensing Zn≤? and for sensing protein kinase activity. ...

Shults, Melissa Dawn

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

New Demands on Heavy Duty Engine Management Systems  

Broader source: Energy.gov (indexed) [DOE]

on Heavy Duty Engine Management Systems Excellence in Automotive R&D Emissions Based Process Control NOx-Reducing by EGR NOx -Reducing by SOI Freez e Activation Signal...

462

DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS  

SciTech Connect (OSTI)

The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at the Gordon Conference on Modern Development in Thermodynamics. The results obtained are very encouraging for the development of the RCSC as a commercial burner for significant reduction of NO{sub x} emissions, and highly warrants further study and development.

Noam Lior; Stuart W. Churchill

2003-10-01T23:59:59.000Z

463

On F p-ideals. . . . . . and Tukey reducibility  

E-Print Network [OSTI]

On F p-ideals. . . . . . and Tukey reducibility Tam¬īas M¬īatrai Highland Park Florida February 28, 2010 #12;The result (P(), ) {F ¬ß ¬¶ ¬§ ¬• p-ideals partially ordered by ¬ß ¬¶ ¬§ ¬• Tukey reducibility } #12;The result (P(), ) {F ¬ß ¬¶ ¬§ ¬• p-ideals partially ordered by ¬ß ¬¶ ¬§ ¬• Tukey reducibility } I (P

M√°trai, Tam√°s

464

Improved System Performance and Reduced Cost of a Fuel Reformer...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An advanced exhaust aftertreatment system developed to meet EPA 2010 and final Tier 4 emission regulations show substantial improvements in system performance while reducing system...

465

Optimization Online - On reducing a quantile optimization problem ...  

E-Print Network [OSTI]

Apr 9, 2013 ... ... V.I.On reducing a quantile optimization problem with discrete distribution to a mixed integer programming problem // Automation and Remote†...

Andrey Kibzun

2013-04-09T23:59:59.000Z

466

Comments on Request For Information regarding Reducing Regulatory...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Request For Information regarding Reducing Regulatory Reform issued February 3, 2011 (Federal Register Vol. 76, No. 23 Thursday, February 3, 2011 Notices). Comments on Request...

467

New Report: Integrating More Wind and Solar Reduces Utilities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Report: Integrating More Wind and Solar Reduces Utilities' Carbon Emissions and Fuel Costs October 1, 2013 - 3:51pm Addthis The National Renewable Energy Laboratory (NREL)...

468

Reduce Operating Costs with an EnergySmart School Project  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ballasts can reduce lighting energy by 20 to 30 percent. * ENERGY STAR light-emitting diode (LED) exit signs can last 25 years without lamp replacement. Compact...

469

accurate reduced models: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

renewable power and reducing the consumption of fossil fuels. This has become for peak shaving on their power demand profile from the grid, and thereby, minimize their...

470

activity level reduced: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cortex Scott O. Murray* , Daniel Kersten (received for review April 25, 2002) Visual perception involves the grouping of individual elements into coherent patterns that reduce...

471

aicar reduces il-6: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and signals through... Allen, Marilyn Jean 2014-05-29 24 Waste Description Pounds Reduced, Environmental Sciences and Ecology Websites Summary: Waste Description Type...

472

Utilization of UV or EB Curing Technology to Significantly Reduce...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report,...

473

Treatment Resin Reduces Costs, Materials in Hanford Groundwater...  

Office of Environmental Management (EM)

Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup - Efficiency delivered more than 6 million in cost savings, 3 million in annual savings Treatment Resin...

474

Pantex installs new meters to help to reduce energy consumption...  

National Nuclear Security Administration (NNSA)

installs new meters to help to reduce energy consumption | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

475

A mixed integer programming approach to reduce fuel load ...  

E-Print Network [OSTI]

Feb 12, 2015 ... A mixed integer programming approach to reduce fuel load accumulation for prescribed burn planning. Ramya Rachmawati(ramya.rachmawati†...

Ramya Rachmawati

2015-02-12T23:59:59.000Z

476

Finalize Historic National Program to Reduce Greenhouse Gases...  

Open Energy Info (EERE)

Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Finalize...

477

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma  

Broader source: Energy.gov (indexed) [DOE]

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant...

478

PPPL wins Department of Energy award for reducing greenhouse...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an executive order signed on Oct. 5, 2009, to reduce energy consumption in federal buildings by 30 percent by 2015. "Today's Sustainability Award winners are leading by...

479

New pilot saves customers money and reduces BPA reserve requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

paced energy schedules, increasing the electric grid's flexibility to absorb changes in wind energy generation and reducing costs for both the customers and BPA. Portland General...

480

Reducing Industrial Energy Intensity in the Southeast Project...  

Broader source: Energy.gov (indexed) [DOE]

Industrial Energy Intensity in the Southeast Project Fact Sheet Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet This fact sheet contains details regarding...

Note: This page contains sample records for the topic "reduced sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

acid selectively reduces: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Websites Summary: Announcing: All Recycling Go Green Reduce your contribution to the landfill, by choosing to voluntarily recycle acceptable items in the green All Recycling...

482

Reducing fuel consumption on the field, by continuously measuring...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuel consumption on the field, by continuously measuring fuel quality on electronically fuel injected engines. Reducing fuel consumption on the field, by continuously measuring...

483

Cleantech: Innovative Lab Partnership Reduces Emissions from Coal  

Broader source: Energy.gov [DOE]

Learn how the National Energy Technology Laboratory is working to reduce the emission of pollutants from existing coal-fired power plants.

484

aggregation inhibitors reduce: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Morimoto, Richard 10 Reduced-Order Modeling of Aggregated Thermostatic Loads With Demand Response Computer Technologies and Information Sciences Websites Summary:...

485

Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor  

SciTech Connect (OSTI)

Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

2010-08-31T23:59:59.000Z

486

Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion  

SciTech Connect (OSTI)

The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

Wayne Penrod

2006-12-31T23:59:59.000Z

487

Fish oil can help reduce deaths from heart disease,  

E-Print Network [OSTI]

the risk of irregu- lar heart beats -- particularly in individuals with a recent heart attack. Paul CoatesFish oil can help reduce deaths from heart disease, according to new evidence reports announced evi- dence that long-chain omega- 3 fatty acids reduce heart at- tack and other problems, re- lated

Bandettini, Peter A.

488

Volume 37 (1998), pages 95108 DEHN FILLINGS PRODUCING REDUCIBLE  

E-Print Network [OSTI]

MANIFOLDS Ying-Qing Wu ¬Ę¬°¬§¬£¬¶¬•¬®¬ß¬§¬©¬§¬• If two surgeries on a hyperbolic knot produce a reducible manifold;2 YING-QING WU is the reduced graph of 2. Section 3 studies the case that each vertex of 2 has valency 6

Wu, Ying-Qing

489

Rank Estimation in ReducedRank Regression Efstathia Bura  

E-Print Network [OSTI]

Rank Estimation in Reduced­Rank Regression Efstathia Bura Department of Statistics, The George, University of Minnesota, St. Paul, MN 55108 E­mail: dennis@stat.umn.edu Reduced rank regression assumes that the coe#cient matrix in a multi­ variate regression model is not of full rank. The unknown rank

Bura, Efstathia

490

Reducing the Energy Consumption of Mobile Applications Behind the Scenes  

E-Print Network [OSTI]

Reducing the Energy Consumption of Mobile Applications Behind the Scenes Young-Woo Kwon and Eli, an increasing number of perfective maintenance tasks are concerned with optimizing energy consumption. However, optimizing a mobile application to reduce its energy consumption is non-trivial due to the highly volatile

Tilevich, Eli

491

GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS  

E-Print Network [OSTI]

GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS Maha IDRISSI AOUAD.loria.fr/zendra Keywords: Energy consumption reduction, Genetic heuristics, memory allocation management, optimizations on heuristic methods for SPMs careful management in order to reduce memory energy consumption. We propose

Schott, Ren√© - Institut de Math√©matiques √?lie Cartan, Universit√© Henri Poincar√©

492

Reducing Occupant-Controlled Electricity Consumption in Campus Buildings  

E-Print Network [OSTI]

2010 Reducing Occupant-Controlled Electricity Consumption in Campus Buildings Kill­09 and is expected to spend more than $17.1 million in 2009­10. In an effort to reduce electricity consumption; 1 EXECUTIVE SUMMARY UC Berkeley spent $16.39 million on purchased electricity in 2008

Doudna, Jennifer A.

493

Exposing Datapath Elements to Reduce Microprocessor Energy Consumption  

E-Print Network [OSTI]

to Reduce Microprocessor Energy Consumption by Mark Jerome Hampton Submitted to the Department of ElectricalExposing Datapath Elements to Reduce Microprocessor Energy Consumption by Mark Jerome Hampton B Submitted to the Department of Electrical Engineering and Computer Science in partial ful llment

494

Reducing Execution Overhead in a Data Stream Manager , Uur etintemel  

E-Print Network [OSTI]

is designed to take advantage of our overhead reducing techniques. We also discuss the specific overheads1 Reducing Execution Overhead in a Data Stream Manager Don Carney , Uur √?etintemel , Alex Rasin applications include sensor networks, position tracking, fabrication line management, network management

Cherniack, Mitch

495

Room to Grow How California Agriculture Can Help Reduce  

E-Print Network [OSTI]

Room to Grow March 2010 How California Agriculture Can Help Reduce Greenhouse Gas Emissions #12 for helping to edit this report. Additional information was provided by Drs. James Fadel, William Horwath to Grow: How California Agriculture Can Help Reduce Greenhouse Gas Emissions Berkeley Law \\ UCLA Law #12

Kammen, Daniel M.

496

Pesticide exposure and sprayer design: ergonomics evaluation to reduce pesticide  

E-Print Network [OSTI]

Pesticide exposure and sprayer design: ergonomics evaluation to reduce pesticide exposure Sonia of operator exposure to plant protection products through the introduction of ergonomics to the design process. It is suggested that a systematic ergonomics evaluation of sprayer interfaces with the view of reducing direct

497

Reducing Network Energy Consumption via Sleeping and Rate-Adaptation  

E-Print Network [OSTI]

Reducing Network Energy Consumption via Sleeping and Rate-Adaptation Sergiu Nedevschi Lucian Popa of two forms of power management schemes