Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hybrid Solar Lighting Provides Energy Savings and Reduces Waste Heat  

SciTech Connect (OSTI)

ABSTRACT Artificial lighting is the largest component of electricity use in commercial U.S. buildings. Hybrid solar lighting (HSL) provides an exciting new means of reducing energy consumption while also delivering significant ancillary benefits associated with natural lighting in buildings. As more than half of all federal facilities are in the Sunbelt region (defined as having an average direct solar radiation of greater than 4 kWh/m2/day) and as more than half of all square footage available in federal buildings is also in the Sunbelt, HSL is an excellent technology fit for federal facilities. The HSL technology uses a rooftop, 4-ft-wide dish and secondary mirror that track the sun throughout the day (Fig. 1). The collector system focuses the sunlight onto 127 optical fibers. The fibers serve as flexible light pipes and are connected to hybrid light fixtures that have special diffusion rods that spread out the light in all directions. One collector powers about eight hybrid light fixtures-which can illuminate about 1,000 square feet. The system tracks at 0.1 accuracy, required by the two-mirror geometry to keep the focused beam on the fiber bundle. When sunlight is plentiful, the optical fibers in the luminaires provide all or most of the light needed in an area. During times of little or no sunlight, a sensor controls the intensity of the artificial lamps to maintain a desired illumination level. Unlike conventional electric lamps, the natural light produces little to no waste heat and is cool to the touch. This is because the system's solar collector removes the infrared light-the part of the spectrum that generates a lot of the heat in conventional bulbs-from the sunlight.

Lapsa, Melissa Voss [ORNL; Maxey, L Curt [ORNL; Earl, Dennis Duncan [ORNL; Beshears, David L [ORNL; Ward, Christina D [ORNL; Parks, James Edgar [ORNL

2006-01-01T23:59:59.000Z

2

Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States  

SciTech Connect (OSTI)

Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

Denholm, P.

2007-03-01T23:59:59.000Z

3

Solar heating in Colombia.  

E-Print Network [OSTI]

?? This report describes the process of a thesis implemented in Colombia concerning solar energy. The project was to install a self-circulating solar heating system,… (more)

Skytt, Johanna

2012-01-01T23:59:59.000Z

4

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

SciTech Connect (OSTI)

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

5

Solar Heating Contractor Licensing  

Broader source: Energy.gov [DOE]

Michigan offers a solar heating contractor specialty license to individuals who have at least three years of experience installing solar equipment under the direction of a licensed solar contractor...

6

Solar Heating in Uppsala.  

E-Print Network [OSTI]

?? The housing corporation Uppsalahem has installed asolar heating system in the neighbourhood Haubitsen,which was renovated in 2011. This report examineshow much energy the solar… (more)

Blomqvist, Emelie; Häger, Klara

2012-01-01T23:59:59.000Z

7

Passive solar space heating  

SciTech Connect (OSTI)

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

8

Solar heat receiver  

DOE Patents [OSTI]

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

9

Passive solar heating analysis  

SciTech Connect (OSTI)

This book discusses about the design of solar heating systems. The terms and symbols are clearly defined. Step-by-step procedures are indicated. Worked examples are given with tables, graphs, appendixes.

Balcomb, J.D.; Jones, R.W.; Mc Farland, R.D.; Wray, W.O.

1984-01-01T23:59:59.000Z

10

5 Cool Things about Solar Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

or deductions for solar energy systems. Solar heating systems reduce the amount of air pollution and greenhouse gases that generally come from the use of fossil fuels for...

11

Solar industrial process heat  

SciTech Connect (OSTI)

The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

Lumsdaine, E.

1981-04-01T23:59:59.000Z

12

Residential Solar Water Heating Rebates  

Broader source: Energy.gov [DOE]

New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to...

13

Solar heating system  

DOE Patents [OSTI]

An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

1982-01-01T23:59:59.000Z

14

Improved solar heating systems  

DOE Patents [OSTI]

An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

Schreyer, J.M.; Dorsey, G.F.

1980-05-16T23:59:59.000Z

15

Solar heated rotary kiln  

DOE Patents [OSTI]

A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

Shell, Pamela K. (Tracy, CA)

1984-01-01T23:59:59.000Z

16

Passive solar heating and analysis  

SciTech Connect (OSTI)

Passive solar heating experience and analysis techniques are reviewed with emphasis on annual auxiliary heat requirement. The role of analysis in the design of passive solar buildings is discussed. Selected results for existing systems are presented for locations in Saudi Arabia and climatically similar locations in the US. Advanced systems in the research stage are described.

Jones, R.W.

1984-01-01T23:59:59.000Z

17

Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System  

E-Print Network [OSTI]

The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more...

Wu, Z.; Li, D.

2006-01-01T23:59:59.000Z

18

Solar Water Heating Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Weatherization Assistance Program Pilot Projects Solar Water Heating Webinar Solar Water Heating Webinar Watch a recording of National Renewable Energy Laboratory (NREL)...

19

Solar heat collector  

SciTech Connect (OSTI)

An evacuated double-tubing solar heat collector is described comprising: an inner tube having an open end and a closed end; a selective absorption film applied over an exterior surface of the inner tube; an outer tube having an open end and a closed end; the inner tube being constructed to be received within the outer tube; and a substantially continuous annular coil spring ring being substantially found in cross section and of a predetermined thickness. The coil spring ring is disposed between and engages an interior surface of the outer tube and the exterior surface of the inner tube for spacing and resiliently supporting the inner tube relative to the outer tube. The ring is freely rotatably positioned to be moved axially along the length of the inner tube due only to frictional forces exerted on the coil spring. The coil spring ring is positioned on the inner tube at approximately a middle position along the length of the inner tube by being initially positioned on the inner tube adjacent to the closed end thereof and rotated upon itself axially along the inner tube only by frictional engagement with the interior surface of the outer tube as the inner tube is inserted into the open end of the outer tube and moved to a fully inserted position within the outer tube. The open end of the inner tube and the open end of the outer tube are fused to form a junction and hermetically sealed.

Takeuchi, H.; Mikiya, T.

1987-03-17T23:59:59.000Z

20

Solar Water Heating Incentive Program  

Broader source: Energy.gov [DOE]

Beginning in the fall of 2003, Energy Trust of Oregon's Solar Water Heating (SWH) Incentive Program offers incentives to customers of Pacific Power, PGE, NW Natural Gas and Cascade Natural Gas who...

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Solar air heating system for combined DHW and space heating  

E-Print Network [OSTI]

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren �stergaard Jensen

22

Passive Solar Building Design and Solar Thermal Space Heating Webinar  

Broader source: Energy.gov [DOE]

Webinar of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's presentation about passive solar building design and solar thermal space heating technologies and applications.

23

Solar-heated rotary kiln  

DOE Patents [OSTI]

A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate is disclosed. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

Shell, P.K.

1982-04-14T23:59:59.000Z

24

PERPENDICULAR ION HEATING BY REDUCED MAGNETOHYDRODYNAMIC TURBULENCE  

SciTech Connect (OSTI)

Recent theoretical studies argue that the rate of stochastic ion heating in low-frequency Alfvén-wave turbulence is given by Q = c{sub 1}((?u){sup 3}/?)exp (– c{sub 2}/?), where ?u is the rms turbulent velocity at the scale of the ion gyroradius ?, ? = ?u/v{sub i}, v{sub i} is the perpendicular ion thermal speed, and c{sub 1} and c{sub 2} are dimensionless constants. We test this theoretical result by numerically simulating test particles interacting with strong reduced magnetohydrodynamic (RMHD) turbulence. The heating rates in our simulations are well fit by this formula. The best-fit values of c{sub 1} are ?1. The best-fit values of c{sub 2} decrease (i.e., stochastic heating becomes more effective) as the Reynolds number and the number of grid points in the RMHD simulations increase. As an example, in a 1024{sup 2} × 256 RMHD simulation with a dissipation wavenumber of the order of the inverse ion gyroradius, we find c{sub 2} = 0.21. We show that stochastic heating is significantly stronger in strong RMHD turbulence than in a field of randomly phased Alfvén waves with the same power spectrum, because coherent structures in strong RMHD turbulence increase orbit stochasticity in the regions where ions are heated most strongly. We find that c{sub 1} increases by a factor of ?3 while c{sub 2} changes very little as the ion thermal speed increases from values <heating in the solar wind.

Xia, Qian; Perez, Jean C.; Chandran, Benjamin D. G. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Quataert, Eliot, E-mail: qdy2@unh.edu, E-mail: benjamin.chandran@unh.edu, E-mail: jeanc.perez@unh.edu, E-mail: eliot@astro.berkeley.edu [Astronomy Department and Theoretical Astrophysics Center, 601 Campbell Hall, The University of California, Berkeley, CA 94720 (United States)

2013-10-20T23:59:59.000Z

25

Solar steam generation by heat localization  

E-Print Network [OSTI]

Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated ...

Ghasemi, Hadi

26

Solar Coronal Heating and Limb Effect  

E-Print Network [OSTI]

The quiet solar coronal heating problem and the observed center-to-limb wavelength variations of the solar lines (limb effect) can be explained. In this paper the quantitative calculations for these two phenomena are presented.

Yi-Jia Zheng

2013-05-24T23:59:59.000Z

27

Lakeland Electric- Solar Water Heating Program  

Broader source: Energy.gov [DOE]

Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar...

28

Gulf Power- Solar Thermal Water Heating Program  

Broader source: Energy.gov [DOE]

'''''This program reopened on October 3, 2011 for 2012 applications. Funding is limited and must be reserved through online application before the installation of qualifying solar water heating...

29

Valley Electric Association- Solar Water Heating Program  

Broader source: Energy.gov [DOE]

Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

30

Anisotropic turbulent model for solar coronal heating  

E-Print Network [OSTI]

Context : We present a self-consistent model of solar coronal heating, originally developed by Heyvaert & Priest (1992), in which we include the dynamical effect of the background magnetic field along a coronal structure by using exact results from wave MHD turbulence (Galtier et al. 2000). Aims : We evaluate the heating rate and the microturbulent velocity for comparison with observations in the quiet corona, active regions and also coronal holes. Methods :The coronal structures are assumed to be in a turbulent state maintained by the slow erratic motions of the magnetic footpoints. A description for the large-scale and the unresolved small-scale dynamics are given separately. From the latter, we compute exactly (or numerically for coronal holes) turbulent viscosites that are finally used in the former to close self-consistently the system and derive the heating flux expression. Results : We show that the heating rate and the turbulent velocity compare favorably with coronal observations. Conclusions : Although the Alfven wave turbulence regime is strongly anisotropic, and could reduce a priori the heating efficiency, it provides an unexpected satisfactory model of coronal heating for both magnetic loops and open magnetic field lines.

B. Bigot; S. Galtier; H. Politano

2007-12-12T23:59:59.000Z

31

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerof solar combined heat and power systems . . . . . . .

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

32

Glass heat pipe evacuated tube solar collector  

DOE Patents [OSTI]

A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

McConnell, Robert D. (Lakewood, CO); Vansant, James H. (Tracy, CA)

1984-01-01T23:59:59.000Z

33

The Heating & Acceleration of the Solar Wind  

E-Print Network [OSTI]

The Heating & Acceleration of the Solar Wind Eliot Quataert (UC Berkeley) Collaborators: Steve & Slow Winds · The Puzzle of the High Frequency Cascade (or the lack thereof ....) · Possible Solutions #12;Background · Heating required to accelerate the solar wind · Early models invoked e- conduction

Wurtele, Jonathan

34

Solar heating and cooling diode module  

DOE Patents [OSTI]

A high efficiency solar heating system comprising a plurality of hollow modular units each for receiving a thermal storage mass, the units being arranged in stacked relation in the exterior frame of a building, each of the units including a port for filling the unit with the mass, a collector region and a storage region, each region having inner and outer walls, the outer wall of the collector region being oriented for exposure to sunlight for heating the thermal storage mass; the storage region having an opening therein and the collector region having a corresponding opening, the openings being joined for communicating the thermal storage mass between the storage and collector regions by thermosiphoning; the collector region being disposed substantially below and in parallel relation to the storage region in the modular unit; and the inner wall of the collector region of each successive modular unit in the stacked relation extending over the outer wall of the storage region of the next lower modular unit in the stacked relation for reducing heat loss from the system. Various modifications and alternatives are disclosed for both heating and cooling applications.

Maloney, Timothy J. (Winchester, VA)

1986-01-01T23:59:59.000Z

35

Reducing the Cost of Solar Cells  

SciTech Connect (OSTI)

Solar-powered electricity prices could soon approach those of power from coal or natural gas thanks to collaborative research with solar startup Ampulse Corporation at the National Renewable Energy Laboratory. Silicon wafers account for almost half the cost of today's solar photovoltaic panels, so reducing or eliminating wafer costs is essential to bringing prices down. Current crystalline silicon technology converts energy in a highly efficient manner; however, that technology is manufactured with processes that could stand some improvement. The industry needs a method that is less complex, creates less waste and uses less energy. First, half the refined silicon is lost as dust in the wafer-sawing process, driving module costs higher. Wafers are sawn off of large cylindrical ingots, or boules, of silicon. A typical 2-meter boule loses as many as 6,000 potential wafers during sawing. Second, the wafers produced are much thicker than necessary. To efficiently convert sunlight into electricity, the wafers need be only one-tenth the typical thickness. NREL, the Oak Ridge National Laboratory and Ampulse have partnered on an approach to eliminate this waste and dramatically lower the cost of the finished solar panels. By using a chemical vapor deposition process to grow the silicon on inexpensive foil, Ampulse is able to make the solar cells just thick enough to convert most of the solar energy into electricity. No more sawdust - and no more wasting refined silicon materials. NREL developed the technology to grow high-quality silicon and ORNL developed the metal foil that has the correct crystal structure to support that growth. Ampulse is installing a pilot manufacturing line in NREL's Process Development Integration Laboratory, where solar companies can work closely with lab scientists on integrated equipment to answer pressing questions related to their technology development, as well as rapidly overcoming R and D challenges and risk. NREL's program is focused on transformative innovation in the domestic PV industry. With knowledge and expertise acquired from the PDIL pilot production line tools, Ampulse plans to design a full-scale production line to accommodate long rolls of metal foil. The Ampulse process 'goes straight from pure silicon-containing gas to high-quality crystal silicon film,' said Brent Nelson, the operational manager for the Process Development Integration Laboratory. 'The advantage is you can make the wafer just as thin as you need it - 10 microns or less.' Most of today's solar cells are made out of wafer crystalline silicon, though thin-film cells made of more exotic elements such as copper, indium, gallium, arsenic, cadmium, tellurium and others are making a strong push into the market. The advantage of silicon is its abundance, because it is derived from sand. Silicon's disadvantage is that purifying it into wafers suitable for solar cells can be expensive and energy intensive. Manufacturers add carbon and heat to sand to produce metallurgical-grade silicon, which is useful in other industries, but not yet suitable for making solar cells. So this metallurgical-grade silicon is then converted to pure trichlorosilane (SiCl3) or silane (SiH4) gas. Typically, the purified gas is then converted to create a silicon feedstock at 1,000 degrees Celsius. This feedstock is melted at 1,414 C and recrystallized into crystal ingots that are finally sawed into wafers. The Ampulse method differs in that it eliminates the last two steps in the traditional process and works directly with the silane gas growing only the needed silicon right onto a foil substrate. A team of NREL scientists had developed a way to use a process called hot-wire chemical vapor deposition to thicken silicon wafers with near perfect crystal structure. Using a hot tungsten filament much like the one found in an incandescent light bulb, the silane gas molecules are broken apart and deposited onto the wafer using the chemical vapor deposition technique at about 700 C - a much lower temperature than needed to make the wafer. The hot filament dec

Scanlon, B.

2012-04-01T23:59:59.000Z

36

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

37

Solar Electric & Heat System Training  

Broader source: Energy.gov [DOE]

GRID Alternatives is holding a solar training in partnership with Trees, Water & People and Lakota Solar Enterprises. This 9-day training will include both classroom education and hands-on...

38

Report on Solar Water Heating Quantitative Survey  

SciTech Connect (OSTI)

This report details the results of a quantitative research study undertaken to better understand the marketplace for solar water-heating systems from the perspective of home builders, architects, and home buyers.

Focus Marketing Services

1999-05-06T23:59:59.000Z

39

Report on Solar Pool Heating Quantitative Survey  

SciTech Connect (OSTI)

This report details the results of a quantitative research study undertaken to better understand the marketplace for solar pool-heating systems from the perspective of residential pool owners.

Synapse Infusion Group, Inc. (Westlake Village, California)

1999-05-06T23:59:59.000Z

40

Gap between active and passive solar heating  

SciTech Connect (OSTI)

The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

Balcomb, J.D.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

RADIATIVE HEATING OF THE SOLAR CORONA  

SciTech Connect (OSTI)

We investigate the effect of solar visible and infrared radiation on electrons in the Sun's atmosphere using a Monte Carlo simulation of the wave-particle interaction and conclude that sunlight provides at least 40% and possibly all of the power required to heat the corona, with the exception of dense magnetic flux loops. The simulation uses a radiation waveform comprising 100 frequency components spanning the solar blackbody spectrum. Coronal electrons are heated in a stochastic manner by low coherence solar electromagnetic radiation. The wave 'coherence time' and 'coherence volume' for each component is determined from optical theory. The low coherence of solar radiation allows moving electrons to gain energy from the chaotic wave field which imparts multiple random velocity 'kicks' to these particles causing their velocity distribution to broaden or heat. Monte Carlo simulations of broadband solar radiative heating on ensembles of 1000 electrons show heating at per particle levels of 4.0 x 10{sup -21} to 4.0 x 10{sup -20} W, as compared with non-loop radiative loss rates of {approx}1 x 10{sup -20} W per electron. Since radiative losses comprise nearly all of the power losses in the corona, sunlight alone can explain the elevated temperatures in this region. The volume electron heating rate is proportional to density, and protons are assumed to be heated either by plasma waves or through collisions with electrons.

Moran, Thomas G., E-mail: moran@grace.nascom.nasa.gov [Physics Department, Catholic University of America, 200 Hannan Hall, Washington, DC 20064 (United States) and NASA/GSFC, Code 671, Greenbelt, MD 20771 (United States)

2011-10-20T23:59:59.000Z

42

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network [OSTI]

indus- trial process heat, and solar. heating and coolingSolar Energy for Agricultural and Industrial Process Heat (and heat transfer processes which are appropriate to passive solar

Authors, Various

2012-01-01T23:59:59.000Z

43

Winning the Future: Grand Ronde Solar Projects Reduce Pollution...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs October 20, 2014 - 5:00pm...

44

Effects of solar photovoltaic panels on roof heat transfer  

E-Print Network [OSTI]

the energy performance of  photovoltaic roofs, ASHRAE Trans A thermal model for photovoltaic systems, Solar Energy, Effects of Solar Photovoltaic Panels on Roof Heat Transfer 

Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

2011-01-01T23:59:59.000Z

45

THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER  

SciTech Connect (OSTI)

Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and

PROJECT STAFF

2011-10-31T23:59:59.000Z

46

Solar heat storages in district heating Klaus Ellehauge Thomas Engberg Pedersen  

E-Print Network [OSTI]

July 2007 . #12;#12;Solar heat storages in district heating networks July 2007 Klaus Ellehauge 97 22 11 tep@cowi.dk www.cowi.com #12;#12;Solar heat storages in district heating networks 5 in soil 28 5.3 Other experienced constructions: 30 6 Consequences of establishing solar heat in CHP areas

47

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerin parabolic trough solar power technology. Journal of Solar

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

48

Lessons Learned: Devolping Thermochemical Cycles for Solar Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Storage Applications Lessons Learned: Devolping Thermochemical Cycles for Solar Heat Storage Applications This presentation summarizes the introduction given by Bunsen...

49

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

50

Tidal Heating of Extra-Solar Planets  

E-Print Network [OSTI]

Extra-solar planets close to their host stars have likely undergone significant tidal evolution since the time of their formation. Tides probably dominated their orbital evolution once the dust and gas had cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget that governed the planet's physical properties, including its radius, which in many cases may be measured by observing transit events. Typically, tidal heating increases as a planet moves inward toward its star and then decreases as its orbit circularizes. Here we compute the plausible heating histories for several planets with measured radii, using the same tidal parameters for the star and planet that had been shown to reconcile the eccentricity distribution of close-in planets with other extra-solar planets. Several planets are discussed, including for example HD 209458 b, which may have undergone substantial tidal heating during the past billion years, perhaps enough to explain its large measured radius. Our models also show that GJ 876 d may have experienced tremendous heating and is probably not a solid, rocky planet. Theoretical models should include the role of tidal heating, which is large, but time-varying.

Brian Jackson; Richard Greenberg; Rory Barnes

2008-02-29T23:59:59.000Z

51

(Solar clothes dryer and wastewater heat exchanger). Final report  

SciTech Connect (OSTI)

The first project investigated the technical possibilities of adapting a domestic electric clothes dryer to utilize solar-heated water as the heat source, replacing electric resistance heat. The second project attempted to extract wastewater heat from a commercial dishwasher to preheat fresh water to be used in the next dish washing cycle. It is felt that the clothes dryer project has met all of intended goals. Although a solar application has some real-world practical problems, the application of a dryer connected directly to the home heating system will prove to be cost-beneficial over the life of a dryer. The additional cost of a heat exchanger is not excessive, and the installation cost, if installed with the initial house plumbing is less than $100. From a practical point of view, the complexity of installing a wastewater heat extracter is considered impractical. The environment in which such equipment must operate is difficult at best, and most restaurants prefer to maintain as simple an operation as possible. If problems were to occur in this type of equipment, the kitchen would effectively be crippled. In conclusion, further research in the concept is not recommended. Recent advances in commercial dishwashers have also considerably reduced the heat losses which accompanied equipment only a few years old.

Baer, B.F.

1984-12-04T23:59:59.000Z

52

Solar Water Heating with Low-Cost Plastic Systems (Brochure)  

SciTech Connect (OSTI)

Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

Not Available

2012-01-01T23:59:59.000Z

53

City of Sunset Valley- Solar Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

The City of Sunset Valley offers rebates to local homeowners who install solar water heating systems on their properties. The local rebate acts as an add-on to the solar water heating rebates that...

54

DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS  

E-Print Network [OSTI]

SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS K.Driven Absorption Air-Conditioner", K. Dao, M. Simmons, R.SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS* K.

Dao, K.

2013-01-01T23:59:59.000Z

55

Value of solar thermal industrial process heat  

SciTech Connect (OSTI)

This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

1986-03-01T23:59:59.000Z

56

Wave Heating of the Solar Atmosphere  

E-Print Network [OSTI]

Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding on coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding on the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation, and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us understanding and quantifying magnetic wave heating of the sola...

Arregui, I

2015-01-01T23:59:59.000Z

57

Solar-Assisted Technology Provides Heat for California Industries  

E-Print Network [OSTI]

Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

58

Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage  

E-Print Network [OSTI]

-reaching meaning of solving energy and environment problems if new type energy conservation and environment protection heating system ? solar assisted ground-source heat pump (SAGHP) heating system with a latent heat storage tank will be practical... was established at the laboratory of construction energy conservation in Harbin Institute of Technology (HIT) in 2004. It added a latent heat storage tank in original SAGHP system. The schematic diagram of the system is shown in Figure 1. The experimental...

Han, Z.; Zheng, M.; Liu, W.; Wang, F.

2006-01-01T23:59:59.000Z

59

AWSWAH - the heat pipe solar water heater  

SciTech Connect (OSTI)

An all weather heat pipe solar water heater (AWSWAH) comprising a collector of 4 m/sup 2/ (43 ft/sup 2/) and a low profile water tank of 160 liters (42 gal.) was developed. A single heat pipe consisting of 30 risers and two manifolds in the evaporator and a spiral condenser was incorporated into the AWSWAH. Condensate metering was done by synthetic fiber wicks. The AWSWAH was tested alongside two conventional solar water heaters of identical dimensions, an open loop system and a closed loop system. It was found that the AWSWAH was an average of 50% more effective than the open system in the temperature range 30-90 /sup 0/C (86-194 /sup 0/F). The closed loop system was the least efficient of the three systems.

Akyurt, M.

1986-01-01T23:59:59.000Z

60

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

process configurations for solar power plants with sensible-heatsolar power plant with sensible-heat storage since the chemical~heat storage processsolar power plant with a sulfur-oxide storage process. chemical~heat

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Heat extraction from salinity-gradient solar ponds using heat pipe heat exchangers  

SciTech Connect (OSTI)

This paper presents the results of experimental and theoretical analysis on the heat extraction process from solar pond by using the heat pipe heat exchanger. In order to conduct research work, a small scale experimental solar pond with an area of 7.0 m{sup 2} and a depth of 1.5 m was built at Khon Kaen in North-Eastern Thailand (16 27'N102 E). Heat was successfully extracted from the lower convective zone (LCZ) of the solar pond by using a heat pipe heat exchanger made from 60 copper tubes with 21 mm inside diameter and 22 mm outside diameter. The length of the evaporator and condenser section was 800 mm and 200 mm respectively. R134a was used as the heat transfer fluid in the experiment. The theoretical model was formulated for the solar pond heat extraction on the basis of the energy conservation equations and by using the solar radiation data for the above location. Numerical methods were used to solve the modeling equations. In the analysis, the performance of heat exchanger is investigated by varying the velocity of inlet air used to extract heat from the condenser end of the heat pipe heat exchanger (HPHE). Air velocity was found to have a significant influence on the effectiveness of heat pipe heat exchanger. In the present investigation, there was an increase in effectiveness by 43% as the air velocity was decreased from 5 m/s to 1 m/s. The results obtained from the theoretical model showed good agreement with the experimental data. (author)

Tundee, Sura; Terdtoon, Pradit; Sakulchangsatjatai, Phrut [Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200 (Thailand); Singh, Randeep; Akbarzadeh, Aliakbar [Energy Conservation and Renewable Energy Group, School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Bundoora East Campus, Bundoora, Victoria 3083 (Australia)

2010-09-15T23:59:59.000Z

62

Heat Pipe Solar Receiver Development Activities at Sandia National Laboratories  

SciTech Connect (OSTI)

Over the past decade, Sandia National Laboratories has been involved in the development of receivers to transfer energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. Through the isothermal evaporation and condensation of sodium. a heat-pipe receiver can efficiently transfer energy to an engine's working fluid and compensate for irregularities in the flux distribution that is delivered by the concentrator. The operation of the heat pipe is completely passive because the liquid sodium is distributed over the solar-heated surface by capillary pumping provided by a wick structure. Tests have shown that using a heat pipe can boost the system performance by twenty percent when compared to directly illuminating the engine heater tubes. Designing heat pipe solar receivers has presented several challenges. The relatively large area ({approximately}0.2 m{sup 2}) of the receiver surface makes it difficult to design a wick that can continuously provide liquid sodium to all regions of the heated surface. Selecting a wick structure with smaller pores will improve capillary pumping capabilities of the wick, but the small pores will restrict the flow of liquid and generate high pressure drops. Selecting a wick that is comprised of very tine filaments can increase the permeability of the wick and thereby reduce flow losses, however, the fine wick structure is more susceptible to corrosion and mechanical damage. This paper provides a comprehensive review of the issues encountered in the design of heat pipe solar receivers and solutions to problems that have arisen. Topics include: flow characterization in the receiver, the design of wick systems. the minimization of corrosion and dissolution of metals in sodium systems. and the prevention of mechanical failure in high porosity wick structures.

Adkins, D.R.; Andraka, C.E.; Moreno, J.B.; Moss, T.A.; Rawlinson, K.S.; Showalter, S.K.

1999-01-08T23:59:59.000Z

63

New Report: Integrating More Wind and Solar Reduces Utilities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Report: Integrating More Wind and Solar Reduces Utilities' Carbon Emissions and Fuel Costs October 1, 2013 - 3:51pm Addthis The National Renewable Energy Laboratory (NREL)...

64

Thermal Solar Energy Systems for Space Heating of Buildings  

E-Print Network [OSTI]

to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy...

Gomri, R.; Boulkamh, M.

2010-01-01T23:59:59.000Z

65

Thermoeconomic Analysis of a Solar Heat-Pump System  

E-Print Network [OSTI]

This paper introduces a solar energy heat-pump system and analyzes the thermoeconomics. The results show that the solar energy heat-pump system can be operated in different modes and used for room heating in winter and cooling in summer and...

Gao, Y.; Wang, S.

2006-01-01T23:59:59.000Z

66

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network [OSTI]

CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRICCHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRICprocess Boeing solar receiver [5J Internal detail of Boeing solar receiver [5J . 2.4 Heat

Dayan, J.

2011-01-01T23:59:59.000Z

67

Active Solar Heating | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles » Alternative FuelNewsWashington Auto ShowAtoActive Solar Heating

68

Experimental Research of an Active Solar Heating System  

E-Print Network [OSTI]

system are discussed in this paper. Based on the design, construction, testing and economic analysis of a demonstration project with the solar heating system, this paper discusses how to connect the solar energy collector with the electricity heater...

Gao, X.; Li, D.

2006-01-01T23:59:59.000Z

69

South River EMC- Solar Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

South River Electric Membership Corporation (EMC) is providing rebates to encourage their customers to install solar water heating systems. To be eligible for the rebate solar collectors must have...

70

Santa Clara Water and Sewer- Solar Water Heating Program  

Broader source: Energy.gov [DOE]

In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under the Solar Water Heating Program, the Santa Clara Water and Sewer Utilities Department supplies,...

71

Heating remote rooms in passive solar buildings  

SciTech Connect (OSTI)

Remote rooms can be effectively heated by convection through a connecting doorway. A simple steady-state equation is developed for design purposes. Validation of a dynamic model is achieved using data obtained over a 13-day period. Dynamic effects are investigated using a simulation analysis for three different cases of driving temperature; the effect is to reduce the temperature difference between the driving room and the remote room compared to the steady-state model. For large temperature swings in the driving room a strategy which uses the intervening door in a diode mode is effective. The importance of heat-storing mass in the remote room is investigated.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

72

Fort Pierce Utilities Authority- Solar Water Heating Rebate (Florida)  

Broader source: Energy.gov [DOE]

'''''Fort Pierce Utilities Authority has suspended the Solar Water Heating rebate program until 2013. Contact the utility for more information on these offerings.'''''

73

Heat Transfer Interface for Thermo-Solar Energy - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Heat Transfer Interface for Thermo-Solar Energy Lawrence Berkeley National Laboratory...

74

Duquesne Light Company- Residential Solar Water Heating Program  

Broader source: Energy.gov [DOE]

Duquesne Light provides rebates to its residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a flat rebate of $286 per qualifying...

75

The turbulent cascade and proton heating in the solar wind during solar minimum  

SciTech Connect (OSTI)

Solar wind measurements at 1 AU during the recent solar minimum and previous studies of solar maximum provide an opportunity to study the effects of the changing solar cycle on in situ heating. Our interest is to compare the levels of activity associated with turbulence and proton heating. Large-scale shears in the flow caused by transient activity are a source that drives turbulence that heats the solar wind, but as the solar cycle progresses the dynamics that drive the turbulence and heat the medium are likely to change. The application of third-moment theory to Advanced Composition Explorer (ACE) data gives the turbulent energy cascade rate which is not seen to vary with the solar cycle. Likewise, an empirical heating rate shows no significan changes in proton heating over the cycle.

Coburn, Jesse T.; Smith, Charles W.; Vasquez, Bernard J. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire (United States); Stawarz, Joshua E. [Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, Colorado (United States); Forman, Miriam A. [Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, New York (United States)

2013-06-13T23:59:59.000Z

76

Solar Transient Events and their importance for Coronal Heating  

E-Print Network [OSTI]

1 Solar Transient Events and their importance for Coronal Heating J. Gerry Doyle and Maria S to understanding how the solar plasma is accel- erated and heated may well be found in the study of these small that these small-scale events may well have broad implications for the mass and energy balance of the whole upper

77

TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS  

E-Print Network [OSTI]

Energy, Office of Assistant Secretary for Conservation and Solarmirrors for energy conservation and passive solar heatingfor energy conservation and passive solar applications. ! Ł

Selkowitz, S.

2011-01-01T23:59:59.000Z

78

OPTIMAi UTILIZATION OF SOLAR ENERGY IN HEATING AND COOLINGOF BUILDINGS  

E-Print Network [OSTI]

OPTIMAi UTILIZATION OF SOLAR ENERGY IN HEATING AND COOLINGOF BUILDINGS C. Byron Winn Gearold R fundamental optimization problems involved in the design of a solar building. The first is a parameter for the given system configu- ration and the opt the latter problem The CSU Solar parameters such as mal set

Moore, John Barratt

79

Turbulent heating of the corona and solar wind: the heliospheric  

E-Print Network [OSTI]

resembles magnetic lines of force Eclipse observations show the `solar corona' Thomson-scattered white light ­ photospheric light scattered from dust, solar spectrum remains ­ `zodiacal light' E corona ­ emission linesTurbulent heating of the corona and solar wind: the heliospheric dark energy problem Stuart D. Bale

80

Modeling of Performance, Cost, and Financing of Concentrating Solar, Photovoltaic, and Solar Heat Systems (Poster)  

SciTech Connect (OSTI)

This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, 2006 in Boulder, Colorado, discusses the modeling, performance, cost, and financing of concentrating solar, photovoltaic, and solar heat systems.

Blair, N.; Mehos, M.; Christiansen, C.

2006-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Rules of thumb for passive solar heating  

SciTech Connect (OSTI)

Rules of thumb are given for passive solar systems for: (1) sizing solar glazing for 219 cities, (2) sizing thermal storage mass, and (3) building orientation.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

82

Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries  

SciTech Connect (OSTI)

Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

None,

1981-09-01T23:59:59.000Z

83

Central solar heating plants with seasonal storage in mines  

SciTech Connect (OSTI)

The solar assisted heat supply of building offers a great technical potential for the substitution of fossil energy sources. Central solar Heating Plants with Seasonal Storage (CSHPSS) supply 100 and more buildings and reach a solar fraction of 50% or more of the total load with far less specific heat costs [$/kWh{sub solar}] compared to small domestic hot water systems (DHW) for single-family houses. However, the construction of seasonal storage is too expensive. At the Ruhu University Bochum the use of mines for a seasonal storage of low temperature heat is examined in cooperation with industrial partners. The use of available storage volumes may lead to a decrease of investment costs. Additional geothermal heat gains can be obtained from the warm surrounding rock; therefore a high efficiency can be achieved.

Eikmeier, B.; Mohr, M.; Unger, H.

1999-07-01T23:59:59.000Z

84

DOE Announces $27 Million to Reduce Costs of Solar Energy Projects...  

Energy Savers [EERE]

DOE Announces 27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations DOE Announces 27 Million to Reduce Costs of Solar Energy Projects,...

85

CONTROL SYSTEM FOR SOLAR HEATING and COOLING  

E-Print Network [OSTI]

Solar Energy Society Meeting, Los Angeles, California, Julysolar in- solation measuring stations in northern and central California (California 94720 August 1975 A control system is being developed that will be capable of operating solar

Dols, C.

2010-01-01T23:59:59.000Z

86

Solar Water Heating Requirement for New Residential Construction  

Broader source: Energy.gov [DOE]

In June 2008, Hawaii enacted legislation, [http://www.capitol.hawaii.gov/session2008/bills/SB644_CD1_.htm SB 644], with the intent to require solar water-heating (SWH) systems to be installed on...

87

Minnesota Power- Solar-Thermal Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings; ...

88

GreyStone Power- Solar Water Heating Program  

Broader source: Energy.gov [DOE]

GreyStone Power, an electricity cooperative serving 103,000 customers in Georgia, introduced a solar water heating rebate in March 2009. This $500 rebate is available to customers regardless of...

89

Southwest Gas Corporation- Smarter Greener Better Solar Water Heating Program  

Broader source: Energy.gov [DOE]

Southwest Gas is offering rebates to Nevada customers for solar water heating systems installed in private residential, small business, public and other properties. Rebates are based on the amount...

90

Beaches Energy Services- Solar Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Beaches Energy Services offers a solar water heating rebate to their residential customers. This $500 rebate applies to new systems which are properly installed and certified. New construction and...

91

Lake Worth Utilities- Residential Solar Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

The City of Lake Worth Utilities (CLWU), in conjunction with Florida Municipal Power Agency, offers rebates to customers who purchase and install a solar water heating system for residential use. A...

92

Questar Gas- Residential Solar Assisted Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

93

Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

94

City of Tallahassee Utilities- Solar Water Heating Rebate  

Broader source: Energy.gov [DOE]

The City of Tallahassee Utilities offers a $450 rebate to homeowners* and homebuilders who install a solar water-heating system. This rebate may be applied to a first-time installation or to the...

95

City of Palo Alto Utilities- Solar Water Heating Program  

Broader source: Energy.gov [DOE]

City of Palo Alto Utilities is offering incentives for their residential, commercial and industrial customers to install solar water heating systems on their homes and facilities with a goal of 1...

96

Solar heating system installed at Jackson, Tennessee. Final report  

SciTech Connect (OSTI)

The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

None

1980-10-01T23:59:59.000Z

97

Heat storage and distribution inside passive-solar buildings  

SciTech Connect (OSTI)

Passive solar buildings are investigated from the viewpoint of the storage of solar heat in materials of the building: walls, floors, ceilings, and furniture. The effects of the location, material, thickness, and orientation of each internal building surface are investigated. The concept of diurnal heat capacity is introduced and a method of using this parameter to estimate clear-day temperature swings is developed. Convective coupling to remote rooms within a building is discussed. Design guidelines are given.

Balcomb, J.D.

1983-05-01T23:59:59.000Z

98

Passive-Solar-Heating Analysis: a new ASHRAE manual  

SciTech Connect (OSTI)

The forthcoming ASHRAE book, Passive Solar Heating Analysis, is described. ASHRAE approval procedures are discussed. An overview of the contents is given. The development of the solar load ratio correlations is described, and the applicability of the analysis method is discussed.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

99

Installation package for a Sunspot Cascade Solar Water Heating System  

SciTech Connect (OSTI)

Elcam, Incorporated of Santa Barbara, California, has developed two solar water heating systems. The systems have been installed at Tempe, Arizona and San Diego, California. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank and controls. General guidelines are provided which may be utilized in development of detailed instalation plans and specifications. In addition, it provides instruction on operation, maintenance and installation of solar hot water systems.

None

1980-09-01T23:59:59.000Z

100

TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS  

E-Print Network [OSTI]

heating purposes. BACKGROUND The reduction of heat transfer rates by the use of thermal infraredheating applications should become available on the marketplace. Due to their high reflectivity to thermal infrared

Selkowitz, S.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sustainable Energy Resources for Consumers Webinar on Solar Water Heating Transcript  

Broader source: Energy.gov [DOE]

Video recording transcript of a Webinar on Nov. 16, 2010 about residential solar water heating applications

102

CONTROL SYSTEM FOR SOLAR HEATING and COOLING  

E-Print Network [OSTI]

sensors and control valves used in our generalized experimental system. The experimental solarsensors are remotely located at critical (in terms of decision-making) locations in the solar

Dols, C.

2010-01-01T23:59:59.000Z

103

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

review of small solar-powered heat engines part II: Researchsince 1950-conventional engines up to 100kW. Solar Energysmall solar-powered heat engines. part III: Research since

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

104

Theoretical and experimental investigation of heat pipe solar collector  

SciTech Connect (OSTI)

Heat pipe solar collector was designed and constructed at IROST and its performance was measured on an outdoor test facility. The thermal behavior of a gravity assisted heat pipe solar collector was investigated theoretically and experimentally. A theoretical model based on effectiveness-NTU method was developed for evaluating the thermal efficiency of the collector, the inlet, outlet water temperatures and heat pipe temperature. Optimum value of evaporator length to condenser length ratio is also determined. The modelling predictions were validated using experimental data and it shows that there is a good concurrence between measured and predicted results. (author)

Azad, E. [Iranian Research Organization for Science and Technology, 71 Forsat Avenue Ferdousi sq., Tehran (Iran)

2008-09-15T23:59:59.000Z

105

Piedmont EMC- Solar Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Piedmont Electric Membership Corporation is offering a $500 rebate to its residential members who install solar water heaters on their homes. The utility recommends but does not require the system...

106

Austin Energy- Solar Water Heating Rebate  

Broader source: Energy.gov [DOE]

Austin Energy offers its residential, commercial, and municipal customers up front rebates or a low interest loan for the purchase and installation of solar hot water heaters. Because the program...

107

Solar Pool Heating | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca:upGuidebookSolSolutionSolarRetrieved

108

Solar Water Heating in Dragash Municipality, Kosovo.  

E-Print Network [OSTI]

?? Water has been heated with the sun has almost as long as there have been humans, but itis not until recently that more advanced… (more)

Dahl Hĺkans, Mia

2010-01-01T23:59:59.000Z

109

PV vs. Solar Water Heating- Simple Solar Payback  

Broader source: Energy.gov [DOE]

Solar energy systems hang their hats on payback. Financial payback is as tangible as money in your bank account, while other types of payback—like environmental externalities—are not usually calculated in dollars. There’s no doubt that photovoltaic (PV) and solar hot water (SHW) systems will pay you back. Maybe not as quickly as you’d like, but all systems will significantly offset their cost over their lifetimes. Here we’ll try to answer: Which system will give the quickest return on investment (ROI)?

110

Evaluation of solar collectors for heat pump applications. Final report  

SciTech Connect (OSTI)

The study was initiated to evaluate the potential utility of very low cost (possibly unglazed and uninsulated) solar collectors to serve as both heat collection and rejection devices for a liquid source heat pump. The approach consisted of exercising a detailed analytical simulation of the complete heat pump/solar collector/storage system against heating and cooling loads derived for typical single-family residences in eight US cities. The performance of each system was measured against that of a conventional air-to-air heat pump operating against the same loads. In addition to evaluation of solar collector options, the study included consideration of water tanks and buried pipe grids to provide thermal storage. As a supplement to the analytical tasks, the study included an experimental determination of night sky temperature and convective heat transfer coefficients for surfaces with dimensions typical of solar collectors. The experiments were conducted in situ by placing the test apparatus on the roofs of houses in the Denver, Colorado, area. (MHR)

Skartvedt, Gary; Pedreyra, Donald; McMordle, Dr., Robert; Kidd, James; Anderson, Jerome; Jones, Richard

1980-08-01T23:59:59.000Z

111

A Steam Quality Comparison between Nanoshell-Mediated Solar Heating and Conventional Electrical Heating  

E-Print Network [OSTI]

GP-B-13 A Steam Quality Comparison between Nanoshell-Mediated Solar Heating in the Halas Group has led to the development of a novel, solar- based steam generation method using broadband. This a dramatic and highly non-equilibrium process. As such, investigating the properties of this steam

112

Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain  

SciTech Connect (OSTI)

Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

2010-05-14T23:59:59.000Z

113

EWEB- Residential Solar Water Heating Loan Program  

Broader source: Energy.gov [DOE]

Eugene Water and Electric Board (EWEB) offers residential customers a loan and cash discount program called, "The Bright Way To Heat Water." The program is designed to promote the installation of...

114

Performance estimates for attached-sunspace passive solar heated buildings  

SciTech Connect (OSTI)

Performance predictions have been made for attached-sunspace types of passively solar heated buildings. The predictions are based on hour-by-hour computer simulations using computer models developed in the framework of PASOLE, the Los Alamos Scientific Laboratory (LASL) passive solar energy simulation program. The models have been validated by detailed comparison with actual hourly temperature measurements taken in attached-sunspace test rooms at LASL.

McFarland, R.D.; Jones, R.W.

1980-01-01T23:59:59.000Z

115

Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems  

SciTech Connect (OSTI)

This report discusses the following tasks; solar heating with isothermal collector operation and advanced control strategy; solar cooling with solid desiccant; liquid desiccant cooling system development; solar house III -- development and improvement of solar heating systems employing boiling liquid collectors; generic solar domestic water heating systems; advanced residential solar domestic hot water (DHW) systems; management and coordination of Colorado State/DOE program; and field monitoring workshop.

Not Available

1991-01-07T23:59:59.000Z

116

List of Passive Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassive Solar Space Heat Incentives

117

List of Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassive SolarRoofs IncentivesListHeat

118

Heat storage and distribution inside passive-solar buildings  

SciTech Connect (OSTI)

Passive-solar buildings are investigated from the viewpoint of the storage of solar heat in materials of the building: walls, floors, ceilings, and furniture. The effects of the location, material, thickness, and orientation of each internal building surface are investigated. The concept of diurnal heat capacity is introduced and a method of using this parameter to estimate clear-day temperature swings is developed. Convective coupling to remote rooms within a building is discussed, including both convection through single doorways and convective loops that may exist involving a sunspace. Design guidelines are given.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

119

Active solar heating and cooling information user study  

SciTech Connect (OSTI)

The results of a series of telephone interviews with groups of users of information on active solar heating and cooling (SHAC). An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 19 SHAC groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Manufacturers (4 groups), Distributors, Installers, Architects, Builders, Planners, Engineers (2 groups), Representatives of Utilities, Educators, Cooperative Extension Service County Agents, Building Owners/Managers, and Homeowners (2 groups). The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-01-01T23:59:59.000Z

120

Low-Cost Solar Water Heating Research and Development Roadmap  

SciTech Connect (OSTI)

The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Tracking heat flux sensors for concentrating solar applications  

DOE Patents [OSTI]

Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

Andraka, Charles E; Diver, Jr., Richard B

2013-06-11T23:59:59.000Z

122

Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery  

SciTech Connect (OSTI)

HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

None

2011-12-19T23:59:59.000Z

123

Passive Solar Space Heat | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLCPascoag Utility District Jump to:Passive

124

Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 SolarPVSolar Viewed as Triple

125

Modeling the heating of the Green Energy Lab in Shanghai by the geothermal heat pump combined with the solar thermal energy and ground energy storage.  

E-Print Network [OSTI]

?? This work involves the study of heating systems that combine solar collectors, geothermal heat pumps and thermal energy storage in the ground. Solar collectors… (more)

Yu, Candice Yau May

2012-01-01T23:59:59.000Z

126

Solar heating and cooling demonstration project at the Florida Solar Energy Center  

SciTech Connect (OSTI)

The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. Information is provided on the system's test, operation, controls, hardware and installation, including detailed drawings. The Center's office building, approximately 5000 square feet of space, with solar air conditioning and heating as a demonstration of the technical feasibility is located just north of Port Canaveral, Florida. The system was designed to supply approximately 70% of the annual cooling and 100% of the heating load. The project provides unique high-temperature, non-imaging, non-tracking, evacuated-tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection.

Hankins, J.D.

1980-02-01T23:59:59.000Z

127

Federal technology alert. Parabolic-trough solar water heating  

SciTech Connect (OSTI)

Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

NONE

1998-04-01T23:59:59.000Z

128

Focused cathode design to reduce anode heating during vircator operation  

SciTech Connect (OSTI)

Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A. [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)] [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

2013-10-15T23:59:59.000Z

129

Solar Space Heat | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak AreaOutlineSolarEnergySolaraka

130

Solar Thermal Process Heat | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver PeakSystems Jump to: navigation,Solar

131

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver PeakSystems Jump to:JumpSolar powerfollowing

132

NREL: Learning - Solar Process Heat Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLizResults InterpretingBiofuelsNationalSolar

133

Question of the Week: How Do You Reduce Your Water Heating Costs...  

Broader source: Energy.gov (indexed) [DOE]

Reduce Your Water Heating Costs Question of the Week: How Do You Reduce Your Water Heating Costs February 19, 2009 - 1:39pm Addthis Water heating can account for a significant...

134

Solar Energy - Capturing and Using Power and Heat from the Sun...  

Broader source: Energy.gov (indexed) [DOE]

Solar Energy - Capturing and Using Power and Heat from the Sun Solar Energy - Capturing and Using Power and Heat from the Sun U.S. Department of Energy (DOE) Office of Energy...

135

Solar space heating installed at Kansas City, Kansas. Final report  

SciTech Connect (OSTI)

The solar energy system was constructed with the new 48,800 square feet warehouse to heat the warehouse area of about 39,000 square feet while the auxiliary energy system heats the office area of about 9800 square feet. The building is divided into 20 equal units, and each has its own solar system. The modular design permits the flexibility of combining multiple units to form offices or warehouses of various size floor areas as required by a tenant. Each unit has 20 collectors which are mounted in a single row. The collectors, manufactured by Solaron Corporation, are double glazed flat plate collectors with a gross area of 7800 ft/sup 2/. Air is heated either through the collectors or by the electric resistance duct coils. No freeze protection or storage is required for this system. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

Not Available

1981-05-01T23:59:59.000Z

136

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet)  

SciTech Connect (OSTI)

NREL and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heater market.

Not Available

2014-08-01T23:59:59.000Z

137

INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING  

E-Print Network [OSTI]

solar con- trols test facility at Lawrence Berkeley Laboratory The interaction of baseboard, radiant panel, and furnace heating

Vilmer, Christian

2013-01-01T23:59:59.000Z

138

Solar-powered turbocompressor heat pump system  

DOE Patents [OSTI]

The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

1982-08-12T23:59:59.000Z

139

Performance of active solar space-heating systems, 1980-1981 heating season  

SciTech Connect (OSTI)

Data are provided on 32 solar heating sites in the National Solar Data Network (NSDN). Of these, comprehensive data are included for 14 sites which cover a range of system types and solar applications. A brief description of the remaining sites is included along with system problems experienced which prevented comprehensive seasonal analyses. Tables and discussions of individual site parameters such as collector areas, storage tank sizes, manufacturers, building dimensions, etc. are provided. Tables and summaries of 1980-1981 heating season data are also provided. Analysis results are presented in graphic form to highlight key summary information. Performance indices are graphed for two major groups of collectors - liquid and air. Comparative results of multiple NSDN systems' operation for the 1980-1981 heating season are summarized with discussions of specific cases and conclusions which may be drawn from the data. (LEW)

Welch, K.; Kendall, P.; Pakkala, P.; Cramer, M.

1981-01-01T23:59:59.000Z

140

Testing of Stirling engine solar reflux heat-pipe receivers  

SciTech Connect (OSTI)

Alkali metal heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while de-coupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to high system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 30 kW{sub t} power throughput by others. This size is suitable fm engine output powers up to 10 kW{sub e}. Several 25-kW{sub e}, Stirling-cycle engines exist, as well as designs for 75-kW{sub t} parabolic dish solar concentrators. The extension of heat pipe technology from 30 kW{sub t} to 75 kW{sub t} is not trivial. Heat pipe designs are pushed to their limits, and it is critical to understand the flux profiles expected from the dish, and the local performance of the wick structure. Sandia has developed instrumentation to monitor and control the operation of heat pipe reflux receivers to test their throughput limits, and analytical models to evaluate receiver designs. In the past 1.5 years, several heat pipe receivers have been tested on Sandia`s test bed concentrators (TBC`s) and 60-kW{sub t} solar furnace. A screen-wick heat pipe developed by Dynatherm was tested to 27.5 kW{sub t} throughput. A Cummins Power Generation (CPG)/Thermacore 30-kW{sub t} heat pipe was pushed to a throughput of 41 kW{sub t} to verify design models. A Sandia-design screen-wick and artery 75-kW{sub t} heat pipe and a CPG/Thermacore 75-kW{sub t} sintered-wick heat pipe were also limit tested on the TBC. This report reviews the design of these receivers, and compares test results with model predictions.

Rawlinson, S.; Cordeiro, P.; Dudley, V.; Moss, T.

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Joule Heating and Anomalous Resistivity in the Solar Corona  

E-Print Network [OSTI]

Recent radioastronomical observations of Faraday rotation in the solar corona can be interpreted as evidence for coronal currents, with values as large as $2.5 \\times 10^9$ Amperes (Spangler 2007). These estimates of currents are used to develop a model for Joule heating in the corona. It is assumed that the currents are concentrated in thin current sheets, as suggested by theories of two dimensional magnetohydrodynamic turbulence. The Spitzer result for the resistivity is adopted as a lower limit to the true resistivity. The calculated volumetric heating rate is compared with an independent theoretical estimate by Cranmer et al (2007). This latter estimate accounts for the dynamic and thermodynamic properties of the corona at a heliocentric distance of several solar radii. Our calculated Joule heating rate is less than the Cranmer et al estimate by at least a factor of $3 \\times 10^5$. The currents inferred from the observations of Spangler (2007) are not relevant to coronal heating unless the true resistivity is enormously increased relative to the Spitzer value. However, the same model for turbulent current sheets used to calculate the heating rate also gives an electron drift speed which can be comparable to the electron thermal speed, and larger than the ion acoustic speed. It is therefore possible that the coronal current sheets are unstable to current-driven instabilities which produce high levels of waves, enhance the resistivity and thus the heating rate.

Steven R. Spangler

2008-12-22T23:59:59.000Z

142

Process for reducing series resistance of solar cell metal contact systems with a soldering flux etchant  

DOE Patents [OSTI]

Disclosed is a process for substantially reducing the series resistance of a solar cell having a thick film metal contact assembly thereon while simultaneously removing oxide coatings from the surface of the assembly prior to applying solder therewith. The process includes applying a flux to the contact assembly and heating the cell for a period of time sufficient to substantially remove the series resistance associated with the assembly by etching the assembly with the flux while simultaneously removing metal oxides from said surface of said assembly.

Coyle, R. T. (Lakewood, CO); Barrett, Joy M. (Eldorado Springs, CO)

1984-01-01T23:59:59.000Z

143

Radiative Impacts on the Growth of Drops within Simulated Marine Stratocumulus. Part I: Maximum Solar Heating  

E-Print Network [OSTI]

November 2004) ABSTRACT The effects of solar heating and infrared cooling on the vapor depositional growth of as much as 45 min. Including infrared cooling as well as solar heating in the LES and microphysical bin Solar Heating CHRISTOPHER M. HARTMAN AND JERRY Y. HARRINGTON Department of Meteorology, The Pennsylvania

Harrington, Jerry Y.

144

New waste-heat refrigeration unit cuts flaring, reduces pollution  

SciTech Connect (OSTI)

Planetec Utility Services Co. Inc. and Energy Concepts Co. (ECC), with the help of the US Department of Energy (DOE), developed and commissioned a unique waste-heat powered LPG recovery plant in August 1997 at the 30,000 b/d Denver refinery, operated by Ultramar Diamond Shamrock (UDS). This new environmentally friendly technology reduces flare emissions and the loss of salable liquid-petroleum products to the fuel-gas system. The waste heat ammonia absorption refrigeration plant (Whaarp) is the first technology of its kind to use low-temperature waste heat (295 F) to achieve sub-zero refrigeration temperatures ({minus}40 F) with the capability of dual temperature loads in a refinery setting. The ammonia absorption refrigeration is applied to the refinery`s fuel-gas makeup streams to condense over 180 b/d of salable liquid hydrocarbon products. The recovered liquid, about 64,000 bbl/year of LPG and gasoline, increases annual refinery profits by nearly $1 million, while substantially reducing air pollution emissions from the refinery`s flare.

Brant, B.; Brueske, S. [Planetec Utility Services Co., Inc., Evergreen, CO (United States); Erickson, D.; Papar, R. [Energy Concepts Co., Annapolis, MD (United States)

1998-05-18T23:59:59.000Z

145

Compressive turbulent cascade and heating in the solar wind  

SciTech Connect (OSTI)

A turbulent energy cascade has been recently identified in high-latitude solar wind data samples by using a Yaglom-like relation. However, analogous scaling law, suitably modified to take into account compressible fluctuations, has been observed in a much more extended fraction of the same data set recorded by the Ulysses spacecraft. Thus, it seems that large scale density fluctuations, despite their low amplitude, play a major role in the basic scaling properties of turbulence. The compressive turbulent cascade, moreover, seems to be able to supply the energy needed to account for the local heating of the non-adiabatic solar wind.

Marino, R. [Dipartimento di Fisica, Universita della Calabria, Ponte Bucci 31C, I-87036 Rende (Italy); University of Nice Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, B.P. 4229, 06304 Nice Cedex 4 (France); Sorriso-Valvo, L. [Liquid Crystal Laboratory, INFM/CNR, Ponte Bucci 33B, I-87036 Rende (Italy); Carbone, V. [Dipartimento di Fisica, Universita della Calabria, Ponte Bucci 31C, I-87036 Rende (Italy); Noullez, A. [University of Nice Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, B.P. 4229, 06304 Nice Cedex 4 (France); Bruno, R. [INAF-Istituto Fisica Spazio Interplanetario, Rome (Italy)

2010-03-25T23:59:59.000Z

146

List of Solar Pool Heating Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassive SolarRoofs IncentivesList

147

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassive SolarRoofsIncentives Jump to:

148

List of Solar Water Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassive SolarRoofsIncentives Jump

149

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

Environmental Value of Solar Thermal Systems in MicrogridsEnvironmental Value of Solar Thermal Systems in Microgridsa) ABSTRACT The addition of solar thermal and heat storage

Marnay, Chris

2010-01-01T23:59:59.000Z

150

Market development directory for solar industrial process heat systems  

SciTech Connect (OSTI)

The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

None

1980-02-01T23:59:59.000Z

151

Performance studies of a solar energy storing heat exchanger  

SciTech Connect (OSTI)

The design, construction, and performance of a solar energy storing heat exchanger is presented as a step toward a solar cooking concept. The solid-solid transition of pentaerythritol is the principal mechanism for energy storage. The methods for describing the system performance are explained and applied to a test system containing a controllable replacement for the solar input power. This first stage of the project will be followed by another in which the heat exchanger is connected to a concentrating array of CPC cylindrical troughs. Although a size appropriate to commercial cooking may prove easier to design from the point of view of economics in the US, the system discussed herein is sized for domestic use and addresses the question of what solar collector area and PCM mass are needed in order to provide adequate energy for several family-size meals with sufficient storage to cook at night and one or two days later. The performance is described from efficiency measurements and the determination of a figure of merit.

Bushnell, D.L. (Northern Illinois Univ., DeKalb (USA))

1988-01-01T23:59:59.000Z

152

Heating of the magnetized solar chromosphere by partial ionization effects  

E-Print Network [OSTI]

In this paper, we study the heating of the magnetized solar chromosphere induced by the large fraction of neutral atoms present in this layer. The presence of neutrals, together with the decrease with height of the collisional coupling, leads to deviations from the classical MHD behavior of the chromospheric plasma. A relative net motion appears between the neutral and ionized components, usually referred to as ambipolar diffusion. The dissipation of currents in the chromosphere is enhanced orders of magnitude due to the action of ambipolar diffusion, as compared to the standard ohmic diffusion. We propose that a significant amount of magnetic energy can be released to the chromosphere just by existing force-free 10--40 G magnetic fields there. As a consequence, we conclude that ambipolar diffusion is an important process that should be included in chromospheric heating models, as it has the potential to rapidly heat the chromosphere. We perform analytical estimations and numerical simulations to prove this i...

Khomenko, Elena

2011-01-01T23:59:59.000Z

153

A performance data network for solar process heat systems  

SciTech Connect (OSTI)

A solar process heat (SPH) data network has been developed to access remote-site performance data from operational solar heat systems. Each SPH system in the data network is outfitted with monitoring equipment and a datalogger. The datalogger is accessed via modem from the data network computer at the National Renewable Energy Laboratory (NREL). The dataloggers collect both ten-minute and hourly data and download it to the data network every 24-hours for archiving, processing, and plotting. The system data collected includes energy delivered (fluid temperatures and flow rates) and site meteorological conditions, such as solar insolation and ambient temperature. The SPH performance data network was created for collecting performance data from SPH systems that are serving in industrial applications or from systems using technologies that show promise for industrial applications. The network will be used to identify areas of SPH technology needing further development, to correlate computer models with actual performance, and to improve the credibility of SPH technology. The SPH data network also provides a centralized bank of user-friendly performance data that will give prospective SPH users an indication of how actual systems perform. There are currently three systems being monitored and archived under the SPH data network: two are parabolic trough systems and the third is a flat-plate system. The two trough systems both heat water for prisons; the hot water is used for personal hygiene, kitchen operations, and laundry. The flat plate system heats water for meat processing at a slaughter house. We plan to connect another parabolic trough system to the network during the first months of 1996. We continue to look for good examples of systems using other types of collector technologies and systems serving new applications (such as absorption chilling) to include in the SPH performance data network.

Barker, G.; Hale, M.J.

1996-03-01T23:59:59.000Z

154

Survey of Climate Conditions for Demonstration of a Large Scale of Solar Energy Heating in Xi'an  

E-Print Network [OSTI]

-scale solar energy heating applications in urban residential buildings. In this paper, Xi'an's geographical situation and climate conditions are fully analyzed. The survey on solar energy resources, and the feasibility of solar energy heating on a large scale...

Li, A.; Liu, Y.

2006-01-01T23:59:59.000Z

155

SOLAR HEAT GAIN THROUGH FENESTRATION SYSTEMS CONTAINING SHADING: PROCEDURES FOR ESTIMATING  

E-Print Network [OSTI]

SOLAR HEAT GAIN THROUGH FENESTRATION SYSTEMS CONTAINING SHADING: PROCEDURES FOR ESTIMATING that with a drastic simplifying assumption these methods can be used to calculate system solar-optical properties and solar heat gain coefficients for arbitrary glazing systems, while requiring limited data about

156

SOLAR HEAT GAIN THROUGH FENESTRATION SYSTEMS CONTAINING SHADING: SUMMARY OF PROCEDURES FOR  

E-Print Network [OSTI]

SOLAR HEAT GAIN THROUGH FENESTRATION SYSTEMS CONTAINING SHADING: SUMMARY OF PROCEDURES that with a drastic simplifying assumption these methods can be used to calculate system solar-optical properties and solar heat gain coefficients for arbitrary glazing systems, while requiring limited data about

157

Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition  

SciTech Connect (OSTI)

This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

None

1980-09-01T23:59:59.000Z

158

Solar water heating technical support. Technical report for November 1997--April 1998 and final report  

SciTech Connect (OSTI)

This progress report covers the time period November 1, 1997 through April 30, 1998, and also summarizes the project as the final report. The topics of the report include certification of solar collectors for water heating systems, modeling and testing of solar collectors and gas water heater backup systems, ratings of collectors for specific climates, and solar pool heating systems.

Huggins, J.

1998-10-01T23:59:59.000Z

159

Coat Color and Solar Heat Gain in Animals Author(s): Glenn E. Walsberg  

E-Print Network [OSTI]

when exposed to solar radiation than do light surfaces. For ani- mals such as birds or mammalsCoat Color and Solar Heat Gain in Animals Author(s): Glenn E. Walsberg Source: BioScience, Vol. 33://www.jstor.org #12;Coat Color and Solar Heat Gain in Animals Glenn E. Walsberg The relationbetween coat color

Cavitt, John F.

160

Methanol-based heat pump for solar heating, cooling, and storage. Phase III. Final report  

SciTech Connect (OSTI)

The reaction of CH/sub 3/OH vapor with solid (pellet) CaCl/sub 2/ to form the solid phase compound CaCll/sub 2/ . 2CH/sub 3/OH can be used as the basis of a combined solar heat pump/thermal energy storage system. Such a system is capable of storing heat indefinitely at ambient temperature, and can be used for space and domestic hot water heating, and for air conditioning with forced air (dry) heat rejection. It combines all features required of a residential or commercial space conditioning system except for solar collection. A detailed thermal analysis shows that the coefficient of performance for heating is greater than 1.5, and for cooling, greater than 0.5. This has been confirmed by direct experimental measurement on an engineering development test unit (EDTU). The experimental rate of CH/sub 3/OH absorption is a strong function of the absorber-evaporator temperature difference. The minimum practical hourly rate, 0.10 moles CH/sub 3/OH per mole CaCl/sub 2/, was observed with the salt-bed heat transfer fluid at 40/sup 0/C and the CH/sub 3/OH evaporator at -15/sup 0/C. a detailed performance and economic analysis was carried out for a system operated in Washington, DC. With 25 square meters of evacuated tube solar collectors, the CaCl/sub 2/-CH/sub 3/OH chemical heat pump should be capable of meeting over 90% of the cooling load, 80% of the heating load, and 70% of the domestic hot water load with nonpurchased energy in a typical well-insulated single family residence, thus saving about $600 per year. In small-scale production, the installed cost of the system, including solar collectors and backup, is estimated to be about $10,000 greater than a conventional heating and cooling system, and a much lower cost should be possible in the longer term.

Offenhartz, P O'D; Rye, T V; Malsberger, R E; Schwartz, D

1981-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System Combined Heat and Power System by Zachary Mills Norwood Doctor of Philosophy in the Energy and Resources of analysis of Distributed Concentrating Solar Combined Heat and Power (DCS-CHP) systems is a design

California at Berkeley, University of

162

Electron and proton heating by solar wind turbulence B. Breech,1  

E-Print Network [OSTI]

Electron and proton heating by solar wind turbulence B. Breech,1 W. H. Matthaeus,2 S. R. Cranmer,3. Oughton (2009), Electron and proton heating by solar wind turbulence, J. Geophys. Res., 114, A09103, doi profile, requiring some process(es) to provide additional heat sources. One possible, and successful

Oughton, Sean

163

Self-Regulation of Solar Coronal Heating Process via the Collisionless Reconnection Condition Dmitri A. Uzdensky*  

E-Print Network [OSTI]

Self-Regulation of Solar Coronal Heating Process via the Collisionless Reconnection Condition December 2007) I propose a new paradigm for solar coronal heating viewed as a self-regulating process the main heating process in this model is magnetic reconnection, I will first summarize the recent progress

164

Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design  

E-Print Network [OSTI]

11 Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design H. Boyer focuses on the modeling of Trombe solar walls. In each case, detailed modeling of heat transfer allows with same thermal behaviour). For heat conduction in walls, it results from electrical analogy

Paris-Sud XI, Université de

165

Theoretical study of gas heated in a porous material subjected to a concentrated solar radiation (*)  

E-Print Network [OSTI]

W solar furnace of Solar Energy Laboratory in Odeillo (France). Revue Phys. Appl. 15 (1980) 423-426 MARS423 Theoretical study of gas heated in a porous material subjected to a concentrated solar exposed to the solar radiation. These quantities may be expressed in any set consistent units. 1

Paris-Sud XI, Université de

166

Optimization of storage in passive solar heating systems. Final report  

SciTech Connect (OSTI)

The search for a simple method of estimating the optimum amount of storage for passive solar space heating system designs and the results of that search are described. The project goals, and why the project is important are described. The major project results are presented in the order of their importance with respect to meeting the project goal. A narrative description of the project is given. Here the various approaches attempted are described, giving the reasons for failure in those areas that were not successful. The Appendices contain the bulk of data generated by this project. Most of the data is presented in graphical form. (MHR)

Bahm, R.J.

1980-05-01T23:59:59.000Z

167

Effect of plants on sunspace passive solar heating  

SciTech Connect (OSTI)

The effect of plants on sunspace thermal performance is investigated, based on experiments done in Los Alamos using two test rooms with attached sunspaces, which were essentially identical except for the presence of plants in one. Performance is related to plant transpiration, evaporation from the soil, condensation on the glazing and the absorbtance of solar energy by the lightweight leaves. Performance effects have been quantified by measurements of auxiliary heat consumption in the test rooms and analyzed by means of energy balance calculations. A method for estimating the transpiration rate is presented.

Best, E.D.; McFarland, R.D.

1985-01-01T23:59:59.000Z

168

Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants  

SciTech Connect (OSTI)

A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.

Mathur, Anoop [Terrafore Inc.] [Terrafore Inc.

2013-08-14T23:59:59.000Z

169

Georgia Power- Residential Solar and Heat Pump Water Heater Rebate (Georgia)  

Broader source: Energy.gov [DOE]

Georgia Power customers may be eligible for rebates up to $250 each toward the installation costs of a 50 gallon or greater solar water heater or heat pump water heater. The solar water heater or...

170

E-Print Network 3.0 - active solar heating Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the transparent cover and dark... Thermal Solar thermal technologies use the sun's power to heat air or water. We use hot water in our homes... The two types of solar thermal...

171

Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels  

E-Print Network [OSTI]

at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels...

Tora, Eman

2012-02-14T23:59:59.000Z

172

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

solar CHP system supplying arbitrary heat and power outputs.e Electrical power output of system Q Solar CHP to PV yearlysolar Rankine CHP system, sized equally in terms of peak power output,

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

173

DETAILED LOOP MODEL (DLM) ANALYSIS OF LIQUID SOLAR THERMOSIPHONS WITH HEAT EXCHANGERS  

E-Print Network [OSTI]

a Collector- Cum-Storage Type of ar Water Heater, 11 SolarSolar Water Heater of the Combined Collector and Storagethermosiphon water heaters with heat exchangers in storage

Mertol, A.

2013-01-01T23:59:59.000Z

174

Transient-heat-transfer and stress analysis of a thermal-storage solar cooker module  

E-Print Network [OSTI]

This paper details the analysis carried out in Solidworks to determine the best material and configuration of a thermal-storage solar cooker module.The thermal-storage solar cooker utilizes the high-latent-heat lithium ...

Zengeni, Hazel C

2014-01-01T23:59:59.000Z

175

High-Performance with Solar Electric Reduced Peak Demand: Premier...  

Energy Savers [EERE]

energy systems with high-performance homes and showing how they align with utility peak-demand reduction interests. In addition to substantial energy savings, solar electric home...

176

Reduce Your Heating Bills with Better Insulation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Mcf, an increase of about 17% compared to last year's heating season. Residential heating oil prices are projected to average 4.13 per gallon this winter, an increase of about...

177

Natural convection heat exchangers for solar water heating systems. Technical progress report, November 15, 1996--January 14, 1997  

SciTech Connect (OSTI)

The goals of this project are: (1) to develop guidelines for the design and use of thermosypohon side-arm heat exchangers in solar domestic water heating systems, and (2) to establish appropriate modeling and testing criteria for evaluating the performance of systems using this type of heat exchanger.

Davidson, J.H.

1998-06-01T23:59:59.000Z

178

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

E-Print Network [OSTI]

heat fluxes, solar radiation, and electric power consumed byheat fluxes, solar radiation, and electric power consumed byheat fluxes, solar radiation, and electric power consumed by

Akbari, Hashem

2011-01-01T23:59:59.000Z

179

RESIDENTIAL ON SITE SOLAR HEATING SYSTEMS: A PROJECT EVALUATION USING THE CAPITAL ASSET PRICING MODEL  

E-Print Network [OSTI]

solar energy with rooftop panels, store excess energy in water storage tanks and can, in certain circumstances, provide 100% of the space heating

Schutz, Stephen Richard

2011-01-01T23:59:59.000Z

180

PROGRAM SUPPORT FOR SOLAR HEATING AND COOLING RESEARCH AND DEVELOPMENT BRANCH  

E-Print Network [OSTI]

of possible impact of passive cooling techniques for ene~·gyTechniques for EvaluaUon of Solar Heating and Cooling SysU•

Martin, M.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Coronal Heating and Reduced MHD Sean Oughton 1 , Pablo Dmitruk 2 , and William H. Matthaeus 2  

E-Print Network [OSTI]

Coronal Heating and Reduced MHD Sean Oughton 1 , Pablo Dmitruk 2 , and William H. Matthaeus 2 1 review the use of reduced magnetohydrodynamics (RMHD) in coronal heating models, with particular emphasis on models for magnetically open regions. A brief review of the nature of the coronal heating problem

Oughton, Sean

182

Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System  

E-Print Network [OSTI]

solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter....

Liu, G.; Guo, Z.; Hu, S.

2006-01-01T23:59:59.000Z

183

Annual Energy Consumption Analysis and Energy Optimization of a Solar-Assisted Heating Swimming Pool  

E-Print Network [OSTI]

This paper is concerned with the energy efficiency calculations and optimization for an indoor solar-assisted heating swimming pool in GuangZhou. The heating energy requirements for maintaining the pool constant temperature were investigated, which...

Zuo, Z.; Hu, W.; Meng, O.

2006-01-01T23:59:59.000Z

184

Thermal storage studies for solar heating and cooling: applications using chemical heat pumps. Final report, September 15, 1979-April 15, 1980  

SciTech Connect (OSTI)

TRNSYS-compatible subroutines for the simulation of chemical heat pumps have been written, and simulations (including heating, cooling, and domestic hot water) have been performed for Washington, DC and Ft. Worth, Texas. Direct weekly comparisons of the H/sub 2/SO/sub 4//H/sub 2/O and CaCl/sub 2//CH/sub 3/OH cycles have been carried out. Projected performance of the NH/sub 4/NO/sub 3//NH/sub 3/ cycle has also been investigated, and found to be essentially identical to H/sub 2/SO/sub 4//H/sub 2/O. In all cases simulated, the solar collector is a fixed evacuated tube system, which is necessary because chemical heat pumps operate at higher solar collector temperatures (> 100/sup 0/C) than conventional solar systems. With standard residential loads, the chemical heat pumps performed surprisingly well. In the Ft. Worth climate, less than 45 m/sup 2/ of collectors were required to meet over 90% of the heating and cooling loads. In Washington, DC, the area required to meet the cooling load was smaller (as little as 20 m/sup 2/, depending on window shading), but was sufficient to meet only 50 to 60% of the heating load. However, gas-fired backup via the heat pump was quite effective in reducing fossil fuel consumption: the thermal COPs in the heating mode were in the range 1.6 to 1.7. Since chemical heat pumps are designed to reject heat at relatively high temperatures, they were also effective in providing domestic hot water, supplying ca. 70% of the DHW in summer, ca. 50% in winter, and nearly 100% in spring and fall.

Offenhartz, P O.D.

1981-04-01T23:59:59.000Z

185

Installation guidelines for Solar Heating System, single-family residence at New Castle, Pennsylvania  

SciTech Connect (OSTI)

The Solar Heating System installer guidelines are provided for each subsystem and includes testing and filling the system. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

Not Available

1980-01-01T23:59:59.000Z

186

Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report  

SciTech Connect (OSTI)

This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

Not Available

1980-06-01T23:59:59.000Z

187

Sludge, fuel degradation and reducing fouling on heat exchangers  

SciTech Connect (OSTI)

Brookhaven National Laboratory, under contract to the US Department of Energy, operates an oil heat research primarily to lower energy consumption in the 12 million oil heated homes in the US. The program objectives include: Improve steady state efficiency of oil heating equipment, Improve seasonal efficiencies, Eliminate or minimize factors which tend to degrade system performance. This paper provides an overview of the status of three specific projects which fall under the above objectives. This includes our fuel quality project, oil appliance venting and a project addressing efficiency degradation due to soot fouling of heat exchangers.

Butcher, T.; Litzke, Wai Lin; Krajewski, R.; Celebi, Y.

1992-02-01T23:59:59.000Z

188

Breakthrough Cutting Technology Promises to Reduce Solar Costs...  

Broader source: Energy.gov (indexed) [DOE]

Silicon Genesis is a San Jose, Calif., company that is advancing the field of solar energy by developing a process that will virtually eliminate all waste when cutting materials...

189

Passive solar heating and natural cooling of an earth-integrated design  

SciTech Connect (OSTI)

The Joint Institute for Heavy Ion Research is being designed with innovative features that will greatly reduce its energy consumption for heating, cooling, and lighting. A reference design has been studied and the effects of extending the overhang during summer and fall, varying glazing area, employing RIB, and reducing internal heat by natural lighting have been considered. The use of RIB and the extendable overhang increases the optimum window glazing area and the solar heating fraction. A mass-storage wall which will likely be included in the final design has also been considered. A figure of merit for commercial buildings is the total annual energy consumption per unit area of floor space. A highly efficient office building in the Oak Ridge area typically uses 120 to 160 kWhr/m/sup 2/. The Joint Institute reference design with natural lighting, an annual average heat pump coefficient of performance (COP) equal to 1.8, RIB, and the extendable overhang uses 71 kWhr/m/sup 2/. This figure was determined from NBSLD simulations corrected for the saving from RIB. The internal heat energy from lighting and equipment used in the simulation was 1653 kWhrs/month (high natural lighting case) which is much lower than conventional office buildings. This value was adopted because only a portion of the building will be used as office space and efforts will be made to keep internal heat generation low. The mass-storage wall and ambient air cooling will reduce energy consumption still further. The combined savings of the innovative features in the Joint Institute building are expected to result in a very energy efficient design. The building will be instrumented to monitor its performance and the measured data will provide a means of evaluating the energy-saving features. The efficiency of the design will be experimentally verified over the next several years.

Barnes, P.R.; Shapira, H.B.

1980-01-01T23:59:59.000Z

190

Numerical Simulation of a Latent Heat Storage System of a Solar-Aided Ground Source Heat Pump  

E-Print Network [OSTI]

In this study, the rectangular phase change storage tank (PCST) linked to a solar-aided ground source heat pump (SAGSHP) system is investigated experimentally and theoretically. The container of the phase change material (PCM) is the controlling...

Wang, F.; Zheng, M.; Li, Z.; Lei, B.

2006-01-01T23:59:59.000Z

191

Solar site test module. [DOE/NASA solar heating and cooling demonstration installations  

SciTech Connect (OSTI)

A solar site test module using the Rockwell AIM 65 micro-computer is described. The module is designed to work at any site where an IBM site data acquisition system (SDAS) is installed and is intended primarily as a troubleshooting tool for DOE/NASA commercial solar heating and cooling system demonstration installations. It collects sensor information (temperatures, flow rates, etc.) and displays or prints it immediately in calibrated engineering units. It will read one sensor on demand, periodically read up to 10 sensors or periodically read all sensors. Performance calculations can also be included with sensor data. Unattended operation is possible to, e.g., monitor a group of sensors once per hour. Work is underway to add a data acquisition system to the test module so that it can be used at sites which have no SDAS.

Kissel, R.R.; Scott, D.R.

1980-07-01T23:59:59.000Z

192

IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS  

E-Print Network [OSTI]

IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS M. T. de : Thermoelectric generator, Solar heat concentrator, Carnot efficiency I - Introduction The global energy crisis the junctions of two different materials. For a TEG to supply a significant amount of power, several thermo

193

Study of Applications of Solar Heating Systems with Seasonal Storage in China  

E-Print Network [OSTI]

the ratio of volume of seasonal storage tank to collector areas is 3~5, the system performance is optimal for many places in China; 3) the obtained solar heat is mainly dependent on the solar irradiance, length of heating period and ambient temperature...

Yu, G.; Zhao, X.; Chen, P.

2006-01-01T23:59:59.000Z

194

OBSERVATIONAL TEST OF STOCHASTIC HEATING IN LOW-{beta} FAST-SOLAR-WIND STREAMS  

SciTech Connect (OSTI)

Spacecraft measurements show that protons undergo substantial perpendicular heating during their transit from the Sun to the outer heliosphere. In this paper, we use Helios 2 measurements to investigate whether stochastic heating by low-frequency turbulence is capable of explaining this perpendicular heating. We analyze Helios 2 magnetic field measurements in low-{beta} fast-solar-wind streams between heliocentric distances r = 0.29 AU and r = 0.64 AU to determine the rms amplitude of the fluctuating magnetic field, {delta}B{sub p}, near the proton gyroradius scale {rho}{sub p}. We then evaluate the stochastic heating rate Q{sub stoch} using the measured value of {delta}B{sub p} and a previously published analytical formula for Q{sub stoch}. Using Helios measurements we estimate the ''empirical'' perpendicular heating rate Q{sub Up-Tack emp} = (k{sub B}/m{sub p}) BV (d/dr) (T{sub Up-Tack p}/B) that is needed to explain the T{sub p} profile. We find that Q{sub stoch} {approx} Q{sub emp}, but only if a key dimensionless constant appearing in the formula for Q{sub stoch} lies within a certain range of values. This range is approximately the same throughout the radial interval that we analyze and is consistent with the results of numerical simulations of the stochastic heating of test particles in reduced magnetohydrodynamic turbulence. These results support the hypothesis that stochastic heating accounts for much of the perpendicular proton heating occurring in low-{beta} fast-wind streams.

Bourouaine, Sofiane; Chandran, Benjamin D. G., E-mail: s.bourouaine@unh.edu [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States)

2013-09-10T23:59:59.000Z

195

IEA SHC TASK 44 and HPP Annex 38 Solar and heat pump systems  

E-Print Network [OSTI]

#12;IEA SHC TASK 44 and HPP Annex 38 Solar and heat pump systems T44A38 Dr. Anja Loose Institute for Thermodynamics and Thermal Engineering (ITW) Research and Testing Centre for Thermal Solar Systems (TZS) Dr.itw.uni-stuttgart.de Institute for Thermodynamics and Thermal Engineering Research and Testing Centre for Thermal Solar Systems

Oak Ridge National Laboratory

196

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

SciTech Connect (OSTI)

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

197

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Summary of the Proposed Solar Power Plant Design The ImpactGenerated by this Solar Power Plant The Impact of StorageVessel Design on the Solar Power Plant III I;l f> (I Q I)

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

198

Effects of solar photovoltaic panels on roof heat transfer  

E-Print Network [OSTI]

Itron Inc. , CPUC California Solar Initiative 2009 Impact hot  days found by the California Solar Initiative impact solar photovoltaic (PV) panels were conducted in  San Diego, California.  

Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

2011-01-01T23:59:59.000Z

199

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Design. Propofied Solar Cooling Tower Type Wet-Cooled Powerdry-cooling tower was used in the proposed solar power plantTower • Power-Generation Subsystem Summary An Overall Summary of the Proposed Solar

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

200

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of StorageDesign on the Solar Power Plant III I;l f> (I Q I) II (I

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Effects of solar photovoltaic panels on roof heat transfer  

E-Print Network [OSTI]

the underside of the tilted solar panels and the surface of the roof under the solar panel (Fig.  2).  An air temperature of the  solar panel is similar to the roof 

Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

2011-01-01T23:59:59.000Z

202

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonwill require higher parasitic power for gas circulation. Theefficiency of a solar power plant with gas-turbine topping

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

203

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

insure constant output from a solar power plant. However. aoutput from the steam turbines is maintained. Equipment design for the proposed solar power

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

204

Can carbon finance contribute to the promotion of solar water heating in Bolivia?   

E-Print Network [OSTI]

Residential applications of renewable energy can contribute to reducing greenhouse gas emissions while improving the quality of life for households. Thermosiphon solar water heaters are passive systems using solar energy to supply hot water...

Hayek, Niklas

2011-11-24T23:59:59.000Z

205

Control of Lime Kiln Heat Balance is Key to Reduced Fuel Consumption  

E-Print Network [OSTI]

This article discusses the various heat loads in a pulp mill lime sludge kiln, pointing out which heat loads cannot be reduced and which heat loads can, and how a reduction in energy use can be achieved. In almost any existing rotary lime sludge...

Kramm, D. J.

1982-01-01T23:59:59.000Z

206

DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS  

E-Print Network [OSTI]

DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS K. Dao, M.ABSORPTION AIR CONDITIONERS AND HEAT PUMPS* K. DAO, M.

Dao, K.

2013-01-01T23:59:59.000Z

207

Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode  

SciTech Connect (OSTI)

An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

Fang, Guiyin; Hu, Hainan; Liu, Xu [Department of Physics, Nanjing University, Nanjing 210093 (China)

2010-09-15T23:59:59.000Z

208

Solar heating and cooling of residential buildings: design of systems, 1980 edition  

SciTech Connect (OSTI)

This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

None

1980-09-01T23:59:59.000Z

209

Process for reducing series resistance of solar-cell metal-contact systems with a soldering-flux etchant  

DOE Patents [OSTI]

Disclosed is a process for substantially reducing the series resistance of a solar cell having a thick film metal contact assembly thereon while simultaneously removing oxide coatings from the surface of the assembly prior to applying solder therewith. The process includes applying a flux to the contact assembly and heating the cell for a period of time sufficient to substantially remove the series resistance associated with the assembly by etching the assembly with the flux while simultaneously removing metal oxides from said surface of said assembly.

Coyle, R.T.; Barrett, J.M.

1982-05-04T23:59:59.000Z

210

Review of state-of-the-art of solar collector corrosion processes. Task 1 of solar collector studies for solar heating and cooling applications. Final technical progress report  

SciTech Connect (OSTI)

The state-of-the-art of solar collector corrosion processes is reviewed, and Task 1 of a current research program on use of aqueous heat transfer fluids for solar heating and cooling is summarized. The review of available published literature has indicated that lack of quantitative information exists relative to collector corrosion at the present time, particularly for the higher temperature applications of solar heating and cooling compared to domestic water heating. Solar collector systems are reviewed from the corrosion/service life viewpoint, with emphasis on various applications, collector design, heat transfer fluids, and freeze protection methods. Available information (mostly qualitative) on collector corrosion technology is reviewed to indicate potential corrosion problem areas and corrosion prevention practices. Sources of limited quantitative data that are reviewed are current solar applications, research programs on collector corrosion, and pertinent experience in related applications of automotive cooling and non-solar heating and cooling. A data bank was developed to catalog corrosion information. Appendix A of this report is a bibliography of the data bank, with abstracts reproduced from presently available literature accessions (about 220). This report is presented as a descriptive summary of information that is contained in the data bank.

Clifford, J E; Diegle, R B

1980-04-11T23:59:59.000Z

211

Handbook of experiences in the design and installation of solar heating and cooling systems  

SciTech Connect (OSTI)

A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

Ward, D.S.; Oberoi, H.S.

1980-07-01T23:59:59.000Z

212

Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems  

SciTech Connect (OSTI)

This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

Not Available

1980-03-01T23:59:59.000Z

213

Theory of heating of hot magnetized plasma by Alfven waves. Application for solar corona  

E-Print Network [OSTI]

The heating of magnetized plasma by propagation of Alfven waves is calculated as a function of the magnetic field spectral density. The results can be applied to evaluate the heating power of the solar corona at known data from satellites' magnetometers. This heating rate can be incorporated in global models for heating of the solar corona and creation of the solar wind. The final formula for the heating power is illustrated with a model spectral density of the magnetic field obtained by analysis of the Voyager 1 mission results. The influence of high frequency dissipative modes is also taken into account and it is concluded that for evaluation of the total coronal heating it is necessary to know the spectral density of the fluctuating component of the magnetic field up to the frequency of electron-proton collisions.

T. M. Mishonov; M. V. Stoev; Y. G. Maneva

2007-01-19T23:59:59.000Z

214

Lumbee River EMC- Solar Water Heating Loan Program (North Carolina)  

Broader source: Energy.gov [DOE]

Lumbee River EMC is offering 1.50% loans to residential customers for the installation of solar water heaters on their homes. To qualify, the systems must be certified OG-300 by the Solar Ratings...

215

Lumbee River EMC- Solar Water Heating Rebate Program (North Carolina)  

Broader source: Energy.gov [DOE]

Lumbee River EMC is offering $850 rebates to residential customers who install solar water heaters on their homes. To qualify, the systems must be certified OG-300 by the Solar Ratings and...

216

Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain  

E-Print Network [OSTI]

of In press at Progress in Solar Energy April 28, 2010 R.and P. Berdahl Measuring solar re?ectance—Part I sunlight2008. In press at Progress in Solar Energy April 28, 2010 R.

Levinson, Ronnen

2010-01-01T23:59:59.000Z

217

Progress Energy Florida- SunSense Solar Water Heating with EnergyWise  

Broader source: Energy.gov [DOE]

Progress Energy Florida (PEF) launched the ''Solar Water Heating with EnergyWise Program'' in February 2007 to encourage its residential customers to participate in its load control program and...

218

FirstEnergy (West Penn Power)- Residential Solar Water Heating Program (Pennsylvania)  

Broader source: Energy.gov [DOE]

West Penn Power, a First Energy utility, provides rebates to residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a rebate of up...

219

Investigation of a Novel Solar Assisted Water Heating System with Enhanced Energy Yield for Buildings  

E-Print Network [OSTI]

This paper presented the concept, prototype application, operational performance and benefits relating to a novel solar assisted water heating system for building services. It was undertaken through dedicated theoretical analysis, computer...

Zhang, X.; Zhao, X.; Xu, J.; Yu, X.

2012-01-01T23:59:59.000Z

220

TURBULENT HEATING OF THE DISTANT SOLAR WIND BY INTERSTELLAR PICKUP PROTONS IN A DECELERATING FLOW  

E-Print Network [OSTI]

Previous models of solar wind heating by interstellar pickup proton-driven turbulence have assumed that the wind speed is a constant in heliocentric radial position. However, the same pickup process, which is taken to ...

Isenberg, Philip A.

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Computational and experimental investigations into cavity receiver heat loss for solar thermal concentrators  

E-Print Network [OSTI]

of the total, though the losses depend on solar elevation angle; at higher angles, and in low-wind conditions in inclination, temperature and cavity geometry on convective and radiative heat loss. Secondly, a water

222

Room location (design) in accordance with the sol-air temperature and solar heat gain  

E-Print Network [OSTI]

ROOM LOCATION (DESIGN) IN ACCORDANCE WITH THE SOL-AIR TEMPERATURE AND SOLAR HEAT GAIN A Thesis GARY LYNN PORTER Submitted to the Graduate College of Texas ASM University in parital fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1977 Major Subject: Meteorology ROOM LOCATION (DESIGN) IN ACCORDANCE WITH THE SOL-AIR TEMPERATURE AND SOLAR HEAT GAIN A Thesis by GARY LYNN PORTER Approved as to style and content by: hairman of Committee) (Head of Department) ( (Q...

Porter, Gary Lynn

1977-01-01T23:59:59.000Z

223

Tidal Heating of Terrestrial Extra-Solar Planets and Implications for their Habitability  

E-Print Network [OSTI]

The tidal heating of hypothetical rocky (or terrestrial) extra-solar planets spans a wide range of values depending on stellar masses and initial orbits. Tidal heating may be sufficiently large (in many cases, in excess of radiogenic heating) and long-lived to drive plate tectonics, similar to the Earth's, which may enhance the planet's habitability. In other cases, excessive tidal heating may result in Io-like planets with violent volcanism, probably rendering them unsuitable for life. On water-rich planets, tidal heating may generate sub-surface oceans analogous to Europa's with similar prospects for habitability. Tidal heating may enhance the outgassing of volatiles, contributing to the formation and replenishment of a planet's atmosphere. To address these issues, we model the tidal heating and evolution of hypothetical extra-solar terrestrial planets. The results presented here constrain the orbital and physical properties required for planets to be habitable.

Brian Jackson; Rory Barnes; Richard Greenberg

2008-08-20T23:59:59.000Z

224

The development of a solar thermal water purification, heating, and power generation system: A case study.  

E-Print Network [OSTI]

The development of a solar thermal water purification, heating, and power generation system: A case, none of the existing concentrated solar power systems (trough, dish, and tower) that have been the potential of an invention directed to a water purification system that also recovers power from generated

Wu, Mingshen

225

Solar Heat Gain through a Skylight in a Light Well J. H. Klems  

E-Print Network [OSTI]

Solar Heat Gain through a Skylight in a Light Well J. H. Klems Building Technologies Department on a skylight mounted on a light well of significant depth are presented. It is shown that during the day much of the solar energy that strikes the walls of the well does not reach the space below. Instead, this energy

226

Solar energy for heat and electricity: the potential for mitigating climate change  

E-Print Network [OSTI]

Solar energy for heat and electricity: the potential for mitigating climate change Dr N.J. Eki that powers the Earth's climate and ecosystem. Harnessing this energy for hot water and electrical power could electricity. solar hot water systems could be used to supply up to 70% of household hot water in the UK

227

UNIVERSITY OF CALIFORNIA, Effects of Vertically-Resolved Solar Heating, Snow Aging, and Black  

E-Print Network [OSTI]

UNIVERSITY OF CALIFORNIA, IRVINE Effects of Vertically-Resolved Solar Heating, Snow Aging formats: Committee Chair University of California, Irvine 2007 ii #12;To my parents, John and Cindy. iii, albedo, snow grain size, and absorbing impurities. . 8 2.1 Solar absorption profiles prescribed by CLM

Zender, Charles

228

Visualization of flow boiling in an annular heat exchanger under reduced gravity conditions  

E-Print Network [OSTI]

This work examines the effects of gravitational acceleration on the flow boiling process. A test facility focusing on an annular heat exchanger was designed, built out of borosilicate glass, and flown on NASA's KC-135 reduced gravity airplane...

Westheimer, David Thomas

2000-01-01T23:59:59.000Z

229

How Do You Use Daylighting While Reducing Excess Heat from Windows...  

Broader source: Energy.gov (indexed) [DOE]

through these windows in the summer. How do you use daylighting while reducing excess heat from windows? Each Thursday, you have the chance to share your thoughts on a question...

230

Midtemperature Solar Systems Test Facility predictions for thermal performance of the Suntec solar collector with heat-formed glass reflector surface  

SciTech Connect (OSTI)

Thermal performance predictions are presented for the Suntec solar collector, with heat-formed glass reflector surface, for three output temperatures at five cities in the United States.

Harrison, T.D.

1980-11-01T23:59:59.000Z

231

Solar Water Heating: What's Hot and What's Not  

E-Print Network [OSTI]

A handful of electric utilities in the United States now pay incentives to their customers to install solar water heaters or are developing programs to do so. The solar water heater incentives are part of a broader utility demand-side management...

Stein, J.

232

Hot water tank for use with a combination of solar energy and heat-pump desuperheating  

DOE Patents [OSTI]

A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

Andrews, J.W.

1980-06-25T23:59:59.000Z

233

Hot water tank for use with a combination of solar energy and heat-pump desuperheating  

DOE Patents [OSTI]

A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

Andrews, John W. (Sag Harbor, NY)

1983-06-28T23:59:59.000Z

234

Hybrid Photovoltaic/Thermal Systems with a Solar-Assisted Heat Pump  

SciTech Connect (OSTI)

An outline of possibilities for effective use of PV/T collectors with a Solar Assisted Heat Pump is given. A quantitative analysis of the performance and cost of the various configurations as a function of regional climates, using up-to-date results from solar heat pump and PV/T collector studies, will be required for more definitive assessment; and it is recommended that these be undertaken in the PV/T Program. Particular attention should be paid to development of high performance PV/T collectors, matching of heat pump electrical system to PV array and power conditioning characteristics, and optimization of storage options for cost effectiveness and utility impact.

Kush, E.A.

1980-01-01T23:59:59.000Z

235

Solar heating system at Quitman County Bank, Marks, Mississippi. Final report  

SciTech Connect (OSTI)

Information is provided on the solar heating system installed in a single story wood frame, cedar exterior, sloped roof building, the Quitman County Bank, a branch of the First National Bank of Clarksdale, Mississippi. It is the first solar system in the geographical area and has promoted much interest. The system has on-site temperature and power measurements readouts. The 468 square feet of Solaron air flat plate collectors provide for 2000 square feet of space heating, an estimated 60% of the heating load. Solar heated air is distributed to the 235 cubic foot rock storage box or to the load (space heating) by a 960 cubic feet per minute air handler unit. A 7.5 ton Carrier air-to-air heat pump with 15 kilowatts of electric booster strips serve as a back-up (auxiliary) to the solar system. Motorized dampers control the direction of airflow and back draft dampers prevent thermal siphoning of conditioned air. The system was turned on in September 1979, and acceptance testing completed in February 1980. This is a Pon Cycle 3 Project with the Government sharing $13,445.00 of the $24,921 Solar Energy System installation cost.

None

1980-06-01T23:59:59.000Z

236

Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems  

SciTech Connect (OSTI)

The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--92 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems, (2) a project to build and test several generic solar water heaters, (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems, (4) a liquid desiccant cooling system development project, (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research, and (6) a management task. The objectives and progress in each task are described in this report.

Not Available

1992-03-23T23:59:59.000Z

237

Movable insulation. A guide to reducing heating and cooling losses through the windows in your home  

SciTech Connect (OSTI)

A typical house loses 25 to 30% of its heat through windows, and a house with large windows may lose as much as 50%. Numerous movable-insulation systems that will cut the heat loss through windows in half are described. Chapters are: The Energy-Responsive Dwelling, Past to Present; Window Heat Losses and Gains; Enhanced Glazing Systems; Choosing a Window-Insulation Design for Your Home; Pop-In Shutters; Thermal Curtains - Blankets that Fold; Thermal Shades - Blankets that Roll; Thermal Shutters and Folding Screens; Insulation Between Glazing and Interior Louvers; Exterior Hinged and Sliding Shutters; Sun-Shading Screens; Exterior Roll Shutters; Shutters for Skylights; Shutters for Clerestory Windows; Interior Greenhouse Insulation Systems; Exterior Insulation for Greenhouses; Movable Insulation to Assist Passive Space Heating; and Movable Insulation to Assist Solar Water Heaters. Appendices include the following: insulated shade and shutter construction; the economics of window insulation; movable insulation products, hardware, and components; further technical information; and design sources. (MCW)

Langdon, W.K.

1980-01-01T23:59:59.000Z

238

INFLUENCE OF SOLAR WIND HEATING FORMULATIONS ON THE PROPERTIES OF SHOCKS IN THE CORONA  

SciTech Connect (OSTI)

One of the challenges in constructing global magnetohydrodynamic (MHD) models of the inner heliosphere for, e.g., space weather forecasting purposes, is to correctly capture the acceleration and expansion of the solar wind. In current models, various ad hoc heating prescriptions are introduced in order to obtain a realistic steady-state solar wind solution. In this work, we demonstrate, by performing MHD simulations of erupting coronal mass ejections (CMEs) on identical solar wind solutions employing different heating formulations, that the dynamics and properties of the CME-driven shocks are significantly altered depending on the applied heating prescription. Furthermore, we show how two popular heating formulations can be altered so as to yield shock properties consistent with theory and available coronal shock observations.

Pomoell, J.; Vainio, R., E-mail: jens.pomoell@helsinki.fi [Department of Physics, University of Helsinki (Finland)

2012-02-01T23:59:59.000Z

239

Reducing the Cost of Energy from Parabolic Trough Solar Power Plants: Preprint  

SciTech Connect (OSTI)

Parabolic trough solar technology is the most proven and lowest cost large-scale solar power technology available today, primarily because of the nine large commercial-scale solar power plants that are operating in the California Mojave Desert. However, no new plants have been built during the past ten years because the cost of power from these plants is more expensive than power from conventional fossil fuel power plants. This paper reviews the current cost of energy and the potential for reducing the cost of energy from parabolic trough solar power plant technology based on the latest technological advancements and projected improvements from industry and sponsored R&D. The paper also looks at the impact of project financing and incentives on the cost of energy.

Price, H.; Kearney, D.

2003-01-01T23:59:59.000Z

240

Gainesville Regional Utilities- Solar Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

The Gainesville Regional Utilities (GRU) Solar Rebate Program, established in early 1997 as part of GRU's demand-side management initiatives, provides rebates of $500 to residential customers of...

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Entergy New Orleans- Residential Solar Water Heating Program (Louisiana)  

Broader source: Energy.gov [DOE]

Entergy New Orleans offers a Solar Water Heater Rebate pilot program designed to help residential customers make energy efficiency improvements. Rebates will be offered on a first-come, first...

242

Texas Gas Service- Residential Solar Water Heating Rebate Program (Texas)  

Broader source: Energy.gov [DOE]

Texas Gas Service offers a flat rebate of $750 for its residential customers within the Austin and Sunset Valley city limits for the installation and purchase of a new solar water heater with...

243

State of the art in passive solar heating  

SciTech Connect (OSTI)

The state of the art is outlined according to four major categories: passive solar practice, evaluation, design air, and products and materials. Needed future research activities and joint industry/government activities are listed. (MHR)

Balcomb, J.D.

1981-01-01T23:59:59.000Z

244

Expansion and Improvement of Solar Water Heating Technology in...  

Open Energy Info (EERE)

development of high-quality and attractive-looking model designs for integrating solar water heaters (SWH) into buildings in China. Coordinates: 39.90601, 116.387909 Show...

245

NGNP/HTE full-power operation at reduced high-temperature heat exchanger temperatures.  

SciTech Connect (OSTI)

Operation of the Next Generation Nuclear Plant (NGNP) with reduced reactor outlet temperature at full power was investigated for the High Temperature Electrolysis (HTE) hydrogen-production application. The foremost challenge for operation at design temperature is achieving an acceptably long service life for heat exchangers. In both the Intermediate Heat Exchanger (IHX) and the Process Heat Exchanger (PHX) (referred to collectively as high temperature heat exchangers) a pressure differential of several MPa exists with temperatures at or above 850 C. Thermal creep of the heat exchanger channel wall may severely limit heat exchanger life depending on the alloy selected. This report investigates plant performance with IHX temperatures reduced by lowering reactor outlet temperature. The objective is to lower the temperature in heat transfer channels to the point where existing materials can meet the 40 year lifetime needed for this component. A conservative estimate for this temperature is believed to be about 700 C. The reactor outlet temperature was reduced from 850 C to 700 C while maintaining reactor power at 600 MWt and high pressure compressor outlet at 7 MPa. We included a previously reported design option for reducing temperature at the PHX. Heat exchanger lengths were adjusted to reflect the change in performance resulting from coolant property changes and from resizing related to operating-point change. Turbomachine parameters were also optimized for the new operating condition. An integrated optimization of the complete system including heat transfer equipment was not performed. It is estimated, however, that by performing a pinch analysis the combined plant efficiency can be increased from 35.5 percent obtained in this report to a value between 38.5 and 40.1 percent. Then after normalizing for a more than three percent decrease in commodities inventory compared to the reference plant, the commodities-normalized efficiency lies between 40.0 and 41.3. This compares with a value of 43.9 for the reference plant. This latter plant has a reactor outlet temperature of 850 C and the two high temperature heat exchangers. The reduction in reactor outlet temperature from 850 C to 700 C reduces the tritium permeability rate in the IHX metal by a factor of three and thermal creep by five orders of magnitude. The design option for reducing PHX temperature from 800 C to 200 C reduces the permeability there by three orders of magnitude. In that design option this heat exchanger is the single 'choke-point' for tritium migration from the nuclear to the chemical plant.

VIlim, R.; Nuclear Engineering Division

2009-03-12T23:59:59.000Z

246

Performance analysis of solar-assisted chemical heat-pump dryer  

SciTech Connect (OSTI)

A solar-assisted chemical heat-pump dryer has been designed, fabricated and tested. The performance of the system has been studied under the meteorological conditions of Malaysia. The system consists of four main components: solar collector (evacuated tubes type), storage tank, solid-gas chemical heat pump unit and dryer chamber. A solid-gas chemical heat pump unit consists of reactor, condenser and evaporator. The reaction used in this study (CaCl2-NH{sub 3}). A simulation has been developed, and the predicted results are compared with those obtained from experiments. The maximum efficiency for evacuated tubes solar collector of 80% has been predicted against the maximum experiment of 74%. The maximum values of solar fraction from the simulation and experiment are 0.795 and 0.713, respectively, whereas the coefficient of performance of chemical heat pump (COP{sup h}) maximum values 2.2 and 2 are obtained from simulation and experiments, respectively. The results show that any reduction of energy at condenser as a result of the decrease in solar radiation will decrease the coefficient of performance of chemical heat pump as well as decrease the efficiency of drying. (author)

Fadhel, M.I. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450, Melaka (Malaysia); Sopian, K.; Daud, W.R.W. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

2010-11-15T23:59:59.000Z

247

How to solve materials and design problems in solar heating and cooling. Energy technology review No. 77  

SciTech Connect (OSTI)

A broad range of difficulties encountered in active and passive solar space heating systems and active solar space cooling systems is covered. The problems include design errors, installation mistakes, inadequate durability of materials, unacceptable reliability of components, and wide variations in performance and operation of different solar systems. Feedback from designers and manufacturers involved in the solar market is summarized. The designers' experiences with and criticisms of solar components are presented, followed by the manufacturers' replies to the various problems encountered. Information is presented on the performance and operation of solar heating and cooling systems so as to enable future designs to maximize performance and eliminate costly errors. (LEW)

Ward, D.S.; Oberoi, H.S.; Weinstein, S.D.

1982-01-01T23:59:59.000Z

248

The gravitational heat conduction and the hierarchical structure in solar interior  

E-Print Network [OSTI]

With the assumption of local Tsallis equilibrium, the newly defined gravitational temperature is calculated in the solar interior, whose distribution curve can be divided into three parts, the solar core region, radiation region and convection region, in excellent agreement with the solar hierarchical structure. By generalizing the Fourier law, one new mechanism of heat conduction, based on the gradient of the gravitational temperature, is introduced into the astrophysical system. This mechanism is related to the self-gravity of such self-gravitating system whose characteristic scale is large enough. It perhaps plays an important role in the astrophysical system which, in the solar interior, leads to the heat accumulation at the bottom of the convection layer and then motivates the convection motion.

Zheng Yahui; Du Jiulin

2014-03-10T23:59:59.000Z

249

ON INTERMITTENT TURBULENCE HEATING OF THE SOLAR WIND: DIFFERENCES BETWEEN TANGENTIAL AND ROTATIONAL DISCONTINUITIES  

SciTech Connect (OSTI)

The intermittent structures in solar wind turbulence, studied by using measurements from the WIND spacecraft, are identified as being mostly rotational discontinuities (RDs) and rarely tangential discontinuities (TDs) based on the technique described by Smith. Only TD-associated current sheets (TCSs) are found to be accompanied with strong local heating of the solar wind plasma. Statistical results show that the TCSs have a distinct tendency to be associated with local enhancements of the proton temperature, density, and plasma beta, and a local decrease of magnetic field magnitude. Conversely, for RDs, our statistical results do not reveal convincing heating effects. These results confirm the notion that dissipation of solar wind turbulence can take place in intermittent or locally isolated small-scale regions which correspond to TCSs. The possibility of heating associated with RDs is discussed.

Wang Xin; Tu Chuanyi; He Jiansen; Wang Linghua [School of Earth and Space Sciences, Peking University, 100871 Beijing (China); Marsch, Eckart, E-mail: chuanyitu@pku.edu.cn [Institute for Experimental and Applied Physics, Christian Albrechts University at Kiel, D-24118 Kiel (Germany)

2013-08-01T23:59:59.000Z

250

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

the exhaust steam in an indirect condenser and rejects heatSteam Feedwater Heaters* - Installed Cost of the Dry-Cooling Tower and Condenser* -steam feedwater heaters Feedwater (50BoK, 14.5 MPa) I nd irect condenser

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

251

DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS  

E-Print Network [OSTI]

AIR CONDITIONERS AND HEAT PUMPS K. Dao, M. Wahlig, E. Wali,are liquid paths. DM: multistage pump driver, driven by highvapor. DW: main circulation pump driven by strong absorbent.

Dao, K.

2013-01-01T23:59:59.000Z

252

Tidal heating and tidal evolution in the solar system  

E-Print Network [OSTI]

In this thesis, we examine the effects of tidal dissipation on solid bodies in application and in theory. First, we study the effects of tidal heating and tidal evolution in the Saturnian satellite system. We constrain the ...

Meyer, Jennifer Ann

2011-01-01T23:59:59.000Z

253

Project title: Natural ventilation, solar heating and integrated low-energy building design  

E-Print Network [OSTI]

emissions targets. That is why the Cambridge-MIT Institute set up a project to design buildings that consume less energy. The Challenge Their work focuses on the design of energy efficient buildings that use natural ventilation processes, solar... Awards E-stack brings a breath of fresh air to UK schools HOME ABOUT US FUNDING OPPORTUNITIES PROJECTS EDUCATION NEWS EVENTS DOWNLOADS CONTACT US PROJECTS Natural Ventilation Solar Heating and Integrated Low-Energy Building Design SEARCH: Go Page 1...

2009-07-10T23:59:59.000Z

254

California Solar Initiative- Low-Income Solar Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

The California Public Utilities Commission (CPUC) voted in October 2011 to create the California Solar Initiative (CSI) Thermal Low-Income program for single and multifamily residential properties....

255

Solar space heating for the visitors' center, Stephens College, Columbia, Missouri. Final report  

SciTech Connect (OSTI)

This document is the final report of the solar energy system located at the Visitors' Center on the Stephens College Campus, Columbia, Missouri. The system is installed in a four-story, 15,000 square foot building designed to include the college's Admission Office, nine guest rooms for overnight lodging for official guests of the college, a two-story art gallery, and a Faculty Lounge. The solar energy system is an integral design of the building and utilizes 176 Honeywell/Lennox hydronic flat-plate collectors which use a 50% water-ethylene glycol solution and water-to-water heat exchanger. Solar heated water is stored in a 5000 gallon water storage tank located in the basement equipment room. A natural gas fired hot water boiler supplies hot water when the solar energy heat supply fails to meet the demand. The designed solar contribution is 71% of the heating load. The demonstration period for this project ends June 30, 1984.

Not Available

1980-06-01T23:59:59.000Z

256

Installation guidelines for solar heating system, single-family residence at William O'Brien State Park, Stillwater, Minnesota  

SciTech Connect (OSTI)

The Solar Heating System installer guidelines are provided for each subsystem and testing and filling the system are included. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

Not Available

1980-05-01T23:59:59.000Z

257

Title COMBINATION OF THERMAL SOLAR COLLECTORS, HEAT PUMP AND THERMAL ENERGY STORAGE FOR DWELLINGS IN BELGIUM.  

E-Print Network [OSTI]

The amount of available solar energy in Belgium is more than sufficient to meet local heat demand for space heating and domestic hot water in a dwelling. However, the timing of both the availability of solar energy and the need for thermal energy, match only to a limited extent. Therefore, compact storage of the surplus of thermal energy is a critical issue. Depending on the temperature at which this energy is available, directly from the sun or indirectly through the storage, different combinations with a heat pump can be considered. By combining solar energy with a heat pump one may benefit on both sides since the fraction of solar energy increases as well as the performance of the heat pump. The aim of this thesis is to select the best out of three configurations that combine thermal solar collectors, heat pump and thermal energy storage for heating purposes in dwellings in Belgium, based on model simulations. Energetic, exergetic and economic criteria are used to evaluate the different configurations, while thermal comfort and domestic hot water tap profiles should be met. One (or more) performance index (indices) is (are) defined enabling an objective comparison between different systems. Today several systems are already commercially available on the international market [4]. Since these systems consist of different components, the system design is a crucial issue. Therefore, special attention should be paid to the sizing of the individual components, the interaction of the components within the global system, and the strategy for operational control. To study the interaction with the building, three types of buildings (already defined in a previous project) are considered.

Contact Raf; De Herdt; Roel De Coninck; Filip Van Den Schoor; Lieve Helsen

258

Longitudinal variation of tides in the MLT region: 2. Relative effects of solar radiative and latent heating  

E-Print Network [OSTI]

of solar radiative and latent heating Xiaoli Zhang,1 Jeffrey M. Forbes,1 and Maura E. Hagan2 Received 11 study examines the relative importance of radiative heating and latent heating in accounting (GSWM) and new tidal heating rates derived from International Satellite Cloud Climatology Project (ISCCP

Forbes, Jeffrey

259

Coordination and management tasks for the IEA solar heating and cooling program and CCMS solar energy pilot study. Final report  

SciTech Connect (OSTI)

The objective of the project entitled, Coordination/Management Tasks for the IEA Solar Heating and Cooling Program and CCMS Solar Energy Pilot Study, was to provide support to DOE in connection with the afore-named multilateral cooperative projects. The work included both management assistance for the overall IEA and CCMS projects and technical involvement in IEA Task I, particularly the solar system performance validation effort. The final report, covering the period March 15, 1979 - September 30, 1980, provides an overview of the accomplishments under this contract and gives conclusions and recommendations for future work. Also included in this document is the final project status report for the period May 15, 1980 to September 30, 1980.

Blum, S B; Kennish, W J

1980-10-01T23:59:59.000Z

260

Solar heating system at Security State Bank, Starkville, Mississippi. Final report  

SciTech Connect (OSTI)

Information is provided on the Solar Energy Heating System (airtype) installed at the branch bank building, northwest corner of Highway 12 and Spring Street, Starkville, Mississippi. This installation was completed in June, 1979. The 312 square feet of Solaron flat plate air collectors provide for 788 square feet of space heating, an estimated 55 percent of the heating load. Solar heated air is distributed to the 96 cubic foot steel cylinder, which contains two inch diameter rocks. An air handler unit moves the air over the collector and into the steel cylinder. Four motorized dampers and two gravity dampers are also part of the system. A Solaron controller which has sensors located at the collectors, rock storage, and at the return air, automatically controls the system. Auxiliary heating energy is provided by electric resistance duct heaters. This project is part of the US Department of Energy's Solar Demonstration Program with the government sharing $14,201 of the $17,498 solar energy system installation cost. This system was acceptance tested February, 1980, and the demonstration period ends in 1985.

None

1980-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems  

SciTech Connect (OSTI)

The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The eight-month program for 1990 is separated into seven tasks. There are tasks for each of the three solar houses, a project to build and test several generic solar water heaters, a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems, a management task, and a task funding travel to attend the Field Monitoring for a Purpose'' workshop which was held April 2--5, 1990, in Gothenburg, Sweden. The objectives and progress in each task are described in this report. 7 figs., 4 tabs.

Not Available

1990-11-01T23:59:59.000Z

262

Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint  

SciTech Connect (OSTI)

Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

Turchi, C. S.; Ma, Z.

2011-08-01T23:59:59.000Z

263

Solar space and water heating system installed at Charlottesville, Virginia  

SciTech Connect (OSTI)

The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, consists of 88 single glazed, Sunworks Solector copper base plate collector modules; hot water coils in the hot air ducts; a domestic hot water (DHW) preheat tank; a 3,000 gallon concrete urethane-insulated storage tank and other miscellaneous components. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

Greer, Charles R.

1980-09-01T23:59:59.000Z

264

Evaluating the performance of passive-solar-heated buildings  

SciTech Connect (OSTI)

Methods of evaluating the thermal performance of passive-solar buildings are reviewed. Instrumentation and data logging requirements are outlined. Various methodologies that have been used to develop an energy balance for the building and various performance measures are discussed. Methods for quantifying comfort are described. Subsystem and other special-purpose monitoring are briefly reviewed. Summary results are given for 38 buildings that have been monitored.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

265

Analysis of the Potential for a Heat Island Effect in Large Solar Vasilis Fthenakis1,2  

E-Print Network [OSTI]

Analysis of the Potential for a Heat Island Effect in Large Solar Farms Vasilis Fthenakis1 flow fields induced by large solar PV farms to answer questions pertaining to potential impacts simulations of a 1 MW section of a solar farm in North America and compared the results with recorded wind

266

Solar feasibility study for site-specific industrial-process-heat applications. Final report  

SciTech Connect (OSTI)

This study addresses the technical feasibility of solar energy in industrial process heat (IPH) applications in Mid-America. The study was one of two contracted efforts covering the MASEC 12-state region comprised of: Illinois, Michigan, North Dakota, Indiana, Minnesota, Ohio, Iowa, Missouri, South Dakota, Kansas, Nebraska, Wisconsin. The results of our study are encouraging to the potential future role of solar energy in supplying process heat to a varied range of industries and applications. We identified and developed Case Study documentation of twenty feasible solar IPH applications covering eight major SIC groups within the Mid-American region. The geographical distribution of these applications for the existing range of solar insolation levels are shown and the characteristics of the applications are summarized. The results of the study include process identification, analysis of process heat requirements, selection of preliminary solar system characteristics, and estimation of system performance and cost. These are included in each of the 20 Case Studies. The body of the report is divided into two primary discussion sections dealing with the Study Methodology employed in the effort and the Follow-On Potential of the identified applications with regard to possible demonstration projects. The 20 applications are rated with respect to their relative overall viability and procedures are discussed for possible demonstration project embarkment. Also, a possible extension of this present feasibility study for late-comer industrial firms expressing interest appears worthy of consideration.

Murray, O.L.

1980-03-18T23:59:59.000Z

267

Benefits of the International Residential Code's Maximum Solar heat Gain Coefficient Requirement for Windows  

E-Print Network [OSTI]

Texas adopted in its residential building energy code a maximum 0.40 solar heat gain coefficient (SHGC) for fenestration (e.g., windows, glazed doors and skylights)-a critical driver of cooling energy use, comfort and peak demand. An analysis...

Stone, G. A.; DeVito, E. M.; Nease, N. H.

2002-01-01T23:59:59.000Z

268

Lecture 3 week 2/3 2012: Solar radiation, the greenhouse, global heat engine  

E-Print Network [OSTI]

....cycles of cold and warm climate. Averaged over the globe, sunlight falling on Earth in July (aphelion) is indeedLecture 3 week 2/3 2012: H 222c Solar radiation, the greenhouse, global heat engine http://en.wikipedia.org/ #12;#12;The 3 streams of this course (see syllabus) 1.Energy forms of energy concentrated, dilute

269

Summary of some feasibility studies for site-specific solar industrial process heat  

SciTech Connect (OSTI)

Some feasibility studies for several different site specific solar industrial process heat applications are summarized. The followng applications are examined. Leather Tanning; Concrete Production: Lumber and Paper Processing; Milk Processing; Molding, Curing or Drying; Automobile Manufacture; and Food Processing and Preparation. For each application, site and process data, system design, and performance and cost estimates are summarized.

none,

1982-01-01T23:59:59.000Z

270

Method of coverning the working gas temperature of a solar heated hot gas engine  

SciTech Connect (OSTI)

A closed-cycle hot gas engine heated by solar radiation is provided with a governing system varying the working gas pressure so as to vary the power output at a constant high temperature level of the working gas and-at least partly-at a constant engine speed.

Almstrom, S.-H.; Nelving, H.G.

1984-07-03T23:59:59.000Z

271

Method of governing the working gas temperature of a solar heated hot gas engine  

SciTech Connect (OSTI)

A closed-cycle hot gas engine heated by solar radiation is provided with a governing system varying the working gas pressure so as to vary the power output at a constant high temperature level of the working gas and-at least partly-at a constant engine speed.

Almstrom, S.H.; Nelving, H.G.

1984-07-03T23:59:59.000Z

272

THE DYNAMIC QUIET SUN: CONTRIBUTION TO CORONAL HEATING ANF SOLAR WIND  

E-Print Network [OSTI]

THE DYNAMIC QUIET SUN: CONTRIBUTION TO CORONAL HEATING ANF SOLAR WIND Maria Madjarska Wednesday, September 19, 2012 #12;The dynamic Sun at all scales Wednesday, September 19, 2012 #12;The dynamic Sun at all scales Wednesday, September 19, 2012 #12;The dynamic Sun at all scales Wednesday, September 19

273

Performance of a solar-heated assembly building at Sandia National Laboratories  

SciTech Connect (OSTI)

The passive solar-heating system of the assembly building at Sandia National Laboratories' Photovoltaic Advanced Systems Test Facility is described and the thermal analysis of the building is given. Performance predictions are also given, and actual performance for December 1979 and January 1980 are shown.

Haskins, D.E.

1980-09-01T23:59:59.000Z

274

Solar cell as self-oscillating heat engine  

E-Print Network [OSTI]

Solar cells are engines converting energy supplied by the photon flux into work. Any type of engine is also a self-oscillating system which yields a periodic motion at the expense of a usually non-periodic source of energy. This aspect is absent in the existing descriptions and the main goal of this paper is to show that plasma oscillations provide this necessary ingredient of work extraction process. Our approach is based on Markovian master equations which can be derived in a rigorous way from the underlying Hamiltonian models and are consistent with the laws of thermodynamics.

Robert Alicki; David Gelbwaser-Klimovsky; Krzysztof Szczygielski

2015-01-04T23:59:59.000Z

275

Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of Energy U.S. DepartmentCommitmentGovernmentSmartDay 7Solar panelsEnergy

276

PREDICTING THE TIME RESPONSE OF A BUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS  

E-Print Network [OSTI]

load calculations effects, some authors[4,5,6] neglect thermal capacitance do consider the response of room tempera- ture to sudden heat

Warren, Mashuri L.

2013-01-01T23:59:59.000Z

277

Investigation of new heat exchanger design performance for solar thermal chemical heat pump.  

E-Print Network [OSTI]

?? The emergence of Thermally Driven Cooling system has received more attention recently due to its ability to utilize low grade heat from engine, incinerator… (more)

Cordova, Cordova

2013-01-01T23:59:59.000Z

278

Lessons Learned: Devolping Thermochemical Cycles for Solar Heat Storage  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXXLocatedMakes

279

Solar process heat technology in action: The process hot water system at the California Correctional Institution at Tehachapi  

SciTech Connect (OSTI)

Solar process heat technology relates to solar thermal energy systems for industry, commerce, and government. Applications include water preheating and heating, steam generation, process hot air, ventilation air heating, and refrigeration. Solar process heat systems are available for commercial use. At the present time, however, they are economically viable only in niche markets. This paper describes a functioning system in one such market. The California Department of Corrections (CDOC), which operates correctional facilities for the state of California, uses a solar system for providing hot water and space heating at the California Correctional Institute at Tehachapi (CCI/Tehachapi). CCI/Tehachapi is a 5100-inmate facility. The CDOC does not own the solar system. Rather, it buys energy from private investors who own the solar system located on CCI/Tehachapi property; this arrangement is part of a long-term energy purchase agreement. United Solar Technologies (UST) of Olympia Washington is the system operator. The solar system, which began operating in the fall of 1990, utilizes 2677 m{sup 2} (28,800 ft{sup 2}) of parabolic through solar concentrators. Thermal energy collected by the system is used to generate hot water for showers, kitchen operations, and laundry functions. Thermal energy collected by the system is also used for space heating. At peak operating conditions, the system is designed to meet approximately 80 percent of the summer thermal load. 4 figs., 4 tabs.

Hewett, R. (National Renewable Energy Lab., Golden, CO (United States)); Gee, R.; May, K. (Industrial Solar Technology, Arvada, CO (United States))

1991-12-01T23:59:59.000Z

280

Heat transfer performance of an external receiver pipe under unilateral concentrated solar radiation  

SciTech Connect (OSTI)

The heat transfer and absorption characteristics of an external receiver pipe under unilateral concentrated solar radiation are theoretically investigated. Since the heat loss ratio of the infrared radiation has maximum at moderate energy flux, the heat absorption efficiency will first increase and then decrease with the incident energy flux. The local absorption efficiency will increase with the flow velocity, while the wall temperature drops quickly. Because of the unilateral concentrated solar radiation and different incident angle, the heat transfer is uneven along the circumference. Near the perpendicularly incident region, the wall temperature and absorption efficiency slowly approaches to the maximum, while the absorption efficiency sharply drops near the parallelly incident region. The calculation results show that the heat transfer parameters calculated from the average incident energy flux have a good agreement with the average values of the circumference under different boundary conditions. For the whole pipe with coating of Pyromark, the absorption efficiency of the main region is above 85%, and only the absorption efficiency near the parallelly incident region is below 80%. In general, the absorption efficiency of the whole pipe increases with flow velocity rising and pipe length decreasing, and it approaches to the maximum at optimal concentrated solar flux. (author)

Jianfeng, Lu; Jing, Ding [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China); Jianping, Yang [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640 (China)

2010-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solar Water Heating System Maintenance and Repair | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolveFuture | DepartmentSo Simple ItHeating

282

Low Cost Solar Water Heating R&D  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term Storage ofEnergy High VoltageTemplate

283

Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report  

SciTech Connect (OSTI)

Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50˘/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12˘/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

Grogan, Dylan C. P.

2013-08-15T23:59:59.000Z

284

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

Solar Rankine thermodynamics matches Californiaconsidered, using average California solar insolation dataelectricity. Solar Rankine thermodynamics matches California

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

285

Direct contact liquid-liquid heat exchanger for solar heated and cooled buildings. Final report, January 1, 1979-May 30, 1980  

SciTech Connect (OSTI)

The technical and economic feasibility of using a direct contact liquid-liquid heat exchanger (DCLLHE) storage unit in a solar heating and cooling system is established. Experimental performance data were obtained from the CSU Solar House I using a DCLLHE for both heating and cooling functions. A simulation model for the system was developed. The model was validated using the experimental data and applied in five different climatic regions of the country for a complete year. The life-cycle cost of the system was estimated for each application. The results are compared to a conventional solar system, using a standard shell-and-tube heat exchanger. It is concluded that while thare is a performance advantage with a DCLLHE system over a conventional solar system, the advantage is not sufficiently large to overcome slightly higher capital and operating costs for the DCLLHE system.

Karaki, S.; Brothers, P.

1980-06-01T23:59:59.000Z

286

PREDICTION OF THE PROTON-TO-TOTAL TURBULENT HEATING IN THE SOLAR WIND  

SciTech Connect (OSTI)

This paper employs a recent turbulent heating prescription to predict the ratio of proton-to-total heating due to the kinetic dissipation of Alfvenic turbulence as a function of heliocentric distance. Comparing to a recent empirical estimate for this turbulent heating ratio in the high-speed solar wind, the prediction shows good agreement with the empirical estimate for R {approx}> 0.8 AU, but predicts less ion heating than the empirical estimate at smaller heliocentric radii. At these smaller radii, the turbulent heating prescription, calculated in the gyrokinetic limit, fails because the turbulent cascade is predicted to reach the proton cyclotron frequency before Landau damping terminates the cascade. These findings suggest that the turbulent cascade can reach the proton cyclotron frequency at R {approx}< 0.8 AU, leading to a higher level of proton heating than predicted by the turbulent heating prescription in the gyrokinetic limit. At larger heliocentric radii, R {approx}> 0.8 AU, this turbulent heating prescription contains all of the necessary physical mechanisms needed to reproduce the empirically estimated proton-to-total heating ratio.

Howes, G. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States)

2011-09-01T23:59:59.000Z

287

Preliminary Analysis of a Solar Heat Pump System with Seasonal Storage for Heating and Cooling  

E-Print Network [OSTI]

and cooling were set up, which is responsible for the space heating and cooling and domestic hot water for a residential block. Through hourly simulation, the performance and the economics of such systems were analyzed, for the different tank volumes...

Yu, G.; Chen, P.; Dalenback, J.

2006-01-01T23:59:59.000Z

288

Direct contact liquid-liquid heat exchanger for solar-heated and -cooled buildings. Final report, January 1, 1979-May 30, 1980  

SciTech Connect (OSTI)

The procedure used was to obtain experimental performance data from a solar system using a DCLLHE for both heating and cooling functions, develop a simulation model for the system, validate the model using the data, apply the model in five different climatic regions of the country for a complete year, and estimate the life-cycle cost of the system for each application. The results are compared to a conventional solar system, using a standard shell-and-tube heat exchanger.

Karaki, S.; Brothers, P.

1980-06-01T23:59:59.000Z

289

Phenylnaphthalene Derivatives as Heat Transfer Fluids for Concentrating Solar Power: Loop Experiments and Final Report  

SciTech Connect (OSTI)

ORNL and subcontractor Cool Energy completed an investigation of higher-temperature, organic thermal fluids for solar thermal applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C showed that the material isomerized at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components such as the waste heat rejection exchanger may become coated or clogged and loop performance will decrease. Thus, pure 1-phenylnaphthalene does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the increased temperatures of interest. Hence a decision was made not to test the ORNL fluid in the loop at Cool Energy Inc. Instead, Cool Energy tested and modeled power conversion from a moderate-temperature solar loop using coupled Stirling engines. Cool Energy analyzed data collected on third and fourth generation SolarHeart Stirling engines operating on a rooftop solar field with a lower temperature (Marlotherm) heat transfer fluid. The operating efficiencies of the Stirling engines were determined at multiple, typical solar conditions, based on data from actual cycle operation. Results highlighted the advantages of inherent thermal energy storage in the power conversion system.

McFarlane, Joanna [ORNL; Bell, Jason R [ORNL; Felde, David K [ORNL; Joseph III, Robert Anthony [ORNL; Qualls, A L [ORNL; Weaver, Samuel P [ORNL

2013-02-01T23:59:59.000Z

290

Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating/Cooling Systems  

E-Print Network [OSTI]

Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating solution is developed as a promising working fluid for district heating/cooling systems (DHCs). It can systems. A promising application of DR fluids is in district heating/ cooling systems (DHCs)9

Raghavan, Srinivasa

291

New top layer reduces the"wiggle"that degrades the conversion of light to electricity in solar cells by absorbing  

E-Print Network [OSTI]

New top layer reduces the"wiggle"that degrades the conversion of light to electricity in solar cells by absorbing light within a specific wavelength. Today's thin-film solar cells could not function light to pass through to the cell's active layers. Until recently, TCOs were seen as a necessary

292

PLASMA HEATING IN THE VERY EARLY AND DECAY PHASES OF SOLAR FLARES  

SciTech Connect (OSTI)

In this paper, we analyze the energy budgets of two single-loop solar flares under the assumption that non-thermal electrons (NTEs) are the only source of plasma heating during all phases of both events. The flares were observed by RHESSI and GOES on 2002 September 20 and 2002 March 17, respectively. For both investigated flares we derived the energy fluxes contained in NTE beams from the RHESSI observational data constrained by observed GOES light curves. We showed that energy delivered by NTEs was fully sufficient to fulfill the energy budgets of the plasma during the pre-heating and impulsive phases of both flares as well as during the decay phase of one of them. We concluded that in the case of the investigated flares there was no need to use any additional ad hoc heating mechanisms other than heating by NTEs.

Falewicz, R.; Rudawy, P. [Astronomical Institute, University of Wroclaw, 51-622 Wroclaw, ul. Kopernika 11 (Poland); Siarkowski, M., E-mail: falewicz@astro.uni.wroc.pl, E-mail: rudawy@astro.uni.wroc.pl, E-mail: ms@cbk.pan.wroc.pl [Space Research Centre, Polish Academy of Sciences, 51-622 Wroclaw, ul. Kopernika 11 (Poland)

2011-05-20T23:59:59.000Z

293

Recommended requirements to code officials for solar heating, cooling, and hot water systems. Model document for code officials on solar heating and cooling of buildings  

SciTech Connect (OSTI)

These recommended requirements include provisions for electrical, building, mechanical, and plumbing installations for active and passive solar energy systems used for space or process heating and cooling, and domestic water heating. The provisions in these recommended requirements are intended to be used in conjunction with the existing building codes in each jurisdiction. Where a solar relevant provision is adequately covered in an existing model code, the section is referenced in the Appendix. Where a provision has been drafted because there is no counterpart in the existing model code, it is found in the body of these recommended requirements. Commentaries are included in the text explaining the coverage and intent of present model code requirements and suggesting alternatives that may, at the discretion of the building official, be considered as providing reasonable protection to the public health and safety. Also included is an Appendix which is divided into a model code cross reference section and a reference standards section. The model code cross references are a compilation of the sections in the text and their equivalent requirements in the applicable model codes. (MHR)

None

1980-06-01T23:59:59.000Z

294

Solar Thermoelectrics Mercouri Kanatzidis,  

E-Print Network [OSTI]

Solar Thermoelectrics Mercouri Kanatzidis, Materials Science Division December 15, 2009 #12;2 Heat #12;13 What is the dot made of? Cook, Kramer #12;14 Nanostructures reduce the lattice thermal

Kanatzidis, Mercouri G

295

Scaling Laws of Turbulence and Heating of Fast Solar Wind: The Role of Density Fluctuations  

SciTech Connect (OSTI)

Incompressible and isotropic magnetohydrodynamic turbulence in plasmas can be described by an exact relation for the energy flux through the scales. This Yaglom-like scaling law has been recently observed in the solar wind above the solar poles observed by the Ulysses spacecraft, where the turbulence is in an Alfvenic state. An analogous phenomenological scaling law, suitably modified to take into account compressible fluctuations, is observed more frequently in the same data set. Large-scale density fluctuations, despite their low amplitude, thus play a crucial role in the basic scaling properties of turbulence. The turbulent cascade rate in the compressive case can, moreover, supply the energy dissipation needed to account for the local heating of the nonadiabatic solar wind.

Carbone, V. [Dipartimento di Fisica, Universita della Calabria, Ponte Bucci 31C, I-87036 Rende (Italy); Liquid Crystal Laboratory, INFM/CNR, Ponte Bucci 33B, I-87036 Rende (Italy); Marino, R. [Dipartimento di Fisica, Universita della Calabria, Ponte Bucci 31C, I-87036 Rende (Italy); University of Nice Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, B.P. 4229, 06304 Nice Cedex 4 (France); Sorriso-Valvo, L. [Liquid Crystal Laboratory, INFM/CNR, Ponte Bucci 33B, I-87036 Rende (Italy); Noullez, A. [University of Nice Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, B.P. 4229, 06304 Nice Cedex 4 (France); Bruno, R. [Istituto di Fisica dello Spazio Interplanetario-INAF, via Fosso del Cavaliere Roma (Italy)

2009-08-07T23:59:59.000Z

296

Cooling-load implications for residential passive-solar-heating systems  

SciTech Connect (OSTI)

Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described, along with the computer simulation model used for calculating cooling loads. A sample of interim results is also presented. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy requirement of a given building.

Jones, R.W.; McFarland, R.D.

1983-01-01T23:59:59.000Z

297

Current performance and potential improvements in solar thermal industrial heat  

SciTech Connect (OSTI)

A representive current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more am 50% improvement in the annual energy delivered by a 2677 m{sup 2} system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

Hale, M.J.; Williams, T.; Barker, G.

1992-12-01T23:59:59.000Z

298

Current performance and potential improvements in solar thermal industrial heat  

SciTech Connect (OSTI)

A representive current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more am 50% improvement in the annual energy delivered by a 2677 m[sup 2] system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

Hale, M.J.; Williams, T.; Barker, G.

1992-12-01T23:59:59.000Z

299

Scaling Laws and Temperature Profiles for Solar and Stellar Coronal Loops with Non-uniform Heating  

E-Print Network [OSTI]

The bulk of solar coronal radiative loss consists of soft X-ray emission from quasi-static loops at the cores of Active Regions. In order to develop diagnostics for determining the heating mechanism of these loops from observations by coronal imaging instruments, I have developed analytical solutions for the temperature structure and scaling laws of loop strands for a wide range of heating functions, including footpoint heating, uniform heating, and heating concentrated at the loop apex. Key results are that the temperature profile depends only weakly on the heating distribution -- not sufficiently to be of significant diagnostic value -- and that the scaling laws survive for this wide range of heating distributions, but with the constant of proportionality in the RTV scaling law ($P_{0}L \\thicksim T_{max}^3$) depending on the specific heating function. Furthermore, quasi-static analytical solutions do not exist for an excessive concentration of heating near the loop footpoints, a result in agreement with recent numerical simulations. It is demonstrated that a generalization of the solutions to the case of a strand with a variable diameter leads to only relatively small correction factors in the scaling laws and temperature profiles for constant diameter loop strands. A quintet of leading theoretical coronal heating mechanisms is shown to be captured by the formalism of this paper, and the differences in thermal structure between them may be verified through observations. Preliminary results from full numerical simulations demonstrate that, despite the simplifying assumptions, the analytical solutions from this paper are stable and accurate.

P. C. H. Martens

2008-04-14T23:59:59.000Z

300

The use of combined heat and power (CHP) to reduce greenhouse gas emissions  

SciTech Connect (OSTI)

Cogeneration or Combined Heat and Power (CHP) is the sequential production of electric power and thermal energy. It is a more efficient way of providing electricity and process heat than producing them independently. Average overall efficiencies can range from 70% to more than 80%. CHP decisions often present an opportunity to switch to a cleaner fuel. CHP systems are an attractive opportunity to save money, increase overall efficiency, reduce net emissions, and improve environmental performance. Climate Wise, a US Environmental Protection Agency (US EPA) program helping industrial Partners turn energy efficiency and pollution prevention into a corporate asset, has increased awareness of CHP by providing implementation and savings information, providing peer exchange opportunities for its Partners, and recognizing the achievements of Partners that have implemented CHP at their facilities. This paper profiles Climate Wise Partners that have invested in CHP systems, including describing how CHP is used in their facilities and the resulting cost and emission reductions.

Asrael, J.; Milmoe, P.H.; Haydel, J.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Solar Thermal Conversion  

SciTech Connect (OSTI)

The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

Kreith, F.; Meyer, R. T.

1982-11-01T23:59:59.000Z

302

STOCHASTIC HEATING, DIFFERENTIAL FLOW, AND THE ALPHA-TO-PROTON TEMPERATURE RATIO IN THE SOLAR WIND  

SciTech Connect (OSTI)

We extend previous theories of stochastic ion heating to account for the motion of ions along the magnetic field B . We derive an analytic expression for the temperature ratio T{sub i}/T{sub p} in the solar wind assuming that stochastic heating is the dominant ion heating mechanism, where T{sub i} is the perpendicular temperature of species i and T{sub p} is the perpendicular proton temperature. This expression describes how T{sub i}/T{sub p} depends upon U{sub i} and ?{sub ?p}, where U{sub i} is the average velocity along B of species i in the proton frame and ?{sub ?p} is the ratio of the parallel proton pressure to the magnetic pressure, which we take to be ?< 1. We compare our model with previously published measurements of alpha particles and protons from the Wind spacecraft. We find that stochastic heating offers a promising explanation for the dependence of T{sub ?}/T{sub p} on U{sub ?} and ?{sub ?p} when the fractional cross helicity and Alfvén ratio at the proton-gyroradius scale have values that are broadly consistent with solar-wind measurements. We also predict how the temperatures of other ion species depend on their drift speeds.

Chandran, B. D. G.; Verscharen, D.; Isenberg, P. A.; Bourouaine, S. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Quataert, E. [Astronomy Department and Theoretical Astrophysics Center, 601 Campbell Hall, The University of California, Berkeley, CA 94720 (United States); Kasper, J. C., E-mail: benjamin.chandran@unh.edu, E-mail: s.bourouaine@unh.edu, E-mail: phil.isenberg@unh.edu, E-mail: daniel.verscharen@unh.edu, E-mail: eliot@astro.berkeley.edu, E-mail: jkasper@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

2013-10-10T23:59:59.000Z

303

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power  

SciTech Connect (OSTI)

The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

2009-08-15T23:59:59.000Z

304

Mass transport, corrosion, plugging, and their reduction in solar dish/Stirling heat pipe receivers  

SciTech Connect (OSTI)

Solar dish/Stirling systems using sodium heat pipe receivers are being developed by industry and government laboratories here and abroad. The unique demands of this application lead to heat pipe wicks with very large surface areas and complex three-dimensional flow patterns. These characteristics can enhance the mass transport and concentration of constituents of the wick material, resulting in wick corrosion and plugging. As the test times for heat pipe receivers lengthen, we are beginning to see these effects both indirectly, as they affect performance, and directly in post-test examinations. We are also beginning to develop corrective measures. In this paper, we report on our test experiences, our post-test examinations, and on our initial effort to ameliorate various problems.

Adkins, D.R.; Andraka, C.E.; Bradshaw, R.W.; Goods, S.H.; Moreno, J.B.; Moss, T.A.

1996-07-01T23:59:59.000Z

305

Control system analysis for off-peak auxiliary heating of passive solar systems  

SciTech Connect (OSTI)

A computer simulation method is presented for the design of an electrical auxiliary energy system for passive solar heated structures. The system consists of electrical mats buried in the ground underneath the structure. Energy is stored in the ground during utility off-peak hours and released passively to the heated enclosure. An optimal control strategy is used to determine the system design parameters of depth of mat placement and minimum instaled electrical heating capacity. The optimal control applies combinations of fixed duration energy pulses to the heater, which minimize the room temperature error-squared for each day, assuming advance knowledge of the day's weather. Various realizable control schemes are investigated in an attempt to find a system that approaches the performance of the optimal control system.

Murray, H.S.; Melsa, J.L.; Balcomb, J.D.

1980-01-01T23:59:59.000Z

306

Solar Contractor Licensing  

Broader source: Energy.gov [DOE]

The California Contractors State License Board administers contractor licenses. The C-46 Solar Contractor license covers active solar water and space heating systems, solar pool heating systems,...

307

Advanced phase change materials and systems for solar passive heating and cooling of residential buildings  

SciTech Connect (OSTI)

During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

Salyer, I.O.; Sircar, A.K.; Dantiki, S.

1988-01-01T23:59:59.000Z

308

Energy Distribution of Heating Processes in the Quiet Solar Sam Krucker 1;2 and Arnold O. Benz 1  

E-Print Network [OSTI]

Energy Distribution of Heating Processes in the Quiet Solar Corona S¨am Krucker 1;2 and Arnold O region of the Sun. The emission measure is found to vary significantly in at least 85% of all the pixels is calculated from the observed increases in emission measure and the derived temperature. Heating events have

309

Design, fabrication, and testing of a mechanical timer in application of a stored-heat solar cooker  

E-Print Network [OSTI]

There is a large need in third-world tropical areas for a method of cooking in which users need minimal resources and traversing to heat food at night. A solution to this problem is to create a stored-heat solar cooker ...

Hsu, Julia C

2014-01-01T23:59:59.000Z

310

Solar heating and domestic hot water system installed at Kansas City, Fire Station, Kansas City, Missouri. Final report  

SciTech Connect (OSTI)

This document is the final report of the solar energy heating and hot water system installed at the Kansas City Fire Station, Number 24, 2309 Hardesty Street, Kansas City, Missouri. The solar system was designed to provide 47 percent of the space heating, 8800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1428 cubic feet of 1/2 inch diameter pebbles weighing 71 1/2 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120-gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30-kilowatt electric unit heaters. There are six modes of system operation. This project is part of the Department of Energy PON-1 Solar Demonstration Program with DOE cost sharing $154,282 of the $174,372 solar system cost. The Final Design Review was held March 1977, the system became operational March 1979 and acceptance test was completed in September 1979.

None

1980-07-01T23:59:59.000Z

311

Reduction in the intensity of solar X-ray emission in the 2- to 15-keV photon energy range and heating of the solar corona  

SciTech Connect (OSTI)

The time profiles of the energy spectra of low-intensity flares and the structure of the thermal background of the soft X-ray component of solar corona emission over the period of January-February, 2003, are investigated using the data of the RHESSI project. A reduction in the intensity of X-ray emission of the solar flares and the corona thermal background in the 2- to 15-keV photon energy range is revealed. The RHESSI data are compared with the data from the Interball-Geotail project. A new mechanism of solar corona heating is proposed on the basis of the results obtained.

Mirzoeva, I. K., E-mail: colombo2006@mail.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)

2013-04-15T23:59:59.000Z

312

The effect of broad-band Alfven-cyclotron waves spectra on the preferential heating and differential acceleration of He{sup ++} ions in the solar wind  

SciTech Connect (OSTI)

In anticipation of results from inner heliospheric missions such as the Solar Orbiter and the Solar Probe we present the results from 1.5D hybrid simulations to study the role of magnetic fluctuations for the heating and differential acceleration of He{sup ++} ions in the solar wind. We consider the effects of nonlinear Alfven-cyclotron waves at different frequency regimes. Monochromatic nonlinear Alfven-alpha-cyclotron waves are known to preferentially heat and accelerate He{sup ++} ions in collisionless low beta plasma. In this study we demonstrate that these effects are preserved when higherfrequency monochromatic and broad-band spectra of Alfven-proton-cyclotron waves are considered. Comparison between several nonlinear monochromatic waves shows that the ion temperatures, anisotropies and relative drift are quantitatively affected by the shift in frequency. Including a broad-band wave-spectrum results in a significant reduction of both the parallel and the perpendicular temperature components for the He{sup ++} ions, whereas the proton heating is barely influenced, with the parallel proton temperature only slightly enhanced. The differential streaming is strongly affected by the available wave power in the resonant daughter ion-acoustic waves. Therefore for the same initial wave energy, the relative drift is significantly reduced in the case of initial wave-spectra in comparison to the simulations with monochromatic waves.

Maneva, Y. G. [Department of Physics, Catholic University of America, Washington DC, 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ofman, L. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Vinas, A. F. [Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2013-06-13T23:59:59.000Z

313

Performance of evacuated tubular solar collectors in a residential heating and cooling system. Final report, 1 October 1978-30 September 1979  

SciTech Connect (OSTI)

Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season was based on the use of systems comprising an experimental evacuated tubular solar collector, a non-freezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built-up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off-peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. Automatic system control and automatic data acquisition and computation are provided. This system is compared with others evaluated in CSU Solar Houses I, II and III, and with computer predictions based on mathematical models. Of the 69,513 MJ total energy requirement for space heating and hot water during a record cold winter, solar provided 33,281 MJ equivalent to 48 percent. Thirty percent of the incident solar energy was collected and 29 percent was delivered and used for heating and hot water. Of 33,320 MJ required for cooling and hot water during the summer, 79 percent or 26,202 MJ were supplied by solar. Thirty-five percent of the incident solar energy was collected and 26 percent was used for hot water and cooling in the summer. Although not as efficient as the Corning evacuated tube collector previously used, the Philips experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well-insulated heat storage tank. Day time (on-peak) electric auxiliary heating was completely avoided by use of off-peak electric heat storage. A well-designed and operated solar heating and cooling system provided 56 percent of the total energy requirements for heating, cooling, and hot water.

Duff, W.S.; Loef, G.O.G.

1981-03-01T23:59:59.000Z

314

Review of combined photovoltaic/thermal collector: solar assisted heat pump system options  

SciTech Connect (OSTI)

The advantages of using photovoltaic (PV) and combined photovoltaic/thermal (PV/T) collectors in conjunction with residential heat pumps are examined. The thermal and electrical power requirements of similar residences in New York City and Fort Worth are the loads under consideration. The TRNSYS energy balance program is used to simulate the operations of parallel, series, and cascade solar assisted heat pump systems. Similar work involving exclusively thermal collectors is reviewed, and the distinctions between thermal and PV/T systems are emphasized. Provided the defrost problem can be satisfactorily controlled, lifecycle cost analyses show that at both locations the optimum collector area is less than 50 m/sup 2/ and that the parallel system is preferred.

Sheldon, D.B.; Russell, M.C.

1980-01-01T23:59:59.000Z

315

Highly-Efficient Thermoelectronic Conversion of Solar Energy and Heat into Electric Power  

E-Print Network [OSTI]

Electric power may, in principle, be generated in a highly efficient manner from heat created by focused solar irradiation, chemical combustion, or nuclear decay by means of thermionic energy conversion. As the conversion efficiency of the thermionic process tends to be degraded by electron space charges, the efficiencies of thermionic generators have amounted to only a fraction of those fundamentally possible. We show that this space-charge problem can be resolved by shaping the electric potential distribution of the converter such that the static electron space-charge clouds are transformed into an output current. Although the technical development of practical generators will require further substantial efforts, we conclude that a highly efficient transformation of heat to electric power may well be achieved.

Meir, S; Geballe, T H; Mannhart, J

2013-01-01T23:59:59.000Z

316

Isochoric heating of reduced mass targets by ultra-intense laser produced relativistic electrons  

SciTech Connect (OSTI)

We present measurements of the chlorine K-alpha emission from reduced mass targets, irradiated with ultra-high intensity laser pulses. Chlorinated plastic targets with diameters down to 50 micrometers and mass of a few 10{sup -8} g were irradiated with up to 7 J of laser energy focused to intensities of several 10{sup 19} W/cm{sup 2}. The conversion of laser energy to K-alpha radiation is measured, as well as high resolution spectra that allow observation of line shifts, indicating isochoric heating of the target up to 18 eV. A zero-dimensional 2-temperature equilibration model, combined with electron impact K-shell ionization and post processed spectra from collisional radiative calculations reproduces the observed K-alpha yields and line shifts, and shows the importance of target expansion due to the hot electron pressure.

Neumayer, P; Lee, H J; Offerman, D; Shipton, E; Kemp, A; Kritcher, A L; Doppner, T; Back, C A; Glenzer, S H

2009-02-04T23:59:59.000Z

317

Alfvenic Turbulence in the Extended Solar Corona: Kinetic Effects and Proton Heating  

E-Print Network [OSTI]

We present a model of magnetohydrodynamic (MHD) turbulence in the extended solar corona that contains the effects of collisionless dissipation and anisotropic particle heating. Measurements made by UVCS/SOHO have revived interest in the idea that ions are energized by the dissipation of ion cyclotron resonant waves, but such high-frequency (i.e., small wavelength) fluctuations have not been observed. A turbulent cascade is one possible way of generating small-scale fluctuations from a pre-existing population of low-frequency MHD waves. We model this cascade as a combination of advection and diffusion in wavenumber space. The dominant spectral transfer occurs in the direction perpendicular to the background magnetic field. As expected from earlier models, this leads to a highly anisotropic fluctuation spectrum with a rapidly decaying tail in parallel wavenumber. The wave power that decays to high enough frequencies to become ion cyclotron resonant depends on the relative strengths of advection and diffusion in the cascade. For the most realistic values of these parameters, though, there is insufficient power to heat protons and heavy ions. The dominant oblique fluctuations (with dispersion properties of kinetic Alfven waves) undergo Landau damping, which implies strong parallel electron heating. We discuss the probable nonlinear evolution of the electron velocity distributions into parallel beams and discrete phase-space holes (similar to those seen in the terrestrial magnetosphere) which can possibly heat protons via stochastic interactions.

S. R. Cranmer; A. A. van Ballegooijen

2003-05-08T23:59:59.000Z

318

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

12] Kalogirou, S. A. (2004). Solar thermal collectors andD. (2004). Advances in solar thermal electricity technology.December). Distributed solar-thermal/electric generation.

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

319

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network [OSTI]

IV. E. 2 Hold passive solar design competitions, the primaryresidential-scale passive solar design handbooks. IILGA (H,2) development of passive solar designs appropriate to the

Authors, Various

2012-01-01T23:59:59.000Z

320

Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 2: Comparison of Wet and Dry Rankine Cycle Heat Rejection, 20 January 2005 - 31 December 2005  

SciTech Connect (OSTI)

Subcontract report by Nexant, Inc., regarding a system analysis comparing solar parabolic trough plants with wet and dry rankine cycle heat rejection.

Kelly, B.

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING  

SciTech Connect (OSTI)

This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant using the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.

Craig Turchi; Guangdong Zhu; Michael Wagner; Tom Williams; Dan Wendt

2014-10-01T23:59:59.000Z

322

For natural ventilation to work, solar gains through the facade needed to be reduced by approximately 80% from  

E-Print Network [OSTI]

Engineers, Inc. Laboratory Consultant: Research Facilities Design Energy Modeling: SOLARC ArchitectureFor natural ventilation to work, solar gains through the facade needed to be reduced--largely due to the enormous ventilation demands and the energy associated with moving and conditioning

Hochberg, Michael

323

Solar Hard X-ray Source Sizes in a Beam-Heated and Ionised Chromosphere  

E-Print Network [OSTI]

Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by using the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) have shown that HXR source sizes are 3-6 times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionisation (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionised plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionised region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to...

O'Flannagain, A; Gallagher, P T

2014-01-01T23:59:59.000Z

324

Evolution of the Loop-Top Source of Solar Flares--Heating and Cooling Processes  

E-Print Network [OSTI]

We present a study of the spatial and spectral evolution of the loop-top (LT) sources in a sample of 6 flares near the solar limb observed by {\\it RHESSI}. A distinct coronal source, which we identify as the LT source, was seen in each of these flares from the early ``pre-heating'' phase through the late decay phase. Spectral analyses reveal an evident steep power-law component in the pre-heating and impulsive phases, suggesting that the particle acceleration starts upon the onset of the flares. In the late decay phase the LT source has a thermal spectrum and appears to be confined within a small region near the top of the flare loop, and does not spread throughout the loop, as is observed at lower energies. The total energy of this source decreases usually faster than expected from the radiative cooling but much slower than that due to the classical Spitzer conductive cooling along the flare loop. These results indicate the presence of a distinct LT region, where the thermal conductivity is suppressed significantly and/or there is a continuous energy input. We suggest that plasma wave turbulence could play important roles in both heating the plasma and suppressing the conduction during the decay phase of solar flares. With a simple quasi-steady loop model we show that the energy input in the gradual phase can be comparable to that in the impulsive phase and demonstrate how the observed cooling and confinement of the LT source can be used to constrain the wave-particle interaction.

Yan Wei Jiang; Siming Liu; Wei Liu; Vahe Petrosian

2005-08-24T23:59:59.000Z

325

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

326

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

327

Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments  

SciTech Connect (OSTI)

Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and has been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to investigate stabilities after heating for months and in flow configurations. Thermochemical data and thermophysical predictions indicate that substituted polyaromatic hydrocarbons may be useful for applications that run at higher temperatures than possible with commercial fluids such as Therminol-VP1.

Bell, Jason R [ORNL; Joseph III, Robert Anthony [ORNL; McFarlane, Joanna [ORNL; Qualls, A L [ORNL

2012-05-01T23:59:59.000Z

328

TURBULENT PUMPING OF MAGNETIC FLUX REDUCES SOLAR CYCLE MEMORY AND THUS IMPACTS PREDICTABILITY OF THE SUN'S ACTIVITY  

SciTech Connect (OSTI)

Prediction of the Sun's magnetic activity is important because of its effect on space environment and climate. However, recent efforts to predict the amplitude of the solar cycle have resulted in diverging forecasts with no consensus. Yeates et al. have shown that the dynamical memory of the solar dynamo mechanism governs predictability, and this memory is different for advection- and diffusion-dominated solar convection zones. By utilizing stochastically forced, kinematic dynamo simulations, we demonstrate that the inclusion of downward turbulent pumping of magnetic flux reduces the memory of both advection- and diffusion-dominated solar dynamos to only one cycle; stronger pumping degrades this memory further. Thus, our results reconcile the diverging dynamo-model-based forecasts for the amplitude of solar cycle 24. We conclude that reliable predictions for the maximum of solar activity can be made only at the preceding minimum-allowing about five years of advance planning for space weather. For more accurate predictions, sequential data assimilation would be necessary in forecasting models to account for the Sun's short memory.

Karak, Bidya Binay [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Nandy, Dibyendu, E-mail: bidya_karak@physics.iisc.ernet.in, E-mail: dnandi@iiserkol.ac.in [Indian Institute for Science Education and Research, Kolkata, Mohampur 741252, West Bengal (India)

2012-12-10T23:59:59.000Z

329

Preliminary definition and characterization of a solar industrial process heat technology and manufacturing plant for the year 2000  

SciTech Connect (OSTI)

A solar industrial process heat technology and an associated solar systems manufacturing plant for the year 2000 has been projected, defined, and qualitatively characterized. The technology has been defined for process heat applications requiring temperatures of 300/sup 0/C or lower, with emphasis on the 150/sup 0/ to 300/sup 0/C range. The selected solar collector technology is a parabolic trough collector of the line-focusing class. The design, structure, and material components are based upon existing and anticipated future technological developments in the solar industry. The solar system to be manufactured and assembled within a dedicated manufacturing plant is projected to consist of the collector and the major collector components, including reflector, absorber, parabolic trough structure, support stand, tracking drive mechanism, sun-sensing device and control system, couplings, etc. Major manufacturing processes to be introduced into the year 2000 plant operations are glassmaking, silvering, electroplating and plastic-forming. These operations will generate significant environmental residuals not encountered in present-day solar manufacturing plants. Important residuals include chemical vapors, acids, toxic elements (e.g. arsenic), metallic and chemical sludges, fumes from plastics, etc. The location, design, and operations of these sophisticated solar manufacturing plants will have to provide for the management of the environmental residuals.

Prythero, T.; Meyer, R. T.

1980-09-01T23:59:59.000Z

330

Reduced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 RevisionDivisionReduced intermittency in

331

Integrated use of solar panels and a waste heat scavenger. Progress report  

SciTech Connect (OSTI)

The objectives of this project were to: (1) install energy measurement devices on commercially available solar collectors and a heat scavenger attached to the dairy refrigeration system; and (2) make the results of the demonstration available to other dairy farmers. The objectives have been accomplished. Measurement devices have been installed and are currently establishing a data base on system performance. A demonstration for dairy farmers was sponsored by the Agricultural Economics Department and the Agricultural Engineering Extension Department of the University of Georgia. The demonstration and associated program was held in November of 1980 at Monroe, Georgia which is near the demonstration dairy. A tour of the dairy followed presentation of energy related topics. About 60 farmers attended this program. A copy of the program and a summary of experience with the system are attached.

Jarrell, J.H.; Miller, B.R.; Smathers, W.M. Jr.

1980-01-01T23:59:59.000Z

332

Final draft: IEA Task 1. Report on Subtask D, optimization of solar heating and cooling systems  

SciTech Connect (OSTI)

A review of general techniques and specific methods useful in the optimization of solar heating and cooling systems is undertaken. A discussion of the state-of-the-art and the principal problems in both the simplified thermal performance analysis and economic analysis portions of the optimization problem are presented. Sample economic analyses are performed using several widely used economic criteria. The predicted thermal results of one typical, widely used simplified method is compared to detailed simulation results. A methodology for and the results of a sensitivity study of key economic parameters in the life cycle cost method are presented. Finally, a simple graphical optimization technique based on the life cycle cost method is proposed.

Freeman, T.L. (ed.)

1981-03-01T23:59:59.000Z

333

ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE  

E-Print Network [OSTI]

and Industrial Process Heat Solar energy has numerousbuildings and solar-supplied industrial process heat favor~nd industrial process heat. Solar energy may offer some

Davidson, M.

2010-01-01T23:59:59.000Z

334

Investigation of Some Transparent Metal Oxides as Damp Heat Protective Coating for CIGS Solar Cells: Preprint  

SciTech Connect (OSTI)

We investigated the protective effectiveness of some transparent metal oxides (TMO) on CIGS solar cell coupons against damp heat (DH) exposure at 85oC and 85% relative humidity (RH). Sputter-deposited bilayer ZnO (BZO) with up to 0.5-um Al-doped ZnO (AZO) layer and 0.2-um bilayer InZnO were used as 'inherent' part of device structure on CdS/CIGS/Mo/SLG. Sputter-deposited 0.2-um ZnSnO and atomic layer deposited (ALD) 0.1-um Al2O3 were used as overcoat on typical BZO/CdS/CIGS/Mo/SLG solar cells. The results were all negative -- all TMO-coated CIGS cells exhibited substantial degradation in DH. Combining the optical photographs, PL and EL imaging, SEM surface micro-morphology, coupled with XRD, I-V and QE measurements, the causes of the device degradations are attributed to hydrolytic corrosion, flaking, micro-cracking, and delamination induced by the DH moisture. Mechanical stress and decrease in crystallinity (grain size effect) could be additional degrading factors for thicker AZO grown on CdS/CIGS.

Pern, F. J.; Yan, F.; Zaaunbrecher, B.; To, B.; Perkins, J.; Noufi, R.

2012-10-01T23:59:59.000Z

335

A model for thermally driven heat and air transport in passive solar buildings  

SciTech Connect (OSTI)

A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data.

Jones, G.F.; Balcomb, J.D.; Otis, D.R.

1985-01-01T23:59:59.000Z

336

Model for thermally driven heat and air transport in passive solar buildings  

SciTech Connect (OSTI)

A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data. 38 references, 10 figures, 1 table.

Jones, G.F.; Balcomb, J.D.; Otis, D.R.

1985-01-01T23:59:59.000Z

337

Study on the use of adaptive control for energy conservation in large solar heated and cooled buildings  

SciTech Connect (OSTI)

The National Security and Resources Study Center at LASL provides the basis for a general model used in this simulation. The NSRSC is a 59,000 ft/sup 2/ library and conference facility. A simplified model of the solar heating system is used. The adaptive optimal control technique is described and applied and the results are discussed. (MHR)

Farris, D.R.; Melsa, J.L.

1980-01-01T23:59:59.000Z

338

Chromospheric heating by electron and proton bombardment in the solar flare of June 7, 1980. Research note  

SciTech Connect (OSTI)

Using observations of both hard x-rays and gamma-rays in the large solar flare on June 7, 1980, we infer the amount of chromospheric heating due to bombardment both by non-thermal electrons and by protons, respectively. If a thick-target model for the X-ray bremsstrahlung is adopted, then proton heating is shown to be important only in the lower chromosphere; however, if the hard X-rays are substantially thermal in origin, then proton heating may play an important or indeed dominant role in determining the structure of the entire flaring chromosphere.

Emslie, A.G.

1982-12-01T23:59:59.000Z

339

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network [OSTI]

of passive solar systems. The building design andparts of the building design. The passive solar componentspassive solar design is accepted as ndard practice" by both design profession- als and building

Authors, Various

2012-01-01T23:59:59.000Z

340

A NEW SOLAR THERMAL RECEIVER UTILIZING A SMALL PARTICLE HEAT EXCHANGER  

E-Print Network [OSTI]

Report LBL 8520. ) A NEW SOLAR THERMAL RECEIVER UTILIZING Aenergy. A new type of solar thermal receiver based on thisThe success of the solar thermal electric power program

Hunt, Arlon J.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

combined heat and power systems. ASME Conference Proceedingsfor combined heat and power applications. ASME ConferenceRankine combined heat and power technology. ASME Conference

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

342

The Water Wall: A Passive Solar Collection and Thermal Storage Device for Supplementary Radiant Heating.  

E-Print Network [OSTI]

??Through the implementation of passive solar building systems, suburbia could take a fresh new step forward toward a progressively more sustainable direction. Making passive solar… (more)

Noseck, Rhett Roman

2013-01-01T23:59:59.000Z

343

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

344

Design, development and testing of a solar-powered multi-family residential size prototype turbocompressor heat pump  

SciTech Connect (OSTI)

A program described to design, fabricate, and conduct preliminary testing of a prototype solar-powered Rankine cycle turbocompressor heat pump module for a multi-family residential building is presented. A solar system designed to use the turbocompressor heat pump module including all of the subsystems required and the various system operating modes is described in Section I. Section II includes the preliminary design analyses conducted to select the heat pump module components and operating features, working fluid, configuration, size and performance goals, and estimated performance levels in the cooling and heating modes. Section III provides a detailed description of the other subsystems and components required for a complete solar installation. Using realistic performance and cost characteristics for all subsystems, the seasonal performance of the UTC heat pump is described in various US locations. In addition, the estimated energy savings and an assessment of the economic viability of the solar system is presented in Section III. The detailed design of the heat pump module and the arrangement of components and controls selected to conduct the laboratory performance tests are described in Section IV. Section V provides a description of the special laboratory test facility, including the subsystems to simulate the collectors and storage tanks for building load and ambient conditions and the instrumentation, monitoring, and data acquisition equipment. The test results and sample computer analyses and comparisons with predicted performance levels are presented in Section VI. Various appendices provide supplementary and background information concerning working fluid selection (A), configuration selection (B), capacity control concepts (C), building models (D), computer programs used to determine component and system performance and total system economics (E), and weather data (F).

None

1981-03-01T23:59:59.000Z

345

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

power to local residences or businesses. Although it may seem that the decreased efficiency of solar-

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

346

Solar Projects to Reduce Non-Hardware Balance of System Costs | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 SolarPV Incentive ProgramsSolarSBof

347

Solar Radiative Heating in First Year Sea Ice M.J. McGuinness 1 , K.A. Landman 2 , H.J. Trodahl 3 , A.E. Pantoja 3  

E-Print Network [OSTI]

Solar Radiative Heating in First Year Sea Ice M.J. McGuinness 1 , K.A. Landman 2 , H.J. Trodahl 3 ice show daily oscillations consistent with heating by solar radiation. We present and solve a heat for solar power absorption based on Monte Carlo scatter­ ing simulations of penetrating photons. We observe

348

Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report  

SciTech Connect (OSTI)

The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

None

1980-11-01T23:59:59.000Z

349

Community-Scale High-Performance with Solar: Pulte Homes, Tucson...  

Energy Savers [EERE]

Science Corporation to apply a suite of energy-efficiency measures integrated with passive solar design and solar water heating that reduced energy use more than 50% for a...

350

Reduced heat flow in light water (H2O) due to heavy water (D2O) William R. Gormana)  

E-Print Network [OSTI]

Reduced heat flow in light water (H2O) due to heavy water (D2O) William R. Gormana) and James D by over 1000% with the addition of heavy water. A column of light water cools from 25°C to 0°C in 11 hours, however, with the addition of heavy water it takes more than 100 hours. There is a concentration

Suzuki, Masatsugu

351

apparent molar heat: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Websites Summary: efficient use of renewable energy in district heating individual heat pumps solar heating and wood pellets individual heat pumps, solar heating and...

352

Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants.  

SciTech Connect (OSTI)

Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

Kelly, Michael James; Hlava, Paul Frank; Brosseau, Douglas A.

2004-07-01T23:59:59.000Z

353

Reducing Skin Friction and Heat Transfer over a Hypersonic Cruising Vehicle by Mass Injection.  

E-Print Network [OSTI]

??Demonstrating technologies for hypersonic aircraft that cruise at speeds greater than Mach 5 is one of the long-term visions of many agencies, like NASA. Reducing… (more)

Nozaki, Yoshifumi

2007-01-01T23:59:59.000Z

354

Reduced model simulations of the scrape-off-layer heat-flux width and comparison with experiment  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Reduced model simulations of turbulence in the edge and scrape-off-layer (SOL) region of a spherical torus or tokamak plasma are employed to address the physics of the scrape-off-layer heat flux width. The simulation model is an electrostatic two-dimensional fluid turbulence model, applied in the plane perpendicular to the magnetic field at the outboard midplane of the torus. The model contains curvature-driven-interchange modes, sheath losses, and both perpendicular turbulent diffusive and convective (blob) transport. These transport processes compete with classical parallel transport to set the SOL width. Midplane SOL profiles of density, temperature and parallel heat flux are obtained from the simulation and compared with experimental results from the National Spherical Torus Experiment (NSTX) [S. M. Kaye, et al., Phys. Plasmas 8, 1977 (2001)] to study the scaling of the heat flux width with power and plasma current. It is concluded that midplane turbulence is the main contributor to the SOL heat flux width for the low power H-mode discharges studied, while additional physics is required to explain the plasma current scaling of the SOL heat flux width observed experimentally in higher power discharges. Intermittent separatrix spanning convective cells are found to be the main mechanism that sets the near-SOL width in the simulations. The roles of sheared flows and blob trapping vs. emission are discussed.

Myra, J. R. [Lodestar Research Corporation, Boulder, CO (United States); Russell, D. A. [Lodestar Research Corporation, Boulder, CO (United States); D'Ippolito, D. A. [Lodestar Research Corporation, Boulder, CO (United States); Ahn, J- W [Oak Ridge National Lab., TN (United States); Maingi, R. [Oak Ridge National Lab., TN (United States); Maqueda, R. J. [Princeton Plasma Physics Lab., NJ (United States); Lundberg, D. P. [Princeton Plasma Physics Lab., NJ (United States); Stotler, D. P. [Princeton Plasma Physics Lab., NJ (United States); Zweben, S. J. [Princeton Plasma Physics Lab., NJ (United States); Boedo, J. [Univ. of California at San Diego, CA (United States); Umansky, M. [Lawrence Livermore National Lab., Livermore, CA (United States)

2011-01-10T23:59:59.000Z

355

Noble Metal-Free Reduced Graphene Oxide-ZnxCd1-xS Nanocomposite with Enhanced Solar Photocatalytic H2Production  

E-Print Network [OSTI]

solar energy by production of hydrogen from water splitting is of great importance from both theoretical strategy for solving simultaneously the incoming energy and environmental problems.2 So far, numerousNoble Metal-Free Reduced Graphene Oxide-ZnxCd1-xS Nanocomposite with Enhanced Solar Photocatalytic

Gong, Jian Ru

356

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

of the rejected waste heat from power generation. (c)and for use of the waste heat, a condenser is muchcycle ? t Fraction of waste heat recovered from Rankine

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

357

Site selection and preliminary evaluation of potential solar-industrial-process-heat applications for federal buildings in Texas  

SciTech Connect (OSTI)

The potential for solr process heat applications for federal buildings in Texas is assessed. The three sites considered are Reese Air Force Base, Lubbock; Fort Bliss, El Paso; and Dyess Air Force Base, Abilene. The application at Lubbock is an electroplating and descaling facility for aircraft maintenance. The one at El Paso is a laundry facility. The Abilene system would use solar heat to preheat boiler feedwater makeup for the base hospital boiler plant. The Lubbock site is found to be the most appropriate one for a demonstration plant, with the Abilene site as an alternate. The processes at each site are described. A preliminary evaluation of the potential contribution by solar energy to the electroplating facility at Reese AFB is included. (LEW)

Branz, M A

1980-09-30T23:59:59.000Z

358

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

the subject of residential solar CHP, volumetric expansionthesis devoted to residential solar CHP systems) that inCHP system, in the 1-10 kW peak electric range, will be appropriate for small residential

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

359

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network [OSTI]

Laboratory University of California Solar Energy ResearchLaboratory University of California Solar Energy Researchsolar; • benefits of considering projected energy expenditures in determining allowable mortgage. II.B.2 Organize lectures, seminars, university

Authors, Various

2012-01-01T23:59:59.000Z

360

DETAILED LOOP MODEL (DLM) ANALYSIS OF LIQUID SOLAR THERMOSIPHONS WITH HEAT EXCHANGERS  

E-Print Network [OSTI]

of Solar Domestic Hot Water Heaters in California,n inBradley, J.M. , Water Heater Construe on. u AdministrationDevelopment of a erant Solar Water Heater Using Crosslinked

Mertol, A.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

RESIDENTIAL ON SITE SOLAR HEATING SYSTEMS: A PROJECT EVALUATION USING THE CAPITAL ASSET PRICING MODEL  

E-Print Network [OSTI]

potential new energy sources, solar energy is perhaps thesource ready for immediate use on a commercial scale is solar energysolar energy are the fact that it is essentially a limitless source

Schutz, Stephen Richard

2011-01-01T23:59:59.000Z

362

Alternatives for reducing hot-water bills  

SciTech Connect (OSTI)

A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)

Bennington, G.E.; Spewak, P.C.

1981-06-01T23:59:59.000Z

363

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network [OSTI]

of exi nc :;:; ;;;- radiation data radiation data and recommendations for thevertical surface solar radiation data, for example); and (2)

Authors, Various

2012-01-01T23:59:59.000Z

364

INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING  

E-Print Network [OSTI]

solar con- trols test facility at Lawrence Berkeley Laboratory The interaction of baseboard, radiant panel, and furnace

Vilmer, Christian

2013-01-01T23:59:59.000Z

365

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network [OSTI]

solar energy technology, Certain localities (e.g. , Davis, California) have modified building codes and zoning regulations

Authors, Various

2012-01-01T23:59:59.000Z

366

Solar production of intermediate temperature process heat. Phase I design. Final report. [For sugarcane processing plant in Hawaii  

SciTech Connect (OSTI)

This report is the final effort in the Phase I design of a solar industrial process heat system for the Hilo Coast Processing Company (HCPC) in Pepeekeo, Hawaii. The facility is used to wash, grind and extract sugar from the locally grown sugarcane and it operates 24 hours a day, 305 days per year. The major steam requirements in the industrial process are for the prime movers (mill turbines) in the milling process and heat for evaporating water from the extracted juices. Bagasse (the fibrous residue of milled sugarcane) supplied 84% of the fuel requirement for steam generation in 1979, while 65,000 barrels of No. 6 industrial fuel oil made up the remaining 16%. These fuels are burned in the power plant complex which produces 825/sup 0/F, 1,250 psi superheated steam to power a turbogenerator set which, in addition to serving the factory, generates from 7 to 16 megawatts of electricity that is exported to the local utility company. Extracted steam from the turbo-generator set supplies the plant's process steam needs. The system consists of 42,420 ft./sup 2/ of parabolic trough, single axis tracking, concentrating solar collectors. The collectors will be oriented in a North-South configuration and will track East-West. A heat transfer fluid (Gulf Synfluid 4cs) will be circulated in a closed loop fashion through the solar collectors and a series of heat exchangers. The inlet and outlet fluid temperatures for the collectors are 370/sup 0/F and 450/sup 0/F respectively. It is estimated that the net useable energy delivered to the industrial process will be 7.2 x 10/sup 9/ Btu's per year. With an HCPC boiler efficiency of 78% and 6.2 x 10/sup 6/ Btu's per barrel of oil, the solar energy system will displace 1489 barrels of oil per year. (WHK)

None

1980-08-01T23:59:59.000Z

367

Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting  

DOE Patents [OSTI]

The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

Sanders, William J. (Kansas City, KS); Snyder, Marvin K. (Overland Park, KS); Harter, James W. (Independence, MO)

1983-01-01T23:59:59.000Z

368

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

working fluid to power a remote heat engine, as the fluidCHP options. Having a remote heat engine has many advantages

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

369

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

heating a high temperature working fluid to power a remoteand heating for a significant portion of the developed and developing world, including those in remote

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

370

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants  

SciTech Connect (OSTI)

Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

Gawlik, Keith

2013-06-25T23:59:59.000Z

371

Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility.  

E-Print Network [OSTI]

Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer.Controllingthecollectionandminimizingthetrappingofchargecarriersattheseboundariesiscrucialtoefficiency. Materials interface engineering for solution-processed photovoltaics Michael Graetzel1 , René A. J. Janssen2

372

Heat distribution by natural convection  

SciTech Connect (OSTI)

Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.

Balcomb, J.D.

1985-01-01T23:59:59.000Z

373

A feasibility study of solar ponds for Wisconsin industrial process heat applications -- Impact of lining material  

SciTech Connect (OSTI)

An economic feasibility study of a salinity gradient solar pond for providing industrial process heat (IPH) in the state of Wisconsin is presented. A survey of current low temperature energy load demands of several companies within Wisconsin was completed. The data obtained was analyzed using a microcomputer based program to assess feasibility. Economic feasibility and thermal performance depends upon area. The area of the pond would determine the corresponding quantities of excavation, salt and lining material required to establish a salinity gradient solar pond (SGSP). The cost of the lining material also has a large impact upon the economic feasibility of a SGSP. The results of the economic feasibility study of a SGSP based on the selection of four types of liners is presented. These liners are a high density polyethylene (HDPE) liner, two forms of a geosynthetic clay liner (GCL) and a chemical and weather resistant polymer coated polyester fabric liner (XR-5). For a load of 10,000 GJ/month on an annual operating schedule for the most favorable economic performance resulted from a geosynthetic clay liner with a high density polyethylene backing. For a 10,000 m{sup 2} pond a payback of 8.4 years can be obtained with a unit cost of $43.20/m{sup 2}. It was also determined that if a larger load was demanded and the corresponding optimal area was provided the economic feasibility of a SGSP increased greatly. For a load of 100,000 GJ/Month on an annual operating schedule, using the same lining material, the optimal pond area was found to be 35,800 m{sup 2}, with a discounted payback of 3.8 years and a unit cost of $35.40/ms{sup 2}. Similar results were obtained for the other materials. From these findings it appears that a SGSP using a geosynthetic clay liner with HDPE backing will be economically feasible for a load of 10,000 GJ/month. The economic feasibility improves with increased thermal load and the corresponding optimal pond area.

Henning, M.A.; Reid, R.L. [Marquette Univ., Milwaukee, WI (United States). Coll. of Engineering

1995-10-01T23:59:59.000Z

374

Evidence for ultra-fast heating in intense-laser irradiated reduced-mass targets  

SciTech Connect (OSTI)

We report on an experiment irradiating individual argon droplets of 20 {mu}m diameter with laser pulses of several Joule energy at intensities of 10{sup 19} W/cm{sup 2}. K-shell emission spectroscopy was employed to determine the hot electron energy fraction and the time-integrated charge-state distribution. Spectral fitting indicates that bulk temperatures up to 160 eV are reached. Modelling of the hot-electron relaxation and generation of K-shell emission with collisional hot-electron stopping only is incompatible with the experimental results, and the data suggest an additional ultra-fast (sub-ps) heating contribution. For example, including resistive heating in the modelling yields a much better agreement with the observed final bulk temperature and qualitatively reproduces the observed charge state distribution.

Neumayer, P.; Gumberidze, A.; Hochhaus, D. C. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, 60438 Frankfurt am Main (Germany); Aurand, B.; Stoehlker, T. [Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Costa Fraga, R. A.; Kalinin, A. [Institut fuer Kernphysik, J. W. Goethe University Frankfurt, 60438 Frankfurt am Main (Germany); Ecker, B. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Grisenti, R. E. [Institut fuer Kernphysik, J. W. Goethe University Frankfurt, 60438 Frankfurt am Main (Germany); Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Kaluza, M. C. [Helmholtz Institute Jena, 07743 Jena (Germany); IOQ Institute of Optics and Quantum Electronics, University of Jena (Germany); Kuehl, T. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany); Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Polz, J. [IOQ Institute of Optics and Quantum Electronics, University of Jena (Germany); Reuschl, R. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Winters, D.; Winters, N.; Yin, Z. [Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany)

2012-12-15T23:59:59.000Z

375

Solar Treatment for Mountain Pine Beetle Solar treatment may be appropriate in some areas of Colorado to reduce beetle populations in  

E-Print Network [OSTI]

Solar Treatment for Mountain Pine Beetle Solar treatment may be appropriate in some areas number of logs in high-value areas. There are two options of solar treatment: with plastic sheeting, and without plastic. Below is a brief description on set-up and difficulties when using solar treatment

376

Market assessment for active solar heating and cooling products. Category B: a survey of decision-makers in the HVAC marketplace. Final report  

SciTech Connect (OSTI)

A comprehensive evaluation of the market for solar heating and cooling products for new and retrofit markets is reported. The emphasis is on the analysis of solar knowledge among HVAC decision makers and a comprehensive evaluation of their solar attitudes and behavior. The data from each of the following sectors are described and analyzed: residential consumers, organizational and manufacturing buildings, HVAC engineers and architects, builders/developers, and commercial/institutional segments. (MHR)

None

1980-09-01T23:59:59.000Z

377

Reduced heat flow in light water (H2O) due to heavy water (D2O)  

E-Print Network [OSTI]

The flow of heat, from top to bottom, in a column of light water can be decreased by over 1000% with the addition of heavy water. A column of light water cools from 25 C to 0 C in 11 hours, however, with the addition of heavy water it takes more than 100 hours. There is a concentration dependence where the cooling time increases as the concentration of added (D2O) increases, with a near maximum being reached with as little as 2% of (D2O) added. This phenomenon will not occur if the water is mixed after the heavy water is added.

William R. Gorman; James D. Brownridge

2008-09-04T23:59:59.000Z

378

Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

379

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network [OSTI]

Building codes and standards Performance criteria Incentives Consumer education Utility programs Solar energysolar energy technology, Certain localities (e.g. , Davis, California) have modified building codes

Authors, Various

2012-01-01T23:59:59.000Z

380

Energy costs of heating and cooling homes continue to increase. Both rural and urban homeowners can reduce these costs by strategically planting trees in their landscape. In  

E-Print Network [OSTI]

Energy costs of heating and cooling homes continue to increase. Both rural and urban homeowners can save energy costs while beautifying your property. Summer Cooling: In the summer months we want to keep to the south, we want our south facing windows to be un-obstructed by trees so passive solar energy from

Blanchette, Robert A.

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities  

SciTech Connect (OSTI)

This paper examines the break-even cost for residential rooftop solar water heating (SWH) technology, defined as the point where the cost of the energy saved with a SWH system equals the cost of a conventional heating fuel purchased from the grid (either electricity or natural gas). We examine the break-even cost for the largest 1,000 electric and natural gas utilities serving residential customers in the United States as of 2008. Currently, the break-even cost of SWH in the United States varies by more than a factor of five for both electricity and natural gas, despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). The break-even price for natural gas is lower than that for electricity due to a lower fuel cost. We also consider the relationship between SWH price and solar fraction and examine the key drivers behind break-even costs. Overall, the key drivers of the break-even cost of SWH are a combination of fuel price, local incentives, and technical factors including the solar resource location, system size, and hot water draw.

Cassard, H.; Denholm, P.; Ong, S.

2011-02-01T23:59:59.000Z

382

In-situ parameter estimation for solar domestic hot water heating systems components. Final report, June 1995--May 1996  

SciTech Connect (OSTI)

Three different solar domestic hot water systems are being tested at the Colorado State University Solar Energy Applications Laboratory; an unpressurized drain-back system with a load side heat exchanger, an integral collector storage system, and an ultra low flow natural convection heat exchanger system. The systems are fully instrumented to yield data appropriate for in-depth analyses of performance. The level of detail allows the observation of the performance of the total system and the performance of the individual components. This report evaluates the systems based on in-situ experimental data and compares the performances with simulated performances. The verification of the simulations aids in the rating procedure. The whole system performance measurements are also used to analyze the performance of individual components of a solar hot water system and to develop improved component models. The data are analyzed extensively and the parameters needed to characterize the systems fully are developed. Also resulting from this indepth analysis are suggested design improvements wither to the systems or the system components.

Smith, T.R.

1997-03-01T23:59:59.000Z

383

Heating of the Solar Wind Beyond 1 AU by Turbulent Dissipation  

E-Print Network [OSTI]

19716, USA 2Department of Mathematics, University College London, UK Abstract The deposition of energy(comp) = Cshear(comp) U r Z2 (1) where Z2 = hv2 +b2i is the energy density, U is the solar wind speed, and Cshear in the solar wind frame would yield a spherical distribution (solid curve). The di erence in kinetic energy

Oughton, Sean

384

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network [OSTI]

options into local solar loan programs. IV.G.6 EncourageSolar Applications of the U.S. Department of Energy January 1 TWO-WEEK lOANsolar system and Light, Pacific Gas & Electric, and are investigating the peak load sharing systems and consumer loan

Authors, Various

2012-01-01T23:59:59.000Z

385

Test and Post-Test Analysis of a Thermacore, Inc. Nickel Powder Wick Heat Pipe Solar Reciever  

SciTech Connect (OSTI)

This report is a cradle-to-grave fabrication and postmortem analysis of a sodium-filled heat pipe solar receiver. The Stirling Thermal Motors Gen. H engine was tested with the Thermacore, Inc. heat pipe receiver on Sandia's Test Bed Concentrator II in the fall of 1996. Although engine performance was significantly increased relative to a direct insolation version of the receiver, hot spots did develop on the heat pipe receiver dome. Over the course of a couple of weeks, after tests were completed, the sodium was distilled out of this receiver, and the front dome was removed. Several failure spots and/or cracks (dubbed volcanoes ) were present on the surface of the wick. Postmortem analysis indicates that the cracks in the wick of the heat pipe are not a product of corrosive oxide action. Voids formed within the wick (created either by mechanical or thermal means) serve to concentrate phosphorous from the electroless plating into the liquid sodium. The presence of phosphorous has an apparently harmful effect on the wick. Examination of a virgin piece of the nickel wick material treated in the same manner as the bulk, prior to the introduction of sodium, would be the best baseline sample for comparison. This sample could be analyzed for phosphorous migration into the wick and determine if there is any initial crack formation from the sintering process. Utiortunately a sample of this material was not available during the preparation of this report. Continued work to determine the mechanism of crack formation could significantly increase the hours of available lifetime testing for future solar thermal heat pipe receivers

Adkins, Douglas R.; Andraka, Charles E.; Diver, Jr., Richard B.; Echelmeyer, Kenneth H.; Moreno, James B.; Moss, Timothy A.; Rawlinson, K. Scott; Showalter, Steven K.

1999-05-01T23:59:59.000Z

386

Test and Post-Test Analysis of a Thermacore, Inc. Nickel Powder Wick Heat Pipe Solar Reciever  

SciTech Connect (OSTI)

This report is a cradle-to-grave fabrication and postmortem analysis of a sodium-filled heat pipe solar receiver. The Stirling Thermal Motors Gen. H engine was tested with the Thermacore, Inc. heat pipe receiver on Sandia's Test Bed Concentrator II in the fall of 1996. Although engine performance was significantly increased relative to a direct insolation version of the receiver, hot spots did develop on the heat pipe receiver dome. Over the course of a couple of weeks, after tests were completed, the sodium was distilled out of this receiver, and the front dome was removed. Several failure spots and/or cracks (dubbed "volcanoes") were present on the surface of the wick. Postmortem analysis indicates that the cracks in the wick of the heat pipe are not a product of corrosive oxide action. Voids formed within the wick (created either by mechanical or thermal means) serve to concentrate phosphorous from the electroless plating into the liquid sodium. The presence of phosphorous has an apparently harmful effect on the wick. Examination of a virgin piece of the nickel wick material treated in the same manner as the bulk, prior to the introduction of sodium, would be the best baseline sample for comparison. This sample could be analyzed for phosphorous migration into the wick and determine if there is any initial crack formation from the sintering process. Utiortunately a sample of this material was not available during the preparation of this report. Continued work to determine the mechanism of crack formation could significantly increase the hours of available lifetime testing for future solar thermal heat pipe receivers

Adkins, Douglas R.; Andraka, Charles E.; Diver, Jr., Richard B.; Echelmeyer, Kenneth H.; Moreno, James B.; Moss, Timothy A.; Rawlinson, K. Scott; Showalter, Steven K.

1999-05-01T23:59:59.000Z

387

Description and preliminary validation of a model for natural convection heat and air transport in passive solar buildings  

SciTech Connect (OSTI)

We have proposed a transient, quasi-two-dimensional, numerical model for interzone heat flow and airflow in passive solar buildings. The paths for heat flow and airflow are through connecting apertures such as doorways, hallways, and stairways. The model includes the major features that influence interzone convection as determined from the results of our flow visualization tests and temperature and airflow measurements taken in more than a dozen passive solar buildings. The model includes laminar and turbulent quasi-steady boundary-layer equations at vertical heated or cooled walls which are coupled to a one-dimensional core model for each zone. The cores in each zone exchange air and energy through the aperture which is modelled by a Bernoulli equation. Preliminary results from the model are in general agreement with data obtained in full-scale buildings and laboratory experiments. The model predicts room-core temperature stratification of about 2/sup 0/C/m (1.1/sup 0/ F/ft) and maximum aperture velocities of 0.08 m/s (15 ft/min.) for a room-to-room temperature difference of 1/sup 0/F.

Jones, G.F.; Balcomb, J.D.

1985-01-01T23:59:59.000Z

388

Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems. Project status report, January--February 1992  

SciTech Connect (OSTI)

The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--92 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems, (2) a project to build and test several generic solar water heaters, (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems, (4) a liquid desiccant cooling system development project, (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research, and (6) a management task. The objectives and progress in each task are described in this report.

Not Available

1992-03-23T23:59:59.000Z

389

Sandia National Laboratories: reducing start-up risks for solar thermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskite oxideplatform sizegeneration reducing

390

Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and incentives for siting solar water heating systems at homes with electric water heating systems. * In 2005, the Solar Electric Power Association awarded a Business...

391

U.S. Virgin Islands- Solar Water Heating Requirement for New Construction  

Broader source: Energy.gov [DOE]

In July 2009, U.S. Virgin Islands enacted legislation Act 7075. This legislation requires all new developments, and substantial building modifications, must be installed with energy efficient solar...

392

Solar heating and cooling of housing : five institutional analysis case studies  

E-Print Network [OSTI]

This paper is one of a series resulting from institutional analysis of photovoltaic (PV) acceptance. The case studies reported here involve use of solar thermal technologies in variuos residential settings. All of the ...

Nutt-Powell, Thomas E.

1979-01-01T23:59:59.000Z

393

The Influence of Residential Solar Water Heating on Electric Utility Demand  

E-Print Network [OSTI]

Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to determine the influence...

Vliet, G. C.; Askey, J. L.

1984-01-01T23:59:59.000Z

394

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

A Better Steam Engine: Designing a Distributed Concentrating2011 Abstract A Better Steam Engine: Designing a Distributedprovided for a steam Rankine cycle heat engine achieving 50%

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

395

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network [OSTI]

concepts for space heating using remote col- lection withheating systems in terms of the fan owing matrix: DIRECT INDIRECT ISOLATED SOUTH APERTURE SHADED ROOF APERTURE ROOF APERTURE REMOTE

Authors, Various

2012-01-01T23:59:59.000Z

396

SMUD- Residential Solar Loan Program  

Broader source: Energy.gov [DOE]

The Sacramento Municipal Utility District's (SMUD) Residential Loan Program provides 100% financing to customers who install solar water heating systems. All solar water heating systems must meet...

397

VELOCITY-SHEAR-INDUCED MODE COUPLING IN THE SOLAR ATMOSPHERE AND SOLAR WIND: IMPLICATIONS FOR PLASMA HEATING AND MHD TURBULENCE  

SciTech Connect (OSTI)

We analytically consider how velocity shear in the corona and solar wind can cause an initial Alfven wave to drive up other propagating signals. The process is similar to the familiar coupling into other modes induced by non-WKB refraction in an inhomogeneous plasma, except here the refraction is a consequence of velocity shear. We limit our discussion to a low-beta plasma, and ignore couplings into signals resembling the slow mode. If the initial Alfven wave is propagating nearly parallel to the background magnetic field, then the induced signals are mainly a forward-going (i.e., propagating in the same sense as the original Alfven wave) fast mode, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; both signals are compressive and subject to damping by the Landau resonance. For an initial Alfven wave propagating obliquely with respect to the magnetic field, the induced signals are mainly forward- and backward-going fast modes, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; these signals are all compressive and subject to damping by the Landau resonance. A backward-going Alfven wave, thought to be important in the development of MHD turbulence, is also produced, but it is very weak. However, we suggest that for oblique propagation of the initial Alfven wave the induced fast-polarized signal propagating like a forward-going Alfven wave may interact coherently with the initial Alfven wave and distort it at a strong-turbulence-like rate.

Hollweg, Joseph V.; Chandran, Benjamin D. G. [Space Science Center, Morse Hall, University of New Hampshire, Durham, NH 03824 (United States); Kaghashvili, Edisher Kh., E-mail: joe.hollweg@unh.edu, E-mail: ekaghash@aer.com, E-mail: benjamin.chandran@unh.edu [Atmospheric and Environmental Research, A Verisk Analytics Company, 131 Hartwell Avenue, Lexington, MA 02421 (United States)

2013-06-01T23:59:59.000Z

398

Analysis of the California Solar Resource--Volume 3: Appendices  

E-Print Network [OSTI]

or commercial process heat systems designing solar aird) industrial process heat systems e) solar air-conditioning

erdahl, P.

2011-01-01T23:59:59.000Z

399

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network [OSTI]

Distillation column Steam turbine Condenser load. CalculatesHeat Trimmer Dist. Condenser Turbine Steam Leaks LP TurbineRH ll~ PRESSURE STEAM FLOW INTO CONDENSER *STC D12 PRE! SURE

Dayan, J.

2011-01-01T23:59:59.000Z

400

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

and decreased cost of heat and electricity grid (Casten andgrid. Chapter 1 begins with analysis of the relative demand for electricity and heatheat can be cost-effectively stored with available technologies. (c) DCS-CHP thus can ameliorate grid-

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network [OSTI]

heat available at night) Gas Turbine Work Table 3.2. StreamTurbine (small turbine) Gas Turbine Parasitic Power BFW PumpHours) Generator Terminals Gas Turbine Parasitic Power BFW

Dayan, J.

2011-01-01T23:59:59.000Z

402

Heating, Current Drive, Operations and Diagnostics Issues Understand implications of reduced repetition rate, is it adequate for the  

E-Print Network [OSTI]

Heating, Current Drive, Operations and Diagnostics Issues Operations · Understand implications of ECRH to improve startup. Heating · ICRF is the base line heating system, compare with NBI and ECRH withstand the anticipated heat loads? Diagnostics · Capability of beam diagnostics for J(r), E(r), etc

403

Analysis of an open-air swimming pool solar heating system by using an experimentally validated TRNSYS model  

SciTech Connect (OSTI)

In the case of private outdoor swimming pools, seldom larger than 100 m{sup 2}, conventional auxiliary heating systems are being installed less and less. Solar heating is an option to extend the swimming season. The temperature evolution of an open-air swimming pool highly depends on the wind speed directly on the water surface, which at the same time is influenced by the surroundings of the pool. In this paper, the TRNSYS model of a private open-air pool with a 50-m{sup 2} surface was validated by registering the water temperature evolution and the meteorological data at the pool site. Evaporation is the main component of energy loss in swimming pools. Six different sets of constants found in literature were considered to evaluate the evaporative heat transfer coefficient with the purpose of finding the most suitable one for the TRNSYS pool model. In order to do that, the evolution of the pool water temperature predicted by the TRNSYS pool model was compared with the experimentally registered one. The simulation with TRNSYS of the total system, including the swimming pool and the absorber circuit integrated into the existing filter circuit, provided information regarding the increase of the pool temperature for different collector areas during the swimming season. This knowledge, together with the economic costs, support the decision about the absorber field size. (author)

Ruiz, Elisa; Martinez, Pedro J. [Universidad Miguel Hernandez - Edificio Torreblanca, Avda. de la Universidad s/n, 03202 Elche (Spain)

2010-01-15T23:59:59.000Z

404

Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation  

SciTech Connect (OSTI)

A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

Shabani, Bahman; Andrews, John; Watkins, Simon [School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne (Australia)

2010-01-15T23:59:59.000Z

405

Heat distribution by natural convection  

SciTech Connect (OSTI)

Natural convection can provide adequate heat distribution in many situations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others. Natural convection can also be used to reduce the number of auxiliary heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures are predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Experimental results are summarized based on the monitoring of 15 passive solar buildings which employ a wide variety of geometrical configurations including natural convective loops.

Balcomb, J.D.

1985-01-01T23:59:59.000Z

406

Diurnal heat storage in direct-gain passive-solar buildings  

SciTech Connect (OSTI)

This paper presents a simplified method for predicting temperature swings in direct-gain buildings. It is called the DHC method due to the use of a diurnal heat capacity (DHC). Diurnal heat capacity is a measure of the effective amount of heat stored during a sunny day and then released at night - the typical 24-hour diurnal cycle. This enables prediction of the maximum temperature swings experienced in the building and can be calculated using a single 24-hour harmonic. The advantage is that closed-form analytic solutions can be obtained for a variety of simple and layered-wall configurations. Higher harmonic components are accounted for by a correction factor. The method is suitable for us by hand or on a programmable calculator.

Balcomb, J.D.; Neeper, D.A.

1983-01-01T23:59:59.000Z

407

Mexico-GTZ Support for the Programme to Promote Solar Water Heating | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanosElectricResources[1] Overview

408

Ausra Inc Formerly Solar Heat and Power Pty Ltd SHP | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SA Aurantia Group Jump

409

Transactions of AMSE International Journal of Solar Energy Engineering 1 Copyright #### by ASME  

E-Print Network [OSTI]

, uncertainty, model validation 1 Introduction In hot climates, action must be taken against solar heating heat transfer due to the conduction process. However, this type of thermal insulation does not reduceTransactions of AMSE International Journal of Solar Energy Engineering 1 Copyright © #### by ASME

Paris-Sud XI, Université de

410

M. Sri, J. Remund, T. Cebecauer, D. Dumortier, L. Wald, T. Huld, P. Blanc, Proceeding of the EUROSUN 2008, International Conference on Solar Heating, Cooling and Buildings, Lisbon, Portugal, 7 10 October 2008.  

E-Print Network [OSTI]

of the EUROSUN 2008, 1st International Conference on Solar Heating, Cooling and Buildings, Lisbon, Portugal, 7 ­ 10 October 2008. First Steps in the Cross-Comparison of Solar Resource Spatial Products in Europe M in complex climate conditions of mountains, along some coastal zones and in areas where solar radiation

Boyer, Edmond

411

Characterization of Damp-Heat Degradation of CuInGaSe2 Solar Cell Components and Devices by (Electrochemical) Impedance Spectroscopy: Preprint  

SciTech Connect (OSTI)

This work evaluated the capability of (electrochemical) impedance spectroscopy (IS, or ECIS as used here) to monitor damp heat (DH) stability of contact materials, CuInGaSe2 (CIGS) solar cell components, and devices. Cell characteristics and its variation of the CIGS devices were also examined by the ECIS.

Pern, F. J. J.; Noufi, R.

2011-09-01T23:59:59.000Z

412

Market assessment for active solar heating and cooling products. Category B: A survey of decision makers in the HVAC market place. Survey instruments  

SciTech Connect (OSTI)

Telephone screener questionnaires and mail-out questionnaires for marketing surveys for solar heating and cooling equipment are presented. Questionnaires are included for the residential segment, industrial segment, HVAC professionals segment, builder/developer segment, and the commercial segment. No results are reported. (WHK)

Lilien, G. L.; Johnston, P. E.

1980-09-01T23:59:59.000Z

413

Low Cost Solar Water Heating R&D | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveragingLindseyLong-TermLosofLow Cost Solar Water

414

Heating system  

SciTech Connect (OSTI)

A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

Nishman, P.J.

1983-03-08T23:59:59.000Z

415

Whistler mode waves and the electron heat flux in the solar wind: Cluster observations  

E-Print Network [OSTI]

The nature of the magnetic field fluctuations in the solar wind between the ion and electron scales is still under debate. Using the Cluster/STAFF instrument, we make a survey of the power spectral density and of the polarization of these fluctuations at frequencies $f\\in[1,400]$ Hz, during five years (2001-2005), when Cluster was in the free solar wind. In $\\sim 10\\%$ of the selected data, we observe narrow-band, right-handed, circularly polarized fluctuations, with wave vectors quasi-parallel to the mean magnetic field, superimposed on the spectrum of the permanent background turbulence. We interpret these coherent fluctuations as whistler mode waves. The life time of these waves varies between a few seconds and several hours. Here we present, for the first time, an analysis of long-lived whistler waves, i.e. lasting more than five minutes. We find several necessary (but not sufficient) conditions for the observation of whistler waves, mainly a low level of the background turbulence, a slow wind, a relative...

Lacombe, Catherine; Matteini, Lorenzo; Santolik, Ondrej; Cornilleau-Wehrlin, Nicole; Mangeney, Andre; de Conchy, Yvonne; Maksimovic, Milan

2014-01-01T23:59:59.000Z

416

Plancher solaire direct mixte \\`a double r\\'eseau en habitat bioclimatique - Conception et bilan thermique r\\'eel. Double direct solar floor heating in boclimatic habitation - Design and real energetical balance  

E-Print Network [OSTI]

This study presents a new direct solar floor heating technique with double heating network wich allows simultaneous use of solar and supply energy. Its main purpose is to store and to diffuse the whole available solar energy while regulating supply energy by physical means without using computer controlled technology. This solar system has been tested in real user conditions inside a bioclimatic house to study the interaction of non-inertial and passive walls on the solar productivity. Daily, monthly and annual energy balances were drawn up over three years and completed by real-time measurements of several physical on-site parameters. As a result the expected properties of this technique were improved. The use of per-hour solar productivity, saved primary energy and corrected solar covering ratio is recommended to analyze the performances of this plant and to allow more refined comparisons with other solar systems

De Larochelambert, Thierry

2009-01-01T23:59:59.000Z

417

Solar Equipment Certification  

Broader source: Energy.gov [DOE]

Minnesota law requires that all active solar space-heating and water-heating systems, sold, offered for sale, or installed on residential and commercial buildings in the state meet Solar Rating and...

418

Photovoltaic roof heat flux  

E-Print Network [OSTI]

under the offset unit's solar panel, the hf formula (16) wasdrop below the angle unit's solar panel at night time. D u rfor both the units, the solar panel covered roof was a heat

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

419

Knox County Detention Facility Goes Solar for Heating Water | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington, DCKickoff Meeting forKSRS25RV*)KnowEnergy

420

EECBG Success Story: Knox County Detention Facility Goes Solar for Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9: DraftPlant,Community'Into Savings |Energy

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

MHD versus kinetic effects in the solar coronal heating: a two stage mechanism  

E-Print Network [OSTI]

Using Particle-In-Cell simulations i.e. in the kinetic plasma description the discovery of a new mechanism of parallel electric field generation was recently reported. Here we show that the electric field generation parallel to the uniform unperturbed magnetic field can be obtained in a much simpler framework using the ideal magnetohydrodynamics (MHD) description. In ideal MHD the electric field parallel to the uniform unperturbed magnetic field appears due to fast magnetosonic waves which are generated by the interaction of weakly non-linear Alfv\\'en waves with the transverse density inhomogeneity. In the context of the coronal heating problem a new {\\it two stage mechanism} of plasma heating is presented by putting emphasis, first, on the generation of parallel electric fields within an {\\it ideal MHD} description directly, rather than focusing on the enhanced dissipation mechanisms of the Alfv\\'en waves and, second, dissipation of these parallel electric fields via {\\it kinetic} effects. It is shown that for a single Alfv\\'en wave harmonic with frequency $\

David Tsiklauri

2006-06-27T23:59:59.000Z

422

Diagnostics of the Heating Processes in Solar Flares Using Chromospheric Spectral Lines  

E-Print Network [OSTI]

We have calculated the H$\\alpha$ and Ca {\\sc ii} 8542 {\\AA} line profiles based on four different atmospheric models, including the effects of nonthermal electron beams with various energy fluxes. These two lines have different responses to thermal and nonthermal effects, and can be used to diagnose the thermal and nonthermal heating processes. We apply our method to an X-class flare that occurred on 2001 October 19. We are able to identify quantitatively the heating effects during the flare eruption. We find that the nonthermal effects at the outer edge of the flare ribbon are more notable than that at the inner edge, while the temperature at the inner edge seems higher. On the other hand, the results show that nonthermal effects increase rapidly in the rise phase and decrease quickly in the decay phase, but the atmospheric temperature can still keep relatively high for some time after getting to its maximum. For the two kernels that we analyze, the maximum energy fluxes of the electron beams are $\\sim$ 10$^{10}$ and 10$^{11}$ ergs cm$^{-2}$ s$^{-1}$, respectively. However, the atmospheric temperatures are not so high, i.e., lower than or slightly higher than that of the weak flare model F1 at the two kernels. We discuss the implications of the results for two-ribbon flare models.

J. X. Cheng; M. D. Ding; J. P. Li

2006-09-25T23:59:59.000Z

423

Optimization of the design and mode of operation of a QD laser for reducing the heat-to-bitrate ratio  

SciTech Connect (OSTI)

Heat dissipation under the high-speed modulation of quantum dot edge-emitting lasers is considered. It is shown that, for a given laser diode, there is a bias current at which the heat-to-bitrate ratio is minimized. Moreover, there exists a certain optimal optical loss of the laser cavity at which the lowest heat-to-bitrate ratio is provided for any design of edge-emitting lasers that can be fabricated from an epitaxial structure. The heat-to-bitrate ratio and the corresponding bitrate are numerically calculated and analytical expressions are derived. It is demonstrated that the heat-to-bitrate ratio of quantum dot edge-emitting lasers can be less than 0.4 pJ/bit at a bitrate exceeding 10 Gbit/s.

Zhukov, A. E., E-mail: zhukale@gmail.com; Savelyev, A. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation); Maximov, M. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Kryzhanovskaya, N. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation); Gordeev, N. Yu.; Shernyakov, Yu. M. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Payusov, A. S.; Nadtochiy, A. M.; Zubov, F. I.; Korenev, V. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)

2013-08-15T23:59:59.000Z

424

Apparatus for reducing the moisture content in combustible material by utilizing the heat from combustion of such material  

SciTech Connect (OSTI)

This patent describes apparatus for preparing moisture containing fuel material for combustion to produce heat energy and for applying the heat energy from the combustion for lowering the moisture content in the fuel material prior to combustion, the improvement comprising: boiler means for the combustion of the fuel material to produce heat energy, grinding apparatus for preparing the fuel material to produce heat energy; means for collecting prepared fuel material and for feeding the collected fuel material to the boiler means; a main gaseous fluid and fuel material conduit system; a second conduit system connecting the boiler means and the grinding apparatus to conduct heat energy to the grinding apparatus; connecting means between the returning side of the main conduit system and the boiler means for maintaining the main conduit system at a negative pressure to promote the flow of hot gaseous medium from the boiler means to the gringing apparatus.

Williams, R.M.

1992-03-17T23:59:59.000Z

425

A Method to Determine the Heating Mechanisms of the Solar E. R. Priest \\Lambda , C. R. Foley + , J. Heyvaerts ffl , T.D. Arber \\Lambda , D. Mackay \\Lambda , J. L. Culhane + and  

E-Print Network [OSTI]

A Method to Determine the Heating Mechanisms of the Solar Corona E. R. Priest \\Lambda , C. R. Foley University, Bozeman, MT 59717, USA 1 #12; Abstract One of the paradigms about coronal heating has been of the heating mechanisms. However, we point out that the temperature profile along a coronal loop is highly

Mackay, Duncan

426

Heat flow of the Earth and resonant capture of solar 57-Fe axions  

E-Print Network [OSTI]

In a very conservative approach, supposing that total heat flow of the Earth is exclusively due to resonant capture inside the Earth of axions, emitted by 57-Fe nuclei on Sun, we obtain limit on mass of hadronic axion: m_aEarth, this estimation could be improved to the value: m_a<1.6 keV. Both the values are less restrictive than limits set in devoted experiments to search for 57-Fe axions (m_a<216-745 eV), but are much better than limits obtained in experiments with 83-Kr (m_a<5.5 keV) and 7-Li (m_a<13.9-32 keV).

F. A. Danevich; A. V. Ivanov; V. V. Kobychev; V. I. Tretyak

2009-05-07T23:59:59.000Z

427

Solar process water heat for the Iris Images Custom Color Photo Lab. Final report  

SciTech Connect (OSTI)

This is the final technical report of the solar facility locted at Iris Images Custom Photo Laboratory in Mill Valley, California. It was designed to provide 59 percent of the hot water requirements for developing photographic film and domestic hot water use. The design load is to provide 6 gallons of hot water per minute for 8 hours per working day at 100/sup 0/F. It has 640 square feet of flat plate collectors and 360 gallons of hot water storage. The auxiliary back up system is a conventional gas-fired water heater. Freeze protection in this mild climate was originally provided by closed-loop circulation of hot water from the storage tank. Later this was changed to a drain-down system due to a freeze when electrical power failed. This system has been relatively successful with little or no scheduled maintenance. The site and building description, subsystem description, as-built drawings, cost breakdown and analysis, performance analysis, lessons learned, and the operation and maintenance manual are included.

Not Available

1980-03-01T23:59:59.000Z

428

Plasma Heating to Super-Hot Temperatures (>30 MK) in the August 9, 2011 Solar Flare  

E-Print Network [OSTI]

We investigate the August 9, 2011 solar flare of X-ray class X6.9, the "hottest" flare from 2000 to 2012, with a peak plasma temperature according to GOES data of 32.5 MK. Our goal is to determine the cause of such an anomalously high plasma temperature and to investigate the energy balance in the flare region with allowance made for the presence of a super-hot plasma (>30 MK). We analyze the RHESSI, GOES, AIA/SDO, and EVE/SDO data and discuss the spatial structure of the flare region and the results of our spectral analysis of its X-ray emission. Our analysis of the RHESSI X-ray spectra is performed in the one-temperature and two-temperature approximations by taking into account the emission of hot (20 MK) and super-hot (45 MK) plasmas. The hard X-ray spectrum in both models is fitted by power laws. The observed peculiarities of the flare are shown to be better explained in terms of the two-temperature model, in which the super-hot plasma is located at the flare loop tops (or in the magnetic cusp region). Th...

Sharykin, I N; Zimovets, I V

2015-01-01T23:59:59.000Z

429

notThe old maxim is at the heart of Handan Tezel's research on storing excess heat from  

E-Print Network [OSTI]

on storing excess heat from solar panels or from power generation-- to generate more power by Celeste of Engineering is working to turn her research on storing energy from waste heat or solar panels the cost, says Tezel, is either increasing the energy density or reducing the price of the zeolite material

Petriu, Emil M.

430

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network [OSTI]

A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP™) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver...

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

431

Solar Thermal Demonstration Project  

SciTech Connect (OSTI)

HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with â??Kalwallâ?? building panels. An added feature of the â??Kalwallâ?ť system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

Biesinger, K.; Cuppett, D.; Dyer, D.

2012-01-30T23:59:59.000Z

432

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network [OSTI]

field of high-temperature solar process heat. The ultimatechemical heat storage process for a steam solar electric

Authors, Various

2010-01-01T23:59:59.000Z

433

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

with or without combined heat and power (CHP) and contributein Microgrids with Combined Heat and Power Chris Marnay,Microgrids with Combined Heat and Power 1 Chris Marnay a) ,

Marnay, Chris

2010-01-01T23:59:59.000Z

434

Our winters of discontent: Addressing the problem of rising home-heating costs1  

E-Print Network [OSTI]

on fossil fuels by using solar energy, reducing residential energy demand, and promoting district heating. 1ERG/200602 Our winters of discontent: Addressing the problem of rising home-heating costs1 Larry Residential space heating is a necessity in northern countries such as Canada. With over 70 percent

Hughes, Larry

435

Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application  

E-Print Network [OSTI]

energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility...

Meckler, G.

1985-01-01T23:59:59.000Z

436

Extension of the Phoenix/City of Colorado Springs solar-assisted heat-pump project. Technical progress report No. 18, sixth quarterly report, 1 October 1980-31 January 1981  

SciTech Connect (OSTI)

Three gas-driven heat pumps are being considered, which are a Wisconsin engine drive heat pump, a Stirling engine drive heat pump, and a gas turbine drive heat pump. Also considered is an electric driven heat pump. Cost effectiveness of both the electric driven and gas fired solar-assisted heat pumps is demonstrated by comparing the present value of the system over its 20 year life with the present value of the fuel saved in Denver and Colorado Springs. The opinions of the local electric utilities for both cities and the natural gas pipeline company are briefly discussed. (LEW)

Not Available

1981-02-03T23:59:59.000Z

437

Central solar energy receiver  

DOE Patents [OSTI]

An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

Drost, M. Kevin (Richland, WA)

1983-01-01T23:59:59.000Z

438

A novel isolation curtain to reduce turbine ingress heating and an advanced model for honeycomb labyrinth seals  

E-Print Network [OSTI]

, but implementation of the injection curtain slot reduced substantially T* max of the outer region. In addition, a more desirable uniform adiabatic wall temperature distribution along the outer rotor and stator surfaces was observed due to the presence...

Choi, Dong Chun

2006-08-16T23:59:59.000Z

439

Study on the use of TiO{sub 2} passivation layer to reduce recombination losses in dye sensitized solar cells  

SciTech Connect (OSTI)

A lot of research on various aspects of dye solar cells (DSC) has been carried out in order to improve efficiency. This paper analyzes the utilization of TiO{sub 2} passivation layers of different thicknesses by improving the electron transport properties. Four different thicknesses of passivation layers namely 10, 20, 50 and 100 nm were deposited onto the working electrode using r.f sputtering. The electrodes were assembled into TiO{sub 2} based DSC with active area of 1 cm{sup 2}. The solar performance was investigated using 100 mW/cm{sup 2} of AM 1.5 simulated sunlight from solar simulator. The kinetics of the solar cells was investigated using Electrochemical Impedance Spectroscopy (EIS) measurement and the spectral response was measured using Incident Photon to Electron Conversion (IPCE) measurement system. The highest efficiency was found for DSC with 20 nm passivation layer. DSCs with the passivation layer have open circuit voltage, V{sub OC} increased by 57 mV, their current density, J{sub SC} increased by 0.774 mA cm{sup -2} compared to the one without the passivation layer. The quantum efficiency of the 20 nm passivation layer is the highest, peaking at the wavelength of 534 nm, resulting in the highest performance. All DSCs with the passivation layer recorded higher ratio of R{sub BR}/R{sub T} where R{sub T} is the diffusion resistance of the TiO{sub 2} particles in the mesoscopic layer and R{sub BR} is the recombination resistance of the electron to the electrolyte. This implies that the recombination of the electrolyte I{sup -}{sub 3}/3I{sup -} couple at the substrate/electrolyte interface has been effectively reduced resulting in an enhanced efficiency.

Eskander bin Samsudin, Adel; Mohamed, Norani Muti; Nayan, Nafarizal; Ali, Riyaz Ahmad Mohamed; Shariffuddin, Sharifah Amira Amir; Omar, Salwa [Electrical and Electronics Department, 31750, Tronoh, Universiti Teknologi PETRONAS (Malaysia); Fundamental and Applied Sciences Department, 31750, Tronoh, Universiti Teknologi PETRONAS (Malaysia); Electronic Engineering Department, Electrical and Electronic Engineering Faculty, Universiti Tun Hussein Onn Malaysia (UTHM) (Malaysia)

2012-09-26T23:59:59.000Z

440

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network [OSTI]

heat exchangers, solar thermal collectors, absorptioncells; • photovoltaics (PV) and solar thermal collectors; •for application of solar thermal and recovered heat to end-

Stadler, Michael

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network [OSTI]

Particle Suspensions for Solar Energy Collection A.Sensible Heat Storage for a Solar Thermal Power Plant T.and A. Pfeiffhofer • . Solar Heated Gas Turbine Process

Authors, Various

2010-01-01T23:59:59.000Z

442

SOLAR ENERGY PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1978  

E-Print Network [OSTI]

energy sources such as solar heated industrial waste heat, geothermal water, brines, and ocean thermal

authors, Various

2011-01-01T23:59:59.000Z

443

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network [OSTI]

energy sources such as solar heated water, indus- trial waste heat, geothermal brines, and ocean thermal

Authors, Various

2010-01-01T23:59:59.000Z

444

Proceedings of the 15th International Heat Transfer Conference, IHTC-15 August 10-15, 2014, Kyoto, Japan  

E-Print Network [OSTI]

pressure drop and reduced heat transfer to the reaction zone. KEY WORDS: Solar energy, Carbon emission combustion as the process heat for calcination. Shimizu et al. performed a thermodynamic analysis on a pairProceedings of the 15th International Heat Transfer Conference, IHTC-15 August 10-15, 2014, Kyoto

445

Internal absorber solar collector  

DOE Patents [OSTI]

Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

Sletten, Carlyle J. (106 Nagog Hill Rd., Acton, MA 01720); Herskovitz, Sheldon B. (88 Hammond St., Acton, MA 01720); Holt, F. S. (46 Emerson Rd., Winchester, MA 01890); Sletten, E. J. (Chestnut Hill Rd. R.F.D. Rte. #4, Amherst, NH 03031)

1981-01-01T23:59:59.000Z

446

Thermal Management of Solar Cells  

E-Print Network [OSTI]

Nanostructured Silicon- Based Solar Cells, 2013. X. C. Tong,heat exchangers, and solar cells," Sci-Tech News, vol. 65,in crystalline silicon solar cells," Renewable Energy, vol.

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

447

aluminum-finned copper-tube heat: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

individual heat pumps, solar heating and wood pellets 6Ris International Energy Conference 2009Heat Plan 12 Heat Pump for High School Heat Recovery Texas A&M...

448

Designing of a prototype heat-sealer to manufacture solar water sterilization pouches for use in developing nations  

E-Print Network [OSTI]

Water purification proves to be a difficult task in many developing nations. The SODIS (SOlar water DISinfection) process is a method which improves the microbiological quality of water making it safer for drinking and ...

Quinlan, Saundra S

2005-01-01T23:59:59.000Z

449

Solar Construction Permitting Standards  

Broader source: Energy.gov [DOE]

Owners of solar photovoltaic (PV) systems and solar water heating systems in Arizona are required to obtain a building permit before their systems may be installed. Permits are handled at the...

450

Solar Construction Permitting Standards  

Broader source: Energy.gov [DOE]

Owners of solar photovoltaic (PV) systems and solar water heating systems in Colorado are required to obtain a building permit before their systems may be installed. Permits are handled at the...

451

Solar Contractor Licensing  

Broader source: Energy.gov [DOE]

Until 1994, Florida offered limited specialty licenses for residential solar hot water and pool heating, as well a general solar contractor's license. These specialty licenses have not been issued...

452

E-Print Network 3.0 - assess solar detoxification Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

accessibility of solar installation training and expand the nation's trained solar... on solar photovoltaic (PV) and solar heating and cooling (SHC) ... Source: North Carolina...

453

Development of Molten-Salt Heat Trasfer Fluid Technology for...  

Broader source: Energy.gov (indexed) [DOE]

Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar...

454

Solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

455

Town of Hague landfill reclamation study: Research ways to increase waste heating value and reduce waste volume. Final report  

SciTech Connect (OSTI)

Monitored composing was studied as a method for reducing the quantity of waste requiring disposed from a landfill reclamation project. After each of two re-screening steps, composted {open_quotes}soil{close_quotes} from a single long windrow of varying depths and moisture content was subjected to analytical testing to determine its suitability to remain as backfill in a reclaimed landfill site. The remaining uncomposted waste was combusted at a waste-to-energy facility to determine if Btu values were improved. Results indicate that a full-scale composting operation could result in a net decrease of approximately 11 percent in disposal costs. The Btu value of the reclaimed waste was calculated to be 4,500 to 5,000 Btu/lb. The feasibility of composting reclaimed waste at other landfill reclamation projects will depend upon site-specific technical and economic factors, including size and nature of the organic fraction of the waste mass, local processing costs, and the cost of waste disposal alternatives.

Salerni, E. [SSB Environmental Inc., Albany, NY (United States)

1997-01-01T23:59:59.000Z

456

Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality  

E-Print Network [OSTI]

with heat recovery, solar thermal collection, and thermallynatural gas combustion solar thermal CHP heat storageelectric load thermal storage solar thermal storage charging

Marnay, Chris; Firestone, Ryan

2007-01-01T23:59:59.000Z

457

Photovoltaic roof heat flux  

E-Print Network [OSTI]

designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

458

HEAT TRANSFER FLUIDS  

E-Print Network [OSTI]

The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

Lenert, Andrej

2012-01-01T23:59:59.000Z

459

Solar synthesis of advanced materials: A solar industrial program initiative  

SciTech Connect (OSTI)

This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000{degrees}C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including the following: Metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

Lewandowski, A.

1992-06-01T23:59:59.000Z

460

Green Systems Solar Hot Water  

E-Print Network [OSTI]

Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar panels not enough Generates heat energy Captures heat from generator and transfers it to water Stores Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1

Schladow, S. Geoffrey

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The passive solar home  

SciTech Connect (OSTI)

This article describes a home designed with both energy efficiency and solar principles in mind. The house is situated in Colorado and maintains a comfortable, relatively even heat year around with little backup heat needed. The sun heats the home and the energy efficient design works to store and distribute the heat slowly and continuously. Specific design elements discussed include the following: collection, storage, distribution and retention of solar energy.

Weiss, J.; Stone, L. [Solar Energy International, Carbondale, CO (United States)

1995-02-01T23:59:59.000Z

462

A Novel, Low-Cost, Reduced-Sensor Approach for Providing Smart Renote Monitoring and Diagnostics for Packaged Air Conditioners and Heat Pumps  

SciTech Connect (OSTI)

This report describes conceptually an approach to providing automated remote performance and conditioning monitoring and fault detection for air conditioners and heat pumps that shows great promise to reduce the capital and installation costs of such systems from over $1000 per unit to $200 to $400 per unit. The approach relies on non-intrusive electric load monitoring (NIELM) to enable separation of the power use signals of compressors and fans in the air conditioner or heat pump. Then combining information on the power uses and one or two air temperature measurements, changes in energy efficiency and occurrence of major faults would be detected. By decreasing the number of sensors used from between ten and twenty in current diagnostic monitoring systems to three for the envisaged system, the capital cost of the monitoring system hardware and the cost of labor for installation would be decreased significantly. After describing the problem being addressed and the concept for performance monitoring and fault detection in more detail, the report identifies specific conditions and faults that the proposed method would detect, discusses specific needs for successful use of the NIELM approach, and identifies the major elements in the path from concept to a commercialized monitoring and diagnostic system.

Brambley, Michael R.

2009-09-01T23:59:59.000Z

463

Solar central receiver technology: the Solar Two Project  

SciTech Connect (OSTI)

Solar Two will be the world`s largest operating solar central receiver power plant. It is expected to begin operating in April 1996; it is currently undergoing start-up and checkout. The plant will use sunlight reflected from 1926 sun-tracking mirrors to heat molten nitrate salt flowing in a heat exchanger (receiver) that sits atop a 200 foot tower. The heated salt will be stored in a tank for use, when needed, to generate superheated steam for producing electricity with a conventional Rankine-cycle turbine/generator. The purpose of the project is to validate molten-salt solar central receiver technology and to reduce the perceived risks associated with the first full-scale commercial plants. Already, much has been learned during the project including the effects of trace contaminants in the salt and the large effect of wind on the receiver. There is also much that remains to be learned. This report describes the technical status of the Solar Two project including a summary of lessons learned to date.

Sutherland, J.P. [Southern California Edison Co., Irwindale, CA (United States)

1996-05-01T23:59:59.000Z

464

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

SciTech Connect (OSTI)

Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.

Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

2011-05-25T23:59:59.000Z

465

Central solar-energy receiver  

DOE Patents [OSTI]

An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan is described. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

Not Available

1981-10-27T23:59:59.000Z

466

Experimental Study of Ion Heating and Acceleration During  

E-Print Network [OSTI]

and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating

467

Project Profile: Reducing the Cost of Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

468

Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers ApplyResistant: ABreak-even Cost for Residential Solar

469

air heat exchanger: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre...

470

air heat exchangers: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre...

471

THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERS  

E-Print Network [OSTI]

The Performance of Solar Water Heater With Natural Ci rcul2-6, 1980 THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERSJune 1980 THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERS*

Mertol, Atila

2012-01-01T23:59:59.000Z

472

Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects  

E-Print Network [OSTI]

§1.4 – Heat Pipes for Waste Heat Recovery…..…………………………………analysis involving waste heat recovery of solar energyOverview of Industrial Waste Heat Recovery Technologies for

Armijo, Kenneth Miguel

2011-01-01T23:59:59.000Z

473

Combined heat and power has the potential to significantly increase energy production efficiency and thus reduce greenhouse gas emissions, however current market penetration  

E-Print Network [OSTI]

1 Combined heat and power has the potential to significantly increase energy production efficiency that California will not reach the targets for combined heat and power set for it by the Air Resources Board (ARB of combined heat and power into the new ARB Emissions Cap and Trade scheme. This potential failure would

Kammen, Daniel M.

474

Clark Public Utilities- Solar Water Heater Rebate  

Broader source: Energy.gov [DOE]

Clark Public Utilities offers a rebate of $500 to customers who install a solar water heating system. Customers must own the residence or business where the solar water heating system is installed...

475

Solar for Mining Hugh Rudnick  

E-Print Network [OSTI]

the storage requirement to increase its participation worldwide #12;Solar Energy in Mining · Electrical Energy footprint · Electrowinning Heating on electrowinning process · Non-Metallic Mining Heating on nitrate Desalinization process Pumping Water treatment · Heating Water heating Space heating Space cooling #12;Ref

Catholic University of Chile (Universidad CatĂłlica de Chile)

476

Homebuilder's Guide to Going Solar (Brochure)  

SciTech Connect (OSTI)

This 8-page brochure describes the steps a builder would take to install solar electricity (photovoltaics or PV), solar water heating, or how to build a home solar ready.

Not Available

2008-12-01T23:59:59.000Z

477

Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers  

Broader source: Energy.gov [DOE]

This fact sheet describes a supercritical carbon dioxide turbo-expander and heat exchangers project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Southwest Research Institute, is working to develop a megawatt-scale s-CO2 hot-gas turbo-expander optimized for the highly transient solar power plant profile. The team is also working to optimize novel printed circuit heat exchangers for s-CO2 applications to drastically reduce their manufacturing costs.

478

Madison, Wisconsin: Solar in Action (Brochure), Solar America...  

Broader source: Energy.gov (indexed) [DOE]

* Partnered with its utility, Madison Gas & Electric, to install visible on-site solar systems * Installed 100 solar systems producing 16,558 therms for heating water and 8,073...

479

Chapter 10 Solar Energy 10.1 Summary  

E-Print Network [OSTI]

Solar energy is a vast and largely untapped resource. Australia has the highest average solar radiation per square metre of any continent in the world. Solar energy is used mainly in small direct-use applications such as water heating. It accounts for only 0.1 per cent of total primary energy consumption, in Australia as well as globally. Solar energy use in Australia is projected to increase by 5.9 per cent per year to 24 PJ in 2029–30. The outlook for electricity generation from solar energy depends critically on the commercialisation of large-scale solar energy technologies that will reduce investment costs and risks. Government policy settings will continue to be an important factor in the solar energy market outlook. Research, development and demonstration by both the public and private sectors will be crucial in accelerating the development and commercialisation of solar energy in Australia, especially large-scale solar power stations. 10.1.1 World solar energy resources and market The world’s overall solar energy resource potential

Key Messages

480

California Solar Initiative- Solar Thermal Program  

Broader source: Energy.gov [DOE]

'''''Note: This program was modified by AB 2249, signed in September 2012. The bill allows for non-residential solar pool heating to qualify for incentives, and requires program administrators to...

Note: This page contains sample records for the topic "reduce solar heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Tampa Electric- Solar Rebate Program  

Broader source: Energy.gov [DOE]

'''''Note: Of the $1.5 million budgeted for this program annually, $500,000 is reserved for solar water heating, and $1 million is reserved for PV systems. All funds have been committed for Solar...

482

Ammoniated salt heat pump  

SciTech Connect (OSTI)

A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat.

Haas, W.R.; Jaeger, F.J.; Giordano, T.J.

1981-01-01T23:59:59.000Z

483

Acoustic Heating Peter Ulmschneider  

E-Print Network [OSTI]

mechanisms. 1. The acoustic heating theory Only a few years after Edlen's (1941) discovery that the solar acoustic wave radiation- · b. field acoustic wave Figure 1. Panel a: Acoustic heating in late-type stars: effective temperature TeJ f, gravity g and mixing length parameter fr. Panel b: Acoustic heating in early

Ulmschneider, Peter

484

Using Solid Particles as Heat Transfer Fluid for use in Concentrating...  

Broader source: Energy.gov (indexed) [DOE]

Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power...

485

E-Print Network 3.0 - activation heat Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to collect and distribute solar heat. These buildings have active solar heating systems. Active... in an ordinary fur- nace system. ... Source: North Carolina State...

486

Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)  

SciTech Connect (OSTI)

The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

2013-09-26T23:59:59.000Z

487

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,heat transfer in solar thermal power plants utilizing phase

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

488

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

been heated at solar collection tower, at the temperatureIn the receiver tower, the collected solar radiation heatsfocus and send solar radiation to a receiver tower.

Roshandell, Melina

2013-01-01T23:59:59.000Z

489

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

G. E. McOona 1d ABSTRACT: Solar heating panel performance issolar panels, co- efficient of performance of the heat pumps and the heatingThe panel is save heating costs in winter by absorbing solar

Viswanathan, R.

2011-01-01T23:59:59.000Z

490

Solar Ready Buildings Planning Guide  

SciTech Connect (OSTI)

This guide offers a checklist for building design and construction to enable installation of solar photovoltaic and heating systems at some time after the building is constructed.

Lisell, L.; Tetreault, T.; Watson, A.

2009-12-01T23:59:59.000Z

491

Austin Utilities- Solar Rebate Program  

Broader source: Energy.gov [DOE]

Austin Utilities provides incentives for their residential and commercial customers to install photovoltaic (PV) and solar water heating systems. Qualifying PV systems can earn $1 per watt;...

492

Integrated solar collector  

DOE Patents [OSTI]

A solar collector having a copper panel in a contiguous space relationship with a condenser-evaporator heat exchanger located under the panel, the panel having a honeycomb-like structure on its interior defining individual cells which are filled with zeolite loaded, in its adsorbed condition, with 18 to 20% by weight of water. The interior of the panel and heat exchanger are maintained at subatmospheric pressure of about 0.1 to 1 psia. The panel and heat exchanger are insulated on their lateral sides and bottoms and on the top of the heat exchange. The panel has a black coating on its top which is exposed to and absorbs solar energy. Surrounding the insulation (which supports the panel) is an extruded aluminum framework which supports a pair of spaced-apart glass panels above the solar panel. Water in conduits from a system for heating or cooling or both is connected to flow into an inlet and discharge from outlet of a finned coil received within the heat exchanger. The collector panel provides heat during the day through desorption and condensing of water vapor from the heated solar panel in the heat exchanger and cools at night by the re-adsorption of the water vapor from the heat exchanger which lowers the absolute pressure within the system and cools the heat exchange coils by evaporation.

Tchernev, Dimiter I. (9 Woodman Rd., Chestnut Hill, MA 02167)

1985-01-01T23:59:59.000Z

493

Deceleration of Alpha Particles in the Solar Wind by Instabilities and the Rotational Force: Implications for Heating, Azimuthal Flow, and the Parker Spiral Magnetic Field  

E-Print Network [OSTI]

Protons and alpha particles in the fast solar wind are only weakly collisional and exhibit a number of non-equilibrium features, including relative drifts between particle species. Two non-collisional mechanisms have been proposed for limiting differential flow between alpha particles and protons: plasma instabilities and the rotational force. Both mechanisms decelerate the alpha particles. In this paper, we derive an analytic expression for the rate $Q_{\\mathrm{flow}}$ at which energy is released by alpha-particle deceleration, accounting for azimuthal flow and conservation of total momentum. We find that $Q_{\\mathrm{flow}} > 0 $ at $r r_{\\mathrm{crit}}$. We compare the value of $Q_{\\mathrm{flow}}$ at $r< r_{\\mathrm{crit}}$ with empirical heating rates for protons and alpha particles, denoted $Q_{\\mathrm{p}}$ and $Q_{\\alpha}$, deduced from in-situ measurements of fast-wind streams from the Helios and Ulysses spacecraft. We find that $Q_{\\mathrm{flow}}$ exceeds $Q_{\\alpha}$ at $r < 1\\,\\mathrm{AU}$, $Q_{...

Verscharen, Daniel; Bourouaine, Sofiane; Hollweg, Joseph V

2014-01-01T23:59:59.000Z

494

Thickness Effect of Al-Doped ZnO Window Layer on Damp Heat Stability of CuInGaSe2 Solar Cells: Preprint  

SciTech Connect (OSTI)

We investigated the damp heat (DH) stability of CuInGaSe2 (CIGS) solar cells as a function of thickness of the Al-doped ZnO (AZO) window layer from the 'standard' 0.12 ?m to a modest 0.50 ?m over an underlying 0.10-?m intrinsic ZnO buffer layer. The CIGS cells were prepared with external electrical contact using fine Au wire to the tiny 'standard' Ni/Al (0.05 ?m/3 ?m) metal grid contact pads. Bare cell coupons and sample sets encapsulated in a specially designed, Al-frame test structure with an opening for moisture ingress control using a TPT backsheet were exposed to DH at 85oC and 85% relative humidity, and characterized by current-voltage (I-V), quantum efficiency (QE), and (electrochemical) impedance spectroscopy (ECIS). The results show that bare cells exhibited rapid degradation within 50-100 h, accompanied by film wrinkling and delamination and corrosion of Mo and AlNi grid, regardless of AZO thickness. In contrast, the encapsulated cells did not show film wrinkling, delamination, and Mo corrosion after 168 h DH exposure; but the trend of efficiency degradation rate showed a weak correlation to the AZO thickness.

Pern, F. J.; Mansfield, L.; DeHart, C.; Glick, S. H.; Yan, F.; Noufi, R.

2011-07-01T23:59:59.000Z

495

Moving bed reactor for solar thermochemical fuel production  

DOE Patents [OSTI]

Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.

Ermanoski, Ivan

2013-04-16T23:59:59.000Z

496

High efficiency solar air heaters with novel built-in heat storage for use in a humidification-dehumidification desalination cycle  

E-Print Network [OSTI]

Compared to solar water heaters, solar air heaters have received relatively little investigation and have resulted in few commercial products. However, in the context of a Humidification-Dehumidification (HD) Desalination ...

Summers, Edward K

2010-01-01T23:59:59.000Z

497

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels  

E-Print Network [OSTI]

, environmentally harmful, oil exploration and drilling. Technology Solar Fuel's proprietary technology converts wasteful thermal energy production. Solar Fuel has two patents filed and in process. Market Potential There are many potential markets for Solar Fuel, however, the beachhead target is the oil and gas in- dustry

Jawitz, James W.

498

Solar collector  

SciTech Connect (OSTI)

A solar collector unit comprises a body of rigid thermally insulating material having a surface in the shape of about half a cylindrical parabola, the parabolic surface being provided with a reflective surface, a conduit being positioned with its long axis in the median plane of the parabola, said conduit serving as conduit for the heat-exchange medium, the surface of said conduit facing the parabolic surface being a selective surface, a transparent cover being provided on top of the device.

Dostrovsky, I.

1981-02-10T23:59:59.000Z

499

Solar Policy Environment: Milwaukee  

Broader source: Energy.gov [DOE]

The City of Milwaukee’s SAC Initiative, Milwaukee Shines, works to reduce informational, economic and procedural barriers to the widespread adoption of solar energy systems. While the City of Milwaukee and its partners have demonstrated commitment and experience in implementing solar technologies, Milwaukee Shines aims to enhance these efforts and make solar a viable alternative throughout the region.

500

Solar Thermal Incentive Program  

Broader source: Energy.gov [DOE]

The New York State Energy Research and Development Authority (NYSERDA) offers incentives for the installation of solar water heating systems to residential and non-residential customers of the...