Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Definition: Reduced T&D Operations Cost | Open Energy Information  

Open Energy Info (EERE)

Cost Jump to: navigation, search Dictionary.png Reduced T&D Operations Cost Automated or remote controlled operation of capacitor banks and feeder and line switches eliminates the...

2

Reduce Operating Costs with an EnergySmart School Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operating Costs with an Operating Costs with an EnergySmart School Project Energy costs are a school district's second highest expenditure after personnel. Public schools currently spend more than $8 billion per year for energy. School ener- gy expenditures rose, on average, 20 percent per year between 2000 and 2002-and the costs continue to rise. Natural gas prices alone increased 14 percent annually between 2003 and 2006. Improving a school's energy efficiency doesn't have to cost millions. In fact, schools can cut their energy expenses by 5 to 20 percent simply by efficiently managing and operating physical plants. This holds true regardless of the age of a school building. A smart O&M program can improve an existing school's energy performance An O&M program can be a simple initiative or a

3

Reduce Operating Costs with an EnergySmart School Project | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

School Project Reduce Operating Costs with an EnergySmart School Project EnergySmart Schools fact sheet on how school operations and maintenance (O&M) personnel can play a...

4

Reducing Operations and Maintenance Costs of Nuclear Power Plant Fire Protection Programs  

Science Conference Proceedings (OSTI)

This report discusses opportunities for utilities to reduce fire protection operations and maintenance (O&M) costs. A number of these opportunities have been implemented by some utilities and can be implemented now by others. Other opportunities can be implemented in the short term with some additional development. These other opportunities are amenable to cooperative projects with costs shared by multiple utilities. There is also a group of opportunities that are probably best developed on an industry w...

1997-01-08T23:59:59.000Z

5

Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy  

DOE Green Energy (OSTI)

Currently, installation, operation, and maintenance (IO&M) costs contribute approximately 30% to the LCOE of offshore wind plants. To reduce LCOE while ensuring safety, this paper identifies principal cost drivers associated with IO&M and quantifies their impacts on LCOE. The paper identifies technology improvement opportunities and provides a basis for evaluating innovative engineering and scientific concepts developed subsequently to the study. Through the completion of a case study, an optimum IO&M strategy for a hypothetical offshore wind project is identified.

Maples, B.; Saur, G.; Hand, M.; van de Pieterman, R.; Obdam, T.

2013-07-01T23:59:59.000Z

6

Coal flow aids reduce coke plant operating costs and improve production rates  

Science Conference Proceedings (OSTI)

Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

2005-06-01T23:59:59.000Z

7

Reduce Oil Dependence Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduce Oil Dependence Costs U.S. Petroleum Use, 1970-2010 Nearly 40% of the oil we use is imported, costing us roughly 300 billion annually. Increased domestic oil production from...

8

Reducing Energy Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy expense is becoming increasingly dominant in the operating costs of high-performance computing (HPC) systems. At the same time, electricity prices vary significantly at...

9

Integrated Chiller System Reduce Building Operation and Maintenance Costs in Cold Climates  

E-Print Network (OSTI)

Although water-cooled chillers are more energy efficient than air-cooled chillers, a majority of chilled water systems use air-cooled chillers. In cold weather climates, air-cooled chillers are capable of functioning in low ambient temperatures with few operational concerns, where as water-cooled chiller systems must be equipped to prevent cooling tower freezing. The integrated chiller system attempts to take advantage of each chiller's strengths and eliminate any cold weather operational concerns. An integrated chiller system includes a cooling tower and air-cooled condenser. During the summer, both the cooling tower and air condenser can be operated. In cold weather, the cooling tower is drained and the air condenser is used to dissipate the heat of the cooling system. The integrated chiller system eliminates the water storage tank and frequent charging and discharging of the cooling tower system. It reduces the size of the mechanical room and simplifies the operation of the system. The integrated chiller system is most suitable in climates where the mechanical cooling is required on a short-term basis during cold weather periods. This paper presents the system configuration, system design, optimal control, and energy impact. An example is used to demonstrate the design concepts of the integrated chiller systems.

Sheets, N.; Liu, M.

2003-01-01T23:59:59.000Z

10

Operations Cost Allocation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Consolidation Project Operations Consolidation Project Operations Consolidation Project (OCP) Cost Allocation Presentation - September 20, 2011 OCP Cost Allocation Customer Presentation List of Acronyms OCP Cost Allocation Spreadsheets OCP Cost Allocation Customer Presentation - Questions and Answers - September 19 - 20, 2011 Additional Questions and Answers Customer Comments/Questions and Answers: Arizona Municipal Power Users Association Arizona Power Authority Central Arizona Project Colorado River Commission Colorado River Energy Distributors Association City of Gilbert, AZ Irrigation and Electrical Districts Association of Arizona Town of Marana, AZ City of Mesa, AZ Town of Wickenburg, AZ Western's Final Decision Regarding the Long-Term Cost Allocation Methodology for Operations Staff Costs

11

Prime movers reduce energy costs  

SciTech Connect

Many industrial plants have found that reciprocating engines used to power generator sets and chiller systems are effective in reducing energy costs as part of a load management strategy, while meeting other plant energy needs. As the trend towards high electric utility costs continues, familiarity with basic analyses used to determine the economic viability of engine-driven systems is essential. A basic method to determine the economic viability of genset or chiller systems is to review the supplying utility`s rate structure, determine approximate costs to install and operate an engine-driven system, and calculate a simple equipment payback period. If the initial analysis shows that significant savings are possible and a quick payback is likely, a thorough analysis should be conducted to analyze a plant`s actual electric load profile. A load profile analysis takes into consideration average loads, peak loads, and peak duration. A detailed study should cover myriad considerations, including local air quality regulations and permitting, space availability, auxiliary system components, and financing options. A basic analysis takes relatively little time and can rule out the need for a detailed study.

Swanson, J.E. [Caterpillar, Inc., Mossville, IL (United States)

1996-01-01T23:59:59.000Z

12

ALTERNATE POWER AND ENERGY STORAGE/REUSE FOR DRILLING RIGS: REDUCED COST AND LOWER EMISSIONS PROVIDE LOWER FOOTPRINT FOR DRILLING OPERATIONS  

E-Print Network (OSTI)

Diesel engines operating the rig pose the problems of low efficiency and large amount of emissions. In addition the rig power requirements vary a lot with time and ongoing operation. Therefore it is in the best interest of operators to research on alternate drilling energy sources which can make entire drilling process economic and environmentally friendly. One of the major ways to reduce the footprint of drilling operations is to provide more efficient power sources for drilling operations. There are various sources of alternate energy storage/reuse. A quantitative comparison of physical size and economics shows that rigs powered by the electrical grid can provide lower cost operations, emit fewer emissions, are quieter, and have a smaller surface footprint than conventional diesel powered drilling. This thesis describes a study to evaluate the feasibility of adopting technology to reduce the size of the power generating equipment on drilling rigs and to provide ?peak shaving? energy through the new energy generating and energy storage devices such as flywheels. An energy audit was conducted on a new generation light weight Huisman LOC 250 rig drilling in South Texas to gather comprehensive time stamped drilling data. A study of emissions while drilling operation was also conducted during the audit. The data was analyzed using MATLAB and compared to a theoretical energy audit. The study showed that it is possible to remove peaks of rig power requirement by a flywheel kinetic energy recovery and storage (KERS) system and that linking to the electrical grid would supply sufficient power to operate the rig normally. Both the link to the grid and the KERS system would fit within a standard ISO container. A cost benefit analysis of the containerized system to transfer grid power to a rig, coupled with the KERS indicated that such a design had the potential to save more than $10,000 per week of drilling operations with significantly lower emissions, quieter operation, and smaller size well pad.

Verma, Ankit

2009-05-01T23:59:59.000Z

13

Naval Reserve Force : cost and benefit analysis of reducing the number of Naval Surface Reserve Force operating budget holders ; .  

E-Print Network (OSTI)

??The Quadrennial Defense Review 1997 recommended reductions of civilian and military personnel associated with infrastructure. The Naval Reserve Force is aggressively pursuing options to reduce (more)

Young, Eric Coy

1997-01-01T23:59:59.000Z

14

Energy-Smart Building Choices: How School Facilities Managers and Business Officials Are Reducing Operating Costs and Saving Money  

DOE Green Energy (OSTI)

Most K-12 schools could save 25% of their energy costs by being smart about energy. Nationwide, the savings potential is $6 billion. While improving energy use in buildings and busses, schools are likely to create better places for teaching and learning, with better lighting, temperature control, acoustics, and air quality. This brochure, targeted to school facilities managers and business officials, describes how schools can become more energy efficient.

Energy Smart Schools Team

2001-08-06T23:59:59.000Z

15

Energy-Smart Building Choices: How School Facilities Managers and Business Officials Are Reducing Operating Costs and Saving Money (Revision)  

SciTech Connect

Operating a typical school today is no easy task for facilities managers and business officials. You're expected to deliver increased services with constrained operating budgets. Many schools stay open for longer hours to accommodate community use of the facilities. Dilapidated buildings and systems gobble up energy, yet in many districts, maintenance needs are overshadowed by the need for expansion or new construction to serve growing student populations and changing educational needs.

Not Available

2002-02-01T23:59:59.000Z

16

Title: Electrical Power Generation from Produced Water: Field Demonstration of Ways to Reduce Operating Costs of Small Producers  

E-Print Network (OSTI)

Title: Electrical Power Generation from Produced Water: Field Demonstration of Ways to Reduce produced water to create "green" electricity usable on site or for transmission off site . The goal the environmental impact by creating green electricity using produced water and no additional fossil fuel. Approach

17

Definition: Reduced Congestion Cost | Open Energy Information  

Open Energy Info (EERE)

Cost Cost Jump to: navigation, search Dictionary.png Reduced Congestion Cost Transmission congestion is a phenomenon that occurs in electric power markets. It happens when scheduled market transactions (generation and load) result in power flow over a transmission element that exceeds the available capacity for that element. Since grid operators must ensure that physical overloads do not occur, they will dispatch generation so as to prevent them. The functions that provide this benefit provide lower cost energy, decrease loading on system elements, shift load to off-peak, or allow the grid operator to manage the flow of electricity around constrained interfaces (i.e. dynamic line capability or power flow control).[1] Related Terms power, transmission lines, load, element, electricity

18

Seize Opportunities to Reduce Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Specify for maximum energy savings Specify for maximum energy savings Windows must meet local energy code requirements. For even higher energy performance, consider ENERGY STAR windows, which are recommended for low-rise dwellings and are often suitable for mid-rise dwellings as well. For window and storm window options with superior performance in cold climates, check out the U.S. Department of Energy's highly insulating windows purchasing program (see next page). Seize Opportunities to Reduce Cost Government or utility incentives and financing may be available for energy efficiency in low-income housing. Check www.dsireusa.org for up-to-date information on incentive

19

SunShot Initiative: Reducing Photovoltaic Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Photovoltaic Costs to Reducing Photovoltaic Costs to someone by E-mail Share SunShot Initiative: Reducing Photovoltaic Costs on Facebook Tweet about SunShot Initiative: Reducing Photovoltaic Costs on Twitter Bookmark SunShot Initiative: Reducing Photovoltaic Costs on Google Bookmark SunShot Initiative: Reducing Photovoltaic Costs on Delicious Rank SunShot Initiative: Reducing Photovoltaic Costs on Digg Find More places to share SunShot Initiative: Reducing Photovoltaic Costs on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Systems Integration Balance of Systems Reducing Photovoltaic Costs Photo of gloved hands pouring liquid from a glass bottle to glass beaker. Past Incubator awardee, Innovalight, is creating high-efficiency, low-cost

20

Definition: Reduced Restoration Cost | Open Energy Information  

Open Energy Info (EERE)

Restoration Cost Jump to: navigation, search Dictionary.png Reduced Restoration Cost The functions that provide this benefit lead to fewer outages andor help restore power quicker...

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Definition: Reduced Electricity Cost | Open Energy Information  

Open Energy Info (EERE)

Cost Jump to: navigation, search Dictionary.png Reduced Electricity Cost Functions that provide this benefit could help alter customer usage patterns (demand response with price...

22

Reduce Pumping Costs through Optimum Pipe Sizing  

SciTech Connect

BestPractices Program tip sheet discussing pumping system efficiency by reducing pumping costs through optimum pipe sizing.

2005-10-01T23:59:59.000Z

23

New Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resin Improves Efficiency, Reduces Costs in Hanford Site Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater Treatment New Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater Treatment March 1, 2012 - 12:00pm Addthis RICHLAND, Wash. - A new resin EM, the Richland Operations Office, and contractor CH2M HILL Plateau Remediation Company are using in contaminated groundwater treatment is expected to increase efficiency and reduce costs in the operation of pump-and-treat facilities along the Columbia River at the Hanford site. The higher performance resin, SIR-700, is expected to reduce DOE's estimated operation and maintenance costs over the lifetime of the 100-DX Groundwater Treatment Facility by approximately $20 million. In comparison to this expected cost savings, the construction cost for the treatment

24

Training reduces stuck pipe costs and incidents  

SciTech Connect

Properly administered initial and refresher stuck pipe training courses have dramatically reduced the cost and number of stuck pipe incidents for many companies worldwide. These training programs have improved operator and contractor crew awareness of stuck pipe risks and fostered a team commitment in averting such incidents. The success is evident in the achievements of the companies sponsoring such training. Preventing and minimizing stuck pipe is the most significant benefit of stuck pipe training, but crews also benefit from becoming more knowledgeable about the drilling program and equipment operation. The paper discusses stuck pipe costs, stuck pipe training, prevention of stuck pipes, well bore stability, geopressured formation, reactive formation, reactive formations, unconsolidated formations, mobile formations, fractured and faulted formations, differential sticking, 8 other causes of stuck pipe, and freeing stuck pipe.

Watson, B. (Global Marine Drilling Co., Houston, TX (United States)); Smith, R. (Randy Smith Drilling School, Lafayette, LA (United States))

1994-09-19T23:59:59.000Z

25

Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric  

E-Print Network (OSTI)

Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce quantify the benefits of controlled charging of plug-in hybrid electric vehicles. Costs are determined expansion Plug-in hybrid electric vehicles Controlled charging Wind power integration a b s t r a c

McGaughey, Alan

26

Detecting leaks to reduce energy costs  

SciTech Connect

This article describes how analyzing boilerhouse data in its manufacturing plants and applying algorithmic techniques is helping an automobile manufacturer run its utility operations more efficiently. Ford Motor Co., based in Dearborn, Michigan, is realizing significant energy savings, reducing capital expenditures, and minimizing wastewater disposal costs by diagnosing and quantifying leaks in its compressed air, steam/condensate, and process water systems by applying algorithms developed by Cleveland-based CEC Consultants Inc. These algorithms make use of readily available--and often already installed--instruments, such as vortex shedding meters, chart recorders, and data loggers, to compare how much utility use is needed for assembly and manufacturing equipment with how much is being generated.

Valenti, M.

1995-07-01T23:59:59.000Z

27

Vehicle Investment and Operating Costs and Savings for Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Investment and Operating Costs and Savings for Greenhouse Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies October 7, 2013 - 1:17pm Addthis YOU ARE HERE: Step 4 To help estimate costs of implementing greenhouse gas (GHG) mitigation strategies for vehicles, the table below provides the initial investment, operating costs, and operating savings for each strategy. Table 1. Types and Ranges of Initial Investment Requirements and Annual Operating Costs and Savings. Strategies Initial Investment Operating Costs Operating Savings Consolidate trips Time to research & coordinate routes None Eliminate fleet vehicle trips; reduce cost & time (fuel, maintenance, etc) associated with fleet vehicle use. Could result in decreasing inventory & need for vehicles leading to long-term savings

28

Reduce generating costs and eliminate brownouts  

Science Conference Proceedings (OSTI)

Improving the manoeuverability of a coal-fired plant to allow it to participate in primary frequency support will reduce generation cost and minimize brownouts. The challenge is to do so without compromising efficiency or emissions. This article describes an approach - activation of stored energy - that is cost-effective and applicable to both greenfield and brownfield installations. It requires a new control philosophy, plus the correct application of new level and flow measurement 'best practices'. 4 refs., 1 tab.

Nogaja, R.; Menezes, M. [Emerson Process Management (United States)

2007-06-15T23:59:59.000Z

29

How to Reduce Energy Supply Costs  

E-Print Network (OSTI)

Rising energy costs have many businesses looking for creative ways to reduce their energy usage and lower the costs of energy delivered to their facilities. This paper explores innovative renewable and alternative energy technologies that can help customers control their supply-side costs of energy. Specific topics include distributive wind power generation and solid fuel boilers. It identities factors to consider in determining whether these technologies are economically viable for customers and stresses the importance of fully researching alternatives before committing to major equipment investments.

Swanson, G.

2007-01-01T23:59:59.000Z

30

Definition: Reduced Ancillary Service Cost | Open Energy Information  

Open Energy Info (EERE)

Ancillary Service Cost Ancillary Service Cost Jump to: navigation, search Dictionary.png Reduced Ancillary Service Cost Ancillary services are necessary to ensure the reliable and efficient operation of the grid. The level of ancillary services required at any point in time is determined by the grid operator and/or energy market rules. Ancillary services, including spinning reserve and frequency regulation, could be reduced if generators could more closely follow load; peak load on the system was reduced; power factor, voltage, and VAR control were improved; or information available to grid operators were improved.[1] View on Wikipedia Wikipedia Definition Related Terms ancillary service, frequency regulation, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An in

31

SunShot Initiative: Reducing Non-Hardware Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Non-Hardware Costs Reducing Non-Hardware Costs DOE supports efforts to dramatically reduce the non-hardware, balance of systems costs associated with solar energy systems. Representing as much as 64% of the total installed system price, these "soft costs" include: Customer Acquisition Financing and Contracting Permitting, Interconnection, and Inspection Installation and Performance Operations and Maintenance. To meet SunShot goals, the industry must innovate new ways to automate and speed processes that make it easier for consumers, businesses, utilities, solar companies, and others to install solar projects. For example, novel software solutions now allow solar companies to design systems and provide accurate quotes using satellite images rather than conducting full site visits.

32

SunShot Initiative: Reducing Non-Hardware Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Non-Hardware Costs to Reducing Non-Hardware Costs to someone by E-mail Share SunShot Initiative: Reducing Non-Hardware Costs on Facebook Tweet about SunShot Initiative: Reducing Non-Hardware Costs on Twitter Bookmark SunShot Initiative: Reducing Non-Hardware Costs on Google Bookmark SunShot Initiative: Reducing Non-Hardware Costs on Delicious Rank SunShot Initiative: Reducing Non-Hardware Costs on Digg Find More places to share SunShot Initiative: Reducing Non-Hardware Costs on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Balance of Systems Reducing Non-Hardware Costs Lowering Barriers Fostering Growth Reducing Non-Hardware Costs DOE supports efforts to dramatically reduce the non-hardware, balance of systems costs associated with solar energy systems. Representing as much as

33

Implementing Energy Efficiency in Wastewater to Reduce Costs  

E-Print Network (OSTI)

In the industrial world creating a quality product at minimum cost is the goal. In this environment all expenses are scrutinized, when they are part of the manufacturing process. However, even at the most conscientious facility the wastewater system is often overlooked, just plain accepted as is. At many locations facility personnel are completely unaware of utility costs but more importantly they are not aware of their energy consumption. The Wisconsin Focus on Energy Industrial Program has surveyed and assessed many municipal and industrial wastewater systems across the state, identified opportunities to save energy and assisted in implementing energy efficiency modifications without adversely impacting the quality of the treatment system or the manufacturing process. In many instances not only did the energy efficiency modification result in reduced energy consumption and costs, it also reduced maintenance and down time while improving effluent quality. Most of the opportunities that were implemented were installed while the manufacturing operations remained in operation.

Cantwell, J. C.

2008-01-01T23:59:59.000Z

34

Reducing home heating and cooling costs  

SciTech Connect

This report is in response to a request from the House Committee on Energy and Commerce that the Energy Information Administration (EIA) undertake a neutral, unbiased analysis of the cost, safety, and health and environmental effects of the three major heating fuels: heating oil, natural gas, and electricity. The Committee also asked EIA to examine the role of conservation in the choice of heating and cooling fuel. To accommodate a wide audience, EIA decided to respond to the Committee`s request in the context of a report on reducing home heating and cooling costs. Accordingly, this report discusses ways to weatherize the home, compares the features of the three major heating and cooling fuels, and comments on the types of heating and cooling systems on the market. The report also includes a worksheet and supporting tables that will help in the selection of a heating and/or cooling system.

Not Available

1994-07-01T23:59:59.000Z

35

Reducing the Cost of Solar Cells  

Science Conference Proceedings (OSTI)

Solar-powered electricity prices could soon approach those of power from coal or natural gas thanks to collaborative research with solar startup Ampulse Corporation at the National Renewable Energy Laboratory. Silicon wafers account for almost half the cost of today's solar photovoltaic panels, so reducing or eliminating wafer costs is essential to bringing prices down. Current crystalline silicon technology converts energy in a highly efficient manner; however, that technology is manufactured with processes that could stand some improvement. The industry needs a method that is less complex, creates less waste and uses less energy. First, half the refined silicon is lost as dust in the wafer-sawing process, driving module costs higher. Wafers are sawn off of large cylindrical ingots, or boules, of silicon. A typical 2-meter boule loses as many as 6,000 potential wafers during sawing. Second, the wafers produced are much thicker than necessary. To efficiently convert sunlight into electricity, the wafers need be only one-tenth the typical thickness. NREL, the Oak Ridge National Laboratory and Ampulse have partnered on an approach to eliminate this waste and dramatically lower the cost of the finished solar panels. By using a chemical vapor deposition process to grow the silicon on inexpensive foil, Ampulse is able to make the solar cells just thick enough to convert most of the solar energy into electricity. No more sawdust - and no more wasting refined silicon materials. NREL developed the technology to grow high-quality silicon and ORNL developed the metal foil that has the correct crystal structure to support that growth. Ampulse is installing a pilot manufacturing line in NREL's Process Development Integration Laboratory, where solar companies can work closely with lab scientists on integrated equipment to answer pressing questions related to their technology development, as well as rapidly overcoming R and D challenges and risk. NREL's program is focused on transformative innovation in the domestic PV industry. With knowledge and expertise acquired from the PDIL pilot production line tools, Ampulse plans to design a full-scale production line to accommodate long rolls of metal foil. The Ampulse process 'goes straight from pure silicon-containing gas to high-quality crystal silicon film,' said Brent Nelson, the operational manager for the Process Development Integration Laboratory. 'The advantage is you can make the wafer just as thin as you need it - 10 microns or less.' Most of today's solar cells are made out of wafer crystalline silicon, though thin-film cells made of more exotic elements such as copper, indium, gallium, arsenic, cadmium, tellurium and others are making a strong push into the market. The advantage of silicon is its abundance, because it is derived from sand. Silicon's disadvantage is that purifying it into wafers suitable for solar cells can be expensive and energy intensive. Manufacturers add carbon and heat to sand to produce metallurgical-grade silicon, which is useful in other industries, but not yet suitable for making solar cells. So this metallurgical-grade silicon is then converted to pure trichlorosilane (SiCl3) or silane (SiH4) gas. Typically, the purified gas is then converted to create a silicon feedstock at 1,000 degrees Celsius. This feedstock is melted at 1,414 C and recrystallized into crystal ingots that are finally sawed into wafers. The Ampulse method differs in that it eliminates the last two steps in the traditional process and works directly with the silane gas growing only the needed silicon right onto a foil substrate. A team of NREL scientists had developed a way to use a process called hot-wire chemical vapor deposition to thicken silicon wafers with near perfect crystal structure. Using a hot tungsten filament much like the one found in an incandescent light bulb, the silane gas molecules are broken apart and deposited onto the wafer using the chemical vapor deposition technique at about 700 C - a much lower temperature than needed to make the wafer. The hot filament dec

Scanlon, B.

2012-04-01T23:59:59.000Z

36

Unit costs of waste management operations  

SciTech Connect

This report provides estimates of generic costs for the management, disposal, and surveillance of various waste types, from the time they are generated to the end of their institutional control. Costs include monitoring and surveillance costs required after waste disposal. Available data on costs for the treatment, storage, disposal, and transportation of spent nuclear fuel and high-level radioactive, low-level radioactive, transuranic radioactive, hazardous, mixed (low-level radioactive plus hazardous), and sanitary wastes are presented. The costs cover all major elements that contribute to the total system life-cycle (i.e., ``cradle to grave``) cost for each waste type. This total cost is the sum of fixed and variable cost components. Variable costs are affected by operating rates and throughput capacities and vary in direct proportion to changes in the level of activity. Fixed costs remain constant regardless of changes in the amount of waste, operating rates, or throughput capacities. Key factors that influence cost, such as the size and throughput capacity of facilities, are identified. In many cases, ranges of values for the key variables are presented. For some waste types, the planned or estimated costs for storage and disposal, projected to the year 2000, are presented as graphics.

Kisieleski, W.E.; Folga, S.M.; Gillette, J.L.; Buehring, W.A.

1994-04-01T23:59:59.000Z

37

Affordable housing: Reducing the energy cost burden  

SciTech Connect

Residential energy expenditures are a key determinant of housing affordability, particularly for lower Income households. For years, federal, state and local governments and agencies have sought to defray energy expenses and Increase residential energy efficiency for low Income households through legislative and regulatory actions and programs. Nevertheless, household energy costs continue to place a major burden on lower Income families. This issue paper was written to help formulate national energy policy by providing the United States Department of Energy`s (DOE`s) Office of Energy Efficiency and Renewable Energy (EE) with Information to help define the affordable housing issue; Identify major drivers, key factors, and primary stakeholders shaping the affordable housing issue; and review how responding to this Issue may impact EE`s goals and objectives and Influence the strategic direction of the office. Typically, housing affordability is an Issue associated with lower income households. This issue paper adopts this perspective, but it is important to note that reducing energy utility costs can make {open_quotes}better{close_quote} housing affordable to any household regardless of income. As energy efficiency is improved throughout all sectors of the economy, special consideration must be given to low income households. Of all households, low income households are burdened the most by residential energy costs; their residences often are the least energy-efficient and have the greatest potential for efficiency improvements, but the occupants have the fewest resources to dedicate to conservation measures. This paper begins with a definition of {open_quotes}affordability{close_quotes} as it pertains to total housing costs and summarizes several key statistics related to housing affordability and energy use by lower income households.

Lee, A.D.; Chin, R.I.; Marden, C.L.

1995-01-01T23:59:59.000Z

38

Streamlining blade production would reduce turbine costs  

SciTech Connect

Gas turbine technology's overall future will see continuing increases in both size and higher operating temperatures, each contributing to improved energy conversion efficiency and reduced comparative capital outlay. Manufacturing technology will become even more relevant as blades acquire more sophisticated cooling or adopt the use of exotic refractory material such as crystal fibers and ceramics or both. The trend towards rising temperatures will continue. The incentives are high when it is realized that for every 100/sup 0/C increase in firing temperature there is a gain of approximately 18 percent in machine output and 2.7 percent increase in thermal efficiency.

Graham-Bryce, A.

1976-03-01T23:59:59.000Z

39

Definition: Reduced Meter Reading Cost | Open Energy Information  

Open Energy Info (EERE)

Meter Reading Cost Jump to: navigation, search Dictionary.png Reduced Meter Reading Cost Advanced metering infrastructure (AMI) equipment eliminates the need to send someone to...

40

ESS 2012 Peer Review - Reducing the Costs of Manufacturing Flow...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and power generation. * Design and material cost reductions are a means to reducing battery costs. * Is it possible to accelerate the knowledge building that comes from...

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Treatment Resin Reduces Costs, Materials in Hanford Groundwater...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup - Efficiency delivered more than 6 million in cost savings, 3 million in annual savings Treatment Resin...

42

New Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The new resin was installed at the 100-DX Groundwater Treatment Facility, where it operated over one year without a single resin change. The new resin was installed at the 100-DX Groundwater Treatment Facility, where it operated over one year without a single resin change. The new resin was installed at the 100-DX Groundwater Treatment Facility, where it operated over one year without a single resin change. An operator tests the resin at a 100K Area pump-andtreat system to determine how much hexavelent chromium contamination it has gathered from the groundwater. An operator tests the resin at a 100K Area pump-andtreat system to determine how much hexavelent chromium contamination it has gathered from the groundwater. ResinTech SIR-700 is being implemented at groundwater treatment systems along the Columbia River to increase efficiency and reduce costs. ResinTech SIR-700 is being implemented at groundwater treatment systems

43

Reducing Home Heating and Cooling Costs  

U.S. Energy Information Administration (EIA) Indexed Site

. . . . . . . . . . . . 19 B1. Annual Cost of Oil Heat in Various Climates for a Range of Heating Oil Prices and System Efficiencies . . . . . 21 B2. Annual Cost of Gas Heat in...

44

Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reynolds Logistics Reynolds Logistics Reduces Fuel Costs With EVs to someone by E-mail Share Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Facebook Tweet about Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Twitter Bookmark Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Google Bookmark Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Delicious Rank Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Digg Find More places to share Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on AddThis.com... July 23, 2011 Reynolds Logistics Reduces Fuel Costs With EVs F ind out how Reynolds Logistics uses electric vehicles to offset petroleum

45

Reducing Building Operational Cost through Environmental Effectiveness...  

NLE Websites -- All DOE Office Websites (Extended Search)

O'Donnell Date: August 26, 2005 - 12:00pm Location: Bldg. 90 The introduction of EU directives 200291EC and 200387EC both prompt a reduction in energy consumption from...

46

Automatic monitoring helps reduce lighting costs  

SciTech Connect

A Benton, Arkansas utility is using a dimmable ballast system to curb high-intensity-discharge (HID) lighting costs. The system also incorpoates a monitoring control system. This control automatically maintains minimum illumination levels.

1978-11-01T23:59:59.000Z

47

Actions You Can Take to Reduce Cooling Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheet Actions You Can Take to Reduce Cooling Costs Cooling costs can be a substantial part of your facility's annual utility bill. A number of energy savings opportunities...

48

Helping Alaska Native Communities Reduce Their Energy Costs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Helping Alaska Native Communities Reduce Their Energy Costs Helping Alaska Native Communities Reduce Their Energy Costs Helping Alaska Native Communities Reduce Their Energy Costs May 3, 2013 - 12:50pm Addthis The Energy Department is helping Alaska Native communities reduce their energy costs by investing in renewable energy and energy efficiency upgrades. | Photo courtesy of Western Community Energy. The Energy Department is helping Alaska Native communities reduce their energy costs by investing in renewable energy and energy efficiency upgrades. | Photo courtesy of Western Community Energy. Tracey A. LeBeau Director, Office of Indian Energy Policy & Programs What are the key facts? It's not uncommon for families in Alaska Native communities to spend nearly half of their monthly income on energy costs. To help these communities make smart energy choices, the Energy

49

Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treatment Resin Reduces Costs, Materials in Hanford Groundwater Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup - Efficiency delivered more than $6 million in cost savings, $3 million in annual savings Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup - Efficiency delivered more than $6 million in cost savings, $3 million in annual savings June 4, 2013 - 12:00pm Addthis Media Contacts Geoff Tyree, DOE Geoffrey.Tyree@rl.doe.gov (509) 376-4171 Dee Millikin, CHPRC Dee_Millikin@rl.gov (509) 376-1297 RICHLAND, Wash. - U.S. Department of Energy (DOE) contractor CH2M HILL Plateau Remediation Company is using a treatment material that has delivered more than $6 million in cost savings to date and is delivering more than $3 million in annual cost savings and efficiencies in treatment

50

THE NUCLEAR FUEL CYCLE: PROSPECTS FOR REDUCING ITS COST  

SciTech Connect

Nuclear fuel cost of 1.25 mills/kwh would make nuclear power competitive with conventional power in lowcost coal areas if capital and operating costs can be brought to within about 10 percent of those of coal-fired plants. Substantial decreases in fuel fabrication cost are anticipated by 1970: other costs in the fuel cycle are expccted to remain about the same as at present. Unit costs and irradiation levels that would be needed to give a fuel cost of 1.25 mills/kwh are believed to be attainable by 1970. (auth)

Albrecht, W.L.

1959-02-20T23:59:59.000Z

51

DOE G 430.1-1 Chp 9, Operating Costs  

Directives, Delegations, and Requirements

This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost ...

1997-03-28T23:59:59.000Z

52

LIFE Cost of Electricity, Capital and Operating Costs  

Science Conference Proceedings (OSTI)

Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

Anklam, T

2011-04-14T23:59:59.000Z

53

Reducing energy use comes at a costReducing energy use comes at a cost ----the EU casethe EU case  

E-Print Network (OSTI)

YOUR LOGO HERECGES Reducing energy use comes at a costReducing energy use comes at a costDeputy Director and Chief Economist Centre for Global Energy StudiesCentre for Global Energy Studies AthensAthens ---- 88thth May 2008May 2008 Nuclear Energy WorkshopNuclear Energy Workshop ---- National Research Centre

54

Special Feature: Reducing Energy Costs with Better Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Energy Costs with Better Batteries Reducing Energy Costs with Better Batteries Special Feature: Reducing Energy Costs with Better Batteries September 9, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov Electricvehicles8331019248.jpg Electric vehicles lined up in Cascade Locks. Credit: Oregon Department of Transportation A better battery-one that is cheap and safe, but packs a lot of power-could lead to an electric vehicle that performs better than today's gasoline-powered cars, and costs about the same or less to consumers. Such a vehicle would reduce the United States' reliance on foreign oil and lower energy costs for the average American, so one of the Department of Energy's (DOE's) goals is to fund research that will revolutionize the performance of next-generation batteries. In honor of DOE's supercomputing month, we are highlighting some of the

55

Energy Detectives Help Pennsylvania Town Reduce Costs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Detectives Help Pennsylvania Town Reduce Costs Energy Detectives Help Pennsylvania Town Reduce Costs Energy Detectives Help Pennsylvania Town Reduce Costs July 23, 2010 - 3:24pm Addthis Judith Mondre meets with members of the Mondre Energy team. | Photo courtesy of Judith Mondre Judith Mondre meets with members of the Mondre Energy team. | Photo courtesy of Judith Mondre Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? 70 street lights and 25 traffic signals to be replaced via Recovery Act. Town expects 10 percent reduction in energy costs. Judith Mondre spent the past two months learning the ins and outs of Upper Darby Township, Pa.'s energy usage. She's analyzed energy bills, observed town facilities and interviewed staff to put together a plan to help the municipality reduce its total energy usage.

56

Energy Detectives Help Pennsylvania Town Reduce Costs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Detectives Help Pennsylvania Town Reduce Costs Detectives Help Pennsylvania Town Reduce Costs Energy Detectives Help Pennsylvania Town Reduce Costs July 23, 2010 - 3:24pm Addthis Judith Mondre meets with members of the Mondre Energy team. | Photo courtesy of Judith Mondre Judith Mondre meets with members of the Mondre Energy team. | Photo courtesy of Judith Mondre Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? 70 street lights and 25 traffic signals to be replaced via Recovery Act. Town expects 10 percent reduction in energy costs. Judith Mondre spent the past two months learning the ins and outs of Upper Darby Township, Pa.'s energy usage. She's analyzed energy bills, observed town facilities and interviewed staff to put together a plan to help the municipality reduce its total energy usage.

57

Energy Department Announces New Investment to Reduce Fuel Cell Costs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Investment to Reduce Fuel Cell New Investment to Reduce Fuel Cell Costs Energy Department Announces New Investment to Reduce Fuel Cell Costs August 1, 2013 - 12:00pm Addthis In support of the Obama Administration's all-of-the-above strategy to develop clean, domestic energy sources, the Energy Department today announced a $4.5 million investment in two projects-led by Minnesota-based 3M and the Colorado School of Mines-to lower the cost, improve the durability, and increase the efficiency of next-generation fuel cell systems. This investment is a part of the Energy Department's commitment to maintain American leadership in innovative clean energy technologies, give American businesses more options to cut energy costs, and reduce our reliance on imported oil. "Fuel cell technologies have an important role to play in diversifying

58

Reducing Enzyme Costs Increases Market Potential of Biofuels...  

NLE Websites -- All DOE Office Websites (Extended Search)

research has led to improvements in sugar yields and dramatically reduced ethanol production costs. The importance of this research was recognized in 2004 by an R&D 100...

59

Special Feature: Reducing Energy Costs with Better Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

or less to consumers. Such a vehicle would reduce the United States' reliance on foreign oil and lower energy costs for the average American, so one of the Department of Energy's...

60

Reducing 'Search Cost' and Risk in Energy-efficiency Investments...  

NLE Websites -- All DOE Office Websites (Extended Search)

This paper asserts that these programs have been successful because they reduce the two market barriers of high "search cost" and high perceived risks. Attachment Size PDF 770.7...

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

FUEL CELLS IN SHIPPING: HIGHER CAPITAL COSTS AND REDUCED FLEXIBILITY  

E-Print Network (OSTI)

Abstract: The paper discusses some main economic characteristics of fuel cell power production technology applied to shipping. Whenever competitive fuel cell systems enter the market, they are likely to have higher capital costs and lower operating costs than systems based on traditional combustion technology. Implications of the difference are investigated with respect to investment flexibility by the use of a real options model of ship investment, lay-up and scrapping decisions under freight rate uncertainty. A higher capital share of total expected costs can represent a significant opportunity cost in uncertain markets. The paper highlights the significance of accounting properly for value of flexibility prior to investment in new technology.

Sigbjrn Sdal

2003-01-01T23:59:59.000Z

62

Reducing Emissions in Plant Flaring Operations  

E-Print Network (OSTI)

Since 2006, one of the largest integrated energy and chemical companies in the world has actively pushed toward optimization and upgrading of pipelines, refineries and petrochemical plants in China for the purpose of minimizing energy consumption, lowering emissions and maximizing production. Saving energy and reducing emissions are the internal requirements for every division of this major corporation. To achieve the public goals the company set, they issued a five year plan called Methods on Energy and Water Saving Management which was applied to all operating equipment in the 13 company owned oil and gas fields, the 22 refineries and 3 pipeline companies. The plan for the refineries focused on key areas such as improving energy efficiency, utilizing latest technologies and reducing green house gas emissions.1 The company also created a Green Team with the objective of achieving zero injury, zero pollution, and zero accidents for all production facilities. These Green Teams advocated the company's new HSE (Health Safety & Environment) culture by eliminating energy-consuming and highly polluting production equipment and facilities that fell behind in the use of technologically advanced equipment.

Duck, B.

2011-01-01T23:59:59.000Z

63

Reducing Energy Costs and Rebuilding the Past | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reducing Energy Costs and Rebuilding the Past Reducing Energy Costs and Rebuilding the Past Reducing Energy Costs and Rebuilding the Past June 7, 2012 - 2:48pm Addthis Franklin County Courthouse (Before) 1 of 2 Franklin County Courthouse (Before) A court employee and news photographer survey the bomb damage in the Franklin County Courthouse's main courtroom in November 1969. Image: Courtesy of the Washington Missourian. Franklin County Courthouse (After) 2 of 2 Franklin County Courthouse (After) The fully restored main courtroom includes the original 1930s paint colors and reproduction lighting. Image: Sallie Glaize Franklin County, MO Chris Galm Marketing & Communications Specialist, Office of Energy Efficiency & Renewable Energy People across the country are looking for ways to make homes and buildings

64

Breakthrough Cutting Technology Promises to Reduce Solar Costs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Cutting Technology Promises to Reduce Solar Costs Breakthrough Cutting Technology Promises to Reduce Solar Costs Breakthrough Cutting Technology Promises to Reduce Solar Costs March 1, 2010 - 4:34am Addthis Using SiGen's new cutting process, less material is wasted in creating solar products like this, a breakthrough that is expected to help make solar power more affordable. | Photo courtesy SiGen Using SiGen's new cutting process, less material is wasted in creating solar products like this, a breakthrough that is expected to help make solar power more affordable. | Photo courtesy SiGen Joshua DeLung Silicon Genesis is a San Jose, Calif., company that is advancing the field of solar energy by developing a process that will virtually eliminate all waste when cutting materials needed to implement solar technology.

65

Reducing Energy Costs and Rebuilding the Past | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reducing Energy Costs and Rebuilding the Past Reducing Energy Costs and Rebuilding the Past Reducing Energy Costs and Rebuilding the Past June 7, 2012 - 2:48pm Addthis Franklin County Courthouse (Before) 1 of 2 Franklin County Courthouse (Before) A court employee and news photographer survey the bomb damage in the Franklin County Courthouse's main courtroom in November 1969. Image: Courtesy of the Washington Missourian. Franklin County Courthouse (After) 2 of 2 Franklin County Courthouse (After) The fully restored main courtroom includes the original 1930s paint colors and reproduction lighting. Image: Sallie Glaize Franklin County, MO Chris Galm Marketing & Communications Specialist, Office of Energy Efficiency & Renewable Energy People across the country are looking for ways to make homes and buildings

66

Daylighting in schools: Energy costs reduced, student performance improved  

Science Conference Proceedings (OSTI)

Ordinarily, architectural-engineering firms are only indirectly concerned with psychological and physical benefits to the occupants of the buildings they design. However, a firm in North Carolina, Innovative Design, is not ordinary. Their use of daylighting in schools yields considerable economic benefits: energy costs reduced up to 64%, cooling and electrical equipment costs reduced, long-term mechanical and lighting equipment maintenance costs reduced. But equally impressive are the benefits of daylighting on student performance. Students in schools using daylighting have higher achievement scores in reading and math tests. Further, as shown in a related study, because of additional vitamin D received by students via daylighting, they will have less dental decay--and grow taller. In the two performance reports which follow, authors Nicklas and Bailey analyze specific win-win benefits of daylighting. Their findings are startling.

Nicklas, M.H.; Bailey, G.B. [Innovative Design, Raleigh, NC (United States)

1997-11-01T23:59:59.000Z

67

Reducing LED Costs Through Innovation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reducing LED Costs Through Innovation Reducing LED Costs Through Innovation Reducing LED Costs Through Innovation November 19, 2013 - 3:49pm Addthis A combination solid-state laser turret cutter and stamping machine cuts a thin steel plate that will be formed into lighting fixture housing. Wisconsin-based Eaton Corporation is developing a new manufacturing process that streamlines LED fixture designs. | Photo courtesy of Eaton Corporation A combination solid-state laser turret cutter and stamping machine cuts a thin steel plate that will be formed into lighting fixture housing. Wisconsin-based Eaton Corporation is developing a new manufacturing process that streamlines LED fixture designs. | Photo courtesy of Eaton Corporation A goniometer measures the photometric output distribution of an outdoor LED street light fixture. Researchers at Eaton are developing a new manufacturing process will enable LED chips to sit directly on heat sinks, improving heat transfer. | Photo courtesy of Eaton Corporation

68

Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Released: September 28, 2010 Next Release: Discontinued Excel Spreadsheet Model - 1994-2009 XLS (1,178 KB) Overview Oil and gas well equipment and operating costs, including coal bed methane costs, stopped their upward trend from the 1990s and fell sharply in 2009. The extremely high oil and gas prices during the first half of 2008 followed by an unprecedented drop to very low prices by the end of the year had a major impact on equipment demand. Operating costs tumbled also because fuel costs were reduced and well servicing rates fell in most areas. The exceptions were in California where electric rates continued to increase, causing a one (1) percent increase in annual operating costs for leases producing from 12,000 feet. Operating cost for coal bed methane wells in the Appalachian and Powder River areas increased because electric rates continued to climb. Due to the timing of the data collection, the cost reported here could be higher than the actual annual average for 2008. However, some production costs (labor and equipment) are not as volatile as drilling, pipe, and other well completion costs, so the effect of the oil and gas prices on collected data may be lessened. Annual average electric rates and natural gas prices are used, which also helps to dampen cost variances.

69

NASA Ames Saves Energy and Reduces Project Costs with Non-Invasive Retrofit Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NASA Ames Saves Energy and Reduces Project Costs NASA Ames Saves Energy and Reduces Project Costs with Non-Invasive Retrofit Technologies The Wireless Pneumatic Thermostat Enables Energy Efficiency Strategies, Ongoing Commissioning and Improved Operational Control Harry Sim CEO Cypress Envirosystems harry.sim@cypressenvirosystems.com www.cypressenvirosystems.com NASA Ames Reduced Project Cost by Over 80% with Non-Invasive Retrofit Technologies * Legacy Pneumatic Thermostats  Waste energy  High maintenance costs  Uncomfortable occupants  No visibility * Project Scope  14 buildings  1,370 pneumatic thermostats  Integration with campus BAS  Diagnostics for ongoing commissioning * Traditional DDC Retrofit  Cost over $4.1 million  Asbestos exposure/abatement  Occupants significantly disrupted

70

Fundamental Drivers of the Cost and Price of Operating Reserves  

NLE Websites -- All DOE Office Websites (Extended Search)

Fundamental Drivers of the Cost and Price of Operating Reserves Marissa Hummon, Paul Denholm, Jennie Jorgenson, and David Palchak National Renewable Energy Laboratory Brendan Kirby...

71

10 Strategic Steps to Reducing Your Energy Costs  

E-Print Network (OSTI)

If your company is looking at energy management as part of its overall strategy to reduce costs and improve profits, it is not alone. While energy prices have increased at a shocking rate, so has interest in environmental responsibility. Progressive organizations are exploring ways to conserve energy and reduce greenhouse gases. Some are even creating new positions for these issues, placing someone in charge of corporate social responsibility (CSR). The CSR's job is to help a company be more socially responsible and reduce harmful emissions. Energy management can accomplish both conservation and emission goals- plus, it lowers utility costs and strengthens your bottom line! In the past, reasonably priced energy made it difficult to justify new conservation projects. It was hard to meet the standard criteria of 2-3 years payback. However, natural gas prices have tripled in the last five years from $2 to over $6 per Dekatherm (Dth). Electric prices also have increased dramatically-by more than 100% in some parts of the country. These increased energy costs have made conservation projects more desirable. A natural gas improvement project that had a six-year payback five years ago may have less than a two-year payback today. New technologies also have helped drive down the payback of projects and opened up new areas for potential savings. The following paper looks at how the new market offers opportunities to reduce overall energy costs.

Swanson, G. A.; Haley, M.

2005-01-01T23:59:59.000Z

72

EFFECT OF REDUCED U-235 PRICE ON FUEL CYCLE COSTS  

SciTech Connect

A study was made to determine the effect of changes in natural uranium cost and in separative work charges on fuel cycle costs in nuclear power plants. Reactors considered were a Dresden-type boiling water reactor (BWR) and a Yankee- type pressurized water reactor (PWR), with net power ratings of 100, 300, and 500 Mwe. Fuel cycle costs were calculated for these reactors, using either enriched uranium or U/sup 235/-thorium as the fuel material. The price schedule for uranium was based on a feed material cost of /kg uranium as UF/sub 6/ and separative work costs of /kg uranium (Schedule B) and /kg uranium (Schedule C). The present AEC price schedule for enriched uranium was also used for purposes of a reference case. The results indicate that a reduction in present enriched uranium price to that given by Schedule B would reduce fuel cycle costs for the BWR plants by 0.4 to 0.5 mill/kwh for the enriched-uranium cycle, and 0.4 to 0.7 mill/kwh for the thorium cycle. Reductions in fuel cycle costs for the PWR plants were 0.5 to 0.7 and 0.4 to 0.75 mill/kwh, respectively, for the same situations. (auth)

Bennett, L.L.

1962-03-01T23:59:59.000Z

73

Reducing the cost of top-drive installation  

Science Conference Proceedings (OSTI)

To equip an older jackup, the Offshore Mercury, with a completely workable and reliable top drive at minimum cost and without sacrificing performance, Sonat Offshore Drilling installed a power-swivel drilling system that did not require heightening or strengthening the derrick. An electronic crown protection system was installed to allow the driller use of all available reduced crown clearance, thereby increasing drilling safety by reducing the probability of accidentally running the traveling block into the crown. In addition, they modified the DC-DC drilling power equipment to create a completely functional and low-cost alternative to installing additional AC power-generating capacity and an SCR system. When planning a cost-effective top-drive installation on the Offshore Mercury, they recognized that the rig did not fit the average jackup profile: It has a DC-DC electric power drilling system and only a 140-ft (43-m) derrick, rather than the more common SCR system and 147-ft (45-m) derrick. From costs studies made up to the middle of 1991, they believed they could save a significant amount if it were possible to install and use a top drive in a 147-ft (45-m) or even a 140-ft (43-m) derrick without having to extend and strengthen the derrick. This paper reviews the design of this system and the effectiveness of its performance.

Hock, C.J. (Sonat Offshore Drilling Inc., Houston, TX (United States))

1993-09-01T23:59:59.000Z

74

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

E-Print Network (OSTI)

net median commissioning project cost was reduced by 49% oncommissioning project costs and savings. Commissioning isproportional to total project cost. The nature of activities

Mills, Evan

2010-01-01T23:59:59.000Z

75

Entanglement cost of implementing controlled-unitary operations  

E-Print Network (OSTI)

We investigate the minimum entanglement cost of the deterministic implementation of two-qubit controlled-unitary operations using local operations and classical communication (LOCC). We show that any such operation can be implemented by a three-turn LOCC protocol, which requires at least 1 ebit of entanglement when the resource is given by a bipartite entangled state with Schmidt number 2. Our result implies that there is a gap between the minimum entanglement cost and the entangling power of controlled-unitary operations. This gap arises due to the requirement of implementing the operations while oblivious to the identity of the inputs.

Akihito Soeda; Peter S. Turner; Mio Murao

2010-08-06T23:59:59.000Z

76

Reducing Energy Costs And Minimizing Capital Requirements: Case Studies of Thermal Energy Storage (TES)  

E-Print Network (OSTI)

Large cooling systems typically represent substantial capital investments and incur high operating energy costs. Cooling loads tend to peak during times of year and times of day when high ambient temperatures create a maximum demand for power, and thus during those times when power has its highest cost or value. Thermal Energy Storage (TES) provides a means of de-coupling the generation of cooling from the provision of cooling to the peak cooling loads. In this manner, peak power demand is reduced, time-of day energy costs can be minimized, and real-time variations in power value can be used to the advantage of the energy consumer.

Andrepont, J. S.

2007-01-01T23:59:59.000Z

77

US nuclear power plant operating cost and experience summaries  

Science Conference Proceedings (OSTI)

NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

Kohn, W.E.; Reid, R.L.; White, V.S.

1998-02-01T23:59:59.000Z

78

CAPITAL AND OPERATING COST OF HYDROGEN PRODUCTION FROM COAL GASIFICATI...  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Coal Using Preliminary Assumptions 2-15 2.5.1 Approach to Cost Estimating 2-16 2.5.2 Production Costs (Operation and Maintenance) 2-16 2.5.3 Consumables 2-17 2.5.4 Byproduct...

79

Oil and Gas Lease Equipment and Operating Costs 1986 Through 2001  

U.S. Energy Information Administration (EIA)

Water handling costs are a major factor in coal bed methane operating costs and partially account for the difference in operating costs. Items tracked

80

Reducing the Cost of Energy from Parabolic Trough Solar Power Plants: Preprint  

DOE Green Energy (OSTI)

Parabolic trough solar technology is the most proven and lowest cost large-scale solar power technology available today, primarily because of the nine large commercial-scale solar power plants that are operating in the California Mojave Desert. However, no new plants have been built during the past ten years because the cost of power from these plants is more expensive than power from conventional fossil fuel power plants. This paper reviews the current cost of energy and the potential for reducing the cost of energy from parabolic trough solar power plant technology based on the latest technological advancements and projected improvements from industry and sponsored R&D. The paper also looks at the impact of project financing and incentives on the cost of energy.

Price, H.; Kearney, D.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Assessing the Impacts of Reduced Noise Operations of Wind Turbines...  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL-3562E Assessing the Impacts of Reduced Noise Operations of Wind Turbines on Neighbor Annoyance: A Preliminary Analysis in Vinalhaven, Maine Ben Hoen, Haftan Eckholdt, and Ryan...

82

Installation, Operation, and Maintenance Costs for Distributed Generation Technologies  

Science Conference Proceedings (OSTI)

Distributed generation (DG) is a broad term that encompasses both mature and emerging onsite power generation technologies with power output as small as 1 kW and as large as 20 MW. While the equipment or purchase cost of a DG system is very important, installation, operation, and maintenance (IOM) costs also are significant and often overlooked. This report reviews IOM costs for both mature and emerging DG technologies. Some equipment cost data is included for reference, but is not the focus of this repo...

2003-02-03T23:59:59.000Z

83

A simulation approach to the evaluation of operational costs and performance in liner shipping operations  

Science Conference Proceedings (OSTI)

This paper presents a simulation model of the operation of a liner shipping network that considers multiple service routes and schedules. The objective is to evaluate the operational costs and performance associated with liner shipping, as well as the ...

Aldo A. McLean; William E. Biles

2008-12-01T23:59:59.000Z

84

Understanding and reducing energy and costs in industrial cooling systems  

E-Print Network (OSTI)

Industrial cooling remains one of the largest potential areas for electrical energy savings in industrial plants today. This is in spite of a relatively small amount of attention paid to it by energy auditors and rebate program designers. US DOE tool suites, for example, have long focused on combustion related systems and motor systems with a focus on pumps and compressors. A chilled water tool designed by UMass was available for some time but is no longer being supported by its designers or included in the government tool website. Even with the focus on motor systems, auditing programs like the DOE's Industrial Assessment Center program show dramatically less energy savings for electrical based systems than fossil fueled ones. This paper demonstrates the large amount of increased saving from a critical review of plant chilled water systems with both hardware and operational improvements. After showing several reasons why cooling systems are often ignored during plant energy surveys (their complexity, lack of data on operations etc.), three specific upgrades are considered which have become more reliable and cost effective in the recent past. These include chiller changeouts, right sizing of systems with load matching, and floating head pressures as a retrofit. Considerations of free cooling and improved cooling tower operations are shown as additional "big hitters. It is made clear that with appropriate measurements and an understanding of the cooling system, significant savings can be obtained with reasonable paybacks and low risk.

Muller, M.R.; Muller, M.B.

2012-01-01T23:59:59.000Z

85

CAPITAL AND OPERATING COST OF HYDROGEN PRODUCTION FROM COAL GASIFICATION  

NLE Websites -- All DOE Office Websites (Extended Search)

CAPITAL AND OPERATING COST OF HYDROGEN CAPITAL AND OPERATING COST OF HYDROGEN PRODUCTION FROM COAL GASIFICATION Final Report April 2003 Prepared for: The United States Department of Energy National Energy Technology Laboratory (NETL) under: Contract No. DE-AM26-99FT40465 between the NETL and Concurrent Technologies Corporation (CTC) Subcontract No. 990700362 between CTC and Parsons Infrastructure & Technology Group Inc. Task 50611 DOE Task Managers: James R. Longanbach Gary J. Stiegel Parsons Project Manager: Michael D. Rutkowski Principal Investigators: Thomas L. Buchanan Michael G. Klett Ronald L. Schoff PARSONS Capital and Operating Cost of Hydrogen Production from Coal Gasification Page i April 2003 TABLE OF CONTENTS Section Title Page List of Tables iii List of Figures iii

86

Why Pressure Reducing Valves (PVR's) are costing you money  

E-Print Network (OSTI)

Throughout many manufacturing facilities, colleges, commercial sites or industrial complexes, pressure reducing valves (PRV's) provide a cheap, reliable method to produce low pressure steam from a high pressure source in order to meet a process requirement or heating load. This simple method of expanding steam in a PRV creates no work and supplies the same heat content available in the high pressure steam at a more manageable low pressure. What if you could produce the same low pressure steam while saving hundreds of thousands of dollars on your electric bill and taking only a minimal hit in the available heat content? Why let steam down and get no benefit from it, when putting it through a low pressure steam turbine coupled to a generator would produce the heat you need for process with the byproduct of onsite electrical generation. This paper analyzes the costs, concerns and benefits of replacing a pressure reducing valve with a Steam Turbine Generator set including illustrations of what the marginal fuel increase would be in order to take advantage of the added benefits of clean, cheap and reliable onsite power production.

Downing, A.

2012-01-01T23:59:59.000Z

87

Fundamental Drivers of the Cost and Price of Operating Reserves  

SciTech Connect

Operating reserves impose a cost on the electric power system by forcing system operators to keep partially loaded spinning generators available for responding to system contingencies variable demand. In many regions of the United States, thermal power plants provide a large fraction of the operating reserve requirement. Alternative sources of operating reserves, such as demand response and energy storage, may provide more efficient sources of these reserves. However, to estimate the potential value of these services, the cost of reserve services under various grid conditions must first be established. This analysis used a commercial grid simulation tool to evaluate the cost and price of several operating reserve services, including spinning contingency reserves and upward regulation reserves. These reserve products were evaluated in a utility system in the western United States, considering different system flexibilities, renewable energy penetration, and other sensitivities. The analysis demonstrates that the price of operating reserves depend highly on many assumptions regarding the operational flexibility of the generation fleet, including ramp rates and the fraction of fleet available to provide reserves.

Hummon, M. R.; Denholm, P.; Jorgenson, J.; Palchak, D.; Kirby, B.; Ma, O.

2013-07-01T23:59:59.000Z

88

Determining the Cost of Cycling and Varied Load Operations: Methodology  

Science Conference Proceedings (OSTI)

For many reasonsheightened wholesale electricity competition under deregulation, new market rules, growing capacity due to additions of new gas-fired capacity, environmental pressures on coal unitsthe power industry must operate power plants differently. In particular, many generating units that formerly ran around the clock must adjust operations to cycle or to follow load (demand). This report describes a new methodology for estimating the long-term wear and tear costs that inevitably acc...

2002-11-22T23:59:59.000Z

89

Improve Performance and Reduce Cost of Any Lithium-Ion Battery  

TM Microstructured components for high-performance lithium batteries www.porouspower.com Symmetrix - Improve Performance & Reduce Cost of Any ...

90

Assessing the Impacts of Reduced Noise Operations of Wind Turbines  

E-Print Network (OSTI)

i LBNL-3562E Assessing the Impacts of Reduced Noise Operations of Wind Turbines on Neighbor Operations of Wind Turbines on Neighbor Annoyance: A Preliminary Analysis in Vinalhaven, Maine Prepared from the turbines is unwelcome and annoying. Fox Islands Wind, the owner of the facility, hypothesized

91

Reducing the Manufacturing Cost of Tubular SOFC Technology  

SciTech Connect

In recent years, Westinghouse Electric Corporation has made great strides in advancing tubular solid oxide fuel cell (SOFC) technology towards commercialization by the year 2001. In 1993, Westinghouse initiated a program to develop a `MWe Class` (1-3 MWe) pressurized SOFC (PSOFC) gas turbine (GT) combined cycle power system for distributed power applications because of its: (1) ultra high efficiency (approx. 63% net AC/LHV CH{sub 4}), (2) its compatibility with a factory packaged, minimum site work philosophy, and (3) its cost effectiveness. Since then two cost studies on this market entry product performed by consultants to the U.S. Department of Energy have confirmed Westinghouse cost studies that fully installed costs of under $1300/kWe can be achieved in the early commercialization years for such small PSOFC/GT power systems. The paper will present the results of these cost studies in the areas of cell manufacturing cost, PSOFC generator manufacturing cost, balance-of-plant (BOP) cost, and system installation cost. In addition, cost of electricity calculations will be presented.

George, R.A.; Bessette, N.F.

1997-12-31T23:59:59.000Z

92

Question of the Week: How Do You Reduce Your Water Heating Costs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduce Your Water Heating Costs Reduce Your Water Heating Costs Question of the Week: How Do You Reduce Your Water Heating Costs February 19, 2009 - 1:39pm Addthis Water heating can account for a significant portion of your energy costs. Purchasing a new ENERGY STAR® water heater is just one way to save on your water heating bills. The Energy Savers Tips site lists other strategies you can use to cut your water heating costs. How do you reduce your water heating costs? E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Question of the Week: How Do You Reduce Your Water Heating Costs Energy Savers Guide: Tips on Saving Money and Energy at Home How Do You Save on Lighting Costs? Question of the Week: How Do You Reduce Your Water Heating Costs

93

Operation and maintenance cost data for residential photovoltaic modules/panels  

DOE Green Energy (OSTI)

Burt Hill Kosar Rittelmann Associates has conducted a study to identify and estimate costs associated with the operation and maintenance of residential photovoltaic modules and arrays. Six basic topics related to operation and maintenance to photovoltaic arrays were investigated - General (Normal) Maintenance, Cleaning, Panel Replacement, Gasket Repair/Replacement, Wiring Repair/Replacement, and Termination Repair/Replacement. The effects of the mounting types - Rack Mount, Stand-Off Mount, Direct Mount, and Integral Mount - and the installation/replacement type - Sequential, Partial Interruption, and Independent - have been identified and described. Recommendation on methods of reducing maintenance costs are made.

None

1980-07-01T23:59:59.000Z

94

Remote implementation of partially unknown operations and its entanglement costs  

E-Print Network (OSTI)

We present the generalized version of Wang's protocol[A.M.Wang, Phys.Rev.A 74,032317 (2006)] for the remote implementation(sometimes referred to as quantum remote control) of partially unknown quantum operations. The protocol only requires no more than half of the entanglements used in Bidirectional Quantum State Teleportation. We also propose a protocol for another form of quantum remote control. It can remotely implement a unitary operation which is a combination of the projective representations of a group. Moreover, we prove that the Schmidt rank of the entanglements cannot not be less than the number of controlled parameters of the operations, which for the first time gives a lower bound on entanglement costs in remote implementation of quantum operations.

Shu-Hui Luo; An-Min Wang

2013-01-24T23:59:59.000Z

95

Cost-reduced Cable Delivery for the 21st Century  

Science Conference Proceedings (OSTI)

This paper addresses the issue of cost-effective optical fibre cable delivery within current projections of fibre build. The implications are generally valid for fibre to the home (FTTH), but additional considerations will apply. The challenge lies in ...

A. J. Mayhew; D. J. Stockton

1998-10-01T23:59:59.000Z

96

The Costs of Reducing Electricity Sector CO2 Emissions  

Science Conference Proceedings (OSTI)

This report presents a high-level analysis of some of the critical challenges associated with cutting United States electricity-sector CO2 emissions and an order of magnitude feeling for what it will cost to meet emission-reduction targets now under consideration. Three basic strategies to limit emissions are illustrated to give readers a basic understanding of the tradeoff between CO2 reductions and additional cost inherent in several generation choices. Regional power market system simulations are then...

2007-12-20T23:59:59.000Z

97

Opportunities for reducing product costs in indirect liquefaction  

Science Conference Proceedings (OSTI)

The MITRE indirect liquefaction simulation model for the advanced configuration that includes Shell gasification and slurry-phase F-T synthesis was downsized to coincide with the Bechtel/Amoco conceptual plant with a nominal capacity of 50,000 barrels per stream day. Then the kinetic parameters used by Bechtel/Amoco in the slurry F-T model were substituted in the model. This resulted in the same per pass conversion and in the same number of reactors as estimated in the Bechtel basecase. The total capital cost for this plant was estimated to be $2982 million using the MITRE model. This agrees well with the preliminary Bechtel/Amoco capital cost of $2961 million for the same size plant(3). Once the WM simulation of the basecase plant was shown to be in agreement with the Bechtel/Amoco case, the analysis of further potential cost reductions beyond the basecase could be investigated. This analysis only investigated the potential cost reductions that could result from improvements in the F-T area of the conceptual plant. This is the area that is impacted by the research and development underway in the indirect program. The cost impact of the following potential improvements were investigated using the MITRE simulation model: Doubling the baseline catalyst activity; doubling the catalyst loading; and doubling the superficial gas velocity.

Gray, D.; Tomlinson, G.; ElSawy, A. [Mitre Corp., McLean, VA (United States)

1993-10-01T23:59:59.000Z

98

Available Technologies: Carbon Dioxide Capture at a Reduced Cost  

Scientists at Berkeley Lab have developed a method that reduces the expense of capturing carbon dioxide generated by the combustion of fossil fuels. This technology ...

99

Carbon Dioxide Capture at a Reduced Cost - Energy Innovation ...  

Scientists at Berkeley Lab have developed a method that reduces the expense of capturing carbon dioxide generated by the combustion of fossil fuels. This technology ...

100

O&M First! Actions You Can Take to Reduce Heating Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheet Actions You Can Take to Reduce Heating Costs Heating accounts for a significant energy load and usually presents a number of opportunities to improve performance and...

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

MARK-OPT: A Concurrency Control Protocol for Parallel B-Tree Structures to Reduce the Cost of SMOs  

Science Conference Proceedings (OSTI)

In this paper, we propose a new concurrency control protocol for parallel B-tree structures capable reducing the cost of structure-modification-operation (SMO) compared to the conventional protocols such as ARIES/IM and INC-OPT. We call this protocol ... Keywords: B-tree, concurrency control, index, latch, parallel DB

Tomohiro Yoshihara; Dai Kobayashi; Haruo Yokota

2007-08-01T23:59:59.000Z

102

Energy Department Announces $7 Million to Reduce Non-Hardware Costs of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Million to Reduce Non-Hardware Costs 7 Million to Reduce Non-Hardware Costs of Solar Energy Systems Energy Department Announces $7 Million to Reduce Non-Hardware Costs of Solar Energy Systems November 15, 2011 - 4:52pm Addthis Washington, D.C. - As part of the U.S. Department of Energy's SunShot Initiative, Energy Secretary Steven Chu today announced up to $7 million to reduce the non-hardware costs of residential and commercial solar energy installations. Made available through the SunShot Incubator Program, this funding will support the development of tools and approaches that reduce non-hardware, or "soft" costs, such as installation, permitting, interconnection, and inspection. These expenses can amount to up to half of the cost of residential systems. The Incubator will make the process of

103

Reducing the cost of quality (COQ) through increased product reliability and reduced process variability  

E-Print Network (OSTI)

Today, Dell, Inc. (Dell) spends millions of dollars each year to prevent product defects from reaching the end customer and to manage those product defects that have escaped to the end customer. The cost of the equipment, ...

Schiveley, Steven C. (Steven Charles), 1974-

2004-01-01T23:59:59.000Z

104

A multi-regression analysis of airline indirect operating costs  

E-Print Network (OSTI)

A multiple regression analysis of domestic and local airline indirect costs was carried out to formulate cost estimating equations for airline indirect costs. Data from CAB and FAA sources covering the years 1962-66 was ...

Taneja, Nawal K.

1968-01-01T23:59:59.000Z

105

DOE Announces $27 Million to Reduce Costs of Solar Energy Projects,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces $27 Million to Reduce Costs of Solar Energy Projects, DOE Announces $27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations DOE Announces $27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations June 1, 2011 - 12:00am Addthis WASHINGTON, DC - As part of the Obama Administration's SunShot Initiative to make solar energy cost-competitive with fossil fuels within the decade, U.S. Department of Energy Secretary Steven Chu today announced the availability of more than $27 million in new funding that will reduce the non-hardware costs of solar energy projects, a critical element in bringing down the overall costs of installed solar energy systems. The funding will support a $12.5 million challenge to encourage cities and counties to compete to streamline and digitize permitting processes, as

106

DOE Announces $27 Million to Reduce Costs of Solar Energy Projects,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27 Million to Reduce Costs of Solar Energy Projects, 27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations DOE Announces $27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations June 1, 2011 - 12:00am Addthis WASHINGTON, DC - As part of the Obama Administration's SunShot Initiative to make solar energy cost-competitive with fossil fuels within the decade, U.S. Department of Energy Secretary Steven Chu today announced the availability of more than $27 million in new funding that will reduce the non-hardware costs of solar energy projects, a critical element in bringing down the overall costs of installed solar energy systems. The funding will support a $12.5 million challenge to encourage cities and counties to compete to streamline and digitize permitting processes, as

107

Wind turbine reliability : understanding and minimizing wind turbine operation and maintenance costs.  

SciTech Connect

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. Cost of energy (COE) is a key project evaluation metric, both in commercial applications and in the U.S. federal wind energy program. To reflect this commercial reality, the wind energy research community has adopted COE as a decision-making and technology evaluation metric. The COE metric accounts for the effects of reliability through levelized replacement cost and unscheduled maintenance cost parameters. However, unlike the other cost contributors, such as initial capital investment and scheduled maintenance and operating expenses, costs associated with component failures are necessarily speculative. They are based on assumptions about the reliability of components that in many cases have not been operated for a complete life cycle. Due to the logistical and practical difficulty of replacing major components in a wind turbine, unanticipated failures (especially serial failures) can have a large impact on the economics of a project. The uncertainty associated with long-term component reliability has direct bearing on the confidence level associated with COE projections. In addition, wind turbine technology is evolving. New materials and designs are being incorporated in contemporary wind turbines with the ultimate goal of reducing weight, controlling loads, and improving energy capture. While the goal of these innovations is reduction in the COE, there is a potential impact on reliability whenever new technologies are introduced. While some of these innovations may ultimately improve reliability, in the short term, the technology risks and the perception of risk will increase. The COE metric used by researchers to evaluate technologies does not address this issue. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce COE.

2004-11-01T23:59:59.000Z

108

Wind turbine reliability : understanding and minimizing wind turbine operation and maintenance costs.  

DOE Green Energy (OSTI)

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. Cost of energy (COE) is a key project evaluation metric, both in commercial applications and in the U.S. federal wind energy program. To reflect this commercial reality, the wind energy research community has adopted COE as a decision-making and technology evaluation metric. The COE metric accounts for the effects of reliability through levelized replacement cost and unscheduled maintenance cost parameters. However, unlike the other cost contributors, such as initial capital investment and scheduled maintenance and operating expenses, costs associated with component failures are necessarily speculative. They are based on assumptions about the reliability of components that in many cases have not been operated for a complete life cycle. Due to the logistical and practical difficulty of replacing major components in a wind turbine, unanticipated failures (especially serial failures) can have a large impact on the economics of a project. The uncertainty associated with long-term component reliability has direct bearing on the confidence level associated with COE projections. In addition, wind turbine technology is evolving. New materials and designs are being incorporated in contemporary wind turbines with the ultimate goal of reducing weight, controlling loads, and improving energy capture. While the goal of these innovations is reduction in the COE, there is a potential impact on reliability whenever new technologies are introduced. While some of these innovations may ultimately improve reliability, in the short term, the technology risks and the perception of risk will increase. The COE metric used by researchers to evaluate technologies does not address this issue. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce COE.

Not Available

2004-11-01T23:59:59.000Z

109

Upgrade of Compressed Air Control System Reduces Energy Costs at Michelin Tire Plant. Office of Industrial Technologies (OIT) BestPractices Project Case Study  

Science Conference Proceedings (OSTI)

This case study highlights the upgraded compressed air system at a Michelin tire manufacturing plant in Spartanburg, South Carolina. The controls upgrade project enabled multiple compressor operation without blow-off, and significantly reduced energy costs.

Not Available

2002-01-01T23:59:59.000Z

110

Thermal energy storage for space cooling. Technology for reducing on-peak electricity demand and cost  

DOE Green Energy (OSTI)

Cool storage technology can be used to significantly reduce energy costs by allowing energy intensive, electrically driven cooling equipment to be predominantly operated during off-peak hours when electricity rates are lower. In addition, some system configurations may result in lower first costs and/or lower operating costs. Cool storage systems of one type or another could potentially be cost-effectively applied in most buildings with a space cooling system. A survey of approximately 25 manufacturers providing cool storage systems or components identified several thousand current installations, but less than 1% of these were at Federal facilities. With the Federal sector representing nearly 4% of commercial building floor space and 5% of commercial building energy use, Federal utilization would appear to be lagging. Although current applications are relatively few, the estimated potential annual savings from using cool storage in the Federal sector is $50 million. There are many different types of cool storage systems representing different combinations of storage media, charging mechanisms, and discharging mechanisms. The basic media options are water, ice, and eutectic salts. Ice systems can be further broken down into ice harvesting, ice-on-coil, ice slurry, and encapsulated ice options. Ice-on-coil systems may be internal melt or external melt and may be charged and discharged with refrigerant or a single-phase coolant (typically a water/glycol mixture). Independent of the technology choice, cool storage systems can be designed to provide full storage or partial storage, with load-leveling and demand-limiting options for partial storage. Finally, storage systems can be operated on a chiller-priority or storage priority basis whenever the cooling load is less than the design conditions. The first section describes the basic types of cool storage technologies and cooling system integration options. The next three sections define the savings potential in the Federal sector, present application advice, and describe the performance experience of specific Federal users. A step-by-step methodology illustrating how to evaluate cool storage options is presented next, followed by a case study of a GSA building using cool storage. Latter sections list manufacturers, selected Federal users, and reference materials. Finally, the appendixes give Federal life-cycle costing procedures and results for a case study.

None

2000-12-01T23:59:59.000Z

111

REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE  

Science Conference Proceedings (OSTI)

Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effects of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and electrostatic precipitator (ESP) fly ash collection efficiency.

Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke

1999-09-01T23:59:59.000Z

112

Definition: Reduced T&D Equipment Maintenance Cost | Open Energy  

Open Energy Info (EERE)

T&D Equipment Maintenance Cost T&D Equipment Maintenance Cost Jump to: navigation, search Dictionary.png Reduced T&D Equipment Maintenance Cost The cost of sending technicians into the field to check equipment condition is high. Moreover, to ensure that they maintain equipment sufficiently, and identify failure precursors, some utilities may conduct equipment testing and maintenance more often than is necessary. Online diagnosis and reporting of equipment condition would reduce or eliminate the need to send people out to check equipment resulting in a cost savings.[1] References ↑ SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reduced_T%26D_Equipment_Maintenance_Cost&oldid=417296"

113

Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs.  

DOE Green Energy (OSTI)

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce cost of energy.

Walford, Christopher A. (Global Energy Concepts. Kirkland, WA)

2006-03-01T23:59:59.000Z

114

Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs.  

SciTech Connect

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce cost of energy.

Walford, Christopher A. (Global Energy Concepts. Kirkland, WA)

2006-03-01T23:59:59.000Z

115

Oil and Gas Lease Equipment and Operating Costs 1994 Through...  

Gasoline and Diesel Fuel Update (EIA)

cost reported here could be higher than the actual annual average for 2008. However, some production costs (labor and equipment) are not as volatile as drilling, pipe, and other...

116

Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs  

Science Conference Proceedings (OSTI)

The continual need to reduce airframe cost and the emergence of high speed machining and other manufacturing technologies has brought about a renewed interest in large-scale integral structures for aircraft applications. Applications have been inhibited, ...

Pettit R. G.; Wang J. J.; Toh C.

2000-05-01T23:59:59.000Z

117

Fossil Energy RD&D: Reducing the Cost of CCUS for Coal Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy RD&D: Reducing the Cost of CCUS for Coal Power Plants Revision 1, January 31, 2012 DOENETL-20121550 Disclaimer This report was prepared as an account of work...

118

Reducing Enzyme Costs Increases the Market Potential of Biofuels (Fact Sheet)  

DOE Green Energy (OSTI)

Cellulosic ethanol prices depend heavily on the cost of the cellulase enzymes used to break down the biomass into fermentable sugars. To reduce these costs, NREL partnered with two leading enzyme companies, Novozymes and Genencor, to engineer new cellulase enzymes that are exceptionally good at breaking down cellulose. Genencor is now part of DuPont Industrial Biosciences.

Not Available

2013-08-01T23:59:59.000Z

119

Energy Department Awards Nearly $7 Million for Research to Reduce Costs of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nearly $7 Million for Research to Reduce Nearly $7 Million for Research to Reduce Costs of Electric Vehicle Chargers Energy Department Awards Nearly $7 Million for Research to Reduce Costs of Electric Vehicle Chargers December 21, 2011 - 12:49pm Addthis As part of the Obama Administration's commitment to reduce America's dependence on oil through advanced vehicle technologies, U.S. Energy Secretary Steven Chu today announced awards totaling nearly $7 million in research and development funding that will help to reduce the current costs of electric vehicle chargers by 50 percent over the next three years. With support from the Energy Department, manufacturers in California, New Jersey, New York and Pennsylvania will work to improve the development and design of charging equipment. This research will promote "smart"

120

Energy Department Awards Nearly $7 Million for Research to Reduce Costs of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Awards Nearly $7 Million for Research to Reduce Energy Department Awards Nearly $7 Million for Research to Reduce Costs of Electric Vehicle Chargers Energy Department Awards Nearly $7 Million for Research to Reduce Costs of Electric Vehicle Chargers December 21, 2011 - 12:49pm Addthis As part of the Obama Administration's commitment to reduce America's dependence on oil through advanced vehicle technologies, U.S. Energy Secretary Steven Chu today announced awards totaling nearly $7 million in research and development funding that will help to reduce the current costs of electric vehicle chargers by 50 percent over the next three years. With support from the Energy Department, manufacturers in California, New Jersey, New York and Pennsylvania will work to improve the development and design of charging equipment. This research will promote "smart"

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Minnesota Company 3M Awarded $3 Million by Energy Department to Reduce Cost  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Company 3M Awarded $3 Million by Energy Department to Minnesota Company 3M Awarded $3 Million by Energy Department to Reduce Cost of Advanced Fuel Cells Minnesota Company 3M Awarded $3 Million by Energy Department to Reduce Cost of Advanced Fuel Cells March 29, 2012 - 4:20pm Addthis In support of the Obama Administration's all-of-the-above approach to American energy, the Energy Department today announced the investment of $3 million to 3M Company in St. Paul, Minnesota, to lower the cost of advanced fuel cell systems by developing cost-effective, durable, and highly efficient fuel cell components. The 3-year project will focus on boosting the performance of fuel cell systems for vehicles and stationary applications while driving down costs. These investments are a part of the Department's commitment to U.S. leadership in innovative fuel cell

122

On-Site Diesel Generation- How You Can Reduce Your Energy Costs  

E-Print Network (OSTI)

Interruptible power rates, Utility special rate negotiations, and the emergence of a spot electrical power market all can lead to lower industrial energy costs. The installation of low cost on-site diesel powered generation, or the proposed intention to install, provides the means for obtaining lower purchased power costs. The functionality of a standby power system and its inherent value in the coming free market purchase of electrical energy are added benefits. Project feasibility, conceptual design, on-site generation facility requirements, interconnection requirements, and operation and maintenance costs will be examined. Installation costs in the range of $350 to $400 per KW and operating costs of approximately $0.06 to $0.07 per kWhr compared to purchased power rates determine the feasibility of an on-site generation system. In some cases avoided demand charges offer an opportunity for savings such that special rates are not needed for a feasible project. Depending on the manufacturer, low capital cost diesel generators are available in 1000 to 2000 KW blocks. Capacity requirements determine the number of engines required. Large capacity installations are somewhat restricted by voltage and current ratings. Some variants for multiple engine generator installations will yield greater reliability or lower costs depending on objectives. Specific requirements for basic building blocks of an on-site generation system will be examined as well as an example of a 5,500 KW installation. IEA provides an alternative to installing and operating an on-site generation system. IEA owns and operates diesel standby generation systems for customers, with responsibility for all maintenance and operation as well as associated costs. This allows customers to focus on core business, not the generation of electrical energy.

Charles, D.

1996-04-01T23:59:59.000Z

123

An analysis of nuclear power plant operating costs: A 1995 update  

SciTech Connect

Over the years real (inflation-adjusted) O&M cost have begun to level off. The objective of this report is to determine whether the industry and NRC initiatives to control costs have resulted in this moderation in the growth of O&M costs. Because the industry agrees that the control of O&M costs is crucial to the viability of the technology, an examination of the factors causing the moderation in costs is important. A related issue deals with projecting nuclear operating costs into the future. Because of the escalation in nuclear operating costs (and the fall in fossil fuel prices) many State and Federal regulatory commissions are examining the economics of the continued operation of nuclear power plants under their jurisdiction. The economics of the continued operation of a nuclear power plant is typically examined by comparing the cost of the plants continued operation with the cost of obtaining the power from other sources. This assessment requires plant-specific projections of nuclear operating costs. Analysts preparing these projections look at past industry-wide cost trends and consider whether these trends are likely to continue. To determine whether these changes in trends will continue into the future, information about the causal factors influencing costs and the future trends in these factors are needed. An analysis of the factors explaining the moderation in cost growth will also yield important insights into the question of whether these trends will continue.

1995-04-21T23:59:59.000Z

124

Evaluation of Truck and Bus Automation Scenarios: Operations Cost Analysis  

E-Print Network (OSTI)

Standards The design for this project assumes that the ABUS system will operate on a dedicated right- of-waystandards. Like the ABUS system, the BDL system operates on a dedicated right-of-way

Botha, Jan; Day, Jennifer E.; Adibhatla, Nagabhargavi

2004-01-01T23:59:59.000Z

125

Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications  

E-Print Network (OSTI)

In this paper, life cycle cost analysis (LCCA) of waste heat operated vapour absorption air conditioning system (VARS) incorporated in a building cogeneration system is presented and discussed. The life cycle cost analysis (LCCA) based on present worth cost (PWC) method, which covers the initial costs, operating costs, maintenance costs, replacement costs and salvage values is the useful tool to merit various cooling and power generation systems for building applications. A life cycle of 23 years was used to calculate the PWC of the system for annual operating hours of 8760 and the same is compared with the electric based vapour compression chiller (VCRS) of same capacity. The life cycle cost (LCC) of waste heat operated absorption chiller is estimated to be US $ 1.5 million which is about 71.5 % low compared to electric powered conventional vapour compression chiller. From the analysis it was found that the initial cost of VARS system was 125 % higher than that of VCRS, while the PWC of operating cost of VARS was 78.2 % lower compared to VCRS. The result shows that the waste heat operated VARS would be preferable from the view point of operating cost and green house gas emission reduction.

Saravanan, R.; Murugavel, V.

2010-01-01T23:59:59.000Z

126

Review of cost estimates for reducing CO2 emissions. Final report, Task 9  

Science Conference Proceedings (OSTI)

Since the ground breaking work of William Nordhaus in 1977, cost estimates for reducing CO{sub 2} emissions have been developed by numerous groups. The various studies have reported sometimes widely divergent cost estimates for reducing CO{sub 2} emissions. Some recent analyses have indicated that large reductions in CO{sub 2} emissions could be achieved at zero or negative costs (e.g. Rocky Mountain Institute 1989). In contrast, a recent study by Alan Manne of Stanford and Richard Richels of the Electric Power Research Institute (Manne-Richels 1989) concluded that in the US the total discounted costs of reducing CO{sub 2} emissions by 20 percent below the 1990 level could be as much as 3.6 trillion dollars over the period from 1990 to 2100. Costs of this order of magnitude would represent about 5 percent of US GNP. The purpose of this briefing paper is to summarize the different cost estimates for CO{sub 2} emission reduction and to identify the key issues and assumptions that underlie these cost estimates.

Not Available

1990-10-01T23:59:59.000Z

127

Analysis of Nuclear Power Plant Operating Costs: A 1995 Update, An  

Reports and Publications (EIA)

This report provides an analysis of nuclear power plant operating costs. EIA published three reports on this subject during the period 1988-1995.

James G. Hewlett

1995-04-01T23:59:59.000Z

128

The cost of noise reduction for departure and arrival operations of commercial tilt rotor aircraft  

E-Print Network (OSTI)

The relationship between direct operating cost (DOC) and noise annoyance due to a departure and an arrival operation was developed for commercial tilt rotor aircraft. This was accomplished by generating a series of tilt ...

Faulkner, Henry B.

1976-01-01T23:59:59.000Z

129

ESS 2012 Peer Review - Reducing the Costs of Manufacturing Flow Batteries - Dhruv Bhatnagar, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Costs of Manufacturing Flow Batteries the Costs of Manufacturing Flow Batteries Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2011-XXXXP Next Steps 1. Continued outreach with other with other manufacturers 2. Characterization of the flow battery manufacturing process and determination of process issues 3. Evaluation of the fuel cell, other battery and other industry manufacturing process to address issues identified 4. Coordination with PNNL flow battery component cost

130

Award-winning alloys could reduce costs for chemical and petrochemical  

NLE Websites -- All DOE Office Websites (Extended Search)

Award-winning alloys could reduce costs for chemical and petrochemical Award-winning alloys could reduce costs for chemical and petrochemical industries Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Award-winning alloys could reduce costs for chemical and petrochemical industries This macrophotograph compares commercial nickel-based Alloy 600 (top) and Argonne's new alloy after 5,700 hours of exposure to the same metal-dusting environment at 593°C

131

Diagnostics-while drilling: Reducing the cost of geothermal-produced electricity  

DOE Green Energy (OSTI)

The goal of this document is to estimate the potential impact of proposed new Diagnostics-While-Drilling technology on the cost of electricity (COE) produced with geothermal energy. A cost model that predicts the COE was developed and exercised over the range of conditions found for geothermal plants in flashed-steam, binary, and enhanced-reservoir (e.g., Hot Dry Rock) applications. The calculations were repeated assuming that DWD technology is available to reduce well costs and improve well productivity. The results indicate that DWD technology would reduce the geothermal COE by 2--31%, depending on well depth, well productivity, and the type of geothermal reservoir. For instance, for a typical 50-MW, flashed-steam geothermal power plant employing 3-MW wells, 6,000-ft deep, the model predicts an electricity cost of 4.9 cents/kwh. With the DWD technology envisioned, the electricity cost could be reduced by nearly 20%, to less than 4 cents/kwh. Such a reduction in the cost of electricity would give geothermal power a competitive edge over other types of power at many locations across the US and around the world. It is thus believed that DWD technology could significantly expand the role of geothermal energy in providing efficient, environment-friendly electric generating capacity.

PRAIRIE,MICHAEL R.; GLOWKA,DAVID A.

2000-01-26T23:59:59.000Z

132

Reliability and Cost-Benefit-Based Standards for Transmission Network Operation and Design  

E-Print Network (OSTI)

...................................................................................................................... 143 Table C.3: Breakdown of transmission costs during t3 when considering all outages to single outages N-2 Deterministic security policy that refers to double outages O Operational cost #12. Probabilistic cost-benefit framework considered to replace historical deterministic N-k criteria. No changes

Catholic University of Chile (Universidad Católica de Chile)

133

Combustion Turbine/Combined-Cycle Operations and Maintenance Cost Analyzer, Version 8.61  

Science Conference Proceedings (OSTI)

The CTCC O&M Cost Analyzer is a spreadsheet software product that estimates operations and maintenance (O&M) costs for combustion turbine and combined-cycle plants for specific gas turbine models over the operating life of the assetThe CTCC O&M Cost Analyzer software contains powerful capabilities to assist users in evaluating non-fuel O&M costs and in supporting a life-cycle cost evaluation perspective. The software uses a "bottoms-up" approach for ...

2013-05-06T23:59:59.000Z

134

Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants  

SciTech Connect

OAK-B135 This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

Camillo A. DiNunzio Framatome ANP DE& S; Dr. Abhinav Gupta Assistant Professor NCSU; Dr. Michael Golay Professor MIT Dr. Vincent Luk Sandia National Laboratories; Rich Turk Westinghouse Electric Company Nuclear Systems; Charles Morrow, Sandia National Laboratories; Geum-Taek Jin, Korea Power Engineering Company Inc.

2002-11-30T23:59:59.000Z

135

New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Styrofoam cups are one of many Styrofoam cups are one of many products made from styrene monomer. Exelus Inc. (Livingston, NJ), established in 2000, develops and licenses "Cleaner-by- Design" chemical technologies to produce a vast array of products and materials used in consumer goods, transportation, and food processing. Currently, the company's principal process technologies are: ExSact - a refining technology that overcomes the environmental concerns, safety hazards and rising costs associated with conventional liquid acid technologies ExSyM - energy efficient, low cost SM production technology BTG - efficient, cost-effective conversion of biomass to clean, high-octane, gasoline-compatible fuel http://www.exelusinc.com/ New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces

136

ORCED: A model to simulate the operations and costs of bulk-power markets  

SciTech Connect

Dramatic changes in the structure and operation of US bulk-power markets require new analytical tools. The authors developed the Oak Ridge Competitive Electricity Dispatch (ORCED) model to analyze a variety of public-policy issues related to the many changes underway in the US electricity industry. Such issues include: policy and technology options to reduce carbon emissions from electricity production; the effects of electricity trading between high- and low-cost regions on consumers and producers in both regions; the ability of the owners of certain generating units to exercise market power as functions of the transmission link between two regions and the characteristics of the generating units and loads in each region; and the market penetration of new energy-production and energy-use technologies and the effects of their adoption on fuel use, electricity use and costs, and carbon emissions. ORCED treats two electrical systems connected by a single transmission link ORCED uses two load-duration curves to represent the time-varying electricity consumption in each region. The two curves represent peak and offpeak seasons. User specification of demand elasticities permits ORCED to estimate the effects of changes in electricity price, both overall and hour by hour, on overall electricity use and load shapes. ORCED represents the electricity supply in each region with 26 generating units. The two regions are connected by a single transmission link. This link is characterized by its capacity (MW), cost ({cents}/kWh), and losses (%). This report explains the inputs to, outputs from, and operation of ORCED. It also presents four examples showing applications of the model to various public-policy issues related to restructuring of the US electricity industry.

Hadley, S.; Hirst, E.

1998-06-01T23:59:59.000Z

137

Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency  

SciTech Connect

The DOE has set aggressive goals for solid state lighting (SSL) adoption, which require manufacturing and quality improvements for virtually all process steps leading to an LED luminaire product. The goals pertinent to this proposed project are to reduce the cost and improve the quality of the epitaxial growth processes used to build LED structures. The objectives outlined in this proposal focus on achieving cost reduction and performance improvements over state-of-the-art, using technologies that are low in cost and amenable to high efficiency manufacturing. The objectives of the outlined proposal focus on cost reductions in epitaxial growth by reducing epitaxy layer thickness and hetero-epitaxial strain, and by enabling the use of larger, less expensive silicon substrates and would be accomplished through the introduction of a high productivity reactive sputtering system and an effective sputtered aluminum-nitride (AlN) buffer/nucleation layer process. Success of the proposed project could enable efficient adoption of GaN on-silicon (GaN/Si) epitaxial technology on 150mm silicon substrates. The reduction in epitaxy cost per cm{sup 2} using 150mm GaN-on-Si technology derives from (1) a reduction in cost of ownership and increase in throughput for the buffer deposition process via the elimination of MOCVD buffer layers and other throughput and CoO enhancements, (2) improvement in brightness through reductions in defect density, (3) reduction in substrate cost through the replacement of sapphire with silicon, and (4) reduction in non-ESD yield loss through reductions in wafer bow and temperature variation. The adoption of 150mm GaN/Si processing will also facilitate significant cost reductions in subsequent wafer fabrication manufacturing costs. There were three phases to this project. These three phases overlap in order to aggressively facilitate a commercially available production GaN/Si capability. In Phase I of the project, the repeatability of the performance was analyzed and improvements implemented to the Veeco PVD-AlN prototype system to establish a specification and baseline PVD-AlN films on sapphire and in parallel the evaluation of PVD AlN on silicon substrates began. In Phase II of the project a Beta tool based on a scaled-up process module capable of depositing uniform films on batches of 4or 6 diameter substrates in a production worthy operation was developed and qualified. In Phase III, the means to increase the throughput of the PVD-AlN system was evaluated and focused primarily on minimizing the impact of the substrate heating and cooling times that dominated the overall cycle time.

Cerio, Frank

2013-09-14T23:59:59.000Z

138

Reducing power consumption while performing collective operations on a plurality of compute nodes  

DOE Patents (OSTI)

Methods, apparatus, and products are disclosed for reducing power consumption while performing collective operations on a plurality of compute nodes that include: receiving, by each compute node, instructions to perform a type of collective operation; selecting, by each compute node from a plurality of collective operations for the collective operation type, a particular collective operation in dependence upon power consumption characteristics for each of the plurality of collective operations; and executing, by each compute node, the selected collective operation.

Archer, Charles J. (Rochester, MN); Blocksome, Michael A. (Rochester, MN); Peters, Amanda E. (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian E. (Rochester, MN)

2011-10-18T23:59:59.000Z

139

U.S. Nuclear Power Plant Operating Cost and Experience Summaries  

Science Conference Proceedings (OSTI)

The ''U.S. Nuclear Power Plant Operating Cost and Experience Summaries'' (NUREG/CR-6577, Supp. 2) report has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants during 2000-2001. Costs incurred after initial construction are characterized as annual production costs, which represent fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications, which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operations summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from operating reports submitted by the licensees, the Nuclear Regulatory Commission (NRC) database for enforcement actions, and outage reports.

Reid, RL

2003-09-18T23:59:59.000Z

140

Costs and indices for domestic oil and gas field equipment and production operations, 1992--1995  

SciTech Connect

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1992, 1993, 1994, and 1995. The costs of all equipment and services are those in effect during June of each year. The sum (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measured do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables.

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Table 1. Updated estimates of power plant capital and operating costs  

U.S. Energy Information Administration (EIA) Indexed Site

Updated estimates of power plant capital and operating costs" Updated estimates of power plant capital and operating costs" ,"Plant Characteristics",,,"Plant Costs (2012$)" ,"Nominal Capacity (MW)","Heat Rate (Btu/kWh)",,"Overnight Capital Cost ($/kW)","Fixed O&M Cost ($/kW-yr)","Variable O&M Cost ($/MWh)" ,,,,,,,"NEMS Input" " Coal" "Single Unit Advanced PC",650,8800,,3246,37.8,4.47,"N" "Dual Unit Advanced PC",1300,8800,,2934,31.18,4.47,"Y" "Single Unit Advanced PC with CCS",650,12000,,5227,80.53,9.51,"Y" "Dual Unit Advanced PC with CCS",1300,12000,,4724,66.43,9.51,"N" "Single Unit IGCC ",600,8700,,4400,62.25,7.22,"N"

142

Estimating the marginal cost of reducing global fossil fuel CO[sub 2] emissions  

Science Conference Proceedings (OSTI)

This paper estimates the marginal, total, and average cost and effectiveness of carbon taxes applied either by the Organization for Economic Cooperation and Development (OECD) members alone, or as part of a global cooperative strategy, to reduce potential future emissions and their direct implications for employment in the US coal industry. Two sets of cases are examined, one set in which OECD members acts alone, and another set in which the world acts in concert. In each case set taxes are examined which achieve four alternative levels of emissions reduction: halve the rate of emissions growth, no emissions growth, 20[percent] reduction from 1988 levels, and 50[percent] reduction from 1988 levels. For the global cooperation case, carbon tax rates of [dollar sign]32, [dollar sign]113, [dollar sign]161, and [dollar sign]517 per metric ton of carbon (mtC) were needed in the year 2025 to achieve the objectives. Total costs were respectively [dollar sign]40, [dollar sign]178, [dollar sign]253, and [dollar sign]848 billions of 1990 US dollars per year in the year 2025. Average costs were [dollar sign]32, [dollar sign]55, [dollar sign]59, and [dollar sign]135 per mtC. Costs were significantly higher in the cases in which the OECD members states acted alone. OECD member states, acting alone, could not reduce global emissions by 50[percent] or 20[percent] relative to 1988, given reference case assumptions regarding developing and recently planned nations economic growth.

Edmonds, J.; Barns, D.W.; McDonald, S. (Pacific Northwest Lab., Washington, DC (United States))

1992-01-01T23:59:59.000Z

143

Reducing acid leaching of manganiferous ore: Effect of the iron removal operation on solid waste disposal  

Science Conference Proceedings (OSTI)

The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary iron removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO{sub 3}, NaOH, and Na{sub 2}CO{sub 3}. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.

De Michelis, Ida; Ferella, Francesco [University of L'Aquila, Department of Chemistry, Chemical Engineering and Materials, Monteluco di Roio, 67040 L'Aquila (Italy); Beolchini, Francesca [Polytechnic University of Marche, Department of Marine Sciences, Via Brecce Bianche, 60131 Ancona (Italy)], E-mail: f.beolchini@univpm.it; Veglio, Francesco [University of L'Aquila, Department of Chemistry, Chemical Engineering and Materials, Monteluco di Roio, 67040 L'Aquila (Italy)

2009-01-15T23:59:59.000Z

144

Wireless Smart Sensor Development Update: Applying Technology to Reduce Fire Watch Costs and to Improve Coverage  

Science Conference Proceedings (OSTI)

Smart Sensor product development for the use of fire watch improvement has been initiated by EPRI for the purposes of understanding the current state and/or industry available systems for electronically supporting the performance of existing work activities and/or providing for performance enhancement through cost effective monitoring and automation capabilities. The use of wireless technologies will allow a greater ease of deployment, reduced response time, and increased efficiency for fire watch equipm...

2004-12-11T23:59:59.000Z

145

Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997  

SciTech Connect

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations.

1998-03-01T23:59:59.000Z

146

Electrically operated magnetic switch designed to display reduced leakage inductance  

DOE Patents (OSTI)

An electrically operated magnetic switch is disclosed herein for use in opening and closing a circuit between two terminals depending upon the voltage across these terminals. The switch so disclosed is comprised of a ferrite core in the shape of a toroid having opposing ends and opposite inner and outer sides and an arrangement of electrically conductive components defining at least one current flow path which makes a number of turns around the core. This arrangement of components includes a first plurality of electrically conducive rigid rods parallel with and located outside the outer side of the core and a second plurality of electrically conductive rigid rods parallel with and located inside the inner side of the core. The arrangement also includes means for electrically connecting these rods together so that the define the current flow path. In one embodiment, this latter means uses rigid cross-tab means. In another, preferred embodiment, printed circuits on rigid dielectric substrates located on opposite ends of the core are utilized to interconnect the rods together.

Cook, Edward G. (Livermore, CA)

1994-01-01T23:59:59.000Z

147

Electrically operated magnetic switch designed to display reduced leakage inductance  

DOE Patents (OSTI)

An electrically operated magnetic switch is disclosed herein for use in opening and closing a circuit between two terminals depending upon the voltage across these terminals. The switch so disclosed is comprised of a ferrite core in the shape of a toroid having opposing ends and opposite inner and outer sides and an arrangement of electrically conductive components defining at least one current flow path which makes a number of turns around the core. This arrangement of components includes a first plurality of electrically conducive rigid rods parallel with and located outside the outer side of the core and a second plurality of electrically conductive rigid rods parallel with and located inside the inner side of the core. The arrangement also includes means for electrically connecting these rods together so that the define the current flow path. In one embodiment, this latter means uses rigid cross-tab means. In another, preferred embodiment, printed circuits on rigid dielectric substrates located on opposite ends of the core are utilized to interconnect the rods together. 10 figures.

Cook, E.G.

1994-05-10T23:59:59.000Z

148

Cloud MapReduce: A MapReduce Implementation on Top of a Cloud Operating System  

Science Conference Proceedings (OSTI)

Like a traditional Operating System (OS), a cloud OS is responsible for managing the low level cloud resources and presenting a high level interface to the application programmers in order to hide the infrastructure details. However, unlike a traditional ... Keywords: cloud, mapreduce, Amazon web services

Huan Liu; Dan Orban

2011-05-01T23:59:59.000Z

149

Geothermal Well Costs and their Sensitivities to Changes in Drilling and Completion Operations  

SciTech Connect

This paper presents a detailed analysis of the costs of drilling and completing geothermal wells. The basis for much of the analysis is a computer-simulation-based model which calculates and accrues operational costs involved in drilling and completing a well. Geothermal well costs are discussed in general, with special emphasis on variations among different geothermal areas in the United States, effects of escalation and inflation over the past few years, and comparisons of geothermal drilling costs with those for oil and gas wells. Cost differences between wells for direct use of geothermal energy and those for electric generation, are also indicated. In addition, a breakdown of total well cost into its components is presented. This provides an understanding of the relative contributions of different operations in drilling and completions. A major portion of the cost in many geothermal wells is from encountered troubles, such as lost circulation, cementing difficulties, and fishing. These trouble costs are considered through both specific examples and statistical treatment of drilling and completions problems. The sensitivities of well costs to variations in several drilling and completion parameters are presented. The mode1 makes it possible to easily vary parameters such as rates of penetration; bit lifetimes; bit rental, or rig costs; delay times; number of cement plugs; etc. are compared.

Carson, C. C.; Lin, Y.T.

1981-01-01T23:59:59.000Z

150

Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993  

SciTech Connect

This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

1994-07-08T23:59:59.000Z

151

Labor costs may be reduced . . . Research yields size-controlling rootstocks for peach production  

E-Print Network (OSTI)

Doyle David Ramming Production costs in peaches are highlyby UC and USDA. production costs could be substantiallyDRAFT T he annual production costs for peaches grown in

DeJong, Theodore M.; Johnson, R. Scott; Doyle, James F.; Ramming, David

2005-01-01T23:59:59.000Z

152

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

SciTech Connect

The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the energy savings. Commissioning also improves worker comfort, mitigates in

Mills, Evan

2009-07-16T23:59:59.000Z

153

Audit of health benefit costs at the Department`s Management and Operating Contractors  

SciTech Connect

The audit disclosed that the Department and certain of its contractors had initiated several positive actions to contain health benefit costs: improving data collection, increasing training, reviewing changes to health plans, improving the language in one contract, increasing the employees, share of health costs at one contractor, and initiating self-insurance at another contractor. Despite these actions, further improvements are needed in the administration of the contractor employee health benefit plans. It was found that the Department did not have the policies and procedures necessary to ensure that the health benefit costs met the tests for reasonableness. The audit of $95 million in health benefit costs incurred at six Management and Operating contractors showed that $15.4 million of these costs were excessive compared to national norms.

1994-06-23T23:59:59.000Z

154

A conceptual framework for the evaluation of cost-effectiveness of projects to reduce GHG emissions and sequester carbon  

SciTech Connect

This paper proposes a conceptual framework for evaluating the cost of projects to reduce atmospheric greenhouse gases (GHGs). The evaluation of cost-effectiveness should account for both the timing of carbon emissions and the damage caused by the atmospheric stock of carbon. We develop a conceptual basis to estimate the cost-effectiveness of projects in terms of the cost of reducing atmospheric carbon (CRAC) and other GHGs. CRAC accounts for the economic discount rate, alternative functional forms of the shadow price, the residence period of carbon in the atmosphere, and the multiple monetary benefits of projects. The last item is of particular importance to the developing countries.

Sathaye, J.; Norgaard, R.; Makundi, W.

1993-07-01T23:59:59.000Z

155

Method for including operation and maintenance costs in the economic analysis of active solar energy systems  

DOE Green Energy (OSTI)

For a developing technology such as solar energy, the costs for operation and maintenance (O and M) can be substantial. In the past, most economic analyses included these costs by simply assuming that an annual cost will be incurred that is proportional to the initial cost of the system. However, in assessing the economics of new systems proposed for further research and development, such a simplification can obscure the issues. For example, when the typical method for including O and M costs in an economic analysis is used, the O and M costs associated with a newly developed, more reliable, and slightly more expensive controller will be assumed to increase - an obvious inconsistency. The method presented in this report replaces this simplistic approach with a representation of the O and M costs that explicitly accounts for the uncertainties and risks inherent in the operation of any equipment. A detailed description of the data inputs required by the method is included as well as a summary of data sources and an example of the method as applied to an active solar heating system.

Short, W.D.

1986-08-01T23:59:59.000Z

156

Cyclic Operation of Power Plant: Technical, Operational and Cost Issues -- An International Seminar: Proceedings: ''Two Shifting'' Seminar  

SciTech Connect

Because of changes in demand and competition within the power industry, fossil fuel plants in many countries are now subject to two-shift operation, that is, generating power for 10-15 hours during the day only, usually in combination with a complete shutdown on weekends. Other fossil-fueled units, although running around the clock, need to follow changes in electricity demand. This mode of functioning, in which temperatures and pressures are never stable for more than a few hours, is referred to as ''cyclic operation of plant.'' The aim of the seminar at which these papers were presented was to identify the basic causes of component and equipment problems in two-shift operation, and to begin to identify procedures that could minimize operating and maintenance costs. The papers cover the following topics: Session 1: Plant Operation Experience and Design Issues; Session 2: Materials Issues; Session 3: Cost, Manpower and Management Issues; Session 4: Plant Automation Issues; Session 5: Hot Section Gas Turbine Issues; and Session 6: HRSG [heat recovery steam generator] Issues.

None

2001-01-01T23:59:59.000Z

157

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

E-Print Network (OSTI)

payback time versus building size Project costs and energyPayback time (commissioning cost/annual energy savings) lessenergy payback time of 41 years, while the proper allocation of costs and

Mills, Evan

2010-01-01T23:59:59.000Z

158

Reducing emissions from the electricity sector: the costs and benefits nationwide and for the Empire State  

Science Conference Proceedings (OSTI)

Using four models, this study looks at EPA's Clean Air Interstate Rule (CAIR) as originally proposed, which differs in only small ways from the final rule issued in March 2005, coupled with several approaches to reducing emissions of mercury including one that differs in only small ways from the final rule also issued in March 2005. This study analyzes what costs and benefits each would incur to New York State and to the nation at large. Benefits to the nation and to New York State significantly outweigh the costs associated with reductions in SO{sub 2}, NOx and mercury, and all policies show dramatic net benefits. The manner in which mercury emissions are regulated will have important implications for the cost of the regulation and for emission levels for SO{sub 2} and NOx and where those emissions are located. Contrary to EPA's findings, CAIR as originally proposed by itself would not keep summer emissions of NOx from electricity generators in the SIP region below the current SIP seasonal NOx cap. In the final CAIR, EPA added a seasonal NOx cap to address seasonal ozone problems. The CAIR with the seasonal NOx cap produces higher net benefits. The effect of the different policies on the mix of fuels used to supply electricity is fairly modest under scenarios similar to the EPA's final rules. A maximum achievable control technology (MACT) approach, compared to a trading approach as the way to achieve tighter mercury targets (beyond EPA's proposal), would preserve the role of coal in electricity generation. The evaluation of scenarios with tighter mercury emission controls shows that the net benefits of a maximum achievable control technology (MACT) approach exceed the net benefits of a cap and trade approach. 39 refs., 10 figs., 30 figs., 5 apps.

Karen Palmer; Dallas Butraw; Jhih-Shyang Shih

2005-06-15T23:59:59.000Z

159

Nissan and Centro partner to reduce energy cost 20% through improved metering  

NLE Websites -- All DOE Office Websites (Extended Search)

Centro Inc. Nissan Centro Inc. Nissan 321 Hill Avenue 983 Nissan Drive Nashville, TN 37210 Smyrna, TN 37167 Business: Flow Control Distributor & Representative Business: Automobile Manufacturing Brad Davis Chris Goddard Territory Manager Environmental Engineer Phone: 615-255-2220 Phone: 615-459-1633 Email: bdavis@centromemphis.com Email: chris.goddard@nissan-usa.com Nissan and Centro partner to reduce energy cost 20% through improved metering Project Scope Nissan wanted to precisely measure consumption by department in their Smyrna facility. For low pressure natural gas applications, Nissan sought a simple, reliable metering device with no moving parts. Centro determined that the Aaliant Target Flow meter and the Fox Thermal Mass Flow meter would meet

160

GAO-05-897 Department of Energy: Additional Opportunities Exist for Reducing Laboratory Contractors' Support Costs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Subcommittee on Energy Subcommittee on Energy and Water Development, Committee on Appropriations, House of Representatives September 2005 DEPARTMENT OF ENERGY Additional Opportunities Exist for Reducing Laboratory Contractors' Support Costs GAO-05-897 What GAO Found United States Government Accountability Office Why GAO Did This Study Highlights Accountability Integrity Reliability www.gao.gov/cgi-bin/getrpt?GAO-05-897. To view the full product, including the scope and methodology, click on the link above. For more information, contact Jim Wells at (202) 512-3841 or wellsj@gao.gov. Highlights of GAO-05-897, a report to the Subcommittee on Energy and Water Development, Committee on Appropriations, House of Representatives September 2005 DEPARTMENT OF ENERGY Additional Opportunities Exist for

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Industrial Approaches to Reducing Energy Costs in a Restructuring Electric Industry  

E-Print Network (OSTI)

Electric restructuring, currently proposed in California and being reviewed elsewhere, can produce many opportunities for large companies to reduce their electricity costs. As the electricity market changes, electric utilities and other potential suppliers are likely to develop a portfolio of options and creative pricing to attract customers in a competitive market. In attempting to be "energy neutral," i.e., to be indifferent to energy costs in one state or utility service area versus another, many companies are looking at a corporate approach to energy procurement, similar to the procurement of other products. Industrial customers may be looking for regional or even national energy suppliers for their facilities. Electric utilities, in an attempt to be competitive and retain customers, will likely work to be this regional or national energy supplier. The expectation will be that these suppliers can offer competitive pricing and a portfolio of options from which to choose. These options may resemble those that have developed in the natural gas market as a result of restructuring in the fuels industry.

Lowe, E. T.

1995-04-01T23:59:59.000Z

162

A New User-Friendly Model to Reduce Cost for Headwater Benefits Assessment  

DOE Green Energy (OSTI)

Headwater benefits at a downstream hydropower project are energy gains that are derived from the installation of upstream reservoirs. The Federal Energy Regulatory Commission is required by law to assess charges of such energy gains to downstream owners of non-federal hydropower projects. The high costs of determining headwater benefits prohibit the use of a complicated model in basins where the magnitude of the benefits is expected to be small. This paper presents a new user-friendly computer model, EFDAM (Enhanced Flow Duration Analysis Method), that not only improves the accuracy of the standard flow duration method but also reduces costs for determining headwater benefits. The EFDAM model includes a MS Windows-based interface module to provide tools for automating input data file preparation, linking and executing of a generic program, editing/viewing of input/output files, and application guidance. The EDFAM was applied to various river basins. An example was given to illustrate the main features of EFDAM application for creating input files and assessing headwater benefits at the Tulloch Hydropower Plant on the Stanislaus River Basin, California.

Bao, Y.S.; Cover, C.K.; Perlack, R.D.; Sale, M.J.; Sarma, V.

1999-07-07T23:59:59.000Z

163

DYNASTORE operating cost analysis of energy storage for a midwest utility  

DOE Green Energy (OSTI)

The objective of this project was to determine the savings in utility operating costs that could be obtained by installing a Battery Energy Storage System (BESS). The target utility was Kansas City Power and Light (KCPL), a typical Midwestern utility with a mix of generating plants and many interconnections. The following applications of battery energy storage were modeled using an Electric Power Research Institute (EPRI) developed and supported program called DYNASTORE: (1) Spinning Reserve Only (2) Load Leveling with Spinning Reserve (3) Load Leveling Only (4) Frequency Control DYNASTORE commits energy storage units along with generating units and calculates operating costs with and without energy storage, so that savings can be estimated. Typical weeks of hourly load data are used to make up a yearly load profile. For this study, the BESS power ranged from ``small`` to 300 MW (greater than the spinning reserve requirement). BESS storage time ranged from 1 to 8 hours duration (to cover the time-width of most peaks). Savings in operating costs were calculated for each of many sizes of MW capacity and duration. Graphs were plotted to enable the reader to readily see what size of BESS affords the greatest savings in operating costs.

Anderson, M.D. [Missouri Univ., Rolla, MO (United States). Dept. of Electrical Engineering; Jungst, R.G. [Sandia National Labs., Albuquerque, NM (United States)

1996-10-01T23:59:59.000Z

164

Forest Products: Georgia-Pacific's Insulation Upgrade Leads to Reduced Fuel Costs and Increased Process Efficiency  

SciTech Connect

This Steam Challenge Case Study looks at how the company, by insulating steam lines and replacing steam traps, was able to reduce fuel costs, increase process efficiency, and improve plant safety.

Ericksen, E.

1999-01-25T23:59:59.000Z

165

Options for Reducing Environmental-Related Utility Costs Associated With Dielectric Fluids Employed in Cables and Transformers  

Science Conference Proceedings (OSTI)

This report represents results of a literature review and technical workshop on environmental management of dielectric fluids, with emphasis on those properties that strongly influence transport, fate, impacts, and costs of a dielectric fluid release into the environment. From this basis, options are presented for new or modified dielectric fluids that could reduce environmental impacts and lower management costs.

1998-12-02T23:59:59.000Z

166

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

Science Conference Proceedings (OSTI)

PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

Michael D. Durham

2004-10-01T23:59:59.000Z

167

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

Michael D. Durham

2003-05-01T23:59:59.000Z

168

Reducing Electricity Cost Through Virtual Machine Placement in High Performance Computing Clouds  

E-Print Network (OSTI)

of the data centers' energy consumptions, energy prices, and peak power prices, it becomes clear that we can two components: (1) the cost of energy consumed (energy price: $ per KWh), and (2) the cost. Unfortunately, these works did not consider energy prices, peak power costs, or any cooling issues

Bianchini, Ricardo

169

Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 4: Project cost estimate  

SciTech Connect

The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. This volume represents the total estimated costs for the W113 facility. Operating Contractor Management costs have been incorporated as received from WHC. The W113 Facility TEC is $19.7 million. This includes an overall project contingency of 14.4% and escalation of 17.4%. A January 2001 construction contract procurement start date is assumed.

NONE

1995-09-01T23:59:59.000Z

170

Case studies of energy information systems and related technology: Operational practices, costs, and benefits  

SciTech Connect

Energy Information Systems (EIS), which can monitor and analyze building energy consumption and related data throughout the Internet, have been increasing in use over the last decade. Though EIS developers describe the capabilities, costs, and benefits of EIS, many of these descriptions are idealized and often insufficient for potential users to evaluate cost, benefit and operational usefulness. LBNL has conducted a series of case studies of existing EIS and related technology installations. This study explored the following questions: (1) How is the EIS used in day-to-day operation? (2) What are the costs and benefits of an EIS? (3) Where do the energy savings come from? This paper reviews the process of these technologies from installation through energy management practice. The study is based on interviews with operators and energy managers who use EIS. Analysis of energy data trended by EIS and utility bills was also conducted to measure the benefit. This paper explores common uses and findings to identify energy savings attributable to EIS, and discusses non-energy benefits as well. This paper also addresses technologies related to EIS that have been demonstrated and evaluated by LBNL.

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Dewey, Jim

2003-09-02T23:59:59.000Z

171

Prospects for hydrogen production by water electrolysis to be competitive with conventional methods. [Areas of research to reduce capital costs and approach 100 percent energy efficiencies  

SciTech Connect

With the impending unavailability of oil and natural gas, hydrogen will be produced on a large scale in the United States (1) from coal, or (2) by water electrolysis using electricity derived from nuclear or solar energy. In many parts of the world which lack fossil fuels, the latter will be the only possible method. The cost of purification of hydrogen produced from fossil fuels will increase its cost to about the same level as that of electrolytic hydrogen. When hydrogen is required in relatively small quantities too, the electrolytic method is advantageous. To minimize the cost of hydrogen produced by water electrolysis, it is necessary to reduce capital costs and approach 100 percent energy efficiencies. Areas of research, which will be necessary to achieve these goals are: (1) maximization of surface areas of electrodes; (2) use of thin electrolyte layers; (3) increase of operating temperature in alkaline water electrolysis cells to about 120-150/sup 0/C; (4) selection and evaluation of separator materials; (5) electrocatalysis of the hydrogen and oxygen electrode reaction; (6) mixed oxides as oxygen electrodes; and (7) photoelectrochemical effects. The progress made to date and proposed studies on these topics are briefly dealt with in this paper. The General Electric Solid Polymer Water Electrolyzer and Teledyne Alkaline Water Electrolysis Cells, both operating at about 120-150/sup 0/C, look mostpromising in achieving the goals of low capital cost and high energy efficiency. (auth)

Srinivasan, S.; Salzano, F.J.

1976-01-01T23:59:59.000Z

172

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network (OSTI)

MANUFACTURING THROUGH AN ALTERNATIVE ENERGY SUPPLY Chris Y.Footprint, Alternative Energy, Cost of Ownership ABSTRACTmanufacturing is to use alternative energies to partially

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

173

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants  

DOE Green Energy (OSTI)

kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

Gawlik, Keith

2013-06-25T23:59:59.000Z

174

VMFlow: leveraging VM mobility to reduce network power costs in data centers  

Science Conference Proceedings (OSTI)

Networking costs play an important role in the overall costs of a modern data center. Network power, for example, has been estimated at 10-20% of the overall data center power consumption. Traditional power saving techniques in data centers focus on ... Keywords: VM placement, energy and power management, green networking, networking aspects in cloud services

Vijay Mann; Avinash Kumar; Partha Dutta; Shivkumar Kalyanaraman

2011-05-01T23:59:59.000Z

175

REACH: Reduced Emissions and Advanced Combustion Hardware: A Low-Cost, Retrofit Approach to Reducing Stack Emissions and Enhancing t he Performance of Oil-Fired Boilers  

Science Conference Proceedings (OSTI)

Improved oil combustion technology, based upon optimization of oil atomizer and flame stabilizer design, has been developed for retrofit to oil-fired utility boilers. This technology is referred to as Reduced Emissions and Advanced Combustion Hardware, or REACH. REACH is commercially available for retrofit to oil-fired boilers to simultaneously reduce NOx, PM, and opacity, as well as provide operational and performance benefits.

1995-12-09T23:59:59.000Z

176

DOE Announces $27 Million to Reduce Costs of Solar Energy Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Obama Administration's SunShot Initiative to make solar energy cost-competitive with fossil fuels within the decade, U.S. Department of Energy Secretary Steven Chu today...

177

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network (OSTI)

environmental savings from solar PV falls in the middle ofCO 2 saving through use of solar PV, wind, and fuel cell2 savings. The cost of solar PV falls in the middle of these

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

178

Case Study: Georgia-Pacific Reduces Outside Fuel Costs and Increases Process Efficiency with Insulation Upgrade Program  

E-Print Network (OSTI)

A Georgia-Pacific plywood plant located in Madison, Georgia recently decided to insulate their steam lines for energy conservation, improved process efficiency and personnel protection. The goal of the project was to eliminate dependency on purchased fuel. Georgia-Pacific realized immediate and significant results and reduced fuel cost by about one third over a one year period.

Jackson, D.

1997-04-01T23:59:59.000Z

179

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to <25%, even at the same sorbent injection concentration. Other tests examined the impacts of fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

Michael D. Durham

2004-10-01T23:59:59.000Z

180

Reducing Bat Fatalities From Interactions with Operating Wind Turbines (Fact Sheet)  

Science Conference Proceedings (OSTI)

One of the biggest advantages of wind energy is that, overall, it has fewer negative impacts on the environment than fossil fuel-generated energy. Most professionals in the wind industry would like to reduce the impact of energy generation on plants, animals, and their habitats. This is why the industry is highly motivated to find out why migrating bats have unexpectedly high fatality rates near operating wind farms. New research has provided quantitative data that indicates barotrauma is not a major cause of bat deaths around operating turbines.

Lawson, M.

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The cost effectiveness of reducing public exposure to carcinogens in Harris County by a abating chemical plant emissions  

SciTech Connect

The work examines the engineering reasonableness and the cost effectiveness of reducing public exposure to carcinogens n ambient air by abating emissions of organic chemicals in waste gas streams from chemical plants in Harris County, Texas, which contains the large chemical manufacturing complex in the Houston ship channel areas. The work also examined the cost effectiveness of reducing public exposure through changing the way vent streams are released to the atmosphere. The achievable exposure reductions are estimated by use of 1980 census data and of ambient concentration estimates. The ambient concentration estimates are calculated using the Texas Climatological Model Version 2 (TCM-2) and publicly available emissions inventory collected by the Texas Air Control Board. The TCM-2 is based on the steady state Gaussian plume hypothesis, Briggs plume rise formations, Pasquill-Gifford dispersion coefficient approximations, and first order pollutant decay. The cost estimates rely on published studies and on the waste gas stream parameters of the chemical plant vents. The cost effectiveness results are compared with the cost effectiveness of controls typically applied to new sources of volatile organic compounds (VOCs) that are controlled because of their contribution to ozone air pollution, not because of the carcinogenicity of their emissions.

Price, J.H. Jr.

1989-01-01T23:59:59.000Z

182

NGNP/HTE full-power operation at reduced high-temperature heat exchanger temperatures.  

Science Conference Proceedings (OSTI)

Operation of the Next Generation Nuclear Plant (NGNP) with reduced reactor outlet temperature at full power was investigated for the High Temperature Electrolysis (HTE) hydrogen-production application. The foremost challenge for operation at design temperature is achieving an acceptably long service life for heat exchangers. In both the Intermediate Heat Exchanger (IHX) and the Process Heat Exchanger (PHX) (referred to collectively as high temperature heat exchangers) a pressure differential of several MPa exists with temperatures at or above 850 C. Thermal creep of the heat exchanger channel wall may severely limit heat exchanger life depending on the alloy selected. This report investigates plant performance with IHX temperatures reduced by lowering reactor outlet temperature. The objective is to lower the temperature in heat transfer channels to the point where existing materials can meet the 40 year lifetime needed for this component. A conservative estimate for this temperature is believed to be about 700 C. The reactor outlet temperature was reduced from 850 C to 700 C while maintaining reactor power at 600 MWt and high pressure compressor outlet at 7 MPa. We included a previously reported design option for reducing temperature at the PHX. Heat exchanger lengths were adjusted to reflect the change in performance resulting from coolant property changes and from resizing related to operating-point change. Turbomachine parameters were also optimized for the new operating condition. An integrated optimization of the complete system including heat transfer equipment was not performed. It is estimated, however, that by performing a pinch analysis the combined plant efficiency can be increased from 35.5 percent obtained in this report to a value between 38.5 and 40.1 percent. Then after normalizing for a more than three percent decrease in commodities inventory compared to the reference plant, the commodities-normalized efficiency lies between 40.0 and 41.3. This compares with a value of 43.9 for the reference plant. This latter plant has a reactor outlet temperature of 850 C and the two high temperature heat exchangers. The reduction in reactor outlet temperature from 850 C to 700 C reduces the tritium permeability rate in the IHX metal by a factor of three and thermal creep by five orders of magnitude. The design option for reducing PHX temperature from 800 C to 200 C reduces the permeability there by three orders of magnitude. In that design option this heat exchanger is the single 'choke-point' for tritium migration from the nuclear to the chemical plant.

VIlim, R.; Nuclear Engineering Division

2009-03-12T23:59:59.000Z

183

The cost of reducing utility S02 emissions : not as low as you might think  

E-Print Network (OSTI)

A common assertion in public policy discussions is that the cost of achieving the SO2 emissions reductions under the acid rain provisions of the Clean Air Act ("Title IV") has been only one-tenth or less of what Title IV ...

Smith, Anne E.

1998-01-01T23:59:59.000Z

184

SOLERAS - Solar-Powered Water Desalination Project at Yanbu: Forecasting models for operating and maintenance cost of the pilot plant  

Science Conference Proceedings (OSTI)

This study was conducted in cooperation with the Department of Industrial Engineering of King Abdulaziz University. The main objective of this study is to meet some of the goals of the Solar Energy Water Desalination Plant (SEWDP) plan in the area of economic evaluation. The first part of this project focused on describing the existing trend in the operation and maintenance (OandM) cost for the SOLERAS Solar Energy Water Desalination Plant in Yanbu. The second part used the information obtained on existing trends to find suitable forecasting models. These models, which are found here, are sensitive to changes in costs trends. Nevertheless, the study presented here has established the foundation for (OandM) costs estimating in the plant. The methodologies used in this study should continue as more data on operation and maintenance costs become available, because, in the long run, the trend in costs will help determine where cost effectiveness might be improved. 7 refs., 24 figs., 15 tabs.

Al-Idrisi, M.; Hamad, G.

1987-04-01T23:59:59.000Z

185

Inspection of the cost reduction incentive program at the Department of Energy`s Idaho Operations Office  

SciTech Connect

The purpose of this inspection was to review the economy and efficiency of Idaho`s Fiscal Year 1992 Cost Reduction Incentive Program, as well as to provide information to Departmental officials regarding any difficulties in administering these types of programs. The report is of the findings and recommendations. According to Idaho officials, their Cost Reduction Incentive Program was designed to motivate and provide incentives to management and operating contractors which would result in cost savings to the Department while increasing the efficiency and effectiveness of the contractors` operations. Idaho officials reported that over $22.5 million in costs were saved as a result of the Fiscal Year 1992 Cost Reduction Incentive Program. It was found that: (1) Idaho officials acknowledged that they did not attempt a full accounting records validation of the contractor`s submitted cost savings; (2) cost reduction incentive programs may result in conflicts of interest--contractors may defer work in order to receive an incentive fee; (3) the Department lacks written Department-wide policies and procedures--senior Procurement officials stated that the 1985 memorandum from the then-Assistant Secretary for Management and Administration was not the current policy of the Department; and (4) the Department already has the management and operating contract award fee provisions and value engineering program that can be used to provide financial rewards for contractors that operate cost effectively and efficiently.

Not Available

1994-07-07T23:59:59.000Z

186

Shifting the Paradigm for Long Term Monitoring at Legacy Sites to Improve Performance while Reducing Cost  

SciTech Connect

A major issue facing many government and private industry sites that were previously contaminated with radioactive and chemical wastes is that often the sites cannot be cleaned up enough to permit unrestricted human access. These sites will require long-term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality in a cost effective manner. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site (SRS), the larger DOE complex, and many large federal and private sites. Currently, most monitoring strategies are focused on laboratory measurements of contaminants measured in groundwater samples collected from wells. This approach is expensive, and provides limited and lagging information about the effectiveness of cleanup activities and the behavior of the residual contamination. Over the last twenty years, DOE and other federal agencies have made significant investments in the development of various types of sensors and strategies that would allow for remote analysis of contaminants in groundwater, but these approaches do not promise significant reductions in risk or cost. Scientists at SRS have developed a new paradigm to simultaneously improve the performance of long term monitoring systems while lowering the overall cost of monitoring. This alternative approach incorporates traditional point measurements of contaminant concentration with measurements of controlling variables including boundary conditions, master variables, and traditional plume/contaminant variables. Boundary conditions are the overall driving forces that control plume movement and therefore provide leading indication to changes in plume stability. These variables include metrics associated with meteorology, hydrology, hydrogeology, and land use. Master variables are the key variables that control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. A robust suite of relatively inexpensive tools is commercially available to measure these variables. Traditional plume/contaminant variables are various measures of contaminant concentration including traditional analysis of chemicals in groundwater samples. An innovative long term monitoring strategy has been developed for acidic or caustic groundwater plumes contaminated with metals and/or radionuclides. Not only should the proposed strategy be more effective at early identification of potential risks, this strategy should be significantly more cost effective because measurement of controlling boundary conditions and master variables is relatively simple. These variables also directly reflect the evolution of the plume through time, so that the monitoring strategy can be modified as the plume 'ages'. This transformational long-term monitoring paradigm will generate significant cost savings to DOE, other federal agencies and industry and will provide improved performance and leading indicators of environmental management performance.

2013-01-10T23:59:59.000Z

187

Energy Conservation Fund: Helping Corporations Develop Energy Conservation Strategies and Reduce Utility Costs  

E-Print Network (OSTI)

Energy conservation projects can save companies significant money over time and often pay for themselves very quickly. This is especially true with the dramatic increase in energy costs over the past few years. Yet convincing corporate decision makers of their value is challenging, since most plants with limited capital tend to direct resources toward projects that increase production rather than toward those that save energy. The irony is that production projects may not realize savings if markets change, while conservation improvements usually change a plant's infrastructure in ways that ensure continued savings. Establishing a business unit or department focused on energy cost reduction and investing its profits in an Energy Conservation Fund (ECF) is part of a total energy approach that helps corporations identify projects, dedicate funds and implement changes. It makes conservation improvement projects more attractive on the front end, so companies can enjoy the long-term benefits.

Swanson, G. A.; Houston, W.

2005-01-01T23:59:59.000Z

188

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Tower Systems to develop the Wind Tower Systems to develop the Space Frame tower, a new concept for wind turbine towers. Instead of a solid steel tube, the Space Frame tower consists of a highly optimized design of five custom-shaped legs and interlaced steel struts. With this design, Space Frame towers can support turbines at greater heights, yet weigh and cost less than traditional steel tube towers. Wind Tower Systems LLC (now

189

A comparison of estimates of cost-effectiveness of alternative fuels and vehicles for reducing emissions  

DOE Green Energy (OSTI)

The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain reductions in emissions of air pollutants. The CER can lead to selection of the most effective sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER estimates for alternative fuel vehicles (AFVs) have varied widely among pervious studies. In one of several explanations of LCER differences, this report uses a consistent basis for fuel price to re-estimate CERs for AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton includes compressed natural gas and ed Petroleum gas vehicles; and E85 flexible-fueled vehicles (with fuel mixture of 85 percent cellulose-derived ethanol in gasoline). The E85 system would be much less attractive if corn-derived ethanol were used. The CER for E85 (corn-derived) is higher with higher values placed on the reduction of gas emissions. CER estimates are relative to conventional vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 RFG program will be implemented before significant market penetration by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV type. The relative differences in cost and emissions reduction assumptions can be large, and the effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that methodological differences can make large contributions to CER differences among studies.

Hadder, G.R.

1995-11-01T23:59:59.000Z

190

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants  

SciTech Connect

Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

Gawlik, Keith

2013-06-25T23:59:59.000Z

191

Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in Integrated Gasification Combined Cycle Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Feasibility Studies to Improve Plant Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in Integrated Gasification Combined Cycle Plants Background Gasification provides the means to turn coal and other carbonaceous solid, liquid and gaseous feedstocks as diverse as refinery residues, biomass, and black liquor into synthesis gas and valuable byproducts that can be used to produce low-emissions power, clean-burning fuels and a wide range of commercial products to support

192

Public release of optimization of metallization scheme for thin emitter wrap-through solar cells for higher efficiency, reduced precious metal costs, and reduced stress.  

DOE Green Energy (OSTI)

Back-contact crystalline-silicon photovoltaic solar cells and modules offer a number of advantages, including the elimination of grid shadowing losses, reduced cost through use of thinner silicon substrates, simpler module assembly, and improved aesthetics. While the existing edge tab method for interconnecting and stringing edge-connected back contact cells is acceptably straightforward and reliable, there are further gains to be exploited when you have both contact polarities on one side of the cell. In this work, we produce 'busbarless' emitter wrap-through solar cells that use 41% of the gridline silver (Ag) metallization mass compared to the edge tab design. Further, series resistance power losses are reduced by extraction of current from more places on the cell rear, leading to a fill factor improvement of about 6% (relative) on the module level. Series resistance and current-generation losses associated with large rear bondpads and busbars are eliminated. Use of thin silicon (Si) wafers is enabled because of the reduced Ag metallization mass and by interconnection with conductive adhesives leading to reduced bow. The busbarless cell design interconnected with conductive adhesives passes typical International Electrotechnical Commission damp heat and thermal cycling test.

Ruby, Douglas Scott; Murphy, Brian (Advent Solar, Inc., Albuquerque, NM); Meakin, David (Advent Solar, Inc., Albuquerque, NM); Dominguez, Jason (Advent Solar, Inc., Albuquerque, NM); Hacke, Peter (Advent Solar, Inc., Albuquerque, NM)

2008-08-01T23:59:59.000Z

193

Reducing electricity cost through virtual machine placement in high performance computing clouds  

Science Conference Proceedings (OSTI)

In this paper, we first study the impact of load placement policies on cooling and maximum data center temperatures in cloud service providers that operate multiple geographically distributed data centers. Based on this study, we then propose dynamic ... Keywords: computing cloud, cooling, energy, multi-data-center

Kien Le; Ricardo Bianchini; Jingru Zhang; Yogesh Jaluria; Jiandong Meng; Thu D. Nguyen

2011-11-01T23:59:59.000Z

194

Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen  

DOE Green Energy (OSTI)

This report describes activities for the fifteenth quarter of work performed under this agreement. MEFOS, the gasification testing subcontractor, reported to EnviRes that the vendor for the pressure vessel for above atmospheric testing plans to deliver it by October 20, 2006. MEFOS performed a hazardous operation review of pressurized testing.

Donald P. Malone; William R. Renner

2006-07-01T23:59:59.000Z

195

Cost Quality Management Assessment for the Idaho Operations Office. Final report  

SciTech Connect

The Office of Engineering and Cost Management (EM-24) conducted a Cost Quality Management Assessment of EM-30 and EM-40 activities at the Idaho National Engineering Laboratory on Feb. 3--19, 1992 (Round I). The CQMA team assessed the cost and cost-related management activities at INEL. The Round II CQMA, conducted at INEL Sept. 19--29, 1994, reviewed EM-30, EM-40, EM-50, and EM-60 cost and cost-related management practices against performance objectives and criteria. Round II did not address indirect cost analysis. INEL has made measurable progress since Round I.

NONE

1995-06-01T23:59:59.000Z

196

Wind Power Impacts on Electric Power System Operating Costs: Summary and Perspective on Work to Date; Preprint  

DOE Green Energy (OSTI)

Electric utility system planners and operators are concerned that variations in wind plant output may increase the operating costs of the system. This concern arises because the system must maintain an instantaneous balance between the aggregate demand for electric power and the total power generated by all power plants feeding the system. This is a highly sophisticated task that utility operators and automatic controls perform routinely, based on well-known operating characteristics for conventional power plants and a great deal of experience accumulated over many years. System operators are concerned that variations in wind plant output will force the conventional power plants to provide compensating variations to maintain system balance, thus causing the conventional power plants to deviate from operating points chosen to minimize the total cost of operating the system. The operators' concerns are compounded by the fact that conventional power plants are generally under their control and thus are dispatchable, whereas wind plants are controlled instead by nature. Although these are valid concerns, the key issue is not whether a system with a significant amount of wind capacity can be operated reliably, but rather to what extent the system operating costs are increased by the variability of the wind.

Smith, J. C.; DeMeo, E. A.; Parsons, B.; Milligan, M.

2004-03-01T23:59:59.000Z

197

Role of gas and steam turbines to reduce industrial plant energy costs  

SciTech Connect

Data are given to help industry select the economic fuel and economic mix of steam and gas turbines for energy-conservation measures and costs. Utilities and industrials can no longer rely on a firm supply of natural gas to fuel their boilers and turbines. The effect various liquid fuels have on gas turbine maintenance and availability is summarized. Process heat requirements per unit of power, process steam pressure, and the type of fuel will be factors in evaluating the proper mix of steam and gas turbines. The plant requirements for heat, and the availability of a reliable source of electric power will influence the amount of power (hp and kW) that can be economically generated by the industrial. (auth)

Wilson, W.B.; Hefner, W.J.

1973-11-01T23:59:59.000Z

198

Truck Stop Electrification: A Cost-Effective Solution to Reducing Truck Idling  

Science Conference Proceedings (OSTI)

Truck stop electrification (TSE) allows truckers to "plug in" their vehicles while stopped, in order to operate air conditioning, heating, and appliances without any engine idling. Truck stop electrification technologies fall into two major categories: "off-board" and "on-board" systems. Off-board systems are fixed, stand-alone units installed at the truck parking space. These systems provide heating, ventilating, and air conditioning (HVAC), and may also include AC electrical power and entertainment, co...

2004-12-27T23:59:59.000Z

199

Wind Turbine Control Design to Reduce Capital Costs: 7 January 2009 - 31 August 2009  

DOE Green Energy (OSTI)

This report first discusses and identifies which wind turbine components can benefit from advanced control algorithms and also presents results from a preliminary loads case analysis using a baseline controller. Next, it describes the design, implementation, and simulation-based testing of an advanced controller to reduce loads on those components. The case-by-case loads analysis and advanced controller design will help guide future control research.

Darrow, P. J.

2010-01-01T23:59:59.000Z

200

Abbreviated epitaxial growth mode (AGM) method for reducing cost and improving quality of LEDs and lasers  

DOE Patents (OSTI)

The use of an abbreviated GaN growth mode on nano-patterned AGOG sapphire substrates, which utilizes a process of using 15 nm low temperature GaN buffer and bypassing etch-back and recovery processes during epitaxy, enables the growth of high-quality GaN template on nano-patterned AGOG sapphire. The GaN template grown on nano-patterned AGOG sapphire by employing abbreviated growth mode has two orders of magnitude lower threading dislocation density than that of conventional GaN template grown on planar sapphire. The use of abbreviated growth mode also leads to significant reduction in cost of the epitaxy. The growths and characteristics of InGaN quantum wells (QWs) light emitting diodes (LEDs) on both templates were compared. The InGaN QWs LEDs grown on the nano-patterned AGOG sapphire demonstrated at least a 24% enhancement of output power enhancement over that of LEDs grown on conventional GaN templates.

Tansu, Nelson; Chan, Helen M; Vinci, Richard P; Ee, Yik-Khoon; Biser, Jeffrey

2013-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

USE OF SLIMHOLE DRILLING TO REDUCE WELL COSTS 30-50%: ARNIM PROSPECT  

SciTech Connect

This report highlights the drilling of two shallow oil wells in Fayette County, Texas. The operator of these two wells was Stanton Mineral Development, Inc. The aim of this project was to successfully complete the two (2) wells, emphasizing tight oversight of the technological aspects, neglect of which are the primary causes of failure in this mature producing region as well as unnecessarily expensive wells. Discussions contained here within are not limited to just the execution of the project itself, but a historical and technical analysis which forms a basis for the decisions made both during drilling and completion. Additionally, there is substantial dialogue covering the financial benefits associated with the findings of this project.

WM. Stanton McDonald; Christopher M. Long

2002-06-13T23:59:59.000Z

202

Data Collection for Current U.S. Wind Energy Projects: Component Costs, Financing, Operations, and Maintenance; January 2011 - September 2011  

DOE Green Energy (OSTI)

DNV Renewables (USA) Inc. (DNV) used an Operations and Maintenance (O&M) Cost Model to evaluate ten distinct cost scenarios encountered under variations in wind turbine component failure rates. The analysis considers: (1) a Reference Scenario using the default part failure rates within the O&M Cost Model, (2) High Failure Rate Scenarios that increase the failure rates of three major components (blades, gearboxes, and generators) individually, (3) 100% Replacement Scenarios that model full replacement of these components over a 20 year operating life, and (4) Serial Failure Scenarios that model full replacement of blades, gearboxes, and generators in years 4 to 6 of the wind project. DNV selected these scenarios to represent a broad range of possible operational experiences. Also in this report, DNV summarizes the predominant financing arrangements used to develop wind energy projects over the past several years and provides summary data on various financial metrics describing those arrangements.

Martin-Tretton, M.; Reha, M.; Drunsic, M.; Keim, M.

2012-01-01T23:59:59.000Z

203

Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen  

DOE Green Energy (OSTI)

This report describes activities for the sixteenth quarter of work performed under this agreement. MEFOS, the gasification testing subcontractor, reported to EnviRes that the vendor for the pressure vessel for above atmospheric testing now plans to deliver it by November 20, 2006 instead of October 20, 2006 as previously reported. MEFOS performed a hazardous operation review of pressurized testing. The current schedule anticipates above atmospheric pressure testing to begin during the week of April 16, 2007. Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 3 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2006-09-30T23:59:59.000Z

204

Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies  

E-Print Network (OSTI)

preventing water pollution from motor vehicles would be muchgroundwater pollution; motor-vehicle transportation;the environmental costs of motor vehicle transportation in

Nixon, Hilary; Saphores, Jean-Daniel M

2007-01-01T23:59:59.000Z

205

Valuing Rail Transit: Comparing Capital and Operating Costs to Consumer Benefits  

E-Print Network (OSTI)

Estimating the effects of light rail transit on health caredesirability of urban rail transit systems. In Journal ofcapital costs : heavy rail and busway HOV lane. Federal

Guerra, Erick

2010-01-01T23:59:59.000Z

206

Developing a Mechanistic Understanding of Lamellar Hydroxide Mineral Carbonation Reaction Processes to Reduce CO2 Mineral Sequestration Process Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanistic Understanding of Lamellar Hydroxide Mechanistic Understanding of Lamellar Hydroxide Mineral Carbonation Reaction Processes to Reduce CO 2 Mineral Sequestration Process Cost Michael J. McKelvy (mckelvy@asu.edu; 480-965-4535), Andrew V. G. Chizmeshya (chizmesh@asu.edu; 480-965-6072), Hamdallah Bearat (Hamdallah.Bearat@asu.edu; 480-965-2624), Renu Sharma (Renu.Sharma@asu.edu; 480-965-4541), and Ray W. Carpenter (carpenter@asu.edu; 480-965-4549) Center for Solid State Science and Science and Engineering of Materials PhD Program, P.O. Box 871704, Arizona State University, Tempe, Arizona 85287 USA ABSTRACT The potential environmental effects of increasing atmospheric CO 2 levels are of major worldwide concern. One alternative for managing CO 2 emissions is carbon sequestration: the capture and secure confinement of CO

207

Opportunities for Low Cost Titanium in Reduced Fuel Consumption, Improved Emissions, and Enhanced Durability Heavy Duty Vehicles  

DOE Green Energy (OSTI)

The purpose of this study was to determine which components of heavy-duty highway vehicles are candidates for the substitution of titanium materials for current materials if the cost of those Ti components is very significantly reduced from current levels. The processes which could be used to produce those low cost components were also investigated. Heavy-duty highway vehicles are defined as all trucks and busses included in Classes 2C through 8. These include heavy pickups and vans above 8,500 lbs. GVWR, through highway tractor trailers. Class 8 is characterized as being a very cyclic market, with ''normal'' year volume, such as in 2000, of approximately 240,000 new vehicles. Classes 3-7 are less cyclic, with ''normal'' i.e., year 2000, volume totaling approximately 325,000 new vehicles. Classes 3-8 are powered about 88.5% by diesel engines, and Class 2C at very roughly 83% diesel. The engine portion of the study therefore focused on diesels. Vehicle production volumes were used in estimates of the market size for candidate components.

Kraft, E.H.

2002-07-22T23:59:59.000Z

208

Enabling multi-cation electrolyte usage in LMBs for lower cost and operating temperature  

E-Print Network (OSTI)

Alloy anodes form a promising path to the use of multi-cation electrolytes by increasing chemical stability. In this study, a lithium-magnesium alloy anode was developed such that lower cost and lower melting temperature ...

Blanchard, Allan (Allan B.)

2013-01-01T23:59:59.000Z

209

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

SciTech Connect

As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich; Dunham Whitehead, Camilla; Brown, Rich

2010-09-30T23:59:59.000Z

210

Carbon offsets as a cost containment instrument : a case study of reducing emissions from deforestation and forest degradation  

E-Print Network (OSTI)

Carbon offset is one type of flexibility mechanism in greenhouse gas emission trading schemes that helps nations meet their emission commitments at lower costs. Carbon offsets take advantage of lower abatement cost ...

Kim, Jieun, S.M. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

211

Energy and cost analysis of commercial building shell characteristics and operating schedules  

SciTech Connect

Eight prototypical commercial buildings were considered, and estimates of the energy savings realized from various conservation measures are presented. For each of four building types (hospital, office, educational, and retail) two building designs representative of both pre- and post-embargo construction were analyzed. The ongoing program at Oak Ridge National Laboratory aims to develop an engineering-economic model to forecast annual energy use in the US commercial sector. This particular study was undertaken to define relationships among energy-conservation measures, energy savings, and capital costs. Buildings were modeled and analyzed using NECAP (NASA Energy-Cost Analysis Program) based on hourly weather data in Kansas City (selected as typical of the entire country). Energy-conservation measures considered include night and weekend thermostat setback, reduction in ventilation, reduction in lighting, window alterations (shading, dual panes, and size reduction), economizer cycle, reset of supply temperature based on zone demand, and improvements in equipment efficiencies. Results indicate energy savings as a function of the capital cost of each energy-conservation measure for each of the eight buildings considered.

Johnson, W.S.; Pierce, F.E.

1980-04-01T23:59:59.000Z

212

Case studies of energy information systems and related technology: Operational practices, costs, and benefits  

E-Print Network (OSTI)

fume hood position. Daily gas usage was unusual on 3/17/03.by 16.0%, and natural gas usage was reduced by 10.0%. Tableelectric demand, gas usage, outside air temperature, chilled

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Dewey, Jim

2003-01-01T23:59:59.000Z

213

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

Brayton Point Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of the impacts of future mercury regulations to Brayton Point Unit 1, including performance, estimated cost, and operation data. This unit has variable (29-75%) native mercury removal, thus it was important to understand the impacts of process variables and activated carbon on mercury capture. The team responsible for executing this program included: (1) Plant and PG&E National Energy Group corporate personnel; (2) Electric Power Research Institute (EPRI); (3) United States Department of Energy National Energy Technology Laboratory (DOE/NETL); (4) ADA-ES, Inc.; (5) NORIT Americas, Inc.; (6) Apogee Scientific, Inc.; (7) TRC Environmental Corporation; (8) URS Corporation; (9) Quinapoxet Solutions; (10) Energy and Environmental Strategies (EES); and (11) Reaction Engineering International (REI). The technical support of all of these entities came together to make this program achieve its goals. Overall, the objectives of this field test program were to determine the impact of activated carbon injection on mercury control and balance-of-plant processes on Brayton Point Unit 1. Brayton Point Unit 1 is a 250-MW unit that fires a low-sulfur eastern bituminous coal. Particulate control is achieved by two electrostatic precipitators (ESPs) in series. The full-scale tests were conducted on one-half of the flue gas stream (nominally 125 MW). Mercury control sorbents were injected in between the two ESPs. The residence time from the injection grid to the second ESP was approximately 0.5 seconds. In preparation for the full-scale tests, 12 different sorbents were evaluated in a slipstream of flue gas via a packed-bed field test apparatus for mercury adsorption. Results from these tests were used to determine the five carbon-based sorbents that were tested at full-scale. Conditions of interest that were varied included SO{sub 3} conditioning on/off, injection concentrations, and distribution spray patterns. The original test plan called for parametric testing of NORIT FGD carbon at 1, 3, and 10 lbs/MMacf. These injection concentrations were estimated based on results from the Pleasant Prairie tests that showed no additional mercury removal when injection concentrations were increased above 10 lbs/MMacf. The Brayton Point parametric test data indicated that higher injection concentrations would achieve higher removal efficiencies and should be tested. The test plan was altered to include testing at 20 lbs/MMacf. The first test at this higher rate showed very high removal across the second ESP (>80%). Unlike the ''ceiling'' phenomenon witnessed at Pleasant Prairie, increasing sorbent injection concentration resulted in further capture of vapor-phase mercury. The final phase of field-testing was a 10-day period of continuous injection of NORIT FGD carbon. During the first five days, the injection concentration was held at 10 lbs/MMacf, followed by nominally five days of testing at an injection concentration of 20 lbs/MMacf. The mercury removal, as measured by the semi-continuous emission monitors (S-CEM), varied between 78% and 95% during the 10 lbs/MMacf period and increased to >97% when the injection concentration was increased to 20 lbs/MMacf. During the long-term testing period, mercury measurements following EPA's draft Ontario Hydro method were conducted by TRC Environmental Corporation at both 10 and 20 lbs/MMacf test conditions. The Ontario Hydro data showed that the particulate mercury removal was similar between the two conditions of 10 or 20 lbs/MMacf and removal efficiencies were greater than 99%. Elemental mercury was not detected in any samples, so no conclusions as to its removal can be drawn. Removal of oxidized mercury, on the other hand, increased from 68% to 93% with the higher injection concentration. These removal rates agreed well with the S-CEM results.

Michael D. Durham

2005-03-17T23:59:59.000Z

214

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating...

215

Energy Assessment Training Reduces Energy Costs for the U.S. Coast Guard Sector Guam: Success Stories (Fact Sheet)  

SciTech Connect

U.S. Coast Guard Sector Guam experiences considerable energy cost and use savings after implementing training from NREL's energy assessment training.

Not Available

2013-05-01T23:59:59.000Z

216

Low Wind Speed Technology Phase II: Reducing Cost of Energy Through Rotor Aerodynamics Control; Global Energy Concepts, LLC  

DOE Green Energy (OSTI)

This fact sheet describes a subcontract with Global Energy Concepts to evaluate a wide range of wind turbine configurations and their impact on overall cost of energy (COE).

Not Available

2006-03-01T23:59:59.000Z

217

Energy Assessment Training Reduces Energy Costs for the U.S. Coast Guard Sector Guam: Success Stories (Fact Sheet)  

SciTech Connect

U.S. Coast Guard Sector Guam experiences considerable energy cost and use savings after implementing training from NREL's energy assessment training.

2013-05-01T23:59:59.000Z

218

16.2 - Performance Evaluation and Measurement Plans for Cost-Reimbursement, Non-Management and Operating Contracts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 16.2 (July 2012) Chapter 16.2 (July 2012) 1 Performance Evaluation and Measurement Plans for Cost-Reimbursement, Non- Management and Operating Contracts [Reference: FAR 6, FAR 16, FAR 22, FAR 32, FAR 46, DEAR 915.404-4-72, DEAR 916.405-2, DEAR 970.1504-1, and Acquisition Guide Chapter 16.1] Overview The policy of the DOE is to maximize contractor performance and to align costs with performance through the use of performance-based management as a strategic contract management tool to plan for, manage, and evaluate contractor performance. An important function of contract administration is the ability, or the opportunity, to manage the environment within which the contracted effort is proceeding and, most importantly, to facilitate adjustments to that effort to meet the demand and changes as

219

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

DOE Green Energy (OSTI)

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

220

Geothermal Heat Pump Systems in Schools: Construction, Maintenance and Operating Costs  

Science Conference Proceedings (OSTI)

Geothermal heat pumping and cooling systems are still not widely used to heat and cool buildings. They are an unknown to most architects and engineers. The electric utility industry has recognized them as being a very energy-efficient way to heat and cool buildings using electricity. The Tennessee Valley Authority (TVA) has assisted in design and installation of many geothermal systems, particularly in school buildings. With a number of geothermal heat pump systems in schools in operation in the TVA regi...

2000-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

California Federal Facilities: Rate-Responsive Buidling Operating for Deeper Cost and Energy Savings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rouggly, energy manager at SSA's Frank Hagel Federal Building in Richmond Rouggly, energy manager at SSA's Frank Hagel Federal Building in Richmond California, reports that the facility garnered $35,000 in credits in 2011 on PG&E's Peak Day Pricing (PDP) tariff. "Frankly I was stunned! It's getting a lot of positive attention with our management," said Rouggly. "We were able to drop 400 kW by pre-cooling the building and shutting down one chiller during peak events. We also turned off 2 of our 8 elevators and reduced lighting in corridors to emergency levels. We got about $100 per day just for being on the program, but the big credits we earned were for trimming demand and reducing kWh during peak events." Rouggly plans to increase curtailment efforts further this summer. Dynamic pricing electricity tariffs,

222

Development of an Operations and Maintenance Cost Model to Identify Cost of Energy Savings for Low Wind Speed Turbines: July 2, 2004 -- June 30, 2008  

SciTech Connect

The report describes the operatons and maintenance cost model developed by Global Energy Concepts under contract to NREL to estimate the O&M costs for commercial wind turbine generator facilities.

Poore, R.

2008-01-01T23:59:59.000Z

223

Include in Column B cost of all composition produced by plant. Include in Column C cost of all operations not involving printing (Col. A)  

E-Print Network (OSTI)

occupied (whether Government-owned or rented), utilities, etc. (14.5 cents per month per square foot. Amount spent for rental of equipment Total cost (Use col.A total from this line to compute cost per 1 units produced in plant this fiscal quarter Total units produced in plant this fiscal year Cost per 1

US Army Corps of Engineers

224

Energy Efficiency in Multi-Hop CDMA Networks: a Game Theoretic Analysis Considering Operating Costs  

E-Print Network (OSTI)

A game-theoretic analysis is used to study the effects of receiver choice and transmit power on the energy efficiency of multi-hop networks in which the nodes communicate using Direct-Sequence Code Division Multiple Access (DS-CDMA). A Nash equilibrium of the game in which the network nodes can choose their receivers as well as their transmit powers to maximize the total number of bits they transmit per unit of energy spent (including both transmit and operating energy) is derived. The energy efficiencies resulting from the use of different linear multiuser receivers in this context are compared for the non-cooperative game. Significant gains in energy efficiency are observed when multiuser receivers, particularly the linear minimum mean-square error (MMSE) receiver, are used instead of conventional matched filter receivers.

Betz, Sharon

2008-01-01T23:59:59.000Z

225

Does Competition Reduce Costs? Assessing the Impact of Regulatory Restructuring on U.S. Electric Generation Efficiency  

E-Print Network (OSTI)

. 3 One exception is Hiebert (2002), who uses stochastic frontier production functions to estimate generation plant efficiency over 1988-1997. One set of independent variables he includes is indicators for regulatory orders or legislative enactment... to customers. Joskow (1974) and Hendricks (1975) demonstrate that frictions in cost-of-service regulation, particularly those arising from regulatory lag (time between price- resetting hearings), may provide some incentives at the margin for cost...

Markiewicz, Karl; Rose, Nancy L; Wolfram, Catherine

2006-03-14T23:59:59.000Z

226

Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499  

SciTech Connect

Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

Smith, K.

2013-10-01T23:59:59.000Z

227

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

E-Print Network (OSTI)

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks

McGaughey, Alan

228

Reducing "Search Cost" and Risk in Energy-efficiency Investments: Two Success Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

"Search Cost" and Risk "Search Cost" and Risk in Energy-efficiency Investments: Two Success Stories Philip E. Coleman, Lawrence Berkeley National Laboratory, Washington, D.C. ABSTRACT This paper focuses on two compelling arguments made in the literature regarding the efficiency gap: first, that consumers face significant transaction costs related to searching for and analyzing information on prospective energy-saving investments; and second, that even well-informed consumers still rationally perceive substantial risks -higher risks than with most financial investments - in making these purchases. Two case studies of efforts to promote governmental energy-efficiency investment are presented. One is a volume-purchase of LED traffic lights by the city of Philadelphia, and the other an information

229

Energy Efficiency and Least-Cost Planning: The Best Way to Save Money and Reduce Energy Use in Hawaii  

DOE Green Energy (OSTI)

If the 500 MW geothermal project on the Big Island of Hawaii is developed as planned, the Wao Kele O Puna rain forest will be severely damaged or destroyed. If this happens the State will lose one of its most precious resources. It would be tragic for this to happen, since on a least-cost basis, the geothermal project does not make economic sense. Improving energy efficiency in the commercial and residential sectors of Hawaii can save about 500 MW of power at a cost of $700 million.

Mowris, Robert J.

1990-05-21T23:59:59.000Z

230

An analysis of the impacts of economic incentive programs on commercial nuclear power plant operations and maintenance costs  

SciTech Connect

Operations and Maintenance (O and M) expenditures by nuclear power plant owner/operators possess a very logical and vital link in considerations relating to plant safety and reliability. Since the determinants of O and M outlays are considerable and varied, the potential linkages to plant safety, both directly and indirectly, can likewise be substantial. One significant issue before the US Nuclear Regulatory Commission is the impact, if any, on O and M spending from state programs that attempt to improve plant operating performance, and how and to what extent these programs may affect plant safety and pose public health risks. The purpose of this study is to examine the role and degree of impacts from state promulgated economic incentive programs (EIPs) on plant O and M spending. A multivariate regression framework is specified, and the model is estimated on industry data over a five-year period, 1986--1990. Explanatory variables for the O and M spending model include plant characteristics, regulatory effects, financial strength factors, replacement power costs, and the performance incentive programs. EIPs are found to have statistically significant effects on plant O and M outlays, albeit small in relation to other factors. Moreover, the results indicate that the relatively financially weaker firms are more sensitive in their O and M spending to the presence of such programs. Formulations for linking spending behavior and EIPs with plant safety performance remains for future analysis.

Kavanaugh, D.C.; Monroe, W.H. [Pacific Northwest Lab., Richland, WA (United States); Wood, R.S. [Nuclear Regulatory Commission, Washington, DC (United States)

1996-02-01T23:59:59.000Z

231

Impacts of Motor Vehicle Operation on Water Quality in the United States - Clean-up Costs and Policies  

E-Print Network (OSTI)

oil and oil filter reimbursement checks, so check processing costsCosts of remediating underground storage tank leaks exceed benefits. Oil andOil Companies Pay US EPA to Settle Santa Monica MTBE Cleanup Costs,

Nixon, Hilary; Saphores, Jean-Daniel

2007-01-01T23:59:59.000Z

232

An economic feasibility analysis of distributed electric power generation based upon the Natural Gas-Fired Fuel Cell: a model of the operations cost.  

DOE Green Energy (OSTI)

This model description establishes the revenues, expenses incentives and avoided costs of Operation of a Natural Gas-Fired Fuel Cell-Based. Fuel is the major element of the cost of operation of a natural gas-fired fuel cell. Forecasts of the change in the price of this commodity a re an important consideration in the ownership of an energy conversion system. Differences between forecasts, the interests of the forecaster or geographical areas can all have significant effects on imputed fuel costs. There is less effect on judgments made on the feasibility of an energy conversion system since changes in fuel price can affect the cost of operation of the alternatives to the fuel cell in a similar fashion. The forecasts used in this model are only intended to provide the potential owner or operator with the means to examine alternate future scenarios. The operations model computes operating costs of a system suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

Not Available

1993-06-30T23:59:59.000Z

233

Novel System for Recalcitrance Screening Will Reduce Biofuels Production Costs, The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

This new system will allow researchers to much more rapidly screen large numbers of samples This new system will allow researchers to much more rapidly screen large numbers of samples and identify the most promising biomass feedstocks for higher efficiency and lower cost bio- fuels conversion processes. NREL will be screening thousands of variants of different biomass feedstocks to link genetic traits with environmental factors that can enhance biomass conver- sion efficiencies. Identifying the genes controlling the anatomical, chemical, and morphologi- cal features of biomass is essential to develop the next generation of low-cost, easily convert- ible biomass feedstocks. To identify superior performing biomass feedstocks using approaches that account for natural diversity and randomness, researchers must measure the cell wall chemistry and recalcitrance

234

"Penn State will take every step possible to reduce emissions without unduly increasing our costs. In light  

E-Print Network (OSTI)

petroleum consumption by reducing our overall service fleet, converting our diesel vehicles to use bio-diesel Development · New Wind Energy Leader Award Community Energy · EPA, DOE and Center for Resource Solutions 2002

Lee, Dongwon

235

Low Wind Speed Technology Phase II: Development of an Operations and Maintenance Cost Model for LWST; Global Energy Concepts  

SciTech Connect

This fact sheet describes a subcontract with Global Energy Concepts to evaluate real-world data on O&M costs and to develop a working model to describe these costs for low wind speed sites.

Not Available

2006-03-01T23:59:59.000Z

236

Information on the cost of plutonium needed to operate the Clinch River Breeder Reactor for its 5-year demonstration  

SciTech Connect

Requested information is presented concerning the background on the CRBR Project and its plutonium requirements, and analysis of sources and cost of acquiring plutonium for CRBR fuel.

Not Available

1982-09-17T23:59:59.000Z

237

Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers  

SciTech Connect

The ``International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers`` was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries.

Sathaye, J.; Goldman, N. [eds.

1991-06-01T23:59:59.000Z

238

Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers  

SciTech Connect

The International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers'' was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries.

Sathaye, J.; Goldman, N. (eds.)

1991-06-01T23:59:59.000Z

239

Dynamic Analysis of Hybrid Energy Systems under Flexible Operation and Variable Renewable Generation -- Part I: Dynamic Performance Analysis and Part II: Dynamic Cost  

SciTech Connect

Dynamic analysis of hybrid energy systems (HES) under flexible operation and variable renewable generation is considered in order to better understand various challenges and opportunities associated with the high system variability arising from the integration of renewable energy into the power grid. Unique consequences are addressed by devising advanced HES solutions in which multiple forms of energy commodities, such as electricity and chemical products, may be exchanged. Dynamic models of various unit operations are developed and integrated within two different HES options. One HES option, termed traditional, produces electricity only and consists of a primary heat generator (PHG) (e.g., a small modular reactor), a steam turbine generator, a wind farm, and a battery storage. The other HES option, termed advanced, includes not only the components present in the traditional option but also a chemical plant complex to repurpose excess energy for non-electricity services, such as for the production of chemical goods (e.g., transportation fuel). In either case, a given HES is connected to the power grid at a point of common coupling and requested to deliver a certain electricity generation profile as dictated by a regional power grid operator based on a predicted demand curve. Dynamic analysis of these highly-coupled HES are performed to identify their key dynamical properties and limitations and to prescribe solutions for best managing and mitigating the high variability introduced from incorporating renewable energy into the energy mix. A comparative dynamic cost analysis is also conducted to determine best HES options. The cost function includes a set of metrics for computing fixed costs, such as fixed operations and maintenance (O&M) and overnight capital costs, and also variable operational costs, such as cost of variability, variable O&M cost, and cost of environmental impact, together with revenues. Assuming different options for implementing PHG (e.g., natural gas, coal, nuclear), preliminary results identify the level of renewable penetration at which a given advanced HES option (e.g., a nuclear hybrid) becomes increasingly more economical than a traditional electricity-only generation solution. Conditions are also revealed under which carbon resources may be better utilized as carbon sources for chemical production rather than as combustion material for electricity generation.

Humberto E. Garcia; Amit Mohanty; Wen-Chiao Lin; Robert S. Cherry

2013-04-01T23:59:59.000Z

240

Assessing the Impacts of Reduced Noise Operations of Wind Turbines on Neighbor Annoyance: A Preliminary Analysis in Vinalhaven, Maine  

SciTech Connect

Neighbors living near the 3 turbine, 4.5 MW Vinalhaven, Maine wind power facility, which began operations in late 2009, have complained that the noise from the turbines is unwelcome and annoying. Fox Islands Wind, the owner of the facility, hypothesized that implementing a Noise Reduced Operation (NRO) for the turbines, which effectively limits the turbines maximum rpm and power output, would reduce the sound levels produced by the turbines, and therefore might also reduce the degree to which the neighbors report being annoyed by those sounds. To test this hypothesis in a preliminary fashion, a pilot study was conducted in early 2010, the results of which are the subject of this brief report. The study included asking near-by residents - those within roughly 3000 feet - to rate the sounds and the degree to which they were annoyed by them using logs which they filled out at multiple times during the day on as many days as were possible in the 35 day study period in February and March, 2010. Meanwhile, FIW adjusted the NRO settings of the turbines in a random fashion in the evenings during the same period, but in a pattern that the respondents were not made aware of. Ultimately, nine individuals turned in roughly 200 log entries (i.e., responses), each of which was time coded to allow testing if the response was correlated with the wind facility operating conditions at that time. The analysis of these data found small, non-statistically-significant differences in self-reported turbine loudness and annoyance ratings between the periods when the NRO was enacted and when it was not, after controlling for many of the relationships that could independently influence perceived loudness and annoyance (e.g., wind direction, time of day). Possible explanations for these small differences in self-reported turbine loudness and annoyance ratings include: the relative difference in sound output from the turbines when NRO was engaged and when it was not was small; and/or that differences in turbine sound outputs that did exist might have been masked by higher (non-turbine) wind sound levels that were coincident with NRO periods. Because this preliminary test only included a small portion of the population surrounding the turbines, the sample of self-reported ratings was itself very small. In addition, the conditions varied greatly over the study period, as described in the report that follows. Consequently, the results presented here should be considered preliminary, and further data collection and analysis are warranted. The main findings of this preliminary study are: (1) As planned, periods in which the NRO was engaged were found to have noticeably lower turbine rotational speeds (rpm), based on turbine operational data. (2) 11% of responses overall indicated that the turbines were perceived as either 'very' or 'extremely' loud at the time they were logged, and roughly two thirds of those (7% overall) indicated the sounds to be 'very' or 'extremely' annoying. (3) Self-reported turbine loudness and annoyance ratings were higher during the night and when the wind was from the North (participants in the study were located to the east and south of the turbines). (4) Self-reported turbine loudness and annoyance ratings were generally found to be lower during the NRO periods, but these observed differences are relatively small in magnitude, and are not statistically significant. (5) There is some limited evidence that high-speed surface winds mask self-reported turbine loudness and annoyance ratings. Therefore, because NRO settings are only engaged during periods of high winds, the true effects of the NRO adjustments might be diluted to some degree. (6) The results of this preliminary assessment should not be applied to the full population of homeowners near the turbines in Vinalhaven, Maine because the potentially most-sensitive individuals (those most vocal of their dislike of the turbine sounds) opted not to participate in the study, and because the study did not include the relatively large numbe

Hoen, Ben; Wiser, Ryan; Eckholdt, Haftan

2010-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Assessing the Impacts of Reduced Noise Operations of Wind Turbines on Neighbor Annoyance: A Preliminary Analysis in Vinalhaven, Maine  

E-Print Network (OSTI)

only self-reported wind and turbine sound levels were used.Noise Operations of Wind Turbines on Neighbor Annoyance: ANoise Operations of Wind Turbines on Neighbor Annoyance: A

Hoen, Ben

2010-01-01T23:59:59.000Z

242

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

Science Conference Proceedings (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

C. Jean Bustard

2001-10-01T23:59:59.000Z

243

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect

With the nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous systems of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of projected DOE/EPA early cost estimates. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that was tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology injects a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. PG&E National Energy Group provided two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company provided a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company hosted a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the fifteenth reporting quarter, progress was made on the project in the following areas: (1) Test Sites--Final Reports for the two remaining plants are being written (Salem Harbor and Brayton Point). (2) Technology Transfer--Technical information about the project was presented to a number of organizations during the quarter including members of congress, coal companies, architect/engineering firms, National Mining Association, the North Carolina Department of Air Quality, the National Coal Council and EPA.

Jean Bustard; Richard Schlager

2004-08-03T23:59:59.000Z

244

Using Cable Suspended Submersible Pumps to Reduce Production Costs to Increase Ultimate Recovery in the Red Mountain Field of the San Juan Basin Region  

Science Conference Proceedings (OSTI)

A joint venture between Enerdyne LLC, a small independent oil and gas producer, and Pumping Solutions Inc., developer of a low volume electric submersible pump, suspended from a cable, both based in Albuquerque, New Mexico, has re-established marginal oil production from Red Mountain Oil Field, located in the San Juan Basin, New Mexico by working over 17 existing wells, installing cable suspended submersible pumps ( Phase I ) and operating the oil field for approximately one year ( Phase II ). Upon the completion of Phases I and II ( Budget Period I ), Enerdyne LLC commenced work on Phase III which required additional drilling in an attempt to improve field economics ( Budget Period II ). The project was funded through a cooperative 50% cost sharing agreement between Enerdyne LLC and the National Energy Technology Laboratory (NETL), United States Department of Energy, executed on April 16, 2003. The total estimated cost for the two Budget Periods, of the Agreement, was $1,205,008.00 as detailed in Phase I, II & III Authorization for Expenditures (AFE). This report describes tasks performed and results experienced by Enerdyne LLC during the three phases of the cooperative agreement.

Don L. Hanosh

2006-08-15T23:59:59.000Z

245

Multi-Area Power System Reliability and Production Costing  

Science Conference Proceedings (OSTI)

Multi-area power system operation can reduce costs without jeopardizing service reliability, but the interconnection of systems requires new means for estimating costs and reliability. This report describes methods for evaluating production costs and power system reliability in multi-area power systems.

1990-08-28T23:59:59.000Z

246

Impact of Cycling on the Operation and Maintenance Cost of Conventional and Combined-Cycle Power Plants  

Science Conference Proceedings (OSTI)

The ongoing privatization of electricity generation across the world, competition and shareholder demand for higher profits, stricter regulations on environmental impacts, changes in fuel prices, and the increasing penetration of nondispatchable energy have resulted in an increasing need for larger energy generators to operate as non-baseload units. As a result, both conventional power plants and combined-cycle power plants are increasingly being subjected to load-following and cyclic operation. ...

2013-09-30T23:59:59.000Z

247

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

energy usage and energy cost over time using net presentlower energy costs substantially. (5) Real-Time Monitoring:costs: demand = $10 per kW per month (all 12 months of the year); energy consumption = 7 per kWh (all times

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

248

Steam generation in line-focus solar collectors: a comparative assessment of thermal performance, operating stability, and cost issues  

DOE Green Energy (OSTI)

The engineering and system benefits of using direct steam (in situ) generation in line-focus collectors are assessed. The major emphasis of the analysis is a detailed thermal performance comparison of in situ systems (which utilize unfired boilers). The analysis model developed for this study is discussed in detail. An analysis of potential flow stability problems is also provided along with a cursory cost analysis and an assessment of freeze protection, safety, and control issues. Results indicated a significant thermal performance advantage over the more conventional oil and flash systems and the flow stability does not appear to be a significant problem. In particular, at steam temperatures of 220/sup 0/C (430/sup 0/F) under the chosen set of assumptions, annual delivered energy predictions indicate that the in situ system can deliver 15% more energy than an oil system and 12% more energy than a flash system, with all of the systems using the same collector field. Further, the in situ system may result in a 10% capital cost reduction. Other advantages include improvement in simpler control when compared with flash systems, and fluid handling and safety enhancement when compared with oil systems.

Murphy, L.M.; May, E.K.

1982-04-01T23:59:59.000Z

249

Operation of a low temperature absorption chiller at rating point and at reduced evaporator temperature. Final report  

DOE Green Energy (OSTI)

The returned SAM 015 (fifteen ton Solar Absorption Machine) chiller was given a cursory visual inspection, some obvious problems were remedied, and then it was placed on a test stand to get a measure of dirty performance. It was then given a standard acid clean, the water side of the tubes was brushed clean, and then the machine was retested. The before and after cleaning data were compared to equivalent data taken before the machine was shipped. The second part of our work statement was to experimentally demonstrate the technical feasibility of operating the chiller at evaporator temperatures below O/sup 0/C (32/sup 0/F) and identify any operational problems.

Best, R.; Biermann, W.; Reimann, R.

1985-01-01T23:59:59.000Z

250

Conceptual HALT (Hydrate Addition at Low Temperature) scaleup design: Capital and operating costs: Part 5. [Hydrate addition at low temperature for the removal of SO/sub 2/  

SciTech Connect

Hydrate addition at low temperature (or the HALT process) is a retrofit option for moderate SO/sub 2/ removal efficiency in coal burning utility plants. This dry FGD process involves injecting calcium based dry hydrate particles into flue gas ducting downstream of the air preheater where the flue gas temperature is typically in the range of 280-325/degree/F. This report is comprised of the conceptual scaleup design of the HALT process to a 180 MW and a 500 MW coal fired utility station followed by detailed capital and operating cost estimates. A cost sensitivity analysis of major process variables for the 500 MW unit is also included. 1 fig.

Babu, M.; Kerivan, D.; Hendrick, C.; Kosek, B.; Tackett, D.; Golightley, M.

1988-12-01T23:59:59.000Z

251

Carbonate fuel cell monolith design for high power density and low cost  

SciTech Connect

Objective is higher power density operation and cost reduction. This is accomplished by the design of a bipolar plate where the separate corrugated current collectors are eliminated; cost reduction was also derived through higher power density and reduced material usage. The higher volumetric power density operation was achieved through lower cell resistance, increased active component surface area, and reduced cell height.

Allen, J.; Doyon, J.

1996-08-01T23:59:59.000Z

252

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

utilities use more electricity for distribution (48 millionthe most electricity for distribution. For the utilitiesUse Treatment electricity cost Distribution electricity use

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

253

Research on Chronological Cost Simulation of Demand-Side Programs  

Science Conference Proceedings (OSTI)

Many electric power utilities use Direct Load Control (DLC) to reduce operational costs and peak capacity requirements. This report proposes a very effective and unique method for DLC dispatch.

1999-08-13T23:59:59.000Z

254

Identifying cost reduction and performance improvement opportunities through simulation  

Science Conference Proceedings (OSTI)

During difficult economic times, companies have few positive cost reducing options that simultaneously improve operational performance. This paper addresses how Deloitte Consulting partnered with Simio LLC to model multiple process improvement opportunities ...

J. Ethan Brown; David Sturrock

2009-12-01T23:59:59.000Z

255

The environmental and cost impacts of vehicle electrification in the Azores  

E-Print Network (OSTI)

Electric vehicles (EVs) have the potential to reduce transportation sector CO? emissions in So Miguel, an island in the Azores, while simultaneously reducing mobility operating costs. This thesis attempts to quantify the ...

Parnes, Maximilian

2011-01-01T23:59:59.000Z

256

OOTW COST TOOLS  

Science Conference Proceedings (OSTI)

This document reports the results of a study of cost tools to support the analysis of Operations Other Than War (OOTW). It recommends the continued development of the Department of Defense (DoD) Contingency Operational Support Tool (COST) as the basic cost analysis tool for 00TWS. It also recommends modifications to be included in future versions of COST and the development of an 00TW mission planning tool to supply valid input for costing.

HARTLEY, D.S.III; PACKARD, S.L.

1998-09-01T23:59:59.000Z

257

Defense waste transportation: cost and logistics studies  

SciTech Connect

Transportation of nuclear wastes from defense programs is expected to significantly increase in the 1980s and 1990s as permanent waste disposal facilities come into operation. This report uses models of the defense waste transportation system to quantify potential transportation requirements for treated and untreated contact-handled transuranic (CH-TRU) wastes and high-level defense wastes (HLDW). Alternative waste management strategies in repository siting, waste retrieval and treatment, treatment facility siting, waste packaging and transportation system configurations were examined to determine their effect on transportation cost and hardware requirements. All cost estimates used 1980 costs. No adjustments were made for future changes in these costs relative to inflation. All costs are reported in 1980 dollars. If a single repository is used for defense wastes, transportation costs for CH-TRU waste currently in surface storage and similar wastes expected to be generated by the year 2000 were estimated to be 109 million dollars. Recovery and transport of the larger buried volumes of CH-TRU waste will increase CH-TRU waste transportation costs by a factor of 70. Emphasis of truck transportation and siting of multiple repositories would reduce CH-TRU transportation costs. Transportation of HLDW to repositories for 25 years beginning in 1997 is estimated to cost $229 M in 1980 costs and dollars. HLDW transportation costs could either increase or decrease with the selection of a final canister configuration. HLDW transportation costs are reduced when multiple repositories exist and emphasis is placed on truck transport.

Andrews, W.B.; Cole, B.M.; Engel, R.L.; Oylear, J.M.

1982-08-01T23:59:59.000Z

258

Pollution prevention cost savings potential  

SciTech Connect

The waste generated by DOE facilities is a serious problem that significantly impacts current operations, increases future waste management costs, and creates future environmental liabilities. Pollution Prevention (P2) emphasizes source reduction through improved manufacturing and process control technologies. This concept must be incorporated into DOE`s overall operating philosophy and should be an integral part of Total Quality Management (TQM) program. P2 reduces the amount of waste generated, the cost of environmental compliance and future liabilities, waste treatment, and transportation and disposal costs. To be effective, P2 must contribute to the bottom fine in reducing the cost of work performed. P2 activities at LLNL include: researching and developing innovative manufacturing; evaluating new technologies, products, and chemistries; using alternative cleaning and sensor technologies; performing Pollution Prevention Opportunity Assessments (PPOAs); and developing outreach programs with small business. Examples of industrial outreach are: innovative electroplating operations, printed circuit board manufacturing, and painting operations. LLNL can provide the infrastructure and technical expertise to address a wide variety of industrial concerns.

Celeste, J.

1994-12-01T23:59:59.000Z

259

Operations, Maintenance, and Replacement 10-year plan, 1990-1999 : 1989 Utility OM&R Comparison : A Comparison of BPA (Bonneville Power Administration) and Selected Utility Transmission, Operations and Maintenance Costs.  

SciTech Connect

For the past several years, competing resource demands within BPA have forced the Agency to stretch Operations, Maintenance and Replacement (OM R) resources. There is a large accumulation of tasks that were not accomplished when scheduled. Maintenance and replacements and outages, due to material and equipment failure, appear to be increasing. BPA has made a strategic choice to increase its emphasis on OM R programs by implementing a multi-year, levelized OM R plan which is keyed to high system reliability. This strategy will require a long-term commitment of a moderate increase in staff and dollars allocated to these programs. In an attempt to assess the direction BPA has taken in its OM R programs, a utility comparison team was assembled in early January 1989. The team included representatives from BPA's Management Analysis, Internal Audit and Financial Management organizations, and operation and maintenance program areas. BPA selected four utilities from a field of more than 250 electric utilities in the US and Canada. The selection criteria generally pertained to size, with key factors including transformation capacity, load, gross revenue, and interstate transmission and/or marketing agreements, and their OM R programs. Information was gathered during meetings with managers and technical experts representing the four utilities. Subsequent exchanges of information also took place to verify findings. The comparison focused on: Transmission operations and maintenance program direction and emphasis; Organization, management and implementation techniques; Reliability; and Program costs. 2 figs., 21 tabs.

United States. Bonneville Power Administration.

1990-09-01T23:59:59.000Z

260

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

DRINKING WATER SUPPLY INDUSTRY An ENERGY STAR Resource Guidedrinking water supply industry to reduce energy consumptionenergy is used in the public drinking water supply industry.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Capital and operating cost estimates. Volume I. Preliminary design and assessment of a 12,500 BPD coal-to-methanol-to-gasoline plant. [Grace C-M-G Plant, Henderson County, Kentucky  

DOE Green Energy (OSTI)

This Deliverable No. 18b - Capital and Operating Cost Estimates includes a detailed presentation of the 12,500 BPD coal-to-methanol-to-gasoline plant from the standpoint of capital, preoperations, start-up and operations cost estimation. The base capital cost estimate in June 1982 dollars was prepared by the Ralph M. Parsons Company under the direction of Grace. The escalated capital cost estimate as well as separate estimates for preoperations, startup and operations activities were developed by Grace. The deliverable consists of four volumes. Volume I contains details of methodology used in developing the capital cost estimate, summary information on a base June 1982 capital cost, details of the escalated capital cost estimate and separate sections devoted to preoperations, start-up, and operations cost. The base estimate is supported by detailed information in Volumes II, III and IV. The degree of detail for some units was constrained due to proprietary data. Attempts have been made to exhibit the estimating methodology by including data on individual equipment pricing. Proprietary details are available for inspection upon execution of nondisclosure and/or secrecy agreements with the licensors to whom the data is proprietary. Details of factoring certain pieces of equipment and/or entire modules or units from the 50,000 BPD capital estimate are also included. In the case of the escalated capital estimate, Grace has chosen to include a sensitivity analysis which allows for ready assessment of impacts of escalation rates (inflation), contingency allowances and the construction interest financing rates on the escalated capital cost. Each of the estimates associated with bringing the plant to commercial production rates has as a basis the schedule and engineering documentation found in Deliverable No. 14b - Process Engineering and Mechanical Design Report, No. 28b - Staffing Plans, No. 31b - Construction Plan, and No. 33b - Startup and Operation Plan.

Not Available

1982-08-01T23:59:59.000Z

262

High Power SiC Modules for HEVs and PHEVs Abstract--With efforts to reduce the cost, size, and thermal  

E-Print Network (OSTI)

and electric machinery (APEEM) activity is to develop technology towards achieving overall electric propulsion of these components. Plug-in hybrid electric vehicle (PHEV) cost targets for the APEEM as established by DOE for PHEVs. Research in eliminating the low temperature loop and using the engine coolant for the APEEM shows

Tolbert, Leon M.

263

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

EPAs Teaming Up to Save Energy (U.S. EPA, 2005), which isStates Department of Energy (U.S. DOE), Energy Efficiencyinstalled: $25,000 US Reduced energy use by 10%, equal to

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

264

Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations...  

NLE Websites -- All DOE Office Websites (Extended Search)

In addition, it was speculated prior to testing that the use of HCNG fuel could extend oil change intervals, thus reducing operating costs and waste products such as used engine...

265

Sustainable approach to achieving energy efficiency in manufacturing operations  

E-Print Network (OSTI)

Energy management in industrial facilities is becoming increasingly popular as firms attempt to become more environmentally responsible and reduce cost by improving operational efficiency. Raytheon is a leader in their ...

McKenney, Kurtis G. (Kurtis Gifford), 1979-

2012-01-01T23:59:59.000Z

266

Low Cost, Durable Seal  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost, Durable Seal Cost, Durable Seal George M. Roberts UTC Power Corporation February 14, 2007 This presentation does not contain any proprietary or confidential information 1 LOW COST, DURABLE SEAL Outline * Project Objective * Technical Approach * Timeline * Team Roles * Budget * Q&A 2 LOW COST, DURABLE SEAL Project Objective Develop advanced, low cost, durable seal materials and sealing techniques amenable to high volume manufacture of PEM cell stacks. DOE Targets/Goals/Objectives Project Goal Durability Transportation: 5,000 hr Stationary: 40,000 hr Durability Improve mechanical and chemical stability to achieve 40,000 hr of useful operating life. Low Cost Low Cost A material cost equivalent to or less than the cost of silicones in common use. 3 LOW COST, DURABLE SEAL

267

CAES Updated Cost Assessment  

Science Conference Proceedings (OSTI)

Compressed Air Energy Storage Systems (CAES) for bulk energy storage applications have been receiving renewed interest. Increased penetration of large quantities of intermittent wind generation are requiring utilities to re-examine the cost and value of CAES systems. New second generation CAES cycles have been identified which offer the potential for lower capital and operating costs. This project was undertaken to update and summarize the capital and operating costs and performance features of second ge...

2008-12-23T23:59:59.000Z

268

Overview of reduced enrichment fuels: Development, testing, and specification  

SciTech Connect

The US Reduced Enrichment Research and Test Reactor (RERTR) Program was established in 1978 to provide the technical means to operate research and test reactors with low enrichment uranium (LEU) fuels without significant penalty in experiment performance, operation costs, component modifications, or safety characteristics. This paper discusses relevant developments in fuel developments. 9 refs., 1 tab.

Snelgrove, J.L.

1987-01-01T23:59:59.000Z

269

SYSPLAN. Load Leveling Battery System Costs  

SciTech Connect

SYSPLAN evaluates capital investment in customer side of the meter load leveling battery systems. Such systems reduce the customer`s monthly electrical demand charge by reducing the maximum power load supplied by the utility during the customer`s peak demand. System equipment consists of a large array of batteries, a current converter, and balance of plant equipment and facilities required to support the battery and converter system. The system is installed on the customer`s side of the meter and controlled and operated by the customer. Its economic feasibility depends largely on the customer`s load profile. Load shape requirements, utility rate structures, and battery equipment cost and performance data serve as bases for determining whether a load leveling battery system is economically feasible for a particular installation. Life-cycle costs for system hardware include all costs associated with the purchase, installation, and operation of battery, converter, and balance of plant facilities and equipment. The SYSPLAN spreadsheet software is specifically designed to evaluate these costs and the reduced demand charge benefits; it completes a 20 year period life cycle cost analysis based on the battery system description and cost data. A built-in sensitivity analysis routine is also included for key battery cost parameters. The life cycle cost analysis spreadsheet is augmented by a system sizing routine to help users identify load leveling system size requirements for their facilities. The optional XSIZE system sizing spreadsheet which is included can be used to identify a range of battery system sizes that might be economically attractive. XSIZE output consisting of system operating requirements can then be passed by the temporary file SIZE to the main SYSPLAN spreadsheet.

Hostick, C.J. [Pacific Northwest Lab., Richland, WA (United States)

1988-03-22T23:59:59.000Z

270

Reducing energy usage in a manufacturing facility through a behavior change based approach  

E-Print Network (OSTI)

Many companies have developed energy reduction programs for their manufacturing facilities to reduce their operational costs while also decreasing their greenhouse gas emissions. The majority of these manufacturing facilities ...

Norelli, Michael A., IV (Michael Anthony)

2010-01-01T23:59:59.000Z

271

Optimal Power Cost Management Using Stored Energy in Data Centers  

E-Print Network (OSTI)

Since the electricity bill of a data center constitutes a significant portion of its overall operational costs, reducing this has become important. We investigate cost reduction opportunities that arise by the use of uninterrupted power supply (UPS) units as energy storage devices. This represents a deviation from the usual use of these devices as mere transitional fail-over mechanisms between utility and captive sources such as diesel generators. We consider the problem of opportunistically using these devices to reduce the time average electric utility bill in a data center. Using the technique of Lyapunov optimization, we develop an online control algorithm that can optimally exploit these devices to minimize the time average cost. This algorithm operates without any knowledge of the statistics of the workload or electricity cost processes, making it attractive in the presence of workload and pricing uncertainties. An interesting feature of our algorithm is that its deviation from optimality reduces as the...

Urgaonkar, Rahul; Neely, Michael J; Sivasubramaniam, Anand

2011-01-01T23:59:59.000Z

272

Ion-driver fast ignition: Reducing heavy-ion fusion driver energy and cost, simplifying chamber design, target fab, tritium fueling and power conversion  

DOE Green Energy (OSTI)

Ion fast ignition, like laser fast ignition, can potentially reduce driver energy for high target gain by an order of magnitude, while reducing fuel capsule implosion velocity, convergence ratio, and required precisions in target fabrication and illumination symmetry, all of which should further improve and simplify IFE power plants. From fast-ignition target requirements, we determine requirements for ion beam acceleration, pulse-compression, and final focus for advanced accelerators that must be developed for much shorter pulses and higher voltage gradients than today's accelerators, to deliver the petawatt peak powers and small focal spots ({approx}100 {micro}m) required. Although such peak powers and small focal spots are available today with lasers, development of such advanced accelerators is motivated by the greater likely efficiency of deep ion penetration and deposition into pre-compressed 1000x liquid density DT cores. Ion ignitor beam parameters for acceleration, pulse compression, and final focus are estimated for two examples based on a Dielectric Wall Accelerator; (1) a small target with {rho}r {approx} 2 g/cm{sup 2} for a small demo/pilot plant producing {approx}40 MJ of fusion yield per target, and (2) a large target with {rho}r {approx} 10 g/cm{sup 2} producing {approx}1 GJ yield for multi-unit electricity/hydrogen plants, allowing internal T-breeding with low T/D ratios, >75 % of the total fusion yield captured for plasma direct conversion, and simple liquid-protected chambers with gravity clearing. Key enabling development needs for ion fast ignition are found to be (1) ''Close-coupled'' target designs for single-ended illumination of both compressor and ignitor beams; (2) Development of high gradient (>25 MV/m) linacs with high charge-state (q {approx} 26) ion sources for short ({approx}5 ns) accelerator output pulses; (3) Small mm-scale laser-driven plasma lens of {approx}10 MG fields to provide steep focusing angles close-in to the target (built-in as part of each target); (4) beam space charge-neutralization during both drift compression and final focus to target. Except for (1) and (2), these critical issues may be explored on existing heavy-ion storage ring accelerator facilities.

Logan, G.; Callahan-Miller, D.; Perkins, J.; Caporaso, G.; Tabak, M.; Moir, R.; Meier, W.; Bangerter, Roger; Lee, Ed

1998-04-01T23:59:59.000Z

273

A cost analysis model for heavy equipment  

Science Conference Proceedings (OSTI)

Total cost is one of the most important factors for a heavy equipment product purchase decision. However, the different cost views and perspectives of performance expectations between the different involved stakeholders may cause customer relation problems ... Keywords: Cost responsibilities, Operating costs, Ownership costs, Post-Manufacturing Product Cost (PMPC), System life-cycle cost

Shibiao Chen; L. Ken Keys

2009-05-01T23:59:59.000Z

274

Reduce Overhead, Implement Energy Efficiency in Water/Wastewater  

E-Print Network (OSTI)

Through the Focus on Energy program in the State of Wisconsin we have been able to identify savings for industries in their water/wastewater treatment or distribution systems. Modifications required to realize savings resulted in reduced energy consumption and reduced cost to industry. Reduced cost is a pleasant benefit when the cost of utility bills comes off the bottom line and if the industry is working on a 5 percent margin the actual value of the savings could be considered to be 20 times its actual savings. Modifications can be made in wastewater treatment applications by adjusting dissolved oxygen (DO) levels in treatment process, modifying aeration system blowers, changing diffusers, and considering a DO automatic control system. In water systems, changes in pump operations by not throttling valves for control, adding variable speed drives to constant speed operations, and reducing pressure on systems where it will not adversely impact the process.

Cantwell, J. C.

2007-01-01T23:59:59.000Z

275

Portable top drive cuts horizontal drilling costs  

SciTech Connect

Economic analysis of a seven-well, long-reach horizontal drilling program into an unconsolidated, heavy-oil-bearing reservoir in Winter field near the Alberta/Saskatchewan border in Canada reveals that -- in the right application -- renting a portable top drive drilling system can reduce total drilling costs. Use of the portable top drive combined with other cost-saving measures enabled Saskoil, one of Canada`s larger independents, to drill more cheaply, on a cost-per-meter basis, in 1993 than in 1992. This was despite significant rental rates for drilling rigs and directional drilling services caused by increased demand in Western Canada. Total cost savings of 10% on wells that would otherwise cost in the (C) $500,000 range are believed realistic. Based on this year`s performance, Saskoil recommends top drive for the company`s future horizontal wells in this area. This article describes the operator`s horizontal well program, advantages of top drive in that program and how it was installed and applied. Estimated time savings for six wells, plus other ways top drive can cut costs and improve operations are discussed.

Jackson, B. [Saskoil, Regina, Saskatchewan (Canada); Yager, D. [Tesco Drilling Tech., Calgary, Alberta (Canada)

1993-11-01T23:59:59.000Z

276

Guidelines for Reduced Seismic Loads to Assess Temporary Conditions in Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Utilities do not have uniform guidelines and criteria to treat plant temporary conditions (TCs) or planned changes to safety-related systems. Regulatory review and acceptance criteria and guidelines tend to be overly conservative, leading to costly measures. This report proposes a risk-informed procedure for evaluating TCs using reduced seismic loads and current licensing basis allowables that reduces plant operation and maintenance (O&M) costs, shortens plant outages, and reduces personnel radiation exp...

1998-09-10T23:59:59.000Z

277

Cost-sensitive classifier evaluation using cost curves  

Science Conference Proceedings (OSTI)

The evaluation of classifier performance in a cost-sensitive setting is straightforward if the operating conditions (misclassification costs and class distributions) are fixed and known. When this is not the case, evaluation requires a method of visualizing ...

Robert C. Holte; Chris Drummond

2008-05-01T23:59:59.000Z

278

Cost-sensitive classifier evaluation  

Science Conference Proceedings (OSTI)

Evaluating classifier performance in a cost-sensitive setting is straightforward if the operating conditions (misclassification costs and class distributions) are fixed and known. When this is not the case, evaluation requires a method of visualizing ...

Robert C. Holte; Chris Drummond

2005-08-01T23:59:59.000Z

279

Overview and Low Cost Processing  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... The major reason that there is not more widespread use of titanium and its alloys is the high cost. Developments in reducing the cost of titanium...

280

Accurate Liquid Water Path Retrieval from Low-Cost Microwave Radiometers Using Additional Information from a Lidar Ceilometer and Operational Forecast Models  

E-Print Network (OSTI)

, but their presence in the liquid rather than the ice phase can lead to shortwave flux changes of about 100 W m 2 (NWP). In most operational NWP models, production of rain by collision and coalescence is parameterized

Reading, University of

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Reduces electric energy consumption  

E-Print Network (OSTI)

implementation of the assessment recommendations is estimated to be $843,000 with a total implementation cost. Manufacturing at the facility includes both casting and extrusion processes. Process equipment, air compressors productivity. As a result, facility production costs can be reduced and profits can be increased. August 2001

282

Evaporative Roof Cooling - A Simple Solution to Cut Cooling Costs  

E-Print Network (OSTI)

Since the "Energy Crisis" Evaporative Roof Cooling Systems have gained increased acceptance as a cost effective method to reduce the high cost of air conditioning. Documented case histories in retrofit installations show direct energy savings and paybacks from twelve to thirty months. The main operating cost of an Evaporative Roof Cooling System is water. One thousand gallons of water, completely evaporated, will produce over 700 tons of cooling capability. Water usage seldom averages over 100 gallons per 1000 ft^2 of roof area per day or 10 oz. of water per 100 ft^2 every six minutes. Roof Cooling Systems, when planned in new construction, return 1-1/2 times the investment the first year in equipment savings and operating costs. Roof sprays are a low cost cooling solution for warehouses, distribution centers and light manufacturing or assembly areas with light internal loads. See text "Flywheel Cooling."

Abernethy, D.

1985-01-01T23:59:59.000Z

283

Glen Ganyon Dam, Colorado River Storage Project, Arizona. The short-run economic cost of environmental constraints on hydropower operations. Final report  

Science Conference Proceedings (OSTI)

In October of 1995, the Secretary of the Interior announced that Glen Canyon Dam would be operated under the Modified Low Fluctuating Flow (MLFF) criteria to protect downstream archeological, cultural, aquatic and riparian resources. Although the annual and monthly amounts of water released downstream remain the same, MLFF imposes a unique and complex set of constraints on hourly and daily hydropower operations. These constraints include restrictions on ramp rates (hourly rate of change in release), minimum flows, maximum flows, and the daily change in flow. In addition, a key component of MLFF operations is adaptive management which establishes a framework of research and monitoring on which future changes in operation will be based. Consequently, MLFF operations are not static and variants of these hourly constraints may be contemplated in the future. This paper summarizes the environmental concerns which led to MLFF, reviews some pertinent electric power concepts, and describes current institutional and market conditions. A generalized method for simulating and valuing hourly hydroelectric generation under various operational constraints is then introduced.

Harpman, D.A.

1997-06-01T23:59:59.000Z

284

RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions  

Science Conference Proceedings (OSTI)

In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. A major thrust of the campaign was to ensure that the nation's natural gas supplies would be adequate for all Americans, especially during home heating seasons. In a presentation to the National Press Club on October 3, 2005, Secretary Bodman said: 'America's businesses, factories, and manufacturing facilities use massive amounts of energy. To help them during this period of tightening supply and rising costs, our Department is sending teams of qualified efficiency experts to 200 of the nation's most energy-intensive factories. Our Energy Saving Teams will work with on-site managers on ways to conserve energy and use it more efficiently.' DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy assessments. The approach for these assessments drew heavily on the existing resources of ITP's Technology Delivery component. Over the years, ITP-Technology Delivery had worked with industry partners to assemble a suite of respected software decision tools, proven assessment protocols, training curricula, certified experts, and strong partnerships for deployment. Because of the program's earlier activities and the resources that had been developed, ITP was prepared to respond swiftly and effectively to the sudden need to promote improved industrial energy efficiency. Because of anticipated supply issues in the natural gas sector, the Save Energy Now initiative strategically focused on natural gas savings and targeted the nation's largest manufacturing plants--those that consume a total of 1 trillion British thermal units (Btu) or more annually. The approximately 6800 U.S. facilities that fall into this category collectively account for about 53% of all energy consumed by industry in the United States. The 2006 Save Energy Now energy assessments departed from earlier DOE plant assessments by concentrating solely on steam and process heating systems, which are estimated to account for approximately 74% of all natural gas use for manufacturing. The assessments also integrated a strong training component designed to teach industrial plant personnel how to use DOE's steam or process heating opportunity assessment software tools. This approach had the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the assessment process at the company's other facilities. The Save Energy Now initiative also included provisions to help plants that applied for but did not qualify for assessments (based on the 1 trillion Btu criterion). Services offered to these plants included (1) an assessment by one of DOE's 26 university-based Industrial Assessment Centers (IACs), (2) a telephone consultation with a systems expert at the DOE's Energy Efficiency and Renewable Energy Information Center, or (3) other technical materials and services available through ITP (e.g., the Save Energy Now CD). By the end of 2006, DOE had completed all 200 of the promised assessments, identifying potential natural gas savings of more than 50 trillion Btu and energy cost savings of about $500 million. These savings, if fully implemented, could reduce CO2 emissions by 4.04 million metric tons annually. These results, along with the fact that a large percentage of U.S. energy is used by a relatively small number of very large plants, clearly suggest that assessments are an expedient and cost-effective way to significantly affect large amounts of energy use. Building on the success of the 2006 initiative, ITP has expanded the effort in 2007 with the goal of conducting 250 more asse

Wright, Anthony L [ORNL; Martin, Michaela A [ORNL; Gemmer, Bob [U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Scheihing, Paul [U.S. Department of Energy, Industrial Technologies Program; Quinn, James [U.S. Department of Energy

2007-09-01T23:59:59.000Z

285

Integration of Variable Generation and Cost-Causation (Fact Sheet)  

DOE Green Energy (OSTI)

Variable renewable energy generation sources, such as wind and solar energy, provide benefits such as reduced environmental impact, zero fuel consumption, and low and stable costs. Advances in both technologies can reduce capital costs and provide significant control capabilities. However, their variability and uncertainty - which change with weather conditions, time of day, and season - can cause an increase in power system operating costs compared to a fully controllable power plant. Although a number of studies have assessed integration costs, calculating them correctly is challenging because it is difficult to accurately develop a baseline scenario without variable generation that properly accounts for the energy value. It is also difficult to appropriately allocate costs given the complex, nonlinear interactions between resources and loads.

Not Available

2012-09-01T23:59:59.000Z

286

Evidence of cost growth under cost-plus and fixed-price contracting  

SciTech Connect

As defined by the US Department of Energy (DOE), privatization refers to a shifting of responsibilities for the completion of projects from a cost-plus Management and Operations (M and O) contract, to incentive-based contracts with the private sector. DOE`s new vision is to arrange cleanup work around incentives-based contracts, which are won via competitive bidding. Competition in awarding cleanup contracts can make use of market incentives to lower project costs and reduce slippage time. Fixed-price contracts encourage contractors to minimize schedule delays and cost overruns once the scope of a project has been negotiated. Conversely, cost-plus contracting offers weak incentives for contractors to select cost-minimizing production and management approaches. Because privatization explicitly allocates more risk to the contractor, it forces the government to better define its goals and methods. This study summarizes actual cost experiences with government contracts performed under cost-plus and fixed-price incentive structures at all levels of government. The first section provides some background on the problem of making contractor activity more cost-efficient. Following this are sections on the measurement of performance and the costs of projects, limitations on measurement, and findings of similar studies. The study concludes with appendices discussing the details of the performance measurement methodology and the project data sets used in the study.

Scott, M.J.; Paananaen, O.H.; Redgate, T.E.; Ulibarri, C.A.; Jaksch, J.A.

1998-09-01T23:59:59.000Z

287

EVMS Surveillance Standard Operating Procedure (ESSOP) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reporting System (PARS II) INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures ICR-ICE Standard Operating Procedures (Update Sept 2013)...

288

Effect of tax, financing, and operating-cost incentives on retiree homeowners' current and potential decisions to purchase energy-saving improvements  

SciTech Connect

This study focused on retiree homeowners to determine their level of participation, causes of non-participation and the effect of selected incentive modifications on investment decisions. A descriptive-elemental approach was taken to explore three research questions. Fifty semi-structured interviews selected through restricted probability were conducted in Sun City, California. Findings were keyed to sex, age, education and income and statistically analyzed using the chi-square test. Retiree homeowners had coped with rising utility costs through modified usage practice rather than through energy-saving investments. Concerns over access to funding, required initial payout, return on investment, future prices of energy and risk were highest among those of least education or income. A desire to retain an existing life style was important to those of higher education and income. Level of awareness of incentive features was also a major decision factor. The analysis indicated that energy-saving investments will increase if retiree homeowners are offered shared-cost obligation by the individual, government, and utility; exemption from sales tax for all energy-saving-item sales and service; state tax exemption for federal tax credits; exemption of energy-saving improvements from property tax; continued federal tax credit; investment loans sufficiently available to meet demand; energy-producing equipment available for rent or lease at reasonable rates.

Long, A.W. Jr.

1983-01-01T23:59:59.000Z

289

NREL Sheds Light on Integration Costs of Variable Generation and  

E-Print Network (OSTI)

, such as wind and solar energy, provide benefits such as reduced environmental impact, lack of fuel consumption, and low and stable costs. However, their variability and uncertainty--which can change with weather and not unique to wind and solar. Key Result Operational changes--such as wind and solar forecasting, larger

290

New Process for Producing Styrene Cuts Costs, Saves Energy, and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas Emissions New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse...

291

Low cost MCFC anodes  

DOE Green Energy (OSTI)

This paper outlines a project, funded under a DOE SBIR grant, which tested a potentially lower cost method of manufacturing MCFC stack anodes and evaluated the feasibility of using the technology in the existing M-C Power Corp. manufacturing facility. The procedure involves adding activator salts to the anode tape casting slurry with the Ni and Cr or Al powders. Two different processes occur during heat treatment in a reducing environment: sintering of the base Ni structure, and alloying or cementation of the Cr or Al powders. To determine whether it was cost-effective to implement the cementation alloying manufacturing process, the M-C Power manufacturing cost model was used to determine the impact of different material costs and processing parameters on total anode cost. Cost analysis included equipment expenditures and facility modifications required by the cementation alloying process.

Erickson, D.S.

1996-12-31T23:59:59.000Z

292

Reduce Air Infiltration in Furnaces  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing air infiltration in industrial furnaces; tips include repairing leaks and increasing insulation.

Not Available

2006-01-01T23:59:59.000Z

293

Cost analysis guidelines  

Science Conference Proceedings (OSTI)

The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

Strait, R.S.

1996-01-10T23:59:59.000Z

294

Specific features in building hardware-software complexes operating in real-time: An example of test rig used in periodic tests of reducers  

Science Conference Proceedings (OSTI)

Test rig for periodic tests of reducers is involved as an example to discuss specific features in building automatic test systems (ATS); the test rig is designed at ZAO NPP MIKS Engineering. A certain approach to ATS design based on adaptation of universal ...

A. A. Urakov; M. A. Rylov; D. S. Shutov; P. G. Dorofeev

2011-05-01T23:59:59.000Z

295

FUEL CYCLE COSTS IN A GRAPHITE MODERATED SLIGHTLY ENRICHED FUSED SALT REACTOR  

SciTech Connect

A fuel cycle economic study has been made for a 315Mwe graphite- moderated slightly enriched fused-salt reactor. Fuel cycle costs of less than 1.5 mills may be possible for such reactors operating on a ten-year cycle even when the fuel is discarded at the end of the cycle. Recovery of the uranium and plutonium at the end of the cycle reduces the fuel cycle costs to approximates 1 mill/kwh. Changes in the waste storage cost, reprocessing cost or salt inventory have a relatively minor effect on fuel cycle costs. (auth)

Guthrie, C.E.

1959-01-01T23:59:59.000Z

296

Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)  

DOE Green Energy (OSTI)

No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

2012-10-01T23:59:59.000Z

297

Electric Demand Cost Versus Labor Cost: A Case Study  

E-Print Network (OSTI)

Electric Utility companies charge industrial clients for two things: demand and usage. Depending on type of business and hours operation, demand cost could be very high. Most of the operations scheduling in a plant is achieved considering labor cost. For small plants, it is quite possible that a decrease in labor could result in an increase in electric demand and cost or vice versa. In this paper two cases are presented which highlight the dependence of one on other.

Agrawal, S.; Jensen, R.

1998-04-01T23:59:59.000Z

298

COSTS OF NUCLEAR POWER  

SciTech Connect

The discussion on the costs of nuclear power from stationary plants, designed primarily for the generation of electricity. deals with those plants in operation, being built, or being designed for construction at an early date. An attempt is made to consider the power costs on the basis of consistent definitions and assumptions for the various nuclear plants and for comparable fossil-fuel plants. Information on several new power reactor projects is included. (auth)

1961-01-01T23:59:59.000Z

299

Electricity Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Emissions Caps and the Impact of a Radical Change in Nuclear Electricity Costs journal International Journal of Energy Economics and Policy volume year month chapter...

300

Low Cost, Durable Seal  

SciTech Connect

Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

Roberts, George; Parsons, Jason; Friedman, Jake

2010-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Pennsylvania life cycle costing manual  

SciTech Connect

Until the 1970s, it was commonplace for institutions and governments to purchase equipment based on lowest initial (first) costs. Recurring costs such as operational, maintenance, and energy costs often were not considered in the purchase decision. If an agency wanted to buy something, it published specifications and requested bids from several manufacturers. Often, the lowest bidder who met the specifications won the job, with no consideration given to the economic life of the equipment or yearly recurring costs such as energy and maintenance costs. The practice of purchasing based on lowest initial costs probably did not make good economic sense prior to 1970, and it certainly does not make good sense now. The wise person will consider all costs and benefits associated with a purchase, both initial and post-purchase, in order to make procurement decisions that are valid for the life of the equipment. This describes a method of financial analysis that considers all pertinent costs: life cycle costing (LCC).

1996-02-01T23:59:59.000Z

302

Integrated thermal and nonthermal treatment technology and subsystem cost sensitivity analysis  

SciTech Connect

The U.S. Department of Energy`s (DOE) Environmental Management Office of Science and Technology (EM-50) authorized studies on alternative systems for treating contact-handled DOE mixed low-level radioactive waste (MLLW). The on-going Integrated Thermal Treatment Systems` (ITTS) and the Integrated Nonthermal Treatment Systems` (INTS) studies satisfy this request. EM-50 further authorized supporting studies including this technology and subsystem cost sensitivity analysis. This analysis identifies areas where technology development could have the greatest impact on total life cycle system costs. These areas are determined by evaluating the sensitivity of system life cycle costs relative to changes in life cycle component or phase costs, subsystem costs, contingency allowance, facility capacity, operating life, and disposal costs. For all treatment systems, the most cost sensitive life cycle phase is the operations and maintenance phase and the most cost sensitive subsystem is the receiving and inspection/preparation subsystem. These conclusions were unchanged when the sensitivity analysis was repeated on a present value basis. Opportunity exists for technology development to reduce waste receiving and inspection/preparation costs by effectively minimizing labor costs, the major cost driver, within the maintenance and operations phase of the life cycle.

Harvego, L.A.; Schafer, J.J.

1997-02-01T23:59:59.000Z

303

Electrolytic cell. [operation at 500,000 amperes  

SciTech Connect

A novel electrolytic cell of the vertical electrode type comprising a novel cathode busbar structure, novel cathode elements and a novel anode base structure which enable the novel electrolytic cell to be designed to operate at high current capacities upward to about 500,000 amperes while maintaining high operating efficiencies is claimed. These high current capacities provide for high production capacities which result in high production rates for given cell room floor areas and reduce capital investment and operating costs.

Mose, L.; Kramer, W.; Strewe, W.; Strasser, B.

1977-04-12T23:59:59.000Z

304

FACILITIES MAINTENANCE & UPKEEP The Lawrence campus is operating three different custodial and maintenance groups on campus resulting in  

E-Print Network (OSTI)

facilities management system, and provide the adequate tools and training necessary. · Implementing contemporary zone maintenance will reduce management and layers, enabling costFACILITIES MAINTENANCE & UPKEEP Context · The Lawrence campus is operating three

Peterson, Blake R.

305

Types of Costs Types of Cost Estimates  

E-Print Network (OSTI)

· Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408: Mining the equipment for reclamation? Types of Costs #12;· Marginal Cost: ­ Change in total cost ­ Any production process involves fixed and variable costs. As production increases/expands, fixed costs are unchanged, so

Boisvert, Jeff

306

Preliminary estimates of cost savings for defense high level waste vitrification options  

SciTech Connect

The potential for realizing cost savings in the disposal of defense high-level waste through process and design modificatins has been considered. Proposed modifications range from simple changes in the canister design to development of an advanced melter capable of processing glass with a higher waste loading. Preliminary calculations estimate the total disposal cost (not including capital or operating costs) for defense high-level waste to be about $7.9 billion dollars for the reference conditions described in this paper, while projected savings resulting from the proposed process and design changes could reduce the disposal cost of defense high-level waste by up to $5.2 billion.

Merrill, R.A.; Chapman, C.C.

1993-09-01T23:59:59.000Z

307

Definition: Optimized Generator Operation | Open Energy Information  

Open Energy Info (EERE)

Optimized Generator Operation Optimized Generator Operation Jump to: navigation, search Dictionary.png Optimized Generator Operation Better forecasting and monitoring of load and grid performance would enable grid operators to dispatch a more efficient mix of generation that could be optimized to reduce cost. The coordinated operation of energy storage, distributed generation, or plug-in electric vehicle assets could also result in completely avoiding central generation dispatch.[1] Related Terms sustainability References ↑ SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Optimized_Generator_Operation&oldid=502509" Categories:

308

Tradeoffs between Costs and Greenhouse Gas Emissions in the Design of Urban Transit Systems  

E-Print Network (OSTI)

of veh (kWh/veh-km) Cost per kWh ($/kWh) Operating cost ($/of veh (kWh/veh-km) Cost per kWh ($/kWh) Operating cost ($/

Griswold, Julia Baird

2013-01-01T23:59:59.000Z

309

Production Cost Optimization Assessments  

Science Conference Proceedings (OSTI)

The benefits of improved thermal performance of coal-fired power plants continue to grow, as the costs of fuel rise and the prospect of a carbon dioxide cap and trade program looms on the horizon. This report summarizes the efforts to date of utilities committed to reducing their heat rate by 1.0% in the Production Cost Optimization (PCO) Project. The process includes benchmarking of plant thermal performance using existing plant data and a site-specific performance appraisal. The appraisal determines po...

2008-12-11T23:59:59.000Z

310

Estimating Costs and Efficiency of Storage, Demand, and Heat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

more efficient system. When considering a water heater model for your home, estimate its energy efficiency and annual operating cost. Then, compare costs with other more andor...

311

,,,,,,,,,,"Lease Equipment Costs for Primary Oil Production in...  

U.S. Energy Information Administration (EIA) Indexed Site

of Lease Equipment Costs for Primary Oil Recovery ",,,"Oil Production--West Texas" ,,"Operations (10 Producing Wells)" ,,,"Lease Equipment Costs for Primary Oil...

312

Cost of Increased Energy Efficiency for Residential Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

distributor, and installer costs are used to calculate the costs of different water heater designs. Consumer operating expenses are calculated based on the modeled energy...

313

A System for Semi-Autonomous Tractor Operations  

Science Conference Proceedings (OSTI)

Tractors are the workhorses of the modern farm. By automating these machines, we can increase the productivity, improve safety, and reduce costs for many agricultural operations. Many researchers have tested computer-controlled machines for farming, ... Keywords: agricultural robots, obstacle detection, path tracking, position estimation, sensor fusion

Anthony Stentz; Cristian Dima; Carl Wellington; Herman Herman; David Stager

2002-07-01T23:59:59.000Z

314

Electric Cable Reel Rubber-Tired Gantry Cranes: Costs and Benefits  

Science Conference Proceedings (OSTI)

Port equipment manufacturers have responded to the increased focus on air quality control by creating a variety of cleaner equipment and making more electric equipment available to ports. Included in this equipment is the rubber-tired gantry (RTG) crane, which was historically available only with a diesel engine. Electric cable reel RTG cranes, relatively new to the U.S. market, may reduce port crane operating costs due to their lower energy costs, higher energy efficiencies, and longer equipment life. E...

2010-03-24T23:59:59.000Z

315

Multi-Pollutant Control Technology and Cost Sensitivity Analysis  

Science Conference Proceedings (OSTI)

Current emissions control systems used by the U.S. generating fleet typically reduce emission rates of only one pollutant. This requires installation in series of various combinations of emission control systems to remove multiple pollutants. Technologies for simultaneous removal of multiple pollutants are now moving toward commercialization. These integrated systems have the potential to require less capital investment and to offer lower operating costs than traditional technologies. This report investi...

2008-12-22T23:59:59.000Z

316

Power Plant Cycling Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

317

INDEPENDENT COST REVIEW (ICR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COST REVIEW (ICR) COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) STANDARD OPERATING PROCEDURES (SOP) Revision 1 DEPARTMENT OF ENERGY (DOE) OFFICE OF ACQUISITION AND PROJECT MANAGEMENT (OAPM) September 2013 SUMMARY OF UPDATES: This revision includes the following significant changes since the December 2011 SOP release: 1. The original SOP discussed how an EIR and an ICE could be executed in tandem, but since we are no longer advocating this approach the ICE process has been completely separated from the EIR process and references to EIRs have been removed. 2. Section 1 adds a reference to Public Law 2055 reflecting that we must now, as a matter of law, perform an ICE at CD-3 for projects with a TPC over $100 million. 3. Section 2 notes that DOE Programs must now pay for ICRs and ICEs and reflects that PARS II must be

318

INDEPENDENT COST REVIEW (ICR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COST REVIEW (ICR) COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) STANDARD OPERATING PROCEDURES (SOP) Revision 1 DEPARTMENT OF ENERGY (DOE) OFFICE OF ACQUISITION AND PROJECT MANAGEMENT (OAPM) September 2013 SUMMARY OF UPDATES: This revision includes the following significant changes since the December 2011 SOP release: 1. The original SOP discussed how an EIR and an ICE could be executed in tandem, but since we are no longer advocating this approach the ICE process has been completely separated from the EIR process and references to EIRs have been removed. 2. Section 1 adds a reference to Public Law 2055 reflecting that we must now, as a matter of law, perform an ICE at CD-3 for projects with a TPC over $100 million. 3. Section 2 notes that DOE Programs must now pay for ICRs and ICEs and reflects that PARS II must be

319

Processing Cost Analysis for Biomass Feedstocks  

DOE Green Energy (OSTI)

The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the years the industry has shown a good deal of ingenuity and, as a result, has developed several cost effective methods of processing and handling wood. SMB systems usually cannot afford to perform much onsite processing and therefore usually purchase fuels processed to specification. Owners of larger systems try to minimize onsite processing to minimize processing costs. Whole truck dumpers are expensive, but allow for faster and easier unloading, which reduces labor costs and charges by the haulers. Storage costs are a major factor in overall costs, thus the amount of fuel reserve is an important consideration. Silos and bins are relatively expensive compared to open piles used for larger facilities, but may be required depending on space available, wood characteristics, and amount of wood to be stored. For larger systems, a front-end loader has a lot of flexibility in use and is an essential piece of equipment for moving material. Few opportunities appear to exist for improving the cost effectiveness of these systems.

Badger, P.C.

2002-11-20T23:59:59.000Z

320

Development of a Low-Cost Rotary Steerable Drilling System  

DOE Green Energy (OSTI)

The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully exercised the tool's build/turn/drop/hold target capabilities and its higher end ratings for bit weight, torque and rotary speed. The tool teardowns were rigorously analyzed at the conclusion of each field run to assess component wear rates and to fully document any detrimental behavior(s) observed.

Roney Nazarian

2012-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Study of Operating Control Strategies for Hybrid Ground Source Heat Pump System with Supplemental Cooling Tower  

Science Conference Proceedings (OSTI)

Ground source heat pump for cooling-dominated commercial buildings may utilize supplemental cooling towers to reduce system first cost and to improve system performance. The use of hybrid ground source heat pump (HGSP) can reduce the size of the ground-loop ... Keywords: hybrid ground source heat pump, supplement heat rejection, control strategies, operating performance

Wang Jinggang; Gao Xiaoxia; Yin Zhenjiang; Li Fang

2009-07-01T23:59:59.000Z

322

Explicit and implicit copayments for phototherapy: examining the cost of commuting  

E-Print Network (OSTI)

Table 1. Patients cost for office-?based 2. Differences in cost based on fuel efficiency Statistics. 2010 Cost of Owning and Operating a

Yentzer, Brad A; Gustafson, Cheryl J; Feldman, Steven R

2013-01-01T23:59:59.000Z

323

Photovoltaic Operation and Maintenance Evaluation  

Science Conference Proceedings (OSTI)

Results from this study confirm that photovoltaic power plants require low operating and maintenance costs per kilowatthour. Projections based on these results suggest that in the future costs will fall below 0.5 cent per kilowatthour.

1990-01-11T23:59:59.000Z

324

Realistic costs of carbon capture  

Science Conference Proceedings (OSTI)

There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding transport and storage costs appears to be US$100-150/tCO2 for first-of-a-kind plants and perhaps US$30-50/tCO2 for nth-of-a-kind plants.The estimates for FOAK and NOAK costs appear to be broadly consistent in the light of estimates of the potential for cost reductions with increased experience. Cost reductions are expected from increasing scale, learning on individual components, and technological innovation including improved plant integration. Innovation and integration can both lower costs and increase net output with a given cost base. These factors are expected to reduce abatement costs by approximately 65% by 2030. The range of estimated costs for NOAK plants is within the range of plausible future carbon prices, implying that mature technology would be competitive with conventional fossil fuel plants at prevailing carbon prices.

Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

2009-07-01T23:59:59.000Z

325

Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications  

DOE Green Energy (OSTI)

This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

Humphreys, K.K.; Brown, D.R.

1990-01-01T23:59:59.000Z

326

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

Look beyond first cost With energy efficiency, you get what2008. Energy Efficiency Improvement and Cost Savingincreasing energy efficiency, companies can reduce costs and

Kermeli, Katerina

2013-01-01T23:59:59.000Z

327

HTGR Cost Model Users' Manual  

Science Conference Proceedings (OSTI)

The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

A.M. Gandrik

2012-01-01T23:59:59.000Z

328

Reduce power outages  

SciTech Connect

A case history shows the cost-effectiveness of doing a reliability study on a new, grassroots refinery constructed in Venezuela. Constructing grassroots refineries in developing countries pose many challenges, especially when considering electrical power and steam supplies. Without dependable electrical and steam sources, the refinery will not operate according to design expectations. Consequently, utility systems are critical and expensive challenges that must be considered early in design. Because of tighter operating budgets, refiners are equally interested in cutting out system overdesign. Redundant backup systems are damaging in capital and operating expenditures. Using reliability analysis techniques, designers can evaluate the reliability, availability and maintainability of operating systems. In the following example, a Venezuelan operating company used a reliability analysis to: assess onstream factors for the refinery`s power plant; identify critical equipment that have the greatest impact on available electrical and steam sources; and achieve a cost-effective equipment configuration that eliminates redundant backup systems. Results from the study allowed decision-makers to initiate objective plans and created an equipment-failure database that will service the refinery for its useful life.

Goyal, R. [BAPCO, Awali (Bahrain); Ramirez, R. [Corpoven S.A., Caracas (Venezuela)

1995-06-01T23:59:59.000Z

329

GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION  

Science Conference Proceedings (OSTI)

The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a multiple train coal-fueled IGCC powerplant, also based on the Subtaks 1.3 cases. The Subtask 1.6 four gasification train plant has a thermal efficiency of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency of 45.4% (HHV) and a plant cost of 1,096 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to coproduce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. As gasification technology matures, SCOHS and other improvements identified in this study will lead to further cost reductions and efficiency improvements.

Samuel S. Tam

2002-05-01T23:59:59.000Z

330

DOE Hydrogen and Fuel Cells Program Record 5005: Fuel Cell System Cost - 2002 versus 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Date: March 20, 2005 5 Date: March 20, 2005 Title: Fuel Cell System Cost - 2002 vs 2005 Originator: Patrick Davis Approved by: JoAnn Milliken Date: May 22, 2006 Item: "Reduced the high-volume cost of automotive fuel cells from $275/kW (50kW system) in 2002 to $110/kW (80kW system) in 2005." Supporting Information: In 2002, TIAX reported a cost of $324/kW for a 50-kW automotive PEM fuel cell system operating on gasoline reformate, based on their modeling of projected cost for 500,000 units per year. See Eric Carlson et al., "Cost Analyses of Fuel Cell Stack/System." U.S. DOE Hydrogen Program Annual Progress Report. (2002) at http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/33098_sec4-1.pdf. Also see "Cost Modeling of PEM Fuel Cell Systems for Automobiles," Eric Carlson et al., SAE

331

Fusion reactor design studies: standard unit costs and cost scaling rules  

SciTech Connect

This report establishes standard unit costs and scaling rules for estimating costs of material, equipment, land, and labor components used in magnetic confinement fusion reactor plant construction and operation. Use of the standard unit costs and scaling rules will add uniformity to cost estimates, and thus allow valid comparison of the economic characteristics of various reactor concepts.

Schulte, S.C.; Bickford, W.E.; Willingham, C.E.; Ghose, S.K.; Walker, M.G.

1979-09-01T23:59:59.000Z

332

External costs of intercity truck freight transportation  

E-Print Network (OSTI)

From a societal perspective, it is desirable for all transportation users to pay their full social (private and external) costs. We estimate four general types of external costs for intercity freight trucking and compare them with the private costs incurred by carriers. Estimated external costs include: accidents (fatalities, injuries, and property damage); emissions (air pollution and greenhouse gases); noise; and unrecovered costs associated with the provision, operation, and maintenance of public facilities. The analysis reveals that external costs are equal to 13.2 % of private costs and user fees would need to be increased about

David J. Forkenbrock

1999-01-01T23:59:59.000Z

333

Costs in the Norwegian Payment System  

E-Print Network (OSTI)

We calculate social and private cost for the use and production of payment services in Norway for 2007. The calculations include banks, merchants and households cost for cash, cards and giro payments. The social cost is calculated to be 0.49 % of GDP, or NOK 11.16 billion. Costs are also calculated on a per-service basis. The results are compared with data from earlier cost surveys by Norges Bank. The unit costs of the most popular services have decreased over the years. Efficiency and productivity of banks payment service operations has improved. We also make comparisons between frameworks, methodologies, and results from cost surveys in five European countries.

Olaf Gresvik; Harald Haare; Norges Bank; Sigbjrn Atle Berg; Gunnvald Grnvik; Asbjrn Enge

2009-01-01T23:59:59.000Z

334

2017 Levelized Costs AEO 2012 Early Release  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-923 Frame Reduction Impact 1 Form EIA-923 Frame Reduction Impact 1 August 30, 2012 Form EIA-923 Frame Reduction Impact Schedule 2 of the Form EIA-923, "Power Plant Operations Report," collects the cost and quality of fossil fuel purchases made by electric power plants with at least 50 megawatts (MW) of nameplate capacity primarily fueled by fossil fuels. The proposal is to raise the threshold to 200 megawatts of nameplate capacity primarily fueled by natural gas, petroleum coke, distillate fuel oil, and residual fuel oil. This would result in reducing the Form EIA-923 overall annual burden by 2.2 percent. The threshold for coal plants will remain at 50 megawatts. Natural gas data collection on Schedule 2 will be reduced from approximately 970 to 603 plants

335

Reduce Radiation Losses from Heating Equipment  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

Not Available

2006-01-01T23:59:59.000Z

336

Electricity transmission congestion costs: A review of recent reports  

SciTech Connect

Recently, independent system operators (ISOs) and others have published reports on the costs of transmission congestion. The magnitude of congestion costs cited in these reports has contributed to the national discussion on the current state of U.S. electricity transmission system and whether it provides an adequate platform for competition in wholesale electricity markets. This report reviews reports of congestion costs and begins to assess their implications for the current national discussion on the importance of the U.S. electricity transmission system for enabling competitive wholesale electricity markets. As a guiding principle, we posit that a more robust electricity system could reduce congestion costs; and thereby, (1) facilitate more vibrant and fair competition in wholesale electricity markets, and (2) enable consumers to seek out the lowest prices for electricity. Yet, examining the details suggests that, sometimes, there will be trade-offs between these goals. Therefore, it is essential to understand who pays, how much, and how do they benefit in evaluating options (both transmission and non-transmission alternatives) to address transmission congestion. To describe the differences among published estimates of congestion costs, we develop and motivate three ways by which transmission congestion costs are calculated in restructured markets. The assessment demonstrates that published transmission congestion costs are not directly comparable because they have been developed to serve different purposes. More importantly, critical information needed to make them more comparable, for example in order to evaluate the impacts of options to relieve congestion, is sometimes not available.

Lesieutre, Bernard C.; Eto, Joseph H.

2003-10-01T23:59:59.000Z

337

Analysis of costs-benefits tradeoffs of complex security systems  

SciTech Connect

Essential to a systems approach to design of security systems is an analysis of the cost effectiveness of alternative designs. While the concept of analysis of costs and benefits is straightforward, implementation can be at the least tedious and, for complex designs and alternatives, can become nearly intractable without the help of structured analysis tools. PACAIT--Performance and Cost Analysis Integrated Tools--is a prototype tool. The performance side of the analysis collates and reduces data from ASSESS, and existing DOE PC-based security systems performance analysis tool. The costs side of the analysis uses ACE, an existing DOD PC-based costs analysis tool. Costs are reported over the full life-cycle of the system, that is, the costs to procure, operate, maintain and retire the system and all of its components. Results are collected in Microsoft{reg_sign} Excel workbooks and are readily available to analysts and decision makers in both tabular and graphical formats and at both the system and path-element levels.

Hicks, M.J. [Sandia National Labs., Albuquerque, NM (United States). Security Systems Analysis and Development Dept.

1996-12-31T23:59:59.000Z

338

Low-Cost High-Pressure Hydrogen Generator  

DOE Green Energy (OSTI)

Electrolysis of water, particularly in conjunction with renewable energy sources, is potentially a cost-effective and environmentally friendly method of producing hydrogen at dispersed forecourt sites, such as automotive fueling stations. The primary feedstock for an electrolyzer is electricity, which could be produced by renewable sources such as wind or solar that do not produce carbon dioxide or other greenhouse gas emissions. However, state-of-the-art electrolyzer systems are not economically competitive for forecourt hydrogen production due to their high capital and operating costs, particularly the cost of the electricity used by the electrolyzer stack. In this project, Giner Electrochemical Systems, LLC (GES) developed a low cost, high efficiency proton-exchange membrane (PEM) electrolysis system for hydrogen production at moderate pressure (300 to 400 psig). The electrolyzer stack operates at differential pressure, with hydrogen produced at moderate pressure while oxygen is evolved at near-atmospheric pressure, reducing the cost of the water feed and oxygen handling subsystems. The project included basic research on catalysts and membranes to improve the efficiency of the electrolysis reaction as well as development of advanced materials and component fabrication methods to reduce the capital cost of the electrolyzer stack and system. The project culminated in delivery of a prototype electrolyzer module to the National Renewable Energy Laboratory for testing at the National Wind Technology Center. Electrolysis cell efficiency of 72% (based on the lower heating value of hydrogen) was demonstrated using an advanced high-strength membrane developed in this project. This membrane would enable the electrolyzer system to exceed the DOE 2012 efficiency target of 69%. GES significantly reduced the capital cost of a PEM electrolyzer stack through development of low cost components and fabrication methods, including a 60% reduction in stack parts count. Economic analysis indicates that hydrogen could be produced for $3.79 per gge at an electricity cost of $0.05/kWh by the lower-cost PEM electrolyzer developed in this project, assuming high-volume production of large-scale electrolyzer systems.

Cropley, Cecelia C.; Norman, Timothy J.

2008-04-02T23:59:59.000Z

339

Types of Costs Types of Cost Estimates  

E-Print Network (OSTI)

05-1 · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408) costs apply to those items that are consumed in production process and are roughly proportional to level in cash flow analysis and in the decision to use the equipment for reclamation? Types of Costs #12

Boisvert, Jeff

340

Cost Analysis of Inadequate Interoperability in the US Capital ...  

Science Conference Proceedings (OSTI)

... inadequate interoperability include manual reentry of ... the costs of the decommissioning phase because ... operate, and decommission capital facilities ...

2004-12-06T23:59:59.000Z

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Heat exchanger Exergoeconomic lifecycle cost optimization  

Science Conference Proceedings (OSTI)

Considering lifecycle cost analysis during the design phase of thermal systems gives the design effort more worth. Furthermore thermodynamic exergetic optimization is proven to be useful method for determining the most lifecycle cost optimal design of ... Keywords: entropy generation, exergy destruction, heat exchanger, operating cost, optimization, thermodynamics

Liaquat Ali Khan; Ali El-Ghalban

2008-02-01T23:59:59.000Z

342

Accelerating PV Cost Effectiveness Through Systems Design, Engineering, and Quality Assurance: Phase I Annual Technical Report, 4 November 2004 - 3 November 2005  

DOE Green Energy (OSTI)

During Phase I of this PV Manufacturing R&D subcontract, PowerLight Corporation has made significant progress toward the reduction of installed costs for commercial-scale, rooftop PV systems. PowerLight has worked to reduce operating costs by improving long-term reliability and performance through the development of more sophisticated tools used in system design and monitoring. Additionally, PowerLight has implemented design improvements with the goal of reducing cost while maintaining and/or improving product quality. As part of this effort, PowerLight also modified manufacturing and shipping processes to accommodate these design changes, streamline material flow, reduce cost, and decrease waste streams. During Phase II of this project, PowerLight plans to continue this work with the goal of reducing system cost and improving system performance.

Botkin, J.

2006-07-01T23:59:59.000Z

343

Wind Turbine Towers Establish New Height Standards and Reduce...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Case study that...

344

Heliostat cost reduction study.  

DOE Green Energy (OSTI)

Power towers are capable of producing solar-generated electricity and hydrogen on a large scale. Heliostats are the most important cost element of a solar power tower plant. Since they constitute {approx} 50% of the capital cost of the plant it is important to reduce heliostat cost as much as possible to improve the economic performance of power towers. In this study we evaluate current heliostat technology and estimate a price of $126/m{sup 2} given year-2006 materials and labor costs for a deployment of {approx}600 MW of power towers per year. This 2006 price yields electricity at $0.067/kWh and hydrogen at $3.20/kg. We propose research and development that should ultimately lead to a price as low as $90/m{sup 2}, which equates to $0.056/kWh and $2.75/kg H{sup 2}. Approximately 30 heliostat and manufacturing experts from the United States, Europe, and Australia contributed to the content of this report during two separate workshops conducted at the National Solar Thermal Test Facility.

Jones, Scott A.; Lumia, Ronald. (University of New Mexico, Albuquerque, NM); Davenport, Roger (Science Applications International Corporation, San Diego, CA); Thomas, Robert C. (Advanced Thermal Systems, Centennial, CO); Gorman, David (Advanced Thermal Systems, Larkspur, CO); Kolb, Gregory J.; Donnelly, Matthew W.

2007-06-01T23:59:59.000Z

345

Well cost estimates in various geothermal regions  

DOE Green Energy (OSTI)

A project to estimate well costs in regions of current geothermal activity has been initiated. Costs associated with commonly encountered drilling problems will be included. Activity-based costing techniques will be employed to allow the identification of cost drivers and the evaluation of the economic effects of new technologies and operational procedures on well costs. The sensitivity of well costs to a number of parameters such as rate-of-penetration and daily operating costs will be examined. Additional sensitivity analyses and trade-off studies will evaluate the efficiency of various operational practices and preventive, as well as remedial, actions. These efforts should help provide an understanding of the consumption of resources in geothermal drilling.

Pierce, K.G.; Bomber, T.M. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, Encinitas, CA (United States)

1997-06-01T23:59:59.000Z

346

Reduce Stress!  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stress! Stress! x Take a break every hour. Do some relaxation or stretching exercises or talk with someone about topics unrelated to work. Give your body and mind a rest. x Massage your hands and forearms several times a day with a vitamin E lotion. The massage will improve circulation and break up adhesions. Since you can't touch a keyboard until the lotion is absorbed, it also enforces a good break. x Massage the muscles in your neck working your way down from the skull to the shoulders, applying more force to the larger muscles as you go down. x Periodically evaluate your environment for ways to reduce stress. Try to keep your desk uncluttered so you can always find things. Make sure programs are set up correctly on the computer, and see if you can use a macro program to reduce

347

Magnetically Controlled Reactor Shrinks Power Quality Costs and Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetically Controlled Reactor Shrinks Power Quality Costs and Power Magnetically Controlled Reactor Shrinks Power Quality Costs and Power Losses Speaker(s): Mark D. Galperin Date: December 18, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Diana Morris In a new, magnetically controlled reactor (MCR), in which DC pulsing through a special winding controls inductive susceptance, high saturation of the magnetic circuit steel with optimal magnetic and electrical circuit parameters ensures less than 2-3% main harmonic distortion even without special filters. Transformer-like construction ensures reliable operation. MCR's increase power quality through automatic voltage regulation, reduced fluctuation, and smoothing of reactive power surges at 1/2 the cost of thyristor-controlled reactors (TCR's). Damping of voltage-oscillation

348

Energy cost reduction in the fabricare industry. [Handbook  

SciTech Connect

This handbook shows what major cost reduction opportunities are available, why these recommendations need immediate attention, and how these measures can begin to save money. The study consisted of detailed energy usage analyses of laundry and dry cleaning plants located throughout the U.S. Cost to implement, payback period, first-year energy cost reduction, and 10-year savings are discussed for 16 measures--relamp entire plant, set back night temperature, insulate pipes and tanks, maintain boiler efficiency, let boiler coast down, test steam traps, install steam valves, relocate air compressor intake, repair steam and condensate leaks, repair water and air leaks, reduce hot water temperature (15 F), lower water level once inch, substitute extract for rinse, recover dryer heat, and shorten coin-operated dryer run time. (MCW)

1977-01-01T23:59:59.000Z

349

Production Cost Optimization Project 2010  

Science Conference Proceedings (OSTI)

The EPRI Production Cost Optimization project assists participating members in implementing or enhancing heat rate optimization programs to reduce production costs through sustainable performance improvements. This Technical Update summarizes the status of the project and presents results for five (5) sites that have completed initial and follow-up assessments. A PCO assessment consists of benchmarking plant thermal performance using historical plant data along with an on-site performance appraisal to id...

2010-12-22T23:59:59.000Z

350

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

SciTech Connect

In 2001, the U.S. Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered.

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers,Steve; McMahon, James

2004-01-20T23:59:59.000Z

351

PAFC Cost Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

PAFC Cost Challenges Sridhar Kanuri Manager, PAFC Technology *Sridhar.Kanuri@utcpower.com 2 AGENDA Purecell 400 cost challenge Cost reduction opportunities Summary 3 PURECELL ...

352

Operating Efficiency Comes From Teamwork  

E-Print Network (OSTI)

A group of operating and planning personnel formed the INter Plant Utilities Team [INPUT] to improve energy efficiency and reliability for Exxon's Baytown, Texas, refinery and chemical plants complex. The Team coordinates the day-to-day operations of the Site's utilities generation and distribution systems, which cross the operating boundaries of all three of the plants in the complex, and supports both capital improvements and long-term energy optimization projects for those systems. INPUTs origins go back to the early 1980's, when a utility coordination team was organized to manage the interplay of the Site's several high-level steam systems, and to reduce the impact of occasional steam shortages on the operations of both Refinery and Chemical Plant. Three years ago the current team was formed to find ways to make the systems more efficient and reliable, and to pave the way for the Site's cogeneration expansion. INPUT provides a regular forum for surfacing and resolving issues that affect the economics and reliability of the Site's utility systems, and is a commitment on the part of the three Plants at the Site to work together for the overall benefit of the Site --a commitment worth over $5,000,000 annually in operating cost savings.

Relyea, D. L.; Stone, A.

1997-04-01T23:59:59.000Z

353

An algorithm for minimization of quantum cost  

E-Print Network (OSTI)

A new algorithm for minimization of quantum cost of quantum circuits has been designed. The quantum cost of different quantum circuits of particular interest (eg. circuits for EPR, quantum teleportation, shor code and different quantum arithmetic operations) are computed by using the proposed algorithm. The quantum costs obtained using the proposed algorithm is compared with the existing results and it is found that the algorithm has produced minimum quantum cost in all cases.

Anindita Banerjee; Anirban Pathak

2009-10-12T23:59:59.000Z

354

Low Cost Hydrogen Production Platform  

DOE Green Energy (OSTI)

A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the cost to produce small volume on-site hydrogen using existing process technologies. The cost mo

Timothy M. Aaron, Jerome T. Jankowiak

2009-10-16T23:59:59.000Z

355

Cutting Industrial Solar System Costs in Half  

E-Print Network (OSTI)

While there are technical, social, environmental and institutional barriers to the widespread use of solar systems, the principle barrier is economic. For commercial and industrial firms to turn to this alternate energy source, the first cost must be sharply reduced so that the annual savings that are achievable will provide an attractive return on the incremental investment. This paper discusses one proven method of combining the energy efficiency of high temperature industrial heat pumps with solar collectors that result in an installed first cost that approximates one half of that of conventional solar systems. This technology is now available for producing up to 220 F hot water for industrial process heat, space heating, and service hot water heating. The basic principles of the technology are reviewed, including the typical operating characteristics of the industrial heat pumps and the solar collectors, plus the generic application schematics comparing this approach with conventional solar collector only systems. Several case histories are reviewed, including an industrial plant, townhouse project, and hospital. Not only is a lower first cost demonstrated, but the combination uses small solar arrays, ideal where roof area is limited, and use less expensive solar collectors.

Niess, R. C.; Weinstein, A.

1982-01-01T23:59:59.000Z

356

Revised cost savings estimate with uncertainty for enhanced sludge washing of underground storage tank waste  

SciTech Connect

Enhanced Sludge Washing (ESW) has been selected to reduce the amount of sludge-based underground storage tank (UST) high-level waste at the Hanford site. During the past several years, studies have been conducted to determine the cost savings derived from the implementation of ESW. The tank waste inventory and ESW performance continues to be revised as characterization and development efforts advance. This study provides a new cost savings estimate based upon the most recent inventory and ESW performance revisions, and includes an estimate of the associated cost uncertainty. Whereas the author`s previous cost savings estimates for ESW were compared against no sludge washing, this study assumes the baseline to be simple water washing which more accurately reflects the retrieval activity along. The revised ESW cost savings estimate for all UST waste at Hanford is $6.1 B {+-} $1.3 B within 95% confidence. This is based upon capital and operating cost savings, but does not include development costs. The development costs are assumed negligible since they should be at least an order of magnitude less than the savings. The overall cost savings uncertainty was derived from process performance uncertainties and baseline remediation cost uncertainties, as determined by the author`s engineering judgment.

DeMuth, S.

1998-09-01T23:59:59.000Z

357

Minimum Changeover Cost Arborescence  

E-Print Network (OSTI)

having minimum changeover cost, a cost that we now describe. ... We define the changeover cost at j, denoted by d(j), as the sum of the costs at j paid for each of ...

358

Cost of Fuel to General Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Fuel to Generate Electricity of Fuel to Generate Electricity Cost of Fuel to Generate Electricity Herb Emmrich Gas Demand Forecast, Economic Analysis & Tariffs Manager SCG/SDG&E SCG/SDG&E Federal Utility Partnership Working Group (FUPWG) 2009 Fall Meeting November 18, 2009 Ontario, California The Six Main Costs to Price Electricity are:  Capital costs - the cost of capital investment (debt & equity), depreciation, Federal & State income taxes and property taxes and property taxes  Fuel costs based on fuel used to generate electricity - hydro, natural gas, coal, fuel oil, wind, solar, photovoltaic geothermal biogas photovoltaic, geothermal, biogas  Operating and maintenance costs  Transmission costs  Distribution costs  Social adder costs - GHG adder, low income adder,

359

Electric shovels meet the demands for mining operations  

SciTech Connect

Rugged, intelligent shovels offer better productivity and help mine operators avoid costly downtime in a very tight market. In 2007 P & H Mining Equipment began to produce a new breed of electric mining shovels designed to help reduce operating cost in coal and other mining operations. These were designated the P & H C-Series. All have an advanced communication, command and control system called the Centurion system. Coal mining applications for this series include 4100XPCs in Australia, China and Wyoming, USA. The Centurion system provides information on shovel performance and systems health which is communicated via graphic user interface terminals to the operators cab. Bucyrus International is developing a hydraulic crowd mechanism for its electric shovels and is now field testing one for its 495 series shovel. The company has also added greater capability in the primary software in the drive system for troubleshooting and fault identification to quickly diagnose problems onboard or remotely. 4 photos.

Fiscor, S.

2008-03-15T23:59:59.000Z

360

Variable operation of Hall thruster with multiple segmented electrodes  

DOE Green Energy (OSTI)

Variable plasma jet velocity with low beam divergence over a range of mass flow rates can be achieved through segmented electrode operation of Hall plasma accelerator. With the use of just a cathode side electrode at the cathode potential, the beam divergence can be decreased substantially, at some cost in efficiency. However, the additional use of an anode side electrode retains the same reduced plume divergence, but at efficiencies comparable to the non-segmented operation. The high efficiency persists also when the anode side electrode is biased at an intermediate potential, thus producing two-stage Hall accelerator operation.

Fisch, N.J.; Raitses, Y.; Dorf, L.A.; Litvak, A.A.

2000-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Low-Cost Hydrogen Distributed Production System Development  

DOE Green Energy (OSTI)

H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen costing approximately $2.87/kg, still above the DOE's 2010 $2.50/kg target. We also began laboratory testing of reforming ethanol, which we showed is currently the least expensive approach to making renewable hydrogen. Extended testing of neat ethanol in micro-reactors was successful, and we also were able to reform E-85 acquired from a local fueling station for 2,700 hours, although some modifications were required to handle the 15% gasoline present in E-85. We began initial tests of a catalyst-coated wall reformer tube that showed some promise in reducing the propensity to coke with E-85. These coated-wall tests ran for 350 hours. Additional resources would be required to commercialize an ethanol reformer operating on E-85, but there is no market for such a product at this time, so this ethanol reformer project was moth-balled pending future government or industry support. The two main objectives of this project were: (1) to design, build and test a steam methane reformer and pressure swing adsorption system that, if scaled up and mass produced, could potentially meet the DOE 2015 cost and efficiency targets for on-site distributed hydrogen generation, and (2) to demonstrate the efficacy of a low-cost renewable hydrogen generation system based on reforming ethanol to hydrogen at the fueling station.

C.E. (Sandy) Thomas, Ph.D., President; Principal Investigator, and

2011-03-10T23:59:59.000Z

362

Waste minimization and pollution prevention initiatives within Argonne National Laboratory-East (ANL-E) boiler house operations  

Science Conference Proceedings (OSTI)

The mission of ANL-E Plant Facility and Services-Utilities and Systems (PFS-US) is to operate and maintain utility services in a cost-effective manner, while utilizing new and innovative methods whenever possible. PFS-US operates an on-site coal burning boiler plant that generates steam for use throughout the Laboratory as a source to heat buildings, as well as for use in research experiments. In the recent past, PFS-US has embarked upon a series of initiatives to improve operating efficiency of boiler house operations. The results of these projects have had the following impacts on boiler house performance and operations: (1) boiler house efficiency and operations have improved, (2) boiler house operating costs have been reduced, (3) specific operating and maintenance costs have been avoided or eliminated, and (4) the amount of waste and pollution generated has been reduced. Through the implementation of these initiatives, over $250,000 of revenue and cost savings have been incurred by ANL-E. In addition, the Laboratory and DOE will benefit annually from revenues, cost savings, and the reduction of environmental liability resulting from these initiatives.

NONE

1996-08-01T23:59:59.000Z

363

Cost-Effective Industrial Boiler Plant Efficiency Advancements  

E-Print Network (OSTI)

Natural gas and electricity are expensive to the extent that annual fuel and power costs can approach the initial cost of an industrial boiler plant. Within this context, this paper examines several cost-effective efficiency advancements that were implemented during a recently completed boiler plant replacement project at a large semiconductor manufacturing complex. The "new" boiler plant began service in November, 1996 and consists of four 75,000 lb/hr water-tube boilers burning natural gas and producing 210 psig saturated steam for heating and humidification. Efficiency advancements include: 1) Reheating of cleanroom make-up air with heat extracted during precooling. 2) Preheating of combustion air with heat extracted from boiler flue gas. 3) Preheating of boiler feedwater with heat extracted from the exhaust of a nearby gas turbine. 4) Variable speed operation of boiler feedwater pumps and forced-draft fans. 5) Preheating of boiler make-up water with heat extracted from boiler blow-down. These efficiency advancements should prove of interest to industrial energy users faced with replacement of aging, inefficient boiler plants, rising fuel and power prices, and increasing pressures to reduce operating costs in order to enhance competitiveness.

Fiorino, D. P.

1997-04-01T23:59:59.000Z

364

Load management strategies for electric utilities: a production cost simulation  

SciTech Connect

This paper deals with the development and application of a simulation model for analyzing strategies for managing the residential loads of electric utilities. The basic components of the model are (1) a production-cost model, which simulates daily operation of an electric power system; (2) a load model, which disaggregates system loads into appliance loads and other loads; and (3) a comparison model, which compares the production costs and energy consumption needed to meet a particular load profile to the corresponding costs and energy consumption required for another load profile. The profiles in each pair define alternative ways of meeting the same demand. A method for disaggregating load profiles into appliance components is discussed and several alternative strategies for residential load management for a typical northeastern electric utility are formulated. The method is based on an analysis of the composition of electric loads for a number of classes of residential customers in the model utility system. The effect of alternative load management strategies on the entire residential loadcurve is determined by predicting the effects of these strategies on the specific appliance components of the loadcurve. The results of using the model to analyze alternative strategies for residential load management suggest that load management strategies in the residential sector, if adopted by utilities whose operating and load characteristics are similar to those of the system modeled here, must take into account a wide variety of appliances to achieve significant changes in the total load profile. Moreover, the results also suggest that it is not easy to reduce costs significantly through new strategies for managing residential loads only and that, to be worthwhile, cost-reducing strategies will have to encompass many kinds of appliances.

Blair, P.D.

1979-03-01T23:59:59.000Z

365

An Integrated Approach to Building Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

An Integrated Approach to Building Operation An Integrated Approach to Building Operation Speaker(s): David E. Claridge Date: April 16, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro Buildings systems have historically been over-sized to minimize contractor/designer call-backs. It is widely recognized that this over-sizing leads to excessive chiller and boiler cycling with an attendant reduction in efficiency. The same design approach routinely leads to reduced efficiencies throughout the building systems. The same mentality pervades the operation of building systems. This customarily increases utility costs by at least 20%. This presentation will present specific examples of the deleterious effects of the "more is better" approach by examining the impact of too much differential pressure across a control

366

Energy efficiency improvement and cost saving opportunities forpetroleum refineries  

Science Conference Proceedings (OSTI)

The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

Worrell, Ernst; Galitsky, Christina

2005-02-15T23:59:59.000Z

367

Wind Speed Forecasting for Power System Operation  

E-Print Network (OSTI)

In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system operation in terms of the efficiency of the system. The goal of this dissertation is to develop advanced statistical wind speed predictive models to reduce the uncertainties in wind, especially the short-term future wind speed. Moreover, a criterion is proposed to evaluate the performance of models. Cost reduction in power system operation, as proposed, is more realistic than prevalent criteria, such as, root mean square error (RMSE) and absolute mean error (MAE). Two advanced space-time statistical models are introduced for short-term wind speed forecasting. One is a modified regime-switching, space-time wind speed fore- casting model, which allows the forecast regimes to vary according to the dominant wind direction and seasons. Thus, it avoids a subjective choice of regimes. The other one is a novel model that incorporates a new variable, geostrophic wind, which has strong influence on the surface wind, into one of the advanced space-time statistical forecasting models. This model is motivated by the lack of improvement in forecast accuracy when using air pressure and temperature directly. Using geostrophic wind in the model is not only critical, it also has a meaningful geophysical interpretation. The importance of model evaluation is emphasized in the dissertation as well. Rather than using RMSE or MAE, the performance of both wind forecasting models mentioned above are assessed by economic benefits with real wind farm data from Pacific Northwest of the U.S and West Texas. Wind forecasts are incorporated into power system economic dispatch models, and the power system operation cost is used as a loss measure for the performance of the forecasting models. From another perspective, the new criterion leads to cost-effective scheduling of system-wide wind generation with potential economic benefits arising from the system-wide generation of cost savings and ancillary services cost savings. As an illustration, the integrated forecasts and economic dispatch framework are applied to the Electric Reliability Council of Texas (ERCOT) equivalent 24- bus system. Compared with persistence and autoregressive models, the first model suggests that cost savings from integration of wind power could be on the scale of tens of millions of dollars. For the second model, numerical simulations suggest that the overall generation cost can be reduced by up to 6.6% using look-ahead dispatch coupled with spatio-temporal wind forecast as compared with dispatch with persistent wind forecast model.

Zhu, Xinxin

2013-08-01T23:59:59.000Z

368

JGI - Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations The Operations Department sees to it that JGI has the best possible facilities and support, ensuring that its operations are conducted in accordance with the...

369

Power Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Operations Outage Coordination Standards of Conduct Transmission Planning You are here: SN Home page > Power Operations Power Operations Western's Sierra Nevada Region...

370

Cost Study Manual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28, 2012 28, 2012 Cost Study Manual Executive Summary This Cost Study Manual documents the procedures for preparing a Cost Study to compare the cost of a contractor's employee benefits to the industry average from a broad-based national benefit cost survey. The annual Employee Benefits Cost Study Comparison (Cost Study) assists with the analysis of contractors' employee benefits costs. The Contracting Officer (CO) may require corrective action when the average benefit per capita cost or the benefit cost as a percent of payroll exceeds the comparator group by more than five percent. For example, if per capita benefit costs for the comparator group are $10,000 and the benefit costs as a percent of payroll for the comparator group are 20%, the threshold for the contractor's benefits as a

371

FY 1996 cost savings report  

SciTech Connect

Cost savings are an integral part of Hanford site operations. Congressional actions towards establishing a balanced budget have resulted in reductions to funding for all federal agencies, including the Department of Energy (DOE) Environmental Management (EM) cleanup mission. In September 1994 the DOE Richland Operations Office (RL) approved the FY 1995 multi-year baseline that included a cost estimate of $1.9 billion for FY 1996. However, Congress only appropriated $1.3 billion for that year. The shortfall of $600 million resulted in a significant challenge to accomplish the required workscope. Therefore, RL initiated an aggressive cost savings program to eliminate the shortfall by deleting workscope that was unnecessary and performing the remaining workscope more efficiently. RL initiated baseline planning actions (including deletions, deferrals, transfers, and additions) during the FY 1996 multi-year baseline development process to match workscope and anticipated funding and identified $205 million of workscope deletions. CFR (Contract Finance and Review Division) then reviewed over 200 cost baseline change requests during FY 1996 and documented an additional $95 million of FY 1996 cost savings. This included $73 million of workscope deletions and $22 million of efficiencies. Total savings as a result of FY 1996 initiatives, including baseline planning actions and current year initiatives, were $300 million.

Andrews-Smith, K.L.

1997-08-15T23:59:59.000Z

372

Tubing-conveyed perforating cuts costs, boosts production  

Science Conference Proceedings (OSTI)

A new Attaka Field development program was started in November 1984 with the objective of reversing the field's declining production. The Intermediate and Deep sands were the reservoirs of interest since their abundance and large areal extent account for a large volume of oil and gas. Many factors contributed to the success of this program, particularly tubing conveyed perforating, (TCP) which has reduced completion time, formation damage and maximized well production. This article discusses the determination of proper underbalance, operational aspects of tubing conveyed perforating, cost comparisons between TCP and wireline methods and a comparison of skin factors resulting from underbalanced perforating and overbalanced perforating.

Sukmadjaja, T.; Shewchenko, D.; Ajam, S.O.

1988-05-01T23:59:59.000Z

373

Liquefaction and Pipeline Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

factors add 20 percent to liquefaction plant total installed cost 6 Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for current urban and...

374

Build, Own, Operate and Maintain (BOOM) Boiler Systems  

E-Print Network (OSTI)

"Overview: The article addresses the growing trend in outsourcing boiler equipment, installation, operation, maintenance and ownership by large corporations, colleges and universities. Issues: To remain competitive and provide for growth, corporations and not-for-profit (NFP) organizations have changed the way they look at their energy systems: They are only allocating capital to ""core"" assets. In most cases, thennal, electric and air energy systems are not considered ""core"" assets resulting in the need to find ""other"" solutions to providing the needed energy. Reduced staffing has resulted in fewer experienced and knowledgeable boiler operating and maintenance personnel. Fluctuating energy costs make it difficult to accurately plan and budget. Constantly changing emissions standards and regulations add operational cost burdens. Objective: Find a solution to these pressures that does not require capital investment."

Henry, T.

2003-05-01T23:59:59.000Z

375

Biomass Power Project Cost Analysis Database  

Science Conference Proceedings (OSTI)

The development of biomass power projects presents a variety of challenges that result in high capital costs associated with developing, engineering, procuring, constructing, and operating biomass power projects. Although projects that rely on more homogeneous fuels such as natural gas must still account for site-specific issues when estimating development and construction costs, the complexities are not comparable.Recognizing the difficulties in estimating the capital costs for ...

2012-12-21T23:59:59.000Z

376

REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE  

SciTech Connect

A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance. Although the blending of petroleum coke with coal may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

NONE

1998-09-01T23:59:59.000Z

377

Reducing Power Production Costs by Utilizing Petroleum Coke  

Science Conference Proceedings (OSTI)

Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke. It is most commonly blended with coal in proportions suitable to meet sulfur emission compliance, and is generally less reactive than coal. Therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the comb...

2000-05-05T23:59:59.000Z

378

Helping Alaska Native Communities Reduce Their Energy Costs ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooperative, which covers over 50 Interior and Western Alaska villages, has installed wind-diesel hybrid systems in nine villages -- supporting its goal to offset 25 percent of...

379

SunShot Initiative: Reducing System Design and Engineering Costs...  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip to Content U.S. Department of Energy SunShot Initiative Search Search Help SunShot Initiative HOME ABOUT KEY ACTIVITIES PROJECTS FINANCIAL OPPORTUNITIES INFORMATION RESOURCES...

380

Reducing Costs in Aircraft: The Metals Affordability Initiative ...  

Science Conference Proceedings (OSTI)

Martin, R. "Affordable Metal Technologies For Military Aircraft. ... Ruhman, D., L. Pionke, and R. Martin, "Missiles and Space Systems with a Material Difference.

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN  

DOE Green Energy (OSTI)

This report describes activities for the fourth quarter of work performed under this agreement. A second round of atmospheric testing was conducted as scheduled on September 2 through September 4, 2003. The test results demonstrated a much-improved rate of carbon dissolution with gas yields close to expectations. Additional atmospheric testing to demonstrate a commercially feasible feed and oxygen injection method is scheduled for the week of December 8, 2003.

Donald P. Malone; William R. Renner

2003-10-31T23:59:59.000Z

382

Reducing the risk, complexity and cost of coiled tubing drilling  

Science Conference Proceedings (OSTI)

Drilling vertical well extensions with coiled tubing, particularly in the underbalanced state, exploits the inherent strengths of coiled tubing including: The ability to enter slim holes against a live well head; The use of small equipment that is fast to rig up and down; and The ability to trip quickly and maintain a steady pressure downhole with continuous circulation. Coiled tubing has successfully been used to deepen hundreds of wells, yet this application has only received sporadic attention. There are some very important technical considerations when drilling non-directionally with coiled tubing that must be addressed to ensure a commercially successful job. A recent vertical drilling job carried out in Western Australia illustrates the critical engineering aspects of an underbalanced, non-directional, coiled tubing drilling job. This job was completed for Arc Energy in April 1999 and produced a well that stabilized at 1.1 MMcfd, where three other wells drilled conventionally into these zones had shown only trace amounts of hydrocarbon.

Portman, L. [BJ Services, Houston, TX (United States)

1999-07-01T23:59:59.000Z

383

Reducing the quantum communication cost of quantum secret sharing  

E-Print Network (OSTI)

We demonstrate a construction for perfect quantum secret sharing (QSS) schemes based on imperfect "ramp" secret sharing combined with classical encryption, in which the individual parties' shares are split into quantum and classical components, allowing the former to be of lower dimension than the secret itself. We show that such schemes can be performed with smaller quantum components and lower overall quantum communication than required for existing methods. Finally, we demonstrate that one may further combine both imperfect quantum and imperfect classical secret sharing to produce an overall perfect QSS scheme; we construct examples of such schemes and prove that they have the smallest quantum and classical share components possible for their access structures.

Fortescue, Ben

2011-01-01T23:59:59.000Z

384

Reducing the quantum communication cost of quantum secret sharing  

E-Print Network (OSTI)

We demonstrate a new construction for perfect quantum secret sharing (QSS) schemes based on imperfect "ramp" secret sharing combined with classical encryption, in which the individual parties' shares are split into quantum and classical components, allowing the former to be of lower dimension than the secret itself. We show that such schemes can be performed with smaller quantum components and lower overall quantum communication than required for existing methods. We further demonstrate that one may combine both imperfect quantum and imperfect classical secret sharing to produce an overall perfect QSS scheme, and that examples of such scheme (which we construct) can have the smallest quantum and classical share components possible for their access structures, something provably not achievable using perfect underlying schemes. Our construction has significant potential for being adapted to other QSS schemes based on stabiliser codes.

Ben Fortescue; Gilad Gour

2011-08-29T23:59:59.000Z

385

REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN  

DOE Green Energy (OSTI)

Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations. This report describes activities for the ninth quarter of work performed under this agreement. The design of the vessel for pressure testing has been completed. The design will be finalized and purchased in the next quarter.

Donald P. Malone; William R. Renner

2005-07-01T23:59:59.000Z

386

REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN  

DOE Green Energy (OSTI)

This report describes activities for the third quarter of work performed under this agreement. Atmospheric testing was conducted as scheduled on June 5 through June 13, 2003. The test results were encouraging, however, the rate of carbon dissolution was below expectations. Additional atmospheric testing is scheduled for the first week of September 2003. Phase I of the work to be done under this agreement consists of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product stream. In addition smaller quantities of petroleum coke and a low value refinery stream will be gasified. DOE and EnviRes will evaluate the results of this work to determine the feasibility and desirability of proceeding to Phase II of the work to be done under this agreement, which is gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2003-07-31T23:59:59.000Z

387

REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN  

DOE Green Energy (OSTI)

This report describes activities for the seventh quarter of work performed under this agreement. We await approval from the Swedish pressure vessel board to allow us to proceed with the procurement of the vessel for super atmospheric testing.

Donald P. Malone; William R. Renner

2004-10-01T23:59:59.000Z

388

REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN  

DOE Green Energy (OSTI)

This report describes activities for the seventh quarter of work performed under this agreement. We successfully completed atmospheric testing in the previous quarter. We await approval from the Swedish pressure vessel board to allow us to proceed with the procurement of the vessel for super atmospheric testing.

Donald P. Malone; William R. Renner

2004-07-01T23:59:59.000Z

389

REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN  

DOE Green Energy (OSTI)

This report describes activities for the fifth quarter of work performed under this agreement. A third round of atmospheric testing was conducted as scheduled on December 9 through December 12, 2003. The test results demonstrated a much-improved rate of carbon dissolution with gas yields close to thermodynamic equilibrium at nearly doubled feed rates of September testing and a commercially viable feed and oxygen injection technique. Additional super-atmospheric testing to perform the last task in the MEFOS experimental program is scheduled for the week of August 2004.

Donald P. Malone; William R. Renner

2003-01-01T23:59:59.000Z

390

REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN  

DOE Green Energy (OSTI)

This report describes activities for the seventh quarter of work performed under this agreement. We await approval from the Swedish pressure vessel board to allow us to proceed with the procurement of the vessel for super atmospheric testing. Phase I of the work to be done under this agreement consists of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream will be gasified. DOE and EnviRes will evaluate the results of this work to determine the feasibility and desirability of proceeding to Phase II of the work to be done under this agreement, which is gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2005-01-01T23:59:59.000Z

391

REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN  

DOE Green Energy (OSTI)

This report describes activities for the sixth quarter of work performed under this agreement. MEFOS conducted a third round of atmospheric testing as scheduled on December 9 through December 12, 2003. We reported experimental activities of this testing last quarter. We report process calculations and results this quarter. The test results demonstrated a much-improved rate of carbon dissolution with gas yields close to thermodynamic equilibrium at nearly doubled feed rates of September testing and a commercially viable feed and oxygen injection technique. Additional super-atmospheric testing to perform the last task in the MEFOS experimental program is scheduled for the last quarter of 2004.

Donald P. Malone; William R. Renner

2004-04-01T23:59:59.000Z

392

Entanglement cost in practical scenarios  

E-Print Network (OSTI)

We quantify the one-shot entanglement cost of an arbitrary bipartite state, that is the minimum number of singlets needed by two distant parties to create a single copy of the state up to a finite accuracy, using local operations and classical communication only. This analysis, in contrast to the traditional one, pertains to scenarios of practical relevance, in which resources are finite and transformations can only be achieved approximately. Moreover, it unveils a fundamental relation between two well-known entanglement measures, namely, the Schmidt number and the entanglement of formation. Using this relation, we are able to recover the usual expression of the entanglement cost as a special case.

Francesco Buscemi; Nilanjana Datta

2009-06-19T23:59:59.000Z

393

Managing Constructibility Reviews to Reduce Highway Project Durations  

E-Print Network (OSTI)

- creases costs. Research confirms that schedule compression has led to increases in project cost CII 1989 in project cost provided certain tech- niques are applied during project development and especially dur- ing to have the highest potential to reduce project duration without increasing total project cost. Project

Ford, David N.

394

DOE to Join with WVU to Optimize Hot Gas Filter Cleaning, Lower Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

September 24, 1999 September 24, 1999 DOE to Join with WVU to Optimize Hot Gas Filter Cleaning, Lower Costs One of the keys to future, high efficiency, cleaner coal-fired power plants is the development of hot gas filters. Most of the devices available today to filter pollution-causing impurities from power plant gas streams operate at relatively low temperatures. Tomorrow's advanced power plants - those, for example, that use coal gasifiers and advanced fluidized bed combustors - will require filtering systems that are able to withstand much hotter gas flows and function reliably at lower costs. In an effort to reduce the operational costs of these future filter systems, the Department of Energy (DOE) and West Virginia University (WVU) will conduct experiments at the university's test facility to better understand how hot-gas filters are cleaned. DOE will provide $232,000 of the total $488,888 project that will ultimately help to optimize the cleaning process.

395

Saving Fuel, Reducing Emissions  

E-Print Network (OSTI)

unless gas prices rise or battery costs drop faster thanPolicies to improve battery costs and lifetimes, to decreaseeven costs are far lower than hybrid or PHEV battery prices,

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

396

Human Performance - Fossil Operations  

Science Conference Proceedings (OSTI)

All humans make errors. Industrial human errors can result in a loss of life and can significantly impact the productivity and cost effectiveness of any facility or company. Several industries in which human error has had a significant impact (for example, airline, medical, military, nuclear power, aviation, and chemical) have implemented human performance programs with excellent results. Human errors by fossil plant operators can easily challenge plant safety and production. In the fossil operations are...

2007-02-28T23:59:59.000Z

397

Energy Efficiency Improvements and Cost Saving Opportunities in the Corn Wet Milling Industry  

E-Print Network (OSTI)

Corn wet milling is the most energy intensive industry in the food and kindred products group (SIC 20). Plants typically spend approximately $15 to 25 million per year on energy, one of its largest operating costs, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. After describing the industry's trends, structure and production and the process's energy use, we examine energy-efficiency opportunities for corn wet millers. Where available, we provide energy savings and typical payback periods for each measure based on case studies of plants that have implemented it. Given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the industry while maintaining the quality of the products produced. Further research on the economics of the measures and their applicability to different wet milling practices is needed to assess implementation of selected technologies at individual plants.

Galitsky, C.; Worrell, E.

2003-05-01T23:59:59.000Z

398

Realities of Chiller Plant Operation: Utility Impacts on Owner Operating  

NLE Websites -- All DOE Office Websites (Extended Search)

Realities of Chiller Plant Operation: Utility Impacts on Owner Operating Realities of Chiller Plant Operation: Utility Impacts on Owner Operating Costs and Societal Environmental Issues Speaker(s): Don Aumann Date: March 21, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Satkartar K. Kinney Don Aumann, a Senior Consultant from BKi in Oakland, will present an overview of two projects he completed for the electric utility industry. The first, a case study evaluation of a hybrid chiller plant in Jefferson City, Missouri, demonstrates the importance of carefully evaluating the impact of utility rate structures on plant operating costs. The building owner, another engineering consultant, and the local utility representatives were confused by the rates and missed an opportunity to cut chiller-plant operating costs by about 20%, totaling $15,000 per year. In

399

Highly Insulating Windows - Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Cost The following is an estimate of the cost effective incremental cost of highly-insulating windows (U-factor=0.20 Btu/hr-ft2-F) compared to regular ENERGY STAR windows (U-factor 0.35 Btu/hr-ft2-F). Energy savings from lower U-factors were simulated with RESFEN over an assumed useful window life of 25 years. To determine the maximum incremental cost at which highly-insulating windows would still be cost-effective, we used a formula used by many utility companies to calculate the cost of saved energy from energy efficiency programs, based on the programs' cost and savings. We turned this formula around so that the cost of saved energy equals the present energy prices in the studied locations, whereas the program cost (the incremental cost of the windows) is the dependent variable. By entering 5%

400

Optimization of Transmission Line Design Using Life Cycle Costing  

Science Conference Proceedings (OSTI)

When an overhead line is designed, all costs incurred during the expected life of the line should be considered. The total cost during the life or life-cycle cost of a transmission line is a combination of the initial capital cost, operation and maintenance (O&M) cost, cost of electrical losses over its entire life, and dependability associated costs. The option that has the lowest life-cycle cost is selected as the optimized design. A tool is required by utility engineers to help them readily select an ...

2009-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Optimization of Transmission Line Design Using Life-Cycle Costing  

Science Conference Proceedings (OSTI)

When an overhead line is designed, all costs incurred during the expected life of the line should be considered. The total cost during the life, or life-cycle cost, of a transmission line is a combination of the initial capital cost, operation and maintenance (O&M) cost, cost of electrical losses over its entire life, and dependability-associated costs. The option that has the lowest life-cycle cost is selected as the optimized design. A tool is required by utility engineers to help them readily select a...

2008-12-09T23:59:59.000Z

402

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-2 hours of training per new employee Operating costs: 0 Telework centers Cost per square foot to lease telework centers varies widely by location. In DC area, agencies have...

403

Incorporating uncertainty in the Life Cycle Cost Analysis of pavements  

E-Print Network (OSTI)

Life Cycle Cost Analysis (LCCA) is an important tool to evaluate the economic performance of alternative investments for a given project. It considers the total cost to construct, maintain, and operate a pavement over its ...

Swei, Omar Abdullah

2012-01-01T23:59:59.000Z

404

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

8000 hours Number of lamps in retrofit project Hours operating per week hours Average cost of electricity 0.06 kWh Relamper labor costs hr Time taken to retrofit all lamps...

405

Simulation and Optimization of Wind Farm Operations under Stochastic Conditions  

E-Print Network (OSTI)

This dissertation develops a new methodology and associated solution tools to achieve optimal operations and maintenance strategies for wind turbines, helping reduce operational costs and enhance the marketability of wind generation. The integrated framework proposed includes two optimization models for enabling decision support capability, and one discrete event-based simulation model that characterizes the dynamic operations of wind power systems. The problems in the optimization models are formulated as a partially observed Markov decision process to determine an optimal action based on a wind turbine's health status and the stochastic weather conditions. The rst optimization model uses homogeneous parameters with an assumption of stationary weather characteristics over the decision horizon. We derive a set of closed-form expressions for the optimal policy and explore the policy's monotonicity. The second model allows time-varying weather conditions and other practical aspects. Consequently, the resulting strategy are season-dependent. The model is solved using a backward dynamic programming method. The bene ts of the optimal policy are highlighted via a case study that is based upon eld data from the literature and industry. We nd that the optimal policy provides options for cost-e ective actions, because it can be adapted to a variety of operating conditions. Our discrete event-based simulation model incorporates critical components, such as a wind turbine degradation model, power generation model, wind speed model, and maintenance model. We provide practical insights gained by examining di erent maintenance strategies. To the best of our knowledge, our simulation model is the rst discrete-event simulation model for wind farm operations. Last, we present the integration framework, which incorporates the optimization results in the simulation model. Preliminary results reveal that the integrated model has the potential to provide practical guidelines that can reduce the operation costs as well as enhance the marketability of wind energy.

Byon, Eunshin

2010-05-01T23:59:59.000Z

406

Circofer -- Low cost approach to DRI production  

SciTech Connect

Lurgi's Circofer Process for reducing fine ores with coal in a Circulating Fluidized Bed (CFB) is a direct approach by using a widely applied and proven reactor in commercializing a state of the art technology. The technology is in response to the demand for a direct reduction process of the future by making possible: the use of low cost ore fines and inexpensive primary energy, fine coal; production of a high grade product used as feedstock by mini mills with the additional advantage of dilution of contaminants introduced by scrap; low environmental impact; and low specific investment costs due to the closed energy circuit. With the incorporation of the latest developments in CFB technology, Circofer offers excellent heat and mass transfer conditions and, consequently, improved gas and energy utilization. High gas conversions using recycle gas have a positive influence on the process economics whereby no export gas is produced. Sticking, accretion and reoxidation problems, which have plagued all previous attempts at developing direct reduction processes using fine ore and coal as a reductant, are avoided, essentially by operating with defined amounts of excess carbon and separation of the reduction and gasifying zones.

Weber, P.; Bresser, W.; Hirsch, M. (Lurgi Metallurgie GmbH, Frankfurt (Germany))

1994-09-01T23:59:59.000Z

407

Utility-Scale Solar 2012: An Empirical Analysis of Project Cost...  

NLE Websites -- All DOE Office Websites (Extended Search)

through key findings from this report. The webinar covers trends in not only installed project costs or prices, but also operating costs, capacity factors, and power purchase...

408

The Rising Cost of Electricity Generation  

SciTech Connect

Through most of its history, the electric industry has experienced a stable or declining cost structure. Recently, the economic fundamentals have shifted and generating costs are now rising and driving up prices at a time when the industry faces new challenges to reduce CO{sub 2} emissions. New plant investment faces the most difficult economic environment in decades.

Tobey Winters

2008-06-15T23:59:59.000Z

409

The rising cost of electricity generation  

Science Conference Proceedings (OSTI)

Through most of its history, the electric industry has experienced a stable or declining cost structure. Recently, the economic fundamentals have shifted and generating costs are now rising and driving up prices at a time when the industry faces new challenges to reduce CO{sub 2} emissions. New plant investment faces the most difficult economic environment in decades. (author)

Winters, Tobey

2008-06-15T23:59:59.000Z

410

Fuel Cell System Cost for Transporationa--2008 Cost Estimate  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell System Cost for Fuel Cell System Cost for Transportation-2008 Cost Estimate National Renewable Energy Laboratory 1617 Cole Boulevard * Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Independent Review Published for the U.S. Department of Energy Hydrogen Program NREL/BK-6A1-45457 May 2009 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

411

Estimating Well Costs for Enhanced Geothermal System Applications  

SciTech Connect

The objective of the work reported was to investigate the costs of drilling and completing wells and to relate those costs to the economic viability of enhanced geothermal systems (EGS). This is part of a larger parametric study of major cost components in an EGS. The possibility of improving the economics of EGS can be determined by analyzing the major cost components of the system, which include well drilling and completion. Determining what costs in developing an EGS are most sensitive will determine the areas of research to reduce those costs. The results of the well cost analysis will help determine the cost of a well for EGS development.

K. K. Bloomfield; P. T. Laney

2005-08-01T23:59:59.000Z

412

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Saving Opportunities for Breweries Energy consumption is equal to 3-8 percent of the production costs of beer, making energy efficiency improvement an important way to reduce...

413

Stock prices and the cost of environmental regulation  

E-Print Network (OSTI)

Recent environmental regulations have used market incentives to reduce compliance costs and improve efficiency. In most cases, the Environmental Protection Agency (EPA) selects an emissions cap using the predicted costs ...

Linn, Joshua

2006-01-01T23:59:59.000Z

414

Transparent Cost Database | Transparent Cost Database  

Open Energy Info (EERE)

Hide data for this chart (-)Show data for this chart (+) Loading data... Transparent Cost Database Generation Showing: Historical Projections Year Published: Release mouse to...

415

Cost Containment Through Energy Efficiency in Texas State-Owned Buildings  

E-Print Network (OSTI)

"The Energy Cost Containment Through Energy Efficiency" in Texas State-owned buildings project was begun in the spring of 1984 as a part of a multipronged effort to reduce rising energy costs in State operations. Energy audits of 21 million square feet (22% of total conditioned space) were conducted by three energy engineering firms and Texas Engineering Extension Service personnel under contract to the Public Utility Commission of Texas. Retrofits totaling $15.6 million with annual savings of $9.2 million were identified (59% ROI). This paper will detail the objectives of the project, summarize audit results, and outline financing options for individual projects.

Ponder, W. M.; Verdict, M. E.

1985-01-01T23:59:59.000Z

416

Operator strength reduction  

Science Conference Proceedings (OSTI)

Operator strength reduction is a technique that improves compiler-generated code by reformulating certain costly computations in terms of less expensive ones. A common case arises in array addressing expressions used in loops. The compiler can replace ... Keywords: loops, static single assignment form, strength reduction

Keith D. Cooper; L. Taylor Simpson; Christopher A. Vick

2001-09-01T23:59:59.000Z

417

Site Operator Program  

DOE Green Energy (OSTI)

Collectively, the organizations participating in the Site Operator Program have over forty years of EV experience and have operated electric vehicles (EVs) for over 600,000 miles, providing the most extensive EV operating and knowledge base in the country. The Site Operator Program is intended to provide financial and technical support and organizational resources to organizations active in the advancement of electric vehicles. Support is provided for the demonstration of vehicles and the test and evaluation of vehicles, components, and batteries. Support is also provided for the management and support of the program for the participating organizations. The Program provides a forum for participants to exchange information among the group, as well as with vehicle and equipment manufacturers and suppliers, and the public. A central data base at the Idaho National Engineering Laboratory provides a repository for-data on the vehicles being operated by the Program participants. Data collection emphasis is in the areas of operations, maintenance, and life cycle costs.

Warren, J.F.

1991-12-31T23:59:59.000Z

418

Site Operator Program  

DOE Green Energy (OSTI)

Collectively, the organizations participating in the Site Operator Program have over forty years of EV experience and have operated electric vehicles (EVs) for over 600,000 miles, providing the most extensive EV operating and knowledge base in the country. The Site Operator Program is intended to provide financial and technical support and organizational resources to organizations active in the advancement of electric vehicles. Support is provided for the demonstration of vehicles and the test and evaluation of vehicles, components, and batteries. Support is also provided for the management and support of the program for the participating organizations. The Program provides a forum for participants to exchange information among the group, as well as with vehicle and equipment manufacturers and suppliers, and the public. A central data base at the Idaho National Engineering Laboratory provides a repository for-data on the vehicles being operated by the Program participants. Data collection emphasis is in the areas of operations, maintenance, and life cycle costs.

Warren, J.F.

1991-01-01T23:59:59.000Z

419

Early Station Costs Questionnaire  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Station Costs Questionnaire Early Station Costs Questionnaire Marc Melaina Hydrogen Technologies and Systems Center Market Readiness Workshop February 16-17th, 2011 Washington, DC Questionnaire Goals * The Early Station Costs questionnaire provides an anonymous mechanism for organizations with direct experience with hydrogen station costs to provide feedback on current costs, near-term costs, economies of scale, and R&D priorities. * This feedback serves the hydrogen community and government agencies by increasing awareness of the status of refueling infrastructure costs National Renewable Energy Laboratory Innovation for Our Energy Future Questions for Market Readiness Workshop Attendees * Are these questions the right ones to be asking?

420

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Costs to Implement Greenhouse Gas Mitigation Strategies Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:25am Addthis After determining the best greenhouse gas (GHG) reduction strategies using renewable energy, a Federal agency should estimate the cost of implementing them in a building or buildings. There are several cost factors that need to be considered when developing a renewable energy project. Capital costs, fixed and variable operations and maintenance (O&M) costs and in the case of biomass and waste-to-energy projects, fuel costs all contribute to the total cost of operating a renewable energy system. The levelized system cost takes into account these

Note: This page contains sample records for the topic "reduce operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

Not Available

2012-03-01T23:59:59.000Z

422

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network (OSTI)

to be less. Item Battery Mode Cost Hours required Backgroundwiring Total battery mode capital costs Adjustments fora detailed list of costs in the battery mode of operation.

Kay, J.

2009-01-01T23:59:59.000Z

423

DSOM (Decision Support for Operations and Maintenance ...  

Summary. Operations and maintenance (O&M) can make or break a business - especially with today's rising energy costs. DSOM (Decision Support for ...

424

GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION  

DOE Green Energy (OSTI)

This project developed optimized designs and cost estimates for several coal and petroleum coke IGCC coproduction projects that produced hydrogen, industrial grade steam, and hydrocarbon liquid fuel precursors in addition to power. The as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project was the starting point for this study that was performed by Bechtel, Global Energy and Nexant under Department of Energy contract DE-AC26-99FT40342. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This non-optimized plant has a thermal efficiency to power of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW.1 This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal- and coke-fueled IGCC power plants. A side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, shows their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a four-train coal-fueled IGCC power plant, also based on the Subtask 1.3 cases. This plant has a thermal efficiency to power of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency to power of 44.5% (HHV) and a plant cost of 1,116 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to co-produce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. Subtask 2.1 developed a petroleum coke IGCC power plant with the coproduction of liquid fuel precursors from the Subtask 1.3 Next Plant by eliminating the export steam and hydrogen production and replacing it with a Fischer-Tropsch hydrocarbon synthesis facility that produced 4,125 bpd of liquid fuel precursors. By maximizing liquids production at the expense of power generation, Subtask 2.2 developed an optimized design that produces 10,450 bpd of liquid fuel precursors and 617 MW of export power from 5,417 tpd of dry petroleum coke. With 27 $/MW-hr power and 30 $/bbl liquids, the Subtask 2.2 plant can have a return on investment of 18%. Subtask 2.3 converted the Subtask 1.6 four-train coal fueled IGCC power plant

Sheldon Kramer

2003-09-01T23:59:59.000Z

425

GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION  

Science Conference Proceedings (OSTI)

This project developed optimized designs and cost estimates for several coal and petroleum coke IGCC coproduction projects that produced hydrogen, industrial grade steam, and hydrocarbon liquid fuel precursors in addition to power. The as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project was the starting point for this study that was performed by Bechtel, Global Energy and Nexant under Department of Energy contract DE-AC26-99FT40342. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This non-optimized plant has a thermal efficiency to power of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW.1 This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal- and coke-fueled IGCC power plants. A side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, shows their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a four-train coal-fueled IGCC power plant, also based on the Subtask 1.3 cases. This plant has a thermal efficiency to power of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency to power of 44.5% (HHV) and a plant cost of 1,116 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to co-produce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. Subtask 2.1 developed a petroleum coke IGCC power plant with the coproduction of liquid fuel precursors from the Subtask 1.3 Next Plant by eliminating the export steam and hydrogen production and replacing it with a Fischer-Tropsch hydrocarbon synthesis facility that produced 4,125 bpd of liquid fuel precursors. By maximizing liquids production at the expense of power generation, Subtask 2.2 developed an optimized design that produces 10,450 bpd of liquid fuel precursors and 617 MW of export power from 5,417 tpd of dry petroleum coke. With 27 $/MW-hr power and 30 $/bbl liquids, the Subtask 2.2 plant can have a return on investment of 18%. Subtask 2.3 converted the Subtask 1.6 four-train coal fueled IGCC power plant

Sheldon Kramer

2003-09-01T23:59:59.000Z

426

Economic analysis of geothermal energy costs  

SciTech Connect

A description is given of the computer program, GEOCOST, and its application to some analyses of the economics of geothermal energy. GEOCOST combines both technical and economic factors into one systematic cost accounting framework. The program, which simulates production of electricity from most types of geothermal resources, is composed of two parts: a reservoir model which simulates the costs associated with the exploration, development, and operation of a geothermal reservoir; and a power-plant model which simulates the costs associated with the design, construction, and operation of the power plant. The costs from the reservoir model become the energy supply costs to the power plant. The combined reservoir and power plant models represent the complete energy production system. (LBS)

Bloomster, C.H.

1975-01-01T23:59:59.000Z

427

Operations & Maintenance  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates Operations & Maintenance Operations OASIS: WACM (Note: this site is not hosted by Western and requires a digital certificate and login for full access.) wesTTrans Common...

428

EIA - Updated Capital Cost Estimates for Electricity Generation Plants  

U.S. Energy Information Administration (EIA)

Almost all of these factors can vary by region, as do capacity factors for renewable generation, operations and maintenance costs associated with individual ...

429

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network (OSTI)

2007. "Utility Wind Integration and Operating Impact Statethat the integration of 20% wind into US electricity marketsand integration costs, Figure 8 provides a supply curve for wind

Wiser, Ryan H

2010-01-01T23:59:59.000Z

430

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Urinals Vary water cost, frequency of operation, and or efficiency level. INPUT SECTION This calculator assumes that early replacement of a urinal or toilet will take place with...

431

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric and Gas Water Heaters Vary equipment size, energy cost, hours of operation, and or efficiency level. INPUT SECTION Input the following data (if any parameter is missing,...

432

Information erasure without an energy cost  

E-Print Network (OSTI)

Landauer argued that the process of erasing the information stored in a memory device incurs an energy cost in the form of a minimum amount of mechanical work. We find, however, that this energy cost can be reduced to zero by paying a cost in angular momentum or any other conserved quantity. Erasing the memory of Maxwell's demon in this way implies that work can be extracted from a single thermal reservoir at a cost of angular momentum and an increase in total entropy. The implications of this for the second law of thermodynamics are assessed.

Joan A. Vaccaro; Stephen M. Barnett

2010-04-29T23:59:59.000Z

433

Aerogel commercialization: Technology, markets and costs  

SciTech Connect

Commercialization of aerogels has been slow due to several factors including cost and manufacturability issues. The technology itself is well enough developed as a result of work over the past decade by an international-community of researchers. Several extensive substantial markets appear to exist for aerogels as thermal and sound insulators, if production costs can keep prices in line with competing established materials. The authors discuss here the elements which they have identified as key cost drivers, and they give a prognosis for the evolution of the technology leading to reduced cost aerogel production.

Carlson, G.; Lewis, D.; McKinley, K.; Richardson, J.; Tillotson, T.

1994-10-07T23:59:59.000Z

434

Durable, Low Cost, Improved Fuel Cell Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Durable, Low-cost, Improved Durable, Low-cost, Improved Fuel Cell Membranes US Department of Energy Office of Hydrogen, Fuel Cells and Infrastructure Technologies Kickoff Meeting, Washington DC, February 13, 2007 Michel Fouré Project Objectives z To develop a low cost (vs. perfluorosulfonated ionomers), durable membrane. z To develop a membrane capable at 80°C at low relative humidity (25-50%). z To develop a membrane capable of operating at 120°C for brief periods of time. z To elucidate membrane degradation and failure mechanisms. U:jen/slides/pres.07/FC kickoff Washington DC 2-13-07 2 Technical Barriers Addressed z Membrane Cost z Membrane Durability z Membrane capability to operate at low relative humidity. z Membrane capability to operate at 120ºC for brief period of times.

435

Energy life cycle cost analysis: Guidelines for public agencies  

SciTech Connect

The State of Washington encourages energy-efficient building designs for public agencies. The Washington State Energy Office (WSEO) supports this goal by identifying advances in building technology and sharing this information with the design community and public administrators responsible for major construction projects. Many proven technologies can reduce operating costs-and save energy-to an extent that justifies some increases in construction costs. WSEO prepared these Energy Life Cycle Cost Analysis (ELCCA) guidelines for the individuals who are responsible for preparing ELCCA submittals for public buildings. Key terms and abbreviations are provided in Appendix A. Chapters 1 and 2 serve as an overview-providing background, defining energy life cycle cost analysis, explaining which agencies and projects are affected by the ELCCA requirements, and identifying changes to the guidelines that have been made since 1990. They explain {open_quotes}what needs to happen{close_quotes} and {open_quotes}why it needs to happen.{close_quotes} Chapters 3 to 7 provide the {open_quotes}how to,{close_quotes} the instructions and forms needed to prepare ELCCA submittals.

1995-03-01T23:59:59.000Z

436

Low-cost inertial measurement unit.  

Science Conference Proceedings (OSTI)

Sandia National Laboratories performs many expensive tests using inertial measurement units (IMUs)--systems that use accelerometers, gyroscopes, and other sensors to measure flight dynamics in three dimensions. For the purpose of this report, the metrics used to evaluate an IMU are cost, size, performance, resolution, upgradeability and testing. The cost of a precision IMU is very high and can cost hundreds of thousands of dollars. Thus the goals and results of this project are as follows: (1) Examine the data flow in an IMU and determine a generic IMU design. (2) Discuss a high cost IMU implementation and its theoretically achievable results. (3) Discuss design modifications that would save money for suited applications. (4) Design and implement a low cost IMU and discuss its theoretically achievable results. (5) Test the low cost IMU and compare theoretical results with empirical results. (6) Construct a more streamlined printed circuit board design reducing noise, increasing capabilities, and constructing a self-contained unit. Using these results, we can compare a high cost IMU versus a low cost IMU using the metrics from above. Further, we can examine and suggest situations where a low cost IMU could be used instead of a high cost IMU for saving cost, size, or both.

Deyle, Travis Jay

2005-03-01T23:59:59.000Z

437

Cost Study for Large Wind Turbine Blades  

SciTech Connect

The cost study for large wind turbine blades reviewed three blades of 30 meters, 50 meters, and 70 meters in length. Blade extreme wind design loads were estimated in accordance with IEC Class I recommendations. Structural analyses of three blade sizes were performed at representative spanwise stations assuming a stressed shell design approach and E-glass/vinylester laminate. A bill of materials was prepared for each of the three blade sizes using the laminate requirements prepared during the structural analysis effort. The labor requirements were prepared for twelve major manufacturing tasks. TPI Composites developed a conceptual design of the manufacturing facility for each of the three blade sizes, which was used for determining the cost of labor and overhead (capital equipment and facilities). Each of the three potential manufacturing facilities was sized to provide a constant annual rated power production (MW per year) of the blades it produced. The cost of the production tooling and overland transportation was also estimated. The results indicate that as blades get larger, materials become a greater proportion of total cost, while the percentage of labor cost is decreased. Transportation costs decreased as a percentage of total cost. The study also suggests that blade cost reduction efforts should focus on reducing material cost and lowering manufacturing labor, because cost reductions in those areas will have the strongest impact on overall blade cost.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

438

Costs of electronuclear fuel production  

SciTech Connect

The Los Alamos Scientific Laboratory (LASL) proposes to study the electronuclear fuel producer (EFP) as a means of producing fissile fuel to generate electricity. The main advantage of the EFP is that it may reduce the risks of nuclear proliferation by breeding /sup 233/U from thorium, thereby avoiding plutonium separation. A report on the costs of electronuclear fuel production based upon two designs considered by LASL is presented. The findings indicate that the EFP design variations considered are not likely to result in electricity generation costs as low as the uranium fuel cycle used in the US today. At current estimates of annual fuel output (500 kg /sup 233/U per EFP), the costs of electricity generation using fuel produced by the EFP are more than three times higher than generating costs using the traditional fuel cycle. Sensitivity analysis indicates that electronuclear fuel production would become cost competitive with the traditional uranium fuel cycle when U/sub 3/O/sub 8/ (yellowcake) prices approach $1000 per pound.

Flaim, T.; Loose, V.

1978-07-01T23:59:59.000Z

439

Reducing Energy Consumption on Process Ovens & Oxidation Systems  

E-Print Network (OSTI)

With the uncertain cost of energy, optimizing the use of air in process dryers, ovens and air pollution control systems is critical to your bottom line. The revived emphasis on air management through the entire process, from plant make-up air heating systems to pollution control system exhaust, provides many opportunities to save energy and cut operating costs. This presentation includes an overview of good air management practices used to optimize energy use in your process and plant. One of the most important benefits of the more stringent air pollution control regulations throughout the world is the focus on better use and conservation of our natural resources. Through the efforts of many of the world's finest engineers and scientists the world is now realizing the benefits of an environmentally friendly approach to manufacturing. These benefits, which include more eff