Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

New top layer reduces the"wiggle"that degrades the conversion of light to electricity in solar cells by absorbing  

E-Print Network (OSTI)

New top layer reduces the"wiggle"that degrades the conversion of light to electricity in solar cells by absorbing light within a specific wavelength. Today's thin-film solar cells could not function light to pass through to the cell's active layers. Until recently, TCOs were seen as a necessary

2

Texas Electric Lighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

electric lighting electric lighting The SNAP House's lighting design aims for elegant simplicity in concept, use, and maintenance. Throughout the house, soft, ambient light is juxtaposed with bright, direct task lighting. All ambient and most task lighting is integrated directly into the architectural design of the house. An accent light wall between the bedroom and bathroom provides a glowing light for nighttime navigation.

3

Reducing Leaking Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Reducing Leaking Electricity Figure 1. Full and standby power draws of some compact audio systems. A surprisingly large number of appliances-from computer peripherals to cable TV boxes to radios-consume electricity even after they have been switched off. Other appliances, such as cordless telephones, remote garage door openers, and battery chargers don't get switched off but draw power even when they are not performing their principal functions. The energy used while the appliance is switched off or not performing its primary purpose is called "standby consumption" or "leaking electricity." This consumption allows TVs, VCRs and garage-door openers to be ready for instant-on with a remote control, microwave ovens to display a digital

4

Reduces electric energy consumption  

E-Print Network (OSTI)

consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings, and recycling. Alcoa provides the packaging, automotive, aerospace, and construction markets with a variety

5

Cornell University Electric Lighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Lighting Quality Electric Lighting Quality The CUSD lighting design team utilized energy efficient products that meshed well with our daylighting scheme. We chose to use fluorescent tubes or compact fluorescent bulbs with an energy consumption of between 15 and 30 Watts throughout the house. The ballasts for all lamps dim to a 1% light output, so the interior and exterior lights can be adjusted as the level of available daylight fluctuates. Light sensors have been placed in front of our two largest apertures, allowing us to control how much artificial light is supplied to each space. The control of our ballasts is intricate, but refined and tested to avoid dysfunctional dimming or switching. While automatic controls are included, manual user overrides are provided in case the occupant prefers

6

Projection screen having reduced ambient light scattering  

DOE Patents (OSTI)

An apparatus and method for improving the contrast between incident projected light and ambient light reflected from a projection screen are described. The efficiency of the projection screen for reflection of the projected light remains high, while permitting the projection screen to be utilized in a brightly lighted room. Light power requirements from the projection system utilized may be reduced.

Sweatt, William C. (Albuquerque, NM)

2010-05-11T23:59:59.000Z

7

Definition: Reduced Electricity Cost | Open Energy Information  

Open Energy Info (EERE)

Cost Jump to: navigation, search Dictionary.png Reduced Electricity Cost Functions that provide this benefit could help alter customer usage patterns (demand response with price...

8

Definition: Reduced Electricity Losses | Open Energy Information  

Open Energy Info (EERE)

Losses Losses Jump to: navigation, search Dictionary.png Reduced Electricity Losses Functions that provide this benefit could help manage peak feeder loads, reduced electricity throughput, locate electricity production closer to the load and ensure that voltages remain within service tolerances, while minimizing the amount of reactive power provided. These actions can reduce electricity losses by making the system more efficient for a given load served or by actually reducing the overall load on the system.[1] Related Terms load, electricity generation, reactive power, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reduced_Electricity_Losses&oldid=502644

9

Flathead Electric Cooperative - Commercial Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Flathead Electric Cooperative - Commercial Lighting Rebate Program Flathead Electric Cooperative - Commercial Lighting Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Appliances & Electronics Commercial Lighting Lighting Heating & Cooling Commercial Heating & Cooling Maximum Rebate 70% of project cost Program Info State Montana Program Type Utility Rebate Program Rebate Amount Retrofit Lighting: $3 - $400 per unit New Construction Lighting: $10 - $50 per unit Provider Flathead Electric Cooperative Flathead Electric Cooperative, in conjunction with Bonneville Power Administration, encourages energy efficiency in the commercial sector by providing a commercial lighting retro-fit rebate program and a new

10

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

OF THE EMERGING HYBRID-ELECTRIC AND DIESEL TECHNOLOGIES TOof the Emerging Hybrid-Electric and Diesel Technologies tomodern clean diesel engines and hybrid-electric powertrains

Burke, Andy

2004-01-01T23:59:59.000Z

11

Reducing Your Electricity Use | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reducing Your Electricity Use Reducing Your Electricity Use Reducing Your Electricity Use July 15, 2012 - 4:11pm Addthis An energy audit can help you find the most effective ways to save money and reduce energy use in your home. | Photo courtesy of Dennis Schroeder, NREL. An energy audit can help you find the most effective ways to save money and reduce energy use in your home. | Photo courtesy of Dennis Schroeder, NREL. What are the key facts? Reducing energy saves money and reduces pollution. When considering a renewable energy system purchase for your home, the first step is to lower your energy use through efficiency measures. Energy audits can help point you to the most effective ways to reduce energy in your home. Reducing energy use in your home saves you money, increases our energy

12

Reducing Your Electricity Use | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reducing Your Electricity Use Reducing Your Electricity Use Reducing Your Electricity Use July 15, 2012 - 4:11pm Addthis An energy audit can help you find the most effective ways to save money and reduce energy use in your home. | Photo courtesy of Dennis Schroeder, NREL. An energy audit can help you find the most effective ways to save money and reduce energy use in your home. | Photo courtesy of Dennis Schroeder, NREL. What are the key facts? Reducing energy saves money and reduces pollution. When considering a renewable energy system purchase for your home, the first step is to lower your energy use through efficiency measures. Energy audits can help point you to the most effective ways to reduce energy in your home. Reducing energy use in your home saves you money, increases our energy

13

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Contact Cheyenne Light, Fuel and Power CFL Bulbs: Up to 10 CFL bulbs at reduced cost Water Heater: $75 Refrigerator Recycling: $30 Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for home energy audits, CFL light bulbs, tank water heaters and refrigerator recycling. Water heater purchases and

14

Last Out of Office, Electricity and Lighting Checklist | Department...  

Energy Savers (EERE)

Last Out of Office, Electricity and Lighting Checklist Last Out of Office, Electricity and Lighting Checklist Last Out of Office, Electricity and Lighting Checklist Last Out of...

15

Solar Electric Light Fund | Open Energy Information  

Open Energy Info (EERE)

Solar Electric Light Fund Solar Electric Light Fund Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Electric Light Fund Agency/Company /Organization: Solar Electric Light Fund Sector: Energy Focus Area: Solar Phase: Create Early Successes Resource Type: Publications, Training materials Website: www.self.org/ Locality: US, Africa, Asia, Latin America Cost: Free The mission of the Solar Electric Light Fund (SELF) is to empower people in developing countries to rise from poverty using energy from the sun. What We Do The Solar Electric Light Fund (SELF) has been working in the field of renewable energy, household energy and decentralized rural electrification for over 18 years. We have a proven track record of managing complex, multi-disciplinary international projects and have worked on renewable

16

Golden Valley Electric Association - Commercial Lighting Retrofit Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Retrofit Commercial Lighting Retrofit Rebate Program Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $20,000 per project Program Info State Alaska Program Type Utility Rebate Program Rebate Amount Up to $1,000/kW or 50% of the project cost Provider Golden Valley Electric Association BusBusiness $ense is a Golden Valley Electric Association (GVEA) program designed to increase the efficiency with which energy is used on GVEA's system. It provides rebates of up to $20,000 to existing facilities receiving the commercial rate who reduce their lighting loads through energy efficient lighting retrofit projects. Facilities on GVEA's

17

Central Hudson Gas and Electric (Electric) - Commercial Lighting Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Commercial Lighting Rebate Program Central Hudson Gas and Electric (Electric) - Commercial Lighting Rebate Program < Back Eligibility Commercial Installer/Contractor Institutional Local Government Nonprofit Schools Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State New York Program Type Utility Rebate Program Rebate Amount Up to 70% of the equipment cost of a qualified efficiency upgrade Provider Central Hudson Gas and Electric Central Hudson Gas and Electric's (Central Hudson) Commercial Lighting Rebate Program is for businesses, retailers, institutional customers and non-profit customers of Central Hudson. The progam utilizes the services of Lime Energy to install new lighting fixtures with Central Hudson covering up to 70% of the cost. The 30 percent of cost remaining can be financed at

18

Pedernales Electric Cooperative - Commercial Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pedernales Electric Cooperative - Commercial Lighting Rebate Pedernales Electric Cooperative - Commercial Lighting Rebate Program Pedernales Electric Cooperative - Commercial Lighting Rebate Program < Back Eligibility Commercial Savings Category Other Appliances & Electronics Commercial Lighting Lighting Program Info Expiration Date Installation must be made within one year of the preliminary approval date State Texas Program Type Utility Rebate Program Rebate Amount 20-29 kW saved: $75/kW new; $150/kW retrofit 30-39 kW saved: $100/kW new; $200/kW retrofit 40-49 kW saved: $125/kW new; $250/kW retrofit 50 or more kW saved: $150/kW new; $300/kW retrofit Provider Conservation Section For existing and new commercial construction, Pedernales Electric Cooperative provides incentives for kW saved through efficient lighting.

19

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

The subject of future markets for diesel powered and hybrid-as the European market for diesel-powered vehicles grows.of a large market for light duty diesel vehicles. Figure 2

Burke, Andy

2004-01-01T23:59:59.000Z

20

Chicopee Electric Light- Residential Solar Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Chicopee Electric Light offered rebates to residential customers who install solar photovoltaic systems on their homes. Customer rebates are $0.50 per watt for a maximum of $2,500 per installation.

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Calculation method for electricity end-use for residential lighting  

Science Journals Connector (OSTI)

Abstract Knowledge of the electricity demand for different electrical appliances in households is very important in the work to reduce electricity use in households. Metering of end-uses is expensive and time consuming and therefore other methods for calculation of end-use electricity can be very useful. This paper presents a method to calculate the electricity used for lighting in households based on regression analysis of daily electricity consumption, out-door temperatures and the length of daylight at the same time and location. The method is illustrated with analyses of 45 Norwegian households. The electricity use for lighting in an average Norwegian household is calculated to 1050kWh/year or 6% of total electricity use. The results are comparable to metering results of lighting in other studies in the Nordic countries. The methodology can also be used to compensate for the seasonal effect when metering electricity for lighting less than a year. When smart meters are more commonly available, the possible adaption of this method will increase, and the need for end-use demand calculations will still be present.

Eva Rosenberg

2014-01-01T23:59:59.000Z

22

Light Company Vigilante Electric Cooperative, Inc. Raft River...  

NLE Websites -- All DOE Office Websites (Extended Search)

Inland Power & Light Company Vigilante Electric Cooperative, Inc. Raft River Rural Electric Cooperative, Inc. Northern Lights, Inc. Lower Valley Energy, Inc. Clearwater Power...

23

Cagayan Electric Power and Light Co Cepalco | Open Energy Information  

Open Energy Info (EERE)

Power and Light Co Cepalco Jump to: navigation, search Name: Cagayan Electric Power and Light Co (Cepalco) Place: Philippines Sector: Solar Product: Provides electricity to...

24

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department...

25

Reducing Emissions Associated with Electric Vehicles  

Science Journals Connector (OSTI)

A century ago the electric car (now more frequently called electric vehicle or ... development of lithium ion battery technology, the electric car once again offers to be the ideal ... transport pollution problem...

Laurence Sparke OAM

2012-01-01T23:59:59.000Z

26

Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load  

Science Journals Connector (OSTI)

Abstract The residential sector is responsible for approximately a quarter of energy consumption in Europe. This consumption, together with that of other buildings, mainly from the tertiary sector, makes up 40% of total energy consumption and 36% of CO2 emissions. Artificial lighting makes up 14% of electrical consumption in the European Union and 19% worldwide. Through the use of well-designed natural lighting, controlled by technologies or systems which guarantee accessibility from all areas inside buildings, energy consumption for lighting and air conditioning can be kept to a minimum. The authors of this article carried out a state of the art on the technologies or control systems of natural light in buildings, concentrating on those control methods which not only protect the occupants from direct solar glare but also maximize natural light penetration in buildings based on the occupants? preferences, whilst allowing for a reduction in electrical consumption for lighting and cooling. All of the control and/or natural light guidance systems and/or strategies guarantee the penetration of daylight into the building, thus reducing the electrical energy consumption for lighting and cooling. At the same time they improve the thermal and visual comfort of the users of the buildings. However various studies have also brought to light certain disadvantages to these systems.

E.J. Gago; T. Muneer; M. Knez; H. Kster

2015-01-01T23:59:59.000Z

27

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Appliances & Electronics Heat Pumps Commercial Lighting Lighting Commercial Weatherization Maximum Rebate 70% of project cost Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Commercial Dishwashers: $400 - $1500 Commercial Refrigerator: $60 - $100 Ice Machines: $100 - $400 Insulated Holding Cabinets: $250 - $600 Electric Steam Cookers: $400 Electric Convection Ovens: $200 Electric Griddles: $200 Electric Combination Ovens: $2,000

28

Reducing Occupant-Controlled Electricity Consumption in Campus Buildings  

E-Print Network (OSTI)

2010 Reducing Occupant-Controlled Electricity Consumption in Campus Buildings Kill­09 and is expected to spend more than $17.1 million in 2009­10. In an effort to reduce electricity consumption; 1 EXECUTIVE SUMMARY UC Berkeley spent $16.39 million on purchased electricity in 2008

Doudna, Jennifer A.

29

Edison Electric Institute (EEI) Reducing Regulatory Burden RFI...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Fed. Reg. 75798 (Dec. 5, 2011) Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 76 Fed. Reg. 75798 (Dec. 5, 2011) The Edison Electric Institute (EEI) is submitting...

30

Edison Electric Institute (EEI) Reducing Regulatory Burden RFI...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Fed. Reg. 28518 (May 15, 2012) Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 (May 15, 2012) The Edison Electric Institute (EEI) is submitting...

31

Utility Sector Impacts of Reduced Electricity Demand  

SciTech Connect

This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

Coughlin, Katie

2014-12-01T23:59:59.000Z

32

Solar Electric Light Company SELCO | Open Energy Information  

Open Energy Info (EERE)

Light Company SELCO Light Company SELCO Jump to: navigation, search Name Solar Electric Light Company (SELCO) Place Bangalore, Karnataka, India Zip 560078 Sector Services, Solar Product Solar Electric Light Company (SELCO) manufactures photovoltaic products and services targeted especially at end consumers in developing countries who have no access to land electricity. References Solar Electric Light Company (SELCO)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Electric Light Company (SELCO) is a company located in Bangalore, Karnataka, India . References ↑ "Solar Electric Light Company (SELCO)" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Electric_Light_Company_SELCO&oldid=35125

33

Recommendations to Reduce Light Pollution and Energy Costs on the  

E-Print Network (OSTI)

Recommendations to Reduce Light Pollution and Energy Costs on the Campus of Bishop's University BU or longer), again listed in order of priority: · Replace class #9 lighting fixtures with more energy;Table of Contents Campus Lighting Efficiency Recommendations1 I. Cost Effective within 1 Year II. Cost

34

CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CoServ Electric Cooperative - Commercial Energy Efficient Lighting CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate Program CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate Program < Back Eligibility Commercial Industrial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source Via partnership with whole sale provider Brazos Electric Power, Inc. and escheat funds Start Date 09/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Custom Lighting Upgrade: 0.30/watt saved per fixture T8 Fluorescent Upgrade: 1.50 - 2.25/bulb per fixture Provider CoServ Electric Cooperative CoServ Electric Cooperative provides rebates for commercial and industrial customers who upgrade to high efficiency lighting for the workplace. A rebate of $0.30/watt saved is available on custom lighting upgrades and a

35

Light gas gun with reduced timing jitter  

DOE Patents (OSTI)

Gas gun with reduced timing jitter. A gas gun having a prepressurized projectile held in place with a glass rod in compression is described. The glass rod is destroyed with an explosive at a precise time which allows a restraining pin to be moved and free the projectile.

Laabs, Gary W. (Los Alamos, NM); Funk, David J. (Los Alamos, NM); Asay, Blaine W. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

36

Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Fed.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 (May 15, 2012) Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 (May 15, 2012) The Edison Electric Institute (EEI) is submitting these comments in response to the above-referenced request for information (RFI) issued by the Department of Energy (DOE). In the RFI, DOE is again asking for information on ways to streamline and to reduce the burden imposed by its regulations. Reg review - DOE RFI - EEI cmts 5-29-12.pdf More Documents & Publications Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 Edison Electric Institute (EEI) Regulatory Burden RFI, 77 Fed. Reg. 47328 EEI Comments in response to DOE regulatory review RFI, 76 Fed. Reg. 75798

37

Alliant Energy Interstate Power and Light (Electric) - Residential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Energy Efficiency Rebate Program (Iowa) Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Iowa) < Back Eligibility...

38

Alliant Energy Interstate Power and Light (Electric) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Electric) - Residential Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Iowa) Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Iowa) < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Central Air Conditioners: $100 - $200 Air Source Heat Pumps: $100 - $400 Geothermal Heat Pumps: $300/ton + $50/EER/ton Fan Motors: $50/unit Programmable Thermostats: $25 Tank Water Heater: $50

39

Alliant Energy Interstate Power and Light (Electric) - Business Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Power and Light (Electric) - Business Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Local Government Multi-Family Residential Nonprofit State Government Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Other Windows, Doors, & Skylights Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate See program web site Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Custom: Based on Annual Dollar Energy Savings New Construction: Varies widely

40

NYSEG (Electric) - Small Business Lighting Retrofit Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NYSEG (Electric) - Small Business Lighting Retrofit Program NYSEG (Electric) - Small Business Lighting Retrofit Program NYSEG (Electric) - Small Business Lighting Retrofit Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source System Benefits Charge State New York Program Type Utility Rebate Program Rebate Amount Energy Assessment: Free Lighting Retrofit: 70% of cost Provider RG&E and NYSEG NYSEG offers a lighting incentive program designed to serve small business customers with a demand of 100 kilowatts (kW) or less. These small business customers may schedule a free energy assessment and then receive a 70% discount on the installed cost of recommended lighting measures. Eligible lighting measures include the retrofitting of fluorescent fixtures,

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Chicopee Electric Light - Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicopee Electric Light - Commercial Energy Efficiency Rebate Chicopee Electric Light - Commercial Energy Efficiency Rebate Program (Massachusetts) Chicopee Electric Light - Commercial Energy Efficiency Rebate Program (Massachusetts) < Back Savings Category Other Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $25,000; 30% of total cost if project did not recieve financing from CEL, 20% of total cost if project did recieve financing from CEL Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Custom: $0.17 per annual kWh saved Lighting: $0.17 per annual kWh saved New Construction: $0.17 per annual kWh saved Provider Program Administrator Chicopee Electric Light (CEL) offers a Pilot Energy Efficiency Program to encourage non-residential, commercial, and industrial facilities to pursue

42

Alliant Energy Interstate Power and Light (Gas and Electric) - Farm  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas and Electric) - Farm Gas and Electric) - Farm Equipment Energy Efficiency Incentives Alliant Energy Interstate Power and Light (Gas and Electric) - Farm Equipment Energy Efficiency Incentives < Back Eligibility Agricultural Savings Category Other Heating & Cooling Cooling Appliances & Electronics Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Commercial Heating & Cooling Heating Commercial Lighting Lighting Manufacturing Water Heating Program Info Start Date 1/1/2012 State Iowa Program Type Utility Rebate Program Rebate Amount Energy Audit: Free Clothes Washer: $100 Refrigerator Replacement: $50 Dishwasher Replacement: $20 Freezer: $25 Room Air Conditioner: $25 Water Heater: $50 Electric Heat Pump Water Heaters: $100 Circulating Fans: $25 - $75

43

Reducing current reversal time in electric motor control  

DOE Patents (OSTI)

The time required to reverse current flow in an electric motor is reduced by exploiting inductive current that persists in the motor when power is temporarily removed. Energy associated with this inductive current is used to initiate reverse current flow in the motor.

Bredemann, Michael V

2014-11-04T23:59:59.000Z

44

Alliant Energy Interstate Power and Light (Electric) - Business Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Local Government Nonprofit Retail Supplier State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Home Weatherization Windows, Doors, & Skylights Commercial Weatherization Construction Design & Remodeling Water Heating Maximum Rebate See program web site Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount New Construction: Varies, see program web site Custom: Based on Annual Dollar Energy Savings

45

Demand-response (DR) programs, in which facilities reduce their electric loads in response to a utility signal, represent a  

E-Print Network (OSTI)

The Issue Demand-response (DR) programs, in which facilities reduce their electric loads (Figure 1). The testing covered four Lighting the Way to Demand ResponseLighting the Way to Demand Response California Energy Commission's Public Interest Energy Research Program Technical Brief PIER

46

Chicopee Electric Light - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicopee Electric Light - Residential Energy Efficiency Rebate Chicopee Electric Light - Residential Energy Efficiency Rebate Program Chicopee Electric Light - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Water Heating Maximum Rebate Insulation: $300 maximum rebate Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Clothes Washer: $50 Refrigerator: $50 Freezer: $50 Dishwasher: $25 Heat Pump Water Heater: $300 Central A/C: Up to $500 Ductless Mini-Split AC: Up to $500 Air Source Heat Pump: Up to $500 Insulation: 30% of installed cost Provider EFI Municipal Rebates Chicopee Electric Light (CEL) offers a variety of incentives for its

47

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601,...

48

Central Electric Cooperative- Non-Residential Lighting Rebate  

Energy.gov (U.S. Department of Energy (DOE))

The Central Electric Cooperative offers a commercial lighting system improvement incentive for any customer not on a residential utility rate. To use the program and learn how much the rebates can...

49

Electric Light and Power Rules (North Carolina) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Light and Power Rules (North Carolina) Electric Light and Power Rules (North Carolina) Electric Light and Power Rules (North Carolina) < Back Eligibility Utility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Generating Facility Rate-Making Renewables Portfolio Standards and Goals Safety and Operational Guidelines Provider NC Utilities Commission These rules shall apply to any person, firm, or corporation (except municipalities, or agents thereof) which is now or may hereafter become engaged as a public utility in the business of furnishing electric current for domestic, commercial or industrial consumers within the State of North Carolina. The rules are intended to define good practice which can normally

50

Irrigation Districts: Establishment of Electric Light and Power Systems:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Irrigation Districts: Establishment of Electric Light and Power Irrigation Districts: Establishment of Electric Light and Power Systems: Powers (Nebraska) Irrigation Districts: Establishment of Electric Light and Power Systems: Powers (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Nebraska Program Type Siting and Permitting Provider Natural Resources Irrigation districts, created in section 46-1xx, are encouraged to

51

Hawaii Electric Light Co Inc | Open Energy Information  

Open Energy Info (EERE)

Hawaii Electric Light Co Inc Hawaii Electric Light Co Inc Jump to: navigation, search Name Hawaii Electric Light Co Inc Place Hawaii Utility Id 8287 Utility Location Yes Ownership I NERC Location HI NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png SCHEDULE "F" Street Light Service Lighting SCHEDULE "G" General Service Non-Demand - Single Phase Commercial SCHEDULE "G" General Service Non-Demand - Three Phase Commercial

52

Cheyenne Light, Fuel and Power (Electric) - Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric) - Commercial Energy Electric) - Commercial Energy Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Electric) - Commercial Energy Efficiency Rebate Program (Wyoming) < Back Eligibility Commercial Industrial Savings Category Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Custom: 50% of project cost Program Info Start Date 06/09/2011 State Wyoming Program Type Utility Rebate Program Rebate Amount T8 Fixtures: $5 - $18 /system or $0.50 /lamp Fluorescents: $4 - $125 CFLs: $8 - $25 Indirect Lighting: $16 - $24 Pulse Start Metal Halide Fixtures: $25 - $65 Lighting Controls: $12 - $35 Variable Frequency Drive: $30 /hp Totally Enclosed Fan-Cooled: $10 - $600 Open Drip-Proof: $10 - $600 Custom: Buy down to 2 year pay back or 50% of cost, whichever is less

53

Zhongshan Quanxin Electric Lighting Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Zhongshan Quanxin Electric Lighting Co Ltd Zhongshan Quanxin Electric Lighting Co Ltd Jump to: navigation, search Name Zhongshan Quanxin Electric Lighting Co Ltd Place Zhongshan, China Zip 528411 Sector Solar Product Chinese light manufactuere who is building a 10MW a-Si thin-film solar cell factory. Coordinates 22.516701°, 113.366699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.516701,"lon":113.366699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Electric dipole moment of light nuclei  

SciTech Connect

We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.

Afnan, Iraj R. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001 (Australia); Gibson, Benjamin F. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2010-07-27T23:59:59.000Z

55

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for November 2008. Monthly Electric Utility Sales...

56

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for December 2008. Monthly Electric Utility Sales...

57

Bremen Electric Light & Power Co | Open Energy Information  

Open Energy Info (EERE)

Bremen Electric Light & Power Co Bremen Electric Light & Power Co Jump to: navigation, search Name Bremen Electric Light & Power Co Place Indiana Utility Id 2192 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial: Single Phase Commercial Commercial: Three Phase Commercial Industrial: Single Phase Industrial Industrial: Three Phase Industrial Large Power Industrial Mega Industrial Power Industrial Municipal: Single Phase Commercial Municipal: Three Phase Commercial Residential Residential

58

Fitchburg Gas and Electric Light Company | Open Energy Information  

Open Energy Info (EERE)

Fitchburg Gas and Electric Light Company Fitchburg Gas and Electric Light Company Place New Hampshire Utility Id 6374 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Fitchburg Gas and Electric Light Company (Massachusetts).

59

Alaska Electric Light&Power Co | Open Energy Information  

Open Energy Info (EERE)

Light&Power Co Light&Power Co Jump to: navigation, search Name Alaska Electric Light&Power Co Place Alaska Utility Id 213 Utility Location Yes Ownership I NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial & Government Dual Fuel Commercial Experimental Off-Peak Electric Vehicle Charging 10:00 pm - 7:00 am Commercial General Residential Residential Large Commercial Commercial Off-Peak/Heat storage from 10pm-6am Large Commercial Commercial

60

THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND  

E-Print Network (OSTI)

LBNL-49947 THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND? ..................................... 8 What are the seasonal aspects of electric peak demand?............................ 9 What because of the California electricity crisis (Borenstein 2001). Uncertainties surrounding the reliability

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Treading Lightly Steps Toward Reducing Our Carbon Footprint  

E-Print Network (OSTI)

to add an all-electric car to its car-sharing fleet. The nissan leaf is the first zero-emissions car

Wong, Pak Kin

62

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility...

63

Improved growth and water use efficiency of cherry saplings under reduced light intensity  

Science Journals Connector (OSTI)

Cherry (Prunus avium...L.) saplings were grown under natural sunlight (controls) or moderate shading (up to 30%, depending on the incident light intensity and the hour of the day). Reduced light intensity increas...

Mauro Centritto; Francesco Loreto; Angelo Massacci

2000-12-01T23:59:59.000Z

64

Using Electricity Market Analytics to Reduce Cost and Environmental Impact  

Science Journals Connector (OSTI)

In recent years, energy consumption has become a major issue in terms of cost, infrastructure requirements and emissions. In deregulated markets electricity prices, renewable energy contribution and emissions can vary substantially from hour to hour. ... Keywords: Cloud Computation Pricing, Demand Response, Electricity Market Analytics, Emissions Reduction, Renewable Energy Facilitation

Conor Kelly; Antonio Ruzzelli; Eleni Mangina

2013-04-01T23:59:59.000Z

65

MEW Efforts in Reducing Electricity and Water Consumption in Government and Private Sectors in Kuwait  

E-Print Network (OSTI)

of Engineers, membership No. 1715. MEW EFFORTS IN REDUCING ELECTRICITY AND WATER CONSUMPTION IN GOVERNMENT AND PRIVATE SECTORS IN KUWAIT Eng. Iqbal Al-Tayar Manager ? Technical Supervision Department Planning and Training Sector Ministry... of Electricity & Water (MEW) - Kuwait Historical Background - Electricity ? In 1913, the first electric machine was installed in Kuwait to operate 400 lambs for Al-Saif Palace. ? In 1934, two electric generators were installed with a total capacity of 60 k...

Al-Tayar, I.

2011-01-01T23:59:59.000Z

66

NREL Reduces Climate Control Loads in Electric Vehicles (Fact Sheet)  

SciTech Connect

NREL demonstrates that zonal climate control can reduce air conditioning power and improve range while maintaining driver thermal sensation.

Not Available

2014-08-01T23:59:59.000Z

67

Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes  

SciTech Connect

The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

Mazzeo, M., E-mail: marco.mazzeo@unisalento.it [Dipartimento di Matematica e Fisica Ennio De Giorgi, Universit del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Genco, A. [Dipartimento di Matematica e Fisica Ennio De Giorgi, Universit del Salento, Via Monteroni, 73100 Lecce (Italy); Gambino, S. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy); Ballarini, D.; Mangione, F.; Sanvitto, D. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Di Stefano, O.; Patan, S.; Savasta, S. [Dipartimento di Fisica e Scienze della Terra, Universit di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina (Italy); Gigli, G. [Dipartimento di Matematica e Fisica Ennio De Giorgi, Universit del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy)

2014-06-09T23:59:59.000Z

68

NREL Reduces Climate Control Loads in Electric Vehicles (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

demonstrates that zonal climate control can reduce air conditioning power and improve range while maintaining driver thermal sensation. When the climate control system in an...

69

Reducing Electricity Cost Through Virtual Machine Placement in High Performance Computing Clouds  

E-Print Network (OSTI)

Reducing Electricity Cost Through Virtual Machine Placement in High Performance Computing Clouds electricity-related costs as well as transient cooling effects. Our evaluation studies the ability) load migration enables sav- ings in many scenarios, and (3) all electricity-related costs must

70

Reduced form electricity spot price modeling with a view towards spike risk  

E-Print Network (OSTI)

Reduced form electricity spot price modeling with a view towards spike risk Prof. Dr. Meyer. Februar 2010, 16:15 Uhr Seminarraum, Ludwigstra?e 33 I The recent deregulation of electricity markets has led to the creation of energy exchanges, where the electricity is freely traded. We study the most

Gerkmann, Ralf

71

Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas and Electric) - Low Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest Energy Efficiency Loan Program Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest Energy Efficiency Loan Program < Back Eligibility Agricultural Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate $25,000 Program Info State Iowa Program Type Utility Loan Program Rebate Amount $1,500 - $25,000 Provider Customer Service Interstate Power and Light (Alliant Energy), in conjunction with Wells

72

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network (OSTI)

vibration sensors, for inferring electrical consumption when direct measurementvibration and light sensors, we can increase our coverage, especially in places where direct electrical measurementAND MEASUREMENT Building A/C Unit ? Accelerometer ? Fig (A) accel x Building A/C Unit ? Vibration

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

73

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

August 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-08 Utility Company Alaska Electric Light&Power Co (Alaska) Place Alaska Start Date 2008-08-01 End Date...

74

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

Alaska) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for July 2008. Monthly...

75

Novel Nanoscale Materials Reduce Electricity Needed for Sludge  

E-Print Network (OSTI)

removal from sludge using less energy. The addition of nanoscale materials will increase the volume that removes as much water from digested sludge as possible. Dewatering is necessary to reduce the sludge of benchscale work that showed nanoscale materials enhanced the performance of polymer additives currently

76

Electric Boosting System for Light Truck/SUV Application  

SciTech Connect

Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems. One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-TurboTM designs do both. The purpose of this project is to design and develop an electrically assisted turbocharger, e-TurboTM, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-TurboTM can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-TurboTM consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration in slightly better. It was shown that in order to make full use of additional capabilities of e-TurboTM wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-TurboTM designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-TurboTM are to be developed in a future project. There is concern about high power demands (even though momentary) of e-TurboTM. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-TurboTM designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-TurboTM. Designs and hardware combining IBT and e-TurboTM are to be developed in a future project. e-TurboTM provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-TurboTM performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.

Steve Arnold, Craig Balis, Pierre Barthelet, Etienne Poix, Tariq Samad, Greg Hampson, S.M. Shahed

2005-06-22T23:59:59.000Z

77

Flexible gas insulated transmission line having regions of reduced electric field  

DOE Patents (OSTI)

A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

Cookson, Alan H. (Pittsburgh, PA); Fischer, William H. (Wilkins Township, Allegheny County, PA); Yoon, Kue H. (Pittsburgh, PA); Meyer, Jeffry R. (Penn Hills Township, Allegheny County, PA)

1983-01-01T23:59:59.000Z

78

The effect of information and values on acceptability of reduced street lighting  

Science Journals Connector (OSTI)

Abstract This research examined whether provision of information on the environmental impact of street lighting affects the acceptability and perceived social safety of reduced street lighting levels. We argued that such information should particularly affect acceptability and safety judgements of individuals who value these environmental benefits, that is, those with strong biospheric values. Participants viewed virtual representations of a residential street where street lighting levels were varied. As expected, low lighting levels were seen as more acceptable, while high lighting levels were seen as less acceptable when information on the environmental impact of street lighting was provided to individuals that strongly endorsed biospheric values. Support for the expectation that these increases in acceptability of lower lighting levels would trigger a process of rationalisation leading individuals with strong biospheric values to downplay consequences opposing value-driven views was mixed. Stronger effects were found when participants could compare different lighting levels directly. The study suggests that value-congruent information on the environmental benefits of reduced street lighting can increase acceptability of reduced street lighting.

Christine Boomsma; Linda Steg

2014-01-01T23:59:59.000Z

79

MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MidAmerican Energy (Electric) - Municipal Solid-State Lighting MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant Program MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant Program < Back Eligibility Local Government Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Minimum project size for the full $5,000 grant is 20 fixtures; smaller projects will receive a $250 per-fixture grant. Program Info State Iowa Program Type Utility Grant Program Rebate Amount Up to $5,000 Provider MidAmerican Energy Company MidAmerican Energy offers grants to munipalities which implement solid-state roadway street lighting upgrades. Grants of up to $5,000 are available to participating entities who install eligible roadway lighting fixtures. Participants must be an Iowa electric governmental customer of

80

Persuading Consumers to Reduce Their Consumption of Electricity in the Home  

Science Journals Connector (OSTI)

Previous work has identified that providing real time feedback or interventions to consumers can persuade consumers to change behaviour and reduce domestic electricity consumption. However, little work has invest...

Alan F. Smeaton; Aiden R. Doherty

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Lighting Electricity Rates on OpenEI | OpenEI Community  

Open Energy Info (EERE)

Lighting Electricity Rates on OpenEI Lighting Electricity Rates on OpenEI Home > Groups > Utility Rate Sfomail's picture Submitted by Sfomail(48) Member 31 May, 2013 - 12:04 API Utility Rates I'm pleased to announce that a new lighting rate category and about 10,000 lighting rates are now officially offered in OpenEI's utility rate database! Streetlights and other similar electric lighting uses are typically billed using uniquely designed lighting rates. Illinois State University (ISU) had contributed approximately 10,000 lighting rates, and now these rates have been categorized under a new "lighting" category (in the same dropdown list that contains "residential", "commercial" and "industrial" categories). With the new categorization, users can now query

82

Using conservation to reduce energy system uncertainty in the US north-west electric system  

Science Journals Connector (OSTI)

The uncertainty of the US north-west electric system was the subject of a recent study for the Bonneville Power Administration. The study focused on the impact of efficiency standards that would reduce the electricity used in new buildings and appliances. The main question was whether the standards would also reduce the long-term uncertainty in the system. This paper summarises the case study findings which should be of interest to energy planners in Europe as well as in the USA.

Andrew Ford

1990-01-01T23:59:59.000Z

83

Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint  

SciTech Connect

Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

Melaina, M.; Sun, Y.; Bush, B.

2014-08-01T23:59:59.000Z

84

Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings  

Energy.gov (U.S. Department of Energy (DOE))

This case study describes how Mid-South Metallurgical implemented several recommendations resulting from a plant-wide energy assessment from DOE's Industrial Assessment Center (IAC) at Tennessee Technological University. This included installing new furnace insulation, implementing an electrical demand system, installing energy efficient equipment on its natural gas furnace burner tubes, and upgrading its lighting. Through these upgrades, the commercial heat treating business cut its overall energy use by 22%, reduced its peak demand by 21%, and decreased its total energy costs by 18%.

85

Electricity Advisory Committee (EAC) 2009: Keeping the Lights on in a New  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09: Keeping the Lights on in 09: Keeping the Lights on in a New World Electricity Advisory Committee (EAC) 2009: Keeping the Lights on in a New World Elertricity Advisory Committee (EAC) Keeping the Lights on in a New World: The purpose of the report is to address current trends with respect to construction of generation and transmission; use of demand-side resources and increased efficiency; and plans for meeting future electricity needs that will result in reliable supplies of electricity, at reasonable cost and with due regard for the environment. The report focuses on specific actions the U.S. Department of Energy can take to meet these challenges. Electricity Advisory Committee (EAC) 2009: Keeping the Lights on in a New World More Documents & Publications Chapter 3 Demand-Side Resources

86

MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant  

Open Energy Info (EERE)

MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant Program (Iowa) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Summary Last modified on November 9, 2012. Financial Incentive Program Place Iowa Additional Place applies to MidAmerican Energy Name MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant Program Incentive Type Utility Grant Program Applicable Sector Local Government Eligible Technologies Lighting, Lighting Controls/Sensors, Induction Lighitng, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy Efficiency Incentive Programs Amount Up to $5,000 Equipment Requirements Fixtures must have an efficiency rating equal to or greater than 66 lumens per watt as tested under Illuminating Engineering Society of North America LM-79-08 testing to qualify for a grant.

87

Healthcare Energy: Spotlight on Lighting and Other Electric Loads  

Energy.gov (U.S. Department of Energy (DOE))

The Building Technologies Office conducted a healthcare energy end-use monitoring project for two sites. Read details about the lighting and plug load energy results.

88

Alliant Energy Interstate Power and Light (Electric)- Residential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a number of energy efficiency rebates for Minnesota residential customers which implement HVAC, lighting, appliance, window, insulation and water heating upgrades. Eligible...

89

Alliant Energy Interstate Power and Light (Electric) - Business...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

State Government Savings Category Heat Pumps Lighting Maximum Rebate See program web site Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount New...

90

Lighting and Electrical Team Leadership and Project Delivery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in public parking lots to foster significant reductions in participants' energy consumption. The project's primary goal for exterior lighting is to drive LEEP participation...

91

Solar Day-Lighting Using Optical Fibers  

Science Journals Connector (OSTI)

Green lighting alternatives can substantially reduce electricity consumption. Solar day-lighting system, by transporting the concentrated sunlight through optical fibers, has been...

Kumar, Naveen; Patil, Sanket

92

Green light emitting diode grown on thick strain-reduced GaN template  

Science Journals Connector (OSTI)

Abstract We report a green light-emitting diode (LED) grown on thick strain-reduced GaN template. As the injection current changes from 20mA to 120mA, blue-shift of EL peak wavelength reduces from 9.3nm for the LED on sapphire substrate to 6.8nm for the LED grown on thick strain-reduced GaN template. Furthermore, the light output power and external quantum efficiency of the LED on thick strain-reduced GaN template are respectively 1.48mW and 2.5% at the forward current of 20mA, which is twice as much as the LED on sapphire substrate. In contrast, the reverse current is 2?A lower than that of the LED on the sapphire at ?8V.

Jiankun Yang; Tongbo Wei; Qiang Hu; Ziqiang Huo; Baojuan Sun; Ruifei Duan; Junxi Wang

2015-01-01T23:59:59.000Z

93

RG&E (Electric) - Small Business Lighting Retrofit Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business Lighting Retrofit Program Small Business Lighting Retrofit Program RG&E (Electric) - Small Business Lighting Retrofit Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source System Benefits Charge State New York Program Type Utility Rebate Program Rebate Amount Energy Assessment: Free Lighting Retrofit: 70% of cost Provider RG&E and NYSEG RG&E offers a lighting incentive program designed to serve small business customers with a demand of 100 kilowatts (kW) or less. These small business customers may schedule a free energy assessment and then receive a 70% discount on the installed cost of recommended lighting measures. Eligible lighting measures include the retrofitting of fluorescent fixtures,

94

Last Out of Office, Electricity and Lighting Checklist  

Office of Environmental Management (EM)

Last-Out Energy Conservation Check List Office Symbol Name: Suite Room Number: Date Initials All Lights in Suite are Off? All Printers in Suite are Off? All Scanners in Suite are...

95

Reducing power transients in diesel-electric dynamically positioned ships using re-positioning  

E-Print Network (OSTI)

Reducing power transients in diesel-electric dynamically positioned ships using re--A thrust allocation method with a functionality to assist power management systems by using the hull the power consumption in the thrusters when a sharp increase in power consumption is demanded elsewhere

Johansen, Tor Arne

96

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production  

SciTech Connect

The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

2002-01-01T23:59:59.000Z

97

Electric dipole moments of light nuclei from {chi}EFT  

SciTech Connect

I present recent calculations of EDMs of light nuclei using chiral effective field theory techniques. At leading-order, we argue that they can be expressed in terms of six CP-violating low-energy constants. With our expressions, eventual non-zero measurements of EDMs of deuteron, helion, and triton can be combined to disentangle the different sources of CP-violation.

Higa, Renato [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05314-970, Sao Paulo, SP (Brazil)

2013-03-25T23:59:59.000Z

98

Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric  

E-Print Network (OSTI)

expansion Plug-in hybrid electric vehicles Controlled charging Wind power integration a b s t r a c vehicles (BEVs), create additional electricity demand, resulting in additional air emissions from powerEstimating the potential of controlled plug-in hybrid electric vehicle charging to reduce

Michalek, Jeremy J.

99

Electric lighting for the 1990s: The major issues  

SciTech Connect

The lighting community has grown from a simple business to a larger population with more diverse motives and needs. Here the author looks at the different facets of this industry. First is the conservation and environmental advocacy concerns, often pressed by groups adamantly committed to their objectives. The industry must keep abreast of technology, and know the facts as it moves in new directions. The user needs to have the tools available to design lighting systems which meet his and his clients needs for performance, productivity, and quality, when the system is being designed. Issues related to utility efforts through demand side management programs, governmental action through legislative and regulatory effort, and the application of new technology in new construction, and retrofitting, are discussed. The need now is to move to an integrated approach rather than a unilateral one that will reconcile the issues; this will leverage the strengths of all participants.

Gough, A.

1996-01-01T23:59:59.000Z

100

Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size  

Energy.gov (U.S. Department of Energy (DOE))

Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Saving Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Electricity Saving Electricity Saving Electricity Reducing energy use in your home saves you money, increases our energy security and reduces the pollution that is emitted from non-renewable sources of energy. Learn more about reducing your electricity use. Reducing energy use in your home saves you money, increases our energy security and reduces the pollution that is emitted from non-renewable sources of energy. Learn more about reducing your electricity use. We rely on electricity to power our lights, appliances, and electronics in our homes. Many of us also use electricity to provide our homes with hot water, heat, and air conditioning. As we use more electricity in our homes,

102

Light weight space power reactors for nuclear electric propulsion  

SciTech Connect

A Nuclear Electric Propulsion (NEP) unit capable of propelling a manned vehicle to MARS will be required to have a value of {alpha} (kg/kWe) which is less than five. In order to meet this goal the reactor mass, and thus its contribution to the value of {alpha} will have to be minimized. In this paper a candidate for such a reactor is described. It consists of a gas cooled Particle Bed Reactor (PBR), with specially chosen materials which allow it to operate at an exit temperature of approximately 2000 K. One of the unique features of a PBR is the direct cooling of particulate fuel by the working fluid. This feature allows for high power densities, highest possible gas exit temperatures, for a given fuel temperature and because of the thin particle bed a low pressure drop. The PBR's described in this paper will have a ceramic moderator (Be{sub 2}C), ZrC coated fuel particles and a carbon/carbon hot frit. All the reactors will be designed with sufficient fissile loading to operate at full power for seven years. The burn up possible with particulate fuel is approximately 30%--50%. These rector designs achieve a value of {alpha} less than unity in the power range of interest (5 MWe). 5 refs., 3 figs.

Ludewig, H.; Mughabghab, S.; Lazareth, O.; Perkins, K.; Schmidt, E.; Powell, J.R.

1991-01-01T23:59:59.000Z

103

Tungsten oxide nanowire-reduced graphene oxide aerogel for high-efficiency visible light photocatalysis  

Science Journals Connector (OSTI)

Abstract A light, 3-D, porous aerogel was fabricated by way of a simple approach from 1-D tungsten oxide nanowires and 2-D reduced graphene oxide sheets. The as-prepared graphene oxide, tungsten oxide nanowires, and tungsten oxide-reduced graphene oxide (W18O49-RGO) aerogel were characterised. The photocatalytic activities of as-prepared aerogel under visible light irradiation were investigated through the degradation of six different organic dyes including Rhodamine B, reactive black 39, reactive yellow 145, weak acid black BR, methyl orange, and weak acid yellow G. In comparison with the pure W18O49 nanowires, the prepared W18O49-RGO aerogel had significantly improved photocatalytic efficiency. Also, the photocatalysis of W18O49-RGO aerogel maintained its efficiency after 30 cycles for each of the six dyes. The photocatalytic mechanism was studied by adding hole and radical scavengers: the results confirmed that the holes generated in W18O49-RGO aerogel played a key role in the visible light photocatalytic process.

Xiubing Li; Siwei Yang; Jing Sun; Peng He; Xuguang Xu; Guqiao Ding

2014-01-01T23:59:59.000Z

104

Scheduling workloads in a network of datacentres to reduce electricity cost and carbon footprint  

Science Journals Connector (OSTI)

Abstract This paper quantifies the extent to which the scheduling of workloads among a network of datacenters can reduce both electricity cost and carbon footprint. Based upon empirical data from California, Alberta and Ontario, it develops an optimization model that quantifies the savings in relation to the price of carbon on carbon markets and in carbon taxes. Combining the electricity cost with the carbon footprint using the price of carbon, results indicate a simultaneous saving of both 8.09% of electricity cost and 11.25% of carbon footprint, when jobs are scheduled in the current time-period. When jobs can be scheduled in future time-periods, a simultaneous saving of both 51.44% of electricity cost and 13.14% of carbon footprint was obtained. These results are shown to be robust with respect to variations in the price of carbon in taxes and markets in the European Emissions Trading System, Australia, British Columbia, California, and Japan, apart from exceptional periods when the carbon price was very low. The paper shows how a cloud operator can demonstrate that these savings are additional to business as usual so as to sell carbon credits on a carbon market, and indicates the standards available for certifying and auditing those emissions reductions.

Trung Le; David Wright

2014-01-01T23:59:59.000Z

105

Enhancement and Electric Charge-Assisted Tuning of Nonlinear Light Generation in Bipolar Plasmonics  

E-Print Network (OSTI)

Enhancement and Electric Charge-Assisted Tuning of Nonlinear Light Generation in Bipolar Plasmonics) structure, termed plasmonic-enhanced, charge-assisted second-harmonic generator (p-CASH), that not only in many fields, such as commu- nications, sensors, imaging, medical treatments, displays, solar cells

106

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network (OSTI)

showing the energy flows in the building electrical loadfocus primarily on electrical energy, which represents thefor monitoring electrical energy. However, as wireless

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

107

Reduced  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduced intermittency in the magnetic turbulence of reversed field pinch plasmas L. Marrelli and L. Frassinetti Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati...

108

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the worlds roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the worlds roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the worlds roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

109

Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems  

Science Journals Connector (OSTI)

This paper investigates the performance of our recently proposed LED lamp arrangement to reduce the SNR fluctuation from different locations in the room for multi-user visible light...

Wang, Zixiong; Yu, Changyuan; Zhong, Wen-De; Chen, Jian; Chen, Wei

2012-01-01T23:59:59.000Z

110

arXiv:cond-mat/0408020v12Aug2004 Electric generation of spin in crystals with reduced symmetry  

E-Print Network (OSTI)

arXiv:cond-mat/0408020v12Aug2004 Electric generation of spin in crystals with reduced symmetry of spin accumulation in semiconduc- tors, we propose a way of generating a spin polarization in crystals with strong spin-orbit interac- tions. We show that, in the presence of an electric field, there exists

Niu, Qian

111

Light  

Science Journals Connector (OSTI)

Sunlight contains energy which can be directly converted into electricity in solar cells of various types. This is an example of what is called 'direct conversion', involving no moving parts or heat conversion processes. This chapter looks at photovoltaic and photoelectric devices and also at other ideas for using light energy, some of which operate in the infrared part of the spectrum. Solar electric power is a rapidly developing field, opening up many opportunities for novel applications, as well as requirements, including for storage, with one idea being solar-powered hydrogen production and then direct conversion to electricity in fuel cells. Direct conversion is not always efficient, and this chapter introduces the concept of 'energy return on energy invested'. In speculative mood this chapter also looks at the idea of a global grid, allowing daytime solar generation to be used on the night side of the planet.

David Elliott ? Pages 4-1 to 4-20

112

Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle  

SciTech Connect

Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

Jehlik, Forrest [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); LaClair, Tim J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

113

Performance of reduced wall EPR insulated medium voltage power cables. Pat 1: Electrical characteristics  

SciTech Connect

Paper insulated lead covered cables (PILC) have had a long and successful heritage. After almost 100 years, this design of cable is still in operation and continues to be manufactured. However, utilities are now looking for a reliable replacement for PILC cables. This is due to two primary reasons: (1) difficulty in installing and maintaining this type of cable and (2) increasing pressure to replace these cables due to environmental concerns. To date diameter limitations of conventional extruded dielectric cables has impeded their replacement in existing PILC conduits. This paper describes a study for the evaluation for reliably reducing the insulation thickness to achieve a lower diameter cable to effectively replace PILC cable in existing conduits. Part 1 of the investigation reviews the theory of insulation wall determination and the test program carried out to evaluate electrical performance of reduced wall EPR cables. Additionally, cable design concepts and constructions are discussed. In Part 2 the mechanical performance on conventional and reduced wall EPR insulated cables are evaluated. This is reported in a separate paper.

Cinquemani, P.L.; Wen, Y.; Kuchta, F.L.; Doench, C. [Pirelli Cable Corp., Lexington, SC (United States)] [Pirelli Cable Corp., Lexington, SC (United States)

1997-04-01T23:59:59.000Z

114

Using Compressed Air Efficiency Projects to Reduce Peak Industrial Electric Demands: Lessons Learned  

E-Print Network (OSTI)

"To help customers respond to the wildly fluctuating energy markets in California, Pacific Gas & Electric (PG&E) initiated an emergency electric demand reduction program in October 2000 to cut electric use during peak periods. One component...

Skelton, J.

115

Reducing Pumping Related Electricity Costs - A Case Study of Three Water Utility Companies in Zambia.  

E-Print Network (OSTI)

?? Electric pumps are extensively used in many industrial and commercial applications worldwide and account for about twenty percent of the worlds electrical energy demand. (more)

Siyingwa, Bennet

2013-01-01T23:59:59.000Z

116

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network (OSTI)

EV's, roadway-powered electric automobiles, and light dutyFor Roadway-Powered Electric Automobiles -a---- Range ofFor Roadway-Powered Electric Automobiles Range of Estimated

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

117

Advances in recording scattered light changes in crustacean nerve with electrical activation  

SciTech Connect

We investigated optical changes associated with crustacean nerve stimulation using birefringent and large angle scattered light. Improved detection schemes disclosed high temporal structure of the optical signals and allowed further investigations of biophysical mechanisms responsible for such changes. Most studies of physiological activity in neuronal tissue use techniques that measure the electrical behavior or ionic permeability of the nerve, such as voltage or ion sensitive dyes injected into cells, or invasive electric recording apparatus. While these techniques provide high resolution, they are detrimental to tissue and do not easily lend themselves to clinical applications in humans. Electrical and chemical components of neural excitation evoke physical responses observed through changes in scattered and absorbed light. This method is suited for in-vivo applications. Intrinsic optical changes have shown themselves to be multifaceted in nature and point to several different physiological processes that occur with different time courses during neural excitation. Fast changes occur concomitantly with electrical events, and slow changes parallel metabolic events including changes in blood flow and oxygenation. Previous experiments with isolated crustacean nerves have been used to study the biophysical mechanisms of fast optical changes. However, they have been confounded by multiple superimposed action potentials which make it difficult to discriminate the temporal signatures of individual optical responses. Often many averages were needed to adequately resolve the signal. More recently, optical signals have been observed in single trials. Initially large angle scattering measurements were used to record these events with much of the signal coming from cellular swelling associated with water influx during activation. By exploiting the birefringent properties derived from the molecular stiucture of nerve membranes, signals appear larger with a greater contrast, but direct comparison of birefringent and 90{sup o} scattering signals has not been reported. New developments in computer and optical technology allow optical recording with higher temporal resolution than could be achieved previously. This has led us to undertake more detailed studies of the biophysical mechanisms underlying these transient changes. Optimization of this technology in conjunction with other technical developments presents a path to noninvasive dynamic clinical observation of optical responses. To conduct these optical recordings, we placed dissected leg, claw and ventral cord nerves from crayfish and lobster in a recording chamber constructed from black Delrin. The chamber consisted of several wells situated perpendicularly to the long axis of the nerve that could beelectrically isolated for stimulating and recording electrical activation, and a window in the center for optical measurements. To measure the birefringence from the nerve, light from a 120W halogen bulb was focused onto the nerve from below the window through a 10X microscope objective and polarized at a 45 degree angle with respect to the long axis of the nerve bundle. A second polarizer turned 90 degrees with respect to the first polarizer was placed on top of the chamber and excluded direct source illumination, passing only birefringent light from the nerve. A large area photodiode placed directly on top of the polarizer detected the magnitude of the birefringent light. To measure light scattered 90 degrees by the nerve, a short length of image conduit placed perpendicularly to the nerve directed large angle scattered light from the nerve to a second photodiode. The output of each photodiode was amplified by a first stage amplifier which produced a DC level output, and was coupled to an AC amplifier (0.3 Hz High Pass) with a gain of 1000 to optimally record changes across time.

Carter, K. M. (Kathleen M.); Rector, D. M. (David M.); Martinez, A. T. (Anne T.); Guerra, F. M. (Francisco M.); George, J. S. (John S.)

2002-01-01T23:59:59.000Z

118

A spin light emitting diode incorporating ability of electrical helicity switching  

SciTech Connect

Fabrication and optical characteristics of a spin light-emitting-diode (spin-LED) having dual spin-injection electrodes with anti-parallel magnetization configuration are reported. Alternating a current between the two electrodes using a computer-driven current source has led us to the observation of helicity switching of circular polarization at the frequency of 1 kHz. Neither external magnetic fields nor optical delay modulators were used. Sending dc-currents to both electrodes with appropriate ratio has resulted in continuous variation of circular polarization between the two opposite helicity, including the null polarization. These results suggest that the tested spin-LED has the feasibility of a monolithic light source whose circular polarization can be switched or continuously tuned all electrically.

Nishizawa, N., E-mail: nishizawa@isl.titech.ac.jp; Nishibayashi, K.; Munekata, H. [Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, 4259-J3-15 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

2014-03-17T23:59:59.000Z

119

E-Print Network 3.0 - active light-harvesting carbon-reducing...  

NLE Websites -- All DOE Office Websites (Extended Search)

IL.. 61820. USA Summary: and characterization of photonic structures that enhance the light harvested by solar cells. A scientific career... . Project: "New Optical...

120

Appliances, Lighting, Electronics, and Miscellaneous EquipmentElectricity Use in New Homes  

SciTech Connect

The "Other" end-uses (appliances, lighting, electronics, andmiscellaneous equipment) continue to grow. This is particularly true innew homes, where increasing floor area and amenities are leading tohigher saturation of these types of devices. This paper combines thefindings of several field studies to assess the current state ofknowledge about the "Other" end-uses in new homes. The field studiesinclude sub-metered measurements of occupied houses in Arizona, Florida,and Colorado, as well as device-level surveys and power measurements inunoccupied new homes. We find that appliances, lighting, electronics, andmiscellaneous equipment can consume from 46 percent to 88 percent ofwhole-house electricity use in current low-energy homes. Moreover, theannual consumption for the "Other" end-uses is not significantly lower innew homes (even those designed for low energy use) compared to existinghomes. The device-level surveys show that builder-installed equipment isa significant contributor to annual electricity consumption, and certaindevices that are becoming more common in new homes, such as structuredwiring systems, contribute significantly to this power consumption. Thesefindings suggest that energy consumption by these "Other" end uses isstill too large to allow cost-effective zero-energy homes.

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan,Gregory

2007-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network (OSTI)

energy flows in the building electrical load tree. . . . . . . . . . . . . . . . . . . . . . . .intrinsic property of energy load trees is additivity - thevisualization of energy flows in the load tree, as shown in

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

122

Funding Opportunity: Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS  

Energy.gov (U.S. Department of Energy (DOE))

The Geothermal Technologies Program seeks non-prime mover technologies that have the potential to contribute to reducing the levelized cost of electricity from new hydrothermal development to 6/ kWh by 2020 and Enhanced Geothermal Systems (EGS) to 6/ kWh by 2030.

123

Industrial Approaches to Reducing Energy Costs in a Restructuring Electric Industry  

E-Print Network (OSTI)

. Although many electricity providers will offer their services in a restructure U.S. electricity market, it is not clear which pow r producers industrial customers wil1 buy from. James Rouse, associate director of energy policy for Praxair, Inc., thinks...

Lowe, E. T.

124

AC-LED based Visible Light Communication Systems Using Multiple Transmitter Design for Reducing Latency  

Science Journals Connector (OSTI)

This work demonstrates by employing multiple alternating-current light-emitting-diode (AC-LED) communication modules, the transmission gap in time-domain caused by the LED threshold...

Liu, Y; Yeh, C; Chow, C W

125

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes  

E-Print Network (OSTI)

contributor to annual electricity consumption, and certainplay in Other electricity consumption in new homes, andor range. Other electricity consumption was derived by

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

2007-01-01T23:59:59.000Z

126

Electrical and Optical Enhancement in Internally Nanopatterned Organic Light-Emitting Diodes  

E-Print Network (OSTI)

Kao, K.C. , Hwang, W. Electrical Transport in Solids: withPress, 2009. Stallinga, P. Electrical Characterization offrom electrical model . 100

Fina, Michael Dane

2012-01-01T23:59:59.000Z

127

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network (OSTI)

3 System Architecture 3.1 Building as a2.1 Energy Flows in Buildings . . . . . . . . 2.1.1 Electric2.3.2 Networking . . . . . . . . . . . . 2.4 Building Energy

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

128

IRS Parking Facility Lighting Retrofit Reduces Annual Energy Use by 76%  

Energy.gov (U.S. Department of Energy (DOE))

Document provides an overview of how the IRS and MC Realty Group, its property management firm, achieved a 76% reduction in lighting energy use at an IRS facility parking garage in Kansas City, Missouri. The retrofit resulted in annual energy savings of 2 million kWh, annual cost savings of over $122,000, and a simple payback of 2.5 years.

129

NRC review of Electric Power Research Institute's Advanced Light Reactor Utility Requirements Document - Program summary, Project No. 669  

SciTech Connect

The staff of the US Nuclear Regulatory Commission has prepared Volume 1 of a safety evaluation report (SER), NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Program Summary,'' to document the results of its review of the Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document.'' This SER provides a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

Not Available

1992-08-01T23:59:59.000Z

130

Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet describes a new technology with the potential to reduce operating costs and increase productivity in bar and flat-rolled products for the steel industry.

131

Aqueous solution synthesis of reduced graphene oxide-germanium nanoparticles and their electrical property testing  

Science Journals Connector (OSTI)

Aqueous solution synthesis of reduced graphene oxide-germanium nanoparticles (RGO-GeNPs) was developed using graphene oxide (GO) as stabilizer, which could ... . The as-synthesized RGO-GeNPs showed excellent battery

Huabin Yin; Jinmei Luo; Peihui Yang; Pinghe Yin

2013-10-01T23:59:59.000Z

132

The Electric and Optical Properties of Doped Small Molecular Organic Light-Emitting Devices  

SciTech Connect

Organic light-emitting devices (OLEDs) constitute a new and exciting emissive display technology. In general, the basic OLED structure consists of a stack of fluorescent organic layers sandwiched between a transparent conducting-anode and metallic cathode. When an appropriate bias is applied to the device, holes are injected from the anode and electrons from the cathode; some of the recombination events between the holes and electrons result in electroluminescence (EL). Until now, most of the efforts in developing OLEDs have focused on display applications, hence on devices within the visible range. However some organic devices have been developed for ultraviolet or infrared emission. Various aspects of the device physics of doped small molecular OLEDs were described and discussed. The doping layer thickness and concentration were varied systematically to study their effects on device performances, energy transfer, and turn-off dynamics. Low-energy-gap DCM2 guest molecules, in either {alpha}-NPD or DPVBi host layers, are optically efficient fluorophores but also generate deep carrier trap-sites. Since their traps reduce the carrier mobility, the current density decreases with increased doping concentration. At the same time, due to efficient energy transfer, the quantum efficiency of the devices is improved by light doping or thin doping thickness, in comparison with the undoped neat devices. However, heavy doping induces concentration quenching effects. Thus, the doping concentration and doping thickness may be optimized for best performance.

Kwang-Ohk Cheon

2003-08-05T23:59:59.000Z

133

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: SO2, Nox, CO2  

Reports and Publications (EIA)

This report responds to a request received from Senator David McIntosh on June 29, 2000 to analyze the impacts on energy consumers and producers of coordinated strategies to reduce emissions of sulfur dioxide, nitrogen oxides, and carbon dioxide at U.S. power plants.

2001-01-01T23:59:59.000Z

134

Organic light emitting device architecture for reducing the number of organic materials  

DOE Patents (OSTI)

An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.

D'Andrade, Brian (Westampton, NJ); Esler, James (Levittown, PA)

2011-10-18T23:59:59.000Z

135

Lighting and Electrical Team Leadership and Project Delivery- 2014 BTO Peer Review  

Energy.gov (U.S. Department of Energy (DOE))

The partners involved in the Lighting Energy Efficiency in Parking (LEEP) campaign, along with private and public entities, advocate for and install energy-efficient lighting in public parking lots to foster significant reductions in participants energy consumption.

136

Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles  

E-Print Network (OSTI)

The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

Evans, Christopher W. (Christopher William)

2008-01-01T23:59:59.000Z

137

New Energy Efficiency Standards for Electric Motors and Walk-in Coolers and Freezers to Save on Energy Bills and Reduce Carbon Pollution  

Office of Energy Efficiency and Renewable Energy (EERE)

These standards combined will help reduce harmful carbon pollution by up to 158 million metric tons equivalent to the annual electricity use of more than 21 million homes and save businesses $26 billion on utility bills through 2030.

138

Lighting Technology Panel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Panel Technology Panel Federal Utility Partnership Working Group N b 2009 November 1 1 8, 2009 Doug Avery Southern California Edison Southern California Edison National Energy Conservation M d t Mandates * There are Federal and State Mandates to reduce energy consumption - California Investor Owned Electric Utilities are ordered to save around 3 Billion kWh's each y year from 2007-2113 - Federal buildings ordered to reduce electrical Federal buildings ordered to reduce electrical energy consumption 35% by 2012 Energy Consump ption gy Lighting accounts for 42 7% of energy consumption Lighting accounts for 42.7% of energy consumption Data Courtesy of SDG&E Data Courtesy of SDG&E Energy Consump ption gy More than ¾ of the lighting load is non-residential. Data Courtesy of SDG&E

139

An Estimate of the Cost of Electricity from Light Water Reactors and Fossil Plants with Carbon Capture and Sequestration  

SciTech Connect

As envisioned in this report, LIFE technology lends itself to large, centralized, baseload (or 'always on') electrical generation. Should LIFE plants be built, they will have to compete in the electricity market with other generation technologies. We consider the economics of technologies with similar operating characteristics: significant economies of scale, limited capacity for turndown, zero dependence on intermittent resources and ability to meet environmental constraints. The five generation technologies examined here are: (1) Light Water Reactors (LWR); (2) Coal; (3) Coal with Carbon Capture and Sequestration (CCS); (4) Natural Gas; and (5) Natural Gas with Carbon Capture and Sequestration. We use MIT's cost estimation methodology (Du and Parsons, 2009) to determine the cost of electricity at which each of these technologies is viable.

Simon, A J

2009-08-21T23:59:59.000Z

140

Lighting  

SciTech Connect

The lighting section of ASHRAE standard 90.1 is discussed. It applies to all new buildings except low-rise residential, while excluding specialty lighting applications such as signage, art exhibits, theatrical productions, medical and dental tasks, and others. In addition, lighting for indoor plant growth is excluded if designed to operate only between 10 p.m. and 6 a.m. Lighting allowances for the interior of a building are determined by the use of the system performance path unless the space functions are not fully known, such as during the initial stages of design or for speculative buildings. In such cases, the prescriptive path is available. Lighting allowances for the exterior of all buildings are determined by a table of unit power allowances. A new addition the exterior lighting procedure is the inclusion of facade lighting. However, it is no longer possible to trade-off power allotted for the exterior with the interior of a building or vice versa. A significant change is the new emphasis on lighting controls.

McKay, H.N. (Hayden McKay Lighting Design, New York, NY (US))

1990-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Validation of the Electrical Properties of the ITER ICRF Antenna using Reduced-Scale Mock-Ups  

SciTech Connect

Experimental measurements on reduced-scale mock-ups allow validating the electrical properties and RF numerical optimization of the ITER ICRF antenna. Frequency response in the different regions of the antenna is described and key parameters for performance improvement are given. Coupling is improved by acting on the front-face geometry (strap width, antenna box depth and vertical septa recess). The 4-port junction acts as a frequency filter and together with the service stub performs pre-matching in the whole frequency band. Influence of the Faraday screen on coupling is limited. The effect of voltage limitation on the maximum total radiated power is given. The importance of a good decoupling network and of grounding is emphasized. Finally the control of the antenna wave spectrum is performed by implementing feedback controlled load-resilient matching and decoupling options and control algorithms are tested.

Dumortier, Pierre; Durodie, Frederic; Grine, Djamel; Kyrytsya, Volodymyr; Louche, Fabrice; Messiaen, Andre; Vervier, Michel; Vrancken, Mark [LPP-ERM/KMS, EURATOM-Belgian State Association, CYCLE, Trilateral Euregio Cluster, B-1000 Brussels (Belgium)

2011-12-23T23:59:59.000Z

142

Lighting Survey Results at the Langford Architecture Center and Estimated Savings by Delamping  

E-Print Network (OSTI)

potential to be delamped. This survey was part of the investigation to determine the effective strategy to reduce the lighting electricity use in Langford Architecture Center....

Soebarto, V. I.; Haberl, J. S.; Degelman, L. O.

1997-01-01T23:59:59.000Z

143

Alliant Energy Interstate Power and Light (Gas and Electric)- Low Interest Energy Efficiency Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Alliant Energy (Interstate Power and Light - IP&L) offers low-interest financing program for the installation of energy efficient improvements. Businesses, Residences, farms or ag-related...

144

Review of experiments to evaluate the ability of electrical heater rods to simulate nuclear fuel rod behavior during postulated loss-of-coolant accidents in light water reactors  

SciTech Connect

Issues related to using electrical fuel rod simulators to simulate nuclear fuel rod behavior during postulated loss-of-coolant accident (LOCA) conditions in light water reactors are summarized. Experimental programs which will provide a data base for comparing electrical heater rod and nuclear fuel rod LOCA responses are reviewed.

McPherson, G D; Tolman, E L

1980-01-01T23:59:59.000Z

145

ELECTRIC  

Office of Legacy Management (LM)

you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

146

A Hypothesis for the Speed of Propagation of Light in electric and magnetic fields and the Planning of an Experiment for its Verification  

E-Print Network (OSTI)

As generally known, the speed of propagation of light in solid state bodies can be different from the speed of light in vacuum. That the mere presence of electric or magnetic fields in the vacuum can suffice to influence the speed of light, is a hypothesis under discussion, which is based on considerations of Quantumelectrodynamics. For a verification of this hypothesis, an interference-experiment might be performed, of which the planning is given in this article.

Claus W. Turtur

2007-03-29T23:59:59.000Z

147

Fuel Savings from Hybrid Electric Vehicles  

SciTech Connect

NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

Bennion, K.; Thornton, M.

2009-03-01T23:59:59.000Z

148

A Light Effect in Chlorine under Electric Discharge : Influence of the Intensity and Frequency  

Science Journals Connector (OSTI)

... as the various electrical quantities ; the electrode spacing, area and 'ageing' under the discharge ; the nature of the gas, its temperature and especially the pressure. The chief ... ; a deflexion of 54 served to indicate the current. On irradiation by the carbon arc, the current decreased by 20-21 or about 38 per cent (see table); ...

S. S. JOSHI; P. G. DEO

1943-05-15T23:59:59.000Z

149

Baltimore Gas and Electric Company (Electric) - Commercial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Baltimore Gas and Electric Company (Electric) - Commercial Energy Baltimore Gas and Electric Company (Electric) - Commercial Energy Efficiency Program Baltimore Gas and Electric Company (Electric) - Commercial Energy Efficiency Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $1,000,000/corporate tax ID/year Commercial Rebates: Contact BGE Retro-Commissioning, Operations, and Maintenance: $15,000 Program Info State Maryland Program Type Utility Rebate Program Rebate Amount New Construction Performance Lighting: $0.40 - $0.80/watt reduced New Construction Green Building Incentive: $0.25 - $0.40/kWh saved first

150

The USDOE Forrestal Building Lighting Retrofit: Preliminary Analysis of Electricity Savings  

E-Print Network (OSTI)

In September of 1993 a 36,832 fixture lighting retrofit was completed at the United States Department of Energy Forrestal complex in Washington, D.C. This retrofit represents DOE's largest project to date that utilizes a Shared Energy Savings (SES...

Haberl, J. S.; Bou-Saada, T. E.; Vajda, E. J.; Shincovich, M.; D'Angelo III, L.; Harris, L.

1994-01-01T23:59:59.000Z

151

"1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska" Alaska" "1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220 "3. North Pole","Petroleum","Golden Valley Elec Assn Inc",144 "4. Bradley Lake","Hydroelectric","Homer Electric Assn Inc",126 "5. Anchorage 1","Gas","Anchorage Municipal Light and Power",88 "6. Snettisham","Hydroelectric","Alaska Electric Light&Power Co",78 "7. Bernice Lake","Gas","Chugach Electric Assn Inc",62 "8. Lemon Creek","Petroleum","Alaska Electric Light&Power Co",58

152

Raft River Rural Electric Coop. Vigilante Electric Coop. Northern  

NLE Websites -- All DOE Office Websites (Extended Search)

Raft River Rural Electric Coop. Vigilante Electric Coop. Northern Lights Bonners Ferry East End Mutual Heyburn Burley United Electric Albion Raft River Rural Electric Coop. Declo...

153

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A quantity of at lezst 5 grams would probably be sufficient for our purpose, and this was included in our 3@icntion for license to the Atonic Energy Coskqission.. This license has been approved, 2nd rre would Llp!Jreciate informztion as to how to ?r*oceed to obtain thit: m2teria.l.

154

Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application  

E-Print Network (OSTI)

energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility...

Meckler, G.

1985-01-01T23:59:59.000Z

155

"1. Labadie","Coal","Union Electric Co",2407 "2. Iatan","Coal","Kansas City Power & Light Co",1555  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri" Missouri" "1. Labadie","Coal","Union Electric Co",2407 "2. Iatan","Coal","Kansas City Power & Light Co",1555 "3. Rush Island","Coal","Union Electric Co",1204 "4. Callaway","Nuclear","Union Electric Co",1190 "5. New Madrid","Coal","Associated Electric Coop, Inc",1160 "6. Thomas Hill","Coal","Associated Electric Coop, Inc",1125 "7. Sioux","Coal","Union Electric Co",986 "8. Hawthorn","Coal","Kansas City Power & Light Co",979 "9. Meramec","Coal","Union Electric Co",951 "10. Aries Power Project","Gas","Dogwood Energy LLC",614

156

DOE Issues Request for Information on Fuel Cells for Continuous On-Board Recharging for Battery Electric Light-Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The USDOE's Fuel Cell Technologies Office has issued an RFI seeking feedback from the research community and relevant stakeholders about fuel cell technology validation, commercial acceleration, and potential deployment strategies for continuous fuel cell rechargers on board light-duty electric vehicle fleets.

157

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

Science Journals Connector (OSTI)

Federal electric vehicle (EV) policies in the United States currently include vehicle purchase subsidies linked to EV battery capacity and subsidies for installing charging stations. We assess the cost-effectiveness of increased battery capacity vs. nondomestic charging infrastructure installation for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks, and \\{SUVs\\} in the US. We find across a wide range of scenarios that the least-cost solution is for more drivers to switch to low-capacity plug-in hybrid electric vehicles (short electric range with gasoline backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are needed per vehicle, nondomestic charging infrastructure installation is substantially more expensive than increased battery capacity per gallon saved, and both approaches have higher costs than US oil premium estimates. Cost effectiveness of all subsidies are lower under a binding fuel economy standard. Comparison of results to the structure of current federal subsidies shows that policy is not aligned with fuel savings potential, and we discuss issues and alternatives.

Scott B. Peterson; Jeremy J. Michalek

2013-01-01T23:59:59.000Z

158

High-Performance with Solar Electric Reduced Peak Demand: Premier Homes Rancho Cordoba, CA- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes Building America solar home research that has demonstrated the ability to reduce peak demand by 75%. Numerous field studies have monitored power production and system effectiveness.

159

TOWARDS CIGS SOLAR CELLS WITH REDUCED FILM THICKNESS: A STUDY OF OPTICAL PROPERTIES AND OF PHOTONIC STRUCTURES FOR LIGHT TRAPPING  

E-Print Network (OSTI)

TOWARDS CIGS SOLAR CELLS WITH REDUCED FILM THICKNESS: A STUDY OF OPTICAL PROPERTIES AND OF PHOTONIC ABSTRACT: In view of large-scale exploitation of CuIn1-xGaxSe2 (CIGS) solar cells for photovoltaic energy. In this work we perform a full study of optical properties of CIGS solar cells grown by a hybrid sputtering

160

L&E: Adopt high-efficiency lighting for your parking lot | The Better  

NLE Websites -- All DOE Office Websites (Extended Search)

lot lot Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Adopt high-efficiency lighting for your parking lot Most parking lots are illuminated by older high-intensity discharge (HID) lighting technology without any energy-saving controls. New light-emitting diode (LED) technology can cut parking lot lighting energy bills by 40%, or much more with controls, while delivering additional benefits including long life, reduced maintenance costs, and improved lighting uniformity. The Lighting & Electrical team developed a performance specification to help building owners take advantage of these improved lighting

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy-efficiency standards for homes have the potential to reduce energy consumption and peak electrical demand.  

E-Print Network (OSTI)

The Issue Energy-efficiency standards for homes have the potential to reduce energy consumption HVAC system efficiency, including problems with airflows, refrigerant system components, and ductwork standards, but little data is available on the actu- al energy performance of new homes. The Solution

162

Integrated performance of an automated venetian blind/electric lighting system in a full-scale office environment  

SciTech Connect

Comprehensive results are presented from a fill-scale testbed of a prototype automated venetian blind lighting system installed in two unoccupied, private offices in Oakland, California. The dynamic system balanced daylight against solar heat gains in real-time, to reduce perimeter zone energy use and to increase comfort. This limited proof-of-concept test was designed to work out practical ''bugs'' and refine design details to increase cost effectiveness and acceptability of this innovative technology for real-world applications. We present results from 14 months of tuning the system design and monitoring energy performance and control system operations. For this southeast-facing office, we found that 1-22% lighting energy savings, 13-28% cooling load reductions, and 13-28% peak cooling load reductions can be achieved by the dynamic system under clear sky and overcast conditions year round, compared to a static, partly closed blind with the same optimized daylighting control system. These energy savings increase if compared to conventional daylighting controls with manually-operated blinds. Monitored data indicated that the control system met design objectives under all weather conditions to within 10% for at least 90% of the year. A pilot human factors study indicated that some of our default control settings should be adjusted to increase user satisfaction. With these adjustments, energy savings will decrease. The final prototype design yielded a 10-year simple payback for this site. If mechanical system downsizing opportunities and qualitative improvements to worker's comfort are included, this innovative technology could be more cost effective. Marketing information for commercializing this technology is given.

DiBartolomeo, D.L.; Lee, Eleanor; Selkowitz, S.E.; Vine, E.L.

1998-02-01T23:59:59.000Z

163

Research on viscosity-reduction technology by electric heating and blending light oil in ultra-deep heavy oil wells  

Science Journals Connector (OSTI)

In the Tahe oilfield in China, heavy oil is commonly lifted using the light oil blending technology. However, due to the lack of light oil, the production of heavy oil has been seriously limited. Thus, a new c...

Mo Zhu; Haiquan Zhong; Yingchuan Li

2014-07-01T23:59:59.000Z

164

Saving Electricity | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Electronics Buying & Making Electricity Tips and Advice Tips: Lighting Lighting choices save you money. Energy-efficient light bulbs are available in a wide variety of sizes...

165

Lighting the Way for Big Energy Savings in Los Angeles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting the Way for Big Energy Savings in Los Angeles Lighting the Way for Big Energy Savings in Los Angeles Lighting the Way for Big Energy Savings in Los Angeles November 14, 2013 - 1:10pm Addthis A Los Angeles lighting project is saving the city $7 million a year in electricity costs. | Photo courtesy of Los Angeles Bureau of Street Lighting A Los Angeles lighting project is saving the city $7 million a year in electricity costs. | Photo courtesy of Los Angeles Bureau of Street Lighting Jim Brodrick Lighting Program Manager The world's largest light emitting diode (LED) conversion project to date is under way in Los Angeles, California. In the project's first phase alone, the city retrofitted over 141,000 streetlights, reducing energy use by 63% and saving the city $7 million a year in electricity costs. The project is expected to reduce carbon

166

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard  

Gasoline and Diesel Fuel Update (EIA)

3 3 ERRATA Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard July 2001 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This Service Report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Contacts This report was prepared by the Office of Integrated Analysis and Forecasting, Energy Information Adminis- tration. General questions concerning the report may be directed to Mary J. Hutzler (202/586-2222, mhutzler @eia.doe.gov), Director of the Office of Integrated Analysis and Forecasting, Scott B. Sitzer (202/586-2308,

167

Empire Electric Association - Residential Energy Efficiency Credit Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Lighting: 50% of material cost or $20,000 Street Lighting: $20,000 Refrigerated Case Lighting: $3,000 Electric Motors: $9,000 Motor Wiring Assistance: $2,500 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount HVAC Equipment: $250 - $300/ton, additional rebates available for higher efficiency levels Lighting: $250 per kW reduced LED Street Lighting: $44 - $475 Induction Street Lighting: $33 - $355 Refrigerated Case Lighting: $60 per door (reach-in cases) or per six lineal feet (multi-deck cases) Electric Motors: $16 - $24/HP Motor Wiring Assistance: $3/HP Irrigation Motor Load Control: $50/motor

168

Evaluation of a Current Source Active Power Filter to Reduce the DC Bus Capacitor in a Hybrid Electric Vehicle Traction Drive  

E-Print Network (OSTI)

Electric Vehicle Traction Drive Shengnan Li Student Member, IEEE The University of Tennessee Department Science Knoxville, TN, 37996, USA tolbert@utk.edu Abstract ­ In hybrid electric vehicles (HEV), a battery-source inverter, dc bus capacitor, Electric vehicle, Harmonic current, Hybrid electric vehicle. I. INTRODUCTION

Tolbert, Leon M.

169

GE Appliances and Lighting Home Energy Solutions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GE Appliances and Lighting GE Appliances and Lighting Home Energy Solutions Introduction to Devices with Brillion(tm) Technology Portfolio of Products 3 GE Appliances and Lighting All Rights Reserved Brillion(tm) Suite of Home Energy Solutions Nucleus(tm) Smart Meter Other Devices Internet IHD Other Devices PCT Non-Meter Solution GE DRMS GEA Server 4 GE Appliances and Lighting All Rights Reserved Nucleus(tm) energy manager with Brillion(tm) technology Consumers can reduce electric usage by an average of 5% per year. 5 GE Appliances and Lighting All Rights Reserved GE Profile Appliances enabled with Brillion(tm) technology Delayed defrost during peak Delayed starts and temperature adjustments during peak Delayed start until off- peak Reduced energy usage 60%, DR- enabled Reduced wattage during peak When coupled with the Nucleus and a TOU

170

A State Regulatory Perspective; New Building, Old Motors, and Marginal Electricity Generation  

E-Print Network (OSTI)

Electricity consumption in Texas is expected to grow at 3.2 percent annually for the next ten years. Utility demand management activities, if effective, may reduce that expected rate of growth. Residential cooling, commercial lighting and cooling...

Treadway, N.

1987-01-01T23:59:59.000Z

171

Mobile lighting apparatus  

DOE Patents (OSTI)

A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

2013-05-14T23:59:59.000Z

172

Light Bodies: Exploring Interactions with Responsive Lights  

E-Print Network (OSTI)

reinterpretation of street lighting. Before fixed infrastructure illuminated cities at night, people carried Urban street lighting today is a networked, fixed infrastructure that relies on the electrical grid. WeLight Bodies: Exploring Interactions with Responsive Lights Susanne Seitinger MIT Media Laboratory

Hunt, Galen

173

Electricity and Magnetism  

Science Journals Connector (OSTI)

... and practical applications; or, speaking briefly, theory and practice. In the theoretical part, magnetism is first treated, then electricity, in the order statical electricity, electro-chemistry, and ... first treated, then electricity, in the order statical electricity, electro-chemistry, and electro-magnetism. In the practical part are comprised telegraphy and telephony, electric lighting and transmission of ...

A. GRAY

1891-11-05T23:59:59.000Z

174

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

E-Print Network (OSTI)

backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are neededCost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b

Michalek, Jeremy J.

175

New and Underutilized Technology: Exterior LED/Solid State Lighting |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exterior LED/Solid State Lighting Exterior LED/Solid State Lighting New and Underutilized Technology: Exterior LED/Solid State Lighting October 4, 2013 - 4:55pm Addthis The following information outlines key deployment considerations for exterior LED/solid state lighting within the Federal sector. Benefits LED lighting economics can work in high electric cost areas with high hours of use. Pricing continually decreases for LED lighting. This technology provides quality, white, even lighting with good color rendition. Greater cost savings can be achieved when combined with bi-level motion sensors to reduce light levels in parking areas, garages, and walkways. Application Exterior LED/solid state lighting is applicable in areas where security and visual performance are critical, including street lighting, parking lots,

176

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report  

SciTech Connect

The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

Mac Donald, Philip Elsworth

2002-06-01T23:59:59.000Z

177

Feasible Caf Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

Burke, Andy; Abeles, Ethan

2004-01-01T23:59:59.000Z

178

Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

Burke, Andy; Abeles, Ethan C.

2004-01-01T23:59:59.000Z

179

Reducing LED Costs Through Innovation  

Energy.gov (U.S. Department of Energy (DOE))

A Wisconsin-based company is developing an innovative way to reduce manufacturing costs of light-emitting diodes (LEDs).

180

Comparison of 60-Hz electric fields and incandescent light as aversive stimuli controlling the behavior of rats  

SciTech Connect

Rats were exposed to two procedures which enabled them to press a lever to turn off a 90 or 100 kV/m 60-Hz electric field or, later in the study, illumination from an incandescent lamp. Under one procedure, a response turned off the stimulus for a fixed duration, after which the stimulus was turned on again. A response during the off-period restarted the fixed duration. None of the rats turned the field off reliably. Next, under an alternative procedure, pressing one lever turned the field off; pressing the other lever turned it back on; responding under those conditions differed little from that seen at 0 kV/m. Under both procedures, when illumination from an incandescent lamp served as the stimulus, each rat did turn the stimulus off, and performances varied with stimulus intensity. The results show that a 100 kV/m 60-Hz electric field is not sufficient to function as an aversive stimulus under two procedures where illumination from a lamp does function as an aversive stimulus.

Stern, S.; Laties, V.G.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Electricity in Horticulture  

Science Journals Connector (OSTI)

... ELECTRO-CULTURE has to take into account the effects of electric heating, electric lighting and the voltage stress on the life of plants. The first applica-tion of ... and increases up to forty per cent have been obtained. Electricity in the form of light was the next application in the aid of ...

1936-07-11T23:59:59.000Z

182

Experimental correlations for transient soot measurement in diesel exhaust aerosol with light extinction, electrical mobility and diffusion charger sensor techniques  

Science Journals Connector (OSTI)

A study of soot measurement deviation using a diffusion charger sensor with three dilution ratios was conducted in order to obtain an optimum setting that can be used to obtain accurate measurements in terms of soot mass emitted by a light-duty diesel engine under transient operating conditions. The paper includes three experimental phases: an experimental validation of the measurement settings in steady-state operating conditions; evaluation of the proposed setting under the New European Driving Cycle; and a study of correlations for different measurement techniques. These correlations provide a reliable tool for estimating soot emission from light extinction measurement or from accumulation particle mode concentration. There are several methods and correlations to estimate soot concentration in the literature but most of them were assessed for steady-state operating points. In this case, the correlations are obtained by more than 4000 points measured in transient conditions. The results of the new two correlations, with less than 4% deviation from the reference measurement, are presented in this paper.

Vicente Bermdez; Jos V Pastor; J Javier Lpez; Daniel Campos

2014-01-01T23:59:59.000Z

183

X-ray absorption and resonant x-ray emission spectra by electric quadrupole excitation in light rare-earth systems  

Science Journals Connector (OSTI)

We have made precise theoretical calculations for both 2p3/2?4f x-ray absorption spectra and 3d?2p3/2 resonant x-ray emission spectra involving electric quadrupole excitations at the L3 edge of light rare-earth elements from La to Eu. It is shown that the energy separation of a double-peak structure observed by x-ray absorption spectroscopy (XAS) does not agree with that determined from resonant x-ray emission spectroscopy (RXES), in contrast to recent experimental results by Bartolom et al. The reason for this difference is that the energy separation in XAS is determined by the 4f-4f interaction only, while that in RXES is determined by both 4f-4f and 3d-4f interactions.

M. Nakazawa; K. Fukui; H. Ogasawara; A. Kotani; C. F. Hague

2002-09-26T23:59:59.000Z

184

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

nuclear tors. for of of These studies can examine safety systems or safety research programsnuclear power plants, and at risk. to reduce population The Light-water Reactor Safety Research Program

Nero, A.V.

2010-01-01T23:59:59.000Z

185

Lighting Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Purple LED lamp Purple LED lamp Lighting Systems Lighting research is aimed at improving the energy efficiency of lighting systems in buildings and homes across the nation. The goal is to reduce lighting energy consumption by 50% over twenty years by improving the efficiency of light sources, and controlling and delivering illumination so that it is available, where and when needed, and at the required intensity. Research falls into four main areas: Sources and Ballasts, Light Distribution Systems, Controls and Communications, and Human Factors. Contacts Francis Rubinstein FMRubinstein@lbl.gov (510) 486-4096 Links Lighting Research Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

186

Energy Conservation in Industrial Lighting  

E-Print Network (OSTI)

In order to reduce energy use in lighting Union Carbide recently issued drastically reduced new lighting level standards. A computerized lighting cost program was also developed. Using this program a number of additional energy saving techniques...

Meharg, E.

1979-01-01T23:59:59.000Z

187

Vectren Energy Delivery of Indiana (Electric) - Commercial New Construction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vectren Energy Delivery of Indiana (Electric) - Commercial New Vectren Energy Delivery of Indiana (Electric) - Commercial New Construction Rebates (Indiana) Vectren Energy Delivery of Indiana (Electric) - Commercial New Construction Rebates (Indiana) < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate Custom/HVAC Systems: $100,000 or 50% of the total project cost Incentive cannot buy down project below 1.5 years payback. Program Info State Indiana Program Type Utility Rebate Program Rebate Amount HVAC Systems (New Construction): $0.12/kWh reduced

188

El Paso Electric - SCORE and Commercial Solutions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- SCORE and Commercial Solutions - SCORE and Commercial Solutions El Paso Electric - SCORE and Commercial Solutions < Back Eligibility Commercial Installer/Contractor Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Program Info State Texas Program Type Utility Rebate Program Rebate Amount SCORE Reduced Peak Electric Demand; $185/kW Provider CLEAResult Consulting, Inc. El Paso Electric offers a targeted incentive program for public institutions, local governments and higher education. The SCORE Program is designed to help municipalities, counties, public

189

Standby electricity consumption and saving potentials of Turkish households  

Science Journals Connector (OSTI)

Abstract The share of the residential sector currently accounts for about 25% of the national electricity consumption in Turkey. Due to increase in household income levels and decrease in the costs of appliances; significant increases in appliance ownerships and residential electricity consumption levels have been observed in recent years. Most domestic appliances continue consuming electricity when they are not performing their primary functions, i.e. at standby mode, which can constitute up 15% of the total household electricity consumption in some countries. Although the demand in Turkish residential electricity consumption is increasing, there are limited studies on the components of the residential electricity consumption and no studies specifically examining the extent and effects of standby electricity consumption using a surveying/measurement methodology. Thus, determining the share of standby electricity consumption in total home electricity use and the ways of reducing it are important issues in residential energy conservation strategies. In this study, surveys and standby power measurements are conducted at 260 households in Ankara, Turkey, to determine the amount, share, and saving potentials of the standby electricity consumption of Turkish homes. The survey is designed to gather information on the appliance properties, lights, electricity consumption behavior, economic and demographics of the occupants, and electricity bills. A total of 1746 appliances with standby power are measured in the surveyed homes. Using the survey and standby power measurements data, the standby, active, and lighting end-use electricity consumptions of the surveyed homes are determined. The average Turkish household standby power and standby electricity consumption are estimated as 22W and 95kWh/yr, respectively. It was also found that the standby electricity consumption constitutes 4% of the total electricity consumption in Turkish homes. Two scenarios are then applied to the surveyed homes to determine the potentials in reducing standby electricity consumption of the households.

Mustafa Cagri Sahin; Merih Aydinalp Koksal

2014-01-01T23:59:59.000Z

190

Nuclear power can reduce emissions and maintain a strong economy: Rating Australias optimal future electricity-generation mix by technologies and policies  

Science Journals Connector (OSTI)

Abstract Legal barriers currently prohibit nuclear power for electricity generation in Australia. For this reason, published future electricity scenarios aimed at policy makers for this country have not seriously considered a full mix of energy options. Here we addressed this deficiency by comparing the life-cycle sustainability of published scenarios using multi-criteria decision-making analysis, and modeling the optimized future electricity mix using a genetic algorithm. The published CSIRO e-future scenario under its default condition (excluding nuclear) has the largest aggregate negative environmental and economic outcomes (score=4.51 out of 8), followed by the Australian Energy Market Operators 100% renewable energy scenario (4.16) and the Greenpeace scenario (3.97). The e-future projection with maximum nuclear-power penetration allowed yields the lowest negative impacts (1.46). After modeling possible future electricity mixes including or excluding nuclear power, the weighted criteria recommended an optimized scenario mix where nuclear power generated >40% of total electricity. The life-cycle greenhouse-gas emissions of the optimization scenarios including nuclear power were nuclear power is an effective and logical option for the environmental and economic sustainability of a future electricity network in Australia.

Sanghyun Hong; Corey J.A. Bradshaw; Barry W. Brook

2014-01-01T23:59:59.000Z

191

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

4 demonstration of a plug-in diesel-electric HUMVEE by thediesel max output (kW) continuous/Me- kW type efficiency electric

Williams, Brett D

2010-01-01T23:59:59.000Z

192

All mercury lamps contain small amounts of mercury. An electric current passes through the lamp and vaporizes the mercury to generate light. Recycling mercury containing lamps protects human health and our environment from heavy  

E-Print Network (OSTI)

All mercury lamps contain small amounts of mercury. An electric current passes through the lamp and vaporizes the mercury to generate light. Recycling mercury containing lamps protects human health and our the environment by recycling universal wastes, contact EH&S at (949) 824-6200 or visit: www.ehs.uci.edu Mercury

George, Steven C.

193

Sign Lighting Overview Page 7-1 2008 Nonresidential Compliance Manual July 2010  

E-Print Network (OSTI)

.1 Overview The Sign Lighting Standards conserve energy, reduce peak electric demand, and are technically feasible and cost effective. They set minimum control requirements, maximum allowable power levels and minimum efficacy requirements. 7.1.1 History and Background Regulations for lighting have been in effect

194

Energy Savings Potential for Street Lighting in India  

E-Print Network (OSTI)

lighting quality, reduce energy use, costs, and greenhouseLighting Retrofit Projects: Improving Performance while Reducing Costs and Greenhouse

Johnson, Alissa K.

2014-01-01T23:59:59.000Z

195

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report  

SciTech Connect

The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

Mac Donald, Philip Elsworth

2002-09-01T23:59:59.000Z

196

Status of advanced light-duty transportation technologies in the US  

Science Journals Connector (OSTI)

The need to reduce oil consumption and greenhouse gases is driving a fundamental change toward more efficient, advanced vehicles, and fuels in the transportation sector. The paper reviews the current status of light duty vehicles in the US and discusses policies to improve fuel efficiency, advanced electric drives, and sustainable cellulosic biofuels. The paper describes the cost, technical, infrastructure, and market barriers for alternative technologies, i.e., advanced biofuels and light-duty vehicles, including diesel vehicles, natural-gas vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and fuel-cell electric vehicles. The paper also presents R&D targets and technology validation programs of the US government.

David Andress; Sujit Das; Fred Joseck; T. Dean Nguyen

2012-01-01T23:59:59.000Z

197

Reading Municipal Light Department - Business Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reading Municipal Light Department - Business Energy Efficiency Reading Municipal Light Department - Business Energy Efficiency Rebate Program Reading Municipal Light Department - Business Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Heat Pumps Manufacturing Appliances & Electronics Buying & Making Electricity Energy Sources Solar Wind Maximum Rebate $50,000 Program Info Expiration Date 04/30/2013 State Massachusetts Program Type Utility Rebate Program Rebate Amount Up to $50,000 Provider Incentive Programs Reading Municipal Light Department (RMLD) offers energy efficiency incentives to eligible commercial and industrial customers. Rebates of up to $50,000 are available to customers who wish to reduce energy consumption

198

Getting Ready for LEDs: LED Lighting Video Series Explains the Basics |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for LEDs: LED Lighting Video Series Explains the for LEDs: LED Lighting Video Series Explains the Basics Getting Ready for LEDs: LED Lighting Video Series Explains the Basics November 26, 2012 - 3:09pm Addthis Part 1 of the ElectricTV.net video series. Part 2 of the ElectricTV.net video series. Roland Risser Roland Risser Program Director, Building Technologies Office How can I participate? Learn more about the advantages and accessiblity of LED lighting from this series of videos. If you haven't been down the lighting aisle of your favorite home improvement store lately, you may be surprised at how many LED lighting products have arrived. Solid-state lighting (LEDs are one type) will soon have a strong impact on how buildings and homes are lit, in part because of its potential to reduce U.S. lighting energy usage by nearly one half.

199

Reducing Petroleum Despendence in California: Uncertainties About...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Petroleum Despendence in California: Uncertainties About Light-Duty Diesel Reducing Petroleum Despendence in California: Uncertainties About Light-Duty Diesel 2002 DEER Conference...

200

Amicalola Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Amicalola Electric Member Corp Amicalola Electric Member Corp Jump to: navigation, search Name Amicalola Electric Member Corp Place Georgia Utility Id 562 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Security Lights Acorn 100 W Lighting Security Lights Acorn 150 W Lighting Security Lights Cobra 100 W Lighting Security Lights Cobra 150 W Lighting Security Lights Cobra 250 W Lighting Security Lights Cobra 400 W Lighting Security Lights Cobra MH 250 W Lighting Security Lights Cobra MH 400 W Lighting Security Lights Flood 250 W Lighting

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Department Provides $7 Million for Solid-State Lighting...  

Energy Savers (EERE)

incandescent and fluorescent lamps, solid-state lighting creates light without producing heat. A semi-conducting material converts electricity directly into light, which maximizes...

202

PP-78 Minnesota Power & Light Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Minnesota Power & Light Company PP-78 Minnesota Power & Light Company Presidential Permit authorizing Minnesota Power & Light Company to construct, operate, and maintain electric...

203

PP-94 Central Power & Light Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Central Power & Light Company PP-94 Central Power & Light Company Presidental Permit authorizing Central Power & Light Company to construct, operate, and maintain electric...

204

Electric Services in Buildings  

Science Journals Connector (OSTI)

... Institution of Electrical Engineers on October 22. In the early days, electrical installations in buildings were for lighting and bells. Wood casing was used, and, so far as ... equipment were placed anywhere where they would be out of sight. Now new and larger buildings are being erected all over the country, and electrical contractors are having difficulty in ...

1936-10-31T23:59:59.000Z

205

Smart street lighting management  

Science Journals Connector (OSTI)

In this work, we propose a new street lighting energy management system in order to reduce ... demand meaning that energy, in this case light, is provided only when needed. In ... demand model, which in the case...

S. Pizzuti; M. Annunziato; F. Moretti

2013-08-01T23:59:59.000Z

206

York Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop Inc Electric Coop Inc Jump to: navigation, search Name York Electric Coop Inc Place South Carolina Utility Id 21002 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting Backyard Lighting Outdoor Lighting Baxter Lighting Outdoor Lighting Shoebox 1 Light Lighting Outdoor Lighting Shoebox 2 Lights Lighting Outdoor Lighting Traditional Lighting Outdoor Lighting Ultra-Flood HPS/ MH 400 W 2 Lights Wood Pole Lighting Outdoor Lighting Ultra-Flood HPS/MH 1000 W Fiberglass Pole Lighting

207

Taking a Bite out of Lighting Loads  

E-Print Network (OSTI)

Take a Bite Out of Lighting Loads With LEDs Stephen Williams Toshiba Sales Support Manager ESL-KT-13-12-34 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Some LED Advantages Less electricity ? 18w LED... = 100w PAR38 No maintenance for years ? 50,000 LED vs.10,000 CFL Improved light quality ? 80 CRI LED vs. 25 CRI HPS Reduce HVAC cooling load Advanced control options ESL-KT-13-12-34 CATEE 2013: Clean Air Through Energy Efficiency Conference, San...

Williams, S.

2013-01-01T23:59:59.000Z

208

Building America Top Innovations Hall of Fame Profile … High-Performance with Solar Electric Reduced Peak Demand: Premier Homes Rancho Cordoba, CA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

95 homes in Premier Gardens are 95 homes in Premier Gardens are equipped with photovoltaic panels that take advantage of solar energy to offset peak power loads during the hottest part of the day. As the housing market continues to evolve toward zero net-energy ready homes, Building America research has provided essential guidance for integrating renewable energy systems with high-performance homes and showing how they align with utility peak-demand reduction interests. Solar photovoltaic technology is an attractive option for utilities because they can reduce reliance on fossil-fuel energy. More significantly, it reduces peak demand because systems produce the most power on sunny summer afternoons coincident with the highest demand for air conditioning. Photovoltaic systems have been a part of several research projects conducted by

209

Effects of reduced voltage on the operation and efficiency of electric systems. Volume 3. Field tests in a northern utility service area. Final report  

SciTech Connect

Volume 3 of this three-volume report for RP1419-1 describes the tests on selected residential, commercial, and small industry areas of the Detroit Edison Company system and the statistical analysis performed on the test data gathered. The purpose of the field testing was to provide data to analyze changes in energy consumption due to changes in feeder voltage levels. Detroit Edison was chosen to represent a winter peaking load area. Original intent was to present these results simultaneously with results from a summer peaking load area, Texas Electric Service Company (TESCO). Unavoidable delays retarded the Detroit study results to this Volume 3. TESCO results were reported in Volume 1, and the Distribution System Analysis and Simulation (DSAS) program for these studies was presented in Volume 2 in the form of a User's Manual.

Chen, M.S.; Shoults, R.R.

1985-07-01T23:59:59.000Z

210

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

2002. EPRI, "Advanced Batteries for Electric-Drive Vehicles:12 2.2.2.1 PHEV uncertainties: Batteries andwith big propulsion batteries. However, recent activities (

Williams, Brett D

2010-01-01T23:59:59.000Z

211

The Specter of Fuel-Based Light  

SciTech Connect

Contemporary questions about sustainable energy and development converge in unexpected ways around a technology that is at once an echo of the past and yet very much a part of the present: fuel-based lighting in the developing world. An emerging opportunity for reducing the global costs and greenhouse-gas emissions associated with this highly inefficient form of lighting energy use is to replace fuel-based lamps with white solid-state (''LED'') lighting, described in this Policy Forum, which can be affordably solar-powered. Doing so would allow those without access to electricity in developing world to affordably leapfrog over the prevailing incandescent and fluorescent lighting technologies in use today through the electrified world.

Mills, Evan

2005-05-16T23:59:59.000Z

212

ECE 466: LED Lighting Systems -Incandescent lightings rise and  

E-Print Network (OSTI)

versus cost - Power Electronic Drives for CFL and LED light sources to achieve dimmable operation - Basic electric AC and DC circuits at Sophomore level or equivalents Absolutes Lighting System Requirements index as a metric of a light source - Power Electronic Energy sources driving light sources in a compact

Schumacher, Russ

213

New Hampshire Electric Co-Op - Small Business Energy Solutions | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Hampshire Electric Co-Op - Small Business Energy Solutions New Hampshire Electric Co-Op - Small Business Energy Solutions New Hampshire Electric Co-Op - Small Business Energy Solutions < Back Eligibility Commercial Industrial Savings Category Other Appliances & Electronics Commercial Lighting Lighting Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount Up to 50% of the cost Provider New Hampshire Electric Co-Op New Hampshire Electric Co-Op offers incentives for its small commercial customers (those using less than 100 kW) through the Small Business Energy Solutions Program. The Co-op will conduct a free assessment of a company's energy consumption, recommend efficiency improvements to reduce consumption, and provide rebates of up to 50% toward the cost of implementing the recommendations. Eligible improvements include: lighting

214

Photodetector with enhanced light absorption  

DOE Patents (OSTI)

A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

Kane, James (Lawrenceville, NJ)

1985-01-01T23:59:59.000Z

215

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

reduce greenhouse gas emissions. If advanced lightinggreenhouse gas emissions. ii Projected Impact of Wireless Lighting

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

216

Assessing the residential lighting efficiency opportunities in Guadalajara and Monterrey, Mexico  

SciTech Connect

Lighting, primarily with incandescent bulbs, is the major end use of electricity in Mexican homes. The introduction of compact fluorescent lamps (CFLs) could significantly reduce electricity use in lighting. We describe a survey of lighting use in homes of Guadalajara and Monterrey, Mexico, that was conducted to provide information to determine the potential for CDLs. The results show that 1/6 of the incandescent bulbs can be replaced with CFLs if only those bulbs used more than 4 hours per day are targeted. We also provide insights on conducting similar surveys in other developing countries.

Friedmann,R.; DeBuen,O; Sathaye,J.; Gadgil,A.; Saucedo,R.; Rodriguez,G.

1995-02-02T23:59:59.000Z

217

(1) The Elements of Electricity and Magnetism. A Text-book for Colleges and Technical Schools (2) A Short University Course in Electricity, Sound and Light (3) Naturlehre fr hhere Lehranstalten auf Schulerbungen gegrundet (4) The Elementary Theory of Direct Current Dynamo Electric Machinery (5) Electrical Laboratory Course for Junior Students  

Science Journals Connector (OSTI)

... The author is convinced that "elementary science instruction must be made to touch upon the things of every day life if ... ."This sentence may be taken as the keynote to the entire book. Thus electric resistances are usually represented as electric lamps. Those who are accustomed to abstract thinking may ...

1909-07-15T23:59:59.000Z

218

La Plata Electric Association - Energy Efficient Equipment Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

La Plata Electric Association - Energy Efficient Equipment Rebate La Plata Electric Association - Energy Efficient Equipment Rebate Program La Plata Electric Association - Energy Efficient Equipment Rebate Program < Back Eligibility Commercial Industrial Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Dishwasher: $40 Clothes Washer: $40 Refrigerator/Freezer: $40 Refrigerator/Freezer Recycling: $25 Water Heaters: $75 - $300 ETS Heaters: $20 - $30/kWh Heater Timing Devices: $25 Motors: $9/HP Motor Wiring Assistance: $1.50/HP Air-source Heat Pumps: Contact LPEA Geothermal Heat Pumps: Contact LPEA Energy Efficient Lighting (Commercial Only): $250/kW reduced

219

Electric Currents Electric Current  

E-Print Network (OSTI)

coefficient of resistivity Electric Power: = = = Also, = . So, = = 2 = 2 Unit of Power(P): Watt (WChapter 18 Electric Currents #12;Electric Current: Flow of electric charge Current is flow of positive charge. In reality it's the electron moves in solids- Electron current. #12;Ohm's Law : Resistance

Yu, Jaehoon

220

Electrical and Computer Engineering  

E-Print Network (OSTI)

technologies such as solar power and solid state (LED) lighting; Design sensors that measure glucose, generating and transmitting power, and designing smart sensors for robots. Circuits Communications Optics Power Sensors Signal & Image Processing #12;Electrical Engineering Develop environmentally friendly

Weber, Rodney

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Louisville Electric System | Open Energy Information  

Open Energy Info (EERE)

Louisville Electric System Louisville Electric System Jump to: navigation, search Name Louisville Electric System Place Mississippi Utility Id 11247 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power 2 Commercial General Power 3 Commercial General Power- 1 Commercial Lighting- 1000W HPS Lighting Lighting- 1000W Metal Halide Lighting Lighting- 100W HPS Lighting Lighting- 175W Mercury Vapor Lighting Lighting- 200W HPS Lighting Lighting- 250W HPS Lighting Lighting- 250W Metal Halide Lighting

222

An Engineering-Economic Analysis of White Light-Emitting Diodes for General  

NLE Websites -- All DOE Office Websites (Extended Search)

An Engineering-Economic Analysis of White Light-Emitting Diodes for General An Engineering-Economic Analysis of White Light-Emitting Diodes for General Illumination for the U.S. Residential and Commercial Sectors Speaker(s): Inês Magarida Lima de Azevedo Date: February 15, 2008 - 12:00pm Location: 90-3122 Because lighting constitutes more than 20% of total US electricity consumption, and many current lighting technologies are highly inefficient, improved technologies for lighting hold great potential for energy savings and for reducing associated greenhouse gas emissions. Solid-state lighting is a technology that shows great promise as a source of efficient, affordable, color-balanced white light in the near future. Indeed, under a pure engineering-economic analysis, solid-state lighting already performs better than incandescent bulbs and is expected to surpass the most

223

Reduced viscosity  

Science Journals Connector (OSTI)

n. (1) (IUPAC: viscosity number) Reduced viscosity is the fluid viscosity increase per unit of polymer solute concentration.... where ? ...

2007-01-01T23:59:59.000Z

224

Photo-Electric Cells  

Science Journals Connector (OSTI)

... be measured, and its variation studied with variation of the incident light. Again, the photo-electric current may be amplified by valve circuits used outside the cell, or may ... to the infra-red, in which the active substance is oxidised thallium sulphide), barium photo-electric cells, sodium, and selenium cells.

ALLAN FERGUSON

1930-06-21T23:59:59.000Z

225

Electric Power Monthly, June 1988  

SciTech Connect

The data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The Energy Information Administration (EIA) collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The Electric Power Monthly contains information from three data sources: the Form EIA-759, 'Monthly Power Plant Report'; the Federal Energy Regulatory Commission (FERC) Form 423, 'Monthly Report of Cost and Quality of Fuels for Electric Plants{sup ;} and the Form EIA-826, {sup M}onthly Electric Sales and Revenue Report with State Distributions'. The Form EIA-759 collects data from all operators of electric utility generating plants (except those having plants solely on standby), approximately 800 of the more than 3,200 electric utilities in the United States. To reduce the reporting burden for utilities, the FERC Form 423 and Form EIA-826 data are based on samples, which cover less than 100 percent of all central station generating utilities. The FERC Form 423 collects data from steam-electric power generating plants with a combined installed nameplate capacity of 50 megawatts or larger (approximately 230 electric utilities). The 50-megawatt threshold was established by FERC. The Form EIA-826 collects sales and revenue data in the residential, commercial, industrial, and other sectors of the economy. Other sales data collected include public street and highway lighting, other sales to public authorities, sales to railroads and railways, and interdepartmental sales. Respondents to the Form EIA-826 were statistically chosen and include approximately 225 privately and publicly owned electric utilities from a universe of more than 3,200 utilities. The sample selection for the Form EIA-826 is evaluated annually. Currently, the Form EIA-826 data account for approximately 83 percent of the electricity sales in the United States. Sources of data are described in more detail in the Technical Notes of the Electric Power Annual (DOE/EIA-0348).

NONE

1988-06-15T23:59:59.000Z

226

Independence Power and Light - Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independence Power and Light - Commercial Energy Efficiency Rebate Independence Power and Light - Commercial Energy Efficiency Rebate Program Independence Power and Light - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $20,000, or 30% of the total project cost annually per organization Program Info State Missouri Program Type Utility Rebate Program Rebate Amount High Performance T-8 Systems: $20-$30 Reduced-Wattage T-8 Systems: $20-$30 Standard T-8 Lamp: $2 Standard T-8 Electric Ballast: $10 400W HID Replacement (250W or less T8, T5, or T5HO Fluorescent): $75 Pulse Start Metal Halide Fixture: $50

227

Advanced Lighting Controls - My Venture from the Ivory Tower  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Lighting Controls - My Venture from the Ivory Tower Advanced Lighting Controls - My Venture from the Ivory Tower Speaker(s): Charlie Huizenga Date: June 15, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Dragan Charlie Curcija Lighting energy represents 30-40% of commercial building electricity consumption, yet very few buildings have advanced lighting controls. The potential energy savings are tremendous as is the opportunity to reduce demand on the grid during critical peak use periods. Charlie will describe how low-cost wireless radio technology developed at UC Berkeley and commercialized by Adura Technologies is creating a paradigm shift in the way we think about controlling lighting. Beyond deep energy savings and demand response, the technology offers personal control for occupants and

228

Black Carbon and Kerosene Lighting: An Opportunity for Rapid Action on Climate Change and Clean Energy for Development  

SciTech Connect

Replacing inefficient kerosene lighting with electric lighting or other clean alternatives can rapidly achieve development and energy access goals, save money and reduce climate warming. Many of the 250 million households that lack reliable access to electricity rely on inefficient and dangerous simple wick lamps and other kerosene-fueled light sources, using 4 to 25 billion liters of kerosene annually to meet basic lighting needs. Kerosene costs can be a significant household expense and subsidies are expensive. New information on kerosene lamp emissions reveals that their climate impacts are substantial. Eliminating current annual black carbon emissions would provide a climate benefit equivalent to 5 gigatons of carbon dioxide reductions over the next 20 years. Robust and low-cost technologies for supplanting simple wick and other kerosene-fueled lamps exist and are easily distributed and scalable. Improving household lighting offers a low-cost opportunity to improve development, cool the climate and reduce costs.

Jacobson, Arne [Humboldt State Univ., MN (United States). Schatz Energy Research Center; Bond, Tami C. [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Civil and Environmental Engineering; Lam, Nicholoas L. [Univ. of California, Berkeley, CA (United States). Dept. of Environmental Health Sciences; Hultman, Nathan [The Brookings Institution, Washington, DC (United States)

2013-04-15T23:59:59.000Z

229

Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines...

230

Lighting Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Renovations Lighting Renovations Lighting Renovations October 16, 2013 - 4:54pm Addthis When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide focuses on the renewable energy opportunities, energy efficiency may also present amble opportunity for energy and cost savings. Renewable Energy Options for Lighting Renovations Daylighting Photovoltaics Daylighting Daylighting maximizes the use of natural light in a space to reduce the need for artificial lighting. Incorporating daylighting into a lighting strategy should occur during the planning stage of design since it affects all aspects. Ambient light dimming controls are critical in daylighting, since the

231

Electrically heated particulate filter with reduced stress  

DOE Patents (OSTI)

A system comprises a particulate matter (PM) filter comprising an inlet for receiving exhaust gas. A zoned heater is arranged in the inlet and comprises a resistive heater comprising N zones, where N is an integer greater than one. Each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates others of the N zones.

Gonze, Eugene V.

2013-03-05T23:59:59.000Z

232

Lighting fundamentals handbook: Lighting fundamentals and principles for utility personnel  

SciTech Connect

Lighting accounts for approximately 30% of overall electricity use and demand in commercial buildings. This handbook for utility personnel provides a source of basic information on lighting principles, lighting equipment, and other considerations related to lighting design. The handbook is divided into three parts. Part One, Physics of Light, has chapters on light, vision, optics, and photometry. Part Two, Lighting Equipment and Technology, focuses on lamps, luminaires, and lighting controls. Part Three, Lighting Design Decisions, deals with the manner in which lighting design decisions are made and reviews relevant methods and issues. These include the quantity and quality of light needed for visual tasks, calculation methods for verifying that lighting needs are satisfied, lighting economics and methods for evaluating investments in efficient lighting systems, and miscellaneous design issues including energy codes, power quality, photobiology, and disposal of lighting equipment. The handbook contains a discussion of the role of the utility in promoting the use of energy-efficient lighting. The handbook also includes a lighting glossary and a list of references for additional information. This convenient and comprehensive handbook is designed to enable utility lighting personnel to assist their customers in developing high-quality, energy-efficient lighting systems. The handbook is not intended to be an up-to-date reference on lighting products and equipment.

Eley, C.; Tolen, T. (Eley (Charles) Associates, San Francisco, CA (United States)); Benya, J.R. (Luminae Souter Lighting Design, San Francisco, CA (United States))

1992-12-01T23:59:59.000Z

233

Commercial Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Lighting Commercial Lighting At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. By combining an inexpensive camera with a high-speed microprocessor and algorithms, researchers at the National Renewable Energy Lab developed an occupancy sensor can recognize the presence of human occupants more than 90 percent of the time -- an advancement that could lead to enormous energy savings in commercial buildings. At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. By combining an inexpensive camera with a high-speed microprocessor and

234

Smart Operations of Air-Conditioning and Lighting Systems in Government Buildings for Peak Power Reduction  

E-Print Network (OSTI)

During the summer 2007 smart operation strategies for air-conditioning (A/C) and lighting systems were developed and tested in a number of governmental buildings in Kuwait as one of the solutions to reduce the national peak demand for electrical...

Al-Hadban, Y.; Maheshwari, G. P.; Al-Nakib, D.; Al-Mulla, A.; Alasseri, R.

235

Electrical Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrical Renovations Electrical Renovations Electrical Renovations October 16, 2013 - 4:51pm Addthis Renewable Energy Options for Electrical Renovations Daylighting Photovoltaics (PV) Renovations to the electric wiring and system in a Federal facility offer several renewable energy options. The primary renewable energy technologies related to electrical design are daylighting and photovoltaics (PV) as well as the overall design of the electrical system to allow for renewable energy integration. However, energy efficiency measures can also play an important role in electrical renovations. Daylighting If electrical upgrades allow for more advanced controls in the facility, daylighting may become a feasible option in the renovation. Particularly, the ability to control artificial lighting based on ambient light

236

Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode  

Science Journals Connector (OSTI)

Electricity generation capabilities of microbial fuel cell with different light power on algae grown cathode were compared. Results showed that microbial fuel cell with 6 and 12W power of light always produced higher voltage and power density than with 18 and 26W. Similarly, microbial fuel cell with 6 and 12W of light power always displayed higher Coulombic efficiency and specific power than the one with 18 and 26W. The results also showed that microbial fuel cell with covered anodic chamber always displayed higher voltage, power density, Coulombic efficiency and specific power than the one without covered anodic chamber. Binary quadratic equations can be used to express the relationships between the light power and the voltage, power density, Coulombic efficiency and specific power. Although lower power of light on algae grown cathode and covering anodic chamber will increase systems electricity production, they will not significantly reduce its internal resistance.

D.F. Juang; C.H. Lee; S.C. Hsueh

2012-01-01T23:59:59.000Z

237

Choptank Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Choptank Electric Coop, Inc Choptank Electric Coop, Inc Jump to: navigation, search Name Choptank Electric Coop, Inc Place Maryland Utility Id 3503 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Service - Medium Industrial General Service - Small Industrial LIGHTING SERVICE - HPS 100W Lighting LIGHTING SERVICE - HPS 150W Lighting LIGHTING SERVICE - HPS 250W Lighting LIGHTING SERVICE - HPS 400W Lighting LIGHTING SERVICE - HPS 70W Lighting LIGHTING SERVICE - MV 100W Lighting

238

Santee Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Santee Electric Coop, Inc Santee Electric Coop, Inc Jump to: navigation, search Name Santee Electric Coop, Inc Place South Carolina Utility Id 16606 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting Service 1000w Metal Halide Flood Lighting Area Lighting Service 100w HPS Enclosed Lighting Area Lighting Service 100w HPS Flood Lighting Area Lighting Service 100w HPS Semi-Enclosed Lighting Area Lighting Service 100w HPS Shoebox Lighting Area Lighting Service 175w Mercury Vapor Semi-Enclosed Lighting

239

Estimated Savings from Turning Off Unnecessary Electrical Loads During Unoccupied Periods at the Langford Architecture Center  

E-Print Network (OSTI)

in those studios during unoccupied hours. Turning off the lights on the third and fourth floor studios would reduce the electricity cost by $4,757 per year and the associated heating and cooling costs by an additional $583 for a total savings of $5,340...

Soebarto, V. I.; Haberl, J. S.; Degelman, L. O.

1996-01-01T23:59:59.000Z

240

Baltimore Gas and Electric Company - Home Performance with Energy Star  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Baltimore Gas and Electric Company - Home Performance with Energy Baltimore Gas and Electric Company - Home Performance with Energy Star Rebates Baltimore Gas and Electric Company - Home Performance with Energy Star Rebates < Back Eligibility Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Sealing Your Home Ventilation Manufacturing Heating Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate HVAC (Equipment Installation/Duct Sealing/Tune-up): $1,150 Air Sealing/Insulation/Gas Tankless Water Heater: $2,000 Total: $3,150 Program Info Funding Source Maryland Energy Administration State Maryland Program Type Utility Rebate Program Rebate Amount Comprehensive Home Energy Audit: Reduced cost of $100

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Solar lighting | Open Energy Information  

Open Energy Info (EERE)

lighting lighting Jump to: navigation, search Introductory Facts About Solar Lights It is not just a normal light bulb.The solar light consists of a LED or Light Emitting Diode, which draw little power. Coupled with constantly recharging batteries, you will never run out of light! They will save the customer money. By Replacing all outdoor lighting with solar lights there is no need to plug in to the electrical system. The lights will automatically turn on at dusk and will be charged during the day. They help out the environment.Not only does not plugging in to the power system save money but also energy, therefore protecting the Earth. Easy to Install No wires necessary, just pop in the battery. They come in all designs Just because they are solar lights doesn't

242

LED Provides Effective and Efficient Parking Area Lighting at the NAVFAC Engineering Service Center  

Energy.gov (U.S. Department of Energy (DOE))

Document details new lighting technology that reduces energy consumption and reduces maintenance, while providing effective illumination.

243

Lighting Group: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview Overview of the Lighting Research Group The Lighting Research Group at Lawrence Berkeley National Laboratory performs research aimed at improving the energy efficiency of lighting systems in buildings and homes, throughout the State of California and across the Nation. The goal is to reduce lighting energy consumption by 50% over twenty years by improving the efficiency of light sources, and controlling and delivering illumination so that it is available, where and when needed, and at the required intensity. Research in the Lighting Group falls into three main areas: Sources and Ballasts, Light Distribution Systems and Controls and Communications. Click on a link below for more information about each of these research areas. Sources and Ballasts investigates next generation light sources, such as

244

Plastics That Play on Light  

Science Journals Connector (OSTI)

...instrument. In most materials, the "strings" respond with the same note, only...reduced when light sets the electrons oscillating. The loss ofaromatic stability sets...double bonds, light sets electrons oscillating between electron-attract-ing (right...

David Bradley

1993-09-03T23:59:59.000Z

245

Main Canal, Maverick County Water Control and Improvement District above Central Power and Light hydro-electric plant, at Maverick and Kinney Counties, Texas  

E-Print Network (OSTI)

BAIN CANAL NA~ICK COUNTY WATW CONTROL AND INPROllZXBZ DISTRICT ABOVE C~ POWER AND LION HYDRO ELECTRIC PLANT& AT, SIAVERICK AND KINNEY COUNT'S, T~~S By John J. Ledbetter, Jr. Approved as to style and content by: (Che man Committee Heed of pa... Hydro Plant K'KWFS Determfnatfans vcfth Power Canal Current Later Lbiasuremsnts Made by Various Hydrographsrs Using Rated Current Meters Tabulation Shaming f&7CID Irrigated and Irrigable Areas. Tabulation Shawing Average IIumber of' Acres Irrigated...

Ledbetter, John J

2012-06-07T23:59:59.000Z

246

Household transitions to energy efficient lighting  

Science Journals Connector (OSTI)

Abstract New energy efficient lighting technologies can significantly reduce household electricity consumption, but adoption has been slow. A unique dataset of German households is used in this paper to examine the factors associated with the replacement of old incandescent lamps (ILs) with new energy efficient compact fluorescent lamps (CFLs) and light emitting diodes (LEDs). The rebound effect of increased lamp luminosity in the transition to energy efficient bulbs is analyzed jointly with the replacement decision to account for household self-selection in bulb-type choice. Results indicate that the EU ban on \\{ILs\\} accelerated the pace of transition to \\{CFLs\\} and LEDs, while storage of bulbs significantly dampened the speed of the transition. Higher lighting needs and bulb attributes like energy efficiency, environmental friendliness, and durability spur IL replacement with \\{CFLs\\} or LEDs. Electricity gains from new energy efficient lighting are mitigated by 23% and 47% increases in luminosity for CFL and LED replacements, respectively. Model results suggest that taking the replacement bulb from storage and higher levels of education dampen the magnitude of these luminosity rebounds in IL to CFL transitions.

Bradford Mills; Joachim Schleich

2014-01-01T23:59:59.000Z

247

Grand Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Jump to: navigation, search Name Grand Electric Coop, Inc Place South Dakota Utility Id 7484 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Heat Rate Commercial Farm and Residential Electric Heat Rate Residential Metered Security Light - 100 HPS Lighting Metered Security Light - 175 MV Lighting Metered Security Light - 250 HPS Lighting Metered Security Light - 400 MV Lighting Schedule A - Farm and Residential Residential Schedule ADF -Du al Fuel Service Residential

248

Peninsula Light Company - Commercial Efficient Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peninsula Light Company - Commercial Efficient Lighting Rebate Peninsula Light Company - Commercial Efficient Lighting Rebate Program Peninsula Light Company - Commercial Efficient Lighting Rebate Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount General: 30% - 70% of cost Provider Peninsula Light Company Peninsula Light Company (PLC) offers a rebate program for commercial customers who wish to upgrade to energy efficient lighting. Participating customers must be served by PLC commercial service. Customers who upgrade to highly efficient fixtures and systems are eligible to receive a rebate generally covering 30% - 70% of the project cost. These retrofits improve light quality and reduce energy costs in participating facilities. PLC

249

Choctaw Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop Inc Electric Coop Inc Jump to: navigation, search Name Choctaw Electric Coop Inc Place Oklahoma Utility Id 3527 Utility Location Yes Ownership C NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt HPS, Metered Lighting 100 Watt HPS, Unmetered Lighting 1000 Watt HPS, Metered Lighting 1000 Watt HPS, Unmetered Lighting 175 Watt MV ,Metered Lighting 175 Watt MV ,Unmetered Lighting 250 Watt HPS, Metered Lighting 250 Watt HPS, Unmetered Lighting 400 Watt HPS ,Metered Lighting 400 Watt HPS ,Unmetered Lighting 400 Watt MV,Metered Lighting

250

EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Find out how the Energy Department's Vehicles Technologies Office is helping reduce the cost of plug-in electric vehicles through research and development of electric drive technologies.

251

OLEDS FOR GENERAL LIGHTING  

SciTech Connect

The goal of this program was to reduce the long term technical risks that were keeping the lighting industry from embracing and developing organic light-emitting diode (OLED) technology for general illumination. The specific goal was to develop OLEDs for lighting to the point where it was possible to demonstrate a large area white light panel with brightness and light quality comparable to a fluorescence source and with an efficacy comparable to that of an incandescent source. it was recognized that achieving this would require significant advances in three area: (1) the improvement of white light quality for illumination, (2) the improvement of OLED energy efficiency at high brightness, and (3) the development of cost-effective large area fabrication techniques. The program was organized such that, each year, a ''deliverable'' device would be fabricated which demonstrated progress in one or more of the three critical research areas. In the first year (2001), effort concentrated on developing an OLED capable of generating high illumination-quality white light. Ultimately, a down-conversion method where a blue OLED was coupled with various down-conversion layers was chosen. Various color and scattering models were developed to aid in material development and device optimization. The first year utilized this approach to deliver a 1 inch x 1 inch OLED with higher illumination-quality than available fluorescent sources. A picture of this device is shown and performance metrics are listed. To their knowledge, this was the first demonstration of true illumination-quality light from an OLED. During the second year, effort concentrated on developing a scalable approach to large area devices. A novel device architecture consisting of dividing the device area into smaller elements that are monolithically connected in series was developed. In the course of this development, it was realized that, in addition to being scalable, this approach made the device tolerant to the most common OLED defect--electrical shorts. This architecture enabled the fabrication of a 6 inch x 6 inch OLED deliverable for 2002. A picture of this deliverable is shown and the performance metrics are listed. At the time, this was the highest efficiency, highest lumen output illumination-quality OLED in existence. The third year effort concentrated on improving the fabrication yield of the 6 inch x 6 inch devices and improving the underlying blue device efficiency. An efficiency breakthrough was achieved through the invention of a new device structure such that now 15 lumen per watt devices could be fabricated. A 2 feet x 2 feet OLED panel consisting of sixteen 6 inch x 6 inch high efficiency devices tiled together was then fabricated. Pictures of this panel are shown with performance metrics listed. This panel met all project objectives and was the final deliverable for the project. It is now the highest efficiency, highest lumen output, illumination-quality OLED in existence.

Anil Duggal; Don Foust; Chris Heller; Bill Nealon; Larry Turner; Joe Shiang; Nick Baynes; Tim Butler; Nalin Patel

2004-02-29T23:59:59.000Z

252

NEMA Comments on Reducing Regulatory Burden | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reducing Regulatory Burden NEMA Comments on Reducing Regulatory Burden The National Electrical Manufacturers Association (NEMA) thanks you for the opportunity to provide comments...

253

Energy 101: Electric Vehicles  

ScienceCinema (OSTI)

This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

None

2013-05-29T23:59:59.000Z

254

Light intensity compressor  

DOE Patents (OSTI)

In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

Rushford, Michael C. (Livermore, CA)

1990-01-01T23:59:59.000Z

255

SCIENCE ON SATURDAY- "Light and Nanotechnology- Engineering ...  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2013, 9:30am Science On Saturday MBG Auditorium SCIENCE ON SATURDAY- "Light and Nanotechnology- Engineering & So Much More" Professor Claire Gmachl Department of Electrical...

256

Salem Electric | Open Energy Information  

Open Energy Info (EERE)

Electric Electric Jump to: navigation, search Name Salem Electric Place Oregon Utility Id 16555 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Business service- With Demand Meter(V2) Commercial Business service-No Demand Meter Commercial Outdoor Field Lighting Lighting Residential Overhead Service Residential Residential Underground Service Residential Security Lighting Schedule 5A 175 MV Lighting Security Lighting Schedule 5A 250 MV Lighting

257

Development of a Web-based Emissions Reduction Calculator for Street Light and Traffic Light Retrofits  

E-Print Network (OSTI)

DEVELOPMENT OF A WEB-BASED, EMISSIONS REDUCTION CALCULATOR FOR STREET LIGHT AND TRAFFIC LIGHT RETROFITS Zi Liu, Ph.D. Research Engineer Jeff S. Haberl, Ph.D., P.E. Professor/Assc. Director Don Gilman, P..., street lights and traffic lights represent one of the largest categories of electricity used by a city. By retrofitting the street lights with energy efficient lamps such as high pressure sodium and metal halide and traffic lights with light...

Liu, Z.; Gilman, D.; Haberl, J. S.; Culp, C.

2005-01-01T23:59:59.000Z

258

Reduce Stress!  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stress! Stress! x Take a break every hour. Do some relaxation or stretching exercises or talk with someone about topics unrelated to work. Give your body and mind a rest. x Massage your hands and forearms several times a day with a vitamin E lotion. The massage will improve circulation and break up adhesions. Since you can't touch a keyboard until the lotion is absorbed, it also enforces a good break. x Massage the muscles in your neck working your way down from the skull to the shoulders, applying more force to the larger muscles as you go down. x Periodically evaluate your environment for ways to reduce stress. Try to keep your desk uncluttered so you can always find things. Make sure programs are set up correctly on the computer, and see if you can use a macro program to reduce

259

Fergus Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Jump to: navigation, search Name Fergus Electric Coop, Inc Place Montana Utility Id 21513 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Green Power Residential Irrigation Industrial Security Light - 100 watt HPS Lighting Security Light - 150 watt HPS Lighting Security Light - 175 watt MV Lighting Security Light - 250 watt MV Lighting Security Light - 400 watt MV Lighting

260

Grady Electric Membership Corp | Open Energy Information  

Open Energy Info (EERE)

Grady Electric Membership Corp Grady Electric Membership Corp Jump to: navigation, search Name Grady Electric Membership Corp Place Georgia Utility Id 7450 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Net Metering Outdoor Lighting Service - High Pressure Sodium 100w Lighting Outdoor Lighting Service - High Pressure Sodium 100w decorative Lighting Outdoor Lighting Service - High Pressure Sodium 250w Lighting Outdoor Lighting Service - High Pressure Sodium 400w Lighting Outdoor Lighting Service - Mercury Vapor 175w Lighting

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Pea River Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Pea River Electric Coop Pea River Electric Coop Jump to: navigation, search Name Pea River Electric Coop Place Alabama Utility Id 14602 Utility Location Yes Ownership C NERC Location SERC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Security Light: 100 watt high pressure sodium Lighting Security Light: 1000 watt metal halide Lighting Security Light: 250 watt high pressure sodium (flood) Lighting Security Light: 250 watt high pressure sodium (street) Lighting Security Light: 400 watt high pressure sodium Lighting Average Rates Residential: $0.1150/kWh Commercial: $0.1200/kWh

262

Production Hall and Inventory Shade Lighting by Solar Energy System and Economical Lighting (LEDs)  

Science Journals Connector (OSTI)

Due to the increasing energy and environmental concern in the world, one must look for alternatives to nonrenewable energy resources and the polluting fossil fuels. The renewable energy sources play an important role in electricity generation as well as many other useful applications. Various renewable energy sources like wind, solar, geothermal, ocean thermal and biomass can be used for generating electricity and meeting our daily energy demands. The solar energy can produce most of the world's requirements of the energy that is produced by the sun and collected on earth. Clean and sustainable energy protect our environment. The solar energy system with economical lighting (LEDs) can be used for lighting the production hall and inventory stores to reduce the energy consumption (watts) to less than a quarter of the normal consumption (high pressure, light HPL) and that will reduce the cost of energy. In addition, using the sun tracker will increase the efficiency of overall daily output of the solar panels more than 34% of the fixed panel. This will make the system more reliable and more economical.

Ahmad K. Jassim; Fouad K. Abood

2012-01-01T23:59:59.000Z

263

Energy Conservation Utilizing Wireless Dimmable Lighting Control  

E-Print Network (OSTI)

Energy Conservation Utilizing Wireless Dimmable Lighting Control in a Shared-Space Office Yao Lighting accounts for 25-30% of energy usage in building electrical systems Energy savings can be generated Energy Efficiency with Personal Lighting Preferences Light level tuning · Generates energy savings

Agogino, Alice M.

264

Medina Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Medina Electric Coop, Inc Medina Electric Coop, Inc Place Texas Utility Id 12268 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City of Laredo Street Lighting- 150W HPS Lighting City of Laredo Street Lighting- 150W MH Lighting City of Laredo Street Lighting-250 W HPS Lighting City of Laredo Street Lighting-250 W MH Lighting City of Laredo Street Lighting-400 W HPS Lighting City of Laredo Street Lighting-400 W MH Lighting Commercial General Service (Primary Metered & Primary Voltage) Commercial

265

Umatilla Electric Coop Assn | Open Energy Information  

Open Energy Info (EERE)

Umatilla Electric Coop Assn Umatilla Electric Coop Assn Place Oregon Utility Id 19325 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting 100w high pressure sodium Lighting Area Lighting 150w high pressure sodium Lighting Area Lighting 200w high pressure sodium Lighting Area Lighting 250w high pressure sodium Lighting Area Lighting 400w high pressure sodium Lighting Area Lighting 400w mercury vapor Lighting

266

Flint Electric Membership Corp | Open Energy Information  

Open Energy Info (EERE)

Flint Electric Membership Corp Flint Electric Membership Corp Place Georgia Utility Id 6411 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting GOS Cobrahead HPS 150 W Lighting Outdoor Lighting GOS Cobrahead HPS 250 W Lighting Outdoor Lighting GOS Cobrahead HPS 400 W Lighting Outdoor Lighting GOS Cobrahead/ Interstate MV 400 W Lighting Outdoor Lighting GOS Cobrahead/ Open Bottom MV 174 W Lighting Outdoor Lighting GOS Cobrahead/Open Bottom HPS 100 W Lighting

267

Central Alabama Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Central Alabama Electric Coop Central Alabama Electric Coop Place Alabama Utility Id 3222 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Service Residential Security Lights Service: 100 W/HPS with 1 pole set Lighting Security Lights Service: 100 W/HPS with 2 poles set Lighting Security Lights Service: 1000 W/MH Lighting Security Lights Service: 1000 W/MH with 1 pole set Lighting Security Lights Service: 1000 W/MH with 2 poles set Lighting Security Lights Service: 100W/HPS (on existing pole) Lighting

268

Socorro Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Socorro Electric Coop, Inc Socorro Electric Coop, Inc Place New Mexico Utility Id 17492 Utility Location Yes Ownership C NERC Location WECC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Energy Thermal Storage Units Commercial GENERAL SERVICE - SCHEDULE GS Residential Irrigation Service Large Commercial Commercial Private Lighting 400 W HPS Lighting Private Lighting-100 W HPS Lighting Private Lighting-150 W HPS Lighting Private Lighting-175 W MV (metered service) Lighting Private Lighting-175 W MV (non-metered service) Lighting Private Lighting-250 W HPS Lighting

269

The Resistance of the Electric Arc  

Science Journals Connector (OSTI)

... the purpose of determining theoretically the best arrangement of cells for the production of the electric light, it was necessary to know the ... light, it was necessary to know the resistance of the ...

W. E. AYRTON; JOHN PERRY

1876-10-19T23:59:59.000Z

270

Denton Municipal Electric- Standard Offer Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Within the GreenSense program, Denton Municipal Electric's Standard Offer Program provides rebates to large commercial and industrial customers for lighting retrofits, HVAC upgrades and motor...

271

Video through a light guide  

Science Journals Connector (OSTI)

Demonstrations are discussed to illustrate some basic principles of television transmission and reception. The aim of these demonstrations is to promote student understanding of how a picture is converted into an electrical signal sent to a remote receiver and correctly reproduced there. The demonstration setup includes a video camera a light emitting diode a light guide a photodiode and a video monitor. Electrical production of visual images is also discussed.

Yaakov Kraftmakher

2008-01-01T23:59:59.000Z

272

MTSC735, Spring 2008 Electrical measurements 1 Electrical measurements  

E-Print Network (OSTI)

position between coil windings. Circuit designed to have zero output at equilibrium. MTSC735, Spring 20081 MTSC735, Spring 2008 Electrical measurements 1 Electrical measurements Critical to all/reducing noise from measurements MTSC735, Spring 2008 Electrical measurements 2 Measurements Believe nothing

Plaisted, David A.

273

Incandescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Incandescent Lighting Incandescent Lighting October 17, 2013 - 6:15pm Addthis Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings. Although inefficient, incandescent lamps possess a number of key advantages--they are inexpensive to buy, turn on instantly, are available in a huge array of sizes and shapes and provide a pleasant, warm light with excellent color rendition. However, because of their relative inefficiency and short life spans, they

274

Incandescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Incandescent Lighting Incandescent Lighting October 17, 2013 - 6:15pm Addthis Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings. Although inefficient, incandescent lamps possess a number of key advantages--they are inexpensive to buy, turn on instantly, are available in a huge array of sizes and shapes and provide a pleasant, warm light with excellent color rendition. However, because of their relative inefficiency and short life spans, they

275

Lighting in Commercial Buildings (1986 data) -- Executive Summary  

U.S. Energy Information Administration (EIA) Indexed Site

6 Lighting in Commercial Buildings > Executive Summary 6 Lighting in Commercial Buildings > Executive Summary Executive Summary Lighting represents a substantial fraction of commercial electricity consumption. A wide range of initiatives in the Department of Energy's (DOE) National Energy Strategy have focused on commercial lighting as a potential source of energy conservation. This report provides a statistical profile of commercial lighting, to examine the potential for lighting energy conservation in commercial buildings. The principal conclusion from this analysis is that energy use for lighting could be reduced by as much as a factor of four using currently available technology. The analysis is based primarily on the Energy Information Administration's(EIA) 1986 Commercial Buildings Energy Consumption Survey (CBECS). The more recent 1989 survey had less detail on lighting, for budget reasons. While changes have occurred in the commercial building stock since 1986, the relationships identified by this analysis are expected to remain generally valid. In addition, the analytic approach developed here can be applied to the data that will be collected in the 1992 CBECS.

276

Secretary Chu's Message about Forrestal Electric Metering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 Dear Colleagues, The Department of Energy has a responsibility and an opportunity to lead by example in promoting sustainable energy practices. As many of you have heard me say, energy efficiency is one of our best and most immediate opportunities to save energy, cut utility bills and decrease carbon pollution. I want to thank you for the steps many of you have already taken to reduce energy consumption. Today, I'm asking all employees at the Forrestal Building to take these efforts to the next level by participating in a competition to save money by saving energy. We recently divided the Forrestal complex into five zones and installed electric meters to measure the daily electricity consumption of overhead lights and power outlets in each zone. You've probably seen

277

Total Light Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Management Light Management Why is saving Energy Important World Electricity Consumption (2007) Top 20 Countries 0 500 1000 1500 2000 2500 3000 3500 4000 4500 U n i t e d S t a t e s C h i n a J a p a n R u s s i a I n d i a G e r m a n y C a n a d a A f r i c a F r a n c e B r a z i l K o r e a , S o u t h U n i t e d K i n g d o m I t a l y S p a i n A u s t r a l i a T a i w a n S o u t h A f r i c a M e x i c o S a u d i A r a b i a I r a n Billion kWh Source: US DOE Energy Information Administration Lighting Control Strategies 4 5 6 Occupancy/Vacancy Sensing * The greatest energy savings achieved with any lighting fixture is when the lights are shut off * Minimize wasted light by providing occupancy sensing or vacancy sensing 7 8 Daylight Harvesting * Most commercial space has enough natural light flowing into it, and the amount of artificial light being generated can be unnecessary * Cut back on the production of artificial lighting by

278

Organic Light Emitting Diode for White Light Emission  

E-Print Network (OSTI)

During the last few years, research based on energy saving technologies is being given high priority all over the world. General lighting is one area in which large quantity of electrical energy is being spend and substantial energy saving is possible by using energy saving technologies. Conventional light sources like incandescent filament lamps in which a major

M. N. Kamalasanan; Ritu Srivastava; Gayatri Chauhan; An Kumar; Amit Kumar; M. N. Kamalasanan; Ritu Srivastava; Gayatri Chauhan; An Kumar; Priyanka Tayagi; Amit Kumar

279

Wisconsin Business Sheds Light on Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wisconsin Business Sheds Light on Lighting Wisconsin Business Sheds Light on Lighting Wisconsin Business Sheds Light on Lighting April 29, 2010 - 4:59pm Addthis When this photograph was taken, the upper floors of Wisconsin’s Department of Transportation were using a new lighting plan from EPS, while the lower ones were still using the pre-audit lighting scheme. | Photo Courtesy of Energy Performance Specialists, LLC When this photograph was taken, the upper floors of Wisconsin's Department of Transportation were using a new lighting plan from EPS, while the lower ones were still using the pre-audit lighting scheme. | Photo Courtesy of Energy Performance Specialists, LLC Joshua DeLung Wisconsin-based Energy Performance Specialists LLC is helping clients reduce energy consumption in a very simple way-by just using less.

280

Walton Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Walton Electric Member Corp Walton Electric Member Corp (Redirected from Walton EMC) Jump to: navigation, search Name Walton Electric Member Corp Place Georgia Utility Id 20065 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 14' Aluminum Lighting 20' F/G Lighting 30' F/G Lighting 30-6 Wood Lighting Cobrahead- HPS 100 Watt Bronze (UG) Lighting Cobrahead- HPS 100 Watt Gray Lighting Cobrahead- HPS 100 Watt Gray (UG) Lighting Cobrahead- HPS 150 Bronze Watt (UG) Lighting Cobrahead- HPS 150 Watt Gray Lighting

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Driving Smart Growth: Electric Vehicle Adoption and OffPeak Electricity Rates  

E-Print Network (OSTI)

Driving Smart Growth: Electric Vehicle Adoption and OffPeak Electricity Rates Peter Driving Smart Growth: Electric Vehicle Adoption Page 2 Executive Summary Reducing our dependence to electric vehicles (EVs)1 is core to reducing reliance on fossil fuels and driving smart growth

Holsinger, Kent

282

Electric thermal storage demonstration program  

SciTech Connect

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-02-01T23:59:59.000Z

283

Electric thermal storage demonstration program  

SciTech Connect

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-01-01T23:59:59.000Z

284

Electric thermal storage demonstration program  

SciTech Connect

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and on affiliate in Rhode Island, responded to a DOE request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. This report discusses the demonstration of ETS equipment at four member light departments.

Not Available

1992-01-01T23:59:59.000Z

285

Electric thermal storage demonstration program  

SciTech Connect

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and on affiliate in Rhode Island, responded to a DOE request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. This report discusses the demonstration of ETS equipment at four member light departments.

Not Available

1992-02-01T23:59:59.000Z

286

Delta Electric Power Assn | Open Energy Information  

Open Energy Info (EERE)

Delta Electric Power Assn Delta Electric Power Assn Place Mississippi Utility Id 22815 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 01 Farm and Residential Electric Service Residential 09 Residential Electric Service Water Heater Residential 10 All Electric Residential Service Residential 12 Small Commercial Service Commercial 13 Street Lighting High Pressure Sodium 100 Watt Lighting 13 Street Lighting High Pressure Sodium 400 Watt Lighting 13 Street Lighting Mercury Vapor 175 Watt enclosed Lighting

287

How the Smart Grid Helps Homeowners Reduce Their Energy Use | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How the Smart Grid Helps Homeowners Reduce Their Energy Use How the Smart Grid Helps Homeowners Reduce Their Energy Use How the Smart Grid Helps Homeowners Reduce Their Energy Use Addthis 1 of 7 Deputy Secretary of Energy Daniel Poneman explores the new home energy monitor at the Center for Commercialization of Electric Technologies (CCET) Discovery Center's Model Home. He is joined by Kenny Mercado, CenterPoint Energy Houston Electric's Division Senior Vice President, Regulated Operations Technology; Dr. Milton Holloway, President of CCET; and Craig Lobel, the founder and president of EcoEdge Consulting. Image: Department of Energy Image | Photo by Jen Stutsman 2 of 7 Home energy monitors help families identify where they are using the most energy at any one time whether it's from running the dishwasher in the kitchen, keeping the lights on in the family room, or running the washer

288

Electricity Reliability  

E-Print Network (OSTI)

Electricity Delivery and Energy Reliability High Temperature Superconductivity (HTS) Visualization in the future because they have virtually no resistance to electric current, offering the possibility of new electric power equipment with more energy efficiency and higher capacity than today's systems

289

Tips: Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Lighting Tips: Lighting May 4, 2012 - 3:16pm Addthis Lighting Choices Save You Money. Energy-efficient light bulbs are available in a wide variety of sizes and shapes. Lighting Choices Save You Money. Energy-efficient light bulbs are available in a wide variety of sizes and shapes. What does this mean for me? Replacing 15 inefficient incandescent bulbs in your home with energy-saving bulbs could save you about $50 per year. For the greatest savings, replace your old incandescent bulbs with ENERGY STAR-qualified bulbs. An average household dedicates about 10% of its energy budget to lighting. Switching to energy-efficient lighting is one of the fastest ways to cut your energy bills. Timers and motion sensors save you even more money by reducing the amount of time lights are on but not being used.

290

Baltimore Gas and Electric Company (Electric) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Baltimore Gas and Electric Company (Electric) - Residential Energy Baltimore Gas and Electric Company (Electric) - Residential Energy Efficiency Rebate Program Baltimore Gas and Electric Company (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Manufacturing Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Contact BGE Program Info State Maryland Program Type Utility Rebate Program Rebate Amount Central A/C: $150 - $500 Air Source Heat Pump: $200 - $500 Ductless Mini-Split Heat Pump: $300 Geothermal Heat Pump (Closed Loop): $500 Duct Sealing: $250 Tune-ups: $100 Heat Pump Water Heater: $350 Room A/C: $25

291

Electrical insulation  

Science Journals Connector (OSTI)

n....Material with very low conductivity, which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers.

2007-01-01T23:59:59.000Z

292

Electrical Insulation  

Science Journals Connector (OSTI)

n...Material with very low conductivity which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers (Dissado LA...

Jan W. Gooch

2011-01-01T23:59:59.000Z

293

Spatially resolved imaging of opto-electrical property variations  

DOE Patents (OSTI)

Systems and methods for opto electric properties are provided. A light source illuminates a sample. A reference detector senses light from the light source. A sample detector receives light from the sample. A positioning fixture allows for relative positioning of the sample or the light source with respect to each other. An electrical signal device measures the electrical properties of the sample. The reference detector, sample detector and electrical signal device provide information that may be processed to determine opto-electric properties of the same.

Nikiforov, Maxim; Darling, Seth B; Suzer, Ozgun; Guest, Jeffrey; Roelofs, Andreas

2014-09-16T23:59:59.000Z

294

When to Turn Off Your Lights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

When to Turn Off Your Lights When to Turn Off Your Lights When to Turn Off Your Lights August 30, 2012 - 7:53pm Addthis The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. What does this mean for me? The type of lights and the price of electricity determine whether it's best to turn lights off when you leave a room. Consider using sensors, timers, and other automatic lighting controls. The cost effectiveness of when to turn off lights depends on the type of bulb and the cost of electricity. The type of lightbulb you use is

295

When to Turn Off Your Lights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

When to Turn Off Your Lights When to Turn Off Your Lights When to Turn Off Your Lights August 30, 2012 - 7:53pm Addthis The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. What does this mean for me? The type of lights and the price of electricity determine whether it's best to turn lights off when you leave a room. Consider using sensors, timers, and other automatic lighting controls. The cost effectiveness of when to turn off lights depends on the type of bulb and the cost of electricity. The type of lightbulb you use is

296

LED Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LED Lighting Basics LED Lighting Basics LED Lighting Basics August 16, 2013 - 10:07am Addthis Light-emitting diodes (LEDs) are light sources that differ from more traditional sources of light in that they are semiconductor devices that produce light when an electrical current is applied. Applying electrical current causes electrons to flow from the positive side of a diode to the negative side. Then, at the positive/negative junction of the diode, the electrons slow down to orbit at a lower energy level. The electrons emit the excess energy as photons of light. LEDs are often used as small indicator lights on various electronic devices. Because of their long life, durability, and efficiency, LEDs are becoming more common in residential, commercial, and outdoor area lighting

297

Valley Rural Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Valley Rural Electric Coop Inc Valley Rural Electric Coop Inc Place Pennsylvania Utility Id 40222 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lights 100w HPS Lighting Area Lights 100w Mercury Vapor Lighting Area Lights 150w HPS Lighting Area Lights 175w Mercury Vapor Lighting Area Lights 250w HPS Lighting Area Lights 250w Mercury Vapor Lighting Area Lights 400w HPS Lighting Area Lights 400w Mercury Vapor Lighting Residential Residential Average Rates Residential: $0.1080/kWh Commercial: $0.1020/kWh

298

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

Thus, reduced electricity consumption from higher efficiencyestimated the daily electricity consumption from a survey ofby total commercial electricity consumption. The price of

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

299

Eliminating Electricity Deficit through Energy Efficiency in India: An Evaluation of Aggregate Economic and Carbon Benefits  

E-Print Network (OSTI)

S. Das, (2006) Reducing Electricity Deficit through EnergyLV supply. Figure 12: Electricity Productivity (Commercialan interesting result. The electricity productivity in both

Sathaye, Jayant

2010-01-01T23:59:59.000Z

300

Electric Urban Motorcycle: The design of a A1 class electric motorcycle, reaching highway speeds:.  

E-Print Network (OSTI)

??This master thesis Electric Urban Motorcycle, shows the development of the next generation light motorcycle for Qwic. The assignment was performed by student Kars Rotteveel (more)

Rotteveel, K.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NREL: Continuum Magazine - Fuel Cell Electric Vehicles: Paving the Way to  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Electric Vehicles: Paving the Way to Commercial Success Fuel Cell Electric Vehicles: Paving the Way to Commercial Success Issue 5 Print Version Share this resource Fuel Cell Electric Vehicles: Paving the Way to Commercial Success Research focuses on boosting reliability, reducing costs, and designing infrastructure of the future. A photo of a white Toyota fuel cell hybrid vehicle driving on a road. The side of the vehicle includes a blue NREL logo and a decal that reads, "Powered by 100% Renewable Sources". Enlarge image Powered by a fuel cell system with light-weight, high-pressure hydrogen tanks, an electric motor, a nickel-metal-hydride battery, and a power-control unit, the Toyota fuel cell electric vehicle has zero tailpipe emissions. Photo by Dennis Schroeder, NREL As nations around the world pursue sustainable transportation solutions,

302

Tippah Electric Power Assn | Open Energy Information  

Open Energy Info (EERE)

Tippah Electric Power Assn Tippah Electric Power Assn Place Mississippi Utility Id 18943 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GSA 1 General Power Rate 1 Commercial GSA 2 General Power Rate 2 Commercial GSA 3 General Power Rate 3 Commercial LS Lighting High Pressure Sodium 100 Watts Lighting LS Lighting Mercury Vapor 175 Watts Lighting LS Lighting Mercury Vapor 400 Watts Lighting LS Lighting Metal Halide Cobrahead 400 Watts Lighting LS Lighting Metal Halide Floodlight 1000 Watts Lighting

303

Halifax Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Halifax Electric Member Corp Halifax Electric Member Corp Place North Carolina Utility Id 7978 Utility Location Yes Ownership C NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png MEDIUM GENERAL SERVICE Commercial NC GREENPOWER PROGRAM voluntary RENEWABLE ENERGY GENERATION-Solar RENEWABLE ENERGY GENERATION-Wind RESIDENTIAL SERVICE Residential SECURITY LIGHTING 100-watt high-pressure sodium Lighting SECURITY LIGHTING 140-watt LED Light Commercial SECURITY LIGHTING 175-watt mercury vapor Lighting SECURITY LIGHTING 175-watt metal halide Lighting SECURITY LIGHTING 250-watt high-pressure sodium Lighting

304

Fort Loudoun Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Fort Loudoun Electric Coop Fort Loudoun Electric Coop Place Tennessee Utility Id 6608 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Rate-Schedule GSA 1 Commercial General Power Rate-Schedule GSA 2 Commercial General Power Rate-Schedule GSA 3 Commercial OUTDOOR LIGHTING RATE ( 150 Watt Metal Halide) Lighting OUTDOOR LIGHTING RATE ( 250 Watt HPS) Lighting OUTDOOR LIGHTING RATE ( 400 Watt HPS) Lighting OUTDOOR LIGHTING RATE ( 400 Watt Metal Halide) Lighting OUTDOOR LIGHTING RATE( 100 Watt HPS) Lighting

305

Oconee Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Oconee Electric Member Corp Oconee Electric Member Corp Jump to: navigation, search Name Oconee Electric Member Corp Place Georgia Utility Id 13962 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Large Power Service Commercial Large Power Service* Industrial Outdoor Lighting MV 175 W Overhead Lighting Outdoor Lighting MV 175 W Underground Lighting Outdoor Lighting S 100 W Overhead Lighting Outdoor Lighting S 100 W Underground Lighting Residential and Farm Service Residential

306

Sequachee Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Sequachee Valley Electric Coop Sequachee Valley Electric Coop Jump to: navigation, search Name Sequachee Valley Electric Coop Place Tennessee Utility Id 16930 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial GSA1 Commercial Green Power Switch Residential Industrial GSA1 Industrial Light- 100w High Pressure Sodium Lighting Light- 250w High Pressure Sodium Lighting Light- 250w Metal Halide Lighting Light- 400w Metal Halide Lighting Residential Residential Average Rates Residential: $0.0962/kWh Commercial: $0.1020/kWh

307

Oahe Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Oahe Electric Coop Inc Oahe Electric Coop Inc Jump to: navigation, search Name Oahe Electric Coop Inc Place South Dakota Utility Id 13853 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Farm & Residential Residential Industrial - Irrigation Industrial Large Power - Industrial Industrial Large Power-Commercial Commercial Outdoor Lighting 100 W HPS:Metered Lighting Outdoor Lighting 100 W HPS:Unmetered Lighting Outdoor Lighting 175 W MV: Metered Lighting Outdoor Lighting 175 W MV:Unmetered Lighting

308

Claiborne Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Claiborne Electric Coop, Inc Claiborne Electric Coop, Inc Jump to: navigation, search Name Claiborne Electric Coop, Inc Place Louisiana Utility Id 3641 Utility Location Yes Ownership C NERC Location SERC NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Residential Security Lights - 1000W Lighting Security Lights - 175W Lighting Security Lights - 250W Lighting Security Lights - 400W Lighting Average Rates Residential: $0.0732/kWh Commercial: $0.0726/kWh Industrial: $0.0573/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

309

Dublin Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Dublin Municipal Electric Util Dublin Municipal Electric Util Jump to: navigation, search Name Dublin Municipal Electric Util Place Indiana Utility Id 5392 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Power Rate OL: Outdoor Lighting (Security Lights) Lighting Rate SL: Street Lighting, All Public Street Lighting Lighting Rate SL: Street Lighting, State Highway Stoplight Lighting Residential Residential Residential: Space Heating and/or Air Conditioning Service Residential

310

Kootenai Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

Kootenai Electric Cooperative Kootenai Electric Cooperative Jump to: navigation, search Name Kootenai Electric Cooperative Place Idaho Service Territory Idaho Website www.kec.com Green Button Committed Yes Utility Id 10454 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Irrigation Service Commercial Large Commercial Service Commercial Large Commercial Service* Commercial Large Commercial Service-Primary Voltage* Commercial Net Metering Residential Service Residential Outdoor Lighting HPS 100 W Lighting Outdoor Lighting HPS 400 W Lighting Outdoor Lighting HPSSL 100 W Lighting Outdoor Lighting HPSSL 100 W Fiber . Pole Lighting

311

Pontotoc Electric Power Assn | Open Energy Information  

Open Energy Info (EERE)

Pontotoc Electric Power Assn Pontotoc Electric Power Assn Jump to: navigation, search Name Pontotoc Electric Power Assn Place Mississippi Utility Id 15211 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Flood Light MH 400 W Lighting Flood Light MH 400 W 30' pole Lighting Flood Light MH 400 W 35' pole Lighting Flood Light MH 400 W 40' pole Lighting General Power Service GSA (1001 kW - 5000 kW) Industrial General Power Service GSA (51 kW -1000 kW) Multi-Phase Commercial General Power Service GSA (51 kW -1000 kW) Single-Phase Commercial

312

Luminescence and Squeezing of a Superconducting Light Emitting Diode  

E-Print Network (OSTI)

We investigate a semiconductor $p$-$n$ junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a certain frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence which results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. The squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This shows how macroscopic coherence of a superconductor can be used to control the properties of light.

Patrik Hlobil; Peter P. Orth

2015-02-17T23:59:59.000Z

313

Luminescence and Squeezing of a Superconducting Light Emitting Diode  

E-Print Network (OSTI)

We investigate a semiconductor $p$-$n$ junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a certain frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence which results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. The squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This shows how macroscopic coherence of a superconductor can be used to control the properties of light.

Hlobil, Patrik

2015-01-01T23:59:59.000Z

314

DOE Science Showcase - Light-emitting Diode (LED) Lighting Research | OSTI,  

Office of Scientific and Technical Information (OSTI)

Science Showcase - Light-emitting Diode (LED) Lighting Research Science Showcase - Light-emitting Diode (LED) Lighting Research Light-emitting diode (LED) lighting is a type of solid-state lighting that uses a semiconductor to convert electricity to light. LED lighting products are beginning to appear in a wide variety of home, business, and industrial products such as holiday lighting, replacement bulbs for incandescent lamps, street lighting, outdoor area lighting and indoor ambient lighting. Over the past decade, LED technology research and development supported by the U.S. Department of Energy (DOE) has yielded impressive improvements in the cost, color performance, light output, efficacy, reliability, lifetime, and manufacturability of LED products and this upward trend is expected to continue. Read about the latest DOE research, the technology behind LEDs,

315

Mid-South Metallurgical Makes Electrical and Natural Gas System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings Mid-South Metallurgical Makes Electrical and Natural Gas...

316

Design of a Sustainable Electric Vehicle Charging Station:.  

E-Print Network (OSTI)

??Electric vehicles only become useful in reducing greenhouse gas emissions, if the electricity used to charge their batteries comes from renewable energy sources. This thesis (more)

Bakolas, B.V.E.

2012-01-01T23:59:59.000Z

317

Ameren Illinois (Electric) - Residential Energy Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ameren Illinois (Electric) - Residential Energy Efficiency Rebates Ameren Illinois (Electric) - Residential Energy Efficiency Rebates Ameren Illinois (Electric) - Residential Energy Efficiency Rebates < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Lighting: Purchases limited to 20 CFLs per customer per year Refrigerator/Freezer Recycling: $70 (limit of 2 per customer per program year) Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) State Illinois Program Type Utility Rebate Program Rebate Amount New Construction Builder Incentives: Contact ComEd Lighting: In-store discount

318

Electrical Functional Area Qualification Guide Page 1 of 12  

E-Print Network (OSTI)

, electrical work planning, electrical design, electrical testing, research involving electrical energy and/or work activities involving exposure to electrical energy that is not reduced to a safe level particular to an individual sub-project and hazards unrelated to electrical energy, e.g., nuclear or chemical

319

Electric Lighting in the Isle of Man  

Science Journals Connector (OSTI)

... works, the supply being stepped up from 3,300 to 33,000 volts at a substation before it comes to the high tension ring main. The overhead lines are carried ... 33 kilovolts, they satisfy the British Standard Specification for 66 kilovolts. The low-tension substations connected with the ring main supply consumers at 400 volts for power and 230 volts ...

1933-09-02T23:59:59.000Z

320

Outdoor Solar Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Outdoor Solar Lighting Outdoor Solar Lighting Outdoor Solar Lighting July 29, 2012 - 6:34pm Addthis Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of ©iStockphoto.com/ndejan Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of ©iStockphoto.com/ndejan What does this mean for me? Outdoor solar lights are easy to install and virtually maintenance free They work in most areas of the United States Find out if replacement bulbs or batteries are available before you buy them Outdoor solar lights are easy to install and virtually maintenance free. Best of all, using them won't increase your electric bill. Popular home

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Outdoor Solar Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Outdoor Solar Lighting Outdoor Solar Lighting Outdoor Solar Lighting July 29, 2012 - 6:34pm Addthis Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of ©iStockphoto.com/ndejan Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of ©iStockphoto.com/ndejan What does this mean for me? Outdoor solar lights are easy to install and virtually maintenance free They work in most areas of the United States Find out if replacement bulbs or batteries are available before you buy them Outdoor solar lights are easy to install and virtually maintenance free. Best of all, using them won't increase your electric bill. Popular home

322

Naval electrochemical corrosion reducer  

DOE Patents (OSTI)

A corrosion reducer for use with ships having a hull, a propeller mounted a propeller shaft and extending through the hull, bearings supporting the shaft, at least one thrust bearing and one seal. The improvement includes a current collector and a current reduction assembly for reducing the voltage between the hull and shaft in order to reduce corrosion due to electrolytic action. The current reduction assembly includes an electrical contact, the current collector, and the hull. The current reduction assembly further includes a device for sensing and measuring the voltage between the hull and the shaft and a device for applying a reverse voltage between the hull and the shaft so that the resulting voltage differential is from 0 to 0.05 volts. The current reduction assembly further includes a differential amplifier having a voltage differential between the hull and the shaft. The current reduction assembly further includes an amplifier and a power output circuit receiving signals from the differential amplifier and being supplied by at least one current supply. The current selector includes a brush assembly in contact with a slip ring over the shaft so that its potential may be applied to the differential amplifier.

Clark, Howard L. (Ballston Lake, NY)

1991-10-01T23:59:59.000Z

323

Potential Environmental Impacts from the Metals in Incandescent, Compact Fluorescent Lamp (CFL), and Light-Emitting Diode (LED) Bulbs  

Science Journals Connector (OSTI)

Artificial lighting systems are transitioning from incandescent to compact fluorescent lamp (CFL) and light-emitting diode (LED) bulbs in response to the U.S. Energy Independence and Security Act and the EU Ecodesign Directive, which leads to energy savings and reduced greenhouse gas emissions. ... The CFLs and LEDs have higher resource depletion and toxicity potentials than the incandescent bulb due primarily to their high aluminum, copper, gold, lead, silver, and zinc. ... mercury pollution; redn. in electricity demand from the substitution of incandescent bulbs with fluorescents leads to reduced mercury emissions during the use of the bulb. ...

Seong-Rin Lim; Daniel Kang; Oladele A. Ogunseitan; Julie M. Schoenung

2012-12-13T23:59:59.000Z

324

Office Lighting: Title 24 & Technology Update  

E-Print Network (OSTI)

or responsibility for the accuracy or completeness of any information, apparatus, product, process, method and commercialization of energy-efficient lighting and daylighting technologies in partnership with utilities FOR COMMERCIAL LIGHTING Lighting is the largest electrical load in commercial businesses, accounting for about 40

California at Davis, University of

325

Energy Conversion: Solid-State Lighting  

E-Print Network (OSTI)

and global climate change. Historically, electric light bulbs have been of the incandescent type. Although this technology was developed more than 100 years ago, it is still in use today. Incandescent light bulbs operate, which allows the bulb to operate at a higher temperature. However, the efficiency of incandescent light

326

Light Portal  

Science Journals Connector (OSTI)

The Light Portal was designed to organize and mark the pedestrian paths that circumnavigate the rectangle of the...

2006-01-01T23:59:59.000Z

327

La Plata Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

Plata Electric Assn, Inc Plata Electric Assn, Inc (Redirected from LPEA) Jump to: navigation, search Name La Plata Electric Assn, Inc Address 45 Stewart St. P.O. Box 2750 Place Durango, Colorado Website www.lpea.com/ Utility Id 10539 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LPEA Contact[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting 100 watt Lighting Area Lighting 1000 watt Lighting Area Lighting 150 watt Lighting Area Lighting 175 watt Lighting Area Lighting 250 watt Lighting Area Lighting 400 watt Lighting Irrigation Commercial

328

Deaf Smith Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Jump to: navigation, search Name Deaf Smith Electric Coop, Inc Place Texas Utility Id 4939 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Farm & Home - Rate 01 Residential Industrial- Rate 08 Industrial Irrigation- Rate 03 Commercial Large Power- Rate 07 Commercial Lighting 100 HP sodium Lighting Lighting 1000 HP sodium Lighting Lighting 1000 MV Lighting Lighting 175 MV Lighting Lighting 250 HP sodium Lighting Lighting 400 HP sodium Lighting

329

La Plata Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

(Redirected from La Plata Electric Association) (Redirected from La Plata Electric Association) Jump to: navigation, search Name La Plata Electric Assn, Inc Address 45 Stewart St. P.O. Box 2750 Place Durango, Colorado Website www.lpea.com/ Utility Id 10539 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LPEA Contact[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting 100 watt Lighting Area Lighting 1000 watt Lighting Area Lighting 150 watt Lighting Area Lighting 175 watt Lighting Area Lighting 250 watt Lighting Area Lighting 400 watt Lighting Irrigation Commercial

330

Prairie Land Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop Inc Electric Coop Inc Jump to: navigation, search Name Prairie Land Electric Coop Inc Place Kansas Utility Id 13799 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CONTROLLED PRIVATE AREA LIGHTING: HPS 150 W Lighting CONTROLLED PRIVATE AREA LIGHTING: HPS 175W Lighting CONTROLLED PRIVATE AREA LIGHTING: HPS 200 W Lighting CONTROLLED PRIVATE AREA LIGHTING: HPS 400W Lighting CONTROLLED PRIVATE AREA LIGHTING: MV 1000W Flood Lighting CONTROLLED PRIVATE AREA LIGHTING: MV 175W Lighting

331

Single White-Light-Emitting Nanostructures Based on Frster Resonance Energy Transfer: Development, Characterization and Applications.  

E-Print Network (OSTI)

??Electric energy use associated with lighting reaches up to 3400 Terawatts hours and constitutes approximately 20 % of the world total electricity output per year. (more)

Chirmanov, Vadim

2015-01-01T23:59:59.000Z

332

Light's twist  

Science Journals Connector (OSTI)

...equal to the optical power divided by the speed of light, and hence go unnoticed in our everyday lives...approaching object equal to the power in the light beam (P) divided by the speed of light. The movement of the approaching object does...

2014-01-01T23:59:59.000Z

333

Light Properties Light travels at the speed of light `c'  

E-Print Network (OSTI)

LIGHT!! #12;Light Properties Light travels at the speed of light `c' C = 3 x 108 m/s Or 190.nasa.gov #12;The speed of light The speed of light `c' is equal to the frequency ` times the wavelength,000 miles/second!! Light could travel around the world about 8 times in one second #12;What is light?? Light

Mojzsis, Stephen J.

334

Electricity Markets  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Markets Electricity Markets Researchers in the electricity markets area conduct technical, economic, and policy analysis of energy topics centered on the U.S. electricity sector. Current research seeks to inform public and private decision-making on public-interest issues related to energy efficiency and demand response, renewable energy, electricity resource and transmission planning, electricity reliability and distributed generation resources. Research is conducted in the following areas: Energy efficiency research focused on portfolio planning and market assessment, design and implementation of a portfolio of energy efficiency programs that achieve various policy objectives, utility sector energy efficiency business models, options for administering energy efficiency

335

Black River Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Coop Coop Jump to: navigation, search Name Black River Electric Coop Place Missouri Utility Id 1775 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting MV 175 W Lighting Outdoor Lighting MV 250 W Lighting Outdoor Lighting MV 400 W Lighting Outdoor Lighting SLV 400 W Direct Lighting Outdoor Lighting SLV 400 W Flood Lighting Outdoor Lighting SVL 100 W Lighting Residential Residential Single Phase General Service Commercial Standard Single-Phase Commercial/Industrial Service Industrial

336

Electric Metering | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Electric Metering Electric Metering Saving Money by Saving Energy The Department of Energy has installed meters in the James Forrestal Building that will enable DOE to measure electricity use and costs in its headquarters facility. You may explore this data further by visiting our Forrestal Metering Dashboard at the following website: http://forrestal.nrel.gov The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power outlets. The purpose is to measure the electricity used by equipment that building occupants can control. Data is collected and reported by zones throughout Forrestal's north, south and west buildings. See the Forrestal metering zone map, below, for details on the zones.

337

Farmers Electric Cooperative (Kalona) - Residential Efficiency Matching  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers Electric Cooperative (Kalona) - Residential Efficiency Farmers Electric Cooperative (Kalona) - Residential Efficiency Matching Grant Program Farmers Electric Cooperative (Kalona) - Residential Efficiency Matching Grant Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Commercial Heating & Cooling Program Info State Iowa Program Type Utility Grant Program Rebate Amount 50% of cost, up to $100 Provider Farmers Electric Cooperative Farmers Electric Cooperative (FEC) offers a grant program which splits the cost of simple energy efficient improvements to the home. The utility will cover 50% of the cost of eligible improvements made by the participating member. Grants are limited to $100 per year. A variety of measures and

338

Electric Efficiency Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Efficiency Standard Electric Efficiency Standard Electric Efficiency Standard < Back Eligibility Investor-Owned Utility Retail Supplier Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Appliances & Electronics Heat Pumps Commercial Lighting Lighting Home Weatherization Insulation Design & Remodeling Program Info State Indiana Program Type Energy Efficiency Resource Standard Provider Indiana Utility Regulatory Commission In December 2009, the Indiana Utility Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity sales by the year 2019. Utilities under IURC jurisdiction must file three-year DSM plans, beginning in July of 2010, which indicate progress and plans for reaching

339

Modernising underground compressed air DSM projects to reduce operating costs / Christiaan Johannes Roux Kriel.  

E-Print Network (OSTI)

??Growing demand for electricity forces suppliers to expand their generation capacity. Financing these expansion programmes results in electricity cost increases above inflation rates. By reducing (more)

Kriel, Christiaan Johannes Roux

2014-01-01T23:59:59.000Z

340

The Grid and the Cost of Electricity  

Science Journals Connector (OSTI)

... asking whether the advent of the grid is likely to reduce the price of electricity or not. So far as can be seen at present, it will reduce the ... it will reduce the price to numerous consumers. The large stations recently built are generating electricity with far greater economy than the older stations which they replace. The use of ...

1932-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles  

SciTech Connect

HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, efficient, and run using virtually no moving parts.

None

2011-11-21T23:59:59.000Z

342

Pennyrile Rural Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Pennyrile Rural Electric Coop Pennyrile Rural Electric Coop Jump to: navigation, search Name Pennyrile Rural Electric Coop Place Kentucky Utility Id 14724 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt Metal Halide With Pole Lighting 100 Watt Metal Halide Without Pole Lighting 100 Watt Sodium With Pole Lighting 100 Watt Sodium Without Pole Lighting 175 Watt Metal Halide With Pole Lighting 175 Watt Metal Halide Without Pole Lighting 200 Watt Sodium With Pole Lighting

343

Electrical Engineer  

Energy.gov (U.S. Department of Energy (DOE))

This position is located in the Office of Electric Reliability. The Office of Electric Reliability helps protect and improve the reliability and security of the nation's bulk power system through...

344

Radioluminescent (RL) airfield lighting system program  

SciTech Connect

In 1980, the US Air Force Engineering and Services Center (AFESC) at Tyndall Air Force Base, Florida, requested that the Radioisotope Technology Group of Oak Ridge National Laboratory (ORNL) develop large-scale, tritium-powered, radioluminescent (RL) airfield lighting systems. The RL lighting systems possess the advantages of being portable, requiring no electrical power source, having a long shelf life, and being unaffected by environmental extremes. These characteristics make the RL system well-suited for harsh environments where the cost of electrical power production is high and traditional incandescent airfield lighting systems are difficult to maintain. RL lighting is typically a large-surface-area, low-intensity light source that operates 100% of the time. The RL light sources gradually decrease in brightness over time, so periodic replacement (every 6 to 8 years) is necessary. RL lighting functions best in low ambient light, which provides the high contrast ratios necessary for successful use of these devices. 12 figs., 8 tabs.

Tompkins, J.A. (Westinghouse Electric Corp., Las Vegas, NV (USA)); Haff, K.W.; Schultz, F.J. (Oak Ridge National Lab., TN (USA))

1990-09-01T23:59:59.000Z

345

Light harvesting arrays  

DOE Patents (OSTI)

A light harvesting array useful for the manufacture of devices such as solar cells comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2, and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

Lindsey, Jonathan S. (Raleigh, NC)

2002-01-01T23:59:59.000Z

346

Protection of Solar Electric Car DC Motor with PIC Controller  

Science Journals Connector (OSTI)

The electric car may represent new opportunities for any country and its electric utilities. Widespread use of electric cars can reduce ... can be accomplished to a large extent during utility off-peak hours, ele...

Ahmed M. A. Haidar; Ramdan Razali; Ahmed Abdalla

2011-01-01T23:59:59.000Z

347

The solid state lighting initiative: An industry/DOE collaborativeeffort  

SciTech Connect

A new era of technology is emerging in lighting. It is being propelled by the dramatic improvements in performance of solid state light sources. These sources offer an entirely new array of design aspects not achievable with current light sources. At the same time, their performance characteristics continue to improve and are expected to eclipse those of the most common light sources within the near future. High efficiency is one of these performance attributes motivating the Department of Energy (DOE) to work with the manufacturers of this new technology to create a program plan sufficiently comprehensive to support an industry-driven Solid State Lighting Initiative before Congress. The purpose of the initiative is to educate Congress about the potential of this technology to reduce the electric lighting load within the United States and, consequently, to realize the associated environmental benefits. The initiative will solicit congressional support to accelerate the development of solid state technology through investment in the research and development necessary to overcome the technical barriers that currently limit the products to niche markets. While there are multiple technologies being developed as solid state light sources, the two technologies which hold the most promise for application to general illumination are Light Emitting Diodes (LEDs) and Organic Light Emitting Diodes (OLEDs). The form of these sources can be quite different from current sources, allowing exciting new design uses for the products. Being diffuse sources, OLEDs are much lower in intensity per unit area than LEDs. The manufacturing process for OLEDs lends itself to shapes that can be formed to different geometries, making possible luminous panels or flexible luminous materials. Conversely, LEDs are very intense point sources which can be integrated into a small space to create an intense source or used separately for less focused applications. Both OLED and LED sources are expected to be thinner than other comparable sources; this thinness offers additional design opportunities.

Johnson, Steve

2000-10-01T23:59:59.000Z

348

Walton Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Walton Electric Member Corp Place Georgia Utility Id 20065 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 14' Aluminum Lighting 20' F/G Lighting 30' F/G Lighting 30-6 Wood Lighting Cobrahead- HPS 100 Watt Bronze (UG) Lighting Cobrahead- HPS 100 Watt Gray Lighting Cobrahead- HPS 100 Watt Gray (UG) Lighting Cobrahead- HPS 150 Bronze Watt (UG) Lighting Cobrahead- HPS 150 Watt Gray Lighting Cobrahead- HPS 150 Watt Gray (UG) Lighting Cobrahead- HPS 250 Watt Bronze (UG) Lighting

349

Electrical Energy Conservation and Load Management - An Industrial User's Viewpoint  

E-Print Network (OSTI)

Conservation of electrical energy and load management can reduce industry's electric bills, conserves natural resources and reduces the need for new generating plants. In recent years, industry has implemented extensive conservation programs. Some...

Jackson, C. E.

1984-01-01T23:59:59.000Z

350

Reduced vibration motor winding arrangement  

DOE Patents (OSTI)

An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

1997-11-11T23:59:59.000Z

351

Reduced vibration motor winding arrangement  

DOE Patents (OSTI)

An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of .sqroot.3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency.

Slavik, Charles J. (Rexford, NY); Rhudy, Ralph G. (Scotia, NY); Bushman, Ralph E. (Lathem, NY)

1997-01-01T23:59:59.000Z

352

Little River Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

River Electric Coop Inc River Electric Coop Inc Place South Carolina Utility Id 11019 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Service-Commercial Commercial Large Power Service Industrial Outdoor Lighting Flood Light 1000 W Lighting Outdoor Lighting Flood Light 250 W Lighting Outdoor Lighting Flood Light 400 W Lighting Outdoor Lighting HPS 100 W Lighting Outdoor Lighting MV 175 W Lighting Residential Residential Residential Energy Conservation Residential Average Rates

353

North Star Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

North Star Electric Coop, Inc North Star Electric Coop, Inc Place Minnesota Utility Id 13731 Utility Location Yes Ownership C NERC Location MRO Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Single Phase Commercial Interruptible Large Power Industrial Large Power Industrial MV Request Lighting Metered Street Lights Lighting Off Peak Rental Security Lights - 150 watt Lighting Rental Security Lights - HPS Lighting Rental Security Lights - HPS & Transformer Lighting Rental Security Lights - MV Lighting Rental Security Lights - MV & Transformer Lighting

354

Micromachined electrical cauterizer  

DOE Patents (OSTI)

A micromachined electrical cauterizer. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 .mu.m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures.

Lee, Abraham P. (Walnut Creek, CA); Krulevitch, Peter A. (Pleasanton, CA); Northrup, M. Allen (Berkeley, CA)

1999-01-01T23:59:59.000Z

355

Lighting Renovations  

Energy.gov (U.S. Department of Energy (DOE))

When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

356

Cerenkov Light  

ScienceCinema (OSTI)

The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

Slifer, Karl

2014-05-22T23:59:59.000Z

357

Overview of Fuel Cell Electric Bus Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of Fuel Cell Electric Bus Development Leslie Eudy, National Renewable Energy Laboratory September 12, 2013 2 Why Fuel Cells for Transit Buses? * Reduce transit bus...

358

Electrically-Assisted Diesel Particulate Filter Regeneration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

partner for this project, has developed a DPF technology that utilizes electrical power to heat the DPF for regeneration, thereby greatly reducing the "fuel penalty". D P F...

359

Energy Savings in Electric Arc Furnace Melting  

E-Print Network (OSTI)

, followed by suggestions on how energy consumption can be reduced. unit cost of electricity in steelmaking is discussed with emphasis on energy management....

Lubbeck, W.

1982-01-01T23:59:59.000Z

360

NEMA Comments on DOE Reducing Regulatory Burden RFI | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Burden RFI NEMA Comments on DOE Reducing Regulatory Burden RFI The National Electrical Manufacturers Association (NEMA) thanks you for the opportunity to provide comments...

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

SciTech Connect

Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

2013-11-13T23:59:59.000Z

362

Albemarle Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Albemarle Electric Member Corp Albemarle Electric Member Corp Place North Carolina Utility Id 240 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Lighting Lighting Irrigation TOD Industrial Large General Service Industrial Large General TOD Industrial Medium General Service Industrial Medium General Service - kWhs charge only Industrial Medium General TOD Industrial Outdoor Security Lighting - 100 watt HPS - Pendant Lighting Outdoor Security Lighting - 1000 watt MH - Flood Lighting Outdoor Security Lighting - 150 watt HPS - Ornamental Cobra Lighting

363

Pedernales Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Pedernales Electric Coop, Inc Pedernales Electric Coop, Inc Place Texas Utility Id 14626 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting-- 100 w Sodium Lighting Area Lighting-- 175 w Mercury Vapor Lighting Area Lighting-- 175 w Metal Halide Lighting Area Lighting-- 250 w Sodium Lighting Commercial Small Power-Renewable Commercial Commercial Small Power-Secondary Commercial Industrial Power Industrial

364

Lincoln Electric System | Open Energy Information  

Open Energy Info (EERE)

Lincoln Electric System Lincoln Electric System Place Nebraska Utility Id 11018 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1000 W Mercury Vapor- Security Light Lighting 150 W High Pressure Sodium - Security Light Lighting 175 W Mercury Vapor- Security Light Lighting 250 W High Pressure Sodium - Security Light Lighting

365

Ozark Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Ozark Electric Coop Inc Ozark Electric Coop Inc Place Missouri Utility Id 14288 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Multi-Phase (Less Than 125 kW) Commercial Commercial Single-Phase Commercial Large Power (Industrial) Industrial Outdoor Lighting HPS 100 W Lighting Outdoor Lighting HPS 1000 W Lighting Outdoor Lighting MH 400 W Lighting Outdoor Lighting MV 175 W Lighting Residential Single Phase (Planned Subdivision) Residential Residential Single Phase (Under 75 kW) Residential

366

North Alabama Electric Coop | Open Energy Information  

Open Energy Info (EERE)

North Alabama Electric Coop North Alabama Electric Coop Place Alabama Utility Id 13669 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GENERAL POWER Commercial GSA2 Industrial GSA3 Industrial MSB Industrial Residential Residential Security Light w/ Pole Rental: 175 W MLV Lighting Security Light w/ Pole Rental: 400 W HPS Lighting Security Light: 175 W MLV Lighting Security Light: 400 W HPS Lighting Average Rates Residential: $0.0939/kWh Commercial: $0.1080/kWh Industrial: $0.0869/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

367

Wheatland Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Place Kansas Utility Id 20510 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Lighting Lighting Domestic Cooling & Heating/Water Heating Residential General Service Industrial General Service Large Industrial Irrigation Commercial Non-Domestic Rural Industrial Private Lighting (unmetered) - 175 watt mercury vapor Lighting Private Lighting (unmetered) - 250 watt mercury vapor Lighting Private Lighting (unmetered) - 400 watt mercury vapor Lighting

368

Industrial DSM: Beyond High Efficiency Lights and Motors  

E-Print Network (OSTI)

Perhaps the greatest challenge to electric utilities is the design and implementation of demand side management (DSM) programs targeted to their industrial customers. In focussing on promotion of high efficiency lighting systems, electric motors...

Appelbaum, B.

369

Midstate Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Midstate Electric Coop, Inc Midstate Electric Coop, Inc Jump to: navigation, search Name Midstate Electric Coop, Inc Place Oregon Utility Id 12439 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Single Phase Commercial Commercial Three Phase Commercial Green Power Commercial Industrial Industrial Irrigation Industrial Residential Residential Residential Three Phase Residential Security Lighting 1000w Mercury Vapor Lighting Security Lighting 175w Mercury Vapor Lighting Security Lighting 250w Mercury Vapor Lighting

370

Webster Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Electric Coop Electric Coop Place Missouri Utility Id 20318 Utility Location Yes Ownership C NERC Location SERC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Commercial Lighting- (Sodium Security Lights 100 W) Lighting Lighting- (Sodium Security Lights 400 W) Lighting Residential Rate Residential Small Commercial Commercial Average Rates Residential: $0.0797/kWh Commercial: $0.0692/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Webster_Electric_Coop&oldid=412158

371

Barron Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Electric Coop Electric Coop Jump to: navigation, search Name Barron Electric Coop Place Wisconsin Utility Id 1251 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Power Commercial Residential Residential Residential Off Peak Residential Security Lighting HPS 100 W Lighting Security Lighting HPS 250 W Lighting Security Lighting MV 175 W Lighting Small Power Commercial Average Rates Residential: $0.1260/kWh Commercial: $0.0985/kWh

372

Ouachita Electric Coop Corp | Open Energy Information  

Open Energy Info (EERE)

Ouachita Electric Coop Corp Ouachita Electric Coop Corp Jump to: navigation, search Name Ouachita Electric Coop Corp Place Arkansas Utility Id 14238 Utility Location Yes Ownership C NERC Location SERC NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL - SCHEDULE 2 Commercial INDUSTRIAL - SCHEDULE 2 Industrial LARGE POWER - SCHEDULE 3: Customer 250 KW or less Industrial LARGE POWER - SCHEDULE 3: Customer over 250 KW Industrial Municipal Street Lighting: 100 Watt Lighting Municipal Street Lighting: 1000 Watt Lighting Municipal Street Lighting: 175 Watt Lighting

373

Tanner Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Tanner Electric Coop Tanner Electric Coop Jump to: navigation, search Name Tanner Electric Coop Place Washington Utility Id 18448 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service-Single Phase Commercial Service-Three Phase Commercial Residential Service Residential Residential Service-Anderson Island Residential Security Lighting-100W High Pressure Sodium Lighting Security Lighting-200W High Pressure Sodium Lighting Security Lighting-400W High Pressure Sodium Lighting

374

Aiken Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Aiken Electric Coop Inc Aiken Electric Coop Inc Jump to: navigation, search Name Aiken Electric Coop Inc Place South Carolina Utility Id 162 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes ISO Other Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Decorative Lighting 100w HPS Acorn Lighting Decorative Lighting 100w HPS Shoebox Lighting Decorative Lighting 100w HPS Traditional Lighting Good Cents - Improved Home Program Commercial Good Cents - New Home Program Residential INTERRUPTIBLE IRRIGATION Commercial Large Power ISD Industrial Large Power LP Industrial

375

Altamaha Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Altamaha Electric Member Corp Altamaha Electric Member Corp Jump to: navigation, search Name Altamaha Electric Member Corp Place Georgia Utility Id 407 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Service Industrial Irrigation Service- IRGS-8 Commercial Large Power Service- LPS Commercial Net Metering Service- NMS-8 Commercial Outdoor Security Lighting Service- SL-9 (1000W HPS-Flood) Lighting Outdoor Security Lighting Service- SL-9 (1000W MH-Flood) Lighting Outdoor Security Lighting Service- SL-9 (1000W MH-Flood) Lighting

376

Barry Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Barry Electric Coop Barry Electric Coop Place Missouri Utility Id 1279 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting HPS 100 W Lighting Outdoor Lighting HPS 400 W Lighting Outdoor Lighting MV 175 W Lighting Residential Residential Average Rates Residential: $0.0914/kWh Commercial: $0.0793/kWh Industrial: $0.0656/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Barry_Electric_Coop&oldid=409023

377

Arab Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Arab Electric Coop Inc Arab Electric Coop Inc Jump to: navigation, search Name Arab Electric Coop Inc Place Alabama Utility Id 750 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial - 50 kW & 15,000 kWh and Under Commercial Commercial - Greater than 1000 kW Commercial Commercial-(50kW & Over but less than 1000kW) and (50kW & Under but over 15,000kWh) Commercial Residential Rate Residential Security Lighting - 100 HPS Light Lighting Security Lighting - 175W MV Light Lighting

378

Bartlett Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Bartlett Electric Coop, Inc Bartlett Electric Coop, Inc Jump to: navigation, search Name Bartlett Electric Coop, Inc Place Texas Utility Id 1273 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Service Industrial Outdoor Lighting HPS 100 W Lighting Outdoor Lighting HPS 400 W Lighting Outdoor Lighting MH 400 W Lighting Permanent Residential Service Residential Small General Service- Single Phase Commercial Small General Service- Three Phase Commercial Average Rates Residential: $0.1180/kWh

379

Irwin Electric Membership Corp | Open Energy Information  

Open Energy Info (EERE)

Electric Membership Corp Electric Membership Corp Jump to: navigation, search Name Irwin Electric Membership Corp Place Georgia Utility Id 9431 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes ISO Other Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting Directional 400 W Lighting Security Light Lighting Single Phase Irrigation Service Commercial Single-Phase General Service Residential Standard Flood Light 100W Lighting Three Phase General Service ( Demand < 25 Kw)) Commercial Three Phase General Service (Demand > 25 Kw) Commercial

380

Economic Analysis of Ilumex, A Project to Promote Energy-Efficient Residential Lighting in Mexico  

SciTech Connect

A higher penetration of compact fluorescent lamps (CFLs) for household lighting can reduce growth in peak electricity demand, reduce sales of subsidized electricity, and lessen environmental impacts. This paper describes an economic analysis of a project designed to promote high penetration rates of CFLs in two cities in Mexico. Our analysis indicates that the project will bring substantial net economic benefits to Mexico, the utility, and the average customer. In the absence of any subsidy to CFLs, most customers will see a payback period longer than two years. By sharing some of the anticipated net benefit, CFE, the utility company, can reduce the payback period to a maximum of two years for all customers. CFE's role is thus crucial to the successful implementation of the project. Expanding the Ilumex project to a Mexico-wide program would make a significant contribution towards meeting the planned addition of generation capacity by the year 2000.

Sathaye, Jayant A.; Friedmann, R.; Meyers, S.; de Buen, O.; Gadgil, A.J.; Vargas, E.; Saucedo, R.

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Image Recognition System for Automated Lighting Retrofit Assessment  

E-Print Network (OSTI)

, and K. Baugh, ?Spectral Identification of Lighting Type and Character,? Sensors, vol. 10, pp. 3961-3988, 2010. (3) L. Halonen, E. Tetri, and P. Bhusal, ?Guidebook on Energy Efficient Electric Lighting for Buildings,? Espoo, Finland: Dept. Elect. Eng...

Venable, K.; Bhatia, D.; Coverick, R.; Gutierrez, C.; Knight, J.; McGarry, D.; McGee, K.; Smith, Z.; Terrill, T. J.; Vanderford, B.; Weiser, R.; Wightman, K.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

382

Poudre Valley REA - Commercial Lighting Rebate Program (Colorado) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Rebate Program (Colorado) Commercial Lighting Rebate Program (Colorado) Poudre Valley REA - Commercial Lighting Rebate Program (Colorado) < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Commercial Lighting Retrofit: 50% of equipment cost, $20,000 LED Street Lighting/Induction Street Lighting: $20,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount LED Refrigerated Case Lighting (Top Lighting): $60 per ln ft LED Refrigerated Case Lighting (Case Lighting): $60 per door LED Street Lighting: $44 - $475 per fixture Induction Street Lighting: $33 - $355 per fixture Commercial Lighting Retrofit: $250 per kW saved Provider Poudre Valley REA Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy

383

Northern Lights  

NLE Websites -- All DOE Office Websites (Extended Search)

Northern Lights Northern Lights Nature Bulletin No. 178-A February 6, 1965 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation NORTHERN LIGHTS To a person seeing the Aurora Borealis or "northern lights" for the first time, it is an uncanny awe-inspiring spectacle. Sometimes it begins as a glow of red on the northern horizon, ominously suggesting a great fire, gradually changing to a curtain of violet-white, or greenish-yellow light extending from east to west. Some times this may be transformed to appear as fold upon fold of luminous draperies that march majestically across the sky; sometimes as a vast multitude of gigantic flaming swords furiously slashing at the heavens; sometimes as a flowing crown with long undulating colored streamers fanning downward and outward.

384

Barron Electric Cooperative - Commercial, Industrial, and Agricultural  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Barron Electric Cooperative - Commercial, Industrial, and Barron Electric Cooperative - Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program Barron Electric Cooperative - Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $10,000 per account, not to exceed 20% of cost Scroll Refrigeration Compressors: $500 Variable Speed/Frequency Drive Motor: $500 Variable Speed Compressed Air Motor: $500 Energy Audit: One in Five Years Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Energy Audit: Free General Lighting: $1 - $15/unit LED Lamps: $2/bulb

385

Burlington Electric Department - Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Burlington Electric Department - Commercial Energy Efficiency Burlington Electric Department - Commercial Energy Efficiency Rebate Program Burlington Electric Department - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Savings Category Manufacturing Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heating Heat Pumps Commercial Lighting Lighting Maximum Rebate Rebates exceeding $5,000 require pre-approval by BED prior to purchase Buildings exceeding 10,000 square feet must consult BED regarding rebates prior to purchase Program Info State Vermont Program Type Utility Rebate Program Rebate Amount Lighting: See Program Website HVAC Air Conditioners/Heat Pumps: $50 - $100/ton Integrated Dual Enthalpy Economizer Controls: $250/controlled unit Ventilation Fans: $35 - $60

386

Energy Optimization (Electric) - Residential Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Optimization (Electric) - Residential Efficiency Program Energy Optimization (Electric) - Residential Efficiency Program Energy Optimization (Electric) - Residential Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate Ceiling Fans: 4 Smart Power Strip: 2 Pipe Wrap: 10 ln. ft. CFL Bulbs: 12 Refrigerator Recycling: 2 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount CFL Bulbs: Varies by retailer Ceiling Fan: $15 CFL Fixture: $15 LED Fixture/Downlight Kit: $20 LED Light Bulbs: $10 Smart Power Strip: $20 Room Air Conditioners: $20

387

Consumers Energy (Electric) - Residential Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric) - Residential Energy Efficiency Program Electric) - Residential Energy Efficiency Program Consumers Energy (Electric) - Residential Energy Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Home Performance Comprehensive Assessment and Installations: $3500 Insulation: $1,025 Windows: $250 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount CFL Lighting: Retailer Instant Discount Programmable Thermostat: $10 Central A/C and Heat Pumps: $150 - $250 Central A/C Tune up: $50 Ground Source Heat Pump: $200-$300

388

Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liberty Utilities (Electric) - Commercial Energy Efficiency Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive Programs Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive Programs < Back Eligibility Commercial Industrial Local Government Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom Incentives: amount that buys down the cost of the project to a 1 year simple payback Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount Custom Retrofits and Engineering Studies: 50% of project cost Fluorescent Lighting: $10-$50 High Bay: $70 or $100 (retrofit) Metal Halide: $50 or $70 LED Exit Signs: $12 LED Traffic Signals: $50

389

Energy Optimization (Electric) - Commercial Efficiency Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Optimization (Electric) - Commercial Efficiency Program Energy Optimization (Electric) - Commercial Efficiency Program Energy Optimization (Electric) - Commercial Efficiency Program < Back Eligibility Commercial Industrial Savings Category Other Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Ventilation Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate General: See program web site Custom: 50% of project cost Program Info Expiration Date 12/31/2013 State Michigan Program Type Utility Rebate Program Rebate Amount Custom: $0.06/kWh/yr saved CFL Bulbs: $1 - $5 CFL Fixtures: $22/fixture High Performance T8 Lighting Retrofit: $4-$20/fixture retrofit

390

New Energy-Saving Fiber Optic Lighting System Lights Up Public Spaces  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Focus to develop a Energy Focus to develop a breakthrough lighting technology that delivers light comparable to conventional lamps while using significantly less energy per lumen, reducing watts per square foot without sacrificing light levels. As a result of DOE SBIR and other government funding, EFO (efficient fiber optics) Lighting Systems can deliver as much as 80% energy savings over halogen or

391

Chapter 3, Commercial and Industrial Lighting Controls Evaluation...  

Office of Environmental Management (EM)

control equipment has accounted for a relatively small portion of cost- effective, electric energy efficiency resources in the United States. However, use of lighting controls...

392

Lighting Energy Efficiency in Parking Campaign | Department of...  

Energy Savers (EERE)

Review commlbldgs06sandahl040213.pdf More Documents & Publications Better Buildings Alliance Lighting and Electrical Team Leadership and Project Delivery - 2014 BTO Peer Review...

393

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

394

Electric Vehicles  

SciTech Connect

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

395

Electrical hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

and certification by ANL prior to use. The Control of Hazardous Energy Sources - LockoutTagout (LOTO) Types of Energy Sources 1. Electricity 2. Gas, steam & pressurized...

396

P K M Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

M Electric Coop, Inc M Electric Coop, Inc Jump to: navigation, search Name P K M Electric Coop, Inc Place Minnesota Utility Id 14178 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Off Peak - Dual Heat Commercial Off Peak - Short Term Commercial Off Peak - Slab Storage Commercial Security Lights - 100 HPS (ahead of meter) Lighting Security Lights - 100 HPS (meter) Lighting Security Lights - 150 HPS (meter) Lighting Security Lights - 175 MV (ahead of meter) Lighting Security Lights - 175 MV (meter) Lighting

397

Lea County Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Lea County Electric Coop, Inc Lea County Electric Coop, Inc Jump to: navigation, search Name Lea County Electric Coop, Inc Place New Mexico Utility Id 10817 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cottin Gin Service Residential Large Commercial Service Commercial Large Irrigation Service Residential Lighting Service - 100 HPS Lamp Lighting Lighting Service - 1000 Mh Lamp Lighting Lighting Service - 150 HPS Lamp Lighting Lighting Service - 175 MV Lamp Lighting Lighting Service - 310 HPS Lamp Lighting

398

Tri-County Electric Coop, Inc (Florida) | Open Energy Information  

Open Energy Info (EERE)

Tri-County Electric Coop, Inc (Florida) Tri-County Electric Coop, Inc (Florida) Jump to: navigation, search Name Tri-County Electric Coop, Inc Place Florida Utility Id 19161 Utility Location Yes Ownership C NERC Location FRCC NERC FRCC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial General Three- Phase Service Time- Of- Day Schedule Commercial Commercial Outdoor Lighting HPS 100 W Lighting Commercial Outdoor Lighting HPS 150 W Lighting Commercial Outdoor Lighting HPS 400 W Lighting Commercial Outdoor Lighting MHF 400 W Lighting Commercial Outdoor Lighting MV 175 W Lighting

399

Transmission access: The new factor in electric utility mergers  

SciTech Connect

This article deals with the effect of consideration of transmission access in whether a merger of electric utility is in the public interest. Cases examined are Southern California Edison and San Diego Gas and Electric, Utah Power and Light and Pacific Power and Light, Public Service Company of New Hampshire and Northeast Utilities Service Company, Kansas Gas and Electric and Kansas Power and Light, plus some holding company mergers.

Boiler, D.S.

1991-04-01T23:59:59.000Z

400

Rate making for Electric Utilities  

E-Print Network (OSTI)

Water Works Company 5 f. R. C, E, 215, 281, May 14, 1910 Arkadelphia Electric Light Company v City of Arkadelphia 137 S, W. 1093, 96 Ark, May 1, 1911 Beloit v, Beloit Water, Gas and Electric Company 7 f , B, C. R. 187,239, July 19, 1911. Columbus... Railway and Light Company v. City of Columbus No, 1206 in Equity U. S. Cir. Ct. Southern District of Ohio Eastern Division. Report of Special Master T. P. Lynn January 8, 1906 Consolidated Gas Company v. City of New York Circuit Court of U. S...

Hanson, Carl Falster

1911-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Lighting Controls : Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Controls Lighting Controls Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications Shades and Shade Controls Lighting Controls Visualizing daylight Commissioning/ verification Demand response Mainstream solutions Post-occupancy evaluation Publications Sponsors Project team Lighting Controls The lighting controls scope of work is based upon the philosophy that occupants of commercial office buildings prefer natural light to electric light. The lighting controls system specified by the Times Company for its new headquarters building is a DALI (Digital Addressable Lighting Interface) based system with dimmable fixtures throughout the interior space. This allows the system to dim down the electric lighting in response to daylight admittance. It also provides for variable target set points for illuminance levels at the work plane. The Times Company intends to establish and adjust target set points on a departmental basis. The lighting control sequences are described within the specification 16575. These sequences utilize occupancy sensors, photo sensors, switches and a time clock to control the lighting in the interior space on each floor. The emergency lighting system is also described within the specification. The lighting control sequences are tied to Control Intent Diagrams that divide up the space on each floor into its various control zones. The overall intent is to provide electric light only when the space is occupied and to provide as little electric light as is necessary to achieve the target set point for the work plane in a given department. A department usually occupies multiple floors.

402

THE LUMINA PROJECT http://light.lbl.gov  

E-Print Network (OSTI)

based lighting products hold promise for replacing and/or augmenting their current fuel-based lighting batteries. It impacts the lighting service cost per unit time if charging is done with purchased electricity, batteries, or charging services. The concept is illustrated in figure 1: LED lighting products are generally

Jacobson, Arne

403

Vigilante Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Vigilante Electric Coop, Inc Place Montana Utility Id 23586 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial(KVA charge) Commercial Irrigation Industrial Irrigation(Pumps without Demand Readings) Industrial Low Usage Residential Residential Residential Yard Light - 100 watt HPS Lighting Yard Light - 175 watt MV Lighting Yard Light - 200 watt HPS Lighting Yard Light - 400 watt HPS Lighting Yard Light - 400 watt MV Lighting

404

Method for making a photodetector with enhanced light absorption  

DOE Patents (OSTI)

A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

Kane, James (Lawrenceville, NJ)

1987-05-05T23:59:59.000Z

405

Mid-South Electric Coop Assn | Open Energy Information  

Open Energy Info (EERE)

Mid-South Electric Coop Assn Mid-South Electric Coop Assn Place Texas Utility Id 12452 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting Service 100 W HPS Lighting Area Lighting Service 175 W MV Lighting Area Lighting Service 250 W Flood Lighting Area Lighting Service 250 W HPS Lighting Area Lighting Service 400 W Flood Lighting Area Lighting Service 400 W HPS Lighting Commercial Service (CS) Commercial Large Commercial Service (LCS) Commercial Residential Service (RS) Single Phase Residential

406

Ch 16 Electric Charge &Ch 16. Electric Charge & Electric Field  

E-Print Network (OSTI)

Ch 16 Electric Charge &Ch 16. Electric Charge & Electric Field Liu UCD Phy1B 2012 #12;I Basic ConceptsI. Basic Concepts Static electricity: charges at rest Electric charge Like charges repel Unlike charges attract Liu UCD Phy1B 2012 #12;Electric ChargeElectric Charge Electron charge: -eElectron charge

Yoo, S. J. Ben

407

Types of Lighting in Commercial Buildings - Lighting Types  

U.S. Energy Information Administration (EIA) Indexed Site

Lighting Types Lighting Types The following are the most widely used types of lighting equipment used in commercial buildings. Characteristics such as energy efficiency, light quality, and lifetime vary by lamp type. Standard Fluorescent A fluorescent lamp consists of a sealed gas-filled tube. The gas in the tube consists of a mixture of low pressure mercury vapor and an inert gas such as argon. The inner surface of the tube has a coating of phosphor powder. When an electrical current is applied to electrodes in the tube, the mercury vapor emits ultraviolet radiation which then causes the phosphor coating to emit visible light (the process is termed fluorescence). A ballast is required to regulate and control the current and voltage. Two types of ballasts are used, magnetic and electronic. Electronic ballasts

408

Concord Municipal Light Plant- Solar Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Concord Municipal Light Plant (CMLP) offers rebates to customers who install solar photovoltaic (PV) systems that are designed to offset the customer's electrical needs. Systems must be owned by...

409

Definition: Reduced Co2 Emissions | Open Energy Information  

Open Energy Info (EERE)

Co2 Emissions Co2 Emissions Jump to: navigation, search Dictionary.png Reduced Co2 Emissions Functions that provide this benefit can lead to avoided vehicle miles, decrease the amount of central generation needed to their serve load (through reduced electricity consumption, reduced electricity losses, more optimal generation dispatch), and or reduce peak generation. These impacts translate into a reduction in CO2 emissions produced by fossil-based electricity generators and vehicles.[1] Related Terms electricity generation, reduced electricity losses, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An in LikeLike UnlikeLike You like this.Sign Up to see what your friends like. line Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reduced_Co2_Emissions&oldid=502618

410

Taming light with cold atoms: light at bicycle speed. and slower yet!  

Science Journals Connector (OSTI)

The latest results from our Slow Light/Bose-Einstein condensation experiment will be presented. ... bottle. We have succeeded in reducing the light speed in a Bose condensate to the speed of a bicycle by using th...

L. Hau

2003-01-01T23:59:59.000Z

411

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

Mai, T.

2012-08-01T23:59:59.000Z

412

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

413

NYSEG (Electric) - Residential Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NYSEG (Electric) - Residential Efficiency Program NYSEG (Electric) - Residential Efficiency Program NYSEG (Electric) - Residential Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source System Benefits Charge Start Date 5/1/2011 State New York Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $50 rebate and free removal Multifamily Dwelling Units: 6 free CFLS and smart power strips Multifamily Common Area Ligting: 50% off custom lighting upgrades Provider NYSEG/RG&E NYSEG is offering residential electric customers rebates for recycling refrigerators, and its multifamily customers free CFLs, smart power strips and 50% off common area lighting equipment. All equipment requirements must

414

PPL Electric Utilities- Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers rebates for lighting, heat pumps, refrigeration...

415

Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

pROGRAM Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment EVSE Features LED status light EVSE Specifications Grid connection Hardwired Connector type J1772 Test...

416

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

important components in electronics, such as lights and radio. Related Electricity & Magnetism Pages Interactive Java Tutorial: Capacitor Interactive Java Tutorial: Electrostatic...

417

California Customer Load Reductions during the Electricity Crisis...  

Open Energy Info (EERE)

Reductions during the Electricity Crisis: Did They Help to Keep the Lights On? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: California Customer Load Reductions during...

418

Electric machine  

DOE Patents (OSTI)

An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Reddy, Patel Bhageerath (Madison, WI)

2012-07-17T23:59:59.000Z

419

Metastable light induced defects in pentacene  

SciTech Connect

In this study we analyzed one of the environmental factors that could affect organic materials. Pentacene thin film samples were fabricated and the degradation of their electrical characteristics was measured when the devices were exposed to ultraviolet light irradiation. The results have been reported in terms of a trap density model, which provides a description of the dynamics of light induced electrically active defects in an organic semiconductor.

Liguori, R.; Aprano, S.; Rubino, A. [Department of Industrial Engineering (DIIn), University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (Italy)

2014-02-21T23:59:59.000Z

420

Empire District Electric - Low Income New Homes Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Low Income New Homes Program Empire District Electric - Low Income New Homes Program Empire District Electric - Low Income New Homes Program < Back Eligibility Construction Low-Income Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Total: $1,100 Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Insulation: full incremental cost above the appropriate baseline Heat Pumps: $400 Central AC: $400 Refrigerator: $200 Lighting: $100 Provider Empire District Electric Empire District Electric offers rebates for the utilization of energy efficient measures and appliances in new, low-income homes. Rebates are

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Lighting in Residential and Commercial Buildings (1993 and 1995 Data)  

U.S. Energy Information Administration (EIA) Indexed Site

Types > 1995 CBECS Lighting Equipment Types > 1995 CBECS Lighting Equipment 1995 CBECS Lighting Equipment Profile Lighting Equipment - Type and Characteristics of Equipment Emits Found In Incandescent Incandescent Light Bulb Produces light by electrically heating a tungsten filament Includes energy-efficient incandescent bulbs, such as Reflector or R-Lamps (accent and task lighting), Parabolic Aluminized Reflector (PAR) lamps (flood and spot lighting), and Ellipsoidal Reflector (ER) lamps (recessed lighting) Highly inefficient because much of the energy is lost as heat 14-18 Lumens Per Watt (LPW) 14% of Lit Commercial Floorspace Standard Fluorescent Lighting with Magnetic Ballast Standard Fluorescent with Magnetic Ballast Produces light by passing electricity through mercury vapor, causing the fluorescent coating to glow or fluoresce

422

Lighting Group: Sources and Ballasts: HID Lighting Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Ballasts and Controls for HID Lighting Ballasts and Controls for HID Lighting Systems Evaluation of Electronic Ballasts and Related Controls for HID Lighting Systems Objective HID ballast The goal of this project is to evaluate the potential of electronic ballasts and related controls for HID lighting systems to improve the efficiency of current technology. The specific objectives of this project are to: Test, analyze and determine the potential of electronic ballasts for HID lighting systems in cooperation with manufacturers as an emerging energy efficient technology to reduce lighting loads in commercial, industrial and municipal applications. Identify control strategies to further improve the energy efficiency of these systems with a municipal partner. Provide appropriate recommendations for incorporating these technologies into current state codes and regulations.

423

NSTAR (Electric) - Business Solutions Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NSTAR (Electric) - Business Solutions Program NSTAR (Electric) - Business Solutions Program NSTAR (Electric) - Business Solutions Program < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Contact NSTAR Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount New Construction Custom: Contact NSTAR Municipalities: Contact NSTAR Lighting (Custom): $0.40/watt reduction (Tier 1); $1/watt reduction (Tier 2) Fluorescent Fixtures: $10 - $30 LED Lighting (Downlights): $10 - $30 LED Lighting (Refrigeration): $45

424

Solid-State Lighting: LED Lighting Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: LED Lighting Facts to someone by E-mail Share Solid-State Lighting: LED Lighting Facts on Facebook Tweet about Solid-State Lighting: LED Lighting Facts on Twitter Bookmark Solid-State Lighting: LED Lighting Facts on Google Bookmark Solid-State Lighting: LED Lighting Facts on Delicious Rank Solid-State Lighting: LED Lighting Facts on Digg Find More places to share Solid-State Lighting: LED Lighting Facts on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium Design Competitions LED Lighting Facts LED lighting facts - A Program of the U.S. DOE DOE's LED Lighting Facts® program showcases LED products for general

425

Light modulating device  

DOE Patents (OSTI)

In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity.

Rauh, R. David (Newton, MA); Goldner, Ronald B. (Lexington, MA)

1989-01-01T23:59:59.000Z

426

Light modulating device  

DOE Patents (OSTI)

In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity are disclosed. 1 fig.

Rauh, R.D.; Goldner, R.B.

1989-12-26T23:59:59.000Z

427

Three Rivers Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Rivers Electric Coop Rivers Electric Coop Jump to: navigation, search Name Three Rivers Electric Coop Place Missouri Utility Id 16751 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting HPS 100 W Lighting Outdoor Lighting HPS 100 W w/Metal Pole Lighting Residential Residential Average Rates Residential: $0.0926/kWh Commercial: $0.0791/kWh Industrial: $0.0688/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Three_Rivers_Electric_Coop&oldid=411667"

428

Woodruff Electric Coop Corp | Open Energy Information  

Open Energy Info (EERE)

Electric Coop Corp Electric Coop Corp Jump to: navigation, search Name Woodruff Electric Coop Corp Place Forrest City, Arkansas Utility Id 20963 Utility Location Yes Ownership C NERC Location SERC NERC SPP Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Woodruff Electric Smart Grid Project was awarded $2,357,520 Recovery Act Funding with a total project value of $5,016,000. Utility Rate Schedules Grid-background.png Agricultural Water Pumping - Summer Use Industrial Agricultural Water Pumping - Winter Use Athletic Field Lighting Service - Single Phase Lighting Athletic Field Lighting Service - Three Phase Lighting

429

Rayle Electric Membership Corp | Open Energy Information  

Open Energy Info (EERE)

Rayle Electric Membership Corp Rayle Electric Membership Corp Jump to: navigation, search Name Rayle Electric Membership Corp Place Georgia Utility Id 15700 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting Lighting Outdoor Lighting w/ Pole Lighting Average Rates Residential: $0.1240/kWh Commercial: $0.1240/kWh Industrial: $0.0916/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Rayle_Electric_Membership_Corp&oldid=411430

430

Woodruff Electric Coop Corp | Open Energy Information  

Open Energy Info (EERE)

Woodruff Electric) Woodruff Electric) Jump to: navigation, search Name Woodruff Electric Coop Corp Place Forrest City, Arkansas Utility Id 20963 Utility Location Yes Ownership C NERC Location SERC NERC SPP Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Woodruff Electric Smart Grid Project was awarded $2,357,520 Recovery Act Funding with a total project value of $5,016,000. Utility Rate Schedules Grid-background.png Agricultural Water Pumping - Summer Use Industrial Agricultural Water Pumping - Winter Use Athletic Field Lighting Service - Single Phase Lighting Athletic Field Lighting Service - Three Phase Lighting

431

Rosebud Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop Inc Electric Coop Inc Jump to: navigation, search Name Rosebud Electric Coop Inc Place South Dakota Utility Id 16286 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Security Light Lease 100 W Lighting Security Light Lease 250 W Lighting Sub-Metered Electric Heat Residential Average Rates Residential: $0.0836/kWh Commercial: $0.0753/kWh Industrial: $0.0780/kWh The following table contains monthly sales and revenue data for Rosebud

432

Exposing Datapath Elements to Reduce Microprocessor Energy Consumption  

E-Print Network (OSTI)

to Reduce Microprocessor Energy Consumption by Mark Jerome Hampton Submitted to the Department of ElectricalExposing Datapath Elements to Reduce Microprocessor Energy Consumption by Mark Jerome Hampton B Submitted to the Department of Electrical Engineering and Computer Science in partial ful llment

433

Lyon-Coffey Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Lyon-Coffey Electric Coop, Inc Lyon-Coffey Electric Coop, Inc Jump to: navigation, search Name Lyon-Coffey Electric Coop, Inc Place Kansas Utility Id 11334 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Large Commercial General Service Small Commercial Private Street and Area Lighting (100-Watt HPS 240 Volts) Lighting Private Street and Area Lighting (100-Watt HPS 480 Volt) Lighting Private Street and Area Lighting (175-Watt Mercury Vapor Light (existing only) Lighting Private Street and Area Lighting (250-Watt HPS 240 Volt) Lighting

434

Magic Valley Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Valley Electric Coop Inc Valley Electric Coop Inc Jump to: navigation, search Name Magic Valley Electric Coop Inc Place Texas Utility Id 11501 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Area 100 W HPS Lighting Commercial Area 150 W HPS Lighting Commercial Area 175 W MV Lighting Commercial Area 250 W HPS Lighting Commercial Area 400 W HPS Lighting Commercial Area 400 W MV Lighting Commercial Flood 1000 W HPS Lighting Commercial Flood 1000 W MH Lighting Commercial Flood 250 W HPS Lighting

435

Visible-Light Responsive Photocatalytic Fuel Cell Based on Ag/TiO2-NTs Photoanode and Cu2O/TiO2 Photocathode for Simultaneous Wastewater Treatment and Electricity Generation  

Science Journals Connector (OSTI)

A visible-light driven photocatalytic fuel cell (PFC) system comprised of Ag/TiO2-NTs photoanode and Cu2O/TiO2/Ti photocathode was established for providing a self-sustained and...

Liao, Wenjuan

436

Salt River Electric Coop Corp | Open Energy Information  

Open Energy Info (EERE)

Salt River Electric Coop Corp Salt River Electric Coop Corp Place Kentucky Utility Id 16587 Utility Location Yes Ownership C NERC Location RFC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 (Decorative Underground) HPS 48 kWh Outdoor Lighting Lighting 100 Watt HPS 48 kWh Outdoor Lighting Lighting 175 Watt MV 75 kWh Outdoor Lighting Lighting 175 Wattage (Underground) MV 75 kWh (without pole) Lighting 250 Watt HPS 104 kWh Outdoor Lighting Lighting 400 Watt HPS 165 kWh Outdoor Lighting Lighting Cogeneration and small power production power purchase rate schedule less

437

Colquitt Electric Membership Corp | Open Energy Information  

Open Energy Info (EERE)

Electric Membership Corp Electric Membership Corp Jump to: navigation, search Name Colquitt Electric Membership Corp Place Georgia Utility Id 40212 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1000W Existing MH-Flood, OVERHEAD WIRING, Metal or Fiberglass Pole Lighting 1000W Existing MH-Flood, OVERHEAD WIRING, Wood Pole Lighting 1000W Existing MH-Flood, UNDERGROUND WIRING, Metal or Fiberglass Pole Lighting 1000W Existing MH-Flood, UNDERGROUND WIRING, Wood Pole Lighting 100W Existing HPS-Open, OVERHEAD WIRING, Metal or Fiberglass Pole Lighting

438

Mohave Electric Cooperative, Inc | Open Energy Information  

Open Energy Info (EERE)

Mohave Electric Cooperative, Inc Mohave Electric Cooperative, Inc Jump to: navigation, search Name Mohave Electric Cooperative, Inc Place Arizona Utility Id 21538 Utility Location Yes Ownership C NERC Location WECC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LS (100 W HPS Cooperative Owned-50 kWh Per Month) Lighting LS (100 W HPS Customer Owned-50 kWh Per Month) Lighting LS (175 W MVL Cooperative Owned-100kWh Per Month) Lighting LS (175 W MVL Customer Owned-100 kWh Per Month) Lighting LS (250 W HPS Cooperative Owned-129 kWh Per Month) Lighting

439

Phases Energy Services County Electric Power Assn A N Electric Coop  

Open Energy Info (EERE)

Alpena Power Co Alpena Power Co Altamaha Electric Member Corp Amana Society Service Co Ambit Energy L P Ambit En ergy L P Maryland Ambit Energy L P New York Ameren Energy Marketing Ameren Energy Marketing Illinois Ameren Illinois Company Ameren Illinois Company Illinois AmeriPower LLC American Electric Power Co Inc American Mun Power Ohio Inc American PowerNet American PowerNet District of Columbia American PowerNet Maine American PowerNet Maryland American PowerNet New Jersey American Samoa Power Authority American Transmission Systems Inc Amicalola Electric Member Corp Amigo Energy Anadarko Public Works Auth Anchorage Municipal Light and Power Aniak Light Power Co Inc Anoka Electric Coop Anthracite Power Light Anza Electric Coop Inc Appalachian Electric Coop

440

Phases Energy Services County Electric Power Assn A N Electric Coop  

Open Energy Info (EERE)

Alliant Energy Alliant Energy Alpena Power Co Altamaha Electric Member Corp Amana Society Service Co Ambit Energy L P Ambit Energy L P Maryland Ambit Energy L P New York Ameren Energy Marketing Ameren Energy Marketing Illinois Ameren Illinois Company Ameren Illinois Company Illinois AmeriPower LLC American Electric Power Co Inc American Mun Power Ohio Inc American PowerNet American PowerNet District of Columbia American PowerNet Maine American PowerNet Maryland American PowerNet New Jersey American Samoa Power Authority American Transmission Systems Inc Amicalola Electric Member Corp Amigo Energy Anadarko Public Works Auth Anchorage Municipal Light and Power Aniak Light Power Co Inc Anoka Electric Coop Anthracite Power Light Anza Electric Coop Inc Appalachian Electric Coop

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Engineering Electrical &  

E-Print Network (OSTI)

Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2012 Eight Required Courses Chart: 120 points College

Hickman, Mark

442

Engineering Electrical &  

E-Print Network (OSTI)

Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2011 Eight Required Courses Chart: 120 points College

Hickman, Mark

443

Dr. Siemens' Newest Electrical Results  

Science Journals Connector (OSTI)

... F.R.S., upon Recent Applications of the Dynamo-Electric Current to Metallurgy, Horticulture, and the Transmission of Power. The author first referred to the inaugural address ... expenditure of four horse-power,;and which, if used for illuminating purposes, produces a light equal to 6,000 candles, I find that a crucible of about twenty centimetres ...

1880-06-10T23:59:59.000Z

444

Definition: Reduced Momentary Outages | Open Energy Information  

Open Energy Info (EERE)

Momentary Outages Momentary Outages Jump to: navigation, search Dictionary.png Reduced Momentary Outages By locating faults more accurately or adding electricity storage, momentary outages could be reduced or eliminated. Moreover, fewer customers on the same or adjacent distribution feeders would experience the momentary interruptions associated with reclosing. Momentary outages last <5 min in duration. The benefit to consumers is based on the value of service.[1] Related Terms electricity storage technologies, electricity generation, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An in LikeLike UnlikeLike You like this.Sign Up to see what your friends like. line Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reduced_Momentary_Outages&oldid=493094

445

Assessing the impact of changes in the electricity price structure on dairy farm energy costs  

Science Journals Connector (OSTI)

Abstract This study aims to provide information on the changes in electricity consumption and costs on dairy farms, through the simulation of various electricity tariffs that may exist in the future and how these tariffs interact with changes in farm management (i.e. shifting the milking operation to an earlier or later time of the day). A previously developed model capable of simulating electricity consumption and costs on dairy farms (MECD) was used to simulate five different electricity tariffs (Flat, Day&Night, Time of Use Tariff 1 (TOU1), TOU2 and Real Time Pricing (RTP)) on three representative Irish dairy farms: a small farm (SF), a medium farm (MF) and a large farm (LF). The Flat tariff consisted of one electricity price for all time periods, the Day&Night tariff consisted of two electricity prices, a high rate from 09:00 to 00:00h and a low rate thereafter. The TOU tariff structure was similar to that of the Day&Night tariff except that a peak price band was introduced between 17:00 and 19:00h. The RTP tariff varied dynamically according to the electricity demand on the national grid. The model used in these simulations was a mechanistic mathematical representation of the electricity consumption that simulated farm equipment under the following headings; milk cooling system, water heating system, milking machine system, lighting systems, water pump systems and the winter housing facilities. The effect of milking start time was simulated to determine the effect on electricity consumption and costs at farm level. The earliest AM milking start time and the latest PM milking start time resulted in the lowest energy consumption. The difference between the lowest and highest electricity consumption within a farm was 7% for SF, 5% for MF and 5% for LF. This difference was accounted for by the variation in the milk cooling system coefficient of performance. The greatest scope to reduce total annual electricity costs by adjusting milking start times was on TOU2 (39%, 34% and 33% of total annual electricity costs on the SF, MF and LF) and the least scope for reductions using this method was on the Flat tariff (7%, 5% and 7% of total annual electricity costs). The potential for reduction of annual electricity consumption and related costs per litre of milk produced by adjusting milking times was higher for the LF than the SF or MF across all electricity tariffs. It is anticipated that these results and the use of the MECD will help support the decision-making process at farm level around increasing energy efficiency and electricity cost forecasts in future electricity pricing tariff structures.

J. Upton; M. Murphy; L. Shalloo; P.W.G. Groot Koerkamp; I.J.M. De Boer

2015-01-01T23:59:59.000Z

446

Fluorescent Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluorescent Lighting Basics Fluorescent Lighting Basics Fluorescent Lighting Basics October 17, 2013 - 5:39pm Addthis Light from a fluorescent lamp is first created by an electric current conducted through an inert gas producing ultraviolet light that is invisible to the human eye. The ultraviolet light in turn interacts with special blends of phosphors coating the interior surface of the fluorescent lamp tube that efficiently converts the invisible light into useful white light. Fluorescent lamps require a special power supply called a ballast that is needed to regulate lamp operating current and provide a compatible start-up voltage. Electronic ballasts perform the same function as a magnetic ballast but outperform the outdated magnetic products by operating at a very high frequency that eliminates flicker and noise while

447

DOE Lighting Program Update: LED Validation Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Lighting Program Update DOE Lighting Program Update LED Validation Activities Kelly Gordon Pacific Northwest National Laboratory Federal Utility Partnership Working Group April 15, 2010 Providence, RI www.ssl.energy.gov 2 | Solid-State Lighting Program Legislative Mandate The DOE is directed by U.S. government policy (EPACT 2005, Section 912) to: "...support research, development, demonstration, and commercial application activities related to advanced solid-state lighting technologies based on white light emitting diodes." DOE Lighting Program www.ssl.energy.gov 3 | Solid-State Lighting Program SSL Energy Saving Potential By 2030: * Potential to cut U.S. lighting electricity use by 25% * Cumulative energy savings: $120 billion * Annual energy savings equivalent to:

448

Electric Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Power Electric Power From incandescent bulbs to fluorescents to LEDs, learn more about the long history of the light bulb. From incandescent bulbs to fluorescents to LEDs, learn more about the long history of the light bulb. Electricity -- the flow of electrical power -- is a secondary energy source, generated by the conversion of primary sources of energy, like fossil, nuclear, wind or solar. Keeping the power flowing to American homes and businesses is a critical necessity for everyday life and economic vitality. The Energy Department works to keep the grid secure from cyber and physical attacks; partners with states and other stakeholders to plan more resilient infrastructure that can better withstand extreme weather events; and supports efforts to

449

Electricity and Gravitation  

Science Journals Connector (OSTI)

Electric Doublet Theory of Gravitation.It is suggested that gravitation may be an effect arising from fluctuations of the electric charges associated with the electrons and positive nuclei of atoms. It is assumed (1) that the ether contains an enormous number of electric doublets moving in all directions with the speed of light; (2) that each charged particle is continually both absorbing and emitting doublets at a rate proportional to its mass; and (3) that during the absorption and emission of each doublet the charge on the particle fluctuates. If these fluctuations exist, it is shown that the mean value of the force exerted by one charged particle on another includes, in addition to the ordinary electrostatic force, an attraction proportional to the product of the masses.Electric Doublet Theory of Radiation.If we suppose that the doublets emitted by a particle possess available energy only when the energy of the particle changes, and that the effect of changing the energy is to produce periodic gaps in the emission of doublets with a frequency proportional to the amount of energy lost, we have a theory of radiation which is said to be compatible with the theories of Bohr, Planck and Einstein.

H. Bateman

1921-01-01T23:59:59.000Z

450

Estimate of federal relighting potential and demand for efficient lighting products  

SciTech Connect

The increasing level of electric utility rebates for energy-efficient lighting retrofits has recently prompted concern over the adequacy of the market supply of energy-efficient lighting products (Energy User News 1991). In support of the U.S. Department of Energy`s Federal Energy Management Program, Pacific Northwest Laboratory (PNL) has developed an estimate of the total potential for energy-efficient lighting retrofits in federally owned buildings. This estimate can be used to address the issue of the impact of federal relighting projects on the supply of energy-efficient lighting products. The estimate was developed in 1992, using 1991 data. Any investments in energy-efficient lighting products that occurred in 1992 will reduce the potential estimated here. This analysis proceeds by estimating the existing stock of lighting fixtures in federally owned buildings. The lighting technology screening matrix is then used to determine the minimum life-cycle cost retrofit for each type of existing lighting fixture. Estimates of the existing stock are developed for (1) four types of fluorescent lighting fixtures (2-, 3-, and 4-lamp, F40 4-foot fixtures, and 2-lamp, F96 8-foot fixtures, all with standard magnetic ballasts); (2) one type of incandescent fixture (a 75-watt single bulb fixture); and (3) one type of exit sign (containing two 20-watt incandescent bulbs). Estimates of the existing stock of lighting fixtures in federally owned buildings, estimates of the total potential demand for energy-efficient lighting products if all cost-effective retrofits were undertaken immediately, and total potential annual energy savings (in MWh and dollars), the total investment required to obtain the energy savings and the present value of the efficiency investment, are presented.

Shankle, S.A.; Dirks, J.A.; Elliott, D.B.; Richman, E.E.; Grover, S.E.

1993-11-01T23:59:59.000Z

451

Energy saving in lighting system with fuzzy logic controller which uses light-pipe and dimmable ballast  

Science Journals Connector (OSTI)

Approximately, 20% of the electricity consumed in the world is spent for lighting. More efficient utilization of the sun, as a natural source of light, for lighting would save electricity used for lighting. The aim of this study is to illuminate a windowless room via a light-pipe and dimmable electronic ballasts. Light-pipe is used for the illumination of the space during the daytime. In case of inadequate daylight, artificial lighting is made via dimmable electronic ballasts and fluorescence lamps. Artificial lighting is supervised by a fuzzy logic control system to keep the illumination level at 350lux. When there is a motion in the room, the system works with the message of the motion sensor, which, thereby, enables energy saving. Additionally, dimming the lamps result in conversation of the electrical energy used for illumination. After the experimental studies, 350lux value targeted in the work plane is achieved with 10lux error.

Serta Grgl; Nazmi Ekren

2013-01-01T23:59:59.000Z

452

Light's twist  

Science Journals Connector (OSTI)

...Glasgow G12 8QQ, UK An invited Perspective to mark the election of Miles Padgett to the fellowship of the Royal Society in 2014. That...energy and momentum flow within light beams can twist to form vortices such as eddies in a stream. These...

2014-01-01T23:59:59.000Z

453

Talquin Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Talquin Electric Coop, Inc Talquin Electric Coop, Inc Place Quincy, Florida Utility Id 18449 Utility Location Yes Ownership C NERC Location FRCC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial General Service Non-Demand Three Phase Service Commercial General Service Demand Industrial General Service Large Demand 12KV upto 69KV Industrial General Service Large Demand 69KV or above Industrial General Service Non-Demand Single Phase Service Commercial Outdoor Lighting Larger than Standard Area Light Lighting Outdoor Lighting Standard Area/Street Light Lighting

454

Community Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Community Electric Coop Community Electric Coop Place Virginia Utility Id 4117 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighitng Floodlight 45,000 Lumen Lighting Area Lighting Floodlight 24,700 Lumen Lighting Area Lighting Security Light 8,500 Lumen Lighting Schedule A- Residential Service Residential Schedule A-U - Residential Service Residential Schedule A-U-RA - Residential Service (Retail Access) Residential Schedule B- General Service (Three phase service) Commercial

455

Hood River Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Hood River Electric Coop Hood River Electric Coop Place Oregon Utility Id 8830 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Irrigation Commercial Outdoor Lighting 100 watt HPS Light Lighting Outdoor Lighting 200 watt HPS Light Lighting Residential Residential Residential B Residential Residential Three Phase Residential Average Rates Residential: $0.0656/kWh Commercial: $0.0641/kWh Industrial: $0.0522/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

456

Price Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Price Electric Coop Inc Price Electric Coop Inc Place Wisconsin Utility Id 15356 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial-Peak Alert Commercial Commercial-With Demand-Three Phase Industrial Commercial-Without Demand-Single Phase Commercial Commercial-Without Demand-Three Phase Commercial Dual Fuel Commercial Lighting 100 Watt Outdoor Light Lighting Lighting 250 Watt Street Light Lighting Residential, Seasonal, and Farm Residential Average Rates Residential: $0.1650/kWh

457

Kay Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Electric Coop Electric Coop Place Oklahoma Utility Id 10012 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Lighting and Power Commercial Industrial Lighting and Power Industrial Large Power Services LP-2 Industrial Large Power Services LP-4 Industrial OWP-Oil Well Pumping Industrial Residential Residential Security Lighting HPS 100 W Existing Pole Lighting Security Lighting HPS 100 W Existing Pole and Service Lighting Average Rates Residential: $0.1200/kWh Commercial: $0.1080/kWh

458

Tombigbee Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Tombigbee Electric Coop, Inc Tombigbee Electric Coop, Inc Place Alabama Utility Id 19027 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting: High pressure Sodium 100 W, 8650 Lumens Lighting Outdoor Lighting: High pressure Sodium 400 W, 4500 Lumens Lighting Outdoor Lighting: Mercury Vapor or Incandescent 175 W, 7650 Lumens Lighting Residential Residential Three-Phase General Service - 25 KVA or greater Industrial Three-Phase General Service - less than 25 KVA Industrial Average Rates

459

Wells Rural Electric Co | Open Energy Information  

Open Energy Info (EERE)

Rural Electric Co Rural Electric Co Place Nevada Utility Id 20332 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Irrigation Service Commercial Large Commercial Commercial Large Power Service (51-500 KVA) Industrial Municipal Street Light Lighting Residential Service Residential Seasonal Service Commercial Security Light- 175 W Lighting Security Light-250 W Lighting Small Commercial Commercial Small Irrigation Service Commercial

460

Lighthouse Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Lighthouse Electric Coop, Inc Lighthouse Electric Coop, Inc Place Texas Utility Id 11014 Utility Location Yes Ownership C NERC Location SPP NERC ERCOT Yes NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Interruptible Irrigation Rate Rider Commercial Irrigation Commercial Large Power Service Industrial Large Power at Wholesale Delivery Point Industrial Residential-Single Phase Residential Residential-Three Phase Residential Seasonal Agricultural Processing Service Commercial Security Lighting 100W HPS Lighting Security Lighting 175W MV Lighting Security Lighting 250W HPS Lighting

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Electricity 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity > Soliciting comments on EIA-111 Electricity > Soliciting comments on EIA-111 EIA announces the proposal of Form EIA-111, Quarterly Electricity Imports and Exports Report Released: August 15, 2011 Background On August 11, 2011, a Federal Register Notice was published soliciting comments for the new EIA-111 survey form. The EIA-111, Quarterly Electricity Imports and Exports Report will replace the OE-781R, Monthly Electricity Imports and Exports Report. The OE-781R has been suspended and will be terminated upon the approval of the EIA-111. The OE-781R administered from July 2010 through May 2011, proved complex and confusing for the repondents. As a result, the EIA-111 was developed to more effectively and efficiently collect more accurate and meaningful data. The Paperwork Reduction Act (PRA) of 1995 requires that each Federal agency obtains approval from the Office of Management and Budget (OMB) before undertaking to collect information from ten or more persons, or continuing a collection for which the OMB approval and the OMB control number are about to expire. The approval process, which is popularly known as the "OMB clearance process," is extensive. It requires two Federal Register notices and a detailed application ("supporting statement") to OMB. The first Federal Register Notice was published on August 11, 2011. EIA is prepared to address the comments submitted by each individual.

462

The Momentum of Light - C  

NLE Websites -- All DOE Office Websites (Extended Search)

C. More direct evidence C. More direct evidence As we've noted, relativity theory implies that a quantum of energy ought to be a quantum of momentum as well. While Einstein's analysis showed that this idea was consistent with known facts about light and matter, modern experiments with individual light quanta and subatomic particles demonstrate the existence of momentum quanta more directly. One early demonstration was an effect studied by Arthur Holly Compton. When x-rays a high-frequency form of light-collide with atoms, the x-rays scatter in all directions accompanied by electrons from the atoms. The wavelength of the scattered x-rays and the momentum of the electrons both vary with their direction of motion. While the classical theory of light and electricity doesn't explain the variation actually observed, the

463

Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content  

SciTech Connect

REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of todays EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Powers motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

None

2012-01-01T23:59:59.000Z

464

Reducing carbon dioxide to products  

DOE Patents (OSTI)

A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

2014-09-30T23:59:59.000Z

465

Types of Lighting in Commercial Buildings - Building Size and Year  

U.S. Energy Information Administration (EIA) Indexed Site

Lighting and Building Size and Year Constructed Lighting and Building Size and Year Constructed Building Size Smaller commercial buildings are much more numerous than larger commercial buildings, but comprise less total floorspace-the 1,001 to 5,000 square feet category includes more than half of total buildings, but just 11 percent of total floorspace. In contrast, just 5 percent of buildings are larger than 50,000 square feet, but they account for half of total floorspace. Lighting consumes 38 percent of total site electricity. Larger buildings consume relatively more electricity for lighting than smaller buildings. Nearly half (47%) of electricity is consumed by lighting in the largest buildings (larger than 500,000 square feet). In the smallest buildings (1,001 to 5,000 square feet), one-fourth of electricity goes to lighting

466

Carroll Electric Coop Corp | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Carroll Electric Coop Corp Place Arkansas Utility Id 3093 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Security Lights: 100-watt high pressure sodium, with shield Lighting Security Lights: 100-watt high pressure sodium, without shield Lighting Security Lights: 1000-watt metal halide (directional) Lighting Security Lights: 150-watt high pressure sodium, with shield Lighting

467

Pedernales Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

PEC) PEC) Jump to: navigation, search Name Pedernales Electric Coop, Inc Place Texas Utility Id 14626 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting-- 100 w Sodium Lighting Area Lighting-- 175 w Mercury Vapor Lighting Area Lighting-- 175 w Metal Halide Lighting Area Lighting-- 250 w Sodium Lighting Commercial Small Power-Renewable Commercial Commercial Small Power-Secondary Commercial

468

Rural Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Coop, Inc Coop, Inc Jump to: navigation, search Name Rural Electric Coop, Inc Place Oklahoma Utility Id 16382 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 175 Watt MVL Lighting 250 Watt MVL Lighting 400 Watt MVL Lighting 700 Watt MVL Lighting Commercial Lighting and Power , Three-Phase Commercial Commercial Lighting and Power 2 , Three-Phase Commercial Commercial Lighting and Power Sevice 2,Single -Phase Commercial Commercial Lighting and Power Sevice, Single-Phase Commercial Farm and Residential Services Residential

469

Liberty Utilities (Electric) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liberty Utilities (Electric) - Residential Energy Efficiency Rebate Liberty Utilities (Electric) - Residential Energy Efficiency Rebate Programs Liberty Utilities (Electric) - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Sealing Your Home Ventilation Commercial Lighting Lighting Maximum Rebate Home Performance with ENERGY STAR®: $4000 Program Info Funding Source NH Saves State New Hampshire Program Type Utility Rebate Program Rebate Amount Home Performance with ENERGY STAR®: up to $4,000 for improvements ENERGY STAR® Homes Qualification: custom incentives and technical support

470

Farmers Electric Cooperative (Kalona) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers Electric Cooperative (Kalona) - Residential Energy Farmers Electric Cooperative (Kalona) - Residential Energy Efficiency Rebate Program Farmers Electric Cooperative (Kalona) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Geothermal Heat Pumps: 5 ton CFL Bulbs: 12 bulbs per year Program Info State Iowa Program Type Utility Rebate Program Rebate Amount CFL Bulbs: $2/bulb Geothermal Heat Pumps (New Construction): $350/ton Geothermal Heat Pumps (Upgrade): $700/ton Air Source Heat Pumps (New Construction): $800 Air Source Heat Pumps (Upgrade): $400 Central Air Conditioners: $100 - $200 Heat Pump Water Heaters: $400

471

Navopache Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Navopache Electric Coop, Inc Navopache Electric Coop, Inc Jump to: navigation, search Name Navopache Electric Coop, Inc Place Arizona Utility Id 13318 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt HPS 34 kWh Cooperative Owned Lighting 100 Watt HPS 34 kWh Customer Owned Lighting 100 Watt HPS 34 kWh Street Lighting 1000 Watt Lamp 435 kWh Street Lighting 150 Watt HPS 50 kWh Cooperative Owned Lighting 150 Watt HPS 50 kWh Customer Owned Lighting 150 Watt MVL 50 kWh Street Light Lighting 175 Watt MVL 75 kWh Cooperative Owned Lighting

472

NorthWestern Energy (Electric) - Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NorthWestern Energy (Electric) - Commercial Energy Efficiency NorthWestern Energy (Electric) - Commercial Energy Efficiency Rebate Program (Montana) NorthWestern Energy (Electric) - Commercial Energy Efficiency Rebate Program (Montana) < Back Eligibility Agricultural Commercial Construction Industrial Savings Category Other Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate Lighting: Rebates will not be provided for lamps or fixtures placed in stock in excess of 5% of installed equipment Program Info Funding Source Electric default supply rates for its default supply customers. State Montana Program Type

473

VIA Motors electric vehicle platform  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extended-Range Electric Trucks Extended-Range Electric Trucks The fuel economy of a Prius with the payload of a pickup VIA's E-REV powertrain is ideal for America's fleets, cutting fuel costs by up to 75%, while dramatically reducing petroleum consumption and emissions- electricity costs an average of 60 cents per equivalent gallon. Recharging daily, the average driver could expect to refill the gas tank less than 10 times a year rather than once a week. It offers all the advantages of an electric vehicle, without range limitations. Working with vehicle manufacturers, VIA plans to begin delivering E-REV trucks to government and utility fleets in 2011. The onboard generator provides a work site with 15 kW of exportable power Up to 40 miles in all-electric mode and up to 300 miles using the range extender

474

Energy 101: Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicles Electric Vehicles Energy 101: Electric Vehicles January 9, 2012 - 4:22pm Addthis A look at how electric vehicles (EVs) work and what current and future models are doing to cut transit costs, reduce emissions, and strengthen our nation's energy security. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs While the North American International Auto Show is slated to kick off today in Detroit, and the industry is already abuzz with the latest innovations in electric vehicles, we wanted to take a moment to highlight how electric vehicles (EVs) work and what current and future models are doing to cut transit costs, reduce emissions, and strengthen our nation's energy security. The basic principles behind the technology are this: the electric

475

Energy 101: Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Electric Vehicles Energy 101: Electric Vehicles Energy 101: Electric Vehicles January 9, 2012 - 4:22pm Addthis A look at how electric vehicles (EVs) work and what current and future models are doing to cut transit costs, reduce emissions, and strengthen our nation's energy security. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs While the North American International Auto Show is slated to kick off today in Detroit, and the industry is already abuzz with the latest innovations in electric vehicles, we wanted to take a moment to highlight how electric vehicles (EVs) work and what current and future models are doing to cut transit costs, reduce emissions, and strengthen our nation's energy security. The basic principles behind the technology are this: the electric

476

Superconductivity for electric power systems: Program overview  

SciTech Connect

Largely due to government and private industry partnerships, electric power applications based upon high-temperature superconductivity are now being designed and tested only seven years after the discovery of the high-temperature superconductors. These applications offer many benefits to the national electric system including: increased energy efficiency, reduced equipment size, reduced emissions, increased stability/reliability, deferred expansion, and flexible electricity dispatch/load management. All of these benefits have a common outcome: lower electricity costs and improved environmental quality. The U.S. Department of Energy (DOE) sponsors research and development through its Superconductivity Program for Electric Power Systems. This program will help develop the technology needed for U.S. industries to commercialize high-temperature superconductive electric power applications. DOE envisions that by 2010 the U.S. electric power systems equipment industry will regain a major share of the global market by offering superconducting products that outperform the competition.

Not Available

1995-02-01T23:59:59.000Z

477

Ames Electric Department - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ames Electric Department - Residential Energy Efficiency Rebate Ames Electric Department - Residential Energy Efficiency Rebate Programs Ames Electric Department - Residential Energy Efficiency Rebate Programs < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Commercial Lighting Lighting Maximum Rebate Appliances: 50% of the equipment cost Programmable Thermostats: 3 per household Room AC: 2 per household Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Star New Home: $500 Energy Audit: FREE Lighting: $2 - $16 per fixture Lighting Sensors: $10 per unit Refrigerators: $25 - $100 Freezers: $50 Dishwashers: $50

478

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

479

Lighting the Way to Serious Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting the Way to Serious Savings Lighting the Way to Serious Savings Lighting the Way to Serious Savings April 1, 2013 - 6:02pm Addthis Smart lighting choices can save you money. Smart lighting choices can save you money. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Make educated choices when buying light bulbs to save energy and money. Pretty much everybody these days uses electric lighting to keep their households and businesses running during the day and night. Most of us take our electric lights - which make our offices more productive and our homes more comfortable and useful - for granted, and we only really only notice how integral to our lives they are when power goes out. But all of those lights consume energy. Lots of it, in fact.

480

Lighting the Way to Serious Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting the Way to Serious Savings Lighting the Way to Serious Savings Lighting the Way to Serious Savings April 1, 2013 - 6:02pm Addthis Smart lighting choices can save you money. Smart lighting choices can save you money. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Make educated choices when buying light bulbs to save energy and money. Pretty much everybody these days uses electric lighting to keep their households and businesses running during the day and night. Most of us take our electric lights - which make our offices more productive and our homes more comfortable and useful - for granted, and we only really only notice how integral to our lives they are when power goes out. But all of those lights consume energy. Lots of it, in fact.

Note: This page contains sample records for the topic "reduce lighting electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ELECTRIC RAILWAYS  

Science Journals Connector (OSTI)

...candidate. It is safe to say that the...education in the fundamental facts and methods...Steam-engine, boilers and dynamos...road in successful operation upon or-dinary...been in successful operation for several years...now in successful operation electric rail-ways...

W. D. Marks

1886-04-09T23:59:59.000Z

482

Electric Propulsion  

Science Journals Connector (OSTI)

...is clear. The long-t?me continuous operation is required for electric propulsion pri-marily...travel against a small voltage to the cold element. The cell thereby produces an...concentrate and focus the solar rays on a heater. Little, if any, decrease in specific...

W. E. Moeckel

1963-10-11T23:59:59.000Z

483

Electricity costs  

Science Journals Connector (OSTI)

... index is used to correct for inflation. The short answer is given by the Central Electricity Generating Board's (CEGB's) 1980-81 report, paragraph 168. "The ... Generating Board's (CEGB's) 1980-81 report, paragraph 168. "The cost per kWh of fuel. . . rose by 18.6 per cent (between 1979 ...

J.W. JEFFERY

1982-03-18T23:59:59.000Z

484

electrical, engineering  

E-Print Network (OSTI)

in groundbreaking community solar project PMC-based technology products enter the market Expanding our capacity: new learning educational gaming energy-efficient data storage and computing health informatics haptic education K-12 STEM electrical energy storage thermal energy storage and conversion energy production

Zhang, Junshan

485

Southeast Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Montana Montana Utility Id 17593 Utility Location Yes Ownership C NERC Location WECC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Three Phase Commercial Electric Heat Commercial Commercial Electric Heat Residential Residential Residential Residential Security Light 150 and 175 watt Lighting Security Light 400 watt Lighting Stock Water Well Residential Average Rates Residential: $0.1380/kWh Commercial: $0.1080/kWh Industrial: $0.0617/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Southeast_Electric_Coop,_Inc&oldid=411556

486

Plateau Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

Plateau Electric Cooperative Plateau Electric Cooperative Jump to: navigation, search Name Plateau Electric Cooperative Place Tennessee Utility Id 15141 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial GSA 0-50 kW Commercial Commercial GSA 1001-5000 kW Commercial Commercial GSA 51-1000 kw Commercial Industrial GSA 0-50 kW Industrial Industrial GSA 1001-5000 kW Industrial Industrial GSA 51-1000 kw Industrial Residential Rate Residential outdoor light(100 High Pressure Sodium) Lighting outdoor light(175 Mercury Vapor) Lighting

487

Indian Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Jump to: navigation, search Name Indian Electric Coop, Inc Place Oklahoma Utility Id 9246 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service - HLF Commercial General Service Multi-Phase Commercial General Service Single-Phase Commercial Industrial Industrial Large Commercial Commercial Medium Commercial Residential Residential Service City Residential Residential Service Rural Residential Security Lighting MV/HPS 175 W Lighting Security Lighting MV/HPS 250 W Lighting

488

Laclede Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Laclede Electric Coop, Inc Laclede Electric Coop, Inc Place Missouri Utility Id 10603 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting HPS 100 W Lighting Outdoor Lighting HPS 150 W Lighting Residential Residential Average Rates Residential: $0.0904/kWh Commercial: $0.0965/kWh Industrial: $0.0805/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Laclede_Electric_Coop,_Inc&oldid=410961

489

Swisher Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Jump to: navigation, search Name Swisher Electric Coop, Inc Place Texas Utility Id 18199 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Single Phase Commercial Commercial Service Three Phase Commercial Cotton Gin Service Industrial General Service Single-Phase Residential General Service Three-Phase Residential Irrigation Service Commercial Large Power Service Industrial Security Lighting Service Metered 175 MV Lighting Security Lighting Service Metered 400 MV Lighting

490

Bluebonnet Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Bluebonnet Electric Coop, Inc Bluebonnet Electric Coop, Inc Jump to: navigation, search Name Bluebonnet Electric Coop, Inc Place Texas Utility Id 1892 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial- Three Phase Commercial Commercial-Single Phase Commercial Green Energy General Service Residential Large Power Industrial Lighting Service (100 Watt Hi-Pressure Sodium-metered) Lighting Lighting Service (100 Watt Hi-Pressure Sodium-unmetered) Lighting

491

Homer Electric Assn Inc | Open Energy Information  

Open Energy Info (EERE)

Homer Electric Assn Inc Homer Electric Assn Inc Jump to: navigation, search Name Homer Electric Assn Inc Place Alaska Utility Id 19558 Utility Location Yes Ownership C NERC Location AK ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Industrial Industrial Large General Service Commercial Outdoor Lighting 175 watt lamp Lighting Outdoor Lighting 250 Lighting

492

Modern Electric Water Company | Open Energy Information  

Open Energy Info (EERE)

Modern Electric Water Company Modern Electric Water Company Jump to: navigation, search Name Modern Electric Water Company Place Washington Utility Id 12744 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL - SCHEDULE 30 Industrial COMMERCIAL - SCHEDULE 32 Industrial RESIDENTIAL - SCHEDULE 35 Residential STREET LIGHTS 100 Watt Lighting STREET LIGHTS 200 Watt Lighting Average Rates Residential: $0.0559/kWh Commercial: $0.0551/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"