Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Reducing Industrial Energy Intensity in the Southeast Project...  

Broader source: Energy.gov (indexed) [DOE]

Industrial Energy Intensity in the Southeast Project Fact Sheet Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet This fact sheet contains details regarding...

2

Reducing Industrial Energy Intensity in the Southeast Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Authority and its project partners will establish the Southeastern Center for Industrial Energy Intensity Reduction (the Center) to inform industrial facilities about the U.S....

3

Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet  

Broader source: Energy.gov [DOE]

This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Mississippi.

4

Understanding and reducing energy and costs in industrial cooling systems  

E-Print Network [OSTI]

Industrial cooling remains one of the largest potential areas for electrical energy savings in industrial plants today. This is in spite of a relatively small amount of attention paid to it by energy auditors and rebate program designers. US DOE...

Muller, M.R.; Muller, M.B.

2012-01-01T23:59:59.000Z

5

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

Not Available

2008-12-01T23:59:59.000Z

6

Industrial Approaches to Reducing Energy Costs in a Restructuring Electric Industry  

E-Print Network [OSTI]

. Although many electricity providers will offer their services in a restructure U.S. electricity market, it is not clear which pow r producers industrial customers wil1 buy from. James Rouse, associate director of energy policy for Praxair, Inc., thinks...

Lowe, E. T.

7

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

World Best Practice Energy Intensity Values for SelectedChina抯 Target for Energy Intensity Reduction in 2010: Angoal of reducing energy intensity, defined as energy

Price, Lynn

2008-01-01T23:59:59.000Z

8

Strategic Industrial Energy Efficiency: Reduce Expenses, Build Revenues, and Control Risk  

E-Print Network [OSTI]

Some manufacturing companies successfully boost their financial performance through optimized energy use. This leads not only to reduced energy consumption and associated environmental benefits, but also to capacity improvements that generate...

Russell, C.

2004-01-01T23:59:59.000Z

9

Reduces electric energy consumption  

E-Print Network [OSTI]

BENEFITS 路 Reduces electric energy consumption 路 Reduces peak electric demand 路 Reduces natural gas consumption 路 Reduces nonhazardous solid waste and wastewater generation 路 Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

10

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

Monitoring of Direct Energy Consumption in Long-Term2007. 揅onstraining Energy Consumption of China抯 LargestProgram: Reducing Energy Consumption of the 1000 Largest

Price, Lynn

2008-01-01T23:59:59.000Z

11

Energy Department Partners with Industry to Train Federal Energy...  

Energy Savers [EERE]

Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs...

12

China's Top-1000 Energy-Consuming Enterprises Program:Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

SciTech Connect (OSTI)

In 2005, the Chinese government announced an ambitious goal of reducing energy consumption per unit of GDP by 20% between 2005 and 2010. One of the key initiatives for realizing this goal is the Top-1000 Energy-Consuming Enterprises program. The energy consumption of these 1000 enterprises accounted for 33% of national and 47% of industrial energy usage in 2004. Under the Top-1000 program, 2010 energy consumption targets were determined for each enterprise. The objective of this paper is to evaluate the program design and initial results, given limited information and data, in order to understand the possible implications of its success in terms of energy and carbon dioxide emissions reductions and to recommend future program modifications based on international experience with similar target-setting agreement programs. Even though the Top-1000 Program was designed and implemented rapidly, it appears that--depending upon the GDP growth rate--it could contribute to somewhere between approximately 10% and 25% of the savings required to support China's efforts to meet a 20% reduction in energy use per unit of GDP by 2010.

Price, Lynn; Price, Lynn; Wang, Xuejun; Yun, Jiang

2008-06-02T23:59:59.000Z

13

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

reducing energy consumption per unit of GDP by 20% between20% reduction in energy use per unit of GDP by 2010. China'sincrease in energy use per unit of GDP after 2002 following

Price, Lynn

2008-01-01T23:59:59.000Z

14

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry  

SciTech Connect (OSTI)

The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-07-01T23:59:59.000Z

15

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry  

SciTech Connect (OSTI)

The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-07-01T23:59:59.000Z

16

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

2005. Navigating Energy Management: A Roadmap for Business.Characteristics and Energy Management Opportunities. BurtonCaffal, C. 1995. Energy Management in Industry. Centre for

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

17

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Best Practices. Case Study朤he Challenge: Improving Ventilation System Energy EfficiencyEnergy Efficiency & Renewable Energy (EERE), Office of Industrial Technologies. 2000. Best PracticesEnergy Efficiency Actions for Plant Personnel96 iii Appendix D: Assessing Energy Management Systems for Best Practices .

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

18

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

energy audits, energy benchmarking, and identification of energy-efficient technologies and measures, working with provincial-level energy conservation centers and technical universities

Price, Lynn

2008-01-01T23:59:59.000Z

19

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

Shandong Economic and Trade Commission, Energy Saving Officecenter energy conservation plan exajoule Economic and TradeEconomic and Trade Commission (SETC), and the China Energy

Price, Lynn

2008-01-01T23:59:59.000Z

20

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

R. , 2000. The UK Energy Efficiency Best Practice Programme.within the Energy Efficiency Best Practices Program (Shock,Australia抯 Energy Efficiency Best Practice Guides, the

Price, Lynn

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

recently. In 2006, total energy consumption reached 2,4577.5% per year, total energy consumption in 2010 will reachof Enterprises Total Energy Consumption Mtce pe tro iro le

Price, Lynn

2008-01-01T23:59:59.000Z

22

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

China抯 total primary energy consumption in 2005, along withof China抯 total primary energy consumption (Lin et al. ,accounted for, the primary energy consumption of the Top-

Price, Lynn

2008-01-01T23:59:59.000Z

23

Save Energy Now for Maryland Industry Project Fact Sheet | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Maryland Industry Project Fact Sheet More Documents & Publications Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet Idaho Save Energy Now - Industries of...

24

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

L. , Worrell, E. , and Sinton, J. , 2005a. 揇esigning EnergyPrice, L. , Galitsky, C. , Sinton, J. , Worrell, E. , Graus,Price, L, Worrell, E. , Sinton, J. , and Jiang, Y. , 2003.

Price, Lynn

2008-01-01T23:59:59.000Z

25

Ohio Center for Industrial Energy Efficiency Fact Sheet | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industrial Energy Efficiency Fact Sheet More Documents & Publications Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet Save Energy Now Pennsylvania Project...

26

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich; Dunham Whitehead, Camilla; Brown, Rich

2010-09-30T23:59:59.000Z

27

Energy Matters: Industrial Energy Efficiency | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Matters: Industrial Energy Efficiency Energy Matters: Industrial Energy Efficiency November 18, 2011 - 2:33pm Addthis On November 16, 2011, Deputy Assistant Secretary for Energy...

28

RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions  

SciTech Connect (OSTI)

In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. A major thrust of the campaign was to ensure that the nation's natural gas supplies would be adequate for all Americans, especially during home heating seasons. In a presentation to the National Press Club on October 3, 2005, Secretary Bodman said: 'America's businesses, factories, and manufacturing facilities use massive amounts of energy. To help them during this period of tightening supply and rising costs, our Department is sending teams of qualified efficiency experts to 200 of the nation's most energy-intensive factories. Our Energy Saving Teams will work with on-site managers on ways to conserve energy and use it more efficiently.' DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy assessments. The approach for these assessments drew heavily on the existing resources of ITP's Technology Delivery component. Over the years, ITP-Technology Delivery had worked with industry partners to assemble a suite of respected software decision tools, proven assessment protocols, training curricula, certified experts, and strong partnerships for deployment. Because of the program's earlier activities and the resources that had been developed, ITP was prepared to respond swiftly and effectively to the sudden need to promote improved industrial energy efficiency. Because of anticipated supply issues in the natural gas sector, the Save Energy Now initiative strategically focused on natural gas savings and targeted the nation's largest manufacturing plants--those that consume a total of 1 trillion British thermal units (Btu) or more annually. The approximately 6800 U.S. facilities that fall into this category collectively account for about 53% of all energy consumed by industry in the United States. The 2006 Save Energy Now energy assessments departed from earlier DOE plant assessments by concentrating solely on steam and process heating systems, which are estimated to account for approximately 74% of all natural gas use for manufacturing. The assessments also integrated a strong training component designed to teach industrial plant personnel how to use DOE's steam or process heating opportunity assessment software tools. This approach had the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the assessment process at the company's other facilities. The Save Energy Now initiative also included provisions to help plants that applied for but did not qualify for assessments (based on the 1 trillion Btu criterion). Services offered to these plants included (1) an assessment by one of DOE's 26 university-based Industrial Assessment Centers (IACs), (2) a telephone consultation with a systems expert at the DOE's Energy Efficiency and Renewable Energy Information Center, or (3) other technical materials and services available through ITP (e.g., the Save Energy Now CD). By the end of 2006, DOE had completed all 200 of the promised assessments, identifying potential natural gas savings of more than 50 trillion Btu and energy cost savings of about $500 million. These savings, if fully implemented, could reduce CO2 emissions by 4.04 million metric tons annually. These results, along with the fact that a large percentage of U.S. energy is used by a relatively small number of very large plants, clearly suggest that assessments are an expedient and cost-effective way to significantly affect large amounts of energy use. Building on the success of the 2006 initiative, ITP has expanded the effort in 2007 with the goal of conducting 250 more asse

Wright, Anthony L [ORNL; Martin, Michaela A [ORNL; Gemmer, Bob [U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Scheihing, Paul [U.S. Department of Energy, Industrial Technologies Program; Quinn, James [U.S. Department of Energy

2007-09-01T23:59:59.000Z

29

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Efficiency Alliance, Electric Motor Management. 2001. Motor2002. United States Industrial Electric Motor Systems Marketaccessed March 23, Motors Electric motors represent one of

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

30

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

31, 2010. ) U.S. DOE Energy Efficiency & Renewable Energy (3, 2010. ) Northwest Energy Efficiency Alliance, ElectricEPRI. 1997. Quality Energy Efficiency Retrofits for Water

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

31

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

in a strategic energy management program are depicted inof a strategic energy management program A successful

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

32

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

33

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

2009. Handbook of Energy Audits, Eighth Edition. Associationbent is the Handbook of Energy Audits, Eighth Edition. 2009.Investment Grade Energy Audit. Available at bookstores or:

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

34

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

representatives. Next Steps Energy Awareness None conducted.PowerPoint presentation on energy awareness and Excel filesdegree Occasional energy efficiency awareness campaigns.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

35

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Agriculture (USDA). USDA抯 Rural Energy for America Program/to rural businesses, for instance for energy audits. Inrural small businesses and agricultural producers for energy

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

36

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Energy efficiency integrated into organizational culture.use and organizational goals for energy efficiency. Stafforganizational commitment to continuous improvement of energy efficiency.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

37

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

American Council for an Energy Efficient Economy (ACEEE).and S. Nadel. 2002. Energy-Efficient Motor Systems: ACouncil for an Energy-Efficient Economy. Washington, D.C.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

38

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Determining Electric Motor Load and Efficiency. Among theEnergy Efficiency Alliance, Electric Motor Management. 2001.Energy Efficiency Alliance, Electric Motor Management. 2001.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

39

Industrial Energy Efficiency and Climate Change Mitigation  

SciTech Connect (OSTI)

Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

2009-02-02T23:59:59.000Z

40

Reduce Air Infiltration in Furnaces; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #5 (Fact Sheet).  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof Energy Redefining Customer5 *

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Reduce Pumping Costs through Optimum Pipe Sizing: Industrial Technologies Program (ITP) Energy Tips - Pumping Systems Tip Sheet #9 (Fact Sheet).  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof Energy Redefining9 * October

42

Reduce Radiation Losses from Heating Equipment; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #7 (Fact Sheet).  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof Energy Redefining9 * October7

43

Industrial Energy Use Indices  

E-Print Network [OSTI]

of variations for all industry types in warm versus cold regions of the U.S. generally is greater than unity. Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used...

Hanegan, A.; Heffington, W. M.

2007-01-01T23:59:59.000Z

44

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

3. defining the performance indicator(s) to use to measureand targets; 6. performance indicators; 7. appropriateManager/Energy Performance Indicators. Extensive regular

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

45

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

1.pdf. (Last accessed September 2, 2010. ) EPRI. 1997.Retrofits for Water Systems. EPRI with the California EnergyFoundation Project # 298. EPRI report CR-107838. Palo Alto,

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

46

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

energy consumed by an incandescent bulb is emitted in thefluorescent (CFL), and incandescent lights typically arelamps in place of incandescent bulbs in most cases; and

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

47

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Building Energy Use Unaccounted-for Water Demand Managementdetermine whether its unaccounted-for losses exceed typicalof distribution zones Unaccounted-for treated water Units

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

48

Scottish Energy Research Academy Energy Industry Doctorates  

E-Print Network [OSTI]

on a case by case basis. 路 Wind energy 路 Marine energy 路 Bio-energy 路 Solar energyEnergy conversionScottish Energy Research Academy (SERA) Energy Industry Doctorates Project Selection Process Notes The Energy Technology Partnership (ETP) has established an Energy Industry Doctorate Programme

Painter, Kevin

49

Industrial energy use indices  

E-Print Network [OSTI]

gas consumption. Data from milder climates appears more scattered than that from colder climates. For example, the ratio of the average of coefficient of variations for all industry types in warm versus cold regions of the U.S. varies from 1....1 to 1.7 depending on the energy sources considered. The large data scatter indicates that predictions of energy use obtained by multiplying standard EUI data by plant area may be inaccurate and are less accurate in warmer than colder climates (warmer...

Hanegan, Andrew Aaron

2008-10-10T23:59:59.000Z

50

Electrical Energy Conservation and Load Management - An Industrial User's Viewpoint  

E-Print Network [OSTI]

Conservation of electrical energy and load management can reduce industry's electric bills, conserves natural resources and reduces the need for new generating plants. In recent years, industry has implemented extensive conservation programs. Some...

Jackson, C. E.

1984-01-01T23:59:59.000Z

51

Energy Efficiency and Industrial Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Nuclear Plant Docs CONTACT US Center for Advanced Energy Studies Energy Efficiency and Industrial Technology The Department conducts research for DOE, other...

52

Reduce Risk, Increase Clean Energy: How States and Cities are...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reduce Risk, Increase Clean Energy: How States and Cities are Using Old Finance Tools to Scale Up a New Industry Reduce Risk, Increase Clean Energy: How States and Cities are Using...

53

Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)  

SciTech Connect (OSTI)

The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

Not Available

2010-01-01T23:59:59.000Z

54

Scottish Energy Research Academy Energy Industry Doctorates  

E-Print Network [OSTI]

路 Solar energyEnergy conversion and storage 路 Energy materials 路 Grid and networks 路 Energy utilisationScottish Energy Research Academy (SERA) Energy Industry Doctorates in Renewable Energy Technologies 颅 Notes for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy

Painter, Kevin

55

Industrial Energy Audit Guidebook: Guidelines for Conducting...  

Open Energy Info (EERE)

Industry Resource Type: Guidemanual Website: china.lbl.govsiteschina.lbl.govfilesLBNL-3991E.Industrial%20Energy Industrial Energy Audit Guidebook: Guidelines for Conducting...

56

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

SciTech Connect (OSTI)

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

57

Terra nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment. Industrial Technologies Program (ITP) Save Energy Now Case Study.  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage 禄of Energy StrainClientDesignOffice -Template for aofof EnergyEconomy

58

EPRI's Industrial Energy Management Program  

E-Print Network [OSTI]

the Electric Power Research Institute has been establishing industry specific Centers and Offices nationwide to assist electric utilities and their customers in managing for a better use of energy. Hundreds of joint industry/utility projects... services thus supporting national objectives for a clean environment and a strong economic future. The Electric Power Research Institute (EPRI) recognizes that the management of energy use and the environmental impacts of industrial activity...

Mergens, E.; Niday, L.

59

Oklahoma Industrial Energy Management Program  

E-Print Network [OSTI]

The need for sound energy management is no longer worthy of debate. Action is necessary and much is being done by U.S. industry. Unfortunately, however, the majority of the work is being done by the few large energy intensive industries throughout...

Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

1979-01-01T23:59:59.000Z

60

Energy Savings in Industrial Buildings  

E-Print Network [OSTI]

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country抯 greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems...

Zhou, A.; Tutterow, V.; Harris, J.

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Scottish Energy Research Academy Energy Industry Doctorates  

E-Print Network [OSTI]

effectiveness. A defining characteristic of the programme is strong industry engagement where companies are co universities, across ETP's nine thematic focus areas: 路 Wind energy 路 Marine energy 路 Bio-energy 路 Solar energyEnergy conversion and storage 路 Energy materials 路 Grid and networks 路 Energy utilisation in buildings

Painter, Kevin

62

Energy Conservation in Industrial Lighting  

E-Print Network [OSTI]

In order to reduce energy use in lighting Union Carbide recently issued drastically reduced new lighting level standards. A computerized lighting cost program was also developed. Using this program a number of additional energy saving techniques...

Meharg, E.

1979-01-01T23:59:59.000Z

63

Energy efficiency opportunities within the powder coating industry - Energy audit and pinch analysis.  

E-Print Network [OSTI]

??The powder coating industries in Sweden use about 525 GWh of energy every year. The need to reduce the energy use is increasing due to (more)

Bergek, Charlotte

2011-01-01T23:59:59.000Z

64

Student Trainee (Energy Industry)  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission (FERC) is an independent regulatory agency that regulates and oversees various aspects of the energy markets within the United States. We value independence...

65

Continuous Improvement Energy Projects Reduce Energy Consumption  

E-Print Network [OSTI]

Continuous Improvement Energy Projects Reduce Energy Consumption Eric Niemeyer, Operations Superintendent Drilling Specialties Company A division of Chevron Phillips Chemical Company LP ESL-IE-14-05-31 Proceedings of the Thrity...

Niemeyer, E.

2014-01-01T23:59:59.000Z

66

Emerging energy-efficient technologies for industry  

SciTech Connect (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorne, Jennifer

2004-01-01T23:59:59.000Z

67

Outlook for Industrial Energy Benchmarking  

E-Print Network [OSTI]

The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common...

Hartley, Z.

68

CALIFORNIA ENERGY PETROLEUM INDUSTRY INFORMATION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION PETROLEUM INDUSTRY INFORMATION REPORTING ACT (PIIRA) PROGRAM REPORTING PETROLEUM AND NON-PETROLEUM ................................................... 40 PRODUCT DEFINITIONS Major Petroleum Product Storer and Terminal Weekly Report Major petroleum product storers, terminal

69

Energy conservation guide for industrial processes  

SciTech Connect (OSTI)

Th Energy Conservation Guide for industrial processes has simple instructions to survey energy use areas at Navy industrial activities like shipyards, Naval air rework facilities and government owned, contractor operated (GOCO) plants. This guide includes information and procedures on: organizing and conducting an industrial energy survey; evaluating purchased energy data; descriptions of industrial systems; and evaluation of industrial processes for conservation.

Not Available

1981-01-01T23:59:59.000Z

70

Industrial Energy Conservation Technology  

SciTech Connect (OSTI)

A separate abstract was prepared for each of the 55 papers presented in this volume, all of which will appear in Energy Research Abstracts (ERA); 18 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

Not Available

1980-01-01T23:59:59.000Z

71

Industrial energy conservation technology  

SciTech Connect (OSTI)

A separate abstract was prepared for each of the 60 papers included in this volume, all of which will appear in Energy Research Abstracts (ERA); 21 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

Schmidt, P.S.; Williams, M.A. (eds.)

1980-01-01T23:59:59.000Z

72

Energy Department Announces New Minorities in Energy Industry...  

Energy Savers [EERE]

Energy Department Announces New Minorities in Energy Industry Partner Network Energy Department Announces New Minorities in Energy Industry Partner Network November 18, 2014 -...

73

Industrial Energy Efficiency Projects Improve Competitiveness...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of...

74

Geothermal Energy Association Annual Industry Briefing: 2015...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal February 24, 2015...

75

Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company抯 Industrial End User Program  

Broader source: Energy.gov [DOE]

This case study describes the Southern California Gas Company抯 Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

76

Oklahoma Industrial Energy Management Program  

E-Print Network [OSTI]

In Oklahoma, industry consumes about 35% of the total energy consumed. While it is true that much work has been done in the larger companies, most small to medium sized companies have yet to undertake a substantial energy management program. Often...

Turner, W. C.; Estes, C. B.

1982-01-01T23:59:59.000Z

77

Energy Industry Analyst  

Broader source: Energy.gov [DOE]

This position is located in the Northeast Satellite Office of the Office of Energy Market Regulation (OEMR)/Division of Electric Power Regulation, East. OEMR works to promote and maintain...

78

Energy Industry Analyst  

Broader source: Energy.gov [DOE]

This Subject Matter Expert position is located in the Northeast satellite office of the Office of Energy Market Regulation (OEMR)/Division of Electric Power Regulation-East. OEMR serves the public...

79

Industrial Energy Efficiency Assessments  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indiana College Provides TrainingEnergy Efficiency

80

ENERGY SMART INDUSTRIAL PARTNER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironment > Voluntary ReportingAbout UsSponsorsIssue No.

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

E-Print Network [OSTI]

Banerjee, R. , 2005. Energy Efficiency and Demand SideKiln Systems, Energy Efficiency in the Cement Industry (Ed.for Improving Energy Efficiency, Reducing Pollution and

Price, Lynn

2010-01-01T23:59:59.000Z

82

Emerging energy-efficient industrial technologies  

SciTech Connect (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

2000-10-01T23:59:59.000Z

83

Borla Performance Industries, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Borla Performance Industries, Inc. America's Next Top Energy Innovator Challenge 1830 likes Borla Performance Industries, Inc. Oak Ridge National Laboratory Borla Performance...

84

Reducing Energy Demand in Buildings Through State Energy Codes...  

Energy Savers [EERE]

Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building...

85

Setting the Standard for Industrial Energy Efficiency  

E-Print Network [OSTI]

Voluntary Agreements for Energy Efficiency or GHG EmissionsACEEE Summer Study on Energy Efficiency in Industry, WestStandard for Industrial Energy Efficiency A. McKane 1 , R.

McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

2008-01-01T23:59:59.000Z

86

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

industry抯 share of global primary energy use declined toused 91 EJ of primary energy, 40% of the global total of 227eq/yr. Global and sectoral data on final energy use, primary

Worrell, Ernst

2009-01-01T23:59:59.000Z

87

Canada's Voluntary Industrial Energy Conservation Program  

E-Print Network [OSTI]

Industrial Energy Conservation in Canada is organized and promoted through a voluntary program that is administered by industry. Industry is divided into fifteen sectors, each of which is represented by a Voluntary Task Force. Information exchange...

Wolf, C. A., Jr.

1980-01-01T23:59:59.000Z

88

Ontario's Industrial Energy Services Program  

E-Print Network [OSTI]

% of the engineering costs up to a maximum depending on the size of the annual energy bill. Once the work has been completed and the consultant's invoice paid, a copy of the invoice and a co~y of the report is sent to the Ministry. After internal review, a cheque... represent approximately $600 million annually. Recently, the Ontario Ministry of Energy released a policy paper outlining the government's commitment to energy conservation and efficiency. One of the key areas was Industry, and the Ministry's programs...

Ploeger, L. K.

89

Benteler Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy Resources (Redirected from ECOWASBennington,Vermont:Benteler Industries

90

Greenline Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslandsGreen2V Jump506384掳,AES GE EFSGreenline Industries

91

Guardian Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump to:EnergyEnergy掳Guadeloupe:Industries

92

Energy Programs of the Texas Industrial Commission  

E-Print Network [OSTI]

The objectives of the Industrial Energy Conservation Program are to assist Texas industry in using energy more efficiently through seminars, workshops, technical information exchange and other supportive programs with the goal of conserving at least...

Heare, J.; dePlante, L. E.

1979-01-01T23:59:59.000Z

93

Energy Efficiency and Pollution Prevention: Industrial Efficiency Strategies  

E-Print Network [OSTI]

. ~ Water and sewage expenses are reduced by $400,000 per year. ~ Alternative cutting fluids and recycling technology reduced disposal costs by 75% ($640,000 per year). ~ Reduction in consumables (e.g., cutting fluid) saves $1.5 million annually...ENERGY EFFICIENCY AND POLLUTION PREVENTION: INDUSTRIAL EFFICIENCY STRATEGIES Miriam Pye R. Neal Elliott, Ph.D., P.E. Research Associate Industry Program Director American Council for an Energy-Efficient Economy (ACEEE) Washington, D...

Pye, M.; Elliott, R. N.

94

Industrial Energy Management: Doing More with Less  

E-Print Network [OSTI]

during the course of business with energy-intensive operations such as aluminum and chemical processing plants experiencing energy costs between five and 10 times higher than industry averages (Source: Department of Energy, Office of Industrial... INDUSTRIAL ENERGY MANAGEMENT: DOING MORE WITH LESS Jason Sheppard, Industrial Market Segment Manager Anthony Tisot, Communications Manager Power Monitoring and Control SCHNEIDER ELECTRIC Victoria, BC, Canada ABSTRACT The cost of doing...

Sheppard, J.; Tisot, A.

2006-01-01T23:59:59.000Z

95

Reducing Energy Loss | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumpingStudyReducing

96

Reducing the Energy Usage of Oce Applications  

E-Print Network [OSTI]

Reducing the Energy Usage of O芻e Applications Jason Flinn 1 , Eyal de Lara 2 , M. Satyanarayanan 1 of the energy usage of Microsoft's PowerPoint application and show that adaptive policies can reduce energy research e#11;ort, no silver bullet for reducing energy usage has yet been found. Instead, a comprehensive

Flinn, Jason

97

Energy Efficient Industrialized Housing Research Program  

SciTech Connect (OSTI)

Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

Not Available

1992-03-01T23:59:59.000Z

98

Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems; Industrial Technologies Program (ITP) BestPractices: Process Heating (Fact sheet)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |Charles Page -toMetabolicHydrogen

99

MIT and Energy Industries MIT Industry Brief  

E-Print Network [OSTI]

and demand, security and environmental impact. MITEI's interdisci- plinary research program focuses on: 1 of nanotechnology to solar and thermoelectric energy conversion. The mission of the MIT Photovoltaic Research synthesizes and characterizes commer- cial and next-generation photovoltaic materials and devices, engineering

Polz, Martin

100

Department of Energy Wind Vision: An Industry Preview | Department...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Wind Vision: An Industry Preview Department of Energy Wind Vision: An Industry Preview The "Department of Energy Wind Vision: An Industry Preview,"...

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Conservation in China North Industries Corporation  

E-Print Network [OSTI]

ENERGY CONSERVATION IN CHINA NORTH INDUSTRIES CORPORATION Wang Tian You, Chen Hua De, Jing Xing Chu, Ling Rui Fu, China North Industries Corporation Beijing, People's Republic of China ABSTRACT This paper describes an overview of the energy... conservation in China North Industries Corporation. It shows how the corporation improves energy effi ciencies and how it changes constitution of fuel-- converting oil consumption to coal. Energy management organization, energy balance in plants...

You, W. T.; De, C. H.; Chu, J. X.; Fu, L. R.

102

How to Reduce Energy Supply Costs  

E-Print Network [OSTI]

Rising energy costs have many businesses looking for creative ways to reduce their energy usage and lower the costs of energy delivered to their facilities. This paper explores innovative renewable and alternative energy technologies that can help...

Swanson, G.

2007-01-01T23:59:59.000Z

103

Industrial Energy Efficiency Assessments | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About UsIndustrial Energy Efficiency Assessments

104

Pulp & Paper Industry- A Strategic Energy Review  

E-Print Network [OSTI]

The pulp and paper industry with yearly energy purchases of $5 billion per year including 50 billion kWh of power is one of the largest industrial energy producers in the U.S. However, structural changes in the global pulp and paper industry could...

Stapley, C. E.

105

Industrial Energy Auditing: An Opportunity for Improving Energy Efficiency and Industrial Competitiveness  

E-Print Network [OSTI]

INDUSTRIAL ENERGY AUDITING: AN OPPORTUNITY FOR IMPROVING ENERGY EFFICIENCY AND INDUSTRIAL COMPETITIVENESS CHARLES GLASER, PROGRAM MANAGER, IMPLEMENTATION AND DEPLOYMENT DIVISION OFFICE OF INDUSTRIAL TECHNOLOGIES, U.S. DEPARTMENT OF ENERGY..., WASHINGTON, D.C. ABSTRACT This paper describes the Department of Energy's industrial energy auditing program, its achievements to date, and future plans. The Energy Analysis and Diagnostic Center (EADC) Program provides no-cost energy audits to small...

Glaser, C.

106

Emerging energy-efficient technologies for industry  

SciTech Connect (OSTI)

For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market opportunities.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

2001-03-20T23:59:59.000Z

107

Industrial energy efficiency policy in China  

SciTech Connect (OSTI)

Chinese industrial sector energy-efficiency policy has gone through a number of distinct phases since the founding of the People s Republic in 1949. An initial period of energy supply growth in the 1950s, 1960s, and 1970s was followed by implementation of significant energy efficiency programs in the 1980s. Many of these programs were dismantled in the 1990s during the continuing move towards a market-based economy. In an effort to once again strengthen energy efficiency, the Chinese government passes the Energy Conservation Law in 1997 which provides broad guidance for the establishment of energy efficiency policies. Article 20 of the Energy Conservation Law requires substantial improvement in industrial energy efficiency in the key energy-consuming industrial facilities in China. This portion of the Law declares that ''the State will enhance energy conservation management in key energy consuming entities.'' In 1999, the industrial sector consumed nearly 30 EJ, or 76 percent of China's primary energy. Even though primary energy consumption has dropped dramatically in recent years, due mostly to a decline in coal consumption, the Chinese government is still actively developing an overall policy for energy efficiency in the industrial sector modeled after policies in a number of industrialized countries. This paper will describe recent Chinese government activities to develop industrial sector energy-efficiency targets as a ''market-based'' mechanism for improving the energy efficiency of key industrial facilities.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2001-05-01T23:59:59.000Z

108

Duke Energy- Small Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Duke Energy encourages its business customers to increase the energy efficiency of eligible facilities through the Commercial and Industrial Energy Efficiency Rebate Program. The equipment rebates...

109

DTE Energy (Electric)- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

DTE Energy's Commercial Your Energy Savings Program provides prescriptive incentives to commercial and industrial customers who implement energy efficiency upgrades in facilities. Custom incentives...

110

Progress Energy Carolinas- Commercial and Industrial Energy-Efficiency Program  

Broader source: Energy.gov [DOE]

Progress Energy provides rebates for energy efficiency measures in new construction or retrofits, as well as Technical Assistance for feasibility/energy studies to commercial, industrial and...

111

National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet)  

SciTech Connect (OSTI)

This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures. Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost-effective retrofit measures to improve the energy efficiency of residential buildings. The database provides a single, consistent source of current data for DOE and private-sector energy audit and simulation software tools and the retrofit industry. The database will reduce risk for residential retrofit industry stakeholders by providing a central, publicly vetted source of up-to-date information.

Not Available

2012-01-01T23:59:59.000Z

112

Energy Technical Assistance: Industrial Processes Program  

E-Print Network [OSTI]

The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

McClure, J. D.

1980-01-01T23:59:59.000Z

113

Industrial Energy Efficiency Programs: Development and Trends  

E-Print Network [OSTI]

As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs to find and help implement...

Chittum, A.; Kaufman, N.; Elliot, N.

2010-01-01T23:59:59.000Z

114

Business Opportunities in the Energy Industry  

Broader source: Energy.gov [DOE]

An opportunity for small businesses to network with industry professionals, sponsored by the American Association of Blacks in Energy and the Denver Chapter & MBDA Business Center, Denver CO

115

Unitil- Commercial and Industrial Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Unitil offers three different programs for its commercial, industrial, and institutional customers in New Hampshire: the Small Business Energy Efficiency Services Program, the Large Business...

116

Superior Energy Performance Industrial Facility Best Practice...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

activities, processes or procedures that are "above and beyond" the requirements of ISO 50001. Superior Energy Performance Industrial Facility Best Practice Scorecard...

117

Technologies and Policies to Improve Energy Efficiency in Industry  

SciTech Connect (OSTI)

The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

Price, Lynn; Price, Lynn

2008-03-01T23:59:59.000Z

118

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China  

E-Print Network [OSTI]

for Improving Energy Efficiency, Reducing Pollution andSummer Study on Energy Efficiency in Industry. Washington,R. N. , 1994, 揟he energy-efficiency gap: What does it

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

119

Building a State Industrial Energy Efficiency Network  

E-Print Network [OSTI]

Industries of the Future brings the tools and resources of the Industrial Technology Program of the Department of Energy to the state level. In addition, with the guidance of an industry-led advisory board, the program has developed conferences and forums...

Ferland, K.

2005-01-01T23:59:59.000Z

120

Energy Efficiency Improvement in the Petroleum RefiningIndustry  

SciTech Connect (OSTI)

Information has proven to be an important barrier inindustrial energy efficiency improvement. Voluntary government programsaim to assist industry to improve energy efficiency by supplyinginformation on opportunities. ENERGY STAR(R) supports the development ofstrong strategic corporate energy management programs, by providingenergy management information tools and strategies. This paper summarizesENERGY STAR research conducted to develop an Energy Guide for thePetroleum Refining industry. Petroleum refining in the United States isthe largest in the world, providing inputs to virtually every economicsector, including the transport sector and the chemical industry.Refineries spend typically 50 percent of the cash operating costs (e.g.,excluding capital costs and depreciation) on energy, making energy amajor cost factor and also an important opportunity for cost reduction.The petroleum refining industry consumes about 3.1 Quads of primaryenergy, making it the single largest industrial energy user in the UnitedStates. Typically, refineries can economically improve energy efficiencyby 20 percent. The findings suggest that given available resources andtechnology, there are substantial opportunities to reduce energyconsumption cost-effectively in the petroleum refining industry whilemaintaining the quality of the products manufactured.

Worrell, Ernst; Galitsky, Christina

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Industrial Energy Audit Training for Engineers  

E-Print Network [OSTI]

The field of engineering energy conservation has witnessed an explosion of concern and activity during the last three years throughout the United States. In Texas, such activities have been enhanced by comprehensive industrial energy auditor...

Russell, B. D.; Willis, G.; Colburn, B.

1982-01-01T23:59:59.000Z

122

Developing a solar energy industry in Egypt  

E-Print Network [OSTI]

This paper assesses Egypt's current energy infrastructure and its problems, the available solar energy resource, and the technologies required to harness this resource. After this assessment, an industry based on high ...

AbdelMessih, Sherife (Sherife Mohsen)

2009-01-01T23:59:59.000Z

123

Industrial Conservation Technology Energy Savings Monitoring System  

E-Print Network [OSTI]

A system is described which monitors actual market penetration and energy savings of Department of Energy sponsored industrial conservation commercial technologies. The procedure to implement a new, technology into the Impact Scoreboard System (ISS...

Crowell, J. J.; Phipps, H. R., Jr.

1980-01-01T23:59:59.000Z

124

The Texas Industrial Energy Conservation Program  

E-Print Network [OSTI]

Industry is Texas' largest consumer of energy (46+% of total). With foresight of the escalating cost of energy, it was apparent these additional costs to industry would have two adverse effects. First, the cost of their product to the consumer would...

Waldrop, T.

1982-01-01T23:59:59.000Z

125

Replace Pressure-Reducing Valves with Backpressure Turbogenerators: Office of Industrial Technologies (OIT) Steam Tip Fact Sheet No. 20  

SciTech Connect (OSTI)

Many industrial facilities produce steam at a higher pressure than is demanded by process requirements. Steam passes through pressure-reducing valves (PRVs, also known as letdown valves) at various locations in the steam distribution system to let down or reduce its pressure. A non-condensing or backpressure steam turbine can perform the same pressure-reducing function as a PRV, while converting steam energy into electrical energy.

Not Available

2002-01-01T23:59:59.000Z

126

Climate Change Concerns and the Likely Impacts on Industrial Energy R&D  

E-Print Network [OSTI]

emissions, efforts to achieve this goal must involve industry. The most cost effective, politically acceptable and sustainable way to reduce GHGs is to invest in low or zero carbon generation technology and energy efficiency. Therefore, industry needs...

Foust, T. D.; Kaarsberg, T. M.

127

THE INSIDE-OUT APPROACH FOR IDENTIFYING INDUSTRIAL ENERGY AND WASTE REDUCTION OPPORTUNITIES  

E-Print Network [OSTI]

THE INSIDE-OUT APPROACH FOR IDENTIFYING INDUSTRIAL ENERGY AND WASTE REDUCTION OPPORTUNITIES Kelly Traditional approaches for reducing energy and waste in industrial processes typically focus on improving and more apparent to us. In our experience, this approach for reducing energy use and waste generation

Kissock, Kelly

128

Conservation Cores: Reducing the Energy of  

E-Print Network [OSTI]

1 Conservation Cores: Reducing the Energy of Mature Computations Ganesh Venkatesh, Jack Sampson! Dark Silicon #12;9 Conservation Cores Specialized cores for reducing energy 颅 Automatically generated Conservation Core Architecture & Synthesis Patchable Hardware Results Conclusions #12;12 Constructing a C

Wang, Deli

129

Department Of Energy Offers $60 Million to Spur Industry Engagement...  

Office of Environmental Management (EM)

Of Energy Offers 60 Million to Spur Industry Engagement in Global Nuclear Energy Partnership Department Of Energy Offers 60 Million to Spur Industry Engagement in Global Nuclear...

130

Industrial energy-efficiency-improvement program  

SciTech Connect (OSTI)

Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

Not Available

1980-12-01T23:59:59.000Z

131

Effective Transfer of Industrial Energy Conservation Technologies  

E-Print Network [OSTI]

. Various avenues exist for transferring energy conservation technologies to industry. Briefing documents, presentations at trade meetings and con ferences, or simple diffusion by word-of-mouth are a few methods. However, when left to chance, tech... of 444 ESL-IE-83-04-68 Proceedings from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 TABLE 1. Current Energy Impacts of Foam Processing of Textiles BROADWOVENS AND KNITS User Site (a) Average Production...

Clement, M.; Vallario, R. W.

1983-01-01T23:59:59.000Z

132

California抯 Industrial Energy Efficiency Best Practices Technical Outreach and Training Program  

E-Print Network [OSTI]

This paper describes the California Energy Commission抯 (Commission) energy policies and programs that save energy and money for California抯 manufacturing and food processing industries to help retain businesses in-state and reduce greenhouse gases...

Kazama, D. B.; Wong, T.; Wang, J.

2007-01-01T23:59:59.000Z

133

Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program  

E-Print Network [OSTI]

Industry Constraining Energy Consumption of China抯 Largestone-to-one ratio of energy consumption to GDP given China抔oal of reducing energy consumption per unit of GDP by 20%

Price, Lynn; Wang, Xuejun

2007-01-01T23:59:59.000Z

134

Energy efficient industrialized housing research program  

SciTech Connect (OSTI)

This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1989-01-01T23:59:59.000Z

135

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

Renewable Energy. Renewable Energy Policy Project ResearchIndustrial Policy and Renewable Energy Technology.Development of Renewable Energy. Energy Policy, 31, 799-812.

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

136

Energy Responsibility Accounting - An Energy Conservation Tool for Industrial Facilities  

E-Print Network [OSTI]

As energy costs continue to rise faster than the rate of inflation, industrial energy management becomes a more important issue in the control of manufacturing costs. Energy Responsibility Accounting (ERA) is a tool which improves management...

Kelly, R. L.

1980-01-01T23:59:59.000Z

137

ITP Industrial Distributed Energy: Integrated Energy Systems...  

Broader source: Energy.gov (indexed) [DOE]

specifically for stationary power generation or compression applications in the oil and gas industries. Multiple stages are typical and differentiate these turbines, along with...

138

Energy and materials flows in the iron and steel industry  

SciTech Connect (OSTI)

Past energy-consumption trends and future energy-conservation opportunities are investigated for the nation's iron and steel industry. It is estimated that, in 1980, the industry directly consumed approximately 2.46 x 10/sup 15/ Btu of energy (roughly 3% of total US energy consumption) to produce 111 million tons of raw steel and to ship 84 million tons of steel products. Direct plus indirect consumption is estimated to be about 3.1 x 10/sup 15/ Btu. Of the set of conservation technologies identified, most are judged to be ready for commercialization if and when the industry's capital formation and profitability problems are solved and the gradual predicted increase in energy prices reduces the payback periods to acceptable levels.

Sparrow, F.T.

1983-06-01T23:59:59.000Z

139

Student Trainee (Energy Industry Analyst)  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission (FERC) is an independent regulatory agency that regulates and oversees various aspects of the energy markets within the United States. We value independence...

140

Energy efficient industrialized housing research program  

SciTech Connect (OSTI)

This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1989-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy efficient industrialized housing research program  

SciTech Connect (OSTI)

This report summarizes three documents: Multiyear Research Plan, Volume I FY 1989 Task Reports, and Volume II Appendices. These documents describe tasks that were undertaken from November 1988 to December 1989, the first year of the project. Those tasks were: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. While this document summarizes information developed in each task area, it doesn't review task by task, as Volume I FY 1989 Task Reports does, but rather treats the subject of energy efficient industrialized housing as a whole to give the reader a more coherent view. 7 figs., 9 refs.

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1990-02-01T23:59:59.000Z

142

Energy Efficiency Fund (Gas)- Commercial and Industrial Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Through the Connecticut Energy Efficiency Fund, rebates are available for commercial, industrial or municipal customers of Connecticut Natural Gas Corporation, Southern Connecticut Gas Company, or...

143

Industrial-energy-conservation technology  

SciTech Connect (OSTI)

Sixty-one papers presented at the meeting are included in this volume. A separate abstract was prepared for each paper for Energy Research Abstracts (ERA); nineteen were included in Energy Abstracts for Policy Analysis (EAPA). (LCL)

Not Available

1981-01-01T23:59:59.000Z

144

EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...  

Broader source: Energy.gov (indexed) [DOE]

2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412:...

145

ITP Industrial Distributed Energy: Combined Heat and Power -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of...

146

Policies and Measures to Realise Industrial Energy Efficiency...  

Open Energy Info (EERE)

Realise Industrial Energy Efficiency and Mitigate Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policies and Measures to Realise Industrial Energy...

147

NREL: News - NREL's Industry Growth Forum Brings Together Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4014 NREL's Industry Growth Forum Brings Together Energy Innovators Event recognizes the top clean energy technologies and startup businesses October 30, 2014 The Industry Growth...

148

Government and Industry A Force for Collaboration at the Energy...  

Broader source: Energy.gov (indexed) [DOE]

Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop...

149

CenterPoint Energy- Commercial and Industrial Standard Offer Program  

Broader source: Energy.gov [DOE]

CenterPoint Energy's Commercial and Industrial Standard Offer Program pays incentives to service providers who install energy efficiency measures in commercial or industrial facilities that are...

150

Energy Storage Solutions Industrial Symposium | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Solutions Industrial Symposium Sep 04 2013 09:00 AM - 05:30 PM Energy Storage Solutions Industrial Symposium - Wednesday September 4, 2013 CONTACT : Email: Phone:...

151

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse hybridmembranesystemsfa...

152

Innovative Energy Efficient Industrial Ventilation  

E-Print Network [OSTI]

?, a law of physics, shows why electricity savings can be high (Figure 5). 0 10 20 30 40 50 60 70 80 90 100 0 102030405060708090100 Air volume [CFM %] Power [H.P. %] P o w e r [ H .P . % ] A i r v o l u m e [ C FM %] C F M = 50 % of b l ast... and dust could settle. An on-demand dust collecting system solves this problem by using a PLC (industrial computer) which calculates necessary air volume based on information from the sensors. The PLC is adjusting the RPM of the fan accordingly...

Litomisky, A.

2005-01-01T23:59:59.000Z

153

Melink Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermalMcFarland isDiscoveries IncMelink Industries

154

Emerging energy-efficient industrial technologies  

E-Print Network [OSTI]

Converter Furnace. In Ironmaking 2000, 18th Advancedenergy consumption for ironmaking is estimated at 780 TBtu (would reduce energy use in ironmaking by 30 percent relative

2000-01-01T23:59:59.000Z

155

Renewable Energy Can Help Reduce Oil Dependency  

ScienceCinema (OSTI)

In a speech to the Economic Club of Kansas City on June 23, 2010, NREL Director Dan Arvizu takes a realistic look at how renewable energy can help reduce America's dependence on oil, pointing out that the country gets as much energy from renewable sources now as it does from offshore oil production. For a transcript, visit http://www.nrel.gov/director/pdfs/energy_overview_06_10.pdf

Arvizu, Dan

2013-05-29T23:59:59.000Z

156

Reducing Regulatory Burden | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReport #Study | Department of EnergyReducingBurden

157

Industrial-energy-conservation technology  

SciTech Connect (OSTI)

Fifty-nine papers presented at the meeting are included in this volume. A separate abstract was prepared for each, with all of the abstracts appearing in Energy Research Abstracts (ERA); 21 abstracts were selected for Energy Abstracts for Policy Analysis (EAPA). (LCL)

Not Available

1981-01-01T23:59:59.000Z

158

Policy modeling for industrial energy use  

SciTech Connect (OSTI)

The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the effects of innovative (no n-monetary) policy instruments through evaluation and to develop approaches to model both conventional and innovative policies. The explicit modeling of barriers and decision making in the models seems a promising way to enable modeling of conventional and innovative policies. A modular modeling approach is essential to not only provide transparency, but also to use the available resources most effectively and efficiently. Many large models have been developed in the past, but have been abandoned after only brief periods of use. A development path based on modular building blocks needs the establishment of a flexible but uniform modeling framework. The leadership of international agencies and organizations is essential in the establishment of such a framework. A preference is given for ''softlinks'' between different modules and models, to increase transparency and reduce complexity. There is a strong need to improve the efficiency of data collection and interpretation efforts to produce reliable model inputs. The workshop participants support the need for the establishment of an (in-)formal exchanges of information, as well as modeling approaches. The development of an informal network of research institutes and universities to help build a common dataset and exchange ideas on specific areas is proposed. Starting with an exchange of students would be a relative low-cost way to start such collaboration. It would be essential to focus on specific topics. It is also essential to maintain means of regular exchange of ideas between researchers in the different focus points.

Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

2003-03-01T23:59:59.000Z

159

Industrial Compressed Air System Energy Efficiency Guidebook.  

SciTech Connect (OSTI)

Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

United States. Bonneville Power Administration.

1993-12-01T23:59:59.000Z

160

Aluminum industry energy conservation workshop V papers  

SciTech Connect (OSTI)

This book contains papers given at a recent meeting sponsored by The Aluminum Association. The focus of the meeting is on energy conservation in the aluminum industry. Topics include recovery of waste heat, more energy efficient design of plants, and government policies.

Not Available

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Efficient Industrial Building Design  

E-Print Network [OSTI]

" or precooled air concept of ventilation, with a high temperature hot-water/chilled-water changeover piping system. Extensive energy recovery systems would be provided for production equipment and oil mist control would be by local captive systems, rather...

Holness, G. V. R.

1983-01-01T23:59:59.000Z

162

Eolica Industrial | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy Information EnergySolar Systems JumpEolica

163

Impact of Industrial Electric Rate Structure on Energy Conservation - A Utility Viewpiont  

E-Print Network [OSTI]

As the price of energy rises, changes in industrial electric rates will have an impact on energy usage and conservation. Utilities interested in reducing system peak demands may reflect this need in the rate structure as an incentive...

Williams, M. M.

1981-01-01T23:59:59.000Z

164

ocietal pressures to reduce healthcare costs, coupled with the pharmaceutical industry's need to maintain its eco-  

E-Print Network [OSTI]

ocietal pressures to reduce healthcare costs, coupled with the pharmaceutical industry's need. Augsburger, PhD, is Shangraw Professor of Industrial Pharmacy and Pharmaceutics, all in the Department to maintain its eco- nomic incentive to develop new drugs, have required that the industry increase speed

Peng, Yun

165

State Level Analysis of Industrial Energy Use  

E-Print Network [OSTI]

of the regional Interestingly, approximately 98 percent of mining mining consumption, and 10 percent of the total Figure 1. Share of Total Industrial Electricity Consumption by Industry Group for Eight Selected States and the U.S. 90% 80% c: :g, 70% E... .2 1:1 C. E ::l .. g 20% +-------------1 u ~ u E u .. ." iii iii ... ::l ] 10% '0 l!! .. .J:: In 0% / /,. ~/ / 103 ESL-IE-03-05-12 Proceedings from theTwenty-Fifth Industrial Energy Technology Conference, Houston, TX, May 13...

Elliott, R. N.; Shipley, A. M.; Brown, E.

166

ITP Glass: Glass Industry of the Future: Energy and Environmental...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Glass Industry of the Future: Energy and Environmental Profile of the U.S. Glass Industry; April, 2002 ITP Glass: Glass Industry of the Future: Energy and Environmental Profile of...

167

Potential for energy conservation in the cement industry  

SciTech Connect (OSTI)

This report assesses the potential for energy conservation in the cement industry. Energy consumption per ton of cement decreased 20% between 1972 and 1982. During this same period, the cement industry became heavily dependent on coal and coke as its primary fuel source. Although the energy consumed per ton of cement has declined markedly in the past ten years, the industry still uses more than three and a half times the fuel that is theoretically required to produce a ton of clinker. Improving kiln thermal efficiency offers the greatest opportunity for saving fuel. Improving the efficiency of finish grinding offers the greatest potential for reducing electricity use. Technologies are currently available to the cement industry to reduce its average fuel consumption per ton by product by as much as 40% and its electricity consumption per ton by about 10%. The major impediment to adopting these technologies is the cement industry's lack of capital as a result of low or no profits in recent years.

Garrett-Price, B.A.

1985-02-01T23:59:59.000Z

168

Shrenik Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatoliaSciraShenhua Guohua EnergyTendoShree

169

Jax Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005)Jamaica Beach,Janette掳 Loading5掳JavaJax

170

Reducing Regulatory Burden | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |Rebecca MatulkaDeliveryUpdatedRFI ReducingBurden Reducing

171

Reducing Power Factor Cost | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |Reducing LED Costs ThroughReducing Power

172

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network [OSTI]

energy efficiency. Among industries included are cement, pulp and paper and plasticenergy efficiency in industry. Achievements: Production standards have been set for the engineering, plastics,

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

173

US Energy Service Company Industry: History and Business Models  

Office of Energy Efficiency and Renewable Energy (EERE)

Information about the history of US Energy Service Company including industry history, setbacks, and lessons learned.

174

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network [OSTI]

Cold Storage Facilities. ? Proceedings of the 2005 ACEEE Summer Study on Energy efficiency in Industry,

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

175

Industry Professional | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429IndianaProfessional Jump to: navigation, search

176

Assessing and reducing product portfolio complexity in the pharmaceutical industry  

E-Print Network [OSTI]

Overly complex product portfolios lead to inefficient use of resources and limit an organization's ability to react quickly to changing market dynamics. The challenges of reducing portfolio complexity are defining excess ...

Leiter, Kevin M. (Kevin Michael)

2011-01-01T23:59:59.000Z

177

Implementation and Rejection of Industrial Steam System Energy Efficiency Measures  

SciTech Connect (OSTI)

Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

Therkelesen, Peter; McKane, Aimee

2013-05-01T23:59:59.000Z

178

Industrial Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA Journey Inside the Complex and

179

Motech Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraine IIMorro Bay,Moscow is

180

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

Policy and Renewable Energy Technology. Proceedings of theDiffusion of Renewable Energy Technologies: Wind Power inFostering a Renewable Energy Technology Industry: An

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy resource management for energy-intensive manufacturing industries  

SciTech Connect (OSTI)

A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

Brenner, C.W.; Levangie, J.

1981-10-01T23:59:59.000Z

182

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

2008-03-01T23:59:59.000Z

183

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

L. , S. de la Rue du Can, J. Sinton, E. Worrell, N. Zhou, J.industry. Energy 23: 725-32. Sinton, J.E. and D.G. Fridley (Roy, 2000; IEA, 2003a,b; Sinton and Fridley, 2000). Hence,

Worrell, Ernst

2009-01-01T23:59:59.000Z

184

Industrial Energy Efficiency Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting

185

Industrial Geospatial Analysis Tool for Energy Evaluation  

E-Print Network [OSTI]

Industrial Geospatial Analysis Tool for Energy Evaluation- IGATE-E Nasr Alkadi, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Michael Starke, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Ookie Ma, Scientist, US Department... of Energy, Washington, DC Sachin Nimbalkar, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Daryl Cox, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Kevin Dowling, Student Researcher, University of Tennessee, Knoxville, TN Brendon...

Alkadi, N.; Starke, M.; Ma, O.; Nimbalkar, S.; Cox, D.; Dowling, K.; Johnson, B.; Khan, S.

2013-01-01T23:59:59.000Z

186

Reducing Regulatory Burden | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof EnergyReducing PeakReducing

187

NREL: Energy Systems Integration - NREL Handbook Helps Industry...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Handbook Helps Industry Collect and Interpret Solar Resource Data for Solar Energy Applications Comprehensive handbook is a valuable resource for the solar industry on the...

188

US Energy Service Company Industry: History and Business Models  

Broader source: Energy.gov (indexed) [DOE]

Energy Service Company Industry: History and Business Models Don Gilligan President, NAESCO May 6, 2011 Overview of Presentation * US ESCO industry evolution: Five phases *...

189

Policies for Promoting Industrial Energy Efficiency in Developing...  

Open Energy Info (EERE)

under the structure of an Industrial Standards Framework that are designed to promote the organizational culture change needed for industrial energy efficiency to be both realized...

190

Reduce Natural Gas Use in Your Industrial Process Heating Systems |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruit

191

Green Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslands RenewableGreatwood, Texas:Open45.Place:

192

Potential for energy conservation in the glass industry  

SciTech Connect (OSTI)

While the glass industry (flat glass, container glass, pressed and blown glass, and insulation fiber glass) has reduced its specific energy use (Btu/ton) by almost 30% since 1972, significant potential for further reduction still remains. State-of-the-art technologies are available which could lead to incremental improvements in glass industry energy productivity; however, these technologies must compete for capital with projects undertaken for other reasons (e.g., capacity expansion, equipment rebuild, labor cost reduction, product quality improvement, or compliance with environmental, health or safety regulations). Narrowing profit margins in the large tonnage segments of the glass industry in recent years and the fact that energy costs represent less than 25% of the value added in glass manufacture have combined to impede the widespread adoption of many state-of-the-art conservation technologies. Savings in energy costs alone have not provided the incentive to justify the capital expenditures required to realize the energy savings. Beyond implementation of state-of-the-art technologies, significant potential energy savings could accrue from advanced technologies which represent a radical departure from current glass making technology. Long-term research and development (R and D) programs, which address the technical and economic barriers associated with advanced, energy-conserving technologies, offer the opportunity to realize this energy-saving potential.

Garrett-Price, B.A.; Fassbender, A.G.; Bruno, G.A.

1986-06-01T23:59:59.000Z

193

Industrial Energy Use and Energy Efficiency in Developing Countries  

E-Print Network [OSTI]

The industrial sector accounts for over 50% of energy used in developing countries. Growth in this sector has been over 4.5% per year since 1980. Energy intensity trends for four energy-intensive sub-sectors (iron and steel, chemicals, building...

Price, L.; Martin, N.; Levine, M. D.; Worrell, E.

194

Project Profile: Reducing the Cost of Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

195

New Water Booster Pump System Reduces Energy Consumption by 80...  

Broader source: Energy.gov (indexed) [DOE]

Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases...

196

Reducing Regulatory Burden | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |Rebecca MatulkaDeliveryUpdatedRFI Reducing

197

Reducing Photovoltaic Costs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |Reducing LED Costs Through

198

Reducing Your Electricity Use | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles 禄ExchangeDepartment ofManagementManagementReduce Hot Water Use

199

ITP Industrial Distributed Energy: Combined Heat and Power: Effective...  

Broader source: Energy.gov (indexed) [DOE]

Energy Solutions for a Sustainable Future ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future Report describing the...

200

Energy Efficiency Improvement Opportunities for the Cement Industry  

E-Print Network [OSTI]

Lime Institute. 2001. Energy Efficiency Opportunity Guide inIndustry, Office of Energy Efficiency, Natural Resourcesof a Cement Kiln, Energy Efficiency Demonstration Scheme,

Worrell, Ernst

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Value Capture in the Global Wind Energy Industry  

E-Print Network [OSTI]

investigations/wind-energy-funds-going-overseas/ Dedrick,America. GWEC (Global Wind Energy Council) (2010). Globaland investment flows in the wind energy industry. Peterson

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

202

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

60% of total primary energy consumption, compared to theShare of Total Primary Energy Consumption World US Chinaof industrial primary energy consumption in The Netherlands.

Price, Lynn

2008-01-01T23:59:59.000Z

203

Industrial Assessment Centers (IACs) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting of|ofIndustrial Assessment Centers

204

Industry, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429IndianaProfessional Jump to:

205

Industry, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429IndianaProfessional Jump to:

206

Characterizing emerging industrial technologies in energy models  

SciTech Connect (OSTI)

Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

2003-07-29T23:59:59.000Z

207

Industry Leaders Saving Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012PathwaysJobsan overview

208

Millennium Energy Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH JumpSprings, Vermont:is a townMillardCommunication Co Ltd

209

Colorado Industrial Energy Challenge | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLE FORSuperiorThe Office ofScience Mission The

210

Industry  

SciTech Connect (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

211

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

2008-03-01T23:59:59.000Z

212

Industry  

E-Print Network [OSTI]

Schleich, J. , 2004: Do energy audits help reduce barriersof organizational barriers. Energy audit and managementa; US EPA, n.d. ). Energy Audits and Management Systems.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

213

'Tilted' Industrial Electric Rates: A New Negative Variable for Energy Engineers  

E-Print Network [OSTI]

The cost of purchased electricity for industry is rising even faster than for other sectors. Conventional means of reducing power costs include internal techniques like load management, demand controls and energy conservation. External mechanisms...

Greenwood, R. W.

1981-01-01T23:59:59.000Z

214

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity  

SciTech Connect (OSTI)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

Selldorff, John; Atwell, Monte

2014-09-23T23:59:59.000Z

215

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity  

ScienceCinema (OSTI)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

Selldorff, John; Atwell, Monte

2014-12-03T23:59:59.000Z

216

Electrical Energy Monitoring in an Industrial Plant  

E-Print Network [OSTI]

studied from the end user's standpoint. Electric utilities have studied the use of energy by a few large industrial customers because it allows them to deal with a large amount of electricity usage through a small customer base. Traditionally, electric..., commercially available spreadsheet programs, the data can be graphed in various ways to show an hour, day, week, month, or a year of energy and demand use, or power factor. For this project, a 15-minute time window was chosen to match the HL&P demand interval...

Dorhofer, F. J.; Heffington, W. M.

217

The Role of Professional Risk in Implementing Industrial Energy Improvements  

E-Print Network [OSTI]

This paper discusses the professional risks and rewards of being an industrial energy manager. The content is derived from the author's personal experience1 plus 80 separate interviews of industrial energy practitioners and experts conducted during...

Russell, C.

2014-01-01T23:59:59.000Z

218

A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry  

E-Print Network [OSTI]

Best practices/case studies - Indian Industries, Energy-efficiencyBest practices/case studies - Indian Industries, Energy-efficiencyBest practices/case studies - Indian Industries, Energy-efficiency

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

219

Entergy Arkansas- Commercial and Industrial Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Entergy Arkansas has several programs to help commercial and industrial customers increase the energy efficiency of eligible facilities.

220

Energy Department Announces $7 Million to Reduce Non-Hardware...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7 Million to Reduce Non-Hardware Costs of Solar Energy Systems Energy Department Announces 7 Million to Reduce Non-Hardware Costs of Solar Energy Systems November 15, 2011 -...

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002  

Reports and Publications (EIA)

This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

2002-01-01T23:59:59.000Z

222

Energy Efficient Industrialized Housing Research Program. Annual report, FY 1991  

SciTech Connect (OSTI)

Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

Not Available

1992-03-01T23:59:59.000Z

223

Lincoln Electric System (Commercial and Industrial)- Sustainable Energy Program  

Broader source: Energy.gov [DOE]

Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

224

Muscatine Power and Water- Commercial and Industrial Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Muscatine Power and Water (MP&W) offers rebates for energy efficient upgrades to commercial and industrial customers. Rebates are available for commercial lighting retrofits, energy efficient...

225

Dakota Electric Association- Commercial and Industrial Custom Energy Grant Program  

Broader source: Energy.gov [DOE]

Dakota Electric's Custom Energy Grant Program is offered for any commercial or industrial customer that installs qualifying energy-efficient products which exceed conventional models and result in...

226

USDA, Departments of Energy and Navy Seek Input from Industry...  

Broader source: Energy.gov (indexed) [DOE]

USDA, Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation USDA, Departments of Energy and Navy Seek Input from...

227

Advanced Energy Industries, Inc. SEGIS developments.  

SciTech Connect (OSTI)

The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

2012-03-01T23:59:59.000Z

228

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

SciTech Connect (OSTI)

Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

2009-08-01T23:59:59.000Z

229

Industry  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

230

Multi-Project Baselines for Evaluation of Industrial Energy-Efficiency and Electric Power Projects  

E-Print Network [OSTI]

of Industrial Energy-Efficiency and Electric Power Projectsof Industrial Energy-Efficiency and Electric Power ProjectsOf Industrial Energy-Efficiency And Electric Power Projects

2001-01-01T23:59:59.000Z

231

Process Energy Audit for Large Industries  

E-Print Network [OSTI]

can provide the necessary feedback signal to the VSO. Cement Manufacture. Figure 2 illustrates the basic generic flow diagram ofPortland cement manufacture (both wet and dry processes). Table 1 is the electricity consumption for various processes... for 230 ESL-IE-93-03-32 Proceedings from the Fifteenth National Industrial Energy Technology Conference, Houston, Tx, March 24-25, 1993 Figure 2 Process Flow Diagram for a Portland Cement Plant SHALE Attl IAON llAE -----+r------ll"'~~ ..., Il...

Chari, S.

232

Hanuman Agro Industries Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is8584掳, -79.954985掳is aHanoverHanuman Agro Industries

233

China's Energy Management System Program for Industry  

E-Print Network [OSTI]

Conference New Orleans, LA. May 20-23, 2014 | iipnetwork.org Waste Heat Recovery in Cement Market Status 4 5 7 15 24 9 12 24 26 739 0 100 200 300 400 500 600 700 800 Rest of World Americas Europe Mid East Other Asia Pakistan Thailand Japan India China...MS Implementation guidance for Thermal Power EnMS Implementation guidance for Coke EnMS Implementation guidance Plate Coal Industry M&V guidance on energy performance 2015 EnMS Implementation guidance for Paper EnMS Implementation guidance...

Hedman, B.; Yu, Y.; Friedman, Z.; Taylor, R.

2014-01-01T23:59:59.000Z

234

TWS Industrial Holdings Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummersideJumpSyria: EnergyTESTTMATWS Industrial

235

MSM Industries Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger <Industries Inc Place: New Jersey Zip:

236

Jinlong Industrial Group | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate ZoneJerome is aJinlong Industrial Group Jump to:

237

Agro Industrial Taruma | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowatt Energies JumpAgProMRVPark Jump to:Industrial

238

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network [OSTI]

company and the Danish Energy Agency. The agreements, whichDanish Energy Authority [1] The Ministry of the Environment [2] and its Environmental Protection Agency [agencies 1. Voluntary Agreements with industry Danish Energy

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

239

A Field Tested Model of Industrial Energy Conservation Assistance to Small Industries  

E-Print Network [OSTI]

The University of Tennessee is one of three universities selected by the Industrial Energy Conservation Program of the Department of Energy to develop and demonstrate the concept of an Energy Analysis and Diagnostics Center (EADC). The objective...

Jendrucko, R. J.; Mitchell, D. S.; Snyder, W. T.; Symonds, F. W.

1980-01-01T23:59:59.000Z

240

Rotation With Industry | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industry Rotation With Industry 7ROTATIONWITHINDUSTRY.pdf More Documents & Publications Microsoft Word - APRIL 2009 PMCDP Module CHRIS ESS TutorialROTATIONWITHINDUSTRY.doc...

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Industrial Energy Efficiency: Designing Effective State Programs...  

Office of Environmental Management (EM)

State Programs for the Industrial Sector This report provides state regulators, utilities, and other program administrators an overview of the spectrum of U.S. industrial...

242

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

mitigate 21 MtCO 2 . Cogeneration (also called Combined Heatefficiencies. Industrial cogeneration is an important partpotential for industrial cogeneration is estimated at almost

Worrell, Ernst

2009-01-01T23:59:59.000Z

243

Home Page > Business > Industrial > Global Trade Of Wood Chips Down 26% In 2009 As Pulpmills Reduce Production Worldwide, Reports Wood Resources International  

E-Print Network [OSTI]

from South Africa have declined 40%. With pulp production slowly increasing this fall and energy are Australia, South Africa, Vietnam and Uruguay. Australia, the world's largest exporter, has reduced shipmentsHome Page > Business > Industrial > Global Trade Of Wood Chips Down 26% In 2009 As Pulpmills Reduce

244

atomic energy industry: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy industry First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 MIT and Energy Industries MIT Industry...

245

ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY  

SciTech Connect (OSTI)

The U.S. pulp and paper industry consumes over $7 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pulp and paper industry to reduce energy consumption in a cost-effective manner. This paper provides a brief overview of the U.S. EPA ENERGY STAR(R) for Industry energy efficiency guidebook (a.k.a. the"Energy Guide") for pulp and paper manufacturers. The Energy Guide discusses a wide range of energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Also provided is a discussion of the trends, structure, and energy consumption characteristics of the U.S. pulp and paper industry along with a description of the major process technologies used within the industry. Many energy efficiency measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in pulp and paper mills and related industries worldwide. The information in this Energy Guide is intended to help energy and plant managers in the U.S. pulp and paper industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

Kramer, Klaas Jan; Masanet, Eric; Worrell, Ernst

2009-01-01T23:59:59.000Z

246

Our Favorite Energy Management Opportunities: A Review of Over 150 Energy Audits of Industrial Firms  

E-Print Network [OSTI]

For five years the Oklahoma Industrial Energy Management Program at Oklahoma State University has been serving industry by offering energy audits and energy management conferences. To date, more than 50 conferences and 170 energy audits have been...

Webb, R. E.; Lewis, M.; Spivey, V.; Knight, N.; Turner, W. C.

247

Reduce Operating Costs with an EnergySmart School Project  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ballasts can reduce lighting energy by 20 to 30 percent. * ENERGY STAR light-emitting diode (LED) exit signs can last 25 years without lamp replacement. Compact...

248

Impact of Tight Energy Markets on Industrial Energy Planning  

E-Print Network [OSTI]

t in Oi l Prod u c t i o n ( b p d ) - 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 Sh ut in G a s Pro d u ct io n (M M c f / d ) Ivan Rit Wilma Katrina Source: ACEEE from MMS (2006) data. EIA 2006). These disruptions came while...IMPACT OF TIGHT ENERGY MARKETS ON INDUSTRIAL ENERGY PLANNING R. NEAL ELLIOTT, PH.D., P.E., INDUSTRIAL PROGRAM DIRECTOR, AMERICAN COUNCIL FOR AN ENERGY-EFFICIENT ECONOMY, WASHINGTON, D.C. ABSTRACT The past five years have seen growing...

Elliott, R. N.

2006-01-01T23:59:59.000Z

249

Industrial Energy Auditing - A Short Course for Engineers  

E-Print Network [OSTI]

This paper describes an intensive five day short course, directed toward engineers currently working in industry, which provides the participants with the rudiments of industrial energy auditing. Experience has shown that this format of training can...

Witte, L. C.

1979-01-01T23:59:59.000Z

250

Online Modeling in the Process Industry for Energy Optimization  

E-Print Network [OSTI]

"This paper discusses how steady state models are being used in the process industry to perform online energy optimization of steam and electrical systems. It presents process demands commonly found in the processing industry in terms of steam...

Alexander, J.

251

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

E-Print Network [OSTI]

organizational framework for industrial facilities to integrate energy efficiencyof energy efficiency. A first step once the organizational

McKane, Aimee

2010-01-01T23:59:59.000Z

252

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

2010-10-21T23:59:59.000Z

253

Reduce Natural Gas Use in Your Industrial Process Heating Systems. Industrial Technologies Program (ITP) (Trifold Brochure).  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof Energy Redefining Customer5

254

Reducing Energy Costs and Rebuilding the Past | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumpingStudy |Reducing

255

Final Technical Report HFC Concrete: A Low-???????颅???垄???????聬Energy, Carbon-???????颅Dioxide-???????颅Negative Solution for reducing Industrial Greenhouse Gas Emissions  

SciTech Connect (OSTI)

Solidia/CCSM received funding for further research and development of its Low Temperature Solidification Process (LTS), which is used to create hydrate-free concrete (HFC). LTS/HFC is a technology/materials platform that offers wide applicability in the built infrastructure. Most importantly, it provides a means of making concrete without Portland cement. Cement and concrete production is a major consumer of energy and source of industrial greenhouse gas (GHG) emissions. The primary goal of this project was to develop and commercialize a novel material, HFC, which by replacing traditional concrete and cement, reduces both energy use and GHG emissions in the built infrastructure. Traditional concrete uses Portland Cement (PC) as a binder. PC production involves calcination of limestone at {approx}1450 C, which releases significant amounts of CO{sub 2} gas to the atmosphere and consumes a large amount of energy due to the high temperature required. In contrast, HFC is a carbonate-based hydrate-free concrete (HFC) that consumes CO{sub 2} gas in its production. HFC is made by reaction of silicate minerals with CO{sub 2} at temperatures below 100 C, more than an order-of-magnitude below the temperature required to make PC. Because of this significant difference in temperature, it is estimated that we will be able to reduce energy use in the cement and concrete industry by up to 30 trillion Btu by 2020. Because of the insulating properties of HFC, we believe we will also be able to significantly reduce energy use in the Building sector, though the extent of this saving is not yet quantified. It is estimated that production of a tonne of PC-based concrete requires about 6.2 million Btu of energy and produces over 1 tonne of CO{sub 2} emissions (Choate, 2003). These can be reduced to 1.9 million Btu and 0.025 tonnes of CO{sub 2} emissions per tonne of HFC (with overall CO{sub 2}-negativity possible by increasing carbonation yield). In this way, by replacing PC-based concrete with HFC in infrastructure we can reduce energy use in concrete production by 70%, and reduce CO{sub 2} emissions by 98%; thus the potential to reduce the impact of building materials on global warming and climate change is highly significant. Low Temperature Solidification (LTS) is a breakthrough technology that enables the densification of inorganic materials via a hydrothermal process. The resulting product exhibits excellent control of chemistry and microstructure, to provide durability and mechanical performance that exceeds that of concrete or natural stone. The technology can be used in a wide range of applications including facade panels, interior tiles, roof tiles, countertops, and pre-cast concrete. Replacing traditional building materials and concrete in these applications will result in significant reduction in both energy consumption and CO{sub 2} emissions.

Dr. Larry McCandlish, Principal Investigator; Dr. Richard Riman, Co-Principal Investigator

2012-05-14T23:59:59.000Z

256

Reducing the Anaerobic Digestion Model N1 for its application to an industrial wastewater treatment plant  

E-Print Network [OSTI]

the Anaerobic Digestion Model N掳1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater Carlos Garc铆a-Di茅guez 1 , Olivier Bernard 2 , Enrique Roca 1, * 1 USC 颅 PRODES for winery effluent wastewater. A new reduced stoichiometric matrix was identified and the kinetic parameters

Boyer, Edmond

257

Department of Industrial Engineering Fall 2011 KYDEX LLC 1: Reduce Masterbatch Inventory  

E-Print Network [OSTI]

PENNSTATE Department of Industrial Engineering Fall 2011 KYDEX LLC 1: Reduce Masterbatch Inventory Overview KYDEX has a high inventory of masterbatch (the pigment they use to color their plastic sheets). As of October 2011, there was about 300,000 lbs. of masterbatch (MB) in inventory. This project required

Demirel, Melik C.

258

Tools for Assessing Building Energy Use in Industrial Plants  

E-Print Network [OSTI]

This presentation will cover a brief history of building energy measures savings potential for industrial plants and briefly characterize building energy measures and their savings identified over approximately the past 15 years in energy audits...

Martin, M.; MacDonald, M.

2007-01-01T23:59:59.000Z

259

Industrial Energy Conservation in Central America and Panama  

E-Print Network [OSTI]

The Regional Industrial Energy Efficiency Project (RIEEP) is the largest and most comprehensive energy conservation effort in Central America and Panama. This paper describes the regional economic and energy situation leading up to the project...

Oven, M. J.; Pashkevich, P. A.

260

Industrial Energy Efficiency in Ukraine: The Business Outlook  

E-Print Network [OSTI]

Ukraine is full of profitable opportunities for energy efficiency. Industry accounts for many of these opportunities because of its high level of energy consumption and its ability to pay for energy efficiency measures in hard currency. This paper...

Evans, M.

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Analysis of the Energy Intensity of Industries in California  

E-Print Network [OSTI]

the aggregate energy-intensity of industry. Applied Energyindustries with final energy intensities of 12.3 Billion BtuAs mentioned, the energy intensity of this sector is much

Can, Stephane de la Rue du

2014-01-01T23:59:59.000Z

262

India's Fertilizer Industry: Productivity and Energy Efficiency  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

Schumacher, K.; Sathaye, J.

1999-07-01T23:59:59.000Z

263

Industry Alliance Industry Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century October, 2010...

264

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

SciTech Connect (OSTI)

The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry抯 structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

2011-12-01T23:59:59.000Z

265

NOTICE OF PUBLIC HEARING City of Industry Renewable Energy Resources  

E-Print Network [OSTI]

NOTICE OF PUBLIC HEARING City of Industry Renewable Energy Resources Procurement Plan & Enforcement a public hearing to consider the adoption of the City of Industry Renewable Energy Resources Procurement to procure a minimum quantity of electricity products from eligible renewable energy resources, including

266

Canadian Industrial Energy End-use Data and Analysis  

E-Print Network [OSTI]

CIEEDAC Canadian Industrial Energy End-use Data and Analysis Centre Prospectus and Business Plan as part clearinghouse, part depository, and part analysis centre for energy data on the Canadian EXECUTIVE SUMMARY CIEEDAC ii Executive Summary 1. Background The Canadian Industrial Energy End-use Data

267

U.S. Energy Department, Pay-Television Industry and Energy Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- developed through a non-regulatory agreement between the pay-TV industry, the consumer electronics industry and energy efficiency advocates - will improve set-top box efficiency...

268

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

losses in power production to generate heat and/or cold for industrial processes and district heating,

Worrell, Ernst

2009-01-01T23:59:59.000Z

269

Increasing Underwater Vehicle Autonomy by Reducing Energy Consumption  

E-Print Network [OSTI]

: Autonomous Underwater Vehicle, Minimum Energy Consumption, Optimal Control, Experiments. 1 IntroductionIncreasing Underwater Vehicle Autonomy by Reducing Energy Consumption M. Chybaa , T. Haberkornd , S, we concern ourselves with finding a control strategy that minimizes energy consumption along

Chyba, Monique

270

Oklahoma Municipal Power Authority- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal government customers served by OMPA. This...

271

Commercial and Industrial Energy Conservation Programs in Illinois  

E-Print Network [OSTI]

This paper presents the State of Illinois' evolving role in assisting commercial and industrial firms in identifying and improving inefficiencies in the use of energy....

Thomas, S. K.

1980-01-01T23:59:59.000Z

272

Dakota Electric Association- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Dakota Electric Association provides financial incentives for commercial and industrial customers to increase the energy efficiency of eligible facilities. Examples of equipment and measures...

273

Detroit Public Lighting Department- Commercial and Industrial Energy Wise Program  

Broader source: Energy.gov [DOE]

The Detroit Public Lighting Department (PLD) offers commercial and industrial customers rebates for energy efficient equipment. Specific rebate amounts, equipment requirements, and applications are...

274

Laclede Gas Company- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Commercial and Industrial customers can receive rebates for various energy efficiency measures. Customers implementing specified efficiency measures can receive prescriptive rebates. All other...

275

Application to Oil and Energy Industries - Optimization Online  

E-Print Network [OSTI]

Nov 19, 2008 ... Abstract: In many industries, investment is part of the most important ... the case of an integrated company that invests on Oil, Gas and Energy.

Sergio Bruno

2008-11-19T23:59:59.000Z

276

STRATEGIC PLAN TO REDUCE THE ENERGY IMPACT OF AIR CONDITIONERS  

E-Print Network [OSTI]

Acknowledgements This report represents the efforts of many experts from the air conditioning industry who Manufacturer Freus Air Conditioning Jim Bazemore Consultant Energy Market Innovations, Inc. Doug Beaman of Heating and Air Conditioning Industries Kahn Air Conditioning Tav Commins Staff, Buildings

277

REDUCING ENERGY USE IN FLORIDA BUILDINGS  

E-Print Network [OSTI]

to determine the energy saving features available which are, in most cases, stricter than the current Florida Building Code. The energy savings features include improvements to building envelop, fenestration, lighting and equipment, and HVAC efficiency...

Raustad, R.; Basarkar, M.; Vieira, R.

278

INDUSTRIAL ENERGY DATA COLLECTION EXISTING SYSTEM AND PROPOSED FUTURE  

E-Print Network [OSTI]

.4 Hydro Quebec 14 5.5 Energy Research Group, Simon Fraser University 14 5.6 CANMET 15 #12;Industrial. INDUSTRIAL PRIMARY ENERGY DATA COLLECTION FORMATS 27 9.1 Energy Audits 27 9.1.1 Methodology 29 9.1.2 Steps Involved in an Energy Audit 30 9.2 Surveys 31 9.2.1 Detailed Site Energy End-use Survey 32 9.2.2 Equipment

279

Impact of recent energy legislation on the aluminum industry  

SciTech Connect (OSTI)

This report examines the aluminum industry's technology in energy use and emissions control. Data on consumption and pollution levels are presented. A history of the aluminum industry in the Pacific Northwest, its role in providing power reserves, and how that role fits into the present power situation are given. The Northwest Power Act, the rates the industry will probably pay as a result of the Act, the implications of those rates to the industry, as well as the availability of federal power to the industry are discussed. Finally, the Act's effects on the relative competitiveness of the industry in both domestic and world markets are examined.

Edelson, E.; Emery, J.G.; Hopp, W.J.; Kretz, A.L.

1981-06-01T23:59:59.000Z

280

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

E-Print Network [OSTI]

Comparison of National Energy Management Standards, prepared2007, Industrial Energy Management: Issues Paper, preparedMeeting: Using Energy Management Standards to stimulate

McKane, Aimee

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Reduce Hot Water Use for Energy Savings | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles 禄ExchangeDepartment ofManagementManagementReduce Hot Water Use for

282

Energy Department Partners with Industry to Train Federal Energy Managers  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness CompetitionDepartmentand Reduce Energy Costs | Department

283

Reducing the Energy Consumption of Mobile Applications Behind the Scenes  

E-Print Network [OSTI]

Reducing the Energy Consumption of Mobile Applications Behind the Scenes Young-Woo Kwon and Eli, an increasing number of perfective maintenance tasks are concerned with optimizing energy consumption. However, optimizing a mobile application to reduce its energy consumption is non-trivial due to the highly volatile

Tilevich, Eli

284

GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS  

E-Print Network [OSTI]

GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS Maha IDRISSI AOUAD.loria.fr/zendra Keywords: Energy consumption reduction, Genetic heuristics, memory allocation management, optimizations on heuristic methods for SPMs careful management in order to reduce memory energy consumption. We propose

Schott, Ren茅 - Institut de Math茅matiques ?lie Cartan, Universit茅 Henri Poincar茅

285

Reducing Network Energy Consumption via Sleeping and Rate-Adaptation  

E-Print Network [OSTI]

Reducing Network Energy Consumption via Sleeping and Rate-Adaptation Sergiu Nedevschi Lucian Popa of two forms of power management schemes that reduce the energy consumption of networks. The first the energy consumed when actively processing packets. For real-world traffic workloads and topologies and us

California at Irvine, University of

286

National Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying Savings From Improved Boiler Operation  

E-Print Network [OSTI]

energy savings from switching to modulation control mode and reducing excess air in natural gas firedNational Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify

Kissock, Kelly

287

Setting the Standard for Industrial Energy Efficiency  

E-Print Network [OSTI]

ISO 9000/14000 quality and environmental management systems,industrial quality and environmental management systems suchISO 9000/14000 quality and environmental management systems,

McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

2008-01-01T23:59:59.000Z

288

ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES  

E-Print Network [OSTI]

demand in the long run. Cogeneration of electricity and heatthe expan- sion of cogeneration, especially just now whencame from industrial cogeneration, 4% in l976 (a recession),

Schipper, L.

2012-01-01T23:59:59.000Z

289

Setting the Standard for Industrial Energy Efficiency  

E-Print Network [OSTI]

complete an in-depth energy audit and analysis to baselineof measures identified in the energy audit with a payback ofon energy management, energy audits and analysis, routines

McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

2008-01-01T23:59:59.000Z

290

Productivity benefits of industrial energy efficiency measures  

E-Print Network [OSTI]

the linkage between energy efficiency and productivity.and increased energy efficiency in integrated paper andand Office of Energy Efficiency and Renewable Energy, 1997.

Worrell, Ernst

2011-01-01T23:59:59.000Z

291

Characterizing emerging industrial technologies in energy models  

E-Print Network [OSTI]

EIA), 2001. 揂nnual Energy Outlook 2002, Energy Informationas forecasted in the Annual Energy Outlook 2002, we estimateQuads based on the Annual Energy Outlook 2002 (AEO 2002) (

Laitner, John A. Skip; Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

2003-01-01T23:59:59.000Z

292

Value Capture in the Global Wind Energy Industry  

E-Print Network [OSTI]

Wind Energy Council, 2011 New installation in 2010 The wind industry value chain Wind turbineWind Energy Council (GWEC, 2011) domestic content in U.S. -deployed turbines

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

293

The French National Energy Conservation Program - The Case of Industry  

E-Print Network [OSTI]

France is certainly one of the industrialized countries which has been the most severely affected by the energy crisis. It has thus been necessary since 1974 to plan and execute a bold, far-reaching government policy for energy reconversion...

Zyss, J.

1980-01-01T23:59:59.000Z

294

Motor Energy Saving Opportunities in an Industrial Plant  

E-Print Network [OSTI]

Industrial plants have enormous energy saving opportunities with electric motors. Improving motor efficiency is a conventional wisdom to save energy. Re-engineering affords far greater savings opportunities than motor efficiency improvement. Motor...

Kumar, B.; Elwell, A.

295

Promising Areas for Energy Efficiency in Industrial Process  

E-Print Network [OSTI]

Promising Areas for Energy Efficiency in Industrial Process Babu Joseph Ph.D Southern California Edison Company Almost all of the electric utilities in the US have some sort of energy efficiency improvement program for their customers. In all...

Joseph, B.

296

Distributed Wind - Economical, Clean Energy for Industrial Facilities  

E-Print Network [OSTI]

Distributed wind energy works for industrial clients. Corporations and other organizations are choosing to add Distributed Wind energy to their corporate goals for a numerous reasons: economic, environmental, marketing, values, and attracting new...

Trapanese, A.; James, F.

2011-01-01T23:59:59.000Z

297

2015 ACEEE Summer Study on Energy Efficiency in Industry  

Broader source: Energy.gov [DOE]

The American Council for an Energy-Efficient Economy (ACEEE) is hosting a summer conference that will have six panels with concurrent sessions held over two days, each developed around industry energy efficiency.

298

Large Industrial Renewable Energy Purchase Program (New Brunswick)  

Broader source: Energy.gov [DOE]

Beginning January 1, 2012 the Large Industrial Renewable Energy Purchase Program allows NB Power to purchase renewable energy generated by its largest customers at a rate of $95/MWh. This...

299

Application of Industrial Heat Improving energy efficiency of  

E-Print Network [OSTI]

compared with Residential Heat Pumps High energy efficiency = high coefficient of performance (COP) (eApplication of Industrial Heat Pumps Improving energy 颅 efficiency of industrial processes . H.J. Laue Information Centre on Heat Pumps and Refrigeration IZW e.V. #12;2 Welcome Achema Congress 2012

Oak Ridge National Laboratory

300

atomic energy industrial: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy industrial First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 MIT and Energy Industries MIT...

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Using DOE Industrial Energy Audit Data for Utility Program Design  

E-Print Network [OSTI]

. Baltimore Gas & Electric Company BG&E provides natural gas and electric service to central Maryland, serving approximately 1,000,000 residential customers, 100,000 commercial customers, and 3,000 industrial customers. The industrial customers in BG... time-of-use rates, credits for reducing demand during critical periods, and rebates for efficient lighting, motors, and air compressors. In 1992, BG&E also began the design of its Custom Industrial Plant Upgrade Program, intended to provide custom...

Glaser, C. J.; Packard, C. P.; Parfomak, P.

302

Restructuring, Tight Budgets and Executive Order 13123 Create New Incentives to Reduce Waste in Federal Industrial Facilities  

E-Print Network [OSTI]

This paper discusses the positive impact that electric utility industry restructuring, a reduction in the size of government operations, and the recent Presidential Executive Order 13123 should have on energy use in Federal industrial facilities...

Verdict, M. E.

303

Pantex installs new meters to help to reduce energy consumption...  

National Nuclear Security Administration (NNSA)

installs new meters to help to reduce energy consumption | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

304

PPPL wins Department of Energy award for reducing greenhouse...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an executive order signed on Oct. 5, 2009, to reduce energy consumption in federal buildings by 30 percent by 2015. "Today's Sustainability Award winners are leading by...

305

Energy Department Applauds Nation's First Large-Scale Industrial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the global clean energy economy, creating new jobs while reducing carbon pollution," said US Energy Secretary Steven Chu. "This first of its kind project will bring...

306

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

reducing energy consumption per unit of GDP by 20% betweena 20% reduction in energy use per unit of GDP by 2010 (Price

Price, Lynn

2008-01-01T23:59:59.000Z

307

Unique University and Utility Team Reduces Energy and Pollutants  

E-Print Network [OSTI]

In 1992 the Center for Energy Systems Research of the College of Engineering and Applied Sciences and the Arizona State University (ASU) Facilities Management Department formed a unique Demand Side Management (DSM) team dedicated to reducing energy...

Smith, K. L.; Traill, D. A.; Sears, R. L.; Spielman, M.

308

Strategies for reducing energy demand in the materials sector  

E-Print Network [OSTI]

This research answers a key question - can the materials sector reduce its energy demand by 50% by 2050? Five primary materials of steel, cement, aluminum, paper, and plastic, contribute to 50% or more of the final energy ...

Sahni, Sahil

2013-01-01T23:59:59.000Z

309

How Do You Reduce Energy Use from Computers and Electronics?...  

Energy Savers [EERE]

Energy Use from Computers and Electronics? How Do You Reduce Energy Use from Computers and Electronics? December 16, 2010 - 6:30am Addthis On Monday, John discussed some ways to...

310

Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful  

E-Print Network [OSTI]

Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful emissions, and minimizes the cost of providing energy to the campus. As a result of energy conservation initiatives that have been implemented over the past 20 years, growth in the average demand per

311

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

we select three alternative energy futures for California inwith the ~J -xi- alternative energy futures in order toassess the impacts of alternative energy futures. In later

Authors, Various

2010-01-01T23:59:59.000Z

312

International industrial sector energy efficiency policies  

E-Print Network [OSTI]

company and the Danish Energy Agency (Ezban et al. , 1994;company and the Danish Energy Agency. The agreements, whichagreements with the Danish Energy Agency, representing 45%

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

313

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

world energy consumption. More than 90% of this energy is used in the productionworld steel production, finding potential CO 2 emission reductions due to energy

Worrell, Ernst

2009-01-01T23:59:59.000Z

314

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

Energy efficiency and energy awareness in Botswana; ESI,awareness and training was the most frequently identified opportunity for improved energy

Worrell, Ernst

2009-01-01T23:59:59.000Z

315

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

Summer Study on Energy Efficiency in Industry. AmericanSummer Study on Energy Efficiency in Industry. AmericanCanada, Office of Energy Efficiency, Ottawa, Ontario. Carbon

Brush, Adrian

2012-01-01T23:59:59.000Z

316

Div ision of T echnology, Industry & Economics Energy Branch Deploying renewable energy  

E-Print Network [OSTI]

Div ision of T echnology, Industry & Economics Energy Branch Deploying renewable energy, Industry & Economics Energy Branch 1. Policy landscape 2. Helping transition to Renewable Energy 3 governments are promoting renewable energy. Renewable energy 颅 Policy Landscape #12;Div ision of T echnology

Canet, L茅onie

317

Energy Efficiency Improvement Opportunities for the Cement Industry  

SciTech Connect (OSTI)

This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this report is based on publicly-available reports, journal articles, and case studies from applications of technologies around the world.

Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

2008-01-31T23:59:59.000Z

318

Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E)  

SciTech Connect (OSTI)

IGATE-E is an energy analysis tool for industrial energy evaluation. The tool applies statistical modeling to multiple publicly available datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using DOE s Industrial Assessment Center database (IAC-DB) and DOE s Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to other commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool provides validation against DOE s EIA-MECS state level energy estimations and permits several statistical examinations. IGATE-E is intended to be a decision support and planning tool to a wide spectrum of energy analysts, researchers, government organizations, private consultants, industry partners, and alike.

Alkadi, Nasr E [ORNL] [ORNL; Starke, Michael R [ORNL] [ORNL; Ma, Ookie [DOE EERE] [DOE EERE; Nimbalkar, Sachin U [ORNL] [ORNL; Cox, Daryl [ORNL] [ORNL

2013-01-01T23:59:59.000Z

319

ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES  

E-Print Network [OSTI]

bear directly on energy use: the mix of non-energy goods andU.S. long haul mix is less energy intensive but total use isby consumers, and the mix of key energy intensive activities

Schipper, L.

2012-01-01T23:59:59.000Z

320

Sandia National Laboratories: reduce wind energy costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskite oxideplatform size requirements

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

California Energy Supply Model Operation Resource Requirements Dimensions of Housing Types , Annual Incremental Energy and Capacity Savings from Passive Solar

Authors, Various

2010-01-01T23:59:59.000Z

322

Policy modeling for industrial energy use  

E-Print Network [OSTI]

the market mechanism. Energy suppliers will try to maximizepolicy and program. Energy suppliers and consumers who are

2003-01-01T23:59:59.000Z

323

GUIDO BARTELS General Manager Global Energy & Utilities Industry, IBM  

E-Print Network [OSTI]

Energy Inc., a U.S. based publicly-traded, green energy technology company. Bartels is a frequent speakerGUIDO BARTELS General Manager Global Energy & Utilities Industry, IBM Chairman, Global Smart Grid Federation Board Member and Former Chairman, GridWise Alliance Guido Bartels heads up IBM's energy

324

Energy Use and Savings in the Canadian Industrial Sector  

E-Print Network [OSTI]

The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements...

James, B.

1982-01-01T23:59:59.000Z

325

Energy industries in transition 1985-2000. Part 1  

SciTech Connect (OSTI)

This conference consisted of 5 plenary sessions and 36 parallel sessions focusing primarily on recent trends in - and future prospects for - the oil, gas, coal, and electric-utility industries. The conference focused on the perspective of private industry. Part 1 consists of 45 papers all of which were selected for the Energy Data Base and Energy Abstracts for Policy Analysis. 5 abstracts appear in Energy Research Abstracts.

Weyant, J.P.; Sheffield, D.B. (eds.)

1984-01-01T23:59:59.000Z

326

Energy industries in transition 1985-2000. Part 2  

SciTech Connect (OSTI)

This conference consisted of 5 plenary sessions and 36 parallel sessions focusing primarily on recent trends in - and future prospects for - the oil, gas, coal, and electric utility industries. The conference focused on the perspective of private industry. Part 2 consists of 50 papers all of which were selected for the Energy Data Base and Energy Abstracts for Policy Analysis; 5 abstracts appear in Energy Research Abstracts.

Weyant, J.P.; Sheffield, D.B. (eds.)

1984-01-01T23:59:59.000Z

327

Exposing Datapath Elements to Reduce Microprocessor Energy Consumption  

E-Print Network [OSTI]

to Reduce Microprocessor Energy Consumption by Mark Jerome Hampton Submitted to the Department of ElectricalExposing Datapath Elements to Reduce Microprocessor Energy Consumption by Mark Jerome Hampton B Submitted to the Department of Electrical Engineering and Computer Science in partial ful llment

328

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

Neelis, Maarten; Worrell, Ernst; Masanet, Eric

2008-09-01T23:59:59.000Z

329

Sandia National Laboratories: reduce energy consumption  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskite oxide High-Efficiency Solaremissions

330

Industrial Energy Efficiency Technical Review Guidelines and Best Practices  

E-Print Network [OSTI]

of commercial and other sector programs. The following programs were deemed to represent the best combination of applicability and access to relevant information: ? BC Hydro?s Power Smart Partners - Industrial (Transmission and Distribution...) ? Wisconsin?s Focus on Energy ? Industrial ? California Public Utilities Commission?s (CPUC) Southern California Industrial and Agricultural (SCIA) and Pacific Gas & Electric?s (PG&E) Fabrication, Process and Manufacturing Review of Impact Evaluation...

Dalziel, N.

2013-01-01T23:59:59.000Z

331

ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY  

E-Print Network [OSTI]

Waste. Office of Energy Efficiency and Renewable Energy,Industry. Office of Energy Efficiency and Renewable Energy,Savings. Office of Energy Efficiency and Renewable Energy,

Kramer, Klaas Jan

2010-01-01T23:59:59.000Z

332

Industrial Carbon Capture Project Selections | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting of|ofIndustrialIndustrialIndustrial

333

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Byof the global greenhouse gas emissions. Total energy-relatedglobal greenhouse gas emissions, of which over 80% is from energy use. Total

Worrell, Ernst

2009-01-01T23:59:59.000Z

334

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

actions, develop an energy management plan for business; and38. Caffal, C. (1995). Energy Management in Industry. Centre2005a). Guidelines for Energy Management. United States

Worrell, Ernst

2008-01-01T23:59:59.000Z

335

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

2005). Guidelines for Energy Management. Washington, D.C.Caffal, C. (1995). Energy Management in Industry. Centre forfor improving your energy management practices. Resources

Galitsky, Christina

2008-01-01T23:59:59.000Z

336

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

and M. Kushler. (1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry. AmericanCalifornia Institute of Energy Efficiency ( CIEE). (2000b).

Galitsky, Christina

2008-01-01T23:59:59.000Z

337

Reducing Energy Consumption on Process Ovens & Oxidation Systems  

E-Print Network [OSTI]

recovery systems are capable of metals in the heat exchangers along with stresses recovering up to 97% of the energy used in the induced by changing process conditions can oxidation process. Most units on the market severely reduce the life...REDUCING ENERGY CONSUMPTION ON PROCESS OVENS & OXIDATION SYSTEMS Chris Worachek Design Engineer MEGTEC Systems De Pere, WI ABSTRACT With the uncertain cost of energy, optimizing the use of air in process dryers, ovens and air pollution...

Worachek, C.

338

Contract Management Using Industrial Energy Management & Reporting Systems  

E-Print Network [OSTI]

Energy Management and Reporting Systems (EMRS) are rule-based control systems with a record of reducing energy usage and CO2e emissions while optimizing electrical generation in a real time environment. The rule set successfully optimizes energy...

Robinson, J. E.

2011-01-01T23:59:59.000Z

339

Dereck, Shockley, Xcel Energy's Commercial - Industrial Programs  

Broader source: Energy.gov (indexed) [DOE]

year Energy Efficiency Programs Energy Savings Goals - Colorado 2012: u Business Electric Savings: 199 GWhs u Gas Savings: 435,054 Dth (all programs) u...

340

Developing a solar energy industry in Egypt .  

E-Print Network [OSTI]

??This paper assesses Egypt's current energy infrastructure and its problems, the available solar energy resource, and the technologies required to harness this resource. After this (more)

AbdelMessih, Sherife (Sherife Mohsen)

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Experimental and Simulation Study on the Performance of Daylighting in an Industrial Building and its Energy Saving Potential  

E-Print Network [OSTI]

electricity consumption in Hong Kong [3]. For industrial buildings, the percentage varies widely depending-34% of the total building electricity consumption in Dongguan, China [4]. To reduce the energy consumption reduce building energy consumption effectively. Studies on this topic have been mostly conducted

Chen, Qingyan "Yan"

342

Energy Technology Transfer for Industry Through the Texas Energy Extension Service  

E-Print Network [OSTI]

ENERGY TECHNOLOGY TRANSFER FOR INDUSTRY THROUGH THE TEXAS ENERGY EXTENSION SERVICE Stephen Riter Texas Energy Extension Service. Texas A&M University College Station, Texas ABSTRACT The Texas Energy Extension Service (EES) is one of ten...

Riter, S.

1979-01-01T23:59:59.000Z

343

Industrial Energy Systems Laboratory Gnie mcanique  

E-Print Network [OSTI]

is proportional to the sum of heat gains (solar, person, electrical devices and heating) minus the sum of heat of the building. This enables the computation of distances and the integration of networks (i.e. district heating have been necessary: Like an industrial process, a district is a closed system with inputs and outputs

344

Fusion Energy An Industry-Led Initiative  

E-Print Network [OSTI]

- Sunlight and its derivatives - Fission energy based on breeders - Clean coal (several hundreds of years

345

Energy-Efficiency Improvement Opportunities for the Textile Industry  

SciTech Connect (OSTI)

The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

China Energy Group; Hasanbeigi, Ali

2010-09-29T23:59:59.000Z

346

Certifying Industrial Energy Efficiency Performance: Aligning Management, Measurement, and Practice to Create Market Value  

E-Print Network [OSTI]

knowledge concerning energy management best practices andapplying and validating energy management best practices inan international industrial energy management standard that

McKane, Aimee; Scheihing, Paul; Williams, Robert

2008-01-01T23:59:59.000Z

347

Energy Conservation Through Water Usage Reduction in the Semiconductor Industry  

E-Print Network [OSTI]

The semiconductor industry uses large amounts of Ultrapure Water (UPW) in the wafer fabrication process. Producing UPW involves energy-intensive operations, such as membrane separations, ultraviolet lamps, and continuous pumping and recirculation...

Mendicino, L.; McCormack, K.; Gibson, S.; Patton, B.; Lyon, D.; Covington, J.

348

A Low Cost Energy Management Program at Engelhard Industries Division  

E-Print Network [OSTI]

in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

Brown, T. S.; Michalek, R.; Reiter, S.

1982-01-01T23:59:59.000Z

349

Emerging Industrial Innovations for New Energy Efficient Technologies  

E-Print Network [OSTI]

as integrated photovoltaic systems may play an even larger role in the more productive use of our energy resources. This paper explores recent work on industrial innovation, often involving public-private partnerships, and provides a context to understand...

Laitner, J. A.

2007-01-01T23:59:59.000Z

350

Energy Conservation and Waste Reduction in the Metal Fabrication Industry  

E-Print Network [OSTI]

Reductions of energy use and waste generation can help manufacturers to be more profitable and more environmentally acceptable. Industrial Assessment Centers located at universities throughout the United States, funded by the U.S. Department...

Kirk, M. C. Jr.; Looby, G. P.

351

Energy Management and Computers in the Pulp and Paper Industry  

E-Print Network [OSTI]

dryer hood waste heat. o Biomass feedstocks for the production of specialized chemial products. o Crossing of the stone groundwood process with the thermomechanical pulping process. 236 ESL-IE-81-04-42 Proceedings from the Third Industrial Energy...

Sommerfeld, J. T.; Hartley, E. M.

1981-01-01T23:59:59.000Z

352

Alert! Industry and Academia - The Energy Department Seeks Your...  

Broader source: Energy.gov (indexed) [DOE]

for improving the cost and performance of power or industrial systems that depend on fossil energy. Please note that this is a request for information (RFI) only; it is NOT a...

353

Duquesne Light Company- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Duquesne Light provides rebates on energy-saving equipment to commercial and industrial customers in the eligible service territory. There are 2 types of rebate programs available to all C&I...

354

Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal  

Broader source: Energy.gov [DOE]

The Geothermal Energy Association (GEA) is holding a State of the Geothermal Industry Briefing爋n Tuesday, February 24th at the Hyatt Regency Capitol Hill in Washington, DC. This program will...

355

Radio Frequency & Microwave Energy for the Petro Chemical Industry  

E-Print Network [OSTI]

Electro-Magnetic Energy has finally made its way into the Petro-Chemical market twenty-five years after market acceptance in the Food Processing Industry. Major factors influencing this change are tighter environmental regulations, price competition...

Raburn, R.

356

Nodes Placement for reducing Energy Consumption in Multimedia Transmissions  

E-Print Network [OSTI]

quality of multimedia traffic. Index Terms--Wireless Sensor Networks, Multimedia, Energy Saving, Quality on the energy saving by extending the lifetime of the network up to more than 15% while preserving video qualityNodes Placement for reducing Energy Consumption in Multimedia Transmissions Pasquale Pace Valeria

Paris-Sud XI, Universit茅 de

357

Reducing "Search Cost" and Risk in Energy-efficiency Investments  

E-Print Network [OSTI]

Reducing "Search Cost" and Risk in Energy-efficiency Investments: Two Success Stories Philip E "search Cost"and Risk in Energy-Eficiency Investments: Two Success Stories - 4.91 #12;Perspectives significant transaction costs related to searching for and analyzing information on prospective energy

358

RenewableNY - An Industrial Energy Conservation Initiative  

SciTech Connect (OSTI)

The New York Industrial Retention Network (NYIRN) manages the RenewableNY program to assist industrial companies in New York City to implement energy efficiency projects. RenewableNY provides companies with project management assistance and grants to identify opportunities for energy savings and implement energy efficiency projects. The program helps companies identify energy efficient projects, complete an energy audit, and connect with energy contractors who install renewable energy and energy efficient equipment. It also provides grants to help cover the costs of installation for new systems and equipment. RenewableNY demonstrates that a small grant program that also provides project management assistance can incentivize companies to implement energy efficiency projects that might otherwise be avoided. Estimated savings through RenewableNY include 324,500 kWh saved through efficiency installations, 158 kW of solar energy systems installed, and 945 thm of gas avoided.

Lubarr, Tzipora

2009-09-30T23:59:59.000Z

359

innovati nNREL's Industry Growth Forum Boosts Clean Energy  

E-Print Network [OSTI]

innovati nNREL's Industry Growth Forum Boosts Clean Energy Commercialization Efforts For more than's premier event for early-stage clean energy investment. The forum features presentations from the most innovative, promising, and emergent clean energy companies; provocative panels led by thought leaders

360

Developing Renewable Energy within the Water Industry Dr Gareth Harrison  

E-Print Network [OSTI]

incentives such as the UK Renewables Obligations [1] are encouraging the development of renewable energyDeveloping Renewable Energy within the Water Industry Dr Gareth Harrison University of Edinburgh at the very time that Regulators expect greater efficiencies. The benefits of renewable energy in helping

Harrison, Gareth

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

2008-01-01T23:59:59.000Z

362

Optimizing Process Loads in Industrial Cogeneration Energy Systems  

E-Print Network [OSTI]

applied to power generation and industrial cogeneration are extended to solving this trigeneration problem where the optimum dispatch of the final load devices (i.e. compressors, fans, pumps, etc.) are an integral part of the total energy system...-04-29 Proceedings from the Seventeenth Industrial Energy Technology Conference, Houston, TX, April 5-6, 1995 optimum dispatch solutions, and an iterative simultaneous solution of the integrated system is required. The solution dependency arises when the end use...

Ahner, D. J.; Babson, P. E.

363

Energy and Demand Savings from Implementation Costs in Industrial Facilities  

E-Print Network [OSTI]

1 ENERGY AND DEMAND SAVINGS FROM IMPLEMENTATION COSTS IN INDUSTRIAL FACILITIES 1 Razinha, J.A. and Heffington, W.M. Industrial Assessment Center and Mechanical Engineering Department Texas A&M University, College Station, Texas 77843.... noted that a direct calculation of cost savings from the implementation cost could eliminate as much as 30% of the preparation time (and associated cost) for the LoanSTAR reports. The savings result from not having to calculate energy or demand...

Razinha, J. A.; Heffington, W. M.

364

Potential environmental effects of energy conservation measures in northwest industries  

SciTech Connect (OSTI)

The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

Baechler, M C; Gygi, K F; Hendrickson, P L

1992-01-01T23:59:59.000Z

365

Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies  

SciTech Connect (OSTI)

The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting iron ore to metallic iron nodules. Various types of coals including a bio-coal produced though torrefaction can result in production of NRI at reduced GHG levels. The process results coupled with earlier already reported developments indicate that this process technique should be evaluated at the next level in order to develop parameter information for full scale process design. Implementation of the process to full commercialization will require a full cost production analysis and comparison to other reduction technologies and iron production alternatives. The technical results verify that high quality NRI can be produced under various operating conditions at the pilot level.

Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

2011-12-22T23:59:59.000Z

366

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

route used, product mix, energy and carbon intensities ofmix, different degrees of integration but mainly due to the age and type of technology and levels of retrofitting of energy

Worrell, Ernst

2009-01-01T23:59:59.000Z

367

ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES  

E-Print Network [OSTI]

ratio 2 1 9 6 7 Energy per capita 2 1 7 5 9 GDP per capita 1Energy prices (1owest prices = 1) 1 2 4 5 9 Passenger mi1es per unit GDP

Schipper, L.

2012-01-01T23:59:59.000Z

368

Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)  

Reports and Publications (EIA)

For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

2007-01-01T23:59:59.000Z

369

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

SciTech Connect (OSTI)

The industrial sector is the most important end-use sector in developing countries in terms of energy use and was responsible for 50% of primary energy use and 53% of associated carbon dioxide emissions in 1995 (Price et al., 1999). The industrial sector is extremely diverse, encompassing the extraction of natural resources, conversion of these resources into raw materials, and manufacture of finished products. Five energy-intensive industrial subsectors account for the bulk of industrial energy use and related carbon dioxide emissions: iron and steel, chemicals, petroleum refining, pulp and paper, and cement. In this paper, we focus on the steel and cement sectors in Brazil, China, India, and Mexico.1 We review historical trends, noting that China became the world's largest producer of cement in 1985 and of steel in 1996. We discuss trends that influence energy consumption, such as the amount of additives in cement (illustrated through the clinker/cement ratio), the share of electric arc furnaces, and the level of adoption of continuous casting. To gauge the potential for improvement in production of steel and cement in these countries, we calculate a ''best practice'' intensity based on use of international best practice technology to produce the mix of products manufactured in each country in 1995. We show that Brazil has the lowest potential for improvement in both sectors. In contrast, there is significant potential for improvement in Mexico, India, and especially China, where adoption of best practice technologies could reduce energy use and carbon dioxide emissions from steel production by 50% and cement production by 37%. We conclude by comparing the identified potential for energy efficiency improvement and carbon dioxide emissions reduction in these key developing countries to that of the U.S. This comparison raises interesting questions related to efforts to improve energy efficiency in developing countries, such as: what is the appropriate role of industrialized countries in promoting the adoption of low carbon technologies, how do international steel and cement companies influence the situation, and how can such information be used in the context of Clean Development Mechanism in the Kyoto Protocol?

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-09-01T23:59:59.000Z

370

ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES  

E-Print Network [OSTI]

producing devices for building and has begun a prototype support campaign to encourage innovations in buildings that save energy.

Schipper, L.

2012-01-01T23:59:59.000Z

371

Mechanical Engineering Industrial Energy Systems Laboratory  

E-Print Network [OSTI]

of District Heating and Cooling with an Electro-Thermal Energy Storage System Master Thesis ANURAG KUMAR of the district energy systems is performed and modifications are proposed in a district heating network. Based thermodynamic cycle, ETES suffers from the irreversibilities and excess thermal energy is required to dispose

Candea, George

372

Improved Combustion System for Energy Conservation in Industry  

E-Print Network [OSTI]

into the furnace. This paper describes various types of burners, their applications, and field test results which illustrate that a properly designed and applied combustion system can reduce the energy consumption and improve the productivity by reducing...

Thekdi, A. C.; Hemsath, K. H.

1979-01-01T23:59:59.000Z

373

Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial  

E-Print Network [OSTI]

Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial Energy Efficiency Group are experts in the technical, financial, and contractual aspects of ESPCs, and Industrial Energy Efficiency Group (865) 574-1013 kelleyjs@ornl.gov 9/08 r1 ORNL helps organizations

374

Reduced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 RevisionDivisionReduced intermittency in

375

Reducing 3G energy consumption on mobile devices  

E-Print Network [OSTI]

The 3G wireless interface is a significant contributor to battery drain on mobile devices. This paper describes the design, implementation, and experimental evaluation of methods to reduce the energy consumption of the 3G ...

Deng, Shuo

2012-01-01T23:59:59.000Z

376

Reducing Air-Conditioning System Energy Using a PMV Index  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Maximize Comfort: Temperature, Humidity and IAQ Vol.I-4-1 Reducing Air-Conditioning System Energy Using a PMV Index Hui Li Qingfan Zhang Associate professor...

Li, H.; Zhang, Q.

2006-01-01T23:59:59.000Z

377

Reducing energy use comes at a costReducing energy use comes at a cost ----the EU casethe EU case  

E-Print Network [OSTI]

Deputy Director and Chief Economist Centre for Global Energy StudiesCentre for Global Energy Studies Athens emissions, which are deemed to cause globalemissions, which are deemed to cause global warming regions ofsupplies (especially oil) from unstable regions of the world.the world. Why reduce energy use

378

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-07-01T23:59:59.000Z

379

Microcab Industries Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH Jump to:Michigan: Energy Resources JumpEnergy|MicroSat

380

Chemicals Industry Profile | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical Kinetic ModelingChemicals Industry

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

VAWT Industries Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip:Scale Solar Inc Place:VAWT Industries

382

Industrial Technologies Success Stories - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stories (1) Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories News Events Graphic of a...

383

Borla Performance Industries, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Element One, Inc. National Renewable Energy Laboratory 191524 likes Element One, based in Boulder, Colorado, has created the only available coatings that change color when...

384

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

of the impact of the ASHRAE 90-75 stan- dard on newAssessment of ASHRAE Standard 90-75, Energy Conservation in

Authors, Various

2010-01-01T23:59:59.000Z

385

Guiding Principles for Successfully Implementing Industrial Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Celland Contractors | Department ofMixed-Humid Climates

386

Solar Industry At Work | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on Energy andDepartment ofAnShare yourA NewGrowth of Solar11

387

Energy Industry Days - Performance Contracting - Sacramento, CA |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 & 6,Department ofDepartment of Energy 1UpdatedSection

388

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

Energy Efficiency and CO2 Emissions. Paris: IEA. KEMA, withrelated carbon dioxide (CO2) emissions. Many studies andconcurrently reducing CO2 emissions. With the support of

Price, Lynn

2008-01-01T23:59:59.000Z

389

Energy Flow Models for the Steel Industry  

E-Print Network [OSTI]

each step is calibrated against Commerce Dept. data. Third, a detailed energy flow model is presented for coke ovens and blast furnaces, two very energy-intensive steps in our seven step model of steelmaking. This process-step model is calibrated...

Hyman, B.; Andersen, J. P.

390

Energy Conservation Projects to Benefit the Railroad Industry  

SciTech Connect (OSTI)

The Energy Conservation Projects to benefit the railroad industry using the Norfolk Southern Company as a model for the railroad industry has five unique tasks which are in areas of importance within the rail industry, and specifically in the area of energy conservation. The NIU Engineering and Technology research team looked at five significant areas in which research and development work can provide unique solutions to the railroad industry in energy the conservation. (1) Alternate Fuels - An examination of various blends of bio-based diesel fuels for the railroad industry, using Norfolk Southern as a model for the industry. The team determined that bio-diesel fuel is a suitable alternative to using straight diesel fuel, however, the cost and availability across the country varies to a great extent. (2) Utilization of fuel cells for locomotive power systems - While the application of the fuel cell has been successfully demonstrated in the passenger car, this is a very advanced topic for the railroad industry. There are many safety and power issues that the research team examined. (3) Thermal and emission reduction for current large scale diesel engines - The current locomotive system generates large amount of heat through engine cooling and heat dissipation when the traction motors are used to decelerate the train. The research team evaluated thermal management systems to efficiently deal with large thermal loads developed by the operating engines. (4) Use of Composite and Exotic Replacement Materials - Research team redesigned various components using new materials, coatings, and processes to provide the needed protection. Through design, analysis, and testing, new parts that can withstand the hostile environments were developed. (5) Tribology Applications - Identification of tribology issues in the Railroad industry which play a significant role in the improvement of energy usage. Research team analyzed and developed solutions which resulted in friction modification to improve energy efficiency.

Clifford Mirman; Promod Vohra

2009-12-31T23:59:59.000Z

391

Energy Smart- Commercial and Industrial Energy Efficiency Rebate Program (20 Municipalities)  

Broader source: Energy.gov [DOE]

Franklin Energy Services has partnered with the Michigan Public Power Agency (MPPA), which is made up of 20 municipal utilities, to offer the Energy Smart Commercial and Industrial Energy...

392

Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector  

E-Print Network [OSTI]

The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23...

Zhou, A.; Tutterow, V.; Harris, J.

393

PET: Reducing Database Energy Cost via Query Optimization  

E-Print Network [OSTI]

PET: Reducing Database Energy Cost via Query Optimization Zichen Xu The Ohio State University xuz not necessarily have the shortest processing time. This demo proposal introduces PET 颅 an energy-aware query op- timization framework that is built as a part of the PostgreSQL ker- nel. PET, via its power cost estimation

Tu, Yicheng

394

Applications of solar energy in industrial parks  

SciTech Connect (OSTI)

The four phases of ongoing work at SERI that examines many unresolved questions regarding the purpose, solar applicability, economics, and energy modeling of industral parks are presented. The first phase involved site visits to approximately 300 parks in 12 major metropolitan areas of 9 states. Phase 2 entails an analysis of four parks selected from those parks surveyed. Phase 3 narrows the focus to two parks to be examined for detailed technical and engineering analysis. Phase 4 incorporates all of the work of the earlier phases with economic criteria to produce an energy allocation model describing energy delivery and consumption within the park.

Greaver, V.W.; Farrington, R.B.; Leboeuf, C.M.

1980-05-01T23:59:59.000Z

395

Industries & Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting Thomas F. Edgar, Ph.D., PrincipalThe

396

Colorado Cleantech Industry Association | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS) | OpenEnergy Information WayColorado

397

About Industrial Technical Assistance | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdf ASGovLtr.pdf-OPAMGuidanceLA-UR-14-21597EmergingAbout

398

Tuesday Webcasts for Industry | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage 禄of EnergyThe EnergyDepartment7Department ofDepartment

399

Industrial Assistance and Projects Databases | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting of|ofIndustrialIndustrial

400

Energy Matters: An invitation to Chat About Industrial Efficiency  

ScienceCinema (OSTI)

Do you have questions or ideas about how the U.S. Department of Energy can contribute to global competitiveness through industrial efficiency? Dr. Kathleen Hogan would like to hear them. Submit your questions via: Email ( newmedia@hq.doe.gov ) Twitter ( @Energy ) Facebook ( Facebook.com/Energygov ) **LIVE CHAT IS EXPIRED**

Hogan, Kathleen

2013-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

MULTI-OBJECTIVE OPTIMISATION APPLIED TO INDUSTRIAL ENERGY PROBLEMS  

E-Print Network [OSTI]

MULTI-OBJECTIVE OPTIMISATION APPLIED TO INDUSTRIAL ENERGY PROBLEMS TH `ESE N XXXX (2002) PR 麓ESENT related to optimising energy systems. Multi-objective optimisation techniques provide the information, if a product must be both inexpensive and high quality, the multi-objective optimiser will provide a range

Coello, Carlos A. Coello

402

Industrial Energy Efficiency Achieving Success in a Difficult Environment  

E-Print Network [OSTI]

Energy use and the resulting environmental impacts are major points of concern for the world in the 21st century. Opinions that define the challenges of sustainable energy options are as diverse as the proposed solutions. The industrial sector is a...

Castellow, C.

2011-01-01T23:59:59.000Z

403

Energy Matters: An invitation to Chat About Industrial Efficiency  

SciTech Connect (OSTI)

Do you have questions or ideas about how the U.S. Department of Energy can contribute to global competitiveness through industrial efficiency? Dr. Kathleen Hogan would like to hear them. Submit your questions via: Email ( newmedia@hq.doe.gov ) Twitter ( @Energy ) Facebook ( Facebook.com/Energygov ) **LIVE CHAT IS EXPIRED**

Hogan, Kathleen

2011-01-01T23:59:59.000Z

404

Energy Efficiency in the Microelectronics Industry  

E-Print Network [OSTI]

The rapid advance of technology towards shrinking circuits and increasing speed of execution is coupled by the demand for enhanced manufacturing rates and fuller equipment utilization. This puts renewed emphasis on understanding the way energy...

Bhatti, B.

405

Sustaining Performance Improvements in Energy Intensive Industries  

E-Print Network [OSTI]

Experience has shown that significant opportunity for performance improvements exists in energy intensive operations. Often, efforts to improve efficiency focus on vendor-led initiatives to improve operations of particular equipment. This approach...

Moore, D. A.

2005-01-01T23:59:59.000Z

406

Electrical energy monitoring in an industrial plant  

E-Print Network [OSTI]

This thesis presents an investigation into the actual electrical energy and demand use of a large metal fabrication facility located in Houston, Texas. Plant selection and the monitoring system are covered. The influence of a low power factor...

Dorhofer, Frank Joseph

1994-01-01T23:59:59.000Z

407

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

Input fuel quantities (in BTU) which account for thermalOutput energy (in BTU). Includes biomass, accounted asMWE) COIL FIRED peWER PLINT-lew BTU 1800 MWEI ~UlFUA O~IOE

Authors, Various

2010-01-01T23:59:59.000Z

408

Industrial Energy Conservation Potentials in North Carolina  

E-Print Network [OSTI]

a reciprocating or screw type compressor, and the compressed air is kept in storage tanks. An air dryer refrigiration unit is often used to remove the moisture from air after it has been compressed. Air compressors, as seen during energy audits... INTAKE OUTSIDE Relocating the compressor air intake outside would save energy especially in winter when the outside air temperature is considerably lower than that of compressor room air. Cooler air requires less work to compress, because the air...

Barakat, M. G.; Singh, H.; Mallik, A. K.

409

Global Industry Analysts | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy Resources Jump to: navigation,OpenBusGEF Jump

410

JUGENHEIMER INDUSTRIAL SUPPLIES INC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) |JMalucelli Energia Place:

411

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

opportunities, recommend energy efficiency actions, developSummer Study on Energy efficiency in Industry. AmericanACEEE Summer Study on Energy Efficiency in Industry, ACEEE,

Worrell, Ernst

2011-01-01T23:59:59.000Z

412

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

M. Kushler. (c. 1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry, Americanof Industrial Technologies, Energy Efficiency and Renewable

Galitsky, Christina

2008-01-01T23:59:59.000Z

413

Promoting Energy Efficiency in Industry: Utility Roles and Perspectives  

E-Print Network [OSTI]

successful utility marketing puget Sound Power and Light programs related to commercial/industrial end (Puget Power) -- The most flex use efficiency are: ible rebate program offered. Commercial/industrial customers ? Customer Education may submit... proposals and engineering designs for a rebate Pacific Gas and Electric Company up to $100,000. Utility (PG&E) -- Technical briefs of engineers also help with drawing new, emerging technologies. up bid specifications. Energy consumption monitoring...

Limaye, D. R.; Davis, T. D.

1984-01-01T23:59:59.000Z

414

Realistic Industrial Scale Energy Optimization: Part I - Organizing and Executing Energy Conservation Projects  

E-Print Network [OSTI]

With increased cost and reduced availability of energy, plant managers are reviewing their options to optimize energy utilization to reduce operating costs. This paper deals with the organization and execution of an energy conservation program which...

Jones, W. T.

1982-01-01T23:59:59.000Z

415

Partnerships for Industrial Productivity Through Energy Efficiency  

E-Print Network [OSTI]

of myself as a gold miner. Some 75% to 85% of my studies and efforts ended in failure. The remaining 15% was worth the gold mine, and HAVE produced such savings as: A An average of 15% to 18% of the total energy usage of all the facilities surveyed..., with a 2 year payback or less. If the payback period could have been 3 to 4 years the average would have been between 25% and 35% B. Over 4.0 megawatts oC demand in one year C. Over S8OO,OOO per year in one facility D. Over 55% of the energy...

Johnston, W. E.

416

Alten Industries Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy Focus AreaValleyEnergyAlte LLC

417

Videocon Industries Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpenVerona, New Jersey: EnergyProfilingEnergyMS)New

418

A National Perspective on Energy and Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered聣PNGExperience hands-onASTROPHYSICSHe 尾-Research andAFishing forAAEIA's Energy

419

Career Map: Industrial Engineer | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy-Chevron U.S.A.CAMPAIGNINGcivil engineerindustrial

420

Steel Industry Profile | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage 禄 SearchEnergyDepartmentScopingOverviewFranklinStatusJ.R. Simplot DonSteel

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Steel Industry Technology Roadmap | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage 禄 SearchEnergyDepartmentScopingOverviewFranklinStatusJ.R. Simplot DonSteelSteel

422

Presentations for Industry | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research | DepartmentDepartment of Energy 3, 2011 Issued toofMikeJointLearn

423

Plastic Magen Industry | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: EnergyPierceJump81647掳 LoadingPlainPlano, TX)PlasmaTechPlastic

424

Clean Technology Sustainable Industries Organization | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota:CleanClean

425

Energy conservation and cost benefits in the dairy processing industry  

SciTech Connect (OSTI)

Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

none,

1982-01-01T23:59:59.000Z

426

Promoting Energy Efficiency in Cement Making: The ENERGY STAR(R) for Industry Program  

E-Print Network [OSTI]

best practices for compressed air system energy efficiencyenergy efficiency opportunities applicable to plants within the focus industry, including information on best practices

Masanet, Eric; Worrell, Ernst

2007-01-01T23:59:59.000Z

427

FirstEnergy (West Penn Power)- Commercial and Industrial Energy Efficiency Rebate Program (Pennsylvania)  

Broader source: Energy.gov [DOE]

FirstEnergy (West Penn Power) offers various rebates to eligible commercial, industrial, non-profit, local government and institutional customers in Pennsylvania service territory who upgrade to...

428

A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry  

E-Print Network [OSTI]

s Office of Industrial Technology and Oak Ridge NationalGunnar Hovstadius of ITT Fluid Technology Corporation. 2002.of Demonstrated Energy Technologies (CADDET), Sittard, the

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

429

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

System . . . . . Capital Cost Estimates for a 2000 T/D Purox1976. Table F-2 Estimates of Capital Costs for Solar Thermalcapital costs, power rating at an optimal average wind velocity and energy costs The capacity factors, according to the estimate

Authors, Various

2010-01-01T23:59:59.000Z

430

Impact of Control System Technologies on Industrial Energy Savings  

E-Print Network [OSTI]

Modify temperature and pressure setpoints to meet requirements while optimizing energy use CHILLER ROOM TB Static Pressure Setpoint Reset Thermostatic Temperature Setpoint ESL-IE-14-05-40 Proceedings of the Thrity-Sixth Industrial Energy Technology... Conference New Orleans, LA. May 20-23, 2014 1. HVAC: Seasonal Temperature Resets I. SETPOINT ADJUSTMENT Low payback, high savings! Image: http://www.ncelectriccooperatives.com/electricity/homeEnergy/thermostats_intro.htm Average Savings: $10,000 per year...

Parikh, P.; Pasmussen, B. P.

2014-01-01T23:59:59.000Z

431

Energy Challenges and Conservation Achievements in the Aluminum Industry  

E-Print Network [OSTI]

. The apparent danger and the emotional impact could prove to be a serious setback for the development of nuclear power. We are not certain yet whether President Carter and the Congress will attempt to write more meaningful energy legislation this year.... The lack of an aggressive, coordinated, national energy development plan is a disappointment. But it is not having a profound impact on the aluminum industry or Alcoa. We are doing a great deal to conserve energy and improve our operating methods...

Sheldon, A. C.

1979-01-01T23:59:59.000Z

432

Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs  

E-Print Network [OSTI]

Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs Supervisory Committee Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management of Environmental Studies) Departmental Member For energy utilities faced with expanded jurisdictional energy

Victoria, University of

433

DTE Energy (Gas)- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

DTE Energy's Commercial Your Energy Savings Program provides prescriptive incentives, predominantly on a simple per unit basis. Custom incentives are based on the amount of estimated annual energy...

434

Cutting Residential, Commercial, and Industrial Energy Use: Tools and Incentives that Work  

Broader source: Energy.gov [DOE]

Cutting Residential, Commercial, and Industrial Energy Use: Tools and Incentives that Work Presentation

435

Lighting energy management in industrial plants  

SciTech Connect (OSTI)

This paper provides some guidance to assist plant managers and engineers in managing their light energy problems. Incandescent, flourescent, and high-intensity discharge lamps are compared. Flourescent is still predominant, incandescent is not recommended-and HID is rapidly gaining favor. Lamp life and lumen depreciation must be determined. Light loss factors which are not recoverable are: luminaire ambient temperature, voltage to the luminaire, ballast factor, and luminaire surface dirt depreciation. Light loss factors which can be recovered by plant maintainence are: room surface dirt depreciation, lamp failures, lamp lumen depreciation, and luminaire dirt depreciation. A method to determine the savings that may result from group relamping versus spot replacement is given. Finally, energy management steps, to maximize performance, are listed.

Bachler, J.M.

1982-06-01T23:59:59.000Z

436

Energy And The Foods Processing Industry  

E-Print Network [OSTI]

will vary with the particular facility; however, refrigeration systems and steam systems typically have the highest potential for cost savings. In many cases, addressing these systems alone can provide a return on efficiency investment of 30% or better... will provide greater cost savings than what may be achieved through electric supplier competition. The two systems which provide the greatest opportunity for energy cost savings are the refrigeration system and the steam system. Let's dissect these one...

Baker, R.

437

Emerging Energy-Efficient Technologies for Industry  

E-Print Network [OSTI]

Efficient cell retrofit designs Alum-2 aluminum 46 Process Integration (pinch analysis) Other-4 cross-cuning 38 Autothermal reforming-Ammonia Chem-7 chemicals 37 Condebelt drying Paper-2 pulp and paper 34 Electron Beam Sterilization Food-l food... processing 34 Inert AnodeslWetted Cathodes Alum-4 aluminum 34 Electricity is a unique energy source, with a large infrastructure supporting its generation and delivery and significant emissions. Many, including electric utilities, will fmd it important...

Worrell, E.; Martin, N.; Price, L.; Ruth, M.; Elliott, N.; Shipley, A.; Thorn, J.

438

Longjitaihe Industry Group | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown, Arizona:Lockland,LIPAsimulation

439

AgroIndustrial Capela | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLC Place:Agrivert Jump

440

Guardian Industries Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., It is classified

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Magnetech Industrial Services | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy Co Ltd JumpLightSourceRMaglev Wind

442

Biofuel Industries Group LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form View source HistoryBarriers

443

Solar Industry Scorches Records | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and ResponseStaffServicesFutureU.S. technologicalEnergySolar

444

Cardinal Glass Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan DivideCannonCirculating Wateroperable

445

South Jersey Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois: Energy Resources Jump to:

446

Malwa Industries Ltd MIL | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECOInformationMallard LakeMalvern is a

447

Biodiesel Industries Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon:GreatBioGold FuelsTrading

448

Individual Industrial WPFC Permit | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429Indiana Wind

449

Industrial Technology Research Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429Indiana WindIndonesia|Indonesia:IndurTechnology

450

Industry Recruitment/Support | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429IndianaProfessional Jump to: navigation,

451

Kayo Battery Industries Group | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 ClimateKamas, Utah:Kaufman County,

452

IFB Agro Industries Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: EnergytheInformationRoadmaps JumpTool

453

BEST Winery Guidebook: Benchmarking and Energy and Water SavingsTool for the Wine Industry  

SciTech Connect (OSTI)

Not all industrial facilities have the staff or the opportunity to perform a detailed audit of their operations. The lack of knowledge of energy efficiency opportunities provides an important barrier to improving efficiency. Benchmarking has demonstrated to help energy users understand energy use and the potential for energy efficiency improvement, reducing the information barrier. In California, the wine making industry is not only one of the economic pillars of the economy; it is also a large energy consumer, with a considerable potential for energy-efficiency improvement. Lawrence Berkeley National Laboratory and Fetzer Vineyards developed an integrated benchmarking and self-assessment tool for the California wine industry called ''BEST''(Benchmarking and Energy and water Savings Tool) Winery. BEST Winery enables a winery to compare its energy efficiency to a best practice winery, accounting for differences in product mix and other characteristics of the winery. The tool enables the user to evaluate the impact of implementing energy and water efficiency measures. The tool facilitates strategic planning of efficiency measures, based on the estimated impact of the measures, their costs and savings. BEST Winery is available as a software tool in an Excel environment. This report serves as background material, documenting assumptions and information on the included energy and water efficiency measures. It also serves as a user guide for the software package.

Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony; Healy,Patrick; Zechiel, Susanne

2005-10-15T23:59:59.000Z

454

Industrial Energy Audit Basics by an Energy Auditor  

E-Print Network [OSTI]

The purpose of an energy audit is the first step in energy cost control. There are two types of energy audits Traditional and Investment grades. The process of an energy audit consists of collecting and then processing data, specifying changes...

Phillips, J.

2007-01-01T23:59:59.000Z

455

Duke Energy (Electric)- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Duke Energy抯 Smart $aver Incentive program offers rebates to non-residential customers to install energy efficient equipment in their facilities. All Duke Energy North Carolina nonresidential...

456

Industrial Energy Audit Basics by an Energy Auditor  

E-Print Network [OSTI]

The purpose of an energy audit is the first step in energy cost control. There are two types of energy audits - Traditional and Investment grades. The process of an energy audit consists of collecting and then processing data, specifying changes...

Phillips, J.

2011-01-01T23:59:59.000Z

457

Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking

458

Energy efficiency opportunities in China. Industrial equipment and small cogeneration  

SciTech Connect (OSTI)

A quick glance at comparative statistics on energy consumption per unit of industrial output reveals that China is one of the least energy efficient countries in the world. Energy waste not only impedes economic growth, but also creates pollution that threatens human health, regional ecosystems, and the global climate. China`s decision to pursue economic reform and encourage technology transfer from developed countries has created a window of opportunity for significant advances in energy efficiency. Policy changes, technical training, public education, and financing can help China realize its energy conservation potential.

NONE

1995-02-01T23:59:59.000Z

459

Reducing Energy Demand in Buildings Through State Energy Codes | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumpingStudy

460

Energy Efficiency Opportunities in the Brewery Industry  

E-Print Network [OSTI]

--t -~?:"t 300?~ 200 . 100 o ? U.S. - -+ - Anheuser-Busch (US) ??? [J??? Coors (US) .. Canada ;( Austria ---0--Asahi (Japan) --0--Germany ? United Kingdom Figure 1. Physical primary energy intensities/or beer production/or selected countries.../a Heineken Zoeterwoude Netherlands CHP 5 n/a Anheuser-Busch US bioenergy recovery <2 10-15% of purchased system fuel saved Ontario Brewery Canada heat recovery from n/a 8 refrigeration Kirin, Tokyo Japan engine driven cooling 4 10% electricity savings I...

Worrell, E.; Galitsky, C.; Martin, N.

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Kishimura Industry Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,George County isKingstonKirkland,KirtlandKishimura

462

Ashkelon Technological Industries ATI | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergyElectric Coop CorpInformationAscopiaveAlabama:Ashkelon

463

Beckons Industries Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers PointEnergy Information HotUtah:Beckham County is a county

464

IPS- Industrial Power Systems | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting a newIGUS Innovative TechnischeIM2IPS-

465

Solar Night Industries Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region - France) Jump to:EnergySquared,Maid

466

GEA Industry Briefing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined Heat & PowerEnergyDepartmentEmployee ServicesYou are10,GEA

467

Passive Solar Industries Council | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County isParadise, Nevada: Energy6

468

MRL Industries Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger < MHKHydrodynamics21stBelmarMRIMRL

469

Optimization of Industrial Enzymes - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002Optics Group (X-ray Science Division) The mission ofBiomass

470

PAIS Industries Group | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County, Vermont:OttawaCounty,2.8247524掳,is alocalPAIS

471

CRV industrial Ltda | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: Crystalline Rock -COPPE Incubator JumpISES- 2003 CROSSCRV

472

TG Agro Industrial | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to: navigation,Open EnergyFacilityTEP Asia Ltd JumpTFSTG Agro

473

Thompson Technology Industries TTI | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978) | Open EnergyHotThermosolarNebraska:TTI Jump

474

Everbrite Industries Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformationexplains a4Evendale, Ohio: Energy Resources

475

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

1992-02-01T23:59:59.000Z

476

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

1992-02-01T23:59:59.000Z

477

ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY  

E-Print Network [OSTI]

Assessment Saves Energy and Reduces Waste. Office of EnergyAssessment Saves Energy and Reduces Waste. Office of Energytrading, energy and materials, and waste processing.

Kramer, Klaas Jan

2010-01-01T23:59:59.000Z

478

Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial Energy  

E-Print Network [OSTI]

3/20/09 Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial Energy Efficiency Group are experts in the technical, financial, and contractual, Commercial, and Industrial Energy Efficiency Group kelleyjs@ornl.gov ORNL helps organizations with training

Oak Ridge National Laboratory

479

World-Class Energy Assessments: Industrial Action Plans for Greater and More Durable Energy Cost Control  

E-Print Network [OSTI]

This report summarizes recommendations for improving the impact of industrial energy assessments. This initiative responds to the observation that less than half of recommended energy improvements are implemented as a result of traditional...

Russell, C.

2007-01-01T23:59:59.000Z

480

Cost-Energy Dynamics: An Engineering - Economic Basis for Industrial Energy Conservation Policies  

E-Print Network [OSTI]

This paper develops a theory called cost-energy dynamics that can be used to shape policies for industrial energy conservation. It is built on two hypotheses commonly observed in process engineering; namely, cost varies as positive power function...

Phung, D. L.; van Gool, W.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce industrial energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity  

E-Print Network [OSTI]

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity Chris in this paper. Energy consumption data was sourced from the Bureau of Resources and Energy Economics' Australian Energy Statistics publication. Price and income data were sourced from the Australian Bureau

482

Industrial Attitudes to Petroleum Prices: Policies and Energy Efficiency  

E-Print Network [OSTI]

contracts. When it became apparent that gas prices were no longer going to be in the vicinity of $2/Mbtu for the foreseeable future, industry began to seriously invest once again in energy efficiency. A 2003 study by ACEEE found that a modest 5% decrease...

Shipley, A. M.; Langer, T.; Black, S.

2007-01-01T23:59:59.000Z

483

Meaningful Energy Efficiency Performance Metrics for the Process Industries  

E-Print Network [OSTI]

, BPST HP Steam LP Steam PROCESS WORK ESL-IE-09-05-19 Proceedings of the Thirty-First Industrial Energy Technology Conference, New Orleans, LA, May 12-15, 2009 Reforming, Hydro-treating, etc. Examples of process units in gas processing plants...

Kumana, J. D.; Sidhwa, N. R.

484

Gamma Industry Processing Alliance Overview | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy FreeportEnergy Issues Related-Gamma Industry

485

Reducing Waste and Harvesting Energy This Halloween | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research | DepartmentDepartmentHatch,DepartmentDeliveryMay 1,HereWrap yourAs''This

486

Reducing Energy Demand in Buildings Through State Energy Codes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof Energy Redefining9Codes

487

New Industrial Park Energy Supply for Economical Energy Conservation  

E-Print Network [OSTI]

steam inlet conditions of 550 psig and 825?~. The gross output from this machine is 11.6 MW(ej. Process steam for the industrial users is rdmoved from the turbine cycle at the topping turbi~e exhaust. Approximately 840,000 lb/hr of prdcess steam...

Scott, D.; Marda, R. S.; Hodson, J. S.; Williams, M.

1982-01-01T23:59:59.000Z

488

Department of Energy Wind Vision: An Industry Preview (Text Version...  

Broader source: Energy.gov (indexed) [DOE]

energy source, wind has already helped the nation reduce its greenhouse gas, water, and air pollution footprint from the power sector. The 96 million metric tons of avoided CO2...

489

Energy use in the U.S. steel industry: a historical perspective and future opportunities  

SciTech Connect (OSTI)

The U.S. steel industry has taken enormous strides over the past decades to reduce its energy consumption; since the end of World War II, the industry has reduced its energy intensity (energy use per shipped ton) by 60 percent. Between 1990 and 1998 alone, intensity has dropped from 20 to 18 million Btu (MBtu) per ton. This figure is projected to decrease to 15 MBtu/ton by 2010 with an asymptotic trend towards 14 MBtu/ton. Domestic shipments are projected to flatten out over the next decade to around 105 million tons which means that total energy consumption will also decrease. Historically, the steel industry has accounted for about 6 percent of U.S. energy consumption. Today, that figure is less than 2 percent and will decrease further to 1.5 percent by 2010. The primary causes for the decrease in energy consumption since WWII are: The use of pellets in the blast furnace and the application of new technology in the ironmaking process to further reduce fuel rates per net ton of hot metal (NTHM); The total replacement of the open hearth process by basic oxygen and electric furnaces; The almost total replacement of ingot casting by continuous casting (which improved yield dramatically and thus reduced the tons of raw steel required per ton of shipments); and The growth of the electric furnace sector of the industry at the expense of hot metal-based processes (which has also stimulated scrap recycling so that about 55 percent of ''new'' steel is now melted from scrap steel). This report focuses on the concept of good practices (i.e., those that are sustainable and can use today's technology). If all the industry could operate on this basis, the additional savings per ton could total 2 MBtu, As further restructuring occurs and the swing from hot metal-based to electric furnace-based production continues, the average consumption will approach the good practice energy per ton. Further savings will accrue through new technology, particularly in the areas of reduced blast furnace fuel rates and reheating efficiency, both of which relate to large tonnages of material.

Stubbles, John

2000-09-01T23:59:59.000Z

490

Model Project Streamlines Compliance, Reduces Emissions and Energy Use  

E-Print Network [OSTI]

refinery components. A typical refinery may have units or operations subject to the LDAR requirements of 40 CFR 60 Subparts W, GGG; 40 CFR 61 Subparts FF, J, and V:. 40 CFR 63 Subparts F, H, and CC; 40 CFR 264 Subpart BB and 40 CFR 265 Subpart BB... Industrial Energy Technology Conference, Houston, TX, April 22-23, 1998 monitored component if a leak is detected above a certain threshold, commonly 10,000 parts per million (ppm). However, under Phase III of the Hazardous Organic NESHAP's (HON), limits...

Vining, S. K.

491

Carbon Dioxide Capture at a Reduced Cost - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N-Capture ofCaptureIndustrial

492

Potential for reducing paper mill energy use and carbon dioxide emissions through plant-wide energy audits: A case study in China  

E-Print Network [OSTI]

Mujumdar, A. S. (2011). Energy audit of a fiberboard dryingL. (2010). Industrial Energy Audit Guidebook: Guidelinesfor Conducting an Energy Audit in Industrial Facilities.

Kong, Lingbo

2014-01-01T23:59:59.000Z

493

Energy conservation in electrostatic fabric filtration of industrial dust  

SciTech Connect (OSTI)

Conservation in energy consumption in industrial fabric filtration systems has become very important due to the substantial increase in energy costs. Recently, an external electric field was utilized in the industrial dust control by fabric filters with very promising initial results. A substantial decrease in the pressure drop and an increase in collection efficiency were observed. The detailed outcome of the experimental research program in electrostatic fabric filtration was presented. The results show that pressure drop decreases substantially with the increased electrostatic field strength for all relevant parameters. Furthermore, the data of the experimental program was utilized to develop a semi-empirical model for the determination of the pressure drop and to establish an Energy-Optimized Design Criteria.

Ariman, T.

1981-12-01T23:59:59.000Z

494

US energy industry financial developments, 1994 first quarter  

SciTech Connect (OSTI)

This report traces key financial trends in the US energy industry for the first quarter of 1994. Financial data (only available for publicly-traded US companies) are included in two broad groups -- fossil fuel production and rate-regulated electric utilities. All financial data are taken from public sources such as energy industry corporate reports and press releases, energy trade publications, and The Wall Street Journal`s, Earnings Digest. Return on equity is calculated from data available from Standard and Poor`s Compustat data service. Since several major petroleum companies disclose their income by lines of business and geographic area. These data are also presented in this report. Although the disaggregated income concept varies by company and is not strictly comparable to corporate income, relative movements in income by lines of business and geographic area are summarized as useful indicators of short-term changes in the underlying profitability of these operations.

Not Available

1994-06-23T23:59:59.000Z

495

US energy industry financial developments, 1993 first quarter  

SciTech Connect (OSTI)

Net income for 259 energy companies-- including, 20 major US petroleum companies-- rose 38 percent between the first quarter of 1992 and the first quarter of 1993. An increased level of economic activity, along with colder weather, helped lift the demand for natural gas. crude oil, coal, and electricity. The sharp rise in the domestic price of natural gas at the wellhead relative to the year-ago quarter was the most significant development in US energy during the first quarter. As a consequence of higher natural gas prices, the upstream segment of the petroleum industry reported large gains in income, while downstream income rose due to higher refined product demand. Increased economic activity and higher weather-related natural gas demand also led to improvements in income for the rate-regulated energy segment. However, declining domestic oil production continued to restrain upstream petroleum industry earnings growth, despite a moderate rise in crude oil prices.

Not Available

1993-06-25T23:59:59.000Z

496

BEST Winery Guidebook: Benchmarking and Energy and Water Savings Tool for the Wine Industry  

E-Print Network [OSTI]

treated onsite). Pumping energy for wine for the benchmarkwine industry called 揃EST (Benchmarking and Energy andBENCHMARKING AND ENERGY AND WATER SAVINGS TOOL FOR THE WINE

Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony; Healy, Patrick; Zechiel, Susanne

2005-01-01T23:59:59.000Z

497

Certifying Industrial Energy Efficiency Performance: Aligning Management, Measurement, and Practice to Create Market Value  

E-Print Network [OSTI]

Certifying Industrial Energy Efficiency Performance:to improve their energy efficiency- as evidenced by the 98%the renewed interest in energy efficiency worldwide and the

McKane, Aimee; Scheihing, Paul; Williams, Robert

2008-01-01T23:59:59.000Z

498

U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008  

E-Print Network [OSTI]

Rezessy. 2010. Energy Service Companies Market in Europe-2007. 揂chievable Market Potential for Energy Efficiency inof the U.S. Energy Service Company Industry: Market Size and

Larsen, Peter

2014-01-01T23:59:59.000Z

499

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

21 Figure 13: Primary Energy Consumption byEffects on Industry Primary Energy Consumption, 1995-share of total primary energy consumption surged even higher

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

500

Analysis and Decomposition of the Energy Intensity of Industries in California  

E-Print Network [OSTI]

World Best Practice Energy Intensity Values for Selectedworld-best-practice-energy-intensity-values- selected-2005. Changes in energy intensities of Thai industry between

Can, Stephane de la Rue de

2014-01-01T23:59:59.000Z