Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Reduce Radiation Losses from Heating Equipment  

Broader source: Energy.gov [DOE]

This tip sheet describes how to save process heating energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

2

Increasing LTC Engine Efficiency by Reducing Pressure-Oscillation-Related Heat Transfer Losses  

Broader source: Energy.gov [DOE]

This research discusses how reducing heat-transfer losses from pressure oscillation can increase low-temperature combustion engine efficiency.

3

Field synergy principle analysis for reducing natural convection heat loss of a solar cavity receiver  

Science Journals Connector (OSTI)

Abstract Due to the operating temperature from 900K to 1300K produced by the concentrating ratio over 2000 in solar parabolic dish-engine system, the natural convection heat loss driven by the buoyancy force of air contributes an important role in the energy loss of cavity receiver. 3-D numerical simulations were performed and the results are analyzed from the novel viewpoint of field synergy principle (FSP) in order to study the heat transfer and fluid flow characteristics in natural convection heat loss of cavity receiver. The effects of geometric parameters, including the inclination angle, aperture size, aperture position and cavity geometric shape on the natural convection heat loss of cavity receiver were examined. The FSP analysis on the simulation results demonstrates that FSP can well explain the reduction mechanism for natural convection heat loss of cavity receiver because the smaller inner production of velocity vector and temperature gradient always corresponds to the lower Nusselt number occurred in the cases with lager inclination angle, smaller aperture size, lower aperture position and frustum-cylinder cavity, respectively. Therefore, the reducing natural convection heat loss attributes to the weakening synergy between velocity vector and temperature gradient. In addition, the local heat transfer performance is studied by the presented distributions of heat transferred via fluid motion, where more interesting natural convection heat loss characteristics of cavity receiver and the detailed explanations were provided. The results of this work offer benefits for the development of theory and technique about reducing natural convection heat loss of cavity receiver.

Yuqiang Li; Gang Liu; Zhenghua Rao; Shengming Liao

2015-01-01T23:59:59.000Z

4

RCS pressure under reduced inventory conditions following a loss of residual heat removal  

SciTech Connect (OSTI)

The thermal-hydraulic response of a closed-reactor coolant system to loss of residual heat removal (RHR) cooling is investigated. The processes examined include: core coolant boiling and steam generator reflux condensation, pressure increase on the primary side, heat transfer mechanisms on the steam generator primary and secondary sides, and effects of noncondensible gas on heat transfer processes.

Palmrose, D.E.; Hughes, E.D.; Johnsen, G.W.

1992-08-01T23:59:59.000Z

5

Movable insulation. A guide to reducing heating and cooling losses through the windows in your home  

SciTech Connect (OSTI)

A typical house loses 25 to 30% of its heat through windows, and a house with large windows may lose as much as 50%. Numerous movable-insulation systems that will cut the heat loss through windows in half are described. Chapters are: The Energy-Responsive Dwelling, Past to Present; Window Heat Losses and Gains; Enhanced Glazing Systems; Choosing a Window-Insulation Design for Your Home; Pop-In Shutters; Thermal Curtains - Blankets that Fold; Thermal Shades - Blankets that Roll; Thermal Shutters and Folding Screens; Insulation Between Glazing and Interior Louvers; Exterior Hinged and Sliding Shutters; Sun-Shading Screens; Exterior Roll Shutters; Shutters for Skylights; Shutters for Clerestory Windows; Interior Greenhouse Insulation Systems; Exterior Insulation for Greenhouses; Movable Insulation to Assist Passive Space Heating; and Movable Insulation to Assist Solar Water Heaters. Appendices include the following: insulated shade and shutter construction; the economics of window insulation; movable insulation products, hardware, and components; further technical information; and design sources. (MCW)

Langdon, W.K.

1980-01-01T23:59:59.000Z

6

Definition: Reduced Electricity Losses | Open Energy Information  

Open Energy Info (EERE)

Losses Losses Jump to: navigation, search Dictionary.png Reduced Electricity Losses Functions that provide this benefit could help manage peak feeder loads, reduced electricity throughput, locate electricity production closer to the load and ensure that voltages remain within service tolerances, while minimizing the amount of reactive power provided. These actions can reduce electricity losses by making the system more efficient for a given load served or by actually reducing the overall load on the system.[1] Related Terms load, electricity generation, reactive power, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reduced_Electricity_Losses&oldid=502644

7

Heat Loss Measurement Using Infrared Imaging  

E-Print Network [OSTI]

in various applications. Examples of two applications are presented. The first describes the development of heat balance data for a solvent refined coal processing unit. The second describes the measurement of heat loss and thermal resistance in a double...

Seeber, S. A.

1983-01-01T23:59:59.000Z

8

Unsteady heat losses of underground pipelines  

Science Journals Connector (OSTI)

Analytic expressions are presented for the unsteady temperature distribution of the ground and heat losses of an underground pipeline for an arbitrary...

B. L. Krivoshein; V. M. Agapkin

1977-08-01T23:59:59.000Z

9

Reducing Livestock Losses To Toxic Plants  

E-Print Network [OSTI]

,Extension CommunicationsSpecialistTheTexasA&MUniversitySystem. Cover design byRhondaKappler, ExtensionCommercial Artist Reducing Livestock Losses to Toxic Plants Allan McGinty and Rick Machen* More than 100 species of toxic plants in- fest Texas rangelands. These plants... and Sons: New York, N.Y. Lane, M. A., M. H. Ralphs, J. D. Olsen, F. D. Provenza and J. A. Pfister. 1990. ?Conditioned taste aversion: potentialfor reducing cattle loss to larkspur.? Journal ofRangeManagement. 43:127-131. McGinty, Allan and Tommy G. Welch...

McGinty, Allan; Machen, Richard V.

2000-04-25T23:59:59.000Z

10

Reducing food losses by intelligent food logistics  

Science Journals Connector (OSTI)

...1006 62 Theme Issue Intelligent food logistics: decrease waste and improve quality...Reducing food losses by intelligent food logistics Reiner Jedermann 1 Mike Nicometo 2 Ismail...Bremen Research Cluster for Dynamics in Logistics (LogDynamics), Bremen, Germany One...

2014-01-01T23:59:59.000Z

11

Reducing the losses of optical metamaterials  

SciTech Connect (OSTI)

The field of metamaterials is driven by fascinating and far-reaching theoretical visions, such as perfect lenses, invisibility cloaking, and enhanced optical nonlinearities. However, losses have become the major obstacle towards real world applications in the optical regime. Reducing the losses of optical metamaterials becomes necessary and extremely important. In this thesis, two approaches are taken to reduce the losses. One is to construct an indefinite medium. Indefinite media are materials where not all the principal components of the permittivity and permeability tensors have the same sign. They do not need the resonances to achieve negative permittivity, {var_epsilon}. So, the losses can be comparatively small. To obtain indefinite media, three-dimensional (3D) optical metallic nanowire media with different structures are designed. They are numerically demonstrated that they are homogeneous effective indefinite anisotropic media by showing that their dispersion relations are hyperbolic. Negative group refraction and pseudo focusing are observed. Another approach is to incorporate gain into metamaterial nanostructures. The nonlinearity of gain is included by a generic four-level atomic model. A computational scheme is presented, which allows for a self-consistent treatment of a dispersive metallic photonic metamaterial coupled to a gain material incorporated into the nanostructure using the finite-difference time-domain (FDTD) method. The loss compensations with gain are done for various structures, from 2D simplified models to 3D realistic structures. Results show the losses of optical metamaterials can be effectively compensated by gain. The effective gain coefficient of the combined system can be much larger than the bulk gain counterpart, due to the strong local-field enhancement.

Fang, Anan

2010-12-15T23:59:59.000Z

12

Quantum cryptographic system with reduced data loss  

DOE Patents [OSTI]

A secure method for distributing a random cryptographic key with reduced data loss. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically.

Lo, Hoi-Kwong (1309, Low Block, Lei Moon House Ap Lei Chau Estate, Hong Kong, HK); Chau, Hoi Fung (Flat C, 42nd Floor, Tower 1, University Heights 23 Pokfield Road, Pokfulam, Hong Kong, HK)

1998-01-01T23:59:59.000Z

13

System for reducing heat losses from indoor swimming pools by use of automatic covers. [Quarterly] report No. 5, January 1, 1995--March 31, 1995  

SciTech Connect (OSTI)

To maintain comfortable and healthful temperatures in an indoor swimming pool, heat must be continually supplied to the pool water and to fresh air-that must be brought in for ventilation. Nearly all the heat added to the water is lost by evaporation into the air above the water surface. That very moist air must then be removed and replaced with relatively dry outdoor air that requires heating during most of the year. The cost of natural gas for supplying heat in a typical institutional pool is $10,000 to $25,000 Per Year. When the pool is not being used, typically half to two-thirds of the time, evaporation and the resulting heat demands can be eliminated by placing impervious covers on the water surface. On a schedule of use such as at Skyland, the pool can be covered and evaporation suppressed about two-thirds of the time, thereby saving about ten thousand dollars per year. Determination of the actual savings achieved by use of pool covers is the principal objective of this project. The program goal is the development of the technology and tools for achieving major reductions in the nation`s waste of energy.

NONE

1995-05-01T23:59:59.000Z

14

Reducing Data Loss and Saving Money by Acquiring Data Loss Prevention Software  

E-Print Network [OSTI]

Reducing Data Loss and Saving Money by Acquiring Data Loss Prevention Software Master of Art data loss and saving money by acquiring DLP software Patarika Tipwong Acknowledgements This thesisPaul University. #12;Reducing data loss and saving money by acquiring DLP software Patarika Tipwong Table

Schaefer, Marcus

15

Evaluation of Heat Losses in Fire Tube Boiler  

E-Print Network [OSTI]

Abstract The efficiency of oil fired fire tube boiler was calculated by evaluating the heat losses. Investigation on the performance of the boiler was conducted by examining the heat losses, identifying the reasons for losses, measuring the individual loss and developing a strategy for loss reduction. This study was carried out in Texmaco package horizontal fire tube boiler at Travancore Titanium Products Ltd (TTPL), Trivandrum, Kerala. The boiler efficiency was measured by indirect method. Heat losses in dry flue gas and due to unburned fuel were found to be the major problems. Since they were interrelated, installation of Zirconium oxygen sensor was recommended as a common remedy.

S. Krishnanunni; Josephkunju Paul C; Mathu Potti; Ernest Markose Mathew

16

Correlation Of Surface Heat Loss And Total Energy Production...  

Open Energy Info (EERE)

Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Correlation...

17

Method for reducing iron losses in an iron smelting process  

DOE Patents [OSTI]

A process of smelting iron that comprises the steps of: a) introducing a source of iron oxide, oxygen, nitrogen, and a source of carbonaceous fuel to a smelting reactor, at least some of said oxygen being continuously introduced through an overhead lance; b) maintaining conditions in said reactor to cause (i) at least some of the iron oxide to be chemically reduced, (ii) a bath of molten iron to be created and stirred in the bottom of the reactor, surmounted by a layer of slag, and (iii) carbon monoxide gas to rise through the slag; c) causing at least some of said carbon monoxide to react in the reactor with the incoming oxygen, thereby generating heat for reactions taking place in the reactor; and d) releasing from the reactor an offgas effluent, is run in a way that keeps iron losses in the offgas relatively low. After start-up of the process is complete, steps (a) and (b) are controlled so as to: e) keep the temperature of the molten iron at or below about 1550.degree. C. and f) keep the slag weight at or above about 0.8 tonne per square meter.

Sarma, Balu (Airmont, NY); Downing, Kenneth B. (Greenville, SC)

1999-01-01T23:59:59.000Z

18

Method for reducing iron losses in an iron smelting process  

DOE Patents [OSTI]

A process of smelting iron that comprises the steps of: (a) introducing a source of iron oxide, oxygen, nitrogen, and a source of carbonaceous fuel to a smelting reactor, at least some of said oxygen being continuously introduced through an overhead lance; (b) maintaining conditions in said reactor to cause (1) at least some of the iron oxide to be chemically reduced, (2) a bath of molten iron to be created and stirred in the bottom of the reactor, surmounted by a layer of slag, and (3) carbon monoxide gas to rise through the slag; (c) causing at least some of said carbon monoxide to react in the reactor with the incoming oxygen, thereby generating heat for reactions taking place in the reactor; and (d) releasing from the reactor an offgas effluent, is run in a way that keeps iron losses in the offgas relatively low. After start-up of the process is complete, steps (a) and (b) are controlled so as to: (1) keep the temperature of the molten iron at or below about 1550 C and (2) keep the slag weight at or above about 0.8 ton per square meter. 13 figs.

Sarma, B.; Downing, K.B.

1999-03-23T23:59:59.000Z

19

PERPENDICULAR ION HEATING BY REDUCED MAGNETOHYDRODYNAMIC TURBULENCE  

SciTech Connect (OSTI)

Recent theoretical studies argue that the rate of stochastic ion heating in low-frequency Alfvn-wave turbulence is given by Q = c{sub 1}((?u){sup 3}/?)exp ( c{sub 2}/?), where ?u is the rms turbulent velocity at the scale of the ion gyroradius ?, ? = ?u/v{sub i}, v{sub i} is the perpendicular ion thermal speed, and c{sub 1} and c{sub 2} are dimensionless constants. We test this theoretical result by numerically simulating test particles interacting with strong reduced magnetohydrodynamic (RMHD) turbulence. The heating rates in our simulations are well fit by this formula. The best-fit values of c{sub 1} are ?1. The best-fit values of c{sub 2} decrease (i.e., stochastic heating becomes more effective) as the Reynolds number and the number of grid points in the RMHD simulations increase. As an example, in a 1024{sup 2} 256 RMHD simulation with a dissipation wavenumber of the order of the inverse ion gyroradius, we find c{sub 2} = 0.21. We show that stochastic heating is significantly stronger in strong RMHD turbulence than in a field of randomly phased Alfvn waves with the same power spectrum, because coherent structures in strong RMHD turbulence increase orbit stochasticity in the regions where ions are heated most strongly. We find that c{sub 1} increases by a factor of ?3 while c{sub 2} changes very little as the ion thermal speed increases from values <heating in the solar wind.

Xia, Qian; Perez, Jean C.; Chandran, Benjamin D. G. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Quataert, Eliot, E-mail: qdy2@unh.edu, E-mail: benjamin.chandran@unh.edu, E-mail: jeanc.perez@unh.edu, E-mail: eliot@astro.berkeley.edu [Astronomy Department and Theoretical Astrophysics Center, 601 Campbell Hall, The University of California, Berkeley, CA 94720 (United States)

2013-10-20T23:59:59.000Z

20

Mathematical circulation model for the blood-flow-heat-loss relationship in the rat tail  

Science Journals Connector (OSTI)

A mathematical model for the heat-loss-blood-flow relationship is developed for the rat tail. When supplied with experimental values of heat loss and blood flow, the model allows one to compute the distribution of flow in deep and cutaneous vessels as a function of body core and tail temperature and to determine the savings in heat loss that result from alterations in the pattern of circulation and from counter-current heat transfer. Blood flow in the cutaneous and deep lying veins of the tail is controlled by both central and local temperatures and increases fairly linearly with deep body temperature. However, the distribution of blood flow in the tail is controlled only by local tail temperature and is independent of deep body temperature. The change in venous distribution of flow has a great impact on the conservation of heat and can reduce the heat loss from the circulating blood by more than 50% when venous return is directed to deep lying veins. On the other hand, counter-current heat transfer is of only minor importance in the control of heat loss from the tail, resulting at most in a 10% saving of heat loss, and that only at the smallest rate of blood flow.

E R Raman; V J Vanhuyse; M F Roberts

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Reduce Natural Gas Use in Your Industrial Process Heating Systems...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Use in Your Industrial Process Heating Systems Reduce Natural Gas Use in Your Industrial Process Heating Systems This fact sheet describes ten effective ways to save...

22

Way to reduce arc voltage losses in hybrid thermionic converters  

SciTech Connect (OSTI)

Experimental results are reported concerning the output and emission characteristics of the arc and hybrid regimes in a plane-parallel thermionic converter with Pt--Zr--O electrode pair. It is shown that arc voltage losses can be reduced to values below those obtainable in ordinary arc thermionic converters.

Tskhakaya, V.K.; Yarygin, V.I.

1982-03-01T23:59:59.000Z

23

On the asymmetric distribution of heat loss from the Earths interior  

Science Journals Connector (OSTI)

Mean heat flows and heat Josses of the Northern and Southern hemispheres ... degree 12 spherical harmonic representation of the global heat flow field (Pollacket al., 1993). Mean heat flows and heat losses of 0 ...

Yang Wang; Jiyang Wang; Zongji Ma

1998-09-01T23:59:59.000Z

24

E-Print Network 3.0 - as-operated heat loss Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

operated heat loss Search Powered by Explorit Topic List Advanced Search Sample search results for: as-operated heat loss Page: << < 1 2 3 4 5 > >> 1 Factsheet on Summer Heat Gain...

25

Reducing pressure loss of large diameter check valves  

SciTech Connect (OSTI)

Transcend Inc., a consulting firm that specializes in the use of computer simulation to optimize existing equipment and system designs, was approached by Mannesmann Demag AG, Moenchengladbach, Germany to optimize the design of its DRV-B check valve. In one of the first applications of Computational Fluid Dynamics (CFD) technology to valve design, the pressure loss coefficient (K) of the DRV-B valve was lowered to 0.40--0.50 for valve sizes NPS48--NPS12, the lowest possible level for this type of valve. The flow efficiency is three times better than that of the earlier design. As a result, the optimized Mannesmann Demag DRV-B check valve provides a dramatic reduction in operating cost, particularly in transmission service where natural gas is transported over long distances. The reduced pressure loss saves compressor fuel cost. For the optimized valve, the incremental compressor fuel cost is reduced to 1.5-times the capital cost of the valve calculated over a 20-year Life Cycle Cost (LCC) period.

NONE

1997-09-01T23:59:59.000Z

26

Generalized constructal optimization for solidification heat transfer process of slab continuous casting based on heat loss rate  

Science Journals Connector (OSTI)

Abstract Based on constructal theory, generalized constructal optimization of a solidification heat transfer process of slab continuous casting is carried out by taking a complex function as optimization objective. The complex function is composed of the functions of the heat loss rate and surface temperature gradient of the slab subjected to the constraints of shell thickness, surface temperature and liquid core length of the slab. For the specified total water flow rate, the optimal construct of the water distribution in the secondary cooling zone is obtained. Comparing the optimal results with the initial ones, it is shown that the complex function, the functions of the heat loss rate and the surface temperature gradient after optimization are decreased by 35.04%, 2.14% and 59.48%, respectively. Therefore, the scheme of the optimal construct of the water distribution reduces the heat loss rate and surface temperature gradient of the slab simultaneously, that is, improves its energy retention and quality simultaneously. The optimization results obtained in this paper can provide some guidelines for parameter designs and dynamic operations of the solidification heat transfer process of slab continuous casting.

Huijun Feng; Lingen Chen; Zhihui Xie; Zemin Ding; Fengrui Sun

2014-01-01T23:59:59.000Z

27

Linear Fresnel Collector Receiver: Heat Loss and Temperatures  

Science Journals Connector (OSTI)

Abstract For design and component specification of a Linear Fresnel Collector (LFC) cavity receiver, the prediction of temperature distribution and heat loss is of great importance. In this paper we present a sensitivity analysis for a range of geometry and material parameters. For the LFC receiver analysis we use two models developed at Fraunhofer ISE. One is a detailed model, combining the spatial distribution of reflected radiation via ray tracing with detailed convective simulations through computational fluid dynamics. The second one is a fast algorithm based on a thermal resistance model. It is applying a similar methodology as the well-known model for vacuum absorber, enhancing an absorber tube model by parameters describing the influence of the secondary mirror and cover glass. The thermal resistance model is described in detail. Obtained results indicate a significant effect of the secondary mirror temperature on heat loss for specific geometries.

A. Heimsath; F. Cuevas; A. Hofer; P. Nitz; W.J. Platzer

2014-01-01T23:59:59.000Z

28

Reduce Your Heating Bills with Better Insulation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation October 3, 2008 - 11:09am Addthis John Lippert If you pay your own energy bills, you don't need to be reminded that energy prices are escalating. Energy price projections for this coming winter are not encouraging. According to the Energy Information Administration, residential natural gas prices during the upcoming heating season (October though March) are projected to average $14.93 per Mcf, an increase of about 17% compared to last year's heating season. Residential heating oil prices are projected to average $4.13 per gallon this winter, an increase of about 25%. What if you live in an all-electric house? Many utilities are continuing to pursue retail electricity rate increases in response to power generation

29

Reduce Your Heating Bills with Better Insulation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation October 3, 2008 - 11:09am Addthis John Lippert If you pay your own energy bills, you don't need to be reminded that energy prices are escalating. Energy price projections for this coming winter are not encouraging. According to the Energy Information Administration, residential natural gas prices during the upcoming heating season (October though March) are projected to average $14.93 per Mcf, an increase of about 17% compared to last year's heating season. Residential heating oil prices are projected to average $4.13 per gallon this winter, an increase of about 25%. What if you live in an all-electric house? Many utilities are continuing to pursue retail electricity rate increases in response to power generation

30

Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods to Reduce Exergy Losses in a Sulfuric Acid Decomposition Reactor  

Science Journals Connector (OSTI)

Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods to Reduce Exergy Losses in a Sulfuric Acid Decomposition Reactor ... The first design uses optimal control theory to obtain a more uniform distribution of the entropy production. ... This optimized design is found to perform the best, but it requires significant changes in the heating equipment in order to approximately realize the optimal temperature profiles. ...

Leen V. van der Ham; Joachim Gross; Ad Verkooijen; Signe Kjelstrup

2009-08-06T23:59:59.000Z

31

Heat-Loss Testing of Solel's UVAC3 Parabolic Trough Receiver  

SciTech Connect (OSTI)

For heat-loss testing on two Solel UVAC3 parabolic trough receivers, a correlation developed predicts receiver heat loss as a function of the difference between avg absorber and ambient temperatures.

Burkholder, F.; Kutscher, C.

2008-01-01T23:59:59.000Z

32

Heat loss model for flow assurance in a deep water riser  

Science Journals Connector (OSTI)

The study is intended to investigate the heat loss phenomenon of oil flow in a riser. This heat loss happens due to the difference between the oil temperature in a riser and the surrounding sea water temperature. It causes the formation of wax that may disturb the flow. Heat loss can be reduced by setting up an insulator in a riser or by selecting appropriate pipeline specifications. It is necessary to determine the possible locations and specifications of insulator and pipeline. A mathematical model is formulated by considering the oil temperature and its flow velocity. Assuming that the density variation is small the fluid behaves as an incompressible fluid. Furthermore numerical solutions with finite difference methods are presented with some hypothetical data to give an overview of how the system works. Two surrounding conditions are taken into account i.e. with and without sea current. From the simulation the location of wax formation can be predicted. At a certain depth region of sea where the sea current is present a greater heat loss take place in which wax may be formed immediately. To overcome the formation of wax we can control the parameters such as conductivity and wall thickness of pipe.

Pudjo Sukarno

2014-01-01T23:59:59.000Z

33

A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer  

E-Print Network [OSTI]

A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer Reprinted: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer A unique specimen of gopher snake of pulmocutaneous water loss and heat transfer, no difference was observed between the scale- less animal

Bennett, Albert F.

34

Buoyancy driven flow in a hot water tank due to standby heat loss  

Science Journals Connector (OSTI)

Results of experimental and numerical investigations of thermal behavior in a vertical cylindrical hot water tank due to standby heat loss of the tank are presented. The effect of standby heat loss on temperature distribution in the tank is investigated experimentally on a slim 150l tank with a height to diameter ratio of 5. A tank with uniform temperatures and with thermal stratification is studied. A detailed computational fluid dynamics (CFD) model of the tank is developed to calculate the natural convection flow in the tank. The distribution of the heat loss coefficient for the different parts of the tank is measured by experiments and used as input to the CFD model. Water temperatures at different levels of the tank are measured and compared to CFD calculated temperatures. The investigations focus on validation of the CFD model and on understanding of the CFD calculations. The results show that the CFD model predicts satisfactorily water temperatures at different levels of the tank during cooling by standby heat loss. It is elucidated how the downward buoyancy driven flow along the tank wall is established by the heat loss from the tank sides and how the natural convection flow is influenced by water temperatures in the tank. When the temperature gradient in the tank is smaller than 2K/m, there is a downward fluid velocity of 0.0030.015m/s. With the presence of thermal stratification the buoyancy driven flow is significantly reduced. The dependence of the velocity magnitude of the downward flow on temperature gradient is not influenced by the tank volume and is only slightly influenced by the tank height to tank diameter ratio. Based on results of the CFD calculations, an equation is determined to calculate the magnitude of the buoyancy driven flow along the tank wall for a given temperature gradient in the tank.

Jianhua Fan; Simon Furbo

2012-01-01T23:59:59.000Z

35

Ceramic tube seals cut heat loss, achieve six month payback  

SciTech Connect (OSTI)

The methane reformer at the Celanese Chemical Company's Bishop, TX plant operates at approximately 1900/sup 0/F. The reformer has 32 tubes (9'' diameter) that pass through the firebox. Openings around the tubes measure 11'' in diameter to accommodate horizontal and vertical thermal expansion and movement as well as to facilitate tube removal. The gaps around the tubes permitted cool air to be drawn into the firebox (caused by slight negative pressure) and also allowed radiant heat to escape causing the reformer to operate at a lower than desired level of thermal efficiency. Celanese contracted to retrofit the old rigid firebrick roof in the methane reformer with a 10'' thick ceramic fiber module lining. The gaps around the tubes were sealed by using a special tube seal made from Nextel woven ceramic fiber fabric, a 1984 CHEMICAL PROCESSING Vaaler Award winner (Mid-November 1984, p.52). The Nextel fabric used in this application is a heat resistant textile that has a continuous use temperature of 2200/sup 0/F - well above the 1900/sup 0/F operating temperature of the reformer. The tube seals have been working exactly as intended, verified by observation through inspection ports. Temperatures in the penthouse area above the roof dropped from 240/sup 0/F to 150/sup 0/F. The reduction in heat losses has been attributed to the elimination of the gaps around each tube by the seals and to the improved K-factor of the ceramic module lining. The tube seals have paid for themselves within six months of installation. At that time, the seal boots were inspected and showed no signs of wear. With these results, the improved efficiency of the methane reformer promises to yield additional economic benefits.

Not Available

1985-11-01T23:59:59.000Z

36

Computational and experimental investigations into cavity receiver heat loss for solar thermal concentrators  

E-Print Network [OSTI]

of the total, though the losses depend on solar elevation angle; at higher angles, and in low-wind conditions in inclination, temperature and cavity geometry on convective and radiative heat loss. Secondly, a water

37

Numerical study of heat loss from a non-evacuated receiver of a solar collector  

Science Journals Connector (OSTI)

Abstract Heat loss from receivers of solar collectors is a major reason for drop in their efficiency. Receiver pipes enclosed in glass tubes with evacuated annulus show considerable reduction in heat losses. However, manufacturing and maintenance costs for such receivers are high. An inexpensive alternative is a similar receiver with non-evacuated annulus. This paper presents a numerical study of heat loss from a non-evacuated receiver typically used in parabolic trough collectors, generating moderate temperatures and designed particularly for process heat applications. In order to come closer to the realistic situation, rather than assuming uniform temperature distribution on it, receiver pipe temperature has been assumed to be varying along the surface. Sinusoidal and square wave functions are employed in modeling, since actual temperature distributions on solar receiver pipes are combinations of these two functions. Main goal of the paper is to optimize the design of the non-evacuated solar receiver for minimum heat loss, by using CFD technique. Also effects on heat loss from receivers due to different parameters like average temperature (Ta) of the pipe, non-uniformity in the temperature (?) along its surface, hour angle (?), denoting position of the sun in the sky and radius ratio (RR) of radius of receiver pipe to that of outer glass tube have been studied. It is seen that as non-uniformity in temperature distribution increases in both types of temperature distribution, heat losses from receiver pipes decrease up to 10%. Also as hour angle increases from 0 to 90, heat loss decreases by 20% in case of sinusoidal temperature distribution and 24% in case of square wave temperature distribution. The effect of radius ratio (RR) on heat loss has been studied. In present study, we found out that 1.375 is critical radius ratio for which heat losses from receiver are minimum

Ramchandra G. Patil; Dhanaji M. Kale; Sudhir V. Panse; Jyeshtharaj B. Joshi

2014-01-01T23:59:59.000Z

38

A new method of reducing contact heat transfer in vacuum-screen insulation  

Science Journals Connector (OSTI)

A heat treatment method is proposed for vacuum-screen insulation that substantially reduces the contact heat transfer ... illustrated on cryogenic pipelines with various forms of insulation.

T. A. Kurskaya; V. F. Getmanets; B. V. Grigorenko

1988-03-01T23:59:59.000Z

39

Heat loss reduction and hydrocarbon combustion in ultra-micro combustors for ultra-micro gas turbines  

Science Journals Connector (OSTI)

For the development of ultra-micro combustors for Ultra-Micro Gas Turbines (UMGT), heat loss reduction and hydrocarbon fuel use are the key issues. An approach for reducing the effect of heat loss in ultra-micro combustors was proposed. The heat loss ratio (HLR), which was defined as the ratio of heat loss rate from a combustor to heat release rate in the combustor, was related to the space heating rate (SHR), and experiments using some flat-flame ultra-micro combustors with hydrogen/air premixture exhibited the relation of HLR?SHR?0.92/? (?, characteristic length of combustor). From the viewpoint of heat loss reduction, burning at high SHR in compact ultra-micro combustors is essential for a practical UMGT combustor. As for hydrocarbon combustion, the flat-flame burning method with and without catalyst was applied to propane fuel. The flat-flame combustor, having an inner diameter of 18.5mm, a height of 3.5mm, and a volume of 0.806cm3, could form a propane flame successfully in the chamber without a catalyst and achieved an extremely high SHR of 3370MW/(MPam3). Flame stable region was wide enough, and the combustion efficiency achieved was more than 99.4% between the equivalence ratios of 0.5 and 0.7 at m ? a = 0.06 g / s . The flat-flame combustor using a Pt-impregnated porous plate showed catalytic combustion, but did not improve the combustion characteristic. On the other hand, the flat-flame combustor using a nozzle whose surface was covered with Pt showed a combination of catalytic and gas-phase combustion with improved combustion efficiency for a wider range of equivalence ratios, due to CO oxidation in the burned gas after gas-phase combustion in the chamber.

Takashi Sakurai; Saburo Yuasa; Taku Honda; Shoko Shimotori

2009-01-01T23:59:59.000Z

40

Exergy Optimized Wastewater Heat Recovery: Minimizing Losses and Maximizing Performance  

E-Print Network [OSTI]

the heat using a batch process with an insulated tank containing a heat exchanger. The analysis is based on statistical annual hot water usage profiles. The system shows that the exergy available in warm wastewater can be optimized with specific tank size...

Meggers, F.

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Aerodynamic Losses and Heat Transfer in a Blade Cascade with 3-D Endwall Contouring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerodynamic Losses and Heat Transfer in a Aerodynamic Losses and Heat Transfer in a Aerodynamic Losses and Heat Transfer in a Aerodynamic Losses and Heat Transfer in a Blade Cascade with 3 Blade Cascade with 3 - - D D Endwall Endwall Contouring Contouring Principal Investigator Principal Investigator Sumanta Acharya, Professor Sumanta Acharya, Professor Louisiana State University, Baton Rouge, Louisiana Louisiana State University, Baton Rouge, Louisiana Collaborators Collaborators Gazi Mahmood, Ph.D., Research Asqociate Gazi Mahmood, Ph.D., Research Asqociate Arun Saha, Ph.D., Research Associate Arun Saha, Ph.D., Research Associate Ross Gustafson, M.S. student Ross Gustafson, M.S. student SCIES Project 02 SCIES Project 02 - - 01 01 - - SR098 SR098 DOE COOPERATIVE AGREEMENT DE DOE COOPERATIVE AGREEMENT DE - - FC26 FC26 - - 02NT41431 02NT41431 Tom J. George, Program Manager, DOE/NETL

42

Correlation Of Surface Heat Loss And Total Energy Production For Geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Details Activities (1) Areas (1) Regions (0) Abstract: Geothermal systems lose their heat by a site-specific combination of conduction (heat flow) and advection (surface discharge). The conductive loss at or near the surface (shallow heat flow) is a primary signature and indication of the strength of a geothermal system. Using a database of

43

Question of the Week: How Do You Reduce Your Water Heating Costs |  

Broader source: Energy.gov (indexed) [DOE]

Reduce Your Water Heating Costs Reduce Your Water Heating Costs Question of the Week: How Do You Reduce Your Water Heating Costs February 19, 2009 - 1:39pm Addthis Water heating can account for a significant portion of your energy costs. Purchasing a new ENERGY STAR® water heater is just one way to save on your water heating bills. The Energy Savers Tips site lists other strategies you can use to cut your water heating costs. How do you reduce your water heating costs? E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Question of the Week: How Do You Reduce Your Water Heating Costs Energy Savers Guide: Tips on Saving Money and Energy at Home How Do You Save on Lighting Costs? Question of the Week: How Do You Reduce Your Water Heating Costs

44

Analysis on heat loss characteristics of a 10kV HTS power substation  

Science Journals Connector (OSTI)

Abstract A 10kV High Temperature Superconducting power substation (10kV HTS substation), supported by Chinese State 863 projects, was developed and has been running to supply power for several factories for more than two years at an industrial park of Baiyin, Gansu province in Northwest China. The system of the 10kV HTS substation compositions, including a HTS cable, a HTS transformer, a SFCL, and a SMES, are introduced. The SMES works at liquid helium temperature and the other three apparatus operates under liquid nitrogen condition. There are mainly four types of heat losses existing in each HTS apparatus of the 10kV HTS substation, including AC loss, Joule heat loss, conductive heat, and leak-in heat from cryostat. A small quantity of AC loss still exists due to the harmonic component of the current when it carries DC for HTS apparatus. The principle and basis for analysis of the heat losses are introduced and the total heat loss of each apparatus are calculated or estimated, which agree well with the test result. The analysis and result presented are of importance for the design of the refrigeration system.

Yuping Teng; Shaotao Dai; Naihao Song; Jingye Zhang; Zhiyuan Gao; Zhiqin Zhu; Weiwei Zhou; Zhourong Wei; Liangzhen Lin; Liye Xiao

2014-01-01T23:59:59.000Z

45

Oscillating flow loss test results in Stirling engine heat exchangers. Final Report  

SciTech Connect (OSTI)

The results are presented for a test program designed to generate a database of oscillating flow loss information that is applicable to Stirling engine heat exchangers. The tests were performed on heater/cooler tubes of various lengths and entrance/exit configurations, on stacked and sintered screen regenerators of various wire diameters and on Brunswick and Metex random fiber regenerators. The test results were performed over a range of oscillating flow parameters consistent with Stirling engine heat exchanger experience. The tests were performed on the Sunpower oscillating flow loss rig which is based on a variable stroke and variable frequency linear drive motor. In general, the results are presented by comparing the measured oscillating flow losses to the calculated flow losses. The calculated losses are based on the cycle integration of steady flow friction factors and entrance/exit loss coefficients.

Koester, G.; Howell, S.; Wood, G.; Miller, E.; Gedeon, D.

1990-05-01T23:59:59.000Z

46

Copper waveguide cavities with reduced surface loss for coupling to superconducting qubits  

E-Print Network [OSTI]

Copper waveguide cavities with reduced surface loss for coupling to superconducting qubits Daniela, other recent work has involved qubits coupled to copper cavities with coherence times approaching 0.1 ms. The copper provides a good path for thermalizing the cavity walls and qubit chip, although the substantial

Plourde, Britton L. T.

47

Coronal Heating and Reduced MHD Sean Oughton 1 , Pablo Dmitruk 2 , and William H. Matthaeus 2  

E-Print Network [OSTI]

Coronal Heating and Reduced MHD Sean Oughton 1 , Pablo Dmitruk 2 , and William H. Matthaeus 2 1 review the use of reduced magnetohydrodynamics (RMHD) in coronal heating models, with particular emphasis on models for magnetically open regions. A brief review of the nature of the coronal heating problem

Oughton, Sean

48

Reducing Thermal Losses and Gains With Buried and Encapsulated Ducts in Hot-Humid Climates  

SciTech Connect (OSTI)

The Consortium for Advanced Residential Buildings (CARB) monitored three houses in Jacksonville, FL, to investigate the effectiveness of encapsulated and encapsulated/buried ducts in reducing thermal losses and gains from ductwork in unconditioned attics. Burying ductwork beneath loose-fill insulation has been identified as an effective method of reducing thermal losses and gains from ductwork in dry climates, but it is not applicable in humid climates where condensation may occur on the outside of the duct jacket. By encapsulating the ductwork in closed cell polyurethane foam (ccSPF) before burial beneath loose-fill mineral fiber insulation, the condensation potential may be reduced while increasing the R-value of the ductwork.

Shapiro, C.; Magee, A.; Zoeller, W.

2013-02-01T23:59:59.000Z

49

Uncertainty in unprotected loss-of-heat-sink, loss-of-flow, and transient-overpower accidents.  

SciTech Connect (OSTI)

The sensitivities of various output parameters to selected input parameters in unprotected combined loss of heat-sink and loss-of-flow (ULOHS), loss-of-flow (ULOF), and transient-overpower (UTOP) accidents are explored in this report. This line of investigation was suggested by R. A. Wigeland. For an initial examination of potential sensitivities, the MATWS computer program has been compiled as part of a dynamic link library (DLL) so that uncertain input parameters can be sampled from their probability distributions using the GoldSim simulation software. The MATWS program combines the point-kinetics module from the SAS4A/SASSYS computer code with a simplified representation of the reactor heat removal system. Coupling with the GoldSim software by means of a DLL not only provides a convenient mechanism for sampling the stochastic input parameters but also allows the use of various tools that are available in GoldSim for analyzing the dependence of various MATWS outputs on these parameters. Should a decision be made to continue this investigation, the techniques used to couple MATWS and GoldSim could also be applied to couple the SAS4A/SASSYS computer code with GoldSim. The work described here illustrates the type of results that can be obtained from the stochastic analysis.

Morris, E. E.; Nuclear Engineering Division

2007-10-08T23:59:59.000Z

50

Sludge, fuel degradation and reducing fouling on heat exchangers  

SciTech Connect (OSTI)

Brookhaven National Laboratory, under contract to the US Department of Energy, operates an oil heat research primarily to lower energy consumption in the 12 million oil heated homes in the US. The program objectives include: Improve steady state efficiency of oil heating equipment, Improve seasonal efficiencies, Eliminate or minimize factors which tend to degrade system performance. This paper provides an overview of the status of three specific projects which fall under the above objectives. This includes our fuel quality project, oil appliance venting and a project addressing efficiency degradation due to soot fouling of heat exchangers.

Butcher, T.; Litzke, Wai Lin; Krajewski, R.; Celebi, Y.

1992-02-01T23:59:59.000Z

51

Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief  

SciTech Connect (OSTI)

This technical brief is a guide to help plant operators reduce waste heat losses associated with process heating equipment.

Not Available

2004-11-01T23:59:59.000Z

52

Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief  

Broader source: Energy.gov [DOE]

This technical brief is a guide to help plant operators reduce waste heat losses associated with process heating equipment.

53

Reducing industrial energy use with thermoelectric diffusion heat pumps  

SciTech Connect (OSTI)

The described Peltier Effect Diffusion System (PEDS) employs an innovative unit geometry in conjunction with thermoelectric (TE) heat pumps having high operational efficiency. Significant system design dynamics are explored, including heat and mass transfer mechanisms, fluid dynamics, and unit sizing methodology. Finally, estimated operating performance is presented for some representative industrial applications which are well suited to availability-based efficiency evaluations, namely: desalination, multi-stage absorption cycle refrigeration systems and freeze-concentration processes. Peltier effect TE heat pumps provide multi-stage work input to separations. The PEDS utilizes electrically generated heat as the separating agent, and pumps this energy to successively higher availability levels, resulting in high overall COP and greatly improved thermodynamic efficiency. Process costs in terms of availability utilization can be identified. The described PEDS process offers a meaningful alternative to conventional mass transfer methods.

Meckler, M.

1982-08-01T23:59:59.000Z

54

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

SciTech Connect (OSTI)

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

55

Impact of extensive residential solar water heating on power system losses  

Science Journals Connector (OSTI)

South Africa is in the grips of an electricity crisis. Currently, the bulk of power is produced at coal fired power stations which are located far from the large load centres. Solar energy is widely available in South Africa, and could be used to complement this coal based generation, and supply energy at the point of use. This paper aims to investigate the impact of residential solar water heating on power system transmission losses. Initially simulations were carried out in order to determine the impact of solar water heating on a household's electricity demand. These were done for households located in Cape Town, Johannesburg and Durban. A number of solar water heating installations in Cape Town were also monitored, in order to validate the simulation results. Lastly, a power system model was developed in order to investigate the possible impact of large-scale implementation of solar water heating, at varied penetration levels, on a transmission system. Using the model and the results obtained from the simulations, a utility impact analysis was carried out in order to determine the effect on transmission losses. It was concluded that large-scale implementation of solar water heating can be used as a means to alleviate loading and losses on power systems' transmission lines particularly during peak demand.

K.P. Ijumba; A.B. Sebitosi; P. Pillay; K. Folly

2009-01-01T23:59:59.000Z

56

Control of Lime Kiln Heat Balance is Key to Reduced Fuel Consumption  

E-Print Network [OSTI]

This article discusses the various heat loads in a pulp mill lime sludge kiln, pointing out which heat loads cannot be reduced and which heat loads can, and how a reduction in energy use can be achieved. In almost any existing rotary lime sludge...

Kramm, D. J.

1982-01-01T23:59:59.000Z

57

Experimental investigation of the night heat losses of hot water storage tanks in thermosyphon solar water heaters  

Science Journals Connector (OSTI)

The effects of night heat losses on the performance of thermosyphon solar water heaters have been experimentally examined. Three typical thermosyphon solar water heating systems with different storage tank sizes were tested by utilising the method suggested by ISO 9459-2:95. The results were analysed to quantify the night heat losses and to investigate the effect that these may have on the system daily performance. Analysis of the results showed that a linear behavior of the heat losses with the night mean ambient temperature exists. The correlation coefficients of the linearity for the three systems under consideration range from 0.93 to 0.97 with the losses reaching almost 8000 kJ at a mean ambient air temperature of 10 C. This value represents a significant percentage of the daily collected energy making the night losses one of the most important sources of energy loss in thermosyphonic systems.

Ioannis Michaelides; Polyvios Eleftheriou; George A. Siamas; George Roditis; Paraskevas Kyriacou

2011-01-01T23:59:59.000Z

58

How Do You Use Daylighting While Reducing Excess Heat from Windows? |  

Broader source: Energy.gov (indexed) [DOE]

Do You Use Daylighting While Reducing Excess Heat from Windows? Do You Use Daylighting While Reducing Excess Heat from Windows? How Do You Use Daylighting While Reducing Excess Heat from Windows? June 16, 2011 - 7:30am Addthis On Monday, Elizabeth discussed her south-facing windows and her difficulties balancing the nice daylighting advantages with the excess heat that can come through these windows in the summer. How do you use daylighting while reducing excess heat from windows? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Fighting with South-Facing Windows This Month on Energy Savers: June 2011 Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.com/eyedias.

59

Study on the heat transfer of complex-vacuum-multilayer-insulation tank after sudden loss of insulation vacuum  

Science Journals Connector (OSTI)

This paper experimentally and theoretically investigated heat transfer process of complex-vacuum-multilayer-insulation cryogenic tank after a sudden loss of insulation vacuum (SLIV). The experiments were conducte...

M. Zhu; R. S. Wang

2012-11-01T23:59:59.000Z

60

Thermal comfort, skin temperature distribution, and sensible heat loss distribution in the sitting posture in various asymmetric radiant fields  

Science Journals Connector (OSTI)

This study aimed at investigating the thermal comfort for the whole body as well as for certain local areas, skin temperatures, and sensible heat losses in various asymmetric radiant fields. Human subject experiments were conducted to assess the overall comfort sensation and local discomfort, and local skin temperatures were measured. Through thermal manikin experiments, we discovered a new method for the precise measurement of the local sensible heat loss in nonuniform thermal environments. The local sensible heat losses were measured by the use of a thermal manikin that had the same local skin temperatures as the human subjects. The experimental conditions consisted of the anteriorposterior, rightleft, and updown asymmetric thermal environments created by radiation panels. A total of 35 thermal environmental conditions were created ranging from 25.5 to 30.5C for air temperature, from 11.5 to 44.5C for surface temperature of radiation panels, from 40% RH to 50% RH for humidity, and less than 0.05m/s for inlet air velocity to the climatic chamber. The local skin temperature changed depending on the environmental thermal nonuniformity, even if the mean skin temperature remained almost the same. It is essential to use the skin temperature distribution as well as mean skin temperature for expressing thermal comfort in nonuniform environments. The local sensible heat loss changed depending on the environmental thermal nonuniformity, even if the mean sensible heat loss remained almost the same. The relationship between the local skin temperature and local sensible heat loss cannot be depicted by a simple line; instead, it varies depending on the environmental thermal nonuniformity. The local heat discomfort in the head area was dependent on both the local skin temperature and local sensible heat loss. However, the local cold discomfort in the foot area was related only to the local skin temperature.

Tomonori Sakoi; Kazuyo Tsuzuki; Shinsuke Kato; Ryozo Ooka; Doosam Song; Shengwei Zhu

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

REDUCING MISMATCH LOSSES IN GRID-CONNECTED RESIDENTIAL BIPV ARRAYS USING ACTIVE POWER CONVERSION COMPONENTS  

E-Print Network [OSTI]

occur due to nearby buildings, trees, antennas or chimneys, which are usually inherent to the solar, chimneys or buildings, consequently causing PV module mismatch losses. Such losses are mainly due is carried out through normal operation and two partially shaded scenarios representing chimney and nearby

Paris-Sud XI, Université de

62

USING CENTER HOLE HEAT TRANSFER TO REDUCE FORMATION TIMES FOR CERAMIC WASTE FORMS FROM PYROPROCESSING  

SciTech Connect (OSTI)

The waste produced from processing spent fuel from the EBR II reactor must be processed into a waste form suitable for long term storage in Yucca Mountain. The method chosen produces zeolite granules mixed with glass frit, which must then be converted into a solid. This is accomplished by loading it into a can and heating to 900 C in a furnace regulated at 915 C. During heatup to 900 C, the zeolite and glass frit react and consolidate to produce a sodalite monolith. The resultant ceramic waste form (CWF) is then cooled. The waste is 52 cm in diameter and initially 300 cm long but consolidates to 150 cm long during the heating process. After cooling it is then inserted in a 5-DHLW/DOE SNF Long Canister. Without intervention, the waste takes 82 hours to heat up to 900 C in a furnace designed to geometrically fit the cylindrical waste form. This paper investigates the reduction in heating times possible with four different methods of additional heating through a center hole. The hole size is kept small to maximize the amount of CWF that is processed in a single run. A hole radius of 1.82 cm was selected which removes only 1% of the CWF. A reference computation was done with a specified inner hole surface temperature of 915 C to provide a benchmark for the amount of improvement which can be made. It showed that the heatup time can potentially be reduced to 43 hours with center hole heating. The first method, simply pouring high temperature liquid aluminum into the hole, did not produce any noticeable effect on reducing heat up times. The second method, flowing liquid aluminum through the hole, works well as long as the velocity is high enough (2.5 cm/sec) to prevent solidification of the aluminum during the initial front movement of the aluminum into the center hole. The velocity can be reduced to 1 cm/sec after the initial front has traversed the ceramic. This procedure reduces the formation time to near that of the reference case. The third method, flowing a gas through the center hole, also works well as long as the heat capacity times the velocity of the gas is equivalent to that of the flowing aluminum, and the velocity is high enough to produce an intermediate size heat transfer coefficient. The fourth method, using an electric heater, works well and heater sizes between 500 to 1000 Watts are adequate. These later three methods all can reduce the heatup time to 44 hours.

Kenneth J. Bateman; Charles W. Solbrig

2006-07-01T23:59:59.000Z

63

Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems  

Broader source: Energy.gov [DOE]

Process heating plays a key role in producing steel, aluminum, and glass and in manufacturing products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass manufacturers are considering a variety of options for reducing overall energy consumption. As 38% of the energy used in U.S. industrial plants is consumed for process heating applications, metal and glass manufacturers are discovering that process heating technologies provide significant opportunities for improving industrial productivity, energy efficiency, and global competitiveness. This fact sheet is the first in a series to describe such opportunities that can be realized in industrial systems by conducting plant-wide assessments (PWA).

64

Optimization of non-evacuated receiver of solar collector having non-uniform temperature distribution for minimum heat loss  

Science Journals Connector (OSTI)

Abstract The present paper contains a numerical study of heat loss from a non-evacuated receiver typically used in parabolic trough collectors. To calculate temperature distributions on the receiver pipe (TP), an energy balance has been established over the entire cross-section of the receiver pipe at different fluid temperatures. In the energy balance, the flux distribution has been estimated by assuming normal incidence of solar insolation considering the sun as a point source. The temperature distributions of the receiver pipe are found, as per expectation, to be non-uniform. These temperature distributions have been fitted by sinusoidal and step functions and are used as temperature boundary conditions in a CFD study to optimize the size of the receiver. The mechanisms of heat loss that have been considered in this study are heat loss from (1) pipe to glass tube by conduction, convection and radiation and (2) glass tube to surrounding by convection (natural and forced) and radiation. The values of diameters of receiver pipe taken in this study are 33mm, 48mm, 60mm, 70mm, 89mm and 102mm. The radius ratio (RR) varied from 1.2 to 3 by changing diameter of glass tube. It is observed that, the critical value of RR for minimum heat loss is dependent upon receiver pipe diameter (DPo). The critical values of RR for pipe diameter (DPo) 33mm, 48mm, 60mm, 70mm, 89mm and 102mm are 1.5, 1.4, 1.375, 1.35, 1.3 and 1.25 respectively. The value of critical RR is lower for higher values of pipe diameter. The value of critical RR for a particular diameter of receiver is independent of receiver temperature and external wind velocity. Comparison of heat losses in non-uniform and uniform temperature cases shows that the values of heat losses in the two cases differ only by 1.5%.

Ramchandra G. Patil; Sudhir V. Panse; Jyeshtharaj B. Joshi

2014-01-01T23:59:59.000Z

65

Coated conductor arrangement for reduced AC losses in a resistive-type superconducting  

Science Journals Connector (OSTI)

The basic element of a resistive superconducting fault current limiter (FCL) can consist of coated conductor tape exceeding a few meters in length and compacted into a cryogenic envelope. This paper is focused on optimizing the arrangement of coated conductors with a non-magnetic substrate for a resistive superconducting FCL. Several configurations have been tested experimentally and theoretically. Two low-loss arrangements have been identified, both utilizing the bifilar configuration, i.e.the currents in two adjacent tapes are identical in amplitude but opposite in direction. The separation between two adjacent tapes s varied from 0.07 up to 2.10mm. For the lowest examined separation s the AC transport loss of the straight bifilar model decreased by more than one order with respect to the AC transport loss in the single-tape configuration. Further AC loss decrease is achieved when the pair of tapes carrying opposite currents forms a flat pancake coil. We developed a numerical model in order to analyze the influence of distance between adjacent tapes. To achieve agreement between experimental and numerical results it was necessary to incorporate a lateral distribution of critical current density in the tape. The remaining differences between the results of experiment and calculation can be explained by analysis of experimental imperfections. Finally we suggest an empirical fit for the prediction of AC loss of a practical superconducting fault current limiter.

J ouc; F Gmry; M Vojen?iak

2012-01-01T23:59:59.000Z

66

Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating/Cooling Systems  

E-Print Network [OSTI]

Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating solution is developed as a promising working fluid for district heating/cooling systems (DHCs). It can systems. A promising application of DR fluids is in district heating/ cooling systems (DHCs)9

Raghavan, Srinivasa

67

Copper waveguide cavities with reduced surface loss for coupling to superconducting qubits  

E-Print Network [OSTI]

Significant improvements in superconducting qubit coherence times have been achieved recently with three-dimensional microwave waveguide cavities coupled to transmon qubits. While many of the measurements in this direction have utilized superconducting aluminum cavities, other recent work has involved qubits coupled to copper cavities with coherence times approaching 0.1 ms. The copper provides a good path for thermalizing the cavity walls and qubit chip, although the substantial cavity loss makes conventional dispersive qubit measurements challenging. We are exploring various approaches for improving the quality factor of three-dimensional copper cavities, including electropolishing and coating with superconducting layers of tin. We have characterized these cavities on multiple cooldowns and found the tin-plating to be robust. In addition, we have performed coherence measurements on transmon qubits in these cavities and observed promising performance.

Daniela F. Bogorin; D. T. McClure; Matthew Ware; B. L. T. Plourde

2014-09-10T23:59:59.000Z

68

The use of combined heat and power (CHP) to reduce greenhouse gas emissions  

SciTech Connect (OSTI)

Cogeneration or Combined Heat and Power (CHP) is the sequential production of electric power and thermal energy. It is a more efficient way of providing electricity and process heat than producing them independently. Average overall efficiencies can range from 70% to more than 80%. CHP decisions often present an opportunity to switch to a cleaner fuel. CHP systems are an attractive opportunity to save money, increase overall efficiency, reduce net emissions, and improve environmental performance. Climate Wise, a US Environmental Protection Agency (US EPA) program helping industrial Partners turn energy efficiency and pollution prevention into a corporate asset, has increased awareness of CHP by providing implementation and savings information, providing peer exchange opportunities for its Partners, and recognizing the achievements of Partners that have implemented CHP at their facilities. This paper profiles Climate Wise Partners that have invested in CHP systems, including describing how CHP is used in their facilities and the resulting cost and emission reductions.

Asrael, J.; Milmoe, P.H.; Haydel, J.

1999-07-01T23:59:59.000Z

69

A Prototype Roof Deck Designed to Self-Regulate Deck Temperature and Reduce Heat Transfer  

SciTech Connect (OSTI)

A prototype roof and attic assembly exploits the use of radiation, convection and insulation controls to reduce the heat transfer penetrating its roof deck by almost 85% of the heat transfer crossing a conventional roof and attic assembly. The assembly exhibited attic air temperatures that did not exceed the peak day outdoor ambient temperature. The design includes a passive ventilation scheme that pulls air from the soffit and attic into an inclined air space above the deck. The design complies with fire protection codes because the air intake is internal and closed to the elements. Field data were benchmarked against an attic computer tool and simulations made for new and retrofit home constructions in hot, moderate and cold climates to access economics for the assembly.

Miller, William A [ORNL] [ORNL

2011-01-01T23:59:59.000Z

70

A Prototype Roof Deck Designed to Self-Regulate Deck Temperature and Reduce Heat Transfer  

SciTech Connect (OSTI)

A prototype roof and attic assembly exploits the use of radiation, convection and insulation controls to reduce its peak day heat transfer by almost 85 percent of the heat transfer crossing a conventional roof and attic assembly. The assembly exhibits attic air temperatures that do not exceed the maximum daily outdoor ambient temperature. The design includes a passive ventilation scheme that pulls air from the soffit and attic into an inclined air space above the roof deck. The design complies with fire protection codes because the air intake is internal and closed to the elements. Field data were benchmarked against an attic computer tool and simulations made for new and retrofit constructions in hot, moderate and cold climates to gauge the cost of energy savings and potential payback.

Miller, William A [ORNL] [ORNL

2011-01-01T23:59:59.000Z

71

Heating boilers in Krakow, Poland: Options for improving efficiency and reducing emissions  

SciTech Connect (OSTI)

In Krakow, Poland, coal-fired boilers are used to heat single apartment buildings and local heating districts. Tile population includes 2,930 small, hand-fired boilers and 227 larger traveling grate stoker-fired boilers. These boilers are important contributors to air quality problems in Krakow, and an assessment of their efficiency and emissions characteristics was recently undertaken. For the larger, stoker-fired boilers, efficiency was measured using a stack-loss method In addition to the normal baseline fuel, the effects of coal cleaning and grading were evaluated Testing was done at two selected sites. Boiler efficiencies were found to be low-50% to 67%. These boilers operate without combustion controls or instrumentation for flue gas analysis. As a result, excess air levels are very high (up to 400%) leading to poor performance. Emissions were found to be typical for boilers of this type. Using the improved fuels yields reductions in emissions and improvement in efficiency when combined with proper adjustments. In the case of the hand-fired boilers, one set of cast-iron boilers and one set of steel boilers were tested. Efficiency in this case was measured using an input-output method for sets of three boilers taken together as a system. Emissions from these boilers are lowest when low volatile fuels, such as coke or smokeless briquettes, are used.

Cyklis, P.; Wlodkowski, A.; Butcher, T.; Kowalski, J.; Zaczkowski, A.; Kroll, J.; Boron, J.

1995-08-01T23:59:59.000Z

72

Process and apparatus for reducing the loss of hydrogen from Stirling engines  

SciTech Connect (OSTI)

A Stirling engine assembly is described which defines a working gas volume therein, the Stirling engine assembly comprising: a working gas reservoir for storing a working gas at a pressure greater than pressure of the working gas in the working volume of the Stirling engine; a trap cell operatively connected between an outlet of the reservoir and the Stirling engine working volume. The trap cell includes an enclosure having porous windows at either end thereof and a sorbent with an affinity for water vapor therein, such that water vapor adsorbed on the sorbent diffuses into the hydrogen passing from the reservoir into the working engine; a compressor means for drawing working gas from the Stirling engine working volume, through the trap cell and pumping the working gas into the hydrogen reservoir. The sorbent in the trap cell at the reduced pressure caused by the compressor adsorbs water vapor from the working gas such that substantially dry working gas is pumped by the compressor into the reservoir. The working gas is doped with water vapor by the tank cell as it passes into the Stirling engine and is dried by the trap cell as it is removed from the working engine for storage in the reservoir to prevent condensation of water vapor in the reservoir.

Alger, D.L.

1987-03-24T23:59:59.000Z

73

Reduced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reduced intermittency in the magnetic turbulence of reversed field pinch plasmas L. Marrelli and L. Frassinetti Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati...

74

Optimization of the design and mode of operation of a QD laser for reducing the heat-to-bitrate ratio  

SciTech Connect (OSTI)

Heat dissipation under the high-speed modulation of quantum dot edge-emitting lasers is considered. It is shown that, for a given laser diode, there is a bias current at which the heat-to-bitrate ratio is minimized. Moreover, there exists a certain optimal optical loss of the laser cavity at which the lowest heat-to-bitrate ratio is provided for any design of edge-emitting lasers that can be fabricated from an epitaxial structure. The heat-to-bitrate ratio and the corresponding bitrate are numerically calculated and analytical expressions are derived. It is demonstrated that the heat-to-bitrate ratio of quantum dot edge-emitting lasers can be less than 0.4 pJ/bit at a bitrate exceeding 10 Gbit/s.

Zhukov, A. E., E-mail: zhukale@gmail.com; Savelyev, A. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation); Maximov, M. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Kryzhanovskaya, N. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation); Gordeev, N. Yu.; Shernyakov, Yu. M. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Payusov, A. S.; Nadtochiy, A. M.; Zubov, F. I.; Korenev, V. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)

2013-08-15T23:59:59.000Z

75

Reducing Energy Loss  

Broader source: Energy.gov [DOE]

Students will learn about the Law of Conservation of Energy. They will also compare and contrast Energy Guide Labels to study energy efficiency and conservation as well.

76

Analysis of system performance losses due to the reversing valve for a heat pump using R-410a  

SciTech Connect (OSTI)

A traditional reversing valve enables a heat pump to operate in the heating mode or cooling mode by switching the refrigerant flow path through the indoor and outdoor coils, thereby changing the functions of the two heat exchangers. However, the presence of a reversing valve causes additional pressure drops and undesired heat exchange. The objective of this research was to measure the overall effects of a reversing valve on a 3-ton heat pump system using R-401a and make comparisons to the same valve's performance with R-22 as the refrigerant. The experiments included tests of under- and over-sized valves at the same test conditions. Also, the effects of pressure drops and of heat transfer combined with mass leakage on system and compressor performance were analyzed. It was found that the use of a larger (oversized) reversing valve to reduce pressure drops provided only limited performance gains. Also, changing refrigerant from R-22 to R-410a resulted in an increase in mass leakage but did not significantly change the effect that the reversing valve had on the system COP.

Fang, W.; Nutter, D.W.

1999-07-01T23:59:59.000Z

77

RELAP5/MOD3 simulation of the loss of residual heat removal during midloop operation experiment conducted at the ROSA-IV/ Large Scale Test Facility  

E-Print Network [OSTI]

The modeling of the complex thermal hydraulics Of reactor systems involves the use Of experimental test systems as well as numerical codes. A simulation of the loss of residual heat removal (RHR) during midloop operations was performed using...

Banerjee, Sibashis Sanatkumar

2012-06-07T23:59:59.000Z

78

Experimental investigation of pressure loss and heat transfer in a rotorstator cavity with two outlets  

Science Journals Connector (OSTI)

Abstract This article presented detailed measurements of the pressure distribution and heat transfer in a rotorstator cavity with inlet of orifices on the rotating disk and two outlets at both low radius and high radius. Transient thermochromic liquid crystal (TLC) technique was employed to determine the convective heat transfer characteristics on the test surface of the rotating disk. Rotational Reynolds numbers (Re?) ranging from 4.9נ105 to 2.47נ106 and dimensionless flow rate (Cw) between 6.9נ103 and 2.72נ104 were considered. Experimental results indicated that the characteristics of the pressure loss coefficient between the inlet and the outlet was strongly dependent on the Re? and Cw. Under the current operating conditions, the heat transfer on the surface of the rotating disk was weakened at both in the upper and lower edges for the case of r/R=0.775 due to the existence of the recirculation. Whereas the heat transfer were enhanced near the upper radius with relatively low flow rate and high rotational speed, as well as on the middle radius with relatively high flow rate and low rotational speed.

X. Luo; G. Han; H. Wu; L. Wang; G. Xu

2014-01-01T23:59:59.000Z

79

Numerical analysis of the influence of inclination angle and wind on the heat losses of cavity receivers for solar thermal power towers  

Science Journals Connector (OSTI)

Abstract The convective heat losses of cavity receivers for solar thermal power towers are of great importance for the overall efficiency of the whole system. However, the influence of wind on these losses has not been studied sufficiently for large scale cavity receivers with different inclination angles. In this present study the impact of head-on and side-on wind on large cavity receivers with inclination angles in the range of 0 (horizontal cavity) to 90 (vertical cavity) is analyzed numerically. The simulation results are compared to data published in literature. When no wind is present the losses decrease considerably with increasing inclination angle of the receiver. In case of a horizontal receiver wind does not have a huge impact on the losses: they remain constant on a high level. In case of an inclined cavity wind increases the heat losses significantly in most of the cases, although the highest absolute value of the losses occurs for the horizontal receiver exposed to head on wind. In some cases, when wind is flowing parallel to the aperture plane, a reduction of the heat losses is observed. The temperature distribution in the cavity is analyzed in order to explain the impact of wind on the heat losses. Wind in general causes a shrinking of the zone with uniform high temperature in the upper region of the cavity, whereas wind flowing parallel to the aperture plane additionally inhibits hot air from leaving the cavity and therefore leads to an increased temperature in the lower zone.

Robert Flesch; Hannes Stadler; Ralf Uhlig; Robert Pitz-Paal

2014-01-01T23:59:59.000Z

80

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network [OSTI]

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARp?) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution Benjamin Brant Sabine Brueske Donald Erickson Riyaz Papar Planetec Planetec Energy Concepts Company Energy... in Denver, Colorado. The Waste Heat Ammo nia Absorption Refrigeration Plant (WHAARP?) is based on a patented process and cycle design developed by Energy Concepts Co. (ECC) to cost effectively re cover 73,000 barrels a year of salable LPGs and gasoline...

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Reducing Ventilation Energy Demand by Using Air-to-Earth Heat Exchangers  

Science Journals Connector (OSTI)

Air-to-Earth heat exchangers (earth tubes) utilize the fact that the temperature in the ground is relatively constant during the year. By letting the air travel through an air-to-earth heat exchanger before re...

Hans Havtun; Caroline Trnqvist

2013-01-01T23:59:59.000Z

82

Downward two-phase flow effects in heat-loss and pressure-drop modeling of steam injection wells  

SciTech Connect (OSTI)

Modelling of the pressure drop and heat loss in steam injection wells has undergone a gradual evolution since the heavy interest in enhanced oil recovery by steam injection in the mid-60's. After briefly reviewing the evolution of steam models this paper presents a model which advances the state-of-the-art of steam modelling. The main advance presented in this paper is modelling the effects of the various flow regimens that occur during steam injection. The paper describes the formulation of a two-phase downward vertical flow pressure drop model which is not limited by the ''no-slip'' homogeneous flow assumptions in most previously published models. By using different correlations for mist, bubble, and slug flow, improved pressure drop calculations result, which in turn improve temperature predictions. The paper describes how the model handles temperature predictions differently in the single and two-phase steam flow situations. The paper also describes special features in the model to account for layered soil properties, soil dry out, cyclic injection, coupling heat losses, and reflux boiling in wet annuli. Two examples problems are presented which illustrate some of these features.

Galate, J.W.; Mitchell, R.F.

1985-03-01T23:59:59.000Z

83

CFD analysis of the effects of the flow distribution and heat losses on the steam reforming of methanol in catalytic (Pd/ZnO) microreactors  

Science Journals Connector (OSTI)

Abstract A three-dimensional computational fluid dynamics (CFD) simulation study of the effects of the flow distribution and the heat losses on the performance of microchannels and microslits reactors for the steam reforming of methanol (SRM) over Pd/ZnO is presented. Several flow distributing headers covering a wide range of the flow diffuser expansion angle (?) have been considered. Large values of ? lead to flow maldistribution characterized by jet flow resulting in negative effects on the SRM conversion and hydrogen yield, especially for the microslits at high reaction temperatures and space velocities. Simulations have also evidenced that heat losses constitute a critical issue for microreactors operation, particularly at low space velocities. Heat losses may reach very high values, above 8090% of the energy supplied to the microreactor, with the consequence that it may be necessary to provide up to 9times the heat of the SRM reaction to achieve high methanol conversions.

I. Uriz; G. Arzamendi; P.M. Diguez; F.J. Echave; O. Sanz; M. Montes; L.M. Ganda

2014-01-01T23:59:59.000Z

84

Low-Cost Packaged Combined Heat and Power System with Reduced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

monoxide (CO), and volatile organic compounds (VOCs) * Yearly reduction of carbon dioxide emissions by 950 tons com- pared to separate generation of electricity and heat,...

85

Novel Designs for Photovoltaic Arrays to Reduce Partial Shading Losses and to Ease Series Arc Fault Detection.  

E-Print Network [OSTI]

??A mismatch in a photovoltaic array implies differences in the I-V characteristics of the modules forming the array which can lead to significant energy losses (more)

Shams El-Dein, Mohamed

2012-01-01T23:59:59.000Z

86

Visualization of flow boiling in an annular heat exchanger under reduced gravity conditions  

E-Print Network [OSTI]

creating unique visual and quantitative data. These data were then analyzed using a resistance type heat transfer model and five different zero gravity flow regime maps. Results from this analysis included: (i) presenting zero gravity data that correlated...

Westheimer, David Thomas

2012-06-07T23:59:59.000Z

87

Method for cutting steam heat losses during cyclic steam injection of wells. Second quarterly report  

SciTech Connect (OSTI)

The Midway-Sunset Field (CA) is the largest Heavy Oil field in California and steam injection methods have been successfully used for more than 30 years to produce the Heavy Oil from many of its unconsolidated sand reservoirs. In partnership with another DOE/ERIP grantee, our Company has acquired an 80 ac. lease in the SE part of this field, in order to demonstrate our respective technologies in the Monarch sand, of Miocene Age, which is one of the reservoirs targeted by the DOE Class 3 Oil Program. This reservoir contains a 13 API oil, which has a much higher market value, as a Refinery Feedstock, than the 5 to 8 API Vaca Tar, used only as road paving material. This makes it easier to justify the required investment in a vertical well equipped with two horizontal drainholes. The economic viability of such a project is likely to be enhanced if Congress approves the export to Japan of a portion of the 27 API (1% Sulfur) AK North Slope oil, which currently is landed in California in preference to lighter and sweeter Far East imported crudes. This is a major cause of the depressed prices for California Heavy Oil in local refineries, which have reduced the economic viability of all EOR methods, including steam injection, in California. Two proposals, for a Near-Term (3 y.) and for a Mid-Term (6 y.) project respectively, were jointly submitted to the DOE for Field Demonstration of the Partners` new technologies under the DOE Class 3 Oil Program. The previous design of a special casing joint for the Oxnard field well was reviewed and adapted to the use of existing Downhole Hardware components from three suppliers, instead of one. The cost of drilling and completion of a well equipped with two horizontal drainholes was re-evaluated for the conditions prevailing in the Midway Sunset field, which are more favorable than in the Oxnard field, leading to considerable reductions in drilling rig time and cost.

Not Available

1994-08-01T23:59:59.000Z

88

Reducing Skin Friction and Heat Transfer over a Hypersonic Cruising Vehicle by Mass Injection.  

E-Print Network [OSTI]

??Demonstrating technologies for hypersonic aircraft that cruise at speeds greater than Mach 5 is one of the long-term visions of many agencies, like NASA. Reducing (more)

Nozaki, Yoshifumi

2007-01-01T23:59:59.000Z

89

Comparison of a reduced carbohydrate and reduced fat diet for LDL, HDL, and VLDL subclasses during 9-months of weight maintenance subsequent to weight loss  

E-Print Network [OSTI]

related to weight management. Additionally, participants followed a liquid very low-energy diet of ~2092 kJ per day for the first three months of the study. Subsequently, participants followed a dietary plan for nine months that targeted a reduced...

LeCheminant, James D.; Smith, Bryan K.; Westman, Eric C.; Vernon, Mary C.; Donnelly, Joseph E.

2010-06-01T23:59:59.000Z

90

Effect of neutral collision and radiative heat-loss function on self-gravitational instability of viscous thermally conducting partially-ionized plasma  

SciTech Connect (OSTI)

The problem of thermal instability and gravitational instability is investigated for a partially ionized self-gravitating plasma which has connection in astrophysical condensations. We use normal mode analysis method in this problem. The general dispersion relation is derived using linearized perturbation equations of the problem. Effects of collisions with neutrals, radiative heat-loss function, viscosity, thermal conductivity and magnetic field strength, on the instability of the system are discussed. The conditions of instability are derived for a temperature-dependent and density-dependent heat-loss function with thermal conductivity. Numerical calculations have been performed to discuss the effect of various physical parameters on the growth rate of the gravitational instability. The temperature-dependent heat-loss function, thermal conductivity, viscosity, magnetic field and neutral collision have stabilizing effect, while density-dependent heat-loss function has a destabilizing effect on the growth rate of the gravitational instability. With the help of Routh-Hurwitz's criterion, the stability of the system is discussed.

Kaothekar, Sachin [School of Studies in Physics, Vikram University, Ujjain-456010, Madhya Pradesh (India); Department of Physics, Mahakal Institute of Technology, Ujjain-456664, Madhya Pradesh (India); Soni, Ghanshyam D. [Government Girls Degree College, Dewas, Madhya Pradesh (India); Chhajlani, Rajendra K. [School of Studies in Physics, Vikram University, Ujjain-456010, Madhya Pradesh (India)

2012-12-15T23:59:59.000Z

91

Evidence for ultra-fast heating in intense-laser irradiated reduced-mass targets  

SciTech Connect (OSTI)

We report on an experiment irradiating individual argon droplets of 20 {mu}m diameter with laser pulses of several Joule energy at intensities of 10{sup 19} W/cm{sup 2}. K-shell emission spectroscopy was employed to determine the hot electron energy fraction and the time-integrated charge-state distribution. Spectral fitting indicates that bulk temperatures up to 160 eV are reached. Modelling of the hot-electron relaxation and generation of K-shell emission with collisional hot-electron stopping only is incompatible with the experimental results, and the data suggest an additional ultra-fast (sub-ps) heating contribution. For example, including resistive heating in the modelling yields a much better agreement with the observed final bulk temperature and qualitatively reproduces the observed charge state distribution.

Neumayer, P.; Gumberidze, A.; Hochhaus, D. C. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, 60438 Frankfurt am Main (Germany); Aurand, B.; Stoehlker, T. [Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Costa Fraga, R. A.; Kalinin, A. [Institut fuer Kernphysik, J. W. Goethe University Frankfurt, 60438 Frankfurt am Main (Germany); Ecker, B. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Grisenti, R. E. [Institut fuer Kernphysik, J. W. Goethe University Frankfurt, 60438 Frankfurt am Main (Germany); Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Kaluza, M. C. [Helmholtz Institute Jena, 07743 Jena (Germany); IOQ Institute of Optics and Quantum Electronics, University of Jena (Germany); Kuehl, T. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany); Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Polz, J. [IOQ Institute of Optics and Quantum Electronics, University of Jena (Germany); Reuschl, R. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Winters, D.; Winters, N.; Yin, Z. [Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany)

2012-12-15T23:59:59.000Z

92

System for reducing heat losses from indoor swimming pools by use of automatic covers. Report No. 3  

SciTech Connect (OSTI)

This progress report covers the period July 1, 1994 through September 30, 1994, and summarizes continuing work on developing deloyable covers for indoor swimming pools. This work includes design and development of motor controllers to deploy and roll up pool covers, reels, cover material of polyethylene and foam filled laminates, and plans for field deployment of a system, where energy savings can be monitored.

Not Available

1994-09-30T23:59:59.000Z

93

E-Print Network 3.0 - activation decay heat Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

h 1 in the dark... . Filtration reduced decay rates by various amounts, averaging 20%. Heat-labile, high... the loss of active degradative materials incurred by ... Source:...

94

E-Print Network 3.0 - an-04-07 absorption-sorption heat Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

We... Engineer- ing." low distribution temperature is key One explanation for the reduced heat loss is twin pipes Source: Mosegaard, Klaus - Institut for Informatik og Matematisk...

95

Full wave simulations of fast wave heating losses in the scrape-off layer of NSTX and NSTX-U  

SciTech Connect (OSTI)

Full wave simulations of fusion plasmas show a direct correlation between the location of the fast-wave cut-off, radiofrequency (RF) field amplitude in the scrape-off layer (SOL) and the RF power losses in the SOL observed in the National Spherical Torus eXperiment (NSTX). In particular, the RF power losses in the SOL increase significantly when the launched waves transition from evanescent to propagating in that region. Subsequently, a large amplitude electric field occurs in the SOL, driving RF power losses when a proxy collisional loss term is added. A 3D reconstruction of absorbed power in the SOL is presented showing agreement with the RF experiments in NSTX. Loss predictions for the future experiment NSTX-Upgrade (NSTX-U) are also obtained and discussed.

Bertelli, Nicola [Princeton Plasma Physics Laboratory (PPPL); Jaeger, E. F. [XCEL; Hosea, J. [Princeton Plasma Physics Laboratory (PPPL); Phillips, C. K. [Princeton Plasma Physics Laboratory (PPPL); Berry, Lee Alan [XCEL Engineering Inc., Oak Ridge; Gerhardt, S. [Princeton Plasma Physics Laboratory (PPPL); Green, David L [ORNL; LeBlanc, B [Princeton Plasma Physics Laboratory (PPPL); Perkins, R. J. [Princeton Plasma Physics Laboratory (PPPL); Ryan, Philip Michael [ORNL; Taylor, G. [Princeton Plasma Physics Laboratory (PPPL); Valeo, E. J. [Princeton Plasma Physics Laboratory (PPPL); Wilson, J. R. [Princeton Plasma Physics Laboratory (PPPL)

2014-01-01T23:59:59.000Z

96

Heating, Current Drive, Operations and Diagnostics Issues Understand implications of reduced repetition rate, is it adequate for the  

E-Print Network [OSTI]

Heating, Current Drive, Operations and Diagnostics Issues Operations · Understand implications of ECRH to improve startup. Heating · ICRF is the base line heating system, compare with NBI and ECRH withstand the anticipated heat loads? Diagnostics · Capability of beam diagnostics for J(r), E(r), etc

97

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

SciTech Connect (OSTI)

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

98

Impinging radial and inline jets: A comparison with regard to heat transfer, wall pressure distribution, and pressure loss  

Science Journals Connector (OSTI)

Heat transfer and wall pressure distribution on a plane surface generated by single impinging inline or radial jets are studied experimentally. The pressure drop of inline and radial jet nozzles is measured. The effects of flow exit angle, nozzle to surface distance, and exit velocity on heat transfer, wall pressure distribution, and pressure drop are discussed. Heat transfer results show that radial jets with flow exit angles of +45+60 generate up to 60% higher local and up to 50% higher global Nusselt numbers compared with inline jets of the same volumetric flow rate and exit velocity. Measured wall pressure distributions are presented in terms of pressure coefficients. The total force exerted by radial jets on a plane surface is lower than that exerted by inline jets. Radial jets with negative flow exit angles can generate small lifting forces. Results of pressure drop measurements are presented in terms of resistance coefficients, which allow an estimation of the necessary additional fan power if radial jet nozzles instead of inline jet nozzles are employed. For radial jet nozzles with flow exit angles of +45 ? ? ? +60 the rise of fan energy costs is negligible compared with the rise of heat/mass transfer. Radial jet nozzles have a high potential for application, particularly when very high drying rates or small jet forces on the impingement surface or both are required.

F. Peper; W. Leiner; M. Fiebig

1997-01-01T23:59:59.000Z

99

Alternatives for reducing hot-water bills  

SciTech Connect (OSTI)

A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)

Bennington, G.E.; Spewak, P.C.

1981-06-01T23:59:59.000Z

100

Composition of incipient passivating layers on heat-rejecting aluminum in carboxylate- and silicate-inhibited coolants: Correlation with ASTM D 4340 weight losses  

SciTech Connect (OSTI)

X-ray photoelectron spectroscopy identified compositional differences between passivating layers initially formed in carboxylated coolants, in silicated coolants, and in a mixture thereof on well-controlled 319 aluminum surfaces under heat-rejecting conditions. The layer formed in silicated coolant was primarily silica, while that in carboxylated coolant was primarily hydrated alumina. Competition between inhibitor packages when carboxylated coolant was contaminated from the start with low levels of silicated coolant produced films which were not simply patchwise mixtures of the pure-coolant film types. The surface analytical results aid the interpretation of subtle differences in weight losses under the ASTM Standard Test Method for Corrosion of Cast Aluminum Alloys in Engine Coolants Under Heat-Rejecting Conditions (D 4340) in carboxylated versus silicated coolants that became more pronounced when testing was carried out at a vehicle-like 50% coolant concentration. Results from time-resolved D4340 measurements and from a two-step cleaning procedure further contribute towards proper evaluation of D4340 weight losses in the different coolant types.

Wagner, F.T.; Moylan, T.E.; Simko, S.J.; Militello, M.C. [General Motors R and D Center, Warren, MI (United States)

1999-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Vehicle Technologies Office: Parasitic Loss Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parasitic Loss Reduction Parasitic Loss Reduction Heavy vehicles lose a tremendous amount of energy to wind resistance and drag, braking, and rolling resistance. Such non-engine losses can account for an approximate 45% decrease in efficiency. Other sources of energy loss include: friction and wear in the power train, thermal (heat) loads, operation of auxiliary loads (air conditioning, heaters, refrigeration, etc.), and engine idling. The parasitic loss activity identifies methodologies that may reduce energy losses, and tests those in the laboratory. Promising technologies are then prototyped and tested onboard heavy vehicles. Once validated, technologies must be tested on-road to obtain durability, reliability, and life-cycle cost data for the developmental component and/or design strategy.

102

Using the reversability of the peltier effect to reduce the heat-scattering surfaces of thermal cooling batteries  

Science Journals Connector (OSTI)

We propose and analyze a method for significant reduction in the area of heat scattering surfaces in thermal cooling batteries, where the latter are used to cool....

E. K. Iordanishvili

1991-03-01T23:59:59.000Z

103

Apparatus for reducing the moisture content in combustible material by utilizing the heat from combustion of such material  

SciTech Connect (OSTI)

This patent describes apparatus for preparing moisture containing fuel material for combustion to produce heat energy and for applying the heat energy from the combustion for lowering the moisture content in the fuel material prior to combustion, the improvement comprising: boiler means for the combustion of the fuel material to produce heat energy, grinding apparatus for preparing the fuel material to produce heat energy; means for collecting prepared fuel material and for feeding the collected fuel material to the boiler means; a main gaseous fluid and fuel material conduit system; a second conduit system connecting the boiler means and the grinding apparatus to conduct heat energy to the grinding apparatus; connecting means between the returning side of the main conduit system and the boiler means for maintaining the main conduit system at a negative pressure to promote the flow of hot gaseous medium from the boiler means to the gringing apparatus.

Williams, R.M.

1992-03-17T23:59:59.000Z

104

Minimizing Energy Losses in Ducts | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Minimizing Energy Losses in Ducts Minimizing Energy Losses in Ducts Minimizing Energy Losses in Ducts June 24, 2012 - 5:45pm Addthis Placing ductwork in conditioned space can help reduce energy losses. | Photo courtesy of ©iStockphoto/SimplyCreativePhotography Placing ductwork in conditioned space can help reduce energy losses. | Photo courtesy of ©iStockphoto/SimplyCreativePhotography In new home construction or in retrofits, proper duct system design is critical. In recent years, energy-saving designs have sought to include ducts and heating systems in the conditioned space. Many existing duct systems lose a lot of energy from leakage and poor insulation, but you can reduce that loss by sealing and insulating your ducts. Existing ducts may also be blocked or may require simple upgrades.

105

A verification study on saving energy cost and reducing CO2 emission with large-scale geothermal heat pump systems in Korea  

Science Journals Connector (OSTI)

This paper presents economic and environmental effects by using monitoring data collected over a 2-yr period in geothermal heating and cooling facilities in Jungwon University Korea. The facility has heating capacity of 7045?kW and cooling capacity of 5947?kW. Such monitoring data are rarely reported in the literature; thus the evaluation based on long-term operational data will contribute greatly to the objective assessment of the geothermal heat pump system (GHPS) as a renewable energy resource. The effects of relative energy cost saving and reductions in CO2 emission were predicted for comparison with conventional heating and cooling systems. The GHPS was estimated to reduce energy costs by 76.4%85.3% and yield a reduction of CO2 emission of 398595 tons annually. We also conducted an economic analysis using the benefit/cost ratio (BCR) method according to scenarios in which the lifespan and discount rate for the GHPS were varied. Since the BCR for the GHPS was in the range of 1.993.58 (case 1) and 1.673.01 (case 2) GHPS is considered to be more economic than other types of heating and cooling systems. These results provide evidentiary data to help overcome skepticism over the applicability of large-scale GHPSs.

Byeong-Hak Park; Hyoung-Soo Kim; Kang-Kun Lee

2013-01-01T23:59:59.000Z

106

Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application  

E-Print Network [OSTI]

energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility...

Meckler, G.

1985-01-01T23:59:59.000Z

107

Vehicle Technologies Office: Parasitic Loss Reduction | Department...  

Energy Savers [EERE]

losses can account for an approximate 45% decrease in efficiency. Other sources of energy loss include: friction and wear in the power train, thermal (heat) loads, operation of...

108

Worldwide, accelerating glacier loss provides independent and startling evidence that global warming is occurring1 It is now clear that the Earth is warming rapidly due to man-made emissions of carbon dioxide and other heat-trap-  

E-Print Network [OSTI]

-made emissions of carbon dioxide and other heat-trap- ping gases, which blanket the planet and cause temperatures future limits on carbon emissions. · Electricity consumers should opt for "green power" where imperative that emissions of the main heat-trapping gas, car- bon dioxide (CO2), are significantly reduced

Combes, Stacey A.

109

Simulation Models for Improved Water Heating Systems  

E-Print Network [OSTI]

The DLM accounts for the distribution heat loss within eachHot-Water Distribution System Piping Heat Loss FactorsPhaseHot Water Distribution System Piping Heat Loss Factors-

Lutz, Jim

2014-01-01T23:59:59.000Z

110

Chimneys: Warm and Cozy or Easy Exit for Your Heat? | Department...  

Energy Savers [EERE]

fire isn't burning. Visit the Stay Warm, Save Money site for other ways you can reduce heat loss from the fireplace. Addthis Related Articles A warm fireplace can save you...

111

Effective temperatures, sawtooth mixing, and stochastic diffusion ripple loss of fast H+ minority ions driven by ion cyclotron heating in the Tokamak  

E-Print Network [OSTI]

ions driven by ion cyclotron heating in the Tokamak Fusion Test Reactor M. P. Petrov, R. Bell, R. V cyclotron heating in the Tokamak Fusion Test Reactor M. P. Petrov,a) R. Bell, R. V. Budny, N. N. Gorelenkov of the H minority ions driven by Ion Cyclotron Radio Frequency ICRF heating in the Tokamak Fusion Test

Budny, Robert

112

Town of Hague landfill reclamation study: Research ways to increase waste heating value and reduce waste volume. Final report  

SciTech Connect (OSTI)

Monitored composing was studied as a method for reducing the quantity of waste requiring disposed from a landfill reclamation project. After each of two re-screening steps, composted {open_quotes}soil{close_quotes} from a single long windrow of varying depths and moisture content was subjected to analytical testing to determine its suitability to remain as backfill in a reclaimed landfill site. The remaining uncomposted waste was combusted at a waste-to-energy facility to determine if Btu values were improved. Results indicate that a full-scale composting operation could result in a net decrease of approximately 11 percent in disposal costs. The Btu value of the reclaimed waste was calculated to be 4,500 to 5,000 Btu/lb. The feasibility of composting reclaimed waste at other landfill reclamation projects will depend upon site-specific technical and economic factors, including size and nature of the organic fraction of the waste mass, local processing costs, and the cost of waste disposal alternatives.

Salerni, E. [SSB Environmental Inc., Albany, NY (United States)

1997-01-01T23:59:59.000Z

113

System for reducing heat losses from indoor swimming pools by use of automatic covers. Technical progress report No. 4, October 1, 1994--December 31, 1994  

SciTech Connect (OSTI)

The principal developments during the fifth quarter of the project (October - December 1994) have been as follows. (1) Design fabrication and bench testing of new 24-v controller employing automatic photocell shut-off of motor. (2) Design, fabrication and bench testing of new 42-v controller employing automatic stop-ball and limit-switch shut-off of motor. (3) Design, fabrication, installation, operation and adjustment of prototype improved pool cover system in Denver. (4) Continued planning of installation, demonstration and evaluation of improved pool cover system at the Denver Skyland Recreation Center. (5) Improved mounting brackets. (6) Preparation of a comprehensive paper on swimming pool evaporation rates.

Not Available

1995-01-15T23:59:59.000Z

114

System for reducing heat losses from indoor swimming pools by use of automatic covers. Final report, October 1, 1993--September 30, 1995  

SciTech Connect (OSTI)

This final report is an account of the principal activities of Lof Energy Systems, Inc. in a two-year project funded by the Energy Related Inventions Program (ERIP) of the U.S. Department of Energy. The primary objective has been the development of a fully practical and economical system for saving energy in indoor swimming pools by use of motorized covers. The goal is wide-spread use of a fully developed product, in institutional swimming pools. Four major tasks, depicted in the accompanying Performance Schedule, have been completed, and one other has been initiated and its completion committed. Principal accomplishments have been the selection and improvement of cover materials and designs, lengthening and strengthening of reels and improvements in motorized components and their control, design and installation of pool covers in full scale demonstration and evaluation of fully developed commercial system, preparation and dissemination of manuals and reports, finalization of arrangements for Underwriters Laboratory certification of products, and final report preparation and submission. Of greatest significance has been the successful demonstration of the fully developed system and the verification and reporting by an energy consultant of the large savings resulting from pool cover use. Probably the best evidence of success of the DOE-ERIP project in advancing this invention to a commercial stage is its acceptance for sale by the Lincoln Equipment Company, a national distributor of swimming pool supplies and equipment. A copy of the relevant page in the Lincoln catalog is included in this report as Annex A. Representatives of that company now offer Tof motorized pool cover systems to their pool owner customers. In addition to the plans for securing UL certification the company expects to continue making design improvements that can increase system reliability, durability, and cost-effectiveness.

NONE

1996-01-01T23:59:59.000Z

115

A study of the utility of heat collectors in reducing the response time of automatic fire sprinklers located in production modules of Building 707  

SciTech Connect (OSTI)

Several of the ten production Modules in Building 707 at the Department of Energy Rocky Flats Plant recently underwent an alteration which can adversely affect the performance of the installed automatic fire sprinkler systems. The Modules have an approximate floor to ceiling height of 17.5 ft. The alterations involved removing the drop ceilings in the Modules which had been at a height of 12 ft above the floor. The sprinkler systems were originally installed with the sprinkler heads located below the drop ceiling in accordance with the nationally recognized NFPA 13, Standard for the Installation of Automatic Sprinkler Systems. The ceiling removal affects the sprinkler`s response time and also violates NFPA 13. The scope of this study included evaluation of the feasibility of utilizing heat collectors to reduce the delays in sprinkler response created by the removal of the drop ceilings. The study also includes evaluation of substituting quick response sprinklers for the standard sprinklers currently in place, in combination with a heat collector.

Shanley, J.H. Jr.; Budnick, E.K. Jr. [Hughes Associates, Inc., Wheaton, MD (United States)

1990-01-01T23:59:59.000Z

116

Heat Stroke  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

stress, from exertion or hot environments, places stress, from exertion or hot environments, places workers at risk for illnesses such as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body becomes unable to control its temperature, and can cause death or permanent disability. Symptoms ■ High body temperature ■ Confusion ■ Loss of coordination ■ Hot, dry skin or profuse sweating ■ Throbbing headache ■ Seizures, coma First Aid ■ Request immediate medical assistance. ■ Move the worker to a cool, shaded area. ■ Remove excess clothing and apply cool water to their body. Heat Exhaustion The body's response to an excessive loss of water and salt, usually through sweating. Symptoms ■ Rapid heart beat ■ Heavy sweating ■ Extreme weakness or fatigue ■

117

A model for improvement of water heating heat exchanger designs for residential heat pump water heaters.  

E-Print Network [OSTI]

??Heat pump water heaters are a promising technology to reduce energy use and greenhouse gas emissions. A key component is the water heating heat exchanger. (more)

Weerawoot, Arunwattana

2010-01-01T23:59:59.000Z

118

A Reduced-Order Model of a Chevron Plate Heat Exchanger for Rapid Thermal Management by Using Thermo-Chemical Energy Storage  

E-Print Network [OSTI]

The heat flux demands for electronics cooling applications are quickly approaching the limits of conventional thermal management systems. To meet the demand of next generation electronics, a means for rejecting high heat fluxes at low temperatures...

Niedbalski, Nicholas

2012-10-19T23:59:59.000Z

119

Combined heat and power has the potential to significantly increase energy production efficiency and thus reduce greenhouse gas emissions, however current market penetration  

E-Print Network [OSTI]

1 Combined heat and power has the potential to significantly increase energy production efficiency that California will not reach the targets for combined heat and power set for it by the Air Resources Board (ARB of combined heat and power into the new ARB Emissions Cap and Trade scheme. This potential failure would

Kammen, Daniel M.

120

Efficiency loss in resource allocation games  

E-Print Network [OSTI]

The overarching goals of this thesis are to quantify the efficiency loss due to market participant strategic behavior, and to design proper pricing mechanisms that reduce the efficiency loss. The concept of efficiency loss ...

Xu, Yunjian

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants ProMIS/Project No.:DE-NT0005647  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improvement to AIr2AIr® technology Improvement to AIr2AIr® technology to reduce Fresh-WAter evAporAtIve coolIng loss At coAl-BAsed thermoelectrIc poWer plAnts promIs/project no. :de-nt0005647 Background The production of electricity requires a reliable, abundant, and predictable source of freshwater - a resource that is limited in many parts of the United States and throughout the world. The process of thermoelectric generation from fossil fuels such as coal, oil, and natural gas is water intensive. According to the 2000 U.S. Geological Survey, thermoelectric-power withdrawals accounted for 48 percent of total water use, 39 percent of total freshwater withdrawals (136 billion gallons per day) for all categories, and 52 percent of fresh surface water withdrawals. As a growing economy drives the need for more electricity, demands on freshwater

122

Reducing food losses by intelligent food logistics  

Science Journals Connector (OSTI)

...state, not when and where temperature abuse has happened. Furthermore, they have...et al.-[8] considered a complete internet-of-things platform and discussed different...quality-based issuing of perishables. In The internet of things (IOT) (eds C Floerkemeier...

2014-01-01T23:59:59.000Z

123

Tuneable dielectric films having low electrical losses  

DOE Patents [OSTI]

The present invention is directed to a method for forming dielectric thin films having substantially reduced electrical losses at microwave and millimeter wave frequencies relative to conventional dielectric thin films. The reduction in losses is realized by dramatically increasing the grain sizes of the dielectric films, thereby minimizing intergranular scattering of the microwave signal due to grain boundaries and point defects. The increase in grain size is realized by heating the film to a temperature at which the grains experience regrowth. The grain size of the films can be further increased by first depositing the films with an excess of one of the compoents, such that a highly mobile grain boundary phase is formed.

Dimos, Duane Brian (Albuquerque, NM); Schwartz, Robert William (Albuquerque, NM); Raymond, Mark Victor (Albuquerque, NM); Al-Shareef, Husam Niman (Boise, ID); Mueller, Carl (Lakewood, CO); Galt, David (Denver, CO)

2000-01-01T23:59:59.000Z

124

Reducing the Environmental Impact of Biodiesel Production from Vegetable Oil by Use of a Solar-Assisted Steam Generation System with Heat Storage  

Science Journals Connector (OSTI)

utility equipment ... The utilities cost is $692?000/year, which represents 13.1% of the total cost . ... Absorption refrigeration is used to utilize excess process heat and external energy in the form of fossil and solar energy. ...

Robert Brunet; Ekaterina Antipova; Gonzalo Guilln-Goslbez; Laureano Jimnez

2012-11-01T23:59:59.000Z

125

Be Sun-sible? about Heating Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heat and transmit it to the water, and study the relationship between insulation and heat loss. Teacher background, assessment questions, and extensions are provided. The...

126

Field Monitoring Protocol: Heat Pump Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SHR Sensible heat ratio T&RH Temperature and relative humidity TC Thermocouple UA Heat loss coefficient v Table of Contents List of Figures ......

127

Process Heating Systems | Department of Energy  

Office of Environmental Management (EM)

Efficiency in Process Heating Systems Roadmap for Process Heating Technology Reduce Natural Gas Use in Your Industrial Process Heating Systems Save Energy Now in Your Process...

128

A comparison of RETRAN-02 and TRAC-PF1 simulations of a loss of off-site power cooldown to residual heat removal entry conditions at Calvert Cliffs Nuclear Power Plant  

SciTech Connect (OSTI)

As a part of the U.S. Nuclear Regulatory Commission's unresolved safety issue A-45 decay heat removal program, the Los Alamos National Laboratory (LANL) performed a TRAC-PF1 simulation of the Calvert Cliffs Unit 1 pressurized water reactor in a cooldown to residual heat removal (RHR) entry conditions after a loss of off-site power (LOSP). A detailed four-loop TRAC model developed for the A-49 pressurized thermal shock program was used. The LANL results indicated an inability to both cool down and depressurize the primary system sufficiently to meet RHR entry conditions using only the atmospheric dump valves and auxiliary pressurizer spray. A RETRAN-02/MOD3 analysis was performed for the same transient, using assumptions consistent with those in the LANL analysis. A fast-running one loop RETRAN model was selected because of the inherent symmetry of the transient. The RETRAN results compared well with sensitivity analyses indicating that the pressurizer model dominates the transient signatures. A best estimate RETRAN analysis of the cooldown was performed using a more accurate set of assumptions to better understand actual plant operational responses. These results indicate that RHR entry could be achieved after an LOSP using only existing plant equipment and procedures.

Cook, T.L.; Mirsky, S.M.

1987-01-01T23:59:59.000Z

129

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

E-Print Network [OSTI]

the demand for cooling energy, urban trees indirectly reducesurfaces and shade trees to reduce energy use and improvethe energy savings and GHG benefits of cool roofs and tree

Akbari, Hashem

2011-01-01T23:59:59.000Z

130

Enhanced heat transfer using wire-coil inserts for high-heat-load applications.  

SciTech Connect (OSTI)

Enhanced heat-transfer techniques, used to significantly reduce temperatures and thermally induced stresses on beam-strike surfaces, are routinely used at the APS in all critical high-heat-load components. A new heat-transfer enhancement technique being evaluated at the APS involving the use of wire-coil inserts proves to be superior to previously employed techniques. Wire coils, similar in appearance to a common spring, are fabricated from solid wire to precise tolerances to mechanically fit inside standard 0.375-in-diameter cooling channels. In this study, a matrix of wire coils, fabricated with a series of different pitches from several different wire diameters, has been tested for heat-transfer performance and resulting pressure loss. This paper reviews the experimental data and the analytical calculations, compares the data with existing correlations, and interprets the results for APS front-end high-heat-load components.

Collins, J. T.; Conley, C. M.; Attig, J. N.; Baehl, M. M.

2002-09-20T23:59:59.000Z

131

Measurement of flow field and local heat transfer distribution on a scraped heat exchanger crystalliser surface  

E-Print Network [OSTI]

Measurement of flow field and local heat transfer distribution on a scraped heat exchanger geometry the flow field influence on the local heat transfer distribution on an evenly cooled scraped heat loss heat loss to the surroundings stst stainless steel plate lc thermo-chromic liquid crystal

Boyer, Edmond

132

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

133

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

134

Numerical Study on Exergy Losses of n-Heptane Constant-Volume Combustion by Detailed Chemical Kinetics  

Science Journals Connector (OSTI)

A trade-off relation between exergy loss and incomplete conversion loss was also observed, and ways to reduce the total loss of combustion processes were determined by investigating the influences of multiple parameters on loss distributions. ... Szybist et al.(30) had modified the traditional calculation of the Otto cycle efficiency to better account for composition differences during each stage of the ideal cycle, and the work term of the cycle can be computed by eq 15:(15)where ?h is the lower heating value of the fuel, ? is the ratio of specific heat, CV is the specific heat at constant volume, and subscripts R and P represent reactants and products, respectively. ... For Case 3 and Case 4, preheating will increase the in-cylinder temperatures, resulting in the reduced ratio of specific heat; thus, as shown in Figure 7, from Case 2 to Case 4, the increase in ?2nd is less than the decrease in total losses because of the deterioration in the work-extraction efficiency caused by the lower ratio of specific heat. ...

Feng Yan; Wanhua Su

2014-09-05T23:59:59.000Z

135

Reduce Air Infiltration in Furnaces  

Broader source: Energy.gov [DOE]

This tip sheet describes how to save process heating energy and costs by reducing air infiltration in industrial furnaces; tips include repairing leaks and increasing insulation.

136

E-Print Network 3.0 - additional direct heat Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HEAT PUMP SYSTEM FIELD TESTS AT THE TECH COMPLEX Summary: .2, an additional 43% loss. Heat losses observed at the compressorheat exchangers, a necessary condition......

137

Effect of Heat Input on Microstructure Evolution and Mechanical Properties in the Weld Heat-Affected Zone of 9Cr-2W-VTa Reduced Activation Ferritic-Martensitic Steel for Fusion Reactor  

Science Journals Connector (OSTI)

Reduced...activation (or radioactive activity) ferritic/martensitic (RAFM) steel is being concerned as primary structure material for the first wall and blanket of the fusion power reactor.[1,2] RAFM steel demons...

Joonoh Moon; Chang-Hoon Lee; Tae-Ho Lee

2014-10-01T23:59:59.000Z

138

Heat and Sound Insulation Materials  

Science Journals Connector (OSTI)

Of the three heat transfer processes: heat conduction, convection and radiation, convectional heat transfer is reduced by fiber and foam insulation materials1, 2). Air circulation is prevented by compartmentalizi...

Dr. Andre Knop; Dr. Louis A. Pilato

1985-01-01T23:59:59.000Z

139

Waste Heat Management Options: Industrial Process Heating Systems  

Broader source: Energy.gov (indexed) [DOE]

Heat Management Options Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases - combustion products - Temperature from 300 deg. F. to 3000 deg.F. * Radiation-Convection heat loss - From temperature source of 500 deg. F. to 2500 deg. F. * Sensible-latent heat in heated product - From temperature 400 deg. F. to 2200 deg. F. * Cooling water or other liquids - Temperature from 100 deg. F. to 180 deg. F.

140

Reducing emissions by addressing steam turbine inefficiencies  

SciTech Connect (OSTI)

This paper reports that inefficient steam turbines increase fossil plant emissions because additional fuel must be burned to meet the power output requirements. During a turbine outage, plant performance and maintenance staff make and prioritize repair decisions within tight time and budget constraints. This paper describes how Georgia Power identifies performance losses of degraded components in the steam path and determines their impact on heat rate. Turbine performance is assessed by a steam path audit program that Encotech has developed and make available to utilities. Georgia Power has conducted several operating tests that give good correlation with audit results. Georgia Power uses the audit information to make the most cost-effective repairs to maintain a low heat rate and to reduce emissions. The Clean Air Act presents electric utilities with the challenge of reducing emissions from fossil plants in the most cost-effective way possible. Meeting the stack emissions limitations often translates to large capital expenditures and increased cycle heat rate. One resource the electric utilities have to reduce the costly impact of compliance with the Clean Air Act is control over the efficiency of their steam turbines.

Harris, J.C. (Georgia Power Co., Atlanta, GA (United States)); Cioffi, D.H. (Encotech, Inc., Schenectady, NY (United States))

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DHE (downhole heat exchangers). [Downhole Heat Exchangers (DHE)  

SciTech Connect (OSTI)

The use of downhole heat exchangers (DHE) for residential or commercial space and domestic water heating and other applications has several desirable features. Systems are nearly or completely passive -- that is, no or very little geothermal water or steam is produced from the well either reducing or completely eliminating surface environmental concerns and the need for disposal systems or injection wells. Initial cost of pumps and installation are eliminated or reduced along with pumping power costs and maintenance costs associated with pumping often corrosive geothermal fluids. Many residential and small commercial systems do not require circulating pumps because the density difference in the incoming and outgoing sides of the loop are sufficient to overcome circulating friction losses in the entire system. The major disadvantage of DHEs is their dependence on natural heat flow. In areas where geological conditions provide high permeability and a natural hydraulic gradient, DHEs can provide a substantial quantity of heat. A single 500-ft (152 m) well in Klamath Falls, Oregon, supplies over one megawatt thermal and output is apparently limited by the surface area of pipe that can be installed in the well bore. In contrast, DHEs used in conjunction with heat pumps may supply less than 8 KW from a well of similar depth. Here output is limited by conductive heat flow with perhaps a small contribution from convection near the well bore. The highest capacity DHE reported to date, in Turkey, supplies 6 MW thermal from an 820-ft (250 m) well. There were two main goals for this project. The first was to gather, disseminate and exchange internationally information on DHES. The second was to perform experiments that would provide insight into well bore/aquifer interaction and thereby provide more information on which to base DHE designs. 27 refs., 31 figs., 3 tabs.

Culver, G.

1990-11-01T23:59:59.000Z

142

Energy efficiency improvements utilising mass flow control and a ring topology in a district heating network  

Science Journals Connector (OSTI)

Abstract Heating and cooling have a major role in the energy sector, covering 46% of total final energy use worldwide. District heating (DH) is a significant technology for improving the energy efficiency of heating systems in communities, because it enables waste heat sources to be utilised economically and therefore significantly reduces the environmental impacts of power generation. As a result of new and more stringent construction regulations for buildings, the heat demands of individual buildings are decreasing and more energy-efficient heating systems have to be developed. In this study, the energy efficiency of a new DH system which includes both a new control system called mass flow control and a new network design called a ring network is examined. A topology in the Helsinki region is studied by using a commercial DH network modelling tool, Grades Heating. The district heating network is attached to a wood-burning heat station which has a heat recovery system in use. Examination is performed by means of both technical and economic analysis. The new non-linear temperature programme that is required is adopted for supply and return temperatures, which allows greater temperature cooling and smaller flow rates. Lower district heating water temperatures are essential when reducing the heat losses in the network and heat production. Mass flow control allows smaller pressure drops in the network and thus reduces the pumping power. The aim of this study was to determine the most energy-efficient DH water supply temperatures in the case network. If the ring network design is utilised, the district heating system is easier to control. As a result the total heat consumption within the heating season is reduced compared to traditional DH systems. On the basis of the results, the new DH system is significantly more energy-efficient in the case network that was examined than the traditional design. For example, average energy losses within the constraints (which consist of heat losses, pumping energy, and surplus energy from the heat recovery system) are reduced from 4.4% to 3.1%.

Tatu Laajalehto; Maunu Kuosa; Tapio Mkil; Markku Lampinen; Risto Lahdelma

2014-01-01T23:59:59.000Z

143

Loss of High-Energy Phosphate following Hyperthermia Demonstrated by in Vivo 31P-Nuclear Magnetic Resonance Spectroscopy  

Science Journals Connector (OSTI)

...even after substantial heat exposure. An obvious...discrepancy is that the loss of high-energy phos...correlation between loss of ATP, cell kill, and heat dose, when compared...Inhomogenous heat distribution, variable metabolic...

Michael B. Lilly; Thian C. Ng; William T. Evanochko; Charles R. Katholi; Narinder G. Kumar; Gabriel A. Elgavish; John R. Durant; Raymond Hiramoto; Vithal Ghanta; and Jerry D. Glickson

1984-02-01T23:59:59.000Z

144

Evaluating Transformer Losses  

E-Print Network [OSTI]

and replacing them with low loss units. Today few industrials evaluate losses on either power or distribution transformers. TRANSFORMER LOSSES Transformer losses are divided 'nto load losses and no-load losses. Load losses are due to the winding resista... therefore are a function of the load squared. No-load losses occur from energizing the transformer steel and fore are continuous regardless of the transformer load. TRANSFORMER DESIGN Both types of losses are a fun ce here ion of design. If losses...

Grun, R. L. Jr.

145

Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps  

SciTech Connect (OSTI)

In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

Shen, Bo [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

2014-01-01T23:59:59.000Z

146

E-Print Network 3.0 - adiabatic compression heating Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heating 12;Adiabatic Descending... and Diabatic Adiabatic means occurring without loss or gain of heat. Diabatic means occurring... with an exchange of heat. ... Source:...

147

E-Print Network 3.0 - additional heating systems Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HEAT ENGINE ANALYSIS Summary: on overall system performance. Along with the addition of a heat loss term to the surroundings, the general... -reversible heat engine model is...

148

AC Loss of Ripple Current in Superconducting DC Power Transmission Cable  

Science Journals Connector (OSTI)

Abstract As a method of largely reducing the transmission loss in the electric power grid, superconducting direct current (DC) power transmission cable has been investigated. Using superconducting DC power transmission cables, large amounts of current and energy can be transferred compared to conventional copper cables. In this case, an alternating current (AC) is converted to DC and superposed AC which is known as ripple current, and the energy loss by the ripple current is generated. Therefore it is desired to estimate the energy loss density for the case of DC current and superposed AC current for a design of DC transmission cable system. In this study, the hysteresis loss for DC current of 2 kA rectified from 60Hz alternating current is calculated using the Bean model, and coupling loss was also estimated. The diameter of the cable was 40mm. The ripple currents generated by multi-pulse rectifiers, 6-pulse, 12-pulse, and 24-pulse were considered. It is found that the total AC loss including the hysteresis loss and the coupling loss is considerably smaller than the supposed heat loss of 0.5W/m which is obtained with a newly developed cable.

K. Yoshitomi; E.S. Otabe; V.S. Vyatkin; M. Kiuchi; T. Matsushita; M. Hamabe; S. Yamaguchi; R. Inada

2014-01-01T23:59:59.000Z

149

#AskEnergySaver: Home Water Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electric systems, like solar electric and onsite wind power, have substantial energy loss when converting electricity to heat. With solar thermal water heating, there are a...

150

An experimental study on particle deposition above near-wall heat source  

Science Journals Connector (OSTI)

Abstract To investigate the effect of near-wall heat sources on the particle deposition, an experiment on particle dimensionless concentrations and size distributions above a near-wall heat source and in the indoor environment is performed. The suspended particles above the near-wall heat source and in the adjacent indoor air are measured and compared. Then the particles are collected under twenty-five different cases by using a Grimm 31-Channel Portable Aerosol Spectrometer. The results reveal that the particles above the near-wall heat source have larger deposition rate than that in the adjacent indoor air. Particles with 0.75?m11.25?m dimension stay more in the air above the heat source than in the adjacent indoor air. We also found that the particle decay rate loss coefficient increases as the heat source surface temperature increases, and it reduces as the gap between the heat source and the wall increases.

Xi Chen; Angui Li

2014-01-01T23:59:59.000Z

151

Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Pumps Heat Pumps Heat Pumps Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Learn more about how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. In moderate climates, heat pumps can be an energy-efficient alternative to furnaces and air conditioners. Several types of heat pumps are available, including air-source; geothermal; ductless, mini-split; and absorption heat pumps. Learn more about the different options and how to use your heat pump efficiently to save money and energy at home. Featured Heat Pump Systems A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

152

Estimating Costs and Efficiency of Storage, Demand, and Heat...  

Energy Savers [EERE]

the stored water compared to the heat content of the water (water heaters with storage tanks) Cycling losses - the loss of heat as the water circulates through a water heater...

153

Maximizing Hysteretic Losses in Magnetic Ferrite Nanoparticles via Model-Driven Synthesis and Materials Optimization  

Science Journals Connector (OSTI)

Frictional losses from Brownian rotation are not considered because they do not contribute significantly to heat dissipation for the range of MNP sizes explored in this paper. ... Two key modifications are introduced into the previously reported synthesis based on the thermal decomposition of metaloleate precursors(12, 14) to produce MFe2O4 (where M = Mn, Fe, or Co) with narrow size distributions and diameters tunable from 11 to 24 nm (Figure 2). ... The reduced heating rate of 1 C min1 yields monodisperse and spherical iron oxide MNPs with a diameter distribution of less than 5% (Figure 2AD). ...

Ritchie Chen; Michael G. Christiansen; Polina Anikeeva

2013-09-09T23:59:59.000Z

154

Stress Alters Rates and Types of Loss of Heterozygosity in Candida albicans  

Science Journals Connector (OSTI)

...noncommercial use, distribution, and reproduction...Types of Loss of Heterozygosity...stress, heat stress...1999. The distribution of rates...1985. Heat shock induces chromosome loss in the yeast...1949. The distribution of the numbers...types of loss of heterozygosity...stress, heat stress...

A. Forche; D. Abbey; T. Pisithkul; M. A. Weinzierl; T. Ringstrom; D. Bruck; K. Petersen; J. Berman

2011-08-01T23:59:59.000Z

155

PreHeat: Controlling Home Heating Using Occupancy Prediction  

E-Print Network [OSTI]

@comp.lancs.ac.uk ABSTRACT Home heating is a major factor in worldwide energy use. Our system, PreHeat, aims to more, and measuring actual gas consumption and occupancy. In UK homes PreHeat both saved gas and reduced MissTime (the Home heating uses more energy than any other residential energy expenditure including air conditioning

Krumm, John

156

A Nontoxic System for 41.8C Whole-Body Hyperthermia: Results of a Phase I Study Using a Radiant Heat Device  

Science Journals Connector (OSTI)

...metabolic rate, volume of distribution, and individual drug...the neck. Evaporative heat loss from the head was minimized...to prevent evaporative heat losses. Following this, the...8 C was equal to the heat losses from the covered patient...

H. Ian Robins; Warren H. Dennis; Alan J. Neville; Linda M. Shecterle; Patricia A. Martin; Jeffrey Grossman; Thomas E. Davis; Susan R. Neville; Wilma K. Gillis; and Ben F. Rusy

1985-08-01T23:59:59.000Z

157

Reduced viscosity  

Science Journals Connector (OSTI)

n. (1) (IUPAC: viscosity number) Reduced viscosity is the fluid viscosity increase per unit of polymer solute concentration.... where ? ...

2007-01-01T23:59:59.000Z

158

Spectral Effects on Fast Wave Core Heating and Current Drive  

SciTech Connect (OSTI)

Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L mode and H mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit rf power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of high harmonic fast wave current drive were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations.

C.K. Phillips, R.E. Bell, L.A. Berry, P.T. Bonoli, R.W. Harvey, J.C. Hosea, E.F. Jaeger, B.P. LeBlanc, P.M. Ryan, G. Taylor, E.J. Valeo, J.R. Wilson, J.C. Wright, H. Yuh, and the NSTX Team

2009-05-11T23:59:59.000Z

159

Combined Heat and Power Research and Development  

Broader source: Energy.gov (indexed) [DOE]

related to dilution and fuel selection Difficult for near-term Environmental heat loss * Low-temperature combustion techniques * Adiabatic approach increases thermal...

160

Vehicle Technologies Office: Waste Heat Recovery | Department...  

Broader source: Energy.gov (indexed) [DOE]

Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction Emissions Waste Heat Recovery Lightweighting Parasitic Loss Reduction Lubricants...

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Low-Cost Microchannel Heat Exchanger  

Broader source: Energy.gov (indexed) [DOE]

psi pressure capability High effectiveness > 90% 80% lower estimated external heat loss 60% estimated lower cost Complete remaining tests and refine cost...

162

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Broader source: Energy.gov (indexed) [DOE]

(ex: organic Rankine cycle) High installed KW capital Low temperature waste heat (<100C) is not practicable Further efficiency loss in electrolytic conversion to...

163

Electrically heated particulate filter with reduced stress  

DOE Patents [OSTI]

A system comprises a particulate matter (PM) filter comprising an inlet for receiving exhaust gas. A zoned heater is arranged in the inlet and comprises a resistive heater comprising N zones, where N is an integer greater than one. Each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates others of the N zones.

Gonze, Eugene V.

2013-03-05T23:59:59.000Z

164

Reducing Home Heating and Cooling Costs  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Annual 1992, DOEEIA-0348(92), (Washington DC, January 1994, Table 44); Energy Information Administration, Emissions of Green House Gases in the United States...

165

Induction of Apoptosis by Quercetin: Involvement of Heat Shock Protein  

Science Journals Connector (OSTI)

...fragmentation, and loss of membrane integrity...the induction of heat shock proteins and...in the cell cycle distribution as cells with DNA...simultaneously. Heat Shock and lISPs...and intracel lular distribution of heat shock proteins...

Yu-quan Wei; Xia Zhao; Yoshitaka Kariya; Hideki Fukata; Keisuke Teshigawara; and Atsushi Uchida

1994-09-15T23:59:59.000Z

166

On flow and supply temperature control in district heating systems  

Science Journals Connector (OSTI)

This paper discusses how the control of the flow and the supply temperature in district heating systems can be optimized, utilizing stochastic modelling, prediction and control methods. The main objective is to reduce heat production costs and heat losses in the transmission and distribution net by minimizing the supply temperature at the district heating plant. This control strategy is reasonable, in particular, if the heat production takes place at a combined heat and power (CHP) plant. The control strategy is subject to some restrictions, e.g. that the total heat requirement for all consumers is supplied at any time, and each individual consumer is guaranteed some minimum supply temperature at any time. Another important restriction is that the variation in time of the supply temperature is kept as small as possible. This concept has been incorporated in the program package, PRESS, developed at the Technical University of Denmark. PRESS has been applied and tested, e.g. at Vestkraft in Esbjerg, Denmark, and significant saving potentials have been documented. PRESS is now distributed by the Danish District Heating Association.

Henrik Madsen; Ken Sejling; Henning T. Sgaard; Olafur P. Palsson

1994-01-01T23:59:59.000Z

167

Nanofluid heat capacities  

Science Journals Connector (OSTI)

Significant increases in the heat capacity of heat transfer fluids are needed not only to reduce the costs of liquid heating and cooling processes but also to bring clean energy producing technologies like concentrating solar power (CSP) to price parity with conventional energy generation. It has been postulated that nanofluids could have higher heat capacities than conventional fluids. In this work nano- and micron-sized particles were added to five base fluids (poly-? olefin mineral oil ethylene glycol a mixture of water and ethylene glycol and calcium nitrate tetrahydrate) and the resulting heat capacities were measured and compared with those of the neat base fluids and the weighted average of the heat capacities of the components. The particles used were inert metals and metal oxides that did not undergo any phase transitions over the temperature range studied. In the nanofluids studied here we found no increase in heat capacity upon the addition of the particles larger than the experimental error.

Anne K. Starace; Judith C. Gomez; Jun Wang; Sulolit Pradhan; Greg C. Glatzmaier

2011-01-01T23:59:59.000Z

168

The term "Heat Stress" refers to a group of heat related illnesses that include heat cramps, heat exhaustion and heat stroke. This safety meeting will review the hazards and symptoms of  

E-Print Network [OSTI]

It's Hot The term "Heat Stress" refers to a group of heat related illnesses that include heat cramps, heat exhaustion and heat stroke. This safety meeting will review the hazards and symptoms of working in the heat. Also, how to reduce risks of working in hot temperatures and respond to danger

Li, X. Rong

169

Loan Loss Reserve Agreement  

Broader source: Energy.gov [DOE]

Loan Loss Reserve Agreement, from the Tool Kit Framework: Small Town University Energy Program (STEP).

170

Memory Loss Chapter 6  

E-Print Network [OSTI]

Part II Memory Loss 129 #12;#12;Chapter 6 Generalized Conditionalization Up to this point we have to help CLF model two types of certainty-loss stories: stories in- volving memory loss and stories-sensitivity, (PEP) does almost no work in modeling stories involving memory loss. So we will proceed in stages: We

Fitelson, Branden

171

Flexible, reusable fiberglass insulation tailored to fit valves, heat exchangers  

SciTech Connect (OSTI)

About 120,000 bbl/day of crude oil are refined into gasoline at the Marathon Petroleum refinery in Robinson, IL. Built in the early part of the century, the Robinson refinery has been continually updated and modernized in response to improving technology. To control heat loss on some of the unusually shaped and previously uninsulated process equipment, Marathon engineering personnel initiated a program to systematically evaluate and insulate these pieces of equipment. Primarily, over 500 valves and heat exchanger heads were losing heat which had been estimated to cost hundreds of thousands of dollars per year. The plant performed on-site evaluations of several types of removable insulation covers. The primary differences and deciding factors were in construction detail - particularly in the fasteners. Marathon chose lace-up fastening insulation covers because plant evaluation found them to be the best. Also the manufacturer agreed to provide tailor-made covers for all of the valves and heat exchanger heads. Service from the manufacturer through an insulation contractor located in Robinson was also a plus. The local contractor, working in conjunction with the manufacturer, conducted an in-plant survey that confirmed the already mentioned heat loss cost in the $100,000s range. It was also determined that an equipment temperature somewhere between 150 and 200/sup 0/F was the lowest temperature at which to economically install insulation. Marathon has been pleased with the performance of the insulation covers which reduce heat loss and, as an incidental benefit, provide personnel safety from hot surfaces. An important benefit has been the removability and reusability of the insulation, particularly advantageous on valves and heat exchangers the require frequent access.

Gockenbach, L.G.; Singleton, D.; Toy, D.A.

1986-06-01T23:59:59.000Z

172

Radio-frequency identification could help reduce the spread of plant pathogens  

E-Print Network [OSTI]

frequency identification could help reduce the spread ofeconomic losses. It also helps control the Plant Protection

Luvisi, Andrea; Panattoni, Alessandra; Triolo, Enrico

2012-01-01T23:59:59.000Z

173

Stress-Specific Activation and Repression of Heat Shock Factors 1 and 2  

Science Journals Connector (OSTI)

...Chao R. J. Johnson Heat shock proteins and...severe reduction of heat shock gene expression and loss of thermotolerance...rat fibroblasts after heat-shock treatment...on the intracellular distribution of heat-shock protein...

Anu Mathew; Sameer K. Mathur; Caroline Jolly; Susan G. Fox; Soojin Kim; Richard I. Morimoto

2001-11-01T23:59:59.000Z

174

E-Print Network 3.0 - accelerating heated crevice Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the sum of the right hand side terms, i.e., net heat release, heat transfer, and crevice loss... heat release should ideally reach that value. Net heat release and crevice flow...

175

Characteristics of fluid flow and heat transfer in a fluidized heat exchanger with circulating solid particles  

Science Journals Connector (OSTI)

The commercial viability of heat exchanger is mainly dependent on its long- ... loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristic...

Soo Whan Ahn; ByungChang Lee; WonCheol Kim; Myung- Whan Bae

2002-09-01T23:59:59.000Z

176

Biochemical analysis of heat-resistant mouse tumor cell strains: a new member of the HSP70 family.  

Science Journals Connector (OSTI)

...thermostable form (7). Heat increases the fluidity...membranes (28), leading to loss of their selective permeability...of 10 months without loss of heat resistance or change...on the intracellular distribution of heat-shock protein 70...

R L Anderson; I Van Kersen; P E Kraft; G M Hahn

1989-08-01T23:59:59.000Z

177

Traffic Loss-Based Lightpath Reconfiguration in the Smart Grid Communication Network  

Science Journals Connector (OSTI)

In order to reduce traffic loss during the lightpath reconfiguration process in the Smart Grid communication network, an Accumulative Traffic Loss (ATL) algorithm is proposed and...

Wang, Hongchuan; Guo, Wei; Hu, Weisheng

178

Heat balance for two commercial broiler barns with solar preheated ventilation air  

Science Journals Connector (OSTI)

In temperate climatic zones, solar air heaters can reduce heating loads, and increase winter ventilation rates thereby improving inside air quality and livestock performance without additional fuel input. A heat balance was carried out to measure bird heat production under field conditions on two commercial broiler barns to evaluate the impact of solar heated ventilation air on bird performance, and identify strategies to reduce winter heating load. Located 40km east of Montreal, Canada, the experimental broiler barns were identically built with three floors housing 6500 birds per floor in an all-in all-out fashion. Equipped with solar air pre-heaters over their fresh air inlets, the barns were instrumented to monitor inlet, inside and outside air conditions, ventilation rate and heating system operating time. The effects on bird performance were observed from November 2007 to March 2009 by alternating their operation between the barns. The measured sensible and total heat productions of 4.5W and 8.4W, respectively, for 1kg birds corresponded to laboratory measured values. Bird performance was not affected by the solar air pre-heaters which increased the ventilation rate above normal during only 20% of the daytime period. Room air temperature stratification resulted in 2040kW of heat losses during the winter, representing 25% of the total natural gas heat load. Because inside air moved directly to the fans, large and rapid increases in ventilation inlet air temperature, produced by the solar air pre-heaters, resulted in further heat losses equivalent to 15% of the solar energy recovered. Sustainable energy management in livestock barns requiring heating should incorporate an air mixing system to eliminate air temperature stratification and improve fan flows.

Sbastien Cordeau; Suzelle Barrington

2010-01-01T23:59:59.000Z

179

Acoustic conversion of heat to sound at mid?audio frequencies  

Science Journals Connector (OSTI)

A thermoacoustic prime mover was developed for conversion of heat to sound that is then directly converted to electricity. The acoustic device consists of a 2.7?kHz quarter?wave resonator with a stack of random material between a hot heat exchanger and a cold heat exchanger. It is loaded by a cavity that couples the sound to a piezoelectric device for generation of electrical power. Optimization of this device for energy conversion was based on studies of heat injection temperature difference threshold for onset of oscillation heat flow in the device quality factor Q of the resonator response time to heat input and sound power output. Parameters for optimization included different mesh sizes for the heat exchangers given stack filling factors and levels of positive feedback from the acoustic cavity. Response time to heat injection was lowered by coupling the heat source directly to the hot heat exchanger. Device efficiency was doubled by reducing heat losses along the supporting structure of the stack. Temperature differences for oscillation were as low as 50C and sound levels of 130 dB were achieved. Thus device performance was enhanced substantially by optimizing geometric factors.

2007-01-01T23:59:59.000Z

180

Metal and Glass Manufacturers Reduce Costs by Increasing Energy...  

Broader source: Energy.gov (indexed) [DOE]

Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - active heat exchange Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

typical of those sold before 1978, at 8C outdoor air temperature... .2, an additional 43% loss. Heat losses observed at the compressorheat exchangers, a necessary condition... COP...

182

Rapid Loss of Stress Fibers in Chinese Hamster Ovary Cells after Hyperthermia  

Science Journals Connector (OSTI)

...biological effects of heat and, in particular, heat radiosensitization. Rapid loss of stress fibers...degrees) on the distribution of actin stress...35), and the loss of stress fibers...changes in ion distribution in response to heat could lead to...

James R. Glass; Robert G. DeWitt; and Anne E. Cress

1985-01-01T23:59:59.000Z

183

E-Print Network 3.0 - age-dependent dust heating Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12;Dust-induced increase... of dust-induced heating was balanced by surface turbulent heat loss, vertical mixing, horizontal transport... model, the dust-induced increase in...

184

E-Print Network 3.0 - aging heat treatment Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heat treatment and after 7 and 30 days stor- age at 4 C after the treatment. Weight loss... treatment to develop feasible heat treatments. Treatment parameters were selected...

185

E-Print Network 3.0 - anomalous specific heat Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is, the adjustment to the residual anomalous heating (or cooling) is Newtonian... ). The heat loss is mainly through meridional ... Source: Clarke, Allan J. - Department of...

186

E-Print Network 3.0 - accurate heat capacity Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test on concrete (called the QAB test) requires accurate knowledge of both the total heat loss... coefficient and heat capacity of the calorimeters introduced, with these...

187

ENHANCED LOSS OF FAST IONS DURING  

E-Print Network [OSTI]

(Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey, United States of America in a large increase in the fast ion loss rate and heats the lost particles to several megaelectronvolts. The lost ions are observed at the passing-trapped boundary and appear to be either DD fusion produced

188

Reduce Stress!  

Broader source: Energy.gov (indexed) [DOE]

Stress! Stress! x Take a break every hour. Do some relaxation or stretching exercises or talk with someone about topics unrelated to work. Give your body and mind a rest. x Massage your hands and forearms several times a day with a vitamin E lotion. The massage will improve circulation and break up adhesions. Since you can't touch a keyboard until the lotion is absorbed, it also enforces a good break. x Massage the muscles in your neck working your way down from the skull to the shoulders, applying more force to the larger muscles as you go down. x Periodically evaluate your environment for ways to reduce stress. Try to keep your desk uncluttered so you can always find things. Make sure programs are set up correctly on the computer, and see if you can use a macro program to reduce

189

Solar heating and cooling diode module  

DOE Patents [OSTI]

A high efficiency solar heating system comprising a plurality of hollow modular units each for receiving a thermal storage mass, the units being arranged in stacked relation in the exterior frame of a building, each of the units including a port for filling the unit with the mass, a collector region and a storage region, each region having inner and outer walls, the outer wall of the collector region being oriented for exposure to sunlight for heating the thermal storage mass; the storage region having an opening therein and the collector region having a corresponding opening, the openings being joined for communicating the thermal storage mass between the storage and collector regions by thermosiphoning; the collector region being disposed substantially below and in parallel relation to the storage region in the modular unit; and the inner wall of the collector region of each successive modular unit in the stacked relation extending over the outer wall of the storage region of the next lower modular unit in the stacked relation for reducing heat loss from the system. Various modifications and alternatives are disclosed for both heating and cooling applications.

Maloney, Timothy J. (Winchester, VA)

1986-01-01T23:59:59.000Z

190

3D THERMOGRAPHY FOR QUANTIFICATION OF HEAT GENERATION RESULTING FROM  

E-Print Network [OSTI]

been used for decades by biologists and clinicians to isolate main sites of body heat loss by biologists and clinicians to isolate main sites of body heat loss and to assist with diagnosis3D THERMOGRAPHY FOR QUANTIFICATION OF HEAT GENERATION RESULTING FROM INFLAMMATION THERMOGRAPHIE 3D

Nebel, Jean-Christophe

191

Geothermal Heat Pumps- Heating Mode  

Broader source: Energy.gov [DOE]

In winter, fluid passing through this vertical, closed loop system is warmed by the heat of the earth; this heat is then transferred to the building.

192

Plant View On Reducing Steam Trap Energy Loss  

E-Print Network [OSTI]

of the steam traps are passing excess steam. This is caused by neglect of aged steam traps which have worn out and misapplication of steam traps by oversizing or using the 'wrong' type trap. Elimination of steam wastes by an effective well engineered steam trap...

Vallery, S. J.

1982-01-01T23:59:59.000Z

193

Advanced Soft Switching Inverter for Reducing Switching and Power Losses  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

194

Advanced Soft Switching Inverter for Reducing Switching and Power Losses  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

195

Advanced Soft Switching Inverter for Reducing Switching and Power Losses  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

196

Low temperature barriers with heat interceptor wells for in situ processes  

DOE Patents [OSTI]

A system for reducing heat load applied to a frozen barrier by a heated formation is described. The system includes heat interceptor wells positioned between the heated formation and the frozen barrier. Fluid is positioned in the heat interceptor wells. Heat transfers from the formation to the fluid to reduce the heat load applied to the frozen barrier.

McKinzie, II, Billy John (Houston, TX)

2008-10-14T23:59:59.000Z

197

Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Water Heating Water Heating Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs Read more Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right type of energy-efficient water heater for your needs. Read more Sizing a New Water Heater When buying a new water heater, bigger is not always better. Learn how to buy the right size of water heater. Read more You can reduce your monthly water heating bills by selecting the appropriate water heater for your home or pool and by using some energy-efficient water heating strategies. Some simple do-it-yourself projects, like insulating hot water pipes and lowering your water heating temperature, can also help you save money and energy on your water heating.

198

Towards identifying the mechanisms underlying field-aligned edge-loss of HHFW power on NSTX  

SciTech Connect (OSTI)

Fast-wave heating will be a major heating scheme on ITER, as it can heat ions directly and is relatively unaffected by the large machine size unlike neutral beams. However, fast-wave interactions with the plasma edge can lead to deleterious effects such as, in the case of the high-harmonic fast-wave (HHFW) system on NSTX, large losses of fast-wave power in the scrape off layer (SOL) under certain conditions. In such scenarios, a large fraction of the lost HHFW power is deposited on the upper and lower divertors in bright spiral shapes. The responsible mechanism(s) has not yet been identified but may include fast-wave propagation in the scrape off layer, parametric decay instability, and RF currents driven by the antenna reactive fields. Understanding and mitigating these losses is important not only for improving the heating and current-drive on NSTX-Upgrade but also for understanding fast-wave propagation across the SOL in any fast-wave system. This talk summarizes experimental results demonstrating that the flow of lost HHFW power to the divertor regions largely follows the open SOL magnetic field lines. This lost power flux is relatively large close to both the antenna and the last closed flux surface with a reduced level in between, so the loss mechanism cannot be localized to the antenna. At the same time, significant losses also occur along field lines connected to the inboard edge of the bottom antenna plate. The power lost within the spirals is roughly estimated, showing that these field-aligned losses to the divertor are significant but may not account for the total HHFW loss. To elucidate the role of the onset layer for perpendicular fast-wave propagation with regards to fast-wave propagation in the SOL, a cylindrical cold-plasma model is being developed. This model, in addition to advanced RF codes such as TORIC and AORSA, is aimed at identifying the underlying mechanism(s) behind these SOL losses, to minimize their effects in NSTX-U, and to predict their importance in ITER.

Perkins, R. J.; Bell, R. E.; Bertelli, N.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; LeBlanc, B. P.; Kramer, G. J.; Maingi, R.; Phillips, C. K.; Podest, M.; Roquemore, L.; Scotti, F.; Taylor, G.; Wilson, J. R. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Ahn, J-W.; Gray, T. K.; Green, D. L.; McLean, A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); and others

2014-02-12T23:59:59.000Z

199

Towards identifying the mechanisms underlying field-aligned edge-loss of HHFW power on NSTX  

SciTech Connect (OSTI)

Fast-wave heating will be a major heating scheme on ITER, as it can heat ions directly and is relatively unaffected by the large machine size unlike neutral beams. However, fast-wave interactions with the plasma edge can lead to deleterious effects such as, in the case of the high-harmonic fast-wave (HHFW) system on NSTX, large losses of fast-wave power in the scrape off layer (SOL) under certain conditions. In such scenarios, a large fraction of the lost HHFW power is deposited on the upper and lower divertors in bright spiral shapes. The responsible mechanism(s) has not yet been identified but may include fast-wave propagation in the scrape off layer, parametric decay instability, and RF currents driven by the antenna reactive fields. Understanding and mitigating these losses is important not only for improving the heating and current-drive on NSTX-Upgrade but also for understanding fast-wave propagation across the SOL in any fast-wave system. This talk summarizes experimental results demonstrating that the flow of lost HHFW power to the divertor regions largely follows the open SOL magnetic field lines. This lost power flux is relatively large close to both the antenna and the last closed flux surface with a reduced level in between, so the loss mechanism cannot be localized to the antenna. At the same time, significant losses also occur along field lines connected to the inboard edge of the bottom antenna plate. The power lost within the spirals is roughly estimated, showing that these field-aligned losses to the divertor are significant but may not account for the total HHFW loss. To elucidate the role of the onset layer for perpendicular fast-wave propagation with regards to fast-wave propagation in the SOL, a cylindrical cold-plasma model is being developed. This model, in addition to advanced RF codes such as TORIC and AORSA, is aimed at identifying the underlying mechanism(s) behind these SOL losses, to minimize their effects in NSTX-U, and to predict their importance in ITER.

Perkins, R. J. [Princeton Plasma Physics Laboratory (PPPL); Ahn, Joonwook [ORNL; Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Bertelli, Nicola [Princeton Plasma Physics Laboratory (PPPL); Diallo, A. [Princeton Plasma Physics Laboratory (PPPL); Gerhardt, S. [Princeton Plasma Physics Laboratory (PPPL); Gray, T. K. [Oak Ridge National Laboratory (ORNL); Green, David L [ORNL; Jaeger, E. F. [XCEL; Hosea, J. [Princeton Plasma Physics Laboratory (PPPL); Jaworski, M. A. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B [Princeton Plasma Physics Laboratory (PPPL); Kramer, G. [Princeton Plasma Physics Laboratory (PPPL); McLean, Adam G [ORNL; Maingi, Rajesh [ORNL; Phillips, C. K. [Princeton Plasma Physics Laboratory (PPPL); Podesta, M. [Princeton Plasma Physics Laboratory (PPPL); Ryan, Philip Michael [ORNL; Sabbagh, S. A. [Columbia University; Scotti, F. [Princeton Plasma Physics Laboratory (PPPL); Taylor, G. [Princeton Plasma Physics Laboratory (PPPL); Wilson, J. R. [Princeton Plasma Physics Laboratory (PPPL)

2013-01-01T23:59:59.000Z

200

E-Print Network 3.0 - air treatment heating Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DISORDER CAUSE SIGNS & SYMPTOMS TREATMENT Heat Cramps Heavy sweating Loss of salt -Painful spasms of arms... outdoors or in ......

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Big Picture on Process Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

& Publications Install Waste Heat Recovery Systems for Fuel-Fired Furnaces Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems...

202

Public release of optimization of metallization scheme for thin emitter wrap-through solar cells for higher efficiency, reduced precious metal costs, and reduced stress.  

SciTech Connect (OSTI)

Back-contact crystalline-silicon photovoltaic solar cells and modules offer a number of advantages, including the elimination of grid shadowing losses, reduced cost through use of thinner silicon substrates, simpler module assembly, and improved aesthetics. While the existing edge tab method for interconnecting and stringing edge-connected back contact cells is acceptably straightforward and reliable, there are further gains to be exploited when you have both contact polarities on one side of the cell. In this work, we produce 'busbarless' emitter wrap-through solar cells that use 41% of the gridline silver (Ag) metallization mass compared to the edge tab design. Further, series resistance power losses are reduced by extraction of current from more places on the cell rear, leading to a fill factor improvement of about 6% (relative) on the module level. Series resistance and current-generation losses associated with large rear bondpads and busbars are eliminated. Use of thin silicon (Si) wafers is enabled because of the reduced Ag metallization mass and by interconnection with conductive adhesives leading to reduced bow. The busbarless cell design interconnected with conductive adhesives passes typical International Electrotechnical Commission damp heat and thermal cycling test.

Ruby, Douglas Scott; Murphy, Brian (Advent Solar, Inc., Albuquerque, NM); Meakin, David (Advent Solar, Inc., Albuquerque, NM); Dominguez, Jason (Advent Solar, Inc., Albuquerque, NM); Hacke, Peter (Advent Solar, Inc., Albuquerque, NM)

2008-08-01T23:59:59.000Z

203

E-Print Network 3.0 - adiabatic mass loss Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Moisture Something about Water Summary: and Diabatic Adiabatic means occurring without loss or gain of heat. Diabatic means occurring... forms. 9% increase in volume. Density...

204

E-Print Network 3.0 - ac power loss Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

strip.) Turn off the lights Adjust your shades... . Drop and tilt your blinds to manage heat loss. In labs: Switch off all ... Source: Hammock, Bruce D. - Department of...

205

E-Print Network 3.0 - additional energy losses Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

savings calculations Provides energy ratings for models Provides room by room heat loss Reports... The National Renewable Energy Laboratory (NREL), along with the...

206

Monitoring and simulation of the thermal performance of solar heated outdoor swimming pools  

SciTech Connect (OSTI)

Based on detailed measurements of two outdoor swimming pools (at Leonberg and Moehringen) a computer model has been developed and validated for the simulation of the thermal behaviour of such pools. The subroutine is compatible to TRNSYS 13.1. Correlations for the heat losses due to evaporation, convection, and radiation were taken from literature and tested in the model. It was not possible to select one optimal correlation for the description of the evaporative heat losses of both swimming pools due to the different exposure to wind. Using the most suitable correlation for the evaporative heat losses of each pool allowed for the simulation of the pool temperature with less than 0.5 K standard deviation between measured and simulated temperature. the major problem was the measurement of the relevant wind speed to be used in the correlations describing the evaporative heat losses under real outdoor conditions. A method is described detailing how to calibrate the model using the heating energy requirement and the measured pool temperature during actual operation periods. The analysis of the measured data of two different outdoor swimming pools under the same climatic conditions showed differences of a factor 2 and more in the heat demand per unit pool area. This was mainly caused by the difference in local wind speed which differed by more than a factor 4. The two pools investigated were heated by solar energy with a fraction of 28% and 14%, respectively, and the seasonal efficiency of the solar systems was 37.7% and 33.4%. Simulations show that a reduction of the water temperature from 24[degrees]C to 22[degrees]C during periods with low outdoor temperatures and few visitors, reduces the fuel consumption to less than half and increases the solar fraction from 28% to 50% in one pool.

Hahne, E.; Kuebler, R. (Universitaet Stuttgart (Germany))

1994-07-01T23:59:59.000Z

207

Protection against Heat-induced Cell Killing by Polyols in Vitro  

Science Journals Connector (OSTI)

...D 0. The distribution of Chinese...significant loss of cells from the heat-resistant...Do. The distribution of Chinese...significant loss of cells from the heat-resistant...D0. The distribution of Chinese...significant loss of cells from the heat-resistant...

Kurt J. Henle; Jeffrey W. Peck; and Ryuji Higashikubo

1983-04-01T23:59:59.000Z

208

Drain Water Heat Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

209

Drain Water Heat Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

210

Reducing Safety Flaring through Advanced Control  

E-Print Network [OSTI]

An advanced process control application, using DMCplus (Aspen Technology, Inc.), was developed to substantially reduce fuel gas losses to the flare at a large integrated refining / petrochemical complex. Fluctuations in internal fuel gas system...

Hokanson, D.; Lehman, K.; Matsumoto, S.; Takai, N.; Takase, F.

2010-01-01T23:59:59.000Z

211

The Economics of Steam Vs. Electric Pipe Heating  

E-Print Network [OSTI]

To properly design a pipe heating system, the basic principles of heat transfer from an insulated pipe must be understood. The three methods of heat flow are conduction, convection (both forced and natural) and radiation. The total heat loss from a...

Schilling, R. E.

212

Thermal Sensitivity to Single and Double Heat Treatments in Normal Canine Liver  

Science Journals Connector (OSTI)

...magnitude of delayed heat damage in the liver...correlated best with heat dose were: evi dence of hepatocyte loss; focal fibrosis...temperature. The distribution of histopatholog...sensitive to therapeutic heat treatments. Thermotolerance...

Stavros D. Prionas; Mark A. Taylor; Luis F. Fajardo; Nancy I. Kelly; Thomas S. Nelsen; and George M. Hahn

1985-10-01T23:59:59.000Z

213

Evidence for the Involvement of Double-Strand Breaks in Heat-Induced Cell Killing  

Science Journals Connector (OSTI)

...between thermal tolerance for heat killing and heat-induced loss of DNA polymerase b activity...cells with different cell cycle distributions. Error bars, SD. Fig. 5...between thermotolerance and heat-induced H2AX foci formation...

Akihisa Takahashi; Hideki Matsumoto; Kosuke Nagayama; Mutsuko Kitano; Sayako Hirose; Hidenori Tanaka; Eiichiro Mori; Nobuhiro Yamakawa; Jun-ichi Yasumoto; Kazue Yuki; Ken Ohnishi; and Takeo Ohnishi

2004-12-15T23:59:59.000Z

214

Effect of Sterilization by Dry Heat or Autoclaving on Bacterial Penetration through Berea Sandstone  

Science Journals Connector (OSTI)

...autoclaving and dry heat on pore entrance size distribution of Berea...or dry heat then autoclave...entrance size distribution. However...entrance size distribution, which would...that these losses in cementation...with dry-heat-sterilized...

Gary E. Jenneman; Michael J. McInerney; Michael E. Crocker; Roy M. Knapp

1986-01-01T23:59:59.000Z

215

E-Print Network 3.0 - atmosphere ocean heat Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of ACC oceanic... heat flux Total heat flux at 900 m: 4.7 to 7.5 kWm2. Implies 0.3 PW heat loss to atmosphere south... 12;Mechanisms: ... Source: Gille, Sarah T. - Scripps...

216

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

217

Chapter 5 - Solar Water-Heating Systems  

Science Journals Connector (OSTI)

Abstract Chapter 5 is on solar water-heating systems. Both passive and active systems are described. Passive systems include thermosiphon and integrated collector storage systems. The former include theoretical performance of thermosiphon solar water heaters, reverse circulation in thermosiphon systems, vertical against horizontal tank configurations, freeze protection, and tracking thermosiphons. Subsequently, active systems are described, which include direct circulation systems, indirect water-heating systems, air water-heating systems, heat pump systems and pool heating systems, which include the analysis of various heat losses like evaporation, radiation, convection heat losses, make-up water load, and solar radiation-heat gain. Then the characteristics and thermal analysis of heat storage systems for both water and air systems are presented. The module and array design methods are then described and include the effects of shading, thermal expansion, galvanic corrosion, array sizing, heat exchangers, pipe and duct losses, partially shaded collectors and over-temperature protectionfollowed by an analysis of the characteristics of differential thermostats. Finally, methods to calculate the hot water demand are given as well as a review of international standards used to evaluate the solar water heaters performance. The chapter includes also simple system models and practical considerations for the setup of solar water-heating systems, which include: pipes, supports and insulation; pumps; valves and instrumentation.

Soteris A. Kalogirou

2014-01-01T23:59:59.000Z

218

Energy-efficient water heating  

SciTech Connect (OSTI)

This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

NONE

1995-01-01T23:59:59.000Z

219

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network [OSTI]

reduction of losses in heat distribution systems. EmployingReducing heat losses i n heat distribution systems involved

Zhiping, L.

2010-01-01T23:59:59.000Z

220

Comments on reducing regulatory burden | Department of Energy  

Energy Savers [EERE]

Solutions, manufacturer of Trane and American Standard residential air conditioners, heat pumps, furnaces, and accessories Comments on reducing regulatory burden More...

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Waste-heat recovery in batch processes using heat storage  

SciTech Connect (OSTI)

The waste-heat recovery in batch processes has been studied using the pinch-point method. The aim of the work has been to investigate theoretical and practical approaches to the design of heat-exchanger networks, including heat storage, for waste-heat recovery in batch processes. The study is limited to the incorporation of energy-storage systems based on fixed-temperature variable-mass stores. The background for preferring this to the alternatives (variable-temperature fixed-mass and constant-mass constant-temperature (latent-heat) stores) is given. It is shown that the maximum energy-saving targets as calculated by the pinch-point method (time average model, TAM) can be achieved by locating energy stores at either end of each process stream. This theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. A simple procedure for determining a number of heat-storage tanks sufficient to achieve the maximum energy-saving targets as calculated by the pinch-point method is described. This procedure relies on combinatorial considerations, and could therefore be labeled the combinatorial method for incorporation of heat storage in heat-exchanger networks. Qualitative arguments justifying the procedure are presented. For simple systems, waste-heat recovery systems with only three heat-storage temperatures (a hot storage, a cold storage, and a heat store at the pinch temperature) often can achieve the maximum energy-saving targets. Through case studies, six of which are presented, it is found that a theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. The description of these six cases is intended to be sufficiently detailed to serve as benchmark cases for development of alternative methods.

Stoltze, S.; Mikkelsen, J.; Lorentzen, B.; Petersen, P.M.; Qvale, B. [Technical Univ. of Denmark, Lyngby (Denmark). Lab. for Energetics

1995-06-01T23:59:59.000Z

222

Thermohydraulic Simulation of Heat Exchanger Networks  

Science Journals Connector (OSTI)

The determination of network temperatures is carried out together with the evaluation of flow rates and pressures along the network, considering head losses in heat exchangers and associated piping. ... The HEN responsible to distribute cooling water in an industrial unit is composed by three heat exchangers in parallel. ... However, the cooling water distribution among the three exchangers presents a considerable unbalance, where heat exchanger E-101 receives much less cooling water than the design specification. ...

Viviane B. G. Tavares; Eduardo M. Queiroz; Andre? L. H. Costa

2010-04-26T23:59:59.000Z

223

Independents' group posts loss  

SciTech Connect (OSTI)

Low oil gas prices and special charges caused the group of 50 U.S. independent producers Oil and Gas Journal tracks to post a combined loss in first half 1992. The group logged a net loss of $53 million in the first half compared with net earnings of $354 million in first half 1991, when higher oil prices during the Persian Gulf crisis buoyed earnings in spite of crude oil and natural gas production declines. The combined loss in the first half follows a 45% drop in the group's earnings in 1991 and compares with the OGJ group of integrated oil companies whose first half 1992 income fell 47% from the prior year. Special charges, generally related to asset writedowns, accounted for most of the almost $560 million in losses posted by about the third of the group. Nerco Oil and Gas Inc., Vancouver, Wash., alone accounted for almost half that total with charges related to an asset writedown of $238 million in the first quarter. Despite the poor first half performance, the outlook is bright for sharply improved group earnings in the second half, assuming reasonably healthy oil and gas prices and increased production resulting from acquisitions and in response to those prices.

Sanders, V.; Price, R.B.

1992-11-23T23:59:59.000Z

224

Catalogue of a Loss  

E-Print Network [OSTI]

Catalogue of a Loss is a collection of sixty-two prose poems written within the past year and half. The work is printed on 4x6 cards. Each poem may be read individually from a single card or the poems can be read in ...

Berger, Larisa (Larisa A.)

2012-01-01T23:59:59.000Z

225

Electric Resistance Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Resistance Heating Electric Resistance Heating Electric Resistance Heating June 24, 2012 - 4:51pm Addthis Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Electric resistance heating converts nearly 100% of the energy in the electricity to heat. However, most electricity is produced from coal, gas, or oil generators that convert only about 30% of the fuel's energy into electricity. Because of electricity generation and transmission losses, electric heat is often more expensive than heat produced in the home or business using combustion appliances, such as natural gas, propane, and oil furnaces. If electricity is the only choice, heat pumps are preferable in most

226

FEMP--Solar Water Heating  

Broader source: Energy.gov (indexed) [DOE]

More than 1 million homeowners and 200,000 busi- More than 1 million homeowners and 200,000 busi- nesses in the United States are using the sun to heat domestic water efficiently in almost any climate. In summer, a solar system properly sized for a resi- dential building can meet 100% of the building's water-heating needs in most parts of the country. In winter, the system might meet only half of this need, so another source of heat is used to back up the solar system. In either case, solar water heating helps to save energy, reduce utility costs, and preserve the environment. A solar water-heating system's performance depends primarily on the outdoor temperature, the temperature to which the water is heated, and the amount of sunlight striking the collector-the device that actually captures the sun's energy.

227

The Use of Infrared Technology To Detect Heat Loss  

E-Print Network [OSTI]

\\\\Uuld save enough fuel to warrant the cost, or if the repairs could wait until a scheduled turnaround. The real-time device will also allow you to make a quick, accurate inspection of steam lines, relief valves and insulated product lines. You can.... , ' In sane cases, energy gain is of significance, and plays an important role in the energy cons~tion picture for certain products. Cooler areas are as easily detected as warm areas when desired. Infrared inspection can provide I1Ulch valuable data for many...

Faulkner, K.

1979-01-01T23:59:59.000Z

228

Development of an integrated building load and ground source heat pump model to assess heat pump and ground loop design and performance in a commercial office building.  

E-Print Network [OSTI]

??Ground source heat pumps (GSHPs) offer an efficient method for cooling and heating buildings, reducing energy usage and operating cost. In hot, arid regions such (more)

Blair, Jacob Dale

2014-01-01T23:59:59.000Z

229

Assessment of Heat Resistance of Bacterial Spores from Food Product Isolates by Fluorescence Monitoring of Dipicolinic Acid Release  

Science Journals Connector (OSTI)

...to a spectrum of heat resistances within...is shaped by a distribution function of resistances...01 mm each. Heat inactivation of...determined by the loss of their ability...on probability distributions: the heat destruction of...

Remco Kort; Andrea C. O'Brien; Ivo H. M. van Stokkum; Suus J. C. M. Oomes; Wim Crielaard; Klaas J. Hellingwerf; Stanley Brul

2005-07-01T23:59:59.000Z

230

CHP: It's Time for Combined Heat and Power  

E-Print Network [OSTI]

and export 16. Creates local jobs for installation, operation and maintenance 17. Supports competitive electricity market structure General Conclusion It is very much in the PUBLIC interest to support CHP distributed energy even if the private incentives... of use Electricity Electricity Heat Heat Combined Heat and Power Conventional Generation Building Load Power Plant fuel (66 units of remote energy) Boiler fuel (34 units of on-site energy) CHP fuel (x units of on-site energy) Losses Losses 20 29 20...

Herweck, R.

231

Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

Not Available

2011-10-01T23:59:59.000Z

232

Soil loss: An overview  

Science Journals Connector (OSTI)

The earth's soil budget is analysed and the causes of loss and degeneration are described. The main efforts to solve the problems of soil los should be concentrated on: 1. (i) the preparation of international guidelines for conservation policy; 2. (ii) declaration of an International Soil Conservation Decade; 3. (iii) acceleration of and support for land assessment; 4. (iv) development of national planning for alternative land uses; 5. (v) research to establish ecologically sound policies for land use and conservation.

V.A. Kovda

1976-01-01T23:59:59.000Z

233

Process Heating Assessment and Survey Tool  

Broader source: Energy.gov [DOE]

The Process Heating Assessment and Survey Tool (PHAST) introduces methods to improve thermal efficiency of heating equipment. This tool helps industrial users survey process heating equipment that consumes fuel, steam, or electricity, and identifies the most energy-intensive equipment. The tool can be used to perform a heat balance that identifies major areas of energy use under various operating conditions and test "what-if" scenarios for various options to reduce energy use.

234

Preclinical Trial of a Radiant Heat Device for Whole-Body Hyperthermia Using a Porcine Model  

Science Journals Connector (OSTI)

...hyperthermia; RHD, radiant heat device; LDH, lactic...February 4,1983. radiant heat balance might eliminate...developed a prototype radiant heat device and conducted...comparable size and fat distribution; comparable hepatic...regulation via skin convectiva losses and via evaporative losses...

H. Ian Robins; Jeffrey Grossman; Thomas E. Davis; James P. AuBuchon; and Warren Dennis

1983-05-01T23:59:59.000Z

235

Heat shock protects germinating conidiospores of Neurospora crassa against freezing injury.  

Science Journals Connector (OSTI)

...GUY ET AL. TABLE 2. Loss of heat-shock-induced protection...returned to 30 C between the heat shock treatment and subsequent...Although there was little loss in protection during...Different intracellular distributions of heat-shock and arsenite-induced...

C L Guy; N Plesofsky-Vig; R Brambl

1986-07-01T23:59:59.000Z

236

Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors  

Science Journals Connector (OSTI)

Abstract In fusion plasma reactors, fast ion generated by heating systems and fusion born particles must be well confined. The presence of magnetohydrodynamic (MHD) instabilities can lead to a significant loss of these ions, which may reduce drastically the heating efficiency and may cause damage to plasma facing components in the vacuum vessel. In order to understand the physics underlying the fast ion loss mechanism, scintillator based detectors have been installed in several fusion devices. In this work we present the absolute photon yield and its degradation with ion fluence in terms of the number of photons emitted per incident ion of several scintillators thin coatings: SrGa2S4:Eu2+ (TG-Green), Y3Al5O12:Ce3+ (P46) and Y2O3:Eu3+ (P56) when irradiated with light ions of different masses (deuterium ions, protons and ?-particles) at energies between approximately 575keV and 3MeV. The photon yield will be discussed in terms of the energy deposited by the particles into the scintillator. For that, the actual composition and thickness of the thin layers were determined by Rutherford Backscattering Spectrometry (RBS).

M.C. Jimnez-Ramos; J. Garca Lpez; M. Garca-Muoz; M. Rodrguez-Ramos; M. Carmona Gzquez; B. Zurro

2014-01-01T23:59:59.000Z

237

A critique of some modern applications of the Carnot heat engine concept: the dissipative heat engine cannot exist  

Science Journals Connector (OSTI)

...Calvo Hernandez2008Coupled heat devices in linear irreversible...output: new results for old heat enginesAm. J. Phys. 55 602610...and V. G. Gorshkov2007Biotic pump of atmospheric moisture as driver...Carnot engines with friction and heat lossesAm. J. Phys. 70 11431149...

2010-01-01T23:59:59.000Z

238

Fusion-product transport in axisymmetric tokamaks: losses and thermalization  

SciTech Connect (OSTI)

High-energy fusion-product losses from an axisymmetric tokamak plasma are studied. Prompt-escape loss fluxes (i.e. prior to slowing down) are calculated including the non-separable dependence of flux as a function of poloidal angle and local angle-of-incidence at the first wall. Fusion-product (fp) thermalization and heating are calculated assuming classical slowing down. The present analytical model describes fast ion orbits and their distribution function in realistic, high-..beta.., non-circular tokamak equilibria. First-orbit losses, trapping effects, and slowing-down drifts are also treated.

Hively, L.M.

1980-01-01T23:59:59.000Z

239

Using Exergy Analysis Methodology to Assess the Heating Efficiency of an Electric Heat Pump  

E-Print Network [OSTI]

The authors, using exergy analysis methodology, propose that it should consider not only the COP (coefficient of Performance) value of the electric power heat pump set (EPHPS/or HP set), but also the exergy loss at the heating exchanger of the HP...

Ao, Y.; Duanmu, L.; Shen, S.

2006-01-01T23:59:59.000Z

240

Convective Heat Transfer from Exposed Flat Horizontal Surface in Outdoorconditions at Low Wind Speeds: An Application to Flat Plate Solar Collector  

Science Journals Connector (OSTI)

Estimation of various heat losses in flat plate solar collectors is important for their thermal performance evaluation under different operating conditions. Upward heat losses have a major contribution in the ...

Suresh Kumar; S. C. Mullick

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sol-Clad-Siding and Trans-Lucent-Insulation : curtain wall components for conserving dwelling heat by passive-solar means  

E-Print Network [OSTI]

A prototype for a dwelling heat loss compensator is introduced in this thesis, along with its measured thermal performance and suggestions for its future development. As a heat loss compensator, the Sol-Clad-Siding collects, ...

Iliesiu, Doru

1983-01-01T23:59:59.000Z

242

Heating System Specification Specification of Heating System  

E-Print Network [OSTI]

Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

Day, Nancy

243

Development of design tools for ground-source heat pump piping  

SciTech Connect (OSTI)

High-density polyethylene (HDPE) piping systems with thermal fusion joints have several attractive characteristics when applied to ground-source heat pump (GSHP) systems. However, engineers may not have access to GSHP piping and fitting head loss data or to easy-to-use tools for piping design/pump sizing. Some GSHP systems have been conservatively designed with pumps that are grossly oversized. Systems have been installed in which the pump energy use exceeds heat pump energy. In some cases, engineers completely avoid the use of GSHPs because they are not comfortable with the low level of sophistication and the difficulty of using current GSHP design tools. A project has been undertaken to measure head loss in common GSHP fittings and pipe design and to develop a set of easy-to-use and accurate piping design tools. These tools will not only give designers more confidence but will reduce the cost of GSHPs by reducing oversizing and piping complexity that has been common in some installations. The results of this project are presented in a format similar to the tools currently used by practicing HVAC design engineers. Tables for fitting equivalent lengths and k-factors have been developed. Log-log plots of head loss vs. flow rate and liquid velocity are presented in a format similar to the plots appearing in the 1993 ASHRAE Handbook--Fundamentals. These tables and charts for HDPE piping components complement existing charts and tables for traditional piping systems.

Kavanaugh, S. [Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Mechanical Engineering

1998-10-01T23:59:59.000Z

244

Long-Term Evolution of Anthropogenic Heat Fluxes into a Subsurface Urban Heat Island  

Science Journals Connector (OSTI)

In this study, we develop an analytical heat flux model to investigate possible drivers such as increased ground surface temperatures (GSTs) at artificial surfaces and heat losses from basements of buildings, sewage systems, subsurface district heating networks, and reinjection of thermal wastewater. ... Although only 41 of the original wells in 1977 could be used for measurements in 2011, both measurement campaigns yield representative regional GWT distributions because of the homogeneous distribution of the wells within the study area (Figure 1). ...

Kathrin Menberg; Philipp Blum; Axel Schaffitel; Peter Bayer

2013-07-29T23:59:59.000Z

245

Industrial Heating with Creosote Pitch  

Science Journals Connector (OSTI)

Industrial Heating with Creosote Pitch ... TO REDUCE the demand for imported petroleum fuel oil, some British plants are using a mixture of creosote and pitch, obtained during the manufacture of city gas. ... Thus these tar oils, the most commonly used being creosote pitch, must be maintained at a temperature of not less than 90 F. at all times and delivered warm into suitably heated tanks. ...

C. H. S. TUPHOLME

1942-05-10T23:59:59.000Z

246

Energetic, exergetic, economic and environmental evaluations of geothermal district heating systems: An application  

Science Journals Connector (OSTI)

This study deals with an energetic and exergetic analysis as well as economic and environmental evaluations of Afyon geothermal district heating system (AGDHS) in Afyon, Turkey. In the analysis, actual system data are used to assess the district heating system performance, energy and exergy efficiencies, specific exergy index, exergetic improvement potential and exergy losses. And, for economic and environmental evaluations, actual data are obtained from the Technical Departments. The energy and exergy flow diagrams are clearly drawn to illustrate how much destructions/losses take place in addition to the inputs and outputs. For system performance analysis and improvement, both energy and exergy efficiencies of the overall AGDHS are determined to be 34.86% and 48.78%, respectively. The efficiency improvements in heat and power systems can help achieving energy security in an environmentally acceptable way by reducing the emissions that might otherwise occur. Present application has shown that in Turkey, geothermal energy is much cheaper than the other energy sources, like fossil fuels, and makes a significant contribution towards reducing the emissions of air pollution.

Ali Keeba?

2013-01-01T23:59:59.000Z

247

Building America Technology Solutions for New and Existing Homes: Foundation Heat Exchanger, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

This case study introduces the foundation heat exchanger that can significantly reduce the cost of the ground source heat pump (GHSP).

248

Error Analysis of Heat Transfer for Finned-Tube Heat-Exchanger Text-Board  

E-Print Network [OSTI]

In order to reduce the measurement error of heat transfer in water and air side for finned-tube heat-exchanger as little as possible, and design a heat-exchanger test-board measurement system economically, based on the principle of test-board system...

Chen, Y.; Zhang, J.

2006-01-01T23:59:59.000Z

249

Heat pipe based passive emergency core cooling system for safe shutdown of nuclear power reactor  

Science Journals Connector (OSTI)

Abstract On March 11th, 2011, a natural disaster created by earthquakes and Tsunami caused a serious potential of nuclear reactor meltdown in Fukushima due to the failure of Emergency Core Cooling System (ECCS) powered by diesel generators. In this paper, heat pipe based ECCS has been proposed for nuclear power plants. The designed loop type heat pipe ECCS is composed of cylindrical evaporator with 62 vertical tubes, each 150mm diameter and 6m length, mounted around the circumference of nuclear fuel assembly and 21mנ10mנ5m naturally cooled finned condenser installed outside the primary containment. Heat pipe with overall thermal resistance of 1.44נ10?5C/W will be able to reduce reactor temperature from initial working temperature of 282C to below 250C within 7h. The overall ECCS also includes feed water flooding of the core using elevated water tank for initial 10min which will accelerate cooling of the core, replenish core coolant during loss of coolant accident and avoids heat transfer crisis phenomena during heat pipe start-up process. The proposed heat pipe system will operate in fully passive mode with high runtime reliability and therefore provide safer environment to nuclear power plants.

Masataka Mochizuki; Randeep Singh; Thang Nguyen; Tien Nguyen

2014-01-01T23:59:59.000Z

250

Thermodynamic analysis on a two-stage transcritical CO2 heat pump cycle with double ejectors  

Science Journals Connector (OSTI)

Abstract In this study, two ejectors are proposed as expansion devices for a two-stage transcritical CO2 heat pump cycle to enhance the cycle performance. The two ejectors are arranged at the low- and high-pressure stages, respectively, to recover more available expansion work, and significantly reduce the throttling loss at each stage. The performance of the improved two-stage cycle is evaluated by using the developed mathematical model, and then compared with those of the basic two-stage cycle with a flash tank. The simulation results show that the improved two-stage cycle exhibits higher heating COP and volumetric heating capacity compared to the basic two-stage cycle. By further incorporating an internal heat exchanger, the heating COP can be increased by 10.530.6% above that of the baseline cycle when the subcooling degree varied from 0 to 15C under given operation conditions of ?15C evaporating temperature, 10MPa gas cooler pressure and 35C outlet temperature. Additionally, the effects of the gas cooler pressure and intermediate pressure on the maximal heating COP are also discussed.

Meibo Xing; Jianlin Yu; Xiaoqin Liu

2014-01-01T23:59:59.000Z

251

Loss reduction experiences in electric power distribution companies of Iran  

Science Journals Connector (OSTI)

The experiences of the loss reduction projects in electric power distribution companies (EPDCs) of Iran are presented. The loss reduction methods, which are proposed individually by 14 EPDCs, corresponding energy saving (ES), Investment costs (IC), and loss rate reductions are provided. In order to illustrate the effectiveness and performance of the loss reduction methods, three parameters are proposed as energy saving per investment costs (ESIC), energy saving per quantity (ESPQ), and investment costs per quantity (ICPQ). The overall ESIC of 14 EPDC as well as individual average and standard deviation of the EISC for each method is presented and compared. In addition, the average and standard deviation of the \\{ESPQs\\} and \\{ICPQs\\} for the loss reduction methods, individually, are provided and investigated. These parameters are useful for \\{EPDCs\\} that intend to reduce the electric losses in distribution networks as a benchmark and as a background in the planning purposes.

Ali Arefi; Javad Olamaei; Akbar Yavartalab; Hesam Keshtkar

2012-01-01T23:59:59.000Z

252

Natural Zeolites in Solar Energy Heating, Cooling, and Energy Storage  

Science Journals Connector (OSTI)

...thereby reducing the energy consumption by almost half. The concept...heat, or any type of fossil fuel. This heat pump has two operating...of the internal combustion engine as the heat source for the...utilizing the waste heat of the engine with a 60 sec cycling time...

Dimiter I. Tchernev

253

Residential heating conservation in Krakow  

SciTech Connect (OSTI)

A four-building conservation experiment was conducted in Krakow, Poland, during the 1992--1993 and 1993--1994 winters, aimed at determining potential savings of heat in typical multifamily residential buildings connected to the district heat network. Four identical multifamily buildings were selected for measurement and retrofitting. Together with the U.S. team, the local district heat utility, the Krakow development authority, and a Polish energy-efficiency foundation designed and conducted the 264-residence test of utility, building, and occupant conservation strategies during the 1992--1993 winter Baseline data were collected on each building prior to any conservation work. A different scope of work was planned and executed for each building, ranging from controls at the building level only to thermostatic valve control and weatherization. The project team has identified and demonstrated affordable and effective conservation technologies that can be applied to Krakow`s existing concrete-element residential housing. The results suggest that conservation strategies will be key to many alternatives in Krakow`s plan to eliminate low-emission air pollution sources. Conservation can allow connecting more customers to the utility network and eliminating local boilers without requiring construction of new combined heat and power plants. It can reduce heat costs for customers converting from solid-fuel heat sources to less polluting sources. By reducing heat demand, more customers can be served by existing gas and electric distribution systems.

Markel, L.C. [Electrotek Concepts, Knoxville, TN (United States); Reeves, G. [George Reeves Associates, Lake Hopatcong, NJ (United States); Gula, A.; Szydlowski, R.F. [Battelle Pacific Northwest Labs., Richland, WA (United States)

1995-08-01T23:59:59.000Z

254

E-Print Network 3.0 - accident heat transfer Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the ground. It takes two additional days for this pool to completely solidify given these heat transfer... such as a Loss of Vacuum and an in-vessel loss of coolant with bypass....

255

Definition: Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Pumps Pumps Jump to: navigation, search Dictionary.png Ground Source Heat Pumps A Ground Source Heat Pump is a central building heating and/or cooling system that takes advantage of the relatively constant year-round ground temperature to pump heat to or from the ground.[1][2][3] View on Wikipedia Wikipedia Definition A geothermal heat pump or ground source heat pump (GSHP) is a central heating and/or cooling system that pumps heat to or from the ground. It uses the earth as a heat source (in the winter) or a heat sink (in the summer). This design takes advantage of the moderate temperatures in the ground to boost efficiency and reduce the operational costs of heating and cooling systems, and may be combined with solar heating to form a geosolar system with even greater efficiency. Ground source heat pumps

256

RADIATIVE HEATING OF THE SOLAR CORONA  

SciTech Connect (OSTI)

We investigate the effect of solar visible and infrared radiation on electrons in the Sun's atmosphere using a Monte Carlo simulation of the wave-particle interaction and conclude that sunlight provides at least 40% and possibly all of the power required to heat the corona, with the exception of dense magnetic flux loops. The simulation uses a radiation waveform comprising 100 frequency components spanning the solar blackbody spectrum. Coronal electrons are heated in a stochastic manner by low coherence solar electromagnetic radiation. The wave 'coherence time' and 'coherence volume' for each component is determined from optical theory. The low coherence of solar radiation allows moving electrons to gain energy from the chaotic wave field which imparts multiple random velocity 'kicks' to these particles causing their velocity distribution to broaden or heat. Monte Carlo simulations of broadband solar radiative heating on ensembles of 1000 electrons show heating at per particle levels of 4.0 x 10{sup -21} to 4.0 x 10{sup -20} W, as compared with non-loop radiative loss rates of {approx}1 x 10{sup -20} W per electron. Since radiative losses comprise nearly all of the power losses in the corona, sunlight alone can explain the elevated temperatures in this region. The volume electron heating rate is proportional to density, and protons are assumed to be heated either by plasma waves or through collisions with electrons.

Moran, Thomas G., E-mail: moran@grace.nascom.nasa.gov [Physics Department, Catholic University of America, 200 Hannan Hall, Washington, DC 20064 (United States) and NASA/GSFC, Code 671, Greenbelt, MD 20771 (United States)

2011-10-20T23:59:59.000Z

257

Protected Loss of Flow Transient Simulation (Quicktime format, High  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Analysis > Videos Engineering Analysis > Videos Engineering Analysis: Protected Loss of Flow Transient Simulation Quicktime format Quicktime Format - High Bandwidth | Size: 25.94 MB | Bit Rate: 1148 kbps Keywords: flow transient, plot, EBR-II, SAS4A, SASSYS-1, passive safety, protected loss of flow, PLOF, shutdown heat removal test, SHRT-17, SHRT17 Elevation plot showing detailed top of core temperatures in experimental assembly XX09 during a protected loss of flow transient in EBR-II. Surrounding assemblies are depicted using fuel average temperatures. Results show excellent decay heat removal capability of sodium through natural circulation and exceptionally low transient temperatures with metallic fuel. :: Please wait until video loads completely :: Closed Captioning Transcript

258

Impact of magnetic field inhomogeneity on electron cyclotron radiative loss in tokamak reactors  

SciTech Connect (OSTI)

The potential importance of electron cyclotron (EC) emission in the local electron power balance in the steady-state regimes of ITER operation with high temperatures, as well as in the DEMO reactor, requires accurate calculation of the one-dimensional (over magnetic surfaces) distribution of the net radiated power density, P{sub EC}({rho}). When the central electron temperature increases to {approx}30 keV, the local EC radiative loss comprises a substantial fraction of the heating power from fusion alphas and is close to the total auxiliary NBI heating power, P{sub EC}(0) Asymptotically-Equal-To 0.3P{sub {alpha}}(0) Asymptotically-Equal-To P{sub aux}(0). In the present paper, the model of EC radiative transport in an axisymmetric toroidal plasma is extended to the case of an inhomogeneous magnetic field B(R, Z). The impact of such inhomogeneity on local and total power losses is analyzed in the framework of this model by using the CYNEQ code. It is shown that, for the magnetic field B, temperature T{sub e}, density n{sub e}, and wall reflection coefficient R{sub w} expected in ITER and DEMO, accurate simulations of the EC radiative loss require self-consistent 1.5D transport analysis (i.e., one-dimensional simulations of plasma transport and two-dimensional simulations of plasma equilibrium). It is shown that EC radiative transport can be described with good accuracy in the 1D approximation with the surface-averaged magnetic field, B({rho}) = Left-Pointing-Angle-Bracket B(R, Z) Right-Pointing-Angle-Bracket {sub ms}. This makes it possible to substantially reduce the computational time required for time-dependent self-consistent 1.5D transport analysis. Benchmarking of the CYNEQ results with available results of the RAYTEC, EXACTEC, and CYTRAN codes is performed for various approximations of the magnetic field.

Kukushkin, A. B.; Minashin, P. V. [National Research Centre Kurchatov Institute, Tokamak Physics Institute (Russian Federation); Polevoi, A. R. [Route de Vinon sur Verdon, ITER Organization (France)

2012-03-15T23:59:59.000Z

259

NEUTRAL BEAM HEATING OF A REVERSED-FIELD PINCH IN THE MADISON  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PPCD plasmas. Fast ion diffusion is crucial in driving a flatter heating profile to limit heat conduction- losses. Measured core T e is only possible with significant mid-radius...

260

E-Print Network 3.0 - air cooled heat Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of California, Irvine Collection: Engineering 5 Factsheet on Summer Heat Gain and Winter Heat Loss In the summer we often feel warm in buildings and in the winter we may feel...

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

E-Print Network 3.0 - anomalous gulf heating Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

anomalously high evaporation and sensible heat... -February 1958, the anomalous heat loss in the Gulf of Mexico in the area of lat. 25 to 300 N, long. 80... of ocean...

262

E-Print Network 3.0 - areas heat shinku Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at Santa Barbara Collection: Engineering 22 Factsheet on Summer Heat Gain and Winter Heat Loss In the summer we often feel warm in buildings and in the winter we may feel...

263

E-Print Network 3.0 - advanced absorption heat Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(2) Advanced Light Source Division Lawrence Berkeley National Lab... animal radiative heat loss occurs in the infrared range, we feel research in this area will yield useful...

264

E-Print Network 3.0 - adult heat tolerance Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

apterus Summary: the phenotype of P. apterus adults, which was proved by their complete loss of heat tolerance. None... : Heteroptera) adults attain high levels of cold tolerance...

265

E-Print Network 3.0 - active heat moisture Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mass: an adequate supply of soil moisture, sufficiently cold air temperatures to cause heat loss... . Freezing times given in Table 1 increased significantly with soil moisture...

266

E-Print Network 3.0 - anomalous heat conduction Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University, Stanford, California, January 31 -February 2, 2011 Summary: conductive heat loss outside the main areas of thermally anomalous ground, and nor have discharges...

267

Plate Fin Heat Exchanger Model with Axial Conduction and Variable Properties  

SciTech Connect (OSTI)

Future superconducting radio frequency (SRF) cavities, as part of Project X at Fermilab, will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule-Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchangers will be utilized. Due to their compact size and ease of fabrication, plate-fin heat exchangers are an effective option. However, the design of compact and high-effectiveness cryogenic heat exchangers operating at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger. The model is used to guide design decisions on heat exchanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger to analyze the effect of heat load and cryogenic supply parameters. A numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger was developed and the effect of various design parameters on overall heat exchanger size was investigated. It was found that highly conductive metals should be avoided in the design of compact JT heat exchangers. For the geometry considered, the optimal conductivity is around 3.5 W/m-K and can range from 0.3-10 W/m-K without a large loss in performance. The model was implemented with an isenthalpic expansion process. Increasing the cold side inlet temperature from 2K to 2.2 K decreased the liquid fraction from 0.856 to 0.839 which corresponds to a 0.12 g/s increase in supercritical helium supply needed to maintain liquid level in the cooling bath. Lastly, it was found that the effectiveness increased when the heat load was below the design value. Therefore, the heat exchanger should be sized on the high end of the required heat load.

Hansen, B.J.; White, M.J.; Klebaner, A.; /Fermilab

2011-06-10T23:59:59.000Z

268

Geothermal district heating systems  

SciTech Connect (OSTI)

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

269

ITP Industrial Distributed Energy: Ultra Efficient Combined Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System A High-Temperature Fuel Cell to Provide On-site Process Reducing Gas, Clean Power, and Heat The project will utilize...

270

Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city  

E-Print Network [OSTI]

- tainably reducing carbon storage and biodiversity. biodiversity conservation | carbon emissions | reducing, wood production, and biodiversity conservation. The impacts of individual forms of tropical forestPredictable waves of sequential forest degradation and biodiversity loss spreading from an African

Vermont, University of

271

FS: heat pump water heaters | The Better Buildings Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Food Service » Install a heat pump Food Service » Install a heat pump water heaterand reduce water heating energy up to 70% using the commercial heat pump water heater specificat Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Install a heat pump water heaterand reduce water heating energy up to 70% using the commercial heat pump water heater specification The Food Service team developed a Commercial Heat Pump Water Heater Specification that can be used to reduce water heating energy by 70%. An older, electric resistance water heater (operated in a building with a hot water demand of 500 gallons a day) can cost more than $3,500 each year

272

45 (2008-5) Adjoint-Based Shape Optimization of a Heat-Exchanger Passage  

E-Print Network [OSTI]

conduction is employed. The cost function is defined as a sum of pressure loss and heat transfer, Distribution of non-dimensional heat flux : (c) Initial shape, (d) 6th shape, (e) Cross section of the bottomF244 45 (2008-5) - 623 - Adjoint-Based Shape Optimization of a Heat-Exchanger Passage with Heat

Kasagi, Nobuhide

273

Nonlinear Losses Induced in Spherical Waves  

Science Journals Connector (OSTI)

From Naugol'nykh's spherical sawtooth?wave solution curves are constructed which predict the nonlinear induced extra loss in fundamental amplitude. As in the plane wave case the propagation path can be split into three zones. In the first zone nonlinear effects dominate over attenuation. In the second zone a stable distorted waveform is propagated. In the third zone attenuation reduces the amplitude so that nonlinear effects are no longer important. Although the predicted losses are smaller than in the plane wave case they are not negligible. A criterion for cavitation is used in order to define depths in the ocean where cavitation will be the limiting factor on sound power level and not extra losses. By considering a specific example it is concluded that cavitation will indeed be the limiting factor down to a depth of about 2000 ft. At depths below 2000 ft extra losses can become significant for propagation from steady?state spherical sources operating below the cavitation threshold.

Boyd B. Cary

1967-01-01T23:59:59.000Z

274

Water and Space Heating Heat Pumps  

E-Print Network [OSTI]

This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

Kessler, A. F.

1985-01-01T23:59:59.000Z

275

Understanding the Impact of Return-current Losses on the X-Ray Emission from Solar Flares  

Science Journals Connector (OSTI)

I obtain and examine the implications of one-dimensional analytic solutions for return-current losses on an initially power-law distribution of energetic electrons with a sharp low-energy cutoff in flare plasma with classical (collisional) resistivity. These solutions show, for example, that return-current losses are not sensitive to plasma density, but are sensitive to plasma temperature and the low-energy cutoff of the injected nonthermal electron distribution. A characteristic distance from the electron injection site, x rc, is derived. At distances less than x rc the electron flux density is not reduced by return-current losses, but plasma heating can be substantial in this region, in the upper, coronal part of the flare loop. Before the electrons reach the collisional thick-target region of the flare loop, an injected power-law electron distribution with a low-energy cutoff maintains that structure, but with a flat energy distribution below the cutoff energy, which is now determined by the total potential drop experienced by the electrons. Modifications due to the presence of collisional losses are discussed. I compare these results with earlier analytical results and with more recent numerical simulations. Emslie's conjecture that there is a maximum integrated X-ray source brightness on the order of 1015photonscm2s1cm2 is examined. I find that this is not actually the maximum brightness and its value is parameter dependent, but it is nevertheless a valuable benchmark for identifying return-current losses in hard X-ray spectra. I discuss an observational approach to identifying return-current losses in flare data, including identification of a return-current "bump" in X-ray light curves at low photon energies.

Gordon D. Holman

2012-01-01T23:59:59.000Z

276

UNDERSTANDING THE IMPACT OF RETURN-CURRENT LOSSES ON THE X-RAY EMISSION FROM SOLAR FLARES  

SciTech Connect (OSTI)

I obtain and examine the implications of one-dimensional analytic solutions for return-current losses on an initially power-law distribution of energetic electrons with a sharp low-energy cutoff in flare plasma with classical (collisional) resistivity. These solutions show, for example, that return-current losses are not sensitive to plasma density, but are sensitive to plasma temperature and the low-energy cutoff of the injected nonthermal electron distribution. A characteristic distance from the electron injection site, x{sub rc}, is derived. At distances less than x{sub rc} the electron flux density is not reduced by return-current losses, but plasma heating can be substantial in this region, in the upper, coronal part of the flare loop. Before the electrons reach the collisional thick-target region of the flare loop, an injected power-law electron distribution with a low-energy cutoff maintains that structure, but with a flat energy distribution below the cutoff energy, which is now determined by the total potential drop experienced by the electrons. Modifications due to the presence of collisional losses are discussed. I compare these results with earlier analytical results and with more recent numerical simulations. Emslie's conjecture that there is a maximum integrated X-ray source brightness on the order of 10{sup -15} photons cm{sup -2} s{sup -1} cm{sup -2} is examined. I find that this is not actually the maximum brightness and its value is parameter dependent, but it is nevertheless a valuable benchmark for identifying return-current losses in hard X-ray spectra. I discuss an observational approach to identifying return-current losses in flare data, including identification of a return-current 'bump' in X-ray light curves at low photon energies.

Holman, Gordon D., E-mail: Gordon.D.Holman@nasa.gov [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States)

2012-01-20T23:59:59.000Z

277

Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe  

SciTech Connect (OSTI)

The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

Skupinski, R.C.; Tower, L.K.; Madi, F.J.; Brusk, K.D.

1993-04-01T23:59:59.000Z

278

Models for the Prediction of Fouling in Crude Oil Pre-Heat Trains  

E-Print Network [OSTI]

Fouling has two significant effects upon pre-heat train performance. Firstly, any of layer of foulant on the heat transfer surface presents a resistance to heat transfer. This thermal resistance increases as the layer builds up, so fouling reduces...

Yeap, B. L.; Wilson, D. I.; Polley, G. T.

279

Heat transfer and heat exchangers reference handbook  

SciTech Connect (OSTI)

The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

Not Available

1991-01-15T23:59:59.000Z

280

Heating systems for heating subsurface formations  

DOE Patents [OSTI]

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hydroxide absorption heat pumps with spray absorber  

SciTech Connect (OSTI)

The absorber is one of the most expensive components of an absorption heat pump or chiller, respectively. In order to reduce the cost of a heat exchanger, much effort is invested into searching for additives for heat transfer enhancement. Another way to reduce heat exchanger cost, especially for machines with low capacities, is to use an adiabatic spray absorber. The basic principles of the spray absorber is to perform heat and mass transfer separated from each other in two different components. In this way the heat can be rejected effectively in a liquid-liquid heat exchanger, whereas the mass transfer occurs subsequently in a simple vessel. The spray technique can not only save heat exchanger cost in conventional absorption systems working with water and lithium bromide, it also allows the use of quite different working fluids such as hydroxides, which have lower heat transfer coefficients in falling films. Moreover, the separated heat transfer can easily be performed in a liquid-to-air heat exchanger. Hence it is obvious to use hydroxides that allow for a high temperature lift for building an air-cooled chiller with spray absorber. In this presentation theoretical and experimental investigations of the spray absorber as well as the setup will be described. Finally, possible applications will be outlined.

Summerer, F.; Alefeld, G. [Technische Univ. Muenchen, Munich (Germany). Physics Dept.; Zeigler, F.; Riesch, P. [Bayerisches Zentrum fuer Angewandte Energieforschung, Munich (Germany)

1996-11-01T23:59:59.000Z

282

#AskEnergySaver: Home Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on how ventilation and air leakage impact a home's energy use. 1. How can I recover my loss heat from my furnace exhaust? -- from @DezGardner007 on Twitter IW: The simplest way...

283

NREL Improves Window Heat Transfer Calculations (Fact Sheet)...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of algorithm discrepancies helps to promote market confidence in EnergyPlus and DOE-2. Heat loss through windows represents a significant amount of the overall energy use in...

284

A quantitative design and analysis of magnetic nanoparticle heating systems  

E-Print Network [OSTI]

Magnetic particles under the influence of an alternating magnetic field act as localized heating sources due to various loss mechanisms. This effect has been extensively investigated in hypothermia studies over the past ...

Khushrushahi, Shahriar Rohinton

2006-01-01T23:59:59.000Z

285

Recirculation of Factory Heat and Air to Reduce Energy Consumption  

E-Print Network [OSTI]

-makeup ventilation systems. First we must distinguish between gaseous and particulate contaminants in order to select appropriate types of air cleaning equipment. Next the physical (and chemical) char acteristics of those specific contaminants must be considered... particles. (Note that most gases and vapors are colorless and invisible ?...suspended particulates are almost the only visible air con taminants .) Because the chemical vapor pressure of the nuisance contaminants which create visibly polluted factory...

Thiel, G. R.

1983-01-01T23:59:59.000Z

286

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

287

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, P.J.

1983-12-08T23:59:59.000Z

288

Modeling the Variability of Single-Cell Lag Times for Listeria innocua Populations after Sublethal and Lethal Heat Treatments  

Science Journals Connector (OSTI)

...the shift of the distribution assumed to be...cell). After heat treatments in...resulted in a loss of viability...the preceding heat treatment. This...single-cell lag time distributions of Listeria cells exposed to heat treatments of...treatment in which no loss of viability occurred...

A. Mtris; S. M. George; B. M. Mackey; J. Baranyi

2008-09-26T23:59:59.000Z

289

Targeting the Heat Shock Factor 1 by RNA Interference: A Potent Tool to Enhance Hyperthermochemotherapy Efficacy in Cervical Cancer  

Science Journals Connector (OSTI)

...master regulator of heat-induced HSP expression...the effect of HSF1 loss of function on the...growth or cell cycle distribution were detected in...after exposure to heat shock up to 43C for...master regulator of heat-induced HSP expression...the effect of HSF1 loss of function on the...

Antonio Rossi; Stefania Ciafr; Mirna Balsamo; Pasquale Pierimarchi; and M. Gabriella Santoro

2006-08-01T23:59:59.000Z

290

Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System  

Science Journals Connector (OSTI)

...are induced upon heat shock and are transcriptionally...completely complement the loss of Ssa1/2 despite...similarity. This distribution of constitutive and heat-inducible Hsp70...a mitochondrial heat shock protein 70 is suppressed by loss of mitochondrial...

Jacob Verghese; Jennifer Abrams; Yanyu Wang; Kevin A. Morano

2012-06-01T23:59:59.000Z

291

Transmission electron energy-loss spectroscopy study of carbon nanotubes upon high temperature treatment  

E-Print Network [OSTI]

Transmission electron energy-loss spectroscopy study of carbon nanotubes upon high temperature electron energy-loss spectroscopy study of carbon nanotubes upon high temperature treatment B. W. Reed, M of carbon nanotube materials, grown with a pulsed-laser deposition technique but purified and heat treated

Bertsch George F.

292

Minimize Boiler Short Cycling Losses  

Broader source: Energy.gov [DOE]

This tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

293

Loan Loss Reserve Funds Webinars  

Broader source: Energy.gov [DOE]

Provides a listing of past L loan loss reserve fund webinars and associated files. Author: U. S. Department of Energy, Energy Efficiency & Renewable Energy

294

An Essential Mechanism of Heat Dissipation in Carbon Nanotube Electronics  

Science Journals Connector (OSTI)

Nonequilibrium distribution function gk has been calculated numerically for every given value of the temperature, field, and charge density and then it was used to compute the total electron current, Id, as well as to determine the partial phonon emission rates for the heat dissipated in the NT lattice PJ and that dissipated directly into the substrate via the SPP mode P ? PJ, according to where P = IdF are the total Joule losses. ... (d) The loss ratio ?, calculated including self-consistent NT heating, is shown as a function of the doping level and the applied electric field. ... All energy loss of the hot electrons, same as the total dissipated power, is distributed between two channels: the SPP losses which are to be subtracted from the total heat flux in the NT, and the NT losses which have to be partially transmitted to the substrate via the coupling go. ...

Slava V. Rotkin; Vasili Perebeinos; Alexey G. Petrov; Phaedon Avouris

2009-03-31T23:59:59.000Z

295

heating | OpenEI Community  

Open Energy Info (EERE)

heating heating Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid).

296

Ceramic heat exchanger  

DOE Patents [OSTI]

A tube containment system is disclosed. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture. 6 figs.

LaHaye, P.G.; Rahman, F.H.; Lebeau, T.P.; Severin, B.K.

1998-06-16T23:59:59.000Z

297

Ceramic heat exchanger  

DOE Patents [OSTI]

A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

LaHaye, Paul G. (Kennebunk, ME); Rahman, Faress H. (Portland, ME); Lebeau, Thomas P. E. (Portland, ME); Severin, Barbara K. (Biddeford, ME)

1998-01-01T23:59:59.000Z

298

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INDUSTRIAL TECHNOLOGIES PROGRAM Improved Heat Recovery in Biomass-Fired Boilers Reducing Superheater Corrosion to Enable Maximum Energy Effi ciency This project will develop...

299

Ultra Efficient Combined Heat, Hydrogen, and Power System  

Broader source: Energy.gov (indexed) [DOE]

information. Project Objective Demonstrate Tri-generation (CHHP) combining heat, hydrogen and power production using a high temperature fuel cell to reduce O&M costs...

300

Flathead Electric Cooperative Facility Geothermal Heat Pump System...  

Broader source: Energy.gov (indexed) [DOE]

Cooperative is uniquely positioned to provide marketing of ground source heat pump systems * 15' Static Water Level * Low Pumping Power * Reduced Installation Costs * Good...

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

SELF HELPS ST. LUCIE RESIDENTS BEAT THE FLORIDA HEAT | Department...  

Energy Savers [EERE]

summer heat waves can send Floridians' utility bills soaring. St. Lucie County in the heart of Florida's Treasure Coast committed to helping homeowners reduce their rising...

302

Design aspects related to noise in indirect heat pumps.  

E-Print Network [OSTI]

??An increased use of heat pumps is one of the measures that can be taken to reduce energy consumption on a large scale, particularly in (more)

Lved, Per

2014-01-01T23:59:59.000Z

303

Segmented heat exchanger  

DOE Patents [OSTI]

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

304

Heating & Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cooling Cooling Heating & Cooling Heating and cooling account for about 56% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. Learn more about the principles of heating and cooling. Heating and cooling account for about 56% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. Learn more about the principles of heating and cooling. Did you know that heating and cooling accounts for more than half of the energy use in a typical U.S. home, making it the largest energy expense for most homes? Energy Saver shares tips and advice on ways you can reduce your heating and cooling costs, putting more money in your wallet.

305

Enhanced heat transfer for thermionic power modules  

SciTech Connect (OSTI)

The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

Johnson, D.C.

1981-07-01T23:59:59.000Z

306

Recessed light fixtures: Infiltration energy loss  

SciTech Connect (OSTI)

This article reports that a recent study revealed that fluorescent bulbs can reduce convective energy losses by 15--65% as compared to incandescent bulbs. Recessed light fixtures are commonly installed in offices and homes. However, a problem arises in homes when the fixtures are set in the ceiling such that the top of the light fixture is exposed to the unconditioned air in the attic. Because some air flow is necessary around the light to avoid overheating, the manufacturers do not make all the fixtures leak tight, only those that are rated for lower wattage bulbs. The need for cooling the fixture may conflict with some building efficiency codes.

Bennett, S.M.; Perez-Blanco, H. (Pennsylvania State Univ., University Park, PA (United States))

1994-06-01T23:59:59.000Z

307

World offshore energy loss statistics  

Science Journals Connector (OSTI)

Offshore operations present a unique set of environmental conditions and adverse exposure not observed in a land environment taking place in a confined space in a hostile environment under the constant danger of catastrophe and loss. It is possible to engineer some risks to a very low threshold of probability, but losses and unforeseen events can never be entirely eliminated because of cost considerations, the human factor, and environmental uncertainty. Risk events occur infrequently but have the potential of generating large losses, as evident by the 2005 hurricane season in the Gulf of Mexico, which was the most destructive and costliest natural disaster in the history of offshore production. The purpose of this paper is to provide a statistical assessment of energy losses in offshore basins using the Willis Energy Loss database. A description of the loss categories and causes of property damage are provided, followed by a statistical assessment of damage and loss broken out by region, cause, and loss category for the time horizon 19702004. The impact of the 20042005 hurricane season in the Gulf of Mexico is summarized.

Mark J. Kaiser

2007-01-01T23:59:59.000Z

308

Minimizing energy losses in control valves  

SciTech Connect (OSTI)

The pulp and paper industry uses massive amounts of energy, but it could reduce its electricity consumption by about 2,000 MW worldwide by simply optimizing the pumping of process liquids. Wasted pumping power can be significantly reduced by sizing pumps and control valves more accurately, and by using new methods of pump and valve selection. Combining the improved control valve's installed flow characteristic with state-of-the-art sizing and simulation programs ensures minimal pressure drop across the control valve without loss of accurate and reliable control in all process conditions. If accurate process condition information is available at the planning stage, even more significant pumping energy savings can be achieved. Moreover, reduced pressure drop across the control valve reduces the likelihood of valve cavitation. This, in turn, reduces the need for noise attenuation, preventing cavitation erosion, and repairing damage. To make the most of the advantages gained by using highly developed control valve sizing and selection programs, closer cooperation between process licensees, process users, and valve manufacturers is also required.

Niemela, I.; Pyotsia, J. (Neles-Jamesbury Oy, Helsinki (Finland))

1994-08-01T23:59:59.000Z

309

Heat pipes for use in a magnetic field  

DOE Patents [OSTI]

A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

Werner, R.W.; Hoffman, M.A.

1983-07-19T23:59:59.000Z

310

Sputtering and heating of Titan's upper atmosphere  

Science Journals Connector (OSTI)

...Although, the plasma energy deposition...viable, but the plasma heating is inadequate...be true: another non-thermal process must be active...composition of the ambient plasma near Titan's orbit...used to test the atmospheric loss rate. Prior...

2009-01-01T23:59:59.000Z

311

Investigation of Heat Transfer and Combustion in the Advanced Fluidized Bed Combustor (FBC).  

SciTech Connect (OSTI)

This technical report summarizes the research conducted and progress achieved during the period from January 1, 1997 to March 30, 1997. The systematic tests were conducted to investigate the thermal performance and heat transfer effect on the exploratory hot model. Test results were analyzed to understand thermal performance, heat balance, and heat transfer effect on exploratory hot model. Temperature was measured at different locations of the combustor chamber. The temperature was decreased along the increase the distance from the bottom of the combustor chamber. The heat loss from the combustor wall to the environment is a great portion of the total heat transfer. The flame enthalpy and heat loss at the reactor center changed along the reactor height. The heat loss into the cooling water for case A is about two times lager than that of case B. The heat transfer coefficient from gas to the environment increased as the flame temperature increased.

Lee, S.W.

1997-04-01T23:59:59.000Z

312

ORNL rod-bundle heat-transfer test data. Volume 6. Thermal-hydraulic test facility experimental data report for test 3. 05. 5B - double-ended cold-leg break simulation  

SciTech Connect (OSTI)

Thermal-Hydraulic Test Facility (THTF) Test 3.05.5B was conducted by members of the ORNL PWR Blowdown Heat Transfer Separate-Effects Program on July 3, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.05.5B was designed to provide transient thermal-hydraulics data in rod bundle geometry under reactor accident-type conditions. Reduced instrument responses are presented. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.; Schwinkendorf, K.N.

1982-05-18T23:59:59.000Z

313

Performance analysis of reciprocating regenerative magnetic heat pumping. Final report  

SciTech Connect (OSTI)

Transient flow phenomena in the regenerator tube of reciprocating magnetic heat pumps have been studied numerically and experimentally. In the numerical study, two approaches were taken: (1) solving the energy balance equations for fluid through a porous bed directly and (2) solving the Navier-Stokes equations with a buoyancy force term in the momentum equation. A flow thermal mixing problem was found in both approaches because of the piston-like motion of the regenerator tube that hinders the development of the temperature. The numerical study results show that a 45 K temperature span can be reached in 10 minutes of charge time through the use of a 7-Tesla magnetic field. Using the second numerical approach, temperature stratification in the regenerator fluid column was clearly indicated through temperature rasters. The study also calculates regenerator efficiency and energy delivery rates when heating load and cooling load are applied. Piecewise variation of the regenerator tube moving speed has been used in the present numerical study to control the mass flow rate, reduce thermal mixing of the flow and thus the regenerative losses. The gadolinium`s adiabatic temperature has been measured under 6.5 Tesla of magnet field and different of operating temperatures ranging from 285 K to 320 K. Three regenerative heat pumping tests have also been conducted based on the Reynolds number of the regenerator tube flow, namely Re=300, Re=450, and Re=750 without loads. Maximum temperature span are 12 & 11 K and 9 K for the case of Re=300, Re=450 and Re=750, respectively. Experimental data are in good agreement with the numerical calculation results, and have been used to calibrate the numerical results and to develop a design database for reciprocating-type room-temperature magnetic heat pumps.

Chen, D.T. [Oak Ridge Associated Universities, Inc., TN (United States); Murphy, R.W.; Mei, V.C.; Chen, F.C.; Lue, J.W.; Lubell, M.S. [Oak Ridge National Lab., TN (United States)

1994-02-01T23:59:59.000Z

314

Paving materials for heat island mitigation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paving materials for heat island mitigation Paving materials for heat island mitigation Title Paving materials for heat island mitigation Publication Type Report Year of Publication 1997 Authors Pomerantz, Melvin, Hashem Akbari, Allan Chen, Haider Taha, and Arthur H. Rosenfeld Keywords Cool Pavements, Heat Island Abstract This report summarizes paving materials suitable for urban streets, driveways, parking lots and walkways. The authors evaluate materials for their abilities to reflect sunlight, which will reduce their temperatures. This in turn reduces the excess air temperature of cities (the heat island effect). The report presents the compositions of the materials, their suitability for particular applications, and their approximate costs (in 1996). Both new and resurfacing are described. They conclude that, although light-colored materials may be more expensive than conventional black materials, a thin layer of light-colored pavement may produce energy savings and smog reductions whose long-term worth is greater than the extra cost.

315

Microstructural Evolution and Mechanical Properties of Cold-deformed Al-5Cu Alloy Samples After Isothermal Heat Treatments  

SciTech Connect (OSTI)

Abstract.In this paper, the microscopic morphology of a semi solid Al5Cu alloy by strain induced melt activated (SIMA) process were investigated, and the effects of predeformation, microstructural evolution, aging response and hardness changes were determined. The microstructural observation shows that while the grain boundaries started to appear after 620 deg. C, globular grains surrounded wet boundaries needed for SSP were obtained at 650 deg. C. The grain sizes exhibited ununiformity from the outer surface to the center of the sample because of ununiform predeformation. Although isothermal heat treatments reduced hardness, age hardening gave back the hardness loss.

Saklakoglu, Nursen; Gencalp, Simge [Celal Bayar University, Faculty of Engineering, Mechanical Engineering Departmant, 45140 Manisa (Turkey)

2011-01-17T23:59:59.000Z

316

Economic analysis of transportation directly reduced iron (DRI) through ship  

Science Journals Connector (OSTI)

Directly reduced iron (DRI) is a major source of iron units in cases of low scrap availability and/or hot metal. Its main advantage is it is low content of phosphorus and sulphur. Removal of phosphorus and sulphur demands high energy consumption in steel making process. With fast depleting sources of cooking coal, the availability of hot metal will decrease in the coming years. Also, scrap availability is already on the declining trend. Hence, DRI is going to be the main source of iron units in the future, especially in electric arc furnace (EAF steel making). The disadvantage of DRI usages lies in it is high reactivity. Freshly produced DRI possesses high susceptibility to oxidation whenever it comes in contact with air. The generated heat in the oxidation reaction increases the tendency to oxidation, thereby, starting a short of chain reaction and ultimately leading to the burning of DRI. This phenomenon makes storage and handling of DRI a concern. The problem caused loss of one cargo in Delta steel company, Nigeria. The authors of this dissertation were given the responsibility to work out the solution in the minimum possible time for implementing it to the next shipments. It is heartening that the problem could be successfully solved and implemented in the next shipments in November '06. Hence, after above work implementation of the recommendations for a $45 risk/ton of DRI, only $1 is to be spent for protection against the risk.

Manikant K. Paswan; Chinmoy Mukherjee

2012-01-01T23:59:59.000Z

317

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

318

Reduces electric energy consumption  

E-Print Network [OSTI]

consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings, and recycling. Alcoa provides the packaging, automotive, aerospace, and construction markets with a variety

319

Floatable solar heat modules  

SciTech Connect (OSTI)

A floating solar heat module for swimming pools comprises a solid surface for conducting heat from the sun's rays to the water and further includes a solid heat storage member for continual heating even during the night. A float is included to maintain the solar heat module on the surface of the pool. The solid heat storage medium is a rolled metal disk which is sandwiched between top and bottom heat conducting plates, the top plate receiving the heat of the sun's rays through a transparent top panel and the bottom plate transferring the heat conducted through the top plate and rolled disk to the water.

Ricks, J.W.

1981-09-29T23:59:59.000Z

320

GRIEF AND LOSS COUNSELLING AND  

E-Print Network [OSTI]

LEARN TO UNDERSTAND GRIEF AND LOSS COUNSELLING AND PSYCHOLOGICAL SERVICES (CAPS) #12;The death be tired with no energy or feel sick in the stomach and have headaches. People experiencing grief after

Viglas, Anastasios

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Minimize Boiler Short Cycling Losses  

SciTech Connect (OSTI)

This revised ITP tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

322

Turbine tip clearance loss mechanisms  

E-Print Network [OSTI]

Three-dimensional numerical simulations (RANS and URANS) were used to assess the impact of two specific design features, and of aspects of the actual turbine environment, on turbine blade tip loss. The calculations were ...

Mazur, Steven (Steven Andrew)

2013-01-01T23:59:59.000Z

323

Loss-Free Pricing Rules  

Science Journals Connector (OSTI)

This chapter provides an application of the pricing rule approach to the analysis of unregulated market economies with non-convex production sets. Loss-free pricing rules provide a natural framework for this a...

Prof. Dr. Antonio Villar

2000-01-01T23:59:59.000Z

324

Marine propulsion device with engine heat recovery system and streamlining hull closures  

SciTech Connect (OSTI)

A Marine Jet Propulsion System for use as an inboard engine for boats is herein described. An engine or motor means is attached in a driving relationship to a pump and thrust output apparatus. Heat generated by and rejected by the engine or motor is passed into the pump base for dissipation into the outputted jet thrust stream. Air and/or exhaust gas from the engine is ejected around the jet output stream to reduce against-the-hull turbulence and jet stream or thrust energy losses. Streamlining hull closures for the jet pump intake and output ports are provided to reduce system hull drag when not in use and to limit marine organism growth inside the pump.

Haynes, H. W.

1985-11-12T23:59:59.000Z

325

Solar2014: The 52nd Annual Conference of the Australian Solar Council 1 Open cavity receiver geometry influence on radiative losses  

E-Print Network [OSTI]

of the aperture in cavity losses mitigation and highlight the flux distribution variation on geometries driven by heat conduction. Convective losses, not considered here, are hard to model with confidence due Actually, the geometry has a strong influence on the heat flux distribution on the absorbing walls

326

Heat Pump for High School Heat Recovery  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-12-1 Heat Pump for High School Bathroom Heat Recovery Kunrong Huang Hanqing Wang Xiangjiang Zhou Associate professor Professor Professor School...

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

327

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

328

Boise City Geothermal District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

329

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

330

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

331

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

332

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

333

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

334

Waste Heat Management Options for Improving Industrial Process Heating Systems  

Broader source: Energy.gov [DOE]

This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power.

335

Guide to Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Heat Pumps Work Using a heat exchanger, a geothermal heat pump can move heat from one space to another. In summer, the geothermal heat pump extracts heat from a building...

336

Vision Loss: Visual Impairment and Vision Impairment | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vision Loss: Visual Impairment and Vision Impairment Vision Loss: Visual Impairment and Vision Impairment Vision Loss: Visual Impairment and Vision Impairment Visual impairment or vision impairment is vision loss that constitutes a significant limitation of visual capability resulting from disease, trauma, or a congenital or degenerative condition that cannot be corrected by conventional means, including refractive correction, medication, or surgery. Low Vision Anyone with non-correctable reduced vision is considered to be visually impaired, and can have a wide range of causes. Blindness Blindness is the condition of lacking visual perception due to physiological or psychological factors. Hearing Impairment Hearing impairment is a full or partial decrease in the ability to detect or understand sounds. Losing the ability to detect some frequencies, or

337

Biodiversity loss decreases parasite diversity: theory and patterns  

Science Journals Connector (OSTI)

...Survey, c/o Marine Science Institute...invasion: impacts on biodiversity and human health...terrestrial and marine biota. Science...2010 Impacts of biodiversity on the emergence...quasi-linear, suggesting biodiversity loss reduces parasite...Survey, c/o Marine Science Institute...

2012-01-01T23:59:59.000Z

338

Numerical Modeling of Non-adiabatic Heat-Recirculating Combustors C. H. Kuo and P. D. Ronney  

E-Print Network [OSTI]

of temperature-dependent gas and solid properties, viscous flow, surface-to-surface radiative heat transfer, heat affect the performance of heat-recirculating combustors, but the relative importance of such effects, however, heat and friction losses become more significant, thus fuel-to-electricity conversion devices

339

Woven heat exchanger  

DOE Patents [OSTI]

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

340

Definition: Reduced Co2 Emissions | Open Energy Information  

Open Energy Info (EERE)

Co2 Emissions Co2 Emissions Jump to: navigation, search Dictionary.png Reduced Co2 Emissions Functions that provide this benefit can lead to avoided vehicle miles, decrease the amount of central generation needed to their serve load (through reduced electricity consumption, reduced electricity losses, more optimal generation dispatch), and or reduce peak generation. These impacts translate into a reduction in CO2 emissions produced by fossil-based electricity generators and vehicles.[1] Related Terms electricity generation, reduced electricity losses, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An in LikeLike UnlikeLike You like this.Sign Up to see what your friends like. line Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reduced_Co2_Emissions&oldid=502618

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Retrofit of a Heat-Exchanger Network by Considering Heat-Transfer Enhancement and Fouling  

Science Journals Connector (OSTI)

Besides, for network-topology modifications the capital cost associated with the related pipe and civil work is high, and the negative financial impact of production losses resulting from plant shut down during the lengthy periods of a retrofit is also a concern. ... One way is to add heat-transfer enhancement to the cold side in a heat exchanger to increase the cold-side heat-transfer coefficients, and the other is to change the network structure to reassign the temperature distribution in the network. ... An existing industrial PHT network is simulated using a dynamic, distributed math. ...

Yufei Wang; Robin Smith

2013-06-07T23:59:59.000Z

342

Issues in heat recovery steam generator system noise  

Science Journals Connector (OSTI)

A heat recovery steam generator (HRSG) is a fundamental component of all combustion turbine?based combined cycle power plants. While its primary purpose is to convert exhaust gas heat to steam an important secondary function is to reduce noise emissions from the combustion turbine exhaust. This source at about 155 dB (overall) re: 1 pW for a 100?MW turbine is the highest noise emission source in any combustion turbine plant. Therefore the residual exhaust noise emissions leaving the HRSG walls and stack exit must be predicted with acceptable accuracy to determine the total plant noise level. The sources involved in this prediction methodology will be discussed. The issues include source power levels wall and duct transmission loss and the noise reduction characteristics through the HRSG flow path. Special measurement techniques required to quantify HRSG noise emissions are described. Whereas the HRSG is mainly a passive device that attenuates combustion turbine exhaust noise two HRSG generated sources steam venting and supplemental duct firing will also be discussed. [See NOISE?CON Proceedings for full paper.

George F. Hessler Jr.

1997-01-01T23:59:59.000Z

343

"Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"  

SciTech Connect (OSTI)

ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

2008-06-12T23:59:59.000Z

344

Thermal monitoring and optimization of geothermal district heating systems using artificial neural network: A case study  

Science Journals Connector (OSTI)

This paper deals with determine the energy and exergy efficiencies and exergy destructions for thermal optimization of a geothermal district heating system by using artificial neural network (ANN) technique. As a comprehensive case study, the Afyonkarahisar geothermal district heating system (AGDHS) in Afyonkarahisar/Turkey is considered and its actual thermal data as of average weekly data are collected in heating seasons during the period 20062010 for ANN based monitoring and thermal optimization. The measured data and calculated values are used at the design of Levenberg-Marquardt (LM) based multi-layer perceptron (MLP) in Matlab program. The results of the study are described graphically. The results show that the developed model is found to quickly predict the thermal performance and exergy destructions of the AGDHS with good accuracy. In addition, two main factors play important roles in the thermal optimization: (i) ambient temperature and (ii) flow rates in energy distribution cycle of the AGDHS. Various cases are investigated to determine how to change the energy and exergy efficiencies of the AGDHS for the temperature and flow rate. Finally, a monitoring and performance evaluation of a geothermal district heating system and its components by ANN will reduce the losses and human involvement and make the system more effective and efficient.

Ali Keeba?; ?smail Yabanova

2012-01-01T23:59:59.000Z

345

Towards Intelligent District Heating.  

E-Print Network [OSTI]

??A district heating system consists of one or more production units supplying energy in the form of heated water through a distribution pipe network to (more)

Johansson, Christian

2010-01-01T23:59:59.000Z

346

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

347

ARM - Heat Index Calculations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that combines air temperature and relative...

348

Fcp1 Dephosphorylation of the RNA Polymerase II C-Terminal Domain Is Required for Efficient Transcription of Heat Shock Genes  

Science Journals Connector (OSTI)

...Notably, the loss of Pol II signal...to examine the distribution of Pol II on Hsp70...cells under non-heat shock (NHS...be due to the loss of the Fcp1 phosphatase activity or loss of the protein...examined Pol II distribution in untreated cultures...Pol II levels on heat shock-induced...

Nicholas J. Fuda; Martin S. Buckley; Wenxiang Wei; Leighton J. Core; Colin T. Waters; Danny Reinberg; John T. Lis

2012-06-25T23:59:59.000Z

349

Thermodynamic analysis of a geothermal district heating system  

Science Journals Connector (OSTI)

Thermoeconomic analysis is considered a useful tool for investigators in engineering and other disciplines due to its methodology based on the quantities exergy, cost, energy and mass. This study deals with an investigation of capital costs and thermodynamic losses for devices in the Balcova Geothermal District Heating Systems (BGDHS). Thermodynamic loss rate-to-capital cost ratios are used for components and the overall system, and a systematic correlation is found between capital cost and exergy loss (total or internal), but not between capital cost and energy loss or external exergy loss. This correlation may imply that devices in successful district heating system are configured so as to achieve an overall optimal design, by balancing the thermodynamic (exergy-based) and economic characteristics of the overall system and their devices. The results provide insights into the relations between thermodynamics and economics and help demonstrate the merits of exergy analysis.

Leyla Ozgener; Arif Hepbasli; Ibrahim Dincer

2005-01-01T23:59:59.000Z

350

Reducing Diesel Engine Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reducing Reducing Diesel Engine Emissions 2 0 1 0 Green TransporTaTion TechnoloGies Compared to traditional gasoline engines, diesel engines require less maintenance, generate energy more efficiently, and produce less carbon dioxide emissions. But when uncontrolled, diesel engines churn out harmful emissions like particu- late matter (PM) and nitrogen oxides (NO x ). Researchers at Argonne National Laboratory are currently working to develop

351

Reduced shear power spectrum  

SciTech Connect (OSTI)

Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.

Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Northwestern U.; Shapiro, Charles; /Chicago U. /KICP, Chicago; White, Martin J.; /UC, Berkeley, Astron.

2005-08-01T23:59:59.000Z

352

Submitted to the Astrophysical Journal Emission measure distribution in loops impulsively heated at the  

E-Print Network [OSTI]

Submitted to the Astrophysical Journal Emission measure distribution in loops impulsively heated balance under the e#ects of steady heating, heat flux and radiative losses, with the magnetic field only by the evidence of sharply peaked emission measure distributions in active stars, and by the claims of isothermal

353

Effect of heat and 2-mercaptoethanol on intracytoplasmic membrane polypeptides of Rhodopseudomonas sphaeroides.  

Science Journals Connector (OSTI)

...polypeptide underwent a heat-induced oligomerization...U.S.A. Effect of Heat and 2-Mercaptoethanol...polypeptide underwent a heat-induced oligomerization...polypeptide content and distribution in both RC preparations...demonstrated that the loss of RCB and RCC from either...

W D Shepherd; S Kaplan

1978-08-01T23:59:59.000Z

354

ION CYCLOTRON HEATING IN A TOROIDAL OC TUPOLE J. D. Barter and J. C. Sprott  

E-Print Network [OSTI]

ION CYCLOTRON HEATING IN A TOROIDAL OC TUPOLE J. D. Barter and J. C. Sprott February 1975;ION CYCLOTRON HEAT ING IN A TOROIDAL OCTUPOLE J. ,D. Barter and J. C. Sprott University of Wisconsin ion temperature is determined by charge exchange losses. #12;· 19n cyclotron resonance heating has

Sprott, Julien Clinton

355

Water Heating Requirements Overview Page 5-1 5 Water Heating Requirements  

E-Print Network [OSTI]

units with tank volumes of 40 to 50 gallons. Standby loss associated with the center flue gas storage energy use. Whereas natural gas, (liquefied petroleum gas), LPG or oil can be burned directly to heat code from 2008 are listed below: Instantaneous (or tankless) water heaters including gas, oil, small

356

Reversible and irreversible processes in dispersive/dissipative optical media: Electro-magnetic free energy and heat production  

E-Print Network [OSTI]

We solve the problem addressed by Landau and Lifshitz in 1958, and Oughstun and Sherman of determining the dynamical losses in a purely dissipative dielectric media. We develop concrete notions of macroscopic free energy and losses as energy which is reversible and irreversible, respectively, in the medium-field interaction. We define the reversible and irreversible energies and outline the derivation of said quantities. We examine the implications of our definition and it's auxiliary quantity, the reversal field, for the single Lorentz oscillator model of a medium. We show that for this model the reversible energy reduces to the sum of the kinetic and potential energy, as found by Loudon. We note that in general, the sum of the kinetic and potential energies is greater than the reversible energy. We show that the reversible and irreversible energy have the characteristics classically defining free energy and heat.

C. Broadbent; G. Hovhannisyan; M. Clayton; J. Peatross; S. A. Glasgow

2002-07-31T23:59:59.000Z

357

Tax aspects of casualty losses  

E-Print Network [OSTI]

. Commissioner, P-H. h?emo. T. C. , ?ar. 50, 221. Termites. Termite damages have been allowed by some Courts as a casualty loss deduction, but the Internal Revenue Service prior to 1959 generally did not grant such deductions. However, in a recent Revenue... ruling the Internal Revenue: ervice indicated that it will follow 39 the decision of Buist v. United States. In the Revenue ruling the Service states that termite damage can be sudden and if sudden, it can result in a casualty loss. Also, the Service...

Lehmann, August Herman

1960-01-01T23:59:59.000Z

358

Exergy Loss: A Basis for Energy Taxing  

Science Journals Connector (OSTI)

The paper introduces exergy loss or entropy added as a basis for energy taxing. Exergy loss will be shown to account objectively...

Gerard Hirs

1993-01-01T23:59:59.000Z

359

Measurement of the solar heat gain coefficient and U value of windows with insect screens  

SciTech Connect (OSTI)

Energy ratings are currently being used in a number of countries to assist in the selection of windows and doors based on energy performance. Developed for simple comparison purposes, these rating numbers do not take into account window removable attachments such as insect screens that are, nevertheless, widely used. Research was carried out to assess the effect of insect screens on the heat gains and losses of windows. The work reported in this paper deals with the effect of one screen type on the performance of a base-case, double-glazed window. Using an indoor solar simulator facility, measurements of the window solar heat gain coefficient (SHGC) and U value were made for different screen attachment configurations and climatic conditions. Results with the sample window tested indicate that insect screens placed on the outdoor side can reduce its SHGC by 46% with only a 7% reduction in its U value (0.19 W/m{sup 2}{center_dot}C), and that insect screens placed on the indoor side can reduce its SHGC by 15% while reducing its U value by 14% (0.38 W/m{sup 2}{center_dot}C).

Brunger, A.; Dubrous, F.M.; Harrison, S.

1999-07-01T23:59:59.000Z

360

Rotary magnetic heat pump  

DOE Patents [OSTI]

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy 101: Geothermal Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps January 4, 2011 - 12:15pm Addthis An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Quick Facts Heat pump systems can lower energy bills by up to 70% over traditional types of heating systems. During this time of year, many homeowners are searching for ways to reduce steep heating costs. One of the options they should consider during the

362

Energy 101: Geothermal Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps January 4, 2011 - 12:15pm Addthis An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Quick Facts Heat pump systems can lower energy bills by up to 70% over traditional types of heating systems. During this time of year, many homeowners are searching for ways to reduce steep heating costs. One of the options they should consider during the

363

Thulium-170 heat source  

SciTech Connect (OSTI)

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, C.E.; Van Konynenburg, R.; VanSant, J.H.

1990-09-06T23:59:59.000Z

364

Thulium-170 heat source  

DOE Patents [OSTI]

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

365

Heat Treating Apparatus  

DOE Patents [OSTI]

Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

2002-09-10T23:59:59.000Z

366

Preventing Strength Loss of Unbleached Kraft Pulp  

SciTech Connect (OSTI)

Kraft pulp fibers lose inter-fiber bonding ability when they are dried during the manufacture of paper. Adverse environmental consequences of this loss include (a) limitations on the number of times that kraft fibers can be recycled, (b) reduced paper strength, sometimes making it necessary to use heavier paper or paperboard to meet product strength requirements, increasing the usage of raw materials, (c) decreased rates of paper production in cases where the fiber furnish has been over-refined in an attempt to regain inter-fiber bonding ability. The present study is the first of its type to focus on unbleached kraft fibers, which are a main ingredient of linerboard for corrugated containers. About 90 million tons of unbleached kraft fiber are used worldwide every year for this purpose.

Martin Hubbe; Richard Venditti; John Heitmann

2003-04-16T23:59:59.000Z

367

Energy Loss by Breaking waves  

Science Journals Connector (OSTI)

Observations of the frequency of wind wave breaking in deep water are combined with laboratory estimates of the rate of energy loss a from single breaking wave to infer the net rate of energy transfer to the mixed layer from breaking waves, as a ...

S. A. Thorpe

1993-11-01T23:59:59.000Z

368

Thermoelectric heat exchange element  

DOE Patents [OSTI]

A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

2007-08-14T23:59:59.000Z

369

Tank closure reducing grout  

SciTech Connect (OSTI)

A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr{sup 90}, the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel.

Caldwell, T.B.

1997-04-18T23:59:59.000Z

370

High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems  

SciTech Connect (OSTI)

In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

Tarau, Calin; Walker, Kara L.; Anderson, William G. [Advanced Cooling Technologies, Inc. 1046 New Holland Ave. Lancaster, PA 17601 (United States)

2009-03-16T23:59:59.000Z

371

Heat Integrate Heat Engines in Process Plants  

E-Print Network [OSTI]

and refrigeration systems. In many instances these real heat engines may appear as a complex process consisting of flash vessels, heat exchangers, compressors, furnaces, etc. See Figure 18a, which shows a simplified diagram of a "steam Rankine cycle." How... and rejection profiles of the real machine. For example, the heat acceptance and re jection profiles for the steam Rankine cycle shown in Figure 18a have been drawn on T,H coordinates in Figure 18b. Thus providing we know the heat acceptance and rejection...

Hindmarsh, E.; Boland, D.; Townsend, D. W.

372

Heat-driven acoustic cooling engine having no moving parts  

DOE Patents [OSTI]

A heat-driven acoustic cooling engine having no moving parts receives heat from a heat source. The acoustic cooling engine comprises an elongated resonant pressure vessel having first and second ends. A compressible fluid having a substantial thermal expansion coefficient and capable of supporting an acoustic standing wave is contained in the resonant pressure vessel. The heat source supplies heat to the first end of the vessel. A first heat exchanger in the vessel is spaced-apart from the first end and receives heat from the first end. A first thermodynamic element is adjacent to the first heat exchanger and converts some of the heat transmitted by the first heat exchanger into acoustic power. A second thermodynamic element has a first end located spaced-apart from the first thermodynamic element and a second end farther away from the first thermodynamic element than is its first end. The first end of the second thermodynamic element heats while its second end cools as a consequence of the acoustic power. A second heat exchanger is adjacent to and between the first and second thermodynamic elements. A heat sink outside of the vessel is thermally coupled to and receives heat from the second heat exchanger. The resonant pressure vessel can include a housing less than one-fourth wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Santa Fe, NM); Migliori, Albert (Santa Fe, NM); Hofler, Thomas J. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

373

Optical loss reduction in HIC chalcogenide glass waveguides via thermal reflow  

E-Print Network [OSTI]

A rapid thermal reflow technique is applied to high-index-contrast, sub-micron waveguides in As[subscript 2]S[subscript 3] chalcogenide glass to reduce sidewall roughness and associated optical scattering loss. Up to 50% ...

Hu, Juejun

374

Reduce Threshold for Toplit Daylighting Area  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supporting analysis for proposed Supporting analysis for proposed changes to the commercial provisions of the 2012 IECC: Reduce Threshold for Toplit Daylighting Area R Hart R Athalye Pacific Northwest National Laboratory December 2012 2 Proposal Description This proposal modifies Section C402.3.2 of the 2012 IECC for the 2015 version. It reduces the area threshold for skylight daylit zones from 10,000 square feet to 2,000 square feet. It maintains 15 foot ceiling height requirement and the exception for climate zones 6 through 8. Energy Impact Based on average national energy prices 1 of $0.99 per therm and $0.1032 per kWh, the net savings are calculated with EnergyPlus(tm) 2 from whole building energy savings that result from reduced lighting, and depending on climate zone, increased or decreased heating and cooling.

375

Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)  

SciTech Connect (OSTI)

A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

Not Available

2012-04-01T23:59:59.000Z

376

Reduced Braginskii equations  

SciTech Connect (OSTI)

A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite {beta} that we solve the perpendicular component of Ohm`s law to conserve the physical energy while ensuring the relation {del} {center_dot} j = 0.

Yagi, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

1993-11-01T23:59:59.000Z

377

Reduced Braginskii equations  

SciTech Connect (OSTI)

A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite [beta] that the perpendicular component of Ohm's law be solved to ensure [del][center dot][bold j]=0 for energy conservation.

Yagi, M.; Horton, W. (Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States))

1994-07-01T23:59:59.000Z

378

Heat transfer studies, quarterly report  

SciTech Connect (OSTI)

Drying in subresidually-saturated systems at elevated temperatures has been studied for two different operating conditions. One condition started with flowing nitrogen gas through the test section and simultaneously heating up the porous medium at the same time (denoted in what follows as the ``transient heating case``). The other condition started initially with heating up the porous medium with no flow, and then running the nitrogen gas flow through the test section after a steady-state temperature distribution had been reached (denoted in what follows as the ``steady heating case``). A 90{degrees}C isothermal boundary condition was set on the aluminum wall. An average of 9% discrepancy in the mass balance calculation compared to the digital balance measurement has been found in the transient heating case. An average of 4.3% discrepancy in the mass balance calculation compared to the digital balance measurement has been found after the nitrogen gas flowed through test section for the steady heating case. A large discrepancy has also been found before the nitrogen gas admitted to the test section. This is because some of subresidual water in the test section has been drained out from the bottom due to the gravity effect and the strong convection flow in the porous medium before the nitrogen gas is admitted. This discrepancy may be reduced by closing the end tube at bottom before the nitrogen gas is admitted to the test section. The drying characteristics of this system are reported. A theoretical study has also been initiated in an attempt to supplement the experimental results, and this system is described in the report. A one-dimensional transient system is assumed in which a two-component (condensable and noncondensable) gas mixture flows through a porous medium with evaporation. The numerical calculation will be performed in the future work to compare to the experimental results.

Boehm, R.; Chen, Y.T.; Sathappan, A.K.

1996-01-19T23:59:59.000Z

379

Cold Climate Heat Pump Projects at Purdue University & the Living Lab  

E-Print Network [OSTI]

11/10/2011 6 #12;System Design · 19 kW (~65000 Btu/h) at -20 OC (-4 OF) · Install strip electric heat pump optimized for heating » Greatly reduce or eliminate need for auxiliary electric resistance heatingCold Climate Heat Pump Projects at Purdue University & the Living Lab at the new Herrick Labs

Oak Ridge National Laboratory

380

Underground Mine Water Heating and Cooling Using Geothermal Heat Pump Systems  

SciTech Connect (OSTI)

In many regions of the world, flooded mines are a potentially cost-effective option for heating and cooling using geothermal heat pump systems. For example, a single coal seam in Pennsylvania, West Virginia, and Ohio contains 5.1 x 1012 L of water. The growing volume of water discharging from this one coal seam totals 380,000 L/min, which could theoretically heat and cool 20,000 homes. Using the water stored in the mines would conservatively extend this option to an order of magnitude more sites. Based on current energy prices, geothermal heat pump systems using mine water could reduce annual costs for heating by 67% and cooling by 50% over conventional methods (natural gas or heating oil and standard air conditioning).

Watzlaf, G.R.; Ackman, T.E.

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Radiant heating tests of several liquid metal heat-pipe sandwich panels  

SciTech Connect (OSTI)

Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors.

Camarda, C.J.; Basiulis, A.

1983-08-01T23:59:59.000Z

382

Solar heating for indoor community swimming pool  

SciTech Connect (OSTI)

This project demonstrates the application of solar technology to an existing public indoor swimming pool. An application makes use of a new type of solar collector material called SolaRoll. The pool water is cycled through collectors made of the material mounted on the pool's dome roof, reducing reliance on natural gas and fuel oil. Approximately 60% of the energy to heat pool water will be provided. The specific objective of the project is to reduce reliance on natural gas and fuel oil consumption used to heat the community's pool and in so doing provide an example for residential applications.

Not Available

1984-01-01T23:59:59.000Z

383

Heat transfer system  

DOE Patents [OSTI]

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

384

Wound tube heat exchanger  

DOE Patents [OSTI]

What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

385

Heat Exchangers for Solar Water Heating Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems May 30, 2012 - 3:40pm Addthis Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because it is a good thermal conductor and has greater resistance to corrosion. Types of Heat Exchangers Solar water heating systems use three types of heat exchangers: Liquid-to-liquid A liquid-to-liquid heat exchanger uses a heat-transfer fluid that

386

Reduce Climate Change  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reduce Climate Change Reduce Climate Change Highway vehicles release about 1.5 billion metric tons of greenhouse gases (GHGs) into the atmosphere each year-mostly in the form of carbon dioxide (CO2)-contributing to global climate change. Each gallon of gasoline you burn creates 20 pounds of CO2. That's roughly 5 to 9 tons of CO2 each year for a typical vehicle. more... How can a gallon of gasoline create 20 pounds of carbon dioxide? It seems impossible that a gallon of gasoline, which weighs about 6.3 pounds, could produce 20 pounds of carbon dioxide (CO2) when burned. However, most of the weight of the CO2 doesn't come from the gasoline itself, but the oxygen in the air. When gasoline burns, the carbon and hydrogen separate. The hydrogen combines with oxygen to form water (H2O), and carbon combines with oxygen

387

Aspinall Courthouse: GSAs Historic Preservation and Net-Zero...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

10-in. rigid insulation on the roof (average thermal resistance of R-35), to reduce heat loss and heat gain. Reducing heat loss and heat gain led to down-sizing the heating...

388

Recover heat from steam reforming  

SciTech Connect (OSTI)

Steam reforming is one of the most important chemical processes--it is used in the manufacture of ammonia, hydrogen, methanol, and many chemicals made from hydrogen and carbon monoxide. Furthermore, many current trends will increase its importance. For example, methanol for addition to gasoline is likely to be produced by steam reforming. Because steam reforming occurs at high temperatures--typically 750 C--900 C--it generates a large amount of waste heat. Clearly, heat recovery is crucial to process economics. A typical 50,000 Nm[sup 3]/h hydrogen plant using natural gas feed has a radiant heat duty of about 50 MW. At a radiant efficiency of 50% and fuel cost of $3/GJ, this means that the reformer fires $9 million worth of fuel per year. Obviously, this amount of fuel justifies a close loot at ways to reduce costs. This article first provides a brief overview of steam reforming. It then outlines the available heat-recovery options and explains how to select the best method.

Fleshman, J.D. (Foster Wheeler USA Corp., Livingston, NJ (United States))

1993-10-01T23:59:59.000Z

389

Naval electrochemical corrosion reducer  

DOE Patents [OSTI]

A corrosion reducer for use with ships having a hull, a propeller mounted a propeller shaft and extending through the hull, bearings supporting the shaft, at least one thrust bearing and one seal. The improvement includes a current collector and a current reduction assembly for reducing the voltage between the hull and shaft in order to reduce corrosion due to electrolytic action. The current reduction assembly includes an electrical contact, the current collector, and the hull. The current reduction assembly further includes a device for sensing and measuring the voltage between the hull and the shaft and a device for applying a reverse voltage between the hull and the shaft so that the resulting voltage differential is from 0 to 0.05 volts. The current reduction assembly further includes a differential amplifier having a voltage differential between the hull and the shaft. The current reduction assembly further includes an amplifier and a power output circuit receiving signals from the differential amplifier and being supplied by at least one current supply. The current selector includes a brush assembly in contact with a slip ring over the shaft so that its potential may be applied to the differential amplifier.

Clark, Howard L. (Ballston Lake, NY)

1991-10-01T23:59:59.000Z

390

Reducing Radiation Damage  

SciTech Connect (OSTI)

This talk describes the use of a modified treatment sequence, i.e., radiation dose, geometry, dwell time, etc., to mitigate some of the deleterious effects of cancer radiotherapy by utilizing natural cell repair processes. If bad side effects can be reduced, a more aggressive therapy can be put into place. Cells contain many mechanisms that repair damage of various types. If the damage can not be repaired, cells will undergo apoptosis (cell death). Data will be reviewed that support the fact that a small dose of radiation will activate damage repair genes within a cell. Once the mechanisms are fully active, they will efficiently repair the severe damage from a much larger radiation dose. The data ranges from experiments on specific cell cultures using microarray (gene chip) techniques to experiments on complete organisms. The suggested effect and treatment is consistent with the assumption that all radiation is harmful, no matter how small the dose. Nevertheless, the harm can be reduced. These mechanisms need to be further studied and characterized. In particular, their time dependence needs to be understood before the proposed treatment can be optimized. Under certain situations it is also possible that the deleterious effects of chemotherapy can be mitigated and the damage to radiation workers can be reduced.

Blankenbecler, Richard

2006-06-05T23:59:59.000Z

391

Heat treated woodnylon 6 composites  

Science Journals Connector (OSTI)

Abstract Heat treatment is a relatively benign modification method that is growing as an industrial process to improve hygroscopicity, dimensional stability and biological resistance of lignocellulosic fillers. There also has been increased interest in the use of lignocellulosic fillers in numerous automotive applications. This study investigated the influence of untreated and heat treated wood fillers on the mechanical and rheological properties of wood filled nylon 6 composites for possible under-the-hood applications in the automobile industry where conditions are too severe for commodity plastics to withstand. In this study, exposure of wood to high temperatures (212C for 8h) improved the thermal stability and crystallinity of wood. Heat treated pine and maple filled nylon 6 composites (at 20wt.% loading) had higher tensile strengths among all formulations and increased tensile strength by 109% and 106% compared to neat nylon 6, respectively. Flexural modulus of elasticity (FMOE) of the neat nylon 6 was 2.34GPa. The FMOE increased by 101% and 82% with the addition of 30wt.% heat treated pine and 20wt.% heat treated maple, where it reached maximum values of 4.71GPa and 4.27GPa, respectively. The rheological properties of the composites correlated with the crystallinity of wood fillers after the heat treatment. Wood fillers with high crystallinity after heat treatment contributed to a higher storage modulus, complex viscosity and steady shear viscosity and low loss factor in the composites. This result suggests that heat treatment substantially affects the mechanical and rheological properties of wood filled nylon 6 composites. The mechanical properties and thermogravimetric analysis indicated that the heat treated wood did not show significant thermal degradation under 250C, suggesting that the wood-filled nylon composites could be especially relevant in thermally challenging areas such as the manufacture of under-the-hood automobile components.

Deniz Aydemir; Alper Kiziltas; Esra Erbas Kiziltas; Douglas J. Gardner; Gokhan Gunduz

2015-01-01T23:59:59.000Z

392

Geothermal heating from Pinkerton Hot Springs at Colorado Timberline Academy, Durango, Colorado. Final technical report  

SciTech Connect (OSTI)

The efforts to establish a greater pool of knowledge in the field of low temperature heat transfer for the application of geothermal spring waters to space heating are described. A comprehensive set of heat loss experiments involving passive radiant heating panels is conducted and the results presented in an easily interpretable form. Among the conclusions are the facts that heating a 65 to 70 F/sup 0/ space with 90 to 100 F/sup 0/ liquids is a practical aim. The results are compared with the much lower rates published in the American Society of Heating Refrigeration and Air Conditioning Engineers SYSTEMS, 1976. A heat exchange chamber consisting of a 1000 gallon three compartment, insulated and buried tank is constructed and a control and pumping building erected over the tank. The tank is intended to handle the flow of geothermal waters from Pinkerton Hot Springs at 50 GPM prior to the wasting of the spring water at a disposal location. Approximately 375,000 Btu per hour should be available for heating assuming a 15 F/sup 0/ drop in water temperature. A combination of the panel heat loss experiments, construction of the heat exchange devices and ongoing collection of heat loss numbers adds to the knowledge available to engineers in sizing low temperature heat systems, useful in both solar and geothermal applications where source temperature may be often below 110 F/sup 0/.

Allen, C.C.; Allen, R.W.; Beldock, J.

1981-11-08T23:59:59.000Z

393

Dynamic loss properties of wood  

Science Journals Connector (OSTI)

Internal friction and dielectric lossmeasurements have been made on whole wood on cellulose and on lignin. A prominent ? peak is seen at 200 K for frequencies around 1 Hz. This peak shifts to lower temperatures (near 160 K) when wood is heated to 475 K. We propose that this shift signifies molecular changes characteristic of the first stages of coalification of wood and lignin. Additional comparisons are made with the macromolecular structure of amber oil shale and synthetic polymers.

C. A. Wert; Manford Weller; Dan Caulfield

1984-01-01T23:59:59.000Z

394

Geothermal Heat Pumps  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office.

395

HEAT TRANSFER FLUIDS  

E-Print Network [OSTI]

The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

Lenert, Andrej

2012-01-01T23:59:59.000Z

396

Residential heating oil price  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 2.91 per gallon. That's down 1.10 from a year ago, based on the...

397

Residential heating oil price  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to 2.84 per gallon. That's down 1.22 from a year ago, based on the...

398

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to 2.97 per gallon. That's down 1.05 from a year ago, based on the...

399

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to 3.04 per gallon. That's down 99.4 cents from a year ago, based on the...

400

Tips: Passive Solar Heating and Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling April 24, 2012 - 4:18pm Addthis Tips: Passive Solar Heating and Cooling Using passive solar design to heat and cool your home can be both environmentally friendly and cost effective. In many cases, your heating costs can be reduced to less than half the cost of heating a typical home. Passive solar design can also help lower your cooling costs. Passive solar cooling techniques include carefully designed overhangs and using reflective coatings on windows, exterior walls, and roofs. Newer techniques include placing large, insulated windows on south-facing walls and putting thermal mass, such as a concrete slab floor or a heat-absorbing wall, close to the windows. A passive solar house requires careful design and siting, which vary by

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Tips: Passive Solar Heating and Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Passive Solar Heating and Cooling Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling April 24, 2012 - 4:18pm Addthis Tips: Passive Solar Heating and Cooling Using passive solar design to heat and cool your home can be both environmentally friendly and cost effective. In many cases, your heating costs can be reduced to less than half the cost of heating a typical home. Passive solar design can also help lower your cooling costs. Passive solar cooling techniques include carefully designed overhangs and using reflective coatings on windows, exterior walls, and roofs. Newer techniques include placing large, insulated windows on south-facing walls and putting thermal mass, such as a concrete slab floor or a heat-absorbing wall, close to the windows. A passive solar house requires careful design and siting, which vary by

402

HVAC Optimized Heat Exchangers Research Project | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Optimized Heat Exchangers Research Optimized Heat Exchangers Research Project HVAC Optimized Heat Exchangers Research Project The U.S. Department of Energy is currently conducting research into heating, ventilation, and air conditioning (HVAC) optimized heat exchangers. The information generated in this study will demonstrate performance improvements that can be achieved through optimization of refrigerant circuitry for non-uniform inlet air distribution. The tubing circuitry on fin-tube heat exchangers used in residential space-conditioning systems is typically designed assuming uniform airflow through the finned passageways. However, the air flow in installed systems is highly non-uniform, resulting in mismatched refrigerant-air heat transfer that reduces the capacity of the heat exchanger and efficiency of

403

Thermal performance of phase change material energy storage floor for active solar water-heating system  

Science Journals Connector (OSTI)

The conventional active solar water-heating floor system contains a big water tank to store energy in the day time for heating at night, which takes much building space and is very heavy. In order to reduce the w...

Ruolang Zeng; Xin Wang; Wei Xiao

2010-06-01T23:59:59.000Z

404

Municipal District Heating and Cooling Co-generation System Feasibility Research  

E-Print Network [OSTI]

In summer absorption refrigerating machines provide cold water using excess heat from municipal thermoelectric power plant through district heating pipelines, which reduces peak electric load from electricity networks in summer. The paper simulates...

Zhang, W.; Guan, W.; Pan, Y.; Ding, G.; Song, X.; Zhang, Y.; Li, Y.; Wei, H.; He, Y.

2006-01-01T23:59:59.000Z

405

MA HEAT Loan Overview  

Broader source: Energy.gov [DOE]

Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

406

Ductless Heat Pumps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

407

Heat Pump Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

408

Solar heat receiver  

DOE Patents [OSTI]

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

409

Electric resistive space heating  

Science Journals Connector (OSTI)

The cost of heating residential buildings using electricity is compared to the cost employing gas or oil. (AIP)

David Bodansky

1985-01-01T23:59:59.000Z

410

Identification and Evaluation of Near-term Opportunities for...  

Broader source: Energy.gov (indexed) [DOE]

* Waste-heat recovery - Bottoming cycles - Turbo-compounding - Thermo-electrics * Reduce heat loss - Advanced combustion modes - Advanced materials * Reduce friction losses -...

411

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas and Oil Heating Systems Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system, ask your local utility or state energy office about the latest technologies on the market. For example, many newer models have designs for burners and heat exchangers that are more efficient during operation and cut heat loss when the equipment is off. Consider a sealed-combustion furnace -- they are safer and more efficient. Long-Term Savings Tip Install a new energy-efficient furnace to save money over the long term. Look for the ENERGY STAR® and EnergyGuide labels to compare efficiency and

412

Scope for reducing the concentrations of NO and CH /SUB X/ in forechamber flame ignition of a fuel mixture  

SciTech Connect (OSTI)

This article discusses the reduction of concentrations of toxic components in exhaust gases resulting from using the forechamber ignition method in gasoline engines containing homogeneous mixtures. A method was devised to calculate the pressure and average temperature in the combustion chamber, as well as the temperatures and concentrations for 11 equilibrium combustion products in individual local zones of the combustion chamber with allowance for the Mache effect, and also the true values for the molecular-change coefficients and the loss of heat of combustion due to dissociation, and the NO formation kinetics indicated by Zel'dovich's mechanism. It is concluded that the production of toxic components can be reduced in an engine with forechamber flame ignition and a high compression ratio only by using deliberate stratification and a displacing ring to prevent the fuel from entering peripheral and dead zones of the chamber before and after combustion.

Mekhtiev, R.I.

1983-09-01T23:59:59.000Z

413

Oscillating flow in a stirling engine heat exchanger  

Science Journals Connector (OSTI)

Three heat exchangers exist in modern Stirling engines: a heater, a cooler, and a regenerator. Here a study that deals principally with tubular heaters and coolers is carried out. The calculation procedure for the oscillating flow heat transfer is presented. Literature sources are studied to find the most suitable correlations by comparing them to each other and to the classical turbulent flow correlations encountered in the literature. The enhancement of heat transfer by means of a few circumferential slots inside the tubes and the pressure losses of oscillatory flow are discussed. Non-circular cross-section conduits with rectangular and triangular cross-sections are investigated and compared to the smooth circular tubes. The increment of the performance of an idealised Stirling engine with slotted heat exchanger tubes is compared to the case with smooth ones. The ratio of the gain in the shaft power and pumping losses is 2.22. The Carnot efficiency increment is 2.7%.

M. Kuosa; K. Saari; A. Kankkunen; T.-M. Tveit

2012-01-01T23:59:59.000Z

414

Fuzzy predictive control of district heating network  

Science Journals Connector (OSTI)

This paper presents a concept for controlling the supply temperature in district heating networks (DHNs) using model predictive control. Due to the inherent non-linearity in the response characteristics caused by varying flow rates the use of fuzzy dynamic matrix control (DMC) is proposed. The fuzzy partitions of the local finite impulse response (FIR) models are constructed by an axis-orthogonal, incremental partitioning scheme. Furthermore, a novel approach for determining future fuzzy trajectory based on heat load forecasts is implemented. It is demonstrated that the fuzzy DMC performs well for the case study considered. In addition, different set point strategies are applied and the results are evaluated with respect to operational costs. In this context it is shown that the trade-off between pumping and heat loss cost plays an important role in minimising overall costs.

S. Grosswindhager; M. Kozek; Andreas Voigt; Lukas Haffner

2013-01-01T23:59:59.000Z

415

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

416

Heat Transfer Guest Editorial  

E-Print Network [OSTI]

Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

Kandlikar, Satish

417

Acoustic Heating Peter Ulmschneider  

E-Print Network [OSTI]

Acoustic Heating Peter Ulmschneider lnstitut fiir Theoretische Astrophysik der Universitat waves are a viable and prevalent heating mechanism both in early- and in late-type stars. Acoustic heating appears to be a dominant mechanism for situations where magnetic fields are weak or absent

Ulmschneider, Peter

418

Ammoniated salt heat pump  

SciTech Connect (OSTI)

A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat.

Haas, W.R.; Jaeger, F.J.; Giordano, T.J.

1981-01-01T23:59:59.000Z

419

Pioneering Heat Pump Project  

Broader source: Energy.gov [DOE]

Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

420

Energy Loss Distribution in the Taylor-Couette Flow between Concentric Rotating Cylinders  

E-Print Network [OSTI]

The distribution of energy loss due to viscosity friction in plane Couette flow and Taylor-Couette Flow between concentric rotating cylinders are studied in detail for various flow conditions. The energy loss is related to the industrial processes in some fluid delivery devices and has significant influence on the flow efficiency, flow stability, turbulent transition, mixing, and heat transfer behaviours, etc. Therefore, it is very helpful to know about the energy loss distribution in the flow domain and to know its influence on the flow for understanding the flow physics. The calculation method of the energy loss distribution in the Taylor-Couette Flow between concentric rotating cylinders has not been found in open literature. In this note, the principle and the calculation are given for single cylinder rotating of inner or outer cylinder, and counter and same direction rotating of two cylinders. For comparison, the distribution of energy loss in a plane Couette flow is also derived for various flow conditi...

Dou, H S; Phan-Thien, N; Yeo, K S; Dou, Hua-Shu; Khoo, Boo Cheong; Phan-Thien, Nhan; Yeo, Khoon Seng

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

No loss fueling station for liquid natural gas vehicles  

SciTech Connect (OSTI)

This patent describes a no loss fueling station for delivery of liquid natural gas (LNG) to a use device such as a motor vehicle. It comprises: a pressure building tank holding a quantity of LNG and gas head; means for delivering LNG to the pressure building tank; means for selectively building the pressure in the pressure building tank; means for selectively reducing the pressure in the pressure building tank; means for controlling the pressure building and pressure reducing means to maintain a desired pressure in the pressure building tank without venting natural gas to the atmosphere; and means for delivering the LNG from the pressure building tank to the use device.

Cieslukowski, R.E.

1992-06-16T23:59:59.000Z

422

Home Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Home Heating Everything you need to know about home heating, including how heating systems work, the different types on the market and proper maintenance. Read more Thermostats...

423

Water Heating | Department of Energy  

Energy Savers [EERE]

Energy Saver Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs....

424

Exergoeconomic analysis of geothermal district heating systems: A case study  

Science Journals Connector (OSTI)

An exergoeconomic study of geothermal district heating systems through mass, energy, exergy and cost accounting analyses is reported and a case study is presented for the Salihli geothermal district heating system (SGDHS) in Turkey to illustrate the present method. The relations between capital costs and thermodynamic losses for the system components are also investigated. Thermodynamic loss rate-to-capital cost ratios are used to show that, for the devices and the overall system, a systematic correlation appears to exist between capital cost and exergy loss (total or internal), but not between capital cost and energy loss or external exergy loss. Furthermore, a parametric study is conducted to determine how the ratio of thermodynamic loss rate to capital cost changes with reference temperature and to develop a correlation that can be used for practical analyses. The correlations may imply that devices in successful district heating systems such as the SGDHS are configured so as to achieve an overall optimal design, by appropriately balancing the thermodynamic (exergy-based) and economic (cost) characteristics of the overall systems and their devices.

Leyla Ozgener; Arif Hepbasli; Ibrahim Dincer; Marc A. Rosen

2007-01-01T23:59:59.000Z

425

Ion Cyclotron-Resonance Heating in a Toroidal Octupole  

Science Journals Connector (OSTI)

rf power near the ion cyclotron-resonance frequency has been used to produce a hundredfold increase (from ? 1 to ? 100 eV) in the ion temperature in a toroidal octupole device. The heating produces no noticeable instabilities or other deleterious effects except for a high reflux of neutrals from the walls. The heating rate is consistent with theory and the limiting ion temperature is determined by charge-exchange losses.

J. D. Barter and J. C. Sprott

1975-06-30T23:59:59.000Z

426

SPUF - a simple polyurethane foam mass loss and response model.  

SciTech Connect (OSTI)

A Simple PolyUrethane Foam (SPUF) mass loss and response model has been developed to predict the behavior of unconfined, rigid, closed-cell, polyurethane foam-filled systems exposed to fire-like heat fluxes. The model, developed for the B61 and W80-0/1 fireset foam, is based on a simple two-step mass loss mechanism using distributed reaction rates. The initial reaction step assumes that the foam degrades into a primary gas and a reactive solid. The reactive solid subsequently degrades into a secondary gas. The SPUF decomposition model was implemented into the finite element (FE) heat conduction codes COYOTE [1] and CALORE [2], which support chemical kinetics and dynamic enclosure radiation using 'element death.' A discretization bias correction model was parameterized using elements with characteristic lengths ranging from 1-mm to 1-cm. Bias corrected solutions using the SPUF response model with large elements gave essentially the same results as grid independent solutions using 100-{micro}m elements. The SPUF discretization bias correction model can be used with 2D regular quadrilateral elements, 2D paved quadrilateral elements, 2D triangular elements, 3D regular hexahedral elements, 3D paved hexahedral elements, and 3D tetrahedron elements. Various effects to efficiently recalculate view factors were studied -- the element aspect ratio, the element death criterion, and a 'zombie' criterion. Most of the solutions using irregular, large elements were in agreement with the 100-{micro}m grid-independent solutions. The discretization bias correction model did not perform as well when the element aspect ratio exceeded 5:1 and the heated surface was on the shorter side of the element. For validation, SPUF predictions using various sizes and types of elements were compared to component-scale experiments of foam cylinders that were heated with lamps. The SPUF predictions of the decomposition front locations were compared to the front locations determined from real-time X-rays. SPUF predictions of the 19 radiant heat experiments were also compared to a more complex chemistry model (CPUF) predictions made with 1-mm elements. The SPUF predictions of the front locations were closer to the measured front locations than the CPUF predictions, reflecting the more accurate SPUF prediction of mass loss. Furthermore, the computational time for the SPUF predictions was an order of magnitude less than for the CPUF predictions.

Hobbs, Michael L.; Lemmon, Gordon H.

2003-07-01T23:59:59.000Z

427

Estimation and Analysis of Energy Utilities Consumption in Batch Chemical Industry through Thermal Losses Modeling  

Science Journals Connector (OSTI)

A hot water distribution system is mainly used for heating the infrastructure (i.e., keeping the building and pipes at a desired temperature) and is fed by steam condensates. ... As a result, the three-parameters model, whose functional form already integrates this feature, was preferred to calibrate valves distributing liquid utilities both in the multiproduct and the monoproduct plant. ... However, an additional assumption for heat losses is necessary or a detailed and complicated analytical calculation for all components of the heating/cooling utility system. ...

Claude Rrat; Stavros Papadokonstantakis; Konrad Hungerbhler

2012-06-29T23:59:59.000Z

428

{open_quotes}Open vessel{close_quotes} heat balance for TBP-nitric acid solutions  

SciTech Connect (OSTI)

Heat balances were performed for both single phase (organic) and two phase (organic and aqueous) TBP/HNO{sub 3} solutions at temperatures above 100{degrees}C. The balance included the heat produced from oxidation minus losses from evaporation and butylnitrate formation by esterification. Net heat measurements were performed using an isothermal calorimeter. Losses from evaporation were determined from the volume of condensate produced (ice bath trap) and the component concentrate Carbon and nitrogen balances were performed to determine the stoichiometry of the reaction. The heat from oxidation was then calculated using the heats of formation of the reactants and products. Balances were obtained assuming that the heat from esterification was near zero (negligibly small). For two layered reaction systems the net heat was maintained endothermic, and constant with time, due to the transport of water to the organic phase by bubble mixing at the interface. This transported was replaced the water lost in the organic phase by evaporation.

Smith, J.R.; Cavin, W.S.; Laurinat, J.E. [Westinghouse Savannah River Company, Aiken, SC (United States)

1995-12-31T23:59:59.000Z

429

ORNL rod-bundle heat-transfer test data. Volume 3. Thermal-hydraulic test facility experimental data report for test 3. 06. 6B - transient film boiling in upflow. [PWR  

SciTech Connect (OSTI)

Reduced instrument responses are presented for Thermal-Hyraulic Test Facility (THTF) Test 3.06.6B. This test was conducted by members of the Oak Ridge National Laboratory Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on August 29, 1980. The objective of the program was to investigate heat transfer phenomena believed to occur in PWR's during accidents, including small and large break loss-of-coolant accidents. Test 3.06.6B was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.06.6B available. Included in the report are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.

1982-05-01T23:59:59.000Z

430

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

431

Active microchannel heat exchanger  

DOE Patents [OSTI]

The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

2001-01-01T23:59:59.000Z

432

Life cycle assessment of base-load heat sources for district heating system options  

SciTech Connect (OSTI)

Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

Ghafghazi, Saeed [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [Delta Research Corporation

2011-03-01T23:59:59.000Z

433

Surviving Biodiversity Loss in the Amazon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surviving Biodiversity Loss in the Amazon You are what you eat, right down to the isotope ratios in your food April 1, 2014 Surviving Biodiversity Loss in the Amazon A Pipra...

434

Loss mechanisms in turbine tip clearance flows  

E-Print Network [OSTI]

Numerical simulations of tip clearance ow have been carried out to dene the loss generation mechanisms associated with tip leakage in unshrouded axial turbines. Mix- ing loss between the leakage, which takes the form of a ...

Huang, Arthur (Arthur C.)

2011-01-01T23:59:59.000Z

435

Reducing Leaking Electricity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 Reducing Leaking Electricity Figure 1. Full and standby power draws of some compact audio systems. A surprisingly large number of appliances-from computer peripherals to cable TV boxes to radios-consume electricity even after they have been switched off. Other appliances, such as cordless telephones, remote garage door openers, and battery chargers don't get switched off but draw power even when they are not performing their principal functions. The energy used while the appliance is switched off or not performing its primary purpose is called "standby consumption" or "leaking electricity." This consumption allows TVs, VCRs and garage-door openers to be ready for instant-on with a remote control, microwave ovens to display a digital

436

Pressure reducing regulator  

DOE Patents [OSTI]

A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure is disclosed. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes. 10 figs.

Whitehead, J.C.; Dilgard, L.W.

1995-10-10T23:59:59.000Z

437

Waste Heat Recovery Submerged Arc Furnaces (SAF)  

E-Print Network [OSTI]

designed consumes power and fuel that yields an energy efficiency of approximately 40% (Total Btus required to reduce to elemental form/ Btu Input). The vast majority of heat is lost to the atmosphere or cooling water system. The furnaces can be modified...

O'Brien, T.

2008-01-01T23:59:59.000Z

438

In-Situ Thermal Conductivity Testing Using a Portable Heat Flow Meter  

E-Print Network [OSTI]

A method has been developed for measuring heat losses from insulated systems in the field. While the measurements are not as precise as those made under laboratory conditions, they are more indicative of actual in service conditions. Extensive field...

Harr, K. S.; Hutto, F. B., Jr.

1979-01-01T23:59:59.000Z

439

Role of Resolved and Parameterized Eddies in the Labrador Sea Balance of Heat and Buoyancy  

Science Journals Connector (OSTI)

Deep convection in the Labrador Sea is an important component of the global ocean ventilation. The associated loss of heat to the atmosphere from the interior of the sea is thought to be mostly supplied by mesoscale eddies, generated either ...

Oleg A. Saenko; Frdric Dupont; Duo Yang; Paul G. Myers; Igor Yashayaev; Gregory C. Smith

2014-12-01T23:59:59.000Z

440

Thermal storage of solar energy as sensible heat at medium temperatures  

Science Journals Connector (OSTI)

A model has been solved in order to determine the thermal losses of a storage tank, where thermal energy is stored as sensible heat of a diathermic fluid at medium temperatures. A parametric analysis has been ...

C. Bellecci; A. Bonanno; M. Camarca; M. Conti; L. La Rotonda

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

E-Print Network 3.0 - air conditioning heat Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water. FIND... : Determine which condition feels colder. Contrast these results with a heat loss of 30 Wm2 under ormal room... in the case f air flow.o ANALYSIS: The hand will...

442

E-Print Network 3.0 - advanced low-temperature heat Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 WSEAS-HMT'08-Kostic, PAGE 1 of 2 HMT'08-The 5th WSEAS International Conference on HEAT and MASS TRANSFER Summary: with irreversible loss of energy potential (from high to...

443

E-Print Network 3.0 - absorption heat exchange Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on the initiation of flashover in a compartment fire Summary: to the wall Qw;r radiative heat loss from the hot layer to the wall gsx exchange factor between the hot layer... with...

444

E-Print Network 3.0 - auxiliary heating Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

buried pipes J.C. Morud1 and A. Simonsen1 1 SINTEF Materials and Chemistry... for the heat loss from buried pipes have been known for a long time. In this paper, we derive...

445

E-Print Network 3.0 - advanced heat pipes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

buried pipes J.C. Morud1 and A. Simonsen1 1 SINTEF Materials and Chemistry... for the heat loss from buried pipes have been known for a long time. In this paper, we derive...

446

E-Print Network 3.0 - axial heat conduction Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2006 by ASME Proceedings of ASME TURBO EXPO 2007 Summary: and with lateral conduction loss) Figure 11 Heat transfer coefficient h at five axial locations on the casing plate......

447

E-Print Network 3.0 - auxiliary heating system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

buried pipes J.C. Morud1 and A. Simonsen1 1 SINTEF Materials and Chemistry... for the heat loss from buried pipes have been known for a long time. In this paper, we derive...

448

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP  

E-Print Network [OSTI]

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer General Electric Company Space Division King of Prussia, Pa. ABSTRACT A heat activated heat pump (HAHP for space heating since it directly utilizes the engine waste heat in addition to the energy obtained

Oak Ridge National Laboratory

449

FETC Programs for Reducing Greenhouse Gas Emissions  

SciTech Connect (OSTI)

Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

Ruether, J.A.

1998-02-01T23:59:59.000Z

450

The Relationship between Polyamine Accumulation and DNA Replication in Synchronized Chinese Hamster Ovary Cells after Heat Shock  

Science Journals Connector (OSTI)

...polyamine biosyn thesis after heat shock because of previous...understand the mechanisms of heat shock-induced loss of cellular proliferative...A and B, shows DNA distributions from untreated cultures...cultures exposed to 43 heat in mig-G1 phase at...

Eugene W. Gerner and Diane Haddock Russell

1977-02-01T23:59:59.000Z

451

ClpB1 Overproduction in Synechocystis sp. Strain PCC 6803 Increases Tolerance to Rapid Heat Shock  

Science Journals Connector (OSTI)

...proteins (group I) upon heat shock to be due to a loss of large, functional complexes by heat or by enzyme activity...2004. Aggregation of heat-shock-denatured, endogenous proteins and distribution of the IbpA/B and Fda...

C. Raul Gonzalez-Esquer; Wim F. J. Vermaas

2013-08-02T23:59:59.000Z

452

Characterization of a Heat-Shock Process for Reduction of the Nucleic Acid Content of Candida utilis  

Science Journals Connector (OSTI)

...molecular weight distribution of the degradation...without appreciable loss of ribonuclease...length of time of heat- shock (step...Immediately after heat-shock- ing, the distribution of nucleic acids...observed in the non-heat-shocked cells...

S. Ohta; S. Maul; A. J. Sinskey; S. R. Tannenbaum

1971-09-01T23:59:59.000Z

453

Susceptibility of members of the family Legionellaceae to thermal stress: implications for heat eradication methods in water distribution systems.  

Science Journals Connector (OSTI)

...all Legionellaceae to heat inactivation (an eradication...foundation for the utility of heat inactiva- tion as a...rapid and precipitous loss of viability when temperatures...conditions more repre; water distribution system, i.e., when...evaluating sediment on the heat resistance of Legionella...

J E Stout; M G Best; V L Yu

1986-08-01T23:59:59.000Z

454

The Need for Cooperation and Relaying in Short-Range High Path Loss Sensor Networks  

E-Print Network [OSTI]

path loss. In particular, a sensor network on the human body or BASN is considered. The energy a propagation model and a radio model for communication along the human body. Using these models, energy the human body is not always possible. Another problem may be possible tissue heating [4], [5]. This effect

455

Splashing and boiling mechanisms of melt layer losses of PFCs during plasma instabilities  

E-Print Network [OSTI]

and computational modeling to predict the effects of viscosity, heat conduction, and phase change on the stability TEXTOR experi- ments have shown constantly present fine melt spray and macro- scopic losses of melt]. In this work, the inviscid stability theory [7­9] is further devel- oped to include the effects of viscosity

Harilal, S. S.

456

Crop Residue Removal for Bioenergy Reduces Soil Carbon Pools: How Can We Offset Carbon Losses?  

Science Journals Connector (OSTI)

Crop residue removal for bioenergy can deplete soil organic carbon (SOC) ... been, however, widely discussed. This paper reviews potential practices that can be used to offset the SOC lost with residue removal. Literature

Humberto Blanco-Canqui

2013-03-01T23:59:59.000Z

457

Mitigation Emerges as Major Strategy for Reducing Losses Caused by Natural Disasters  

Science Journals Connector (OSTI)

...without the local planning programs, yielding $11 million...an ongoing inspection program, and many communities lack...homeowners could get a tax rebate by undertaking a mitigation...an ongoing inspection program, and many communities...homeowners could get a tax rebate by undertaking a mitigation...

Board on Natural Disasters

1999-06-18T23:59:59.000Z

458

Global economic potential for reducing carbon dioxide emissions from mangrove loss  

Science Journals Connector (OSTI)

...estimate of land prices for agriculture. The calibration...percentage) Saint Lucia LCA 23...farming can be much higher than agriculture. We use the Sathirathai...yr-1 )14. Additionally, agriculture and rice cultivation...

Juha Siikamki; James N. Sanchirico; Sunny L. Jardine

2012-01-01T23:59:59.000Z

459

Mitigation Emerges as Major Strategy for Reducing Losses Caused by Natural Disasters  

Science Journals Connector (OSTI)

...that require real estate agents to inform...rapidly integrate real-time data with archival...Nations Commission for Sustainable Development, the...regulations that require real estate agents to inform...rapidly integrate real-time data with...

Board on Natural Disasters

1999-06-18T23:59:59.000Z

460

Sleep Loss Reduces Diurnal Rhythm Amplitude of Leptin in Healthy Men  

E-Print Network [OSTI]

,? H. P. A. Van Dongen,z M. P. Szuba,z J. Samaras,? N. J. Price,z H. K. Meier-Ewert,y D. F. Dingesz and C. S. Mantzoros? ? Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA. yLahey Clinic and Tufts Medical School, Boston, MA, USA. zDivision of Sleep and Chronobiology

Pennsylvania, University of

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Changing photovoltaic array interconnections to reduce mismatch losses: a case study  

E-Print Network [OSTI]

whom account for 73% of the new PV installations throughout the world [1]. In 2007, the Spanish photovoltaic market grew by 450% bringing its total installed PV power to 634 MWp. As can be seen below use the centralized inverter topology, mostly for economical reasons, which consists of a single

Boyer, Edmond

462

Reducing Agricultural Nitrate Losses in the Embarras River Watershed through Bioreactors, Constructed Wetlands, and Outreach  

E-Print Network [OSTI]

, Constructed Wetlands, and Outreach Proposed by the University of Illinois at Urbana-Champaign Mark David project will combine research, education, and extension on using tile-fed constructed wetlands and wood of wetlands using three constructed in 1994, while at the same time install two additional wetlands in other

David, Mark B.

463

Induction machine stray loss from inter-bar currents  

E-Print Network [OSTI]

Stray load loss refers generally to the sources of induction machine loss not accounted for by typical calculations of primary or secondary copper loss, no load core loss, or friction and windage loss. Harmonic rotor bar ...

Englebretson, Steven Carl

2009-01-01T23:59:59.000Z

464

Building America Webinar: Central Multifamily Water Heating Systems  

Broader source: Energy.gov [DOE]

Hosted by DOE's Building America program, this webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution.

465

Influence of Infrared Radiation on Attic Heat Transfer  

E-Print Network [OSTI]

roof temperatures. It was found that a radiant barrier such as aluminum foil can reduce the heat flux significantly. Experimental results were compared to a Three-Region approximate solution developed at Oak Ridge National Laboratories (ORNL). The model...

Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.

1985-01-01T23:59:59.000Z

466

FACT SHEET: Energy Department Actions to Deploy Combined Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

reuses excess heat to warm Frito-Lay's chip fryer oil - cutting costs and reduce harmful air pollution. The Department is also supporting new CHP technologies that are cleaner,...

467

Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1  

E-Print Network [OSTI]

condensation in winter, reduced life and reliability of ventilation equipment, and high repair bills cooling and heating systems. VENTILATION SYSTEMS The operating efficiency of a ventilation fan can be pockets of stagnant air, inadequate cooling from evaporative cooling pads, high heating expenses, heavy

Watson, Craig A.

468

Survey of hybrid solar heat pump drying systems  

Science Journals Connector (OSTI)

Solar drying is in practice since the ancient time for preservation of food and agriculture crops. The objective of most drying processes is to reduce the moisture content of the product to a specified value. Solar dryers used in agriculture for food ... Keywords: coefficient of performance (COP), direct expansion SAHD, drying chamber, heat pump, solar assisted heat pumps dryer (SAHPD), solar fraction

R. Daghigh; K. Sopian; M. H. Ruslan; M. A. Alghoul; C. H. Lim; S. Mat; B. Ali; M. Yahya; A. Zaharim; M. Y. Sulaiman

2009-02-01T23:59:59.000Z

469

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

470

Comparison of U-tube boreholes and a thermosiphon on heat pump performance in an aquifer.  

E-Print Network [OSTI]

??Reducing our energy consumption and dependence on fossil fuels has become a common social, political and engineering goal. Heating and cooling of buildings account for (more)

Workman, Christopher B.

2011-01-01T23:59:59.000Z

471

Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity  

Broader source: Energy.gov [DOE]

Working to expand the usage of thermoelectric technology beyond seat heating and cooling and in doing so reduce CO2 emissions and conserve energy.

472

On Variations of Space-heating Energy Use in Office Buildings  

E-Print Network [OSTI]

HPB IEA IEAD LPD MJ NFRC SHC SHGC TRNSYS WWR VAV VT Americanheat gain coefficient (SHGC) reduce space-heating loads. Thetemperature difference. The SHGC represents the fractional

Lin, Hung-Wen

2014-01-01T23:59:59.000Z

473

Policies supporting Heat Pump Technologies  

E-Print Network [OSTI]

Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

Oak Ridge National Laboratory

474

Evaluation of a cryostable low-loss conductor for pulsed field applications  

SciTech Connect (OSTI)

A cryostable, low loss conductor as the basic strand in a 50 kA cable for a 20 MJ prototype, tokamak induction heating coil has been developed, fabricated, and evaluated. The conductor has a copper matrix multifilamentary NbTi core surrounded by a CuNi ring and stabilizing copper segmented by radial CuNi fins. Pulsed loss measurements have been made up to 2.2 T and for decay times from 0.7 to 278 ms. Measurements made on samples with various twists and portions etched away have allowed accurate evaluation of the loss components. Stability measurements were also made on insulated and uninsulated single strands and on subcables. Measured recovery heat flux for the bare strand is about 0.3 W/cm/sup 2/; however, the application of a 0.0005 in. layer of Omega insulation increases the value to about 0.5 W/cm/sup 2/.

Wollan, J.J.; Walker, M.S.; Zeitlin, B.A.; Pollack, D.A.; Shen, S.S.

1980-01-01T23:59:59.000Z

475

Stewarding a Reduced Stockpile  

SciTech Connect (OSTI)

The future of the US nuclear arsenal continues to be guided by two distinct drivers: the preservation of world peace and the prevention of further proliferation through our extended deterrent umbrella. Timely implementation of US nuclear policy decisions depends, in part, on the current state of stockpile weapons, their delivery systems, and the supporting infrastructure within the Department of Defense (DoD) and the Department of Energy's National Nuclear Security Administration (NNSA). In turn, the present is a product of past choices and world events. Now more than ever, the nuclear weapons program must respond to the changing global security environment and to increasing budget pressures with innovation and sound investments. As the nation transitions to a reduced stockpile, the successes of the Stockpile Stewardship Program (SSP) present options to transition to a sustainable complex better suited to stockpile size, national strategic goals and budgetary realities. Under any stockpile size, we must maintain essential human capital, forefront capabilities, and have a right-sized effective production capacity. We present new concepts for maintaining high confidence at low stockpile numbers and to effectively eliminate the reserve weapons within an optimized complex. We, as a nation, have choices to make on how we will achieve a credible 21st century deterrent.

Goodwin, B T; Mara, G

2008-04-18T23:59:59.000Z

476

System Losses Study - FIT (Fuel-cycle Integration and Tradeoffs)  

SciTech Connect (OSTI)

This team aimed to understand the broad implications of changes of operating performance and parameters of a fuel cycle component on the entire system. In particular, this report documents the study of the impact of changing the loss of fission products into recycled fuel and the loss of actinides into waste. When the effort started in spring 2009, an over-simplified statement of the objective was the number of nines how would the cost of separation, fuel fabrication, and waste management change as the number of nines of separation efficiency changed. The intent was to determine the optimum losses of TRU into waste for the single system that had been the focus of the Global Nuclear Energy Program (GNEP), namely sustained recycle in burner fast reactors, fed by transuranic (TRU) material recovered from used LWR UOX-51 fuel. That objective proved to be neither possible (insufficient details or attention to the former GNEP options, change in national waste management strategy from a Yucca Mountain focus) nor appropriate given the 2009-2010 change to a science-based program considering a wider range of options. Indeed, the definition of losses itself changed from the loss of TRU into waste to a generic definition that a loss is any material that ends up where it is undesired. All streams from either separation or fuel fabrication are products; fuel feed streams must lead to fuels with tolerable impurities and waste streams must meet waste acceptance criteria (WAC) for one or more disposal sites. And, these losses are linked in the sense that as the loss of TRU into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. The effort has provided a mechanism for connecting these three Campaigns at a technical level that had not previously occurred asking smarter and smarter questions, sometimes answering them, discussing assumptions, identifying R&D needs, and gaining new insights. The FIT model has been a forcing function, helping the team in this endeavor. Models dont like TBD as an input, forcing us to make assumptions and see if they matter. A major addition in FY 2010 was exploratory analysis of modified open fuel cycles, employing minimum fuel treatment as opposed to full aqueous or electrochemical separation treatment. This increased complexity in our analysis and analytical tool development because equilibrium conditions do not appear sustainable in minimum fuel treatment cases, as was assumed in FY 2009 work with conventional aqueous and electrochemical separation. It is no longer reasonable to assume an equilibrium situation exists in all cases.

Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert S. Cherry; Denia Djokic; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros

2010-09-01T23:59:59.000Z

477

Fluidized bed heat treating system  

DOE Patents [OSTI]

Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

Ripley, Edward B; Pfennigwerth, Glenn L

2014-05-06T23:59:59.000Z

478

NREL: Vehicle Ancillary Loads Reduction - Heat Generated Cooling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat Generated Cooling Heat Generated Cooling A counterintuitive but promising path to reducing the loads imposed by automotive air conditioning systems is to use heat-specifically the waste heat generated by engines. This can be an abundant source of energy, since most light-duty vehicles with combustion engines are only about 30% efficient at best. With that degree of thermal efficiency, an engine releases 70% of its fuel energy as waste heat through the coolant, exhaust gases, and engine compartment warm-up. During much of a typical drive cycle, the engine efficiency is even lower than 30%. As efficiency decreases, the amount of waste heat increases, representing a larger potential energy source. NREL's Vehicle Ancillary Loads Reduction (VALR) team is investigating a number of heat generated cooling technologies

479

Space Heating & Cooling Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Space Heating & Cooling Research Space Heating & Cooling Research Space Heating & Cooling Research The Emerging Technology team conducts research in space heating and cooling technologies, with a goal of realizing aggregate energy savings of 20% relative to a 2010 baseline. In addition to work involving the development of products, the U.S. Department of Energy (DOE), along with industry partners and researchers, develops best practices, tests, and guides designed to reduce market barriers and increase public awareness of these energy saving technologies. Research is currently focusing on: Geothermal Heat Pumps Photo of a home with a geothermal heat pump, showing how it can regulate the temperature of a home using the temperature underground to cool warm air or heat cold air.

480

Flameless heat generator  

SciTech Connect (OSTI)

A heating device generates heat by working a liquid in a closed container with a rotating stack of finely perforate square plates and recovering the heat from the thus heated liquid. In one embodiment a stack of a multiplicity of flat square plates radially offset one from another is rotated in an oil bath in a container under an inner perforate non-rotating cover over which is a similar non-rotating cover that is imperforate. The thermal energy developed through the mechanical working of the liquid is transferred to the main liquid bath and is then removed, as for example, by circulating air or a liquid around the outside of the container with the thus heated air or liquid being used to heat a house or the like.

Leary, C. L.; Leary, G. C.

1983-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Edge localized mode particle losses from the DIII-D tokamak  

Science Journals Connector (OSTI)

Particle losses associated with edge localized mode(ELM) activity on the DIII-D tokamak [J. Luxon et al. Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion(International Atomic Energy Agency Vienna 1986 Vol. I p. 159] are evaluated quantitatively using density profile data obtained from a Thomson scattering system. It is shown that up to 10% of the total core particle content is lost with each ELM. The particle loss varies inversely with ELM frequency. The temporally averaged ELM particle loss is shown to be about 25% of the total particle loss from the confined region under a wide variety of plasma conditions. Although this ELM loss is a small fraction of the total ion flux it is large compared to the particle input from neutral beam heating. Hence ELM particle losses are sufficient to control the density rise associated with H-modeplasma operation with neutral beam heating. In addition to controlling the average density by enhancing the total ion flow albeit only by 25% it is posited that the ELMs play a role in determining the density profile in the H-mode pedestal region.

G. D. Porter; T. A. Casper; J. M. Moller

2001-01-01T23:59:59.000Z

482

Mechanical Compression Heat Pumps  

E-Print Network [OSTI]

MECHANICAL COMPRESSION HEAT PUMPS Thomas-L. Apaloo and K. Kawamura Mycom Corporation, Los Angeles, California J. Matsuda, Mayekawa Mfg. Co., Tokyo, Japan ABSTRACT Mechanical compression heat pumping is not new in industrial applications.... In fact, industry history suggests that the theoretical concept was developed before 1825. Heat pump manufacturers gained the support of consultants and end-users when the energy crisis hit this country in 1973. That interest, today, has been...

Apaloo, T. L.; Kawamura, K.; Matsuda, J.

483

Sorption heat engines  

E-Print Network [OSTI]

For a simple free energy generating device - driven by thermal cycling and based on alternating adsorption and desorption - that has not been explicitly recognized as heat engine the name sorption heat engine is proposed. The mechanism is generally applicable to the fields of physics, chemistry, geology, and possibly, if relevant to the origin of life, biology. Four kinds of sorption heat engines are distinguished depending on the occurrence of changes in composition of the adsorbent or adsorbate during the thermal cycle.

Muller, A W J; Muller, Anthonie W. J.; Schulze-Makuch, Dirk

2005-01-01T23:59:59.000Z

484

Combined Heat and Power  

Office of Environmental Management (EM)

energy costs and 31 emissions while also providing more resilient and reliable electric power and thermal energy 1 . CHP 32 systems combine the production of heat (for both...

485

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

486

Solar Heating in Uppsala.  

E-Print Network [OSTI]

?? The housing corporation Uppsalahem has installed asolar heating system in the neighbourhood Haubitsen,which was renovated in 2011. This report examineshow much energy the solar (more)

Blomqvist, Emelie; Hger, Klara

2012-01-01T23:59:59.000Z

487

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

488

Solar heating in Colombia.  

E-Print Network [OSTI]

?? This report describes the process of a thesis implemented in Colombia concerning solar energy. The project was to install a self-circulating solar heating system, (more)

Skytt, Johanna

2012-01-01T23:59:59.000Z

489

Photovoltaic roof heat flux  

E-Print Network [OSTI]

Effect of building integrated photovoltaics on microclimateof a building's integrated-photovoltaics on heating a n dgaps for building- integrated photovoltaics, Solar Energy

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

490

Passive solar space heating  

SciTech Connect (OSTI)

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

491

Combined Heat & Power  

Broader source: Energy.gov (indexed) [DOE]

available today." -American Council for an Energy-Efficient Economy What is Combined Heat & Power (CHP)? Federal Utility Partnership Working Group May 7 - 8, 2014 Virginia...

492

Heat rejection system  

DOE Patents [OSTI]

A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

1980-01-01T23:59:59.000Z

493

Heat transfer dynamics  

SciTech Connect (OSTI)

As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained.

Smith, T.M. (Marsden, Inc., Pennsauken, NJ (United States))

1994-08-01T23:59:59.000Z

494

ARM - Atmospheric Heat Budget  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ListAtmospheric Heat Budget Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About...

495

The Use of Hollow Plastic Balls as Energy Conservation Devices in Heated Open Tanks  

E-Print Network [OSTI]

The problem of heat losses from open liquid filled tanks is as old as industry itself. This paper will present the advantages of using an insulating blanket of hollow plastic spheres as a mechanism to conserve this type of industrial energy loss...

Byrne, T. J.

1983-01-01T23:59:59.000Z

496

Building Energy Software Tools Directory: Window Heat Gain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Heat Gain Window Heat Gain Window Heat Gain image Calculates the solar heat gain through vertical windows in temperate latitudes. Screen Shots Keywords Solar, window, energy Validation/Testing N/A Expertise Required None. Users Few (new program). Audience Architects, energy analysts. Input Location, window characteristics, ground characteristics. Output Daily/monthly heat gain through window. Computer Platform Web Programming Language JavaScript Strengths Allows default locations/windows/surfaces or custom user data. Incorporates lots of ASHRAE SHGF data that is otherwise burdensome to deal with. Weaknesses Only works for windows facing close to due north, south, east, or west. Doesn't address conductive losses or shading. Contact Company: Sustainable By Design Address: 3631 Bagley Avenue North

497

HEAT RECOVERY FROM WASTE WATER BY MEANS OF A RECUPERATIVE HEAT EXCHANGER AND A HEAT PUMP  

Science Journals Connector (OSTI)

ABSTRACT The useful heat of warm waste water is generally transferred to cold water using a recuperative heat exchanger. Depending on its design, the heat exchanger is able to utilise up to 90% of the waste heat potential available. The electric energy needed to operate such a system is more than compensated for by an approximately 50-fold gain of useful heat. To increase substantially the waste heat potential available and the amount of heat recovered, the system for recuperative heat exchange can be complemented by a heat pump. Such a heat recovery system on the basis of waste water is being operated in a public indoor swimming pool. Here the recuperative heat exchanger accounts for about 60%, the heat pump for about 40% of the toal heat reclaimed. The system consumes only 1 kWh of electric energy to supply 8 kWh of useful heat. In this way the useful heat of 8 kWh is compensated for by the low consumption of primary energy of 2.8 kWh. Due to the installation of an automatic cleaning device, the heat transfer surfaces on the waste water side avoid deposits so that the troublesome maintenance work required in other cases on the heat exchangers is not required. KEYWORDS Shower drain water, recuperative heat recovery, heat recovery by means of a heat pump, combination of both types of heat recovery, automatic cleaning device for the heat exchangers, ratio of useful heat supply vs. electric energy consumption, economic consideration.

K. Biasin; F.D. Heidt

1988-01-01T23:59:59.000Z

498

The Impact of Heat Transfer Enhancement Techniques on Energy Savings in the U.S. Industry  

E-Print Network [OSTI]

conserving energy in the process and to reduce pumping power, thereby reducing operating costs. This paper attempts to quantify the impact of enhancement on energy savings and capital costs. The overall heat exchanger market was divided into four sectors...

Rebello, W. J.; Peterson, G. R.; Sohal, M.

499

Solar Assisted Heat Pump Systems with Ground Heat Exchanger Simulation Studies  

Science Journals Connector (OSTI)

Abstract Different concepts of solar assisted heat pump systems with ground heat exchanger are simulated according to IEA SHC Task44/HPP Annex38 reference conditions. Two aspects of the concepts are investigated using TRNSYS simulations. First, the solar impact on system efficiency is assessed by the seasonal performance factor. Second, the solar impact on the possible shortening of the ground heat exchanger is evaluated by the minimum temperature at the ground heat exchanger inlet. The simulation results reveal diverging optimums for the concepts. The direct use of solar energy clearly achieves the best effect on the efficiency improvement. A simple domestic hot water system reaches a seasonal performance factor of 4.5 and solar combi-systems seasonal performance factors up to 6. In contrast, the use of solar energy on the cold side of the heat pump achieves the best effects on the shortening of the ground heat exchanger of up to 20%. Two highly sensitive influences are investigated with the developed transient system model. First, the minimum allowed heat source temperature is varied. Here 1K equals a variation of 0.25 in the seasonal performance or of around 10% ground heat exchanger length. Second, the ground heat exchanger model is simulated without and with a pre-pipe that improves the transient model behavior. The influence of this pre-pipe on the SPF is small for conventionally designed ground heat exchangers, but of around 2K for the minimum inlet temperature. Therefore, the dynamic model quality reveals potential to reduce the size of the ground heat exchanger corresponding to investment costs.

Erik Bertram

2014-01-01T23:59:59.000Z

500

GAM-HEAT: A computer code to compute heat transfer in complex enclosures  

SciTech Connect (OSTI)

This report discusses the GAM[underscore]HEAT code which was developed for heat transfer analyses associated with postulated Double Ended Guilliotine Break Loss Of Coolant Accidents (DEGB LOCA) resulting in a drained reactor vessel. In these analyses the gamma radiation resulting from fission product decay constitutes the primary source of energy as a function of time. This energy is deposited into the various reactor components and is re-radiated as thermal energy. The code accounts for all radiant heat exchanges within and leaving the reactor enclosure. The SRS reactors constitute complex radiant exchange enclosures since there are many assemblies of various types within the primary enclosure and most of the assemblies themselves constitute enclosures. GAM-HEAT accounts for this complexity by processing externally generated view factors and connectivity matrices as discussed below, and also accounts for convective, conductive, and advective heat exchanges. The code is structured such that it is applicable for many situations involving heat exchange between surfaces within a radiatively passive medium.

Cooper, R.E.; Taylor, J.R.

1992-12-01T23:59:59.000Z