Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Movable insulation. A guide to reducing heating and cooling losses through the windows in your home  

SciTech Connect (OSTI)

A typical house loses 25 to 30% of its heat through windows, and a house with large windows may lose as much as 50%. Numerous movable-insulation systems that will cut the heat loss through windows in half are described. Chapters are: The Energy-Responsive Dwelling, Past to Present; Window Heat Losses and Gains; Enhanced Glazing Systems; Choosing a Window-Insulation Design for Your Home; Pop-In Shutters; Thermal Curtains - Blankets that Fold; Thermal Shades - Blankets that Roll; Thermal Shutters and Folding Screens; Insulation Between Glazing and Interior Louvers; Exterior Hinged and Sliding Shutters; Sun-Shading Screens; Exterior Roll Shutters; Shutters for Skylights; Shutters for Clerestory Windows; Interior Greenhouse Insulation Systems; Exterior Insulation for Greenhouses; Movable Insulation to Assist Passive Space Heating; and Movable Insulation to Assist Solar Water Heaters. Appendices include the following: insulated shade and shutter construction; the economics of window insulation; movable insulation products, hardware, and components; further technical information; and design sources. (MCW)

Langdon, W.K.

1980-01-01T23:59:59.000Z

2

Heat Loss Measurement Using Infrared Imaging  

E-Print Network [OSTI]

in various applications. Examples of two applications are presented. The first describes the development of heat balance data for a solvent refined coal processing unit. The second describes the measurement of heat loss and thermal resistance in a double...

Seeber, S. A.

1983-01-01T23:59:59.000Z

3

Heat loss from an open cavity  

SciTech Connect (OSTI)

Cavity type receivers are used extensively in concentrating solar thermal energy collecting systems. The Solar Total Energy Project (STEP) in Shenandoah, Georgia is a large scale field test for the collection of solar thermal energy. The STEP experiment consists of a large field array of solar collectors used to supplement the process steam, cooling and other electrical power requirements of an adjacent knitwear manufacturing facility. The purpose of the tests, conducted for this study, was to isolate and quantify the radiative, conductive, and convective components of total heat loss, and to determine the effects of operating temperature, receiver angle, and aperture size on cavity heat loss. An analytical model for radiative heat loss was developed and compared with two other methods used to determine radiative heat loss. A proposed convective heat loss correlation, including effects of aperture size, receiver operating temperature, and receiver angle is presented. The resulting data is a source to evaluate the STEP measurements.

McDonald, C.G. [California State Polytechnic Univ., Pomona, CA (United States). Coll. of Engineering

1995-12-01T23:59:59.000Z

4

Reducing the losses of optical metamaterials  

SciTech Connect (OSTI)

The field of metamaterials is driven by fascinating and far-reaching theoretical visions, such as perfect lenses, invisibility cloaking, and enhanced optical nonlinearities. However, losses have become the major obstacle towards real world applications in the optical regime. Reducing the losses of optical metamaterials becomes necessary and extremely important. In this thesis, two approaches are taken to reduce the losses. One is to construct an indefinite medium. Indefinite media are materials where not all the principal components of the permittivity and permeability tensors have the same sign. They do not need the resonances to achieve negative permittivity, {var_epsilon}. So, the losses can be comparatively small. To obtain indefinite media, three-dimensional (3D) optical metallic nanowire media with different structures are designed. They are numerically demonstrated that they are homogeneous effective indefinite anisotropic media by showing that their dispersion relations are hyperbolic. Negative group refraction and pseudo focusing are observed. Another approach is to incorporate gain into metamaterial nanostructures. The nonlinearity of gain is included by a generic four-level atomic model. A computational scheme is presented, which allows for a self-consistent treatment of a dispersive metallic photonic metamaterial coupled to a gain material incorporated into the nanostructure using the finite-difference time-domain (FDTD) method. The loss compensations with gain are done for various structures, from 2D simplified models to 3D realistic structures. Results show the losses of optical metamaterials can be effectively compensated by gain. The effective gain coefficient of the combined system can be much larger than the bulk gain counterpart, due to the strong local-field enhancement.

Fang, Anan

2010-12-15T23:59:59.000Z

5

Quantum cryptographic system with reduced data loss  

DOE Patents [OSTI]

A secure method for distributing a random cryptographic key with reduced data loss is disclosed. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically. 23 figs.

Lo, H.K.; Chau, H.F.

1998-03-24T23:59:59.000Z

6

Quantum cryptographic system with reduced data loss  

DOE Patents [OSTI]

A secure method for distributing a random cryptographic key with reduced data loss. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically.

Lo, Hoi-Kwong (1309, Low Block, Lei Moon House Ap Lei Chau Estate, Hong Kong, HK); Chau, Hoi Fung (Flat C, 42nd Floor, Tower 1, University Heights 23 Pokfield Road, Pokfulam, Hong Kong, HK)

1998-01-01T23:59:59.000Z

7

Method for reducing energy losses in laser crystals  

DOE Patents [OSTI]

A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light. 12 figs.

Atherton, L.J.; DeYoreo, J.J.; Roberts, D.H.

1992-03-24T23:59:59.000Z

8

Reducing Data Loss and Saving Money by Acquiring Data Loss Prevention Software  

E-Print Network [OSTI]

Reducing Data Loss and Saving Money by Acquiring Data Loss Prevention Software Master of Art data loss and saving money by acquiring DLP software Patarika Tipwong Acknowledgements This thesisPaul University. #12;Reducing data loss and saving money by acquiring DLP software Patarika Tipwong Table

Schaefer, Marcus

9

Reducing Energy Loss | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumpingStudyReducing

10

Method for reducing iron losses in an iron smelting process  

DOE Patents [OSTI]

A process of smelting iron that comprises the steps of: a) introducing a source of iron oxide, oxygen, nitrogen, and a source of carbonaceous fuel to a smelting reactor, at least some of said oxygen being continuously introduced through an overhead lance; b) maintaining conditions in said reactor to cause (i) at least some of the iron oxide to be chemically reduced, (ii) a bath of molten iron to be created and stirred in the bottom of the reactor, surmounted by a layer of slag, and (iii) carbon monoxide gas to rise through the slag; c) causing at least some of said carbon monoxide to react in the reactor with the incoming oxygen, thereby generating heat for reactions taking place in the reactor; and d) releasing from the reactor an offgas effluent, is run in a way that keeps iron losses in the offgas relatively low. After start-up of the process is complete, steps (a) and (b) are controlled so as to: e) keep the temperature of the molten iron at or below about 1550.degree. C. and f) keep the slag weight at or above about 0.8 tonne per square meter.

Sarma, Balu (Airmont, NY); Downing, Kenneth B. (Greenville, SC)

1999-01-01T23:59:59.000Z

11

Method for reducing iron losses in an iron smelting process  

DOE Patents [OSTI]

A process of smelting iron that comprises the steps of: (a) introducing a source of iron oxide, oxygen, nitrogen, and a source of carbonaceous fuel to a smelting reactor, at least some of said oxygen being continuously introduced through an overhead lance; (b) maintaining conditions in said reactor to cause (1) at least some of the iron oxide to be chemically reduced, (2) a bath of molten iron to be created and stirred in the bottom of the reactor, surmounted by a layer of slag, and (3) carbon monoxide gas to rise through the slag; (c) causing at least some of said carbon monoxide to react in the reactor with the incoming oxygen, thereby generating heat for reactions taking place in the reactor; and (d) releasing from the reactor an offgas effluent, is run in a way that keeps iron losses in the offgas relatively low. After start-up of the process is complete, steps (a) and (b) are controlled so as to: (1) keep the temperature of the molten iron at or below about 1550 C and (2) keep the slag weight at or above about 0.8 ton per square meter. 13 figs.

Sarma, B.; Downing, K.B.

1999-03-23T23:59:59.000Z

12

PERPENDICULAR ION HEATING BY REDUCED MAGNETOHYDRODYNAMIC TURBULENCE  

SciTech Connect (OSTI)

Recent theoretical studies argue that the rate of stochastic ion heating in low-frequency Alfvén-wave turbulence is given by Q = c{sub 1}((?u){sup 3}/?)exp (– c{sub 2}/?), where ?u is the rms turbulent velocity at the scale of the ion gyroradius ?, ? = ?u/v{sub i}, v{sub i} is the perpendicular ion thermal speed, and c{sub 1} and c{sub 2} are dimensionless constants. We test this theoretical result by numerically simulating test particles interacting with strong reduced magnetohydrodynamic (RMHD) turbulence. The heating rates in our simulations are well fit by this formula. The best-fit values of c{sub 1} are ?1. The best-fit values of c{sub 2} decrease (i.e., stochastic heating becomes more effective) as the Reynolds number and the number of grid points in the RMHD simulations increase. As an example, in a 1024{sup 2} × 256 RMHD simulation with a dissipation wavenumber of the order of the inverse ion gyroradius, we find c{sub 2} = 0.21. We show that stochastic heating is significantly stronger in strong RMHD turbulence than in a field of randomly phased Alfvén waves with the same power spectrum, because coherent structures in strong RMHD turbulence increase orbit stochasticity in the regions where ions are heated most strongly. We find that c{sub 1} increases by a factor of ?3 while c{sub 2} changes very little as the ion thermal speed increases from values <heating in the solar wind.

Xia, Qian; Perez, Jean C.; Chandran, Benjamin D. G. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Quataert, Eliot, E-mail: qdy2@unh.edu, E-mail: benjamin.chandran@unh.edu, E-mail: jeanc.perez@unh.edu, E-mail: eliot@astro.berkeley.edu [Astronomy Department and Theoretical Astrophysics Center, 601 Campbell Hall, The University of California, Berkeley, CA 94720 (United States)

2013-10-20T23:59:59.000Z

13

Correlation Of Surface Heat Loss And Total Energy Production...  

Open Energy Info (EERE)

discharge). The conductive loss at or near the surface (shallow heat flow) is a primary signature and indication of the strength of a geothermal system. Using a database of...

14

Way to reduce arc voltage losses in hybrid thermionic converters  

SciTech Connect (OSTI)

Experimental results are reported concerning the output and emission characteristics of the arc and hybrid regimes in a plane-parallel thermionic converter with Pt--Zr--O electrode pair. It is shown that arc voltage losses can be reduced to values below those obtainable in ordinary arc thermionic converters.

Tskhakaya, V.K.; Yarygin, V.I.

1982-03-01T23:59:59.000Z

15

New waste-heat refrigeration unit cuts flaring, reduces pollution  

SciTech Connect (OSTI)

Planetec Utility Services Co. Inc. and Energy Concepts Co. (ECC), with the help of the US Department of Energy (DOE), developed and commissioned a unique waste-heat powered LPG recovery plant in August 1997 at the 30,000 b/d Denver refinery, operated by Ultramar Diamond Shamrock (UDS). This new environmentally friendly technology reduces flare emissions and the loss of salable liquid-petroleum products to the fuel-gas system. The waste heat ammonia absorption refrigeration plant (Whaarp) is the first technology of its kind to use low-temperature waste heat (295 F) to achieve sub-zero refrigeration temperatures ({minus}40 F) with the capability of dual temperature loads in a refinery setting. The ammonia absorption refrigeration is applied to the refinery`s fuel-gas makeup streams to condense over 180 b/d of salable liquid hydrocarbon products. The recovered liquid, about 64,000 bbl/year of LPG and gasoline, increases annual refinery profits by nearly $1 million, while substantially reducing air pollution emissions from the refinery`s flare.

Brant, B.; Brueske, S. [Planetec Utility Services Co., Inc., Evergreen, CO (United States); Erickson, D.; Papar, R. [Energy Concepts Co., Annapolis, MD (United States)

1998-05-18T23:59:59.000Z

16

Reducing pressure loss of large diameter check valves  

SciTech Connect (OSTI)

Transcend Inc., a consulting firm that specializes in the use of computer simulation to optimize existing equipment and system designs, was approached by Mannesmann Demag AG, Moenchengladbach, Germany to optimize the design of its DRV-B check valve. In one of the first applications of Computational Fluid Dynamics (CFD) technology to valve design, the pressure loss coefficient (K) of the DRV-B valve was lowered to 0.40--0.50 for valve sizes NPS48--NPS12, the lowest possible level for this type of valve. The flow efficiency is three times better than that of the earlier design. As a result, the optimized Mannesmann Demag DRV-B check valve provides a dramatic reduction in operating cost, particularly in transmission service where natural gas is transported over long distances. The reduced pressure loss saves compressor fuel cost. For the optimized valve, the incremental compressor fuel cost is reduced to 1.5-times the capital cost of the valve calculated over a 20-year Life Cycle Cost (LCC) period.

NONE

1997-09-01T23:59:59.000Z

17

Superconducting shielded core reactor with reduced AC losses  

DOE Patents [OSTI]

A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

Cha, Yung S.; Hull, John R.

2006-04-04T23:59:59.000Z

18

A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer  

E-Print Network [OSTI]

A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer Reprinted: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer A unique specimen of gopher snake of pulmocutaneous water loss and heat transfer, no difference was observed between the scale- less animal

Bennett, Albert F.

19

Reduce Radiation Losses from Heating Equipment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumping Costs

20

Ceramic tube seals cut heat loss, achieve six month payback  

SciTech Connect (OSTI)

The methane reformer at the Celanese Chemical Company's Bishop, TX plant operates at approximately 1900/sup 0/F. The reformer has 32 tubes (9'' diameter) that pass through the firebox. Openings around the tubes measure 11'' in diameter to accommodate horizontal and vertical thermal expansion and movement as well as to facilitate tube removal. The gaps around the tubes permitted cool air to be drawn into the firebox (caused by slight negative pressure) and also allowed radiant heat to escape causing the reformer to operate at a lower than desired level of thermal efficiency. Celanese contracted to retrofit the old rigid firebrick roof in the methane reformer with a 10'' thick ceramic fiber module lining. The gaps around the tubes were sealed by using a special tube seal made from Nextel woven ceramic fiber fabric, a 1984 CHEMICAL PROCESSING Vaaler Award winner (Mid-November 1984, p.52). The Nextel fabric used in this application is a heat resistant textile that has a continuous use temperature of 2200/sup 0/F - well above the 1900/sup 0/F operating temperature of the reformer. The tube seals have been working exactly as intended, verified by observation through inspection ports. Temperatures in the penthouse area above the roof dropped from 240/sup 0/F to 150/sup 0/F. The reduction in heat losses has been attributed to the elimination of the gaps around each tube by the seals and to the improved K-factor of the ceramic module lining. The tube seals have paid for themselves within six months of installation. At that time, the seal boots were inspected and showed no signs of wear. With these results, the improved efficiency of the methane reformer promises to yield additional economic benefits.

Not Available

1985-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A New Loss Control Management System; Assimilating Loss Control Methodology in Reducing the Overall Quality Losses in XYZ Chemical Corporation  

E-Print Network [OSTI]

that has occurred in recent past. While the quality management system that is in place at XYZ monitors and improves the overall quality of the products, it does not capture the quality losses as it should. Quality losses occur due to human error...

Shaikh, Sameer

2011-05-20T23:59:59.000Z

22

Computational and experimental investigations into cavity receiver heat loss for solar thermal concentrators  

E-Print Network [OSTI]

of the total, though the losses depend on solar elevation angle; at higher angles, and in low-wind conditions in inclination, temperature and cavity geometry on convective and radiative heat loss. Secondly, a water

23

Economic and environmental benefits of reducing standby power loss in DVD/VCD players and copiers in China  

E-Print Network [OSTI]

Turns into a Flood: Standby Power Loss in China, Sinosphere,of Reducing Standby Power Loss in DVD/VCD Players ands awareness of standby power loss. Reducing standby power

Lin, Jiang; Li, Tienan; Li, Aizhen; Zhang, Guoqing

2004-01-01T23:59:59.000Z

24

Focused cathode design to reduce anode heating during vircator operation  

SciTech Connect (OSTI)

Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A. [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)] [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

2013-10-15T23:59:59.000Z

25

Question of the Week: How Do You Reduce Your Water Heating Costs...  

Broader source: Energy.gov (indexed) [DOE]

Reduce Your Water Heating Costs Question of the Week: How Do You Reduce Your Water Heating Costs February 19, 2009 - 1:39pm Addthis Water heating can account for a significant...

26

Segmented superconducting tape having reduced AC losses and method of making  

DOE Patents [OSTI]

A superconducting tape having reduced AC losses. The tape has a high temperature superconductor layer that is segmented. Disruptive strips, formed in one of the tape substrate, a buffer layer, and the superconducting layer create parallel discontinuities in the superconducting layer that separate the current-carrying elements of the superconducting layer into strips or filament-like structures. Segmentation of the current-carrying elements has the effect of reducing AC current losses. Methods of making such a superconducting tape and reducing AC losses in such tapes are also disclosed.

Foltyn, Stephen R. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Arendt, Paul N. (Los Alamos, NM); Holesinger, Terry G. (Los Alamos, NM); Wang, Haiyan (Los Alamos, NM)

2009-09-22T23:59:59.000Z

27

Exergy Optimized Wastewater Heat Recovery: Minimizing Losses and Maximizing Performance  

E-Print Network [OSTI]

the heat using a batch process with an insulated tank containing a heat exchanger. The analysis is based on statistical annual hot water usage profiles. The system shows that the exergy available in warm wastewater can be optimized with specific tank size...

Meggers, F.

28

The Use of Infrared Technology To Detect Heat Loss  

E-Print Network [OSTI]

. Some of todays more sophisticated infrared instruments are real-time and produce "heat-pictures". These are representations of objects with surface temperatures appearing as patterns upon objects....

Faulkner, K.

1979-01-01T23:59:59.000Z

29

Detecting sources of heat loss in residential buildings from infrared imaging  

E-Print Network [OSTI]

Infrared image analysis was conducted to determine the most common sources of heat loss during the winter in residential buildings. 135 houses in the greater Boston and Cambridge area were photographed, stitched, and tallied ...

Shao, Emily Chen

2011-01-01T23:59:59.000Z

30

Dynamic measurement of heat loss coefficients through Trombe wall glazing systems  

SciTech Connect (OSTI)

A Trombe wall presents a unique opportunity to measure the heat-loss coefficient through the glazing system because the wall itself can be used as a heat meter. Since the instantaneous heat flux through the outer wall surface can be determined, the heat loss coefficient at night can be calculated by dividing by the wall surface-to-ambient temperature difference. This technique has been used to determine heat-loss coefficients for Los Alamos test rooms during the winter of 1980-1981. Glazing systems studied include single and double glazing both with and without night insulation used in conjunction with a flat black paint, and both single and double glazing used in conjunction with a selective surface.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

31

Hybrid Solar Lighting Provides Energy Savings and Reduces Waste Heat  

SciTech Connect (OSTI)

ABSTRACT Artificial lighting is the largest component of electricity use in commercial U.S. buildings. Hybrid solar lighting (HSL) provides an exciting new means of reducing energy consumption while also delivering significant ancillary benefits associated with natural lighting in buildings. As more than half of all federal facilities are in the Sunbelt region (defined as having an average direct solar radiation of greater than 4 kWh/m2/day) and as more than half of all square footage available in federal buildings is also in the Sunbelt, HSL is an excellent technology fit for federal facilities. The HSL technology uses a rooftop, 4-ft-wide dish and secondary mirror that track the sun throughout the day (Fig. 1). The collector system focuses the sunlight onto 127 optical fibers. The fibers serve as flexible light pipes and are connected to hybrid light fixtures that have special diffusion rods that spread out the light in all directions. One collector powers about eight hybrid light fixtures-which can illuminate about 1,000 square feet. The system tracks at 0.1 accuracy, required by the two-mirror geometry to keep the focused beam on the fiber bundle. When sunlight is plentiful, the optical fibers in the luminaires provide all or most of the light needed in an area. During times of little or no sunlight, a sensor controls the intensity of the artificial lamps to maintain a desired illumination level. Unlike conventional electric lamps, the natural light produces little to no waste heat and is cool to the touch. This is because the system's solar collector removes the infrared light-the part of the spectrum that generates a lot of the heat in conventional bulbs-from the sunlight.

Lapsa, Melissa Voss [ORNL; Maxey, L Curt [ORNL; Earl, Dennis Duncan [ORNL; Beshears, David L [ORNL; Ward, Christina D [ORNL; Parks, James Edgar [ORNL

2006-01-01T23:59:59.000Z

32

Reduce Your Heating Bills with Better Insulation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Mcf, an increase of about 17% compared to last year's heating season. Residential heating oil prices are projected to average 4.13 per gallon this winter, an increase of about...

33

REDUCING MISMATCH LOSSES IN GRID-CONNECTED RESIDENTIAL BIPV ARRAYS USING ACTIVE POWER CONVERSION COMPONENTS  

E-Print Network [OSTI]

in plant energy production. The introduction of additional power converters in the plant layout intends/Simulink© environment for each topology using a 3 kWp rooftop-type plant. Simulation results show that a considerableREDUCING MISMATCH LOSSES IN GRID-CONNECTED RESIDENTIAL BIPV ARRAYS USING ACTIVE POWER CONVERSION

Paris-Sud XI, Université de

34

Copper waveguide cavities with reduced surface loss for coupling to superconducting qubits  

E-Print Network [OSTI]

Copper waveguide cavities with reduced surface loss for coupling to superconducting qubits Daniela, other recent work has involved qubits coupled to copper cavities with coherence times approaching 0.1 ms. The copper provides a good path for thermalizing the cavity walls and qubit chip, although the substantial

Plourde, Britton L. T.

35

Increasing LTC Engine Efficiency by Reducing Pressure-Oscillation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Increasing LTC Engine Efficiency by Reducing Pressure-Oscillation-Related Heat Transfer Losses Increasing LTC Engine Efficiency by Reducing Pressure-Oscillation-Related Heat...

36

Coronal Heating and Reduced MHD Sean Oughton 1 , Pablo Dmitruk 2 , and William H. Matthaeus 2  

E-Print Network [OSTI]

Coronal Heating and Reduced MHD Sean Oughton 1 , Pablo Dmitruk 2 , and William H. Matthaeus 2 1 review the use of reduced magnetohydrodynamics (RMHD) in coronal heating models, with particular emphasis on models for magnetically open regions. A brief review of the nature of the coronal heating problem

Oughton, Sean

37

Reducing Thermal Losses and Gains With Buried and Encapsulated Ducts in Hot-Humid Climates  

SciTech Connect (OSTI)

The Consortium for Advanced Residential Buildings (CARB) monitored three houses in Jacksonville, FL, to investigate the effectiveness of encapsulated and encapsulated/buried ducts in reducing thermal losses and gains from ductwork in unconditioned attics. Burying ductwork beneath loose-fill insulation has been identified as an effective method of reducing thermal losses and gains from ductwork in dry climates, but it is not applicable in humid climates where condensation may occur on the outside of the duct jacket. By encapsulating the ductwork in closed cell polyurethane foam (ccSPF) before burial beneath loose-fill mineral fiber insulation, the condensation potential may be reduced while increasing the R-value of the ductwork.

Shapiro, C.; Magee, A.; Zoeller, W.

2013-02-01T23:59:59.000Z

38

Sludge, fuel degradation and reducing fouling on heat exchangers  

SciTech Connect (OSTI)

Brookhaven National Laboratory, under contract to the US Department of Energy, operates an oil heat research primarily to lower energy consumption in the 12 million oil heated homes in the US. The program objectives include: Improve steady state efficiency of oil heating equipment, Improve seasonal efficiencies, Eliminate or minimize factors which tend to degrade system performance. This paper provides an overview of the status of three specific projects which fall under the above objectives. This includes our fuel quality project, oil appliance venting and a project addressing efficiency degradation due to soot fouling of heat exchangers.

Butcher, T.; Litzke, Wai Lin; Krajewski, R.; Celebi, Y.

1992-02-01T23:59:59.000Z

39

Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief  

SciTech Connect (OSTI)

This technical brief is a guide to help plant operators reduce waste heat losses associated with process heating equipment.

Not Available

2004-11-01T23:59:59.000Z

40

ELECTRIC CO-HEATING: A METHOD FOR EVALUATING SEASONAL HEATING EFFICIENCIES AND HEAT LOSS RATES IN DWELLINGS  

E-Print Network [OSTI]

and heating efficiency, inexpensive and practical diagnosti.c techniques are needed, such as pressuriza- tion, infrared

Modera, M.P.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

SciTech Connect (OSTI)

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

42

IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 3, MAY 2004 1625 Reducing Power Loss in Magnetic Bearings by  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 3, MAY 2004 1625 Reducing Power Loss in Magnetic operating without a bias but has the disadvantage of introducing additional power loss. Although one obvious way to minimize the power loss is to alternate activation of the two opposing electromagnetic actua

Hu, Tingshu

43

Control of Lime Kiln Heat Balance is Key to Reduced Fuel Consumption  

E-Print Network [OSTI]

This article discusses the various heat loads in a pulp mill lime sludge kiln, pointing out which heat loads cannot be reduced and which heat loads can, and how a reduction in energy use can be achieved. In almost any existing rotary lime sludge...

Kramm, D. J.

1982-01-01T23:59:59.000Z

44

Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates  

E-Print Network [OSTI]

We present microwave-frequency NbTiN resonators on silicon, systematically achieving internal quality factors above 1 M in the quantum regime. We use two techniques to reduce losses associated with two-level systems: an additional substrate surface treatment prior to NbTiN deposition to optimize the metal-substrate interface, and deep reactive-ion etching of the substrate to displace the substrate-vacuum interfaces away from high electric fields. The temperature and power dependence of resonator behavior indicate that two-level systems still contribute significantly to energy dissipation, suggesting that more interface optimization could further improve performance.

A. Bruno; G. de Lange; S. Asaad; K. L. van der Enden; N. K. Langford; L. DiCarlo

2015-02-13T23:59:59.000Z

45

Visualization of flow boiling in an annular heat exchanger under reduced gravity conditions  

E-Print Network [OSTI]

This work examines the effects of gravitational acceleration on the flow boiling process. A test facility focusing on an annular heat exchanger was designed, built out of borosilicate glass, and flown on NASA's KC-135 reduced gravity airplane...

Westheimer, David Thomas

2000-01-01T23:59:59.000Z

46

How Do You Use Daylighting While Reducing Excess Heat from Windows...  

Broader source: Energy.gov (indexed) [DOE]

through these windows in the summer. How do you use daylighting while reducing excess heat from windows? Each Thursday, you have the chance to share your thoughts on a question...

47

E-Print Network 3.0 - as-operated heat loss Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

((svsv: Kylteknik): Kylteknik) 424503 E424503 E 20102010 88 --rzrz 8.8. Heat pumps, heat pipes,Heat pumps, heat pipes, Summary: heat transfer capacity and rate...

48

Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems  

DOE Patents [OSTI]

A method for reducing catalyst attrition losses in hydrocarbon synthesis processes conducted in high agitation reaction systems; a method of producing an attrition-resistant catalyst; a catalyst produced by such method; a method of producing an attrition-resistant catalyst support; and a catalyst support produced by such method. The inventive method of reducing catalyst attrition losses comprises the step of reacting a synthesis gas in a high agitation reaction system in the presence of a catalyst. In one aspect, the catalyst preferably comprises a .gamma.-alumina support including an amount of titanium effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support which has been treated, after calcination, with an acidic, aqueous solution. The acidic aqueous solution preferably has a pH of not more than about 5. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support wherein the cobalt has been applied to the .gamma.-alumina support by totally aqueous, incipient wetness-type impregnation. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support with an amount of a lanthana promoter effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support produced from boehmite having a crystallite size, in the 021 plane, in the range of from about 30 to about 55 .ANG.ngstrons. In another aspect, the inventive method of producing an attrition-resistant catalyst comprises the step of treating a .gamma.-alumina support, after calcination of and before adding catalytic material to the support, with an acidic solution effective for increasing the attrition resistance of the catalyst. In another aspect, the inventive method of producing an attrition-resistant catalyst support comprises the step of treating calcined .gamma.-alumina with an acidic, aqueous solution effective for increasing the attrition resistance of the .gamma.-alumina.

Singleton, Alan H. (Baden, PA); Oukaci, Rachid (Gibsonia, PA); Goodwin, James G. (Cranberry Township, PA)

2001-01-01T23:59:59.000Z

49

Reduced model simulations of the scrape-off-layer heat-flux width and comparison with experiment  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Reduced model simulations of turbulence in the edge and scrape-off-layer (SOL) region of a spherical torus or tokamak plasma are employed to address the physics of the scrape-off-layer heat flux width. The simulation model is an electrostatic two-dimensional fluid turbulence model, applied in the plane perpendicular to the magnetic field at the outboard midplane of the torus. The model contains curvature-driven-interchange modes, sheath losses, and both perpendicular turbulent diffusive and convective (blob) transport. These transport processes compete with classical parallel transport to set the SOL width. Midplane SOL profiles of density, temperature and parallel heat flux are obtained from the simulation and compared with experimental results from the National Spherical Torus Experiment (NSTX) [S. M. Kaye, et al., Phys. Plasmas 8, 1977 (2001)] to study the scaling of the heat flux width with power and plasma current. It is concluded that midplane turbulence is the main contributor to the SOL heat flux width for the low power H-mode discharges studied, while additional physics is required to explain the plasma current scaling of the SOL heat flux width observed experimentally in higher power discharges. Intermittent separatrix spanning convective cells are found to be the main mechanism that sets the near-SOL width in the simulations. The roles of sheared flows and blob trapping vs. emission are discussed.

Myra, J. R. [Lodestar Research Corporation, Boulder, CO (United States); Russell, D. A. [Lodestar Research Corporation, Boulder, CO (United States); D'Ippolito, D. A. [Lodestar Research Corporation, Boulder, CO (United States); Ahn, J- W [Oak Ridge National Lab., TN (United States); Maingi, R. [Oak Ridge National Lab., TN (United States); Maqueda, R. J. [Princeton Plasma Physics Lab., NJ (United States); Lundberg, D. P. [Princeton Plasma Physics Lab., NJ (United States); Stotler, D. P. [Princeton Plasma Physics Lab., NJ (United States); Zweben, S. J. [Princeton Plasma Physics Lab., NJ (United States); Boedo, J. [Univ. of California at San Diego, CA (United States); Umansky, M. [Lawrence Livermore National Lab., Livermore, CA (United States)

2011-01-10T23:59:59.000Z

50

NGNP/HTE full-power operation at reduced high-temperature heat exchanger temperatures.  

SciTech Connect (OSTI)

Operation of the Next Generation Nuclear Plant (NGNP) with reduced reactor outlet temperature at full power was investigated for the High Temperature Electrolysis (HTE) hydrogen-production application. The foremost challenge for operation at design temperature is achieving an acceptably long service life for heat exchangers. In both the Intermediate Heat Exchanger (IHX) and the Process Heat Exchanger (PHX) (referred to collectively as high temperature heat exchangers) a pressure differential of several MPa exists with temperatures at or above 850 C. Thermal creep of the heat exchanger channel wall may severely limit heat exchanger life depending on the alloy selected. This report investigates plant performance with IHX temperatures reduced by lowering reactor outlet temperature. The objective is to lower the temperature in heat transfer channels to the point where existing materials can meet the 40 year lifetime needed for this component. A conservative estimate for this temperature is believed to be about 700 C. The reactor outlet temperature was reduced from 850 C to 700 C while maintaining reactor power at 600 MWt and high pressure compressor outlet at 7 MPa. We included a previously reported design option for reducing temperature at the PHX. Heat exchanger lengths were adjusted to reflect the change in performance resulting from coolant property changes and from resizing related to operating-point change. Turbomachine parameters were also optimized for the new operating condition. An integrated optimization of the complete system including heat transfer equipment was not performed. It is estimated, however, that by performing a pinch analysis the combined plant efficiency can be increased from 35.5 percent obtained in this report to a value between 38.5 and 40.1 percent. Then after normalizing for a more than three percent decrease in commodities inventory compared to the reference plant, the commodities-normalized efficiency lies between 40.0 and 41.3. This compares with a value of 43.9 for the reference plant. This latter plant has a reactor outlet temperature of 850 C and the two high temperature heat exchangers. The reduction in reactor outlet temperature from 850 C to 700 C reduces the tritium permeability rate in the IHX metal by a factor of three and thermal creep by five orders of magnitude. The design option for reducing PHX temperature from 800 C to 200 C reduces the permeability there by three orders of magnitude. In that design option this heat exchanger is the single 'choke-point' for tritium migration from the nuclear to the chemical plant.

VIlim, R.; Nuclear Engineering Division

2009-03-12T23:59:59.000Z

51

Understanding ion cyclotron harmonic fast wave heating losses in the scrape off layer of tokamak plasmas  

SciTech Connect (OSTI)

Fast waves at harmonics of the ion cyclotron frequency, which have been used successfully on National Spherical Torus Experiment (NSTX), will also play an important role in ITER and are a promising candidate for the Fusion Nuclear Science Facility (FNSF) designs based on spherical torus (ST). Experimental studies of high harmonic fast waves (HHFW) heating on the NSTX have demonstrated that substantial HHFW power loss occurs along the open field lines in the scrape-off layer (SOL), but the mechanism behind the loss is not yet understood. The full wave RF code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain, is applied to specific NSTX discharges in order to predict the effects and possible causes of this power loss. In the studies discussed here, a collisional damping parameter has been implemented in AORSA as a proxy to represent the real, and most likely nonlinear, damping processes. A prediction for the NSTX Upgrade (NSTX-U) experiment, that will begin operation next year, is also presented, indicating a favorable condition for the experiment due to a wider evanescent region in edge density.*Research supported by the U.S. DOE under Contract No. DE-AC02-09CH11466 with Princeton University.

Bertelli, N [PPPL; Jaeger, E F; Hosea, J C; Phillips, C K; Berry, L; Bonoli, P T; Gerhardt, S P [PPPL; Green, D; LeBlanc, B [PPPL; Perkins, R J; Ryan, P M; Taylor, G; Valeo, E J; Wilso, J R; Wright, J C

2014-07-01T23:59:59.000Z

52

Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice  

SciTech Connect (OSTI)

Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and of key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.

Verreth, Wim; Verhamme, Peter; Pelat, Michael; Ganame, Javier; Bielicki, John K.; Mertens, Ann; Quarck, Rozenn; Benhabiles, Nora; Marguerie, Gerard; Mackness, Bharti; Mackness, Mike; Ninio, Ewa; Herregods, Marie-Christine; Balligand, Jean-Luc; Holvoet, Paul

2003-09-01T23:59:59.000Z

53

The Heat Loss Analysis and Commissioning of a Commercial Helium Dewar (SULI paper)  

SciTech Connect (OSTI)

A low temperature cryostat suitable for many different experiments will be commissioned at the cryogenic test facility at SLAC. The scope of the project is to make commission a commercial Helium dewar. The building of the top flange will be followed from its design phase through to its finished assembly. In addition, diagnostic tools such as thermometry, level detector, pressure gauge, transfer lines for He and N2, vent lines with relief valves for He and N2 will be incorporated. Instrumentation to read and plot this data will also be included. Once the cryostat is assembled, we will cool down the cryostat to measure its performance. A typical consumption rate of Helium will be measured and from this, the overall heat leak to the dewar will be calculated. A processing instrumentation diagram (PID) of the dewar system was created with SolidEdge and was later approved and published as an official SLAC document. The plots comparing the liquid level changes of the 36 inch probe with the time and the heat loss as a function of time proved to be a valid indication that the data was interpreted and recorded correctly and that the dewar was put together successfully.

Bellamy, Marcus; /New Mexico U. /SLAC

2006-01-04T23:59:59.000Z

54

Mitigation Measures Following a Loss-of-Residual-Heat-Removal Event During Shutdown  

SciTech Connect (OSTI)

The transient following a loss-of-residual-heat-removal event during shutdown was analyzed to determine the containment closure time (CCT) to prevent uncontrolled release of fission products and the gravity-injection path and rate (GIPR) for effective core cooling using the RELAP5/MOD3.2 code. The plant conditions of Yonggwang Units 3 and 4, a pressurized water reactor (PWR) of 2815-MW(thermal) power in Korea, were reviewed, and possible event sequences were identified. From the CCT analysis for the five cases of typical plant configurations, it was estimated for the earliest CCT to be 40 min after the event in a case with a large cold-leg opening and emptied steam generators (SGs). However, the case with water-filled SGs significantly delayed the CCT through the heat removal to the secondary side. From the GIPR analysis for the six possible gravity-injection paths from the refueling water storage tank (RWST), the case with the injection point and opening on the other leg side was estimated to be the most suitable path to avoid core boiling. In addition, from the sensitivity study, it was evaluated for the plant to be capable of providing the core cooling for the long-term transient if nominal RWST water is available. As a result, these analysis methods and results will provide useful information in understanding the plant behavior and preparing the mitigation measures after the event, especially for Combustion Engineering-type PWR plants. However, to directly apply the analysis results to the emergency procedure for such an event, additional case studies are needed for a wide range of operating conditions such as reactor coolant inventory, RWST water temperature, and core decay heat rate.

Seul, Kwang Won; Bang, Young Seok; Kim, Hho Jung [Korea Institute of Nuclear Safety (Korea, Republic of)

2000-10-15T23:59:59.000Z

55

Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating/Cooling Systems  

E-Print Network [OSTI]

Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating solution is developed as a promising working fluid for district heating/cooling systems (DHCs). It can systems. A promising application of DR fluids is in district heating/ cooling systems (DHCs)9

Raghavan, Srinivasa

56

Copper waveguide cavities with reduced surface loss for coupling to superconducting qubits  

E-Print Network [OSTI]

Significant improvements in superconducting qubit coherence times have been achieved recently with three-dimensional microwave waveguide cavities coupled to transmon qubits. While many of the measurements in this direction have utilized superconducting aluminum cavities, other recent work has involved qubits coupled to copper cavities with coherence times approaching 0.1 ms. The copper provides a good path for thermalizing the cavity walls and qubit chip, although the substantial cavity loss makes conventional dispersive qubit measurements challenging. We are exploring various approaches for improving the quality factor of three-dimensional copper cavities, including electropolishing and coating with superconducting layers of tin. We have characterized these cavities on multiple cooldowns and found the tin-plating to be robust. In addition, we have performed coherence measurements on transmon qubits in these cavities and observed promising performance.

Daniela F. Bogorin; D. T. McClure; Matthew Ware; B. L. T. Plourde

2014-09-10T23:59:59.000Z

57

The use of combined heat and power (CHP) to reduce greenhouse gas emissions  

SciTech Connect (OSTI)

Cogeneration or Combined Heat and Power (CHP) is the sequential production of electric power and thermal energy. It is a more efficient way of providing electricity and process heat than producing them independently. Average overall efficiencies can range from 70% to more than 80%. CHP decisions often present an opportunity to switch to a cleaner fuel. CHP systems are an attractive opportunity to save money, increase overall efficiency, reduce net emissions, and improve environmental performance. Climate Wise, a US Environmental Protection Agency (US EPA) program helping industrial Partners turn energy efficiency and pollution prevention into a corporate asset, has increased awareness of CHP by providing implementation and savings information, providing peer exchange opportunities for its Partners, and recognizing the achievements of Partners that have implemented CHP at their facilities. This paper profiles Climate Wise Partners that have invested in CHP systems, including describing how CHP is used in their facilities and the resulting cost and emission reductions.

Asrael, J.; Milmoe, P.H.; Haydel, J.

1999-07-01T23:59:59.000Z

58

Reduce Radiation Losses from Heating Equipment; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #7 (Fact Sheet).  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof Energy Redefining9 * October7

59

Measurement of limiter heating due to fusion product losses during high fusion power deuterium-tritium operation of TFTR  

SciTech Connect (OSTI)

Preliminary analysis has been completed on measurements of limiter heating during high fusion power deuterium-tritium (D-T) operation of TFTR, in an attempt to identify heating from alpha particle losses. Recent operation of TFTR with a 50-50 mix of D-T has resulted in fusion power output ({approx} 6.2 MW) orders of magnitude above what was previously achieved on TFTR. A significantly larger absolute number of particles and energy from fusion products compared to D-D operation is expected to be lost to the limiters. Measurements were made in the vicinity of the midplane ({plus_minus} 30{degree}) with thermocouples mounted on the tiles of an outboard limiter. Comparisons were made -between discharges which were similar except for the mix of deuterium and tritium beam sources. Power and energy estimates of predicted alpha losses were as high as 0.13 MW and 64 kJ. Depending on what portion of the limiters absorbed this energy, temperature rises of up to 42 {degrees}C could be expected, corresponding to a heat load of 0.69 MJ/m{sup 2} over a 0.5 sec period, or a power load of 1.4 MW/m{sup 2}. There was a measurable increase in the limiter tile temperature as the fusion power yield increased with a more reactive mixture of D and T at constant beam power during high power D-T operation. Analysis of the data is being conducted to see if the alpha heating component can be extracted. Measured temperature increases were no greater than 1 {degree}C, indicating that there was probably neither an unexpectedly large fraction of lost particles nor unexpected localization of the losses. Limits on the stochastic ripple loss contribution from alphas can be deduced.

Janos, A.; Owens, D.K.; Darrow, D.; Redi, M.; Zarnstorff, M.; Zweben, S.

1995-03-01T23:59:59.000Z

60

Process and apparatus for reducing the loss of hydrogen from Stirling engines  

SciTech Connect (OSTI)

A Stirling engine assembly is described which defines a working gas volume therein, the Stirling engine assembly comprising: a working gas reservoir for storing a working gas at a pressure greater than pressure of the working gas in the working volume of the Stirling engine; a trap cell operatively connected between an outlet of the reservoir and the Stirling engine working volume. The trap cell includes an enclosure having porous windows at either end thereof and a sorbent with an affinity for water vapor therein, such that water vapor adsorbed on the sorbent diffuses into the hydrogen passing from the reservoir into the working engine; a compressor means for drawing working gas from the Stirling engine working volume, through the trap cell and pumping the working gas into the hydrogen reservoir. The sorbent in the trap cell at the reduced pressure caused by the compressor adsorbs water vapor from the working gas such that substantially dry working gas is pumped by the compressor into the reservoir. The working gas is doped with water vapor by the tank cell as it passes into the Stirling engine and is dried by the trap cell as it is removed from the working engine for storage in the reservoir to prevent condensation of water vapor in the reservoir.

Alger, D.L.

1987-03-24T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Thermal Characterization In order to determine the heat loading and associated losses to the source tube, it  

E-Print Network [OSTI]

of the material and is expressed in units of m2 s-1 . Further assumptions can be made to reduce equation (4 transfer so that the various methods can be evaluated objectively. 4.1 The Heat Equation It is known from balance in a simple, isotropic solid as shown in figure 4-1, where the surface of the solid is defined

62

Optimization of the design and mode of operation of a QD laser for reducing the heat-to-bitrate ratio  

SciTech Connect (OSTI)

Heat dissipation under the high-speed modulation of quantum dot edge-emitting lasers is considered. It is shown that, for a given laser diode, there is a bias current at which the heat-to-bitrate ratio is minimized. Moreover, there exists a certain optimal optical loss of the laser cavity at which the lowest heat-to-bitrate ratio is provided for any design of edge-emitting lasers that can be fabricated from an epitaxial structure. The heat-to-bitrate ratio and the corresponding bitrate are numerically calculated and analytical expressions are derived. It is demonstrated that the heat-to-bitrate ratio of quantum dot edge-emitting lasers can be less than 0.4 pJ/bit at a bitrate exceeding 10 Gbit/s.

Zhukov, A. E., E-mail: zhukale@gmail.com; Savelyev, A. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation); Maximov, M. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Kryzhanovskaya, N. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation); Gordeev, N. Yu.; Shernyakov, Yu. M. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Payusov, A. S.; Nadtochiy, A. M.; Zubov, F. I.; Korenev, V. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)

2013-08-15T23:59:59.000Z

63

Isochoric heating of reduced mass targets by ultra-intense laser produced relativistic electrons  

SciTech Connect (OSTI)

We present measurements of the chlorine K-alpha emission from reduced mass targets, irradiated with ultra-high intensity laser pulses. Chlorinated plastic targets with diameters down to 50 micrometers and mass of a few 10{sup -8} g were irradiated with up to 7 J of laser energy focused to intensities of several 10{sup 19} W/cm{sup 2}. The conversion of laser energy to K-alpha radiation is measured, as well as high resolution spectra that allow observation of line shifts, indicating isochoric heating of the target up to 18 eV. A zero-dimensional 2-temperature equilibration model, combined with electron impact K-shell ionization and post processed spectra from collisional radiative calculations reproduces the observed K-alpha yields and line shifts, and shows the importance of target expansion due to the hot electron pressure.

Neumayer, P; Lee, H J; Offerman, D; Shipton, E; Kemp, A; Kritcher, A L; Doppner, T; Back, C A; Glenzer, S H

2009-02-04T23:59:59.000Z

64

Analysis of system performance losses due to the reversing valve for a heat pump using R-410a  

SciTech Connect (OSTI)

A traditional reversing valve enables a heat pump to operate in the heating mode or cooling mode by switching the refrigerant flow path through the indoor and outdoor coils, thereby changing the functions of the two heat exchangers. However, the presence of a reversing valve causes additional pressure drops and undesired heat exchange. The objective of this research was to measure the overall effects of a reversing valve on a 3-ton heat pump system using R-401a and make comparisons to the same valve's performance with R-22 as the refrigerant. The experiments included tests of under- and over-sized valves at the same test conditions. Also, the effects of pressure drops and of heat transfer combined with mass leakage on system and compressor performance were analyzed. It was found that the use of a larger (oversized) reversing valve to reduce pressure drops provided only limited performance gains. Also, changing refrigerant from R-22 to R-410a resulted in an increase in mass leakage but did not significantly change the effect that the reversing valve had on the system COP.

Fang, W.; Nutter, D.W.

1999-07-01T23:59:59.000Z

65

RELAP5/MOD3 simulation of the loss of residual heat removal during midloop operation experiment conducted at the ROSA-IV/ Large Scale Test Facility  

E-Print Network [OSTI]

The modeling of the complex thermal hydraulics Of reactor systems involves the use Of experimental test systems as well as numerical codes. A simulation of the loss of residual heat removal (RHR) during midloop operations was performed using...

Banerjee, Sibashis Sanatkumar

2012-06-07T23:59:59.000Z

66

Experimental study of alumina-water and zirconia-water nanofluids convective heat transfer and viscous pressure loss in Laminar regime  

E-Print Network [OSTI]

The objective of this study is to evaluate experimentally the convective heat transfer and viscous pressure loss characteristics of alumina-water and zirconia-water nanofluids. Nanofluids are colloidal dispersions of ...

Rea, Ulzie L

2008-01-01T23:59:59.000Z

67

Local heat flux and energy loss in a 2D vibrated granular gas  

E-Print Network [OSTI]

We performed event-driven simulations of a two-dimensional granular gas between two vibrating walls and directly measured the local heat flux and energy dissipation rate in the stationary state. Describing the local heat flux as a function of the coordinate x in the direction perpendicular to the driving walls, we use a generalization of Fourier's law, q_x(x) = kappa d_x T(x) + mu d_x rho(x), to relate the local heat flux to the local gradients of the temperature and density. This ansatz accounts for the fact that density gradients also generate heat flux, not only temperature gradients. The transport coefficients kappa and mu are assumed to be independent of x, and we check the validity of this assumption in the simulations. Both kappa and mu are determined for different system parameters, in particular, for a wide range of coefficients of restitution. We also compare our numerical results to existing hydrodynamic theories. Agreement is found for kappa for very small inelasticities only. Beyond this region, kappa and mu exhibit a striking non-monotonic behavior.

Olaf Herbst; Peter Müller; Annette Zippelius

2004-12-13T23:59:59.000Z

68

Reduced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 RevisionDivisionReduced intermittency in

69

Novel Designs for Photovoltaic Arrays to Reduce Partial Shading Losses and to Ease Series Arc Fault Detection.  

E-Print Network [OSTI]

??A mismatch in a photovoltaic array implies differences in the I-V characteristics of the modules forming the array which can lead to significant energy losses… (more)

Shams El-Dein, Mohamed

2012-01-01T23:59:59.000Z

70

Method for cutting steam heat losses during cyclic steam injection of wells. Final report  

SciTech Connect (OSTI)

Heavy Oil is abundant in California. It is a very viscous fluid, which must be thinned in order to flow from wells at economical rates. The best method of oil viscosity reduction is by cyclic steam injection into the oil-containing rock formations. Making steam in conventional generators fueled with Natural Gas is, however, a costly process. The main objective of this Project is to reduce the cost of the required steam, per Barrel of Oil produced. This is made possible by a combination of Patented new technologies with several known methods. The best known method for increasing the production rate from oil wells is to use horizontal drainholes, which provide a much greater flow area from the oil zone into the well. A recent statistic based on 344 horizontal wells in 21 Canadian Oil fields containing Heavy Oil shows that these are, on the average six times more prolific than vertical wells. The cost of horizontal wells, however, is generally two to three times that of a vertical well, in the same field, so our second goal is to reduce the net cost of horizontal wells by connecting two of them to the same vertical casing, well head and pumping system. With such a well configuration, it is possible to get two horizontal wells for the price of about one and a half times the price of a single vertical well.

Gondouin, M.

1995-12-01T23:59:59.000Z

71

Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States  

SciTech Connect (OSTI)

Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

Denholm, P.

2007-03-01T23:59:59.000Z

72

Reduced heat flow in light water (H2O) due to heavy water (D2O) William R. Gormana)  

E-Print Network [OSTI]

Reduced heat flow in light water (H2O) due to heavy water (D2O) William R. Gormana) and James D by over 1000% with the addition of heavy water. A column of light water cools from 25°C to 0°C in 11 hours, however, with the addition of heavy water it takes more than 100 hours. There is a concentration

Suzuki, Masatsugu

73

Reducing Skin Friction and Heat Transfer over a Hypersonic Cruising Vehicle by Mass Injection.  

E-Print Network [OSTI]

??Demonstrating technologies for hypersonic aircraft that cruise at speeds greater than Mach 5 is one of the long-term visions of many agencies, like NASA. Reducing… (more)

Nozaki, Yoshifumi

2007-01-01T23:59:59.000Z

74

What is Wind Chill Temperature? It is the temperature it "feels like" outside and is based on the rate of heat loss  

E-Print Network [OSTI]

What is Wind Chill Temperature? It is the temperature it "feels like" outside and is based on the rate of heat loss from exposed skin caused by the effects of wind and cold. As the wind increases, the body is cooled at a faster rate causing the skin temperature to drop. Wind Chill does not impact

75

Evidence for ultra-fast heating in intense-laser irradiated reduced-mass targets  

SciTech Connect (OSTI)

We report on an experiment irradiating individual argon droplets of 20 {mu}m diameter with laser pulses of several Joule energy at intensities of 10{sup 19} W/cm{sup 2}. K-shell emission spectroscopy was employed to determine the hot electron energy fraction and the time-integrated charge-state distribution. Spectral fitting indicates that bulk temperatures up to 160 eV are reached. Modelling of the hot-electron relaxation and generation of K-shell emission with collisional hot-electron stopping only is incompatible with the experimental results, and the data suggest an additional ultra-fast (sub-ps) heating contribution. For example, including resistive heating in the modelling yields a much better agreement with the observed final bulk temperature and qualitatively reproduces the observed charge state distribution.

Neumayer, P.; Gumberidze, A.; Hochhaus, D. C. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, 60438 Frankfurt am Main (Germany); Aurand, B.; Stoehlker, T. [Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Costa Fraga, R. A.; Kalinin, A. [Institut fuer Kernphysik, J. W. Goethe University Frankfurt, 60438 Frankfurt am Main (Germany); Ecker, B. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Grisenti, R. E. [Institut fuer Kernphysik, J. W. Goethe University Frankfurt, 60438 Frankfurt am Main (Germany); Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Kaluza, M. C. [Helmholtz Institute Jena, 07743 Jena (Germany); IOQ Institute of Optics and Quantum Electronics, University of Jena (Germany); Kuehl, T. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany); Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Polz, J. [IOQ Institute of Optics and Quantum Electronics, University of Jena (Germany); Reuschl, R. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Winters, D.; Winters, N.; Yin, Z. [Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany)

2012-12-15T23:59:59.000Z

76

Reduced heat flow in light water (H2O) due to heavy water (D2O)  

E-Print Network [OSTI]

The flow of heat, from top to bottom, in a column of light water can be decreased by over 1000% with the addition of heavy water. A column of light water cools from 25 C to 0 C in 11 hours, however, with the addition of heavy water it takes more than 100 hours. There is a concentration dependence where the cooling time increases as the concentration of added (D2O) increases, with a near maximum being reached with as little as 2% of (D2O) added. This phenomenon will not occur if the water is mixed after the heavy water is added.

William R. Gorman; James D. Brownridge

2008-09-04T23:59:59.000Z

77

Heating, Current Drive, Operations and Diagnostics Issues Understand implications of reduced repetition rate, is it adequate for the  

E-Print Network [OSTI]

Heating, Current Drive, Operations and Diagnostics Issues Operations · Understand implications of ECRH to improve startup. Heating · ICRF is the base line heating system, compare with NBI and ECRH withstand the anticipated heat loads? Diagnostics · Capability of beam diagnostics for J(r), E(r), etc

78

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

SciTech Connect (OSTI)

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

79

Understanding Loss Mechanisms and Efficiency Improvement Options for HCCI Engines Using Detailed Exergy Analysis  

E-Print Network [OSTI]

Exergy Loss from Cylinder Gases Combustion Heat Loss Exhaustheptane and Natural Gas blends Combustion in HCCI Engines,”from Cylinder Gases (%) Loss Mechanisms Combustion Heat Loss

Saxena, Samveg

2013-01-01T23:59:59.000Z

80

The Confusing Allure of Combined Heat and Power: The Financial Attraction and Management Challenge of Reducing Energy Spend and Resulting Carbon Emissions Through Onsite Power Generation  

E-Print Network [OSTI]

efficient system that produces power (electricity, mechanical power or thermal energy), then captures the waste heat created by the power generation process and reuses it to help meet any of a variety of needs the user may have in a facility. While... a huge increase in energy reliability to a facility. This can help the user avoid the risk of the devastating financial loss that can come when grid-supplied power is interrupted. CHP reliability, however, should not be taken for granted...

Davis, R.

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternatives for reducing hot-water bills  

SciTech Connect (OSTI)

A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)

Bennington, G.E.; Spewak, P.C.

1981-06-01T23:59:59.000Z

82

Composition of incipient passivating layers on heat-rejecting aluminum in carboxylate- and silicate-inhibited coolants: Correlation with ASTM D 4340 weight losses  

SciTech Connect (OSTI)

X-ray photoelectron spectroscopy identified compositional differences between passivating layers initially formed in carboxylated coolants, in silicated coolants, and in a mixture thereof on well-controlled 319 aluminum surfaces under heat-rejecting conditions. The layer formed in silicated coolant was primarily silica, while that in carboxylated coolant was primarily hydrated alumina. Competition between inhibitor packages when carboxylated coolant was contaminated from the start with low levels of silicated coolant produced films which were not simply patchwise mixtures of the pure-coolant film types. The surface analytical results aid the interpretation of subtle differences in weight losses under the ASTM Standard Test Method for Corrosion of Cast Aluminum Alloys in Engine Coolants Under Heat-Rejecting Conditions (D 4340) in carboxylated versus silicated coolants that became more pronounced when testing was carried out at a vehicle-like 50% coolant concentration. Results from time-resolved D4340 measurements and from a two-step cleaning procedure further contribute towards proper evaluation of D4340 weight losses in the different coolant types.

Wagner, F.T.; Moylan, T.E.; Simko, S.J.; Militello, M.C. [General Motors R and D Center, Warren, MI (United States)

1999-08-01T23:59:59.000Z

83

Apparatus for reducing the moisture content in combustible material by utilizing the heat from combustion of such material  

SciTech Connect (OSTI)

This patent describes apparatus for preparing moisture containing fuel material for combustion to produce heat energy and for applying the heat energy from the combustion for lowering the moisture content in the fuel material prior to combustion, the improvement comprising: boiler means for the combustion of the fuel material to produce heat energy, grinding apparatus for preparing the fuel material to produce heat energy; means for collecting prepared fuel material and for feeding the collected fuel material to the boiler means; a main gaseous fluid and fuel material conduit system; a second conduit system connecting the boiler means and the grinding apparatus to conduct heat energy to the grinding apparatus; connecting means between the returning side of the main conduit system and the boiler means for maintaining the main conduit system at a negative pressure to promote the flow of hot gaseous medium from the boiler means to the gringing apparatus.

Williams, R.M.

1992-03-17T23:59:59.000Z

84

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network [OSTI]

A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP™) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver...

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

85

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

86

NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger  

SciTech Connect (OSTI)

One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

2008-09-01T23:59:59.000Z

87

Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application  

E-Print Network [OSTI]

energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility...

Meckler, G.

1985-01-01T23:59:59.000Z

88

A novel isolation curtain to reduce turbine ingress heating and an advanced model for honeycomb labyrinth seals  

E-Print Network [OSTI]

, but implementation of the injection curtain slot reduced substantially T* max of the outer region. In addition, a more desirable uniform adiabatic wall temperature distribution along the outer rotor and stator surfaces was observed due to the presence...

Choi, Dong Chun

2006-08-16T23:59:59.000Z

89

Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants  

SciTech Connect (OSTI)

This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

Ken Mortensen

2011-12-31T23:59:59.000Z

90

Town of Hague landfill reclamation study: Research ways to increase waste heating value and reduce waste volume. Final report  

SciTech Connect (OSTI)

Monitored composing was studied as a method for reducing the quantity of waste requiring disposed from a landfill reclamation project. After each of two re-screening steps, composted {open_quotes}soil{close_quotes} from a single long windrow of varying depths and moisture content was subjected to analytical testing to determine its suitability to remain as backfill in a reclaimed landfill site. The remaining uncomposted waste was combusted at a waste-to-energy facility to determine if Btu values were improved. Results indicate that a full-scale composting operation could result in a net decrease of approximately 11 percent in disposal costs. The Btu value of the reclaimed waste was calculated to be 4,500 to 5,000 Btu/lb. The feasibility of composting reclaimed waste at other landfill reclamation projects will depend upon site-specific technical and economic factors, including size and nature of the organic fraction of the waste mass, local processing costs, and the cost of waste disposal alternatives.

Salerni, E. [SSB Environmental Inc., Albany, NY (United States)

1997-01-01T23:59:59.000Z

91

System for reducing heat losses from indoor swimming pools by use of automatic covers. Final report, October 1, 1993--September 30, 1995  

SciTech Connect (OSTI)

This final report is an account of the principal activities of Lof Energy Systems, Inc. in a two-year project funded by the Energy Related Inventions Program (ERIP) of the U.S. Department of Energy. The primary objective has been the development of a fully practical and economical system for saving energy in indoor swimming pools by use of motorized covers. The goal is wide-spread use of a fully developed product, in institutional swimming pools. Four major tasks, depicted in the accompanying Performance Schedule, have been completed, and one other has been initiated and its completion committed. Principal accomplishments have been the selection and improvement of cover materials and designs, lengthening and strengthening of reels and improvements in motorized components and their control, design and installation of pool covers in full scale demonstration and evaluation of fully developed commercial system, preparation and dissemination of manuals and reports, finalization of arrangements for Underwriters Laboratory certification of products, and final report preparation and submission. Of greatest significance has been the successful demonstration of the fully developed system and the verification and reporting by an energy consultant of the large savings resulting from pool cover use. Probably the best evidence of success of the DOE-ERIP project in advancing this invention to a commercial stage is its acceptance for sale by the Lincoln Equipment Company, a national distributor of swimming pool supplies and equipment. A copy of the relevant page in the Lincoln catalog is included in this report as Annex A. Representatives of that company now offer Tof motorized pool cover systems to their pool owner customers. In addition to the plans for securing UL certification the company expects to continue making design improvements that can increase system reliability, durability, and cost-effectiveness.

NONE

1996-01-01T23:59:59.000Z

92

A Novel, Low-Cost, Reduced-Sensor Approach for Providing Smart Renote Monitoring and Diagnostics for Packaged Air Conditioners and Heat Pumps  

SciTech Connect (OSTI)

This report describes conceptually an approach to providing automated remote performance and conditioning monitoring and fault detection for air conditioners and heat pumps that shows great promise to reduce the capital and installation costs of such systems from over $1000 per unit to $200 to $400 per unit. The approach relies on non-intrusive electric load monitoring (NIELM) to enable separation of the power use signals of compressors and fans in the air conditioner or heat pump. Then combining information on the power uses and one or two air temperature measurements, changes in energy efficiency and occurrence of major faults would be detected. By decreasing the number of sensors used from between ten and twenty in current diagnostic monitoring systems to three for the envisaged system, the capital cost of the monitoring system hardware and the cost of labor for installation would be decreased significantly. After describing the problem being addressed and the concept for performance monitoring and fault detection in more detail, the report identifies specific conditions and faults that the proposed method would detect, discusses specific needs for successful use of the NIELM approach, and identifies the major elements in the path from concept to a commercialized monitoring and diagnostic system.

Brambley, Michael R.

2009-09-01T23:59:59.000Z

93

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

SciTech Connect (OSTI)

Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.

Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

2011-05-25T23:59:59.000Z

94

Study on the use of TiO{sub 2} passivation layer to reduce recombination losses in dye sensitized solar cells  

SciTech Connect (OSTI)

A lot of research on various aspects of dye solar cells (DSC) has been carried out in order to improve efficiency. This paper analyzes the utilization of TiO{sub 2} passivation layers of different thicknesses by improving the electron transport properties. Four different thicknesses of passivation layers namely 10, 20, 50 and 100 nm were deposited onto the working electrode using r.f sputtering. The electrodes were assembled into TiO{sub 2} based DSC with active area of 1 cm{sup 2}. The solar performance was investigated using 100 mW/cm{sup 2} of AM 1.5 simulated sunlight from solar simulator. The kinetics of the solar cells was investigated using Electrochemical Impedance Spectroscopy (EIS) measurement and the spectral response was measured using Incident Photon to Electron Conversion (IPCE) measurement system. The highest efficiency was found for DSC with 20 nm passivation layer. DSCs with the passivation layer have open circuit voltage, V{sub OC} increased by 57 mV, their current density, J{sub SC} increased by 0.774 mA cm{sup -2} compared to the one without the passivation layer. The quantum efficiency of the 20 nm passivation layer is the highest, peaking at the wavelength of 534 nm, resulting in the highest performance. All DSCs with the passivation layer recorded higher ratio of R{sub BR}/R{sub T} where R{sub T} is the diffusion resistance of the TiO{sub 2} particles in the mesoscopic layer and R{sub BR} is the recombination resistance of the electron to the electrolyte. This implies that the recombination of the electrolyte I{sup -}{sub 3}/3I{sup -} couple at the substrate/electrolyte interface has been effectively reduced resulting in an enhanced efficiency.

Eskander bin Samsudin, Adel; Mohamed, Norani Muti; Nayan, Nafarizal; Ali, Riyaz Ahmad Mohamed; Shariffuddin, Sharifah Amira Amir; Omar, Salwa [Electrical and Electronics Department, 31750, Tronoh, Universiti Teknologi PETRONAS (Malaysia); Fundamental and Applied Sciences Department, 31750, Tronoh, Universiti Teknologi PETRONAS (Malaysia); Electronic Engineering Department, Electrical and Electronic Engineering Faculty, Universiti Tun Hussein Onn Malaysia (UTHM) (Malaysia)

2012-09-26T23:59:59.000Z

95

Combined heat and power has the potential to significantly increase energy production efficiency and thus reduce greenhouse gas emissions, however current market penetration  

E-Print Network [OSTI]

1 Combined heat and power has the potential to significantly increase energy production efficiency that California will not reach the targets for combined heat and power set for it by the Air Resources Board (ARB of combined heat and power into the new ARB Emissions Cap and Trade scheme. This potential failure would

Kammen, Daniel M.

96

Efficiency loss in resource allocation games  

E-Print Network [OSTI]

The overarching goals of this thesis are to quantify the efficiency loss due to market participant strategic behavior, and to design proper pricing mechanisms that reduce the efficiency loss. The concept of efficiency loss ...

Xu, Yunjian

2012-01-01T23:59:59.000Z

97

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

E-Print Network [OSTI]

heat fluxes, solar radiation, and electric power consumed byheat fluxes, solar radiation, and electric power consumed byheat fluxes, solar radiation, and electric power consumed by

Akbari, Hashem

2011-01-01T23:59:59.000Z

98

Reducing injection loss in drill strings  

DOE Patents [OSTI]

A system and method for transferring wave energy into or out of a periodic structure having a characteristic wave impedance profile at a prime frequency, the characteristic wave impedance profile comprising a real portion and an imaginary portion, comprising: locating one or more energy transfer elements each having a wave impedance at the prime frequency approximately equal to the real portion of the characteristic wave impedance at one or more points on the periodic structure with the imaginary portion approximately equaling zero; and employing the one or more energy transfer elements to transfer wave energy into or out of the periodic structure. The energy transfer may be repeaters. Quarter-wave transformers can be provided at one or more points on the periodic structure with the imaginary portion approximately equaling zero to transmit waves across one or more discontinuities. A terminator can be employed for cancellation of waves. The invention substantially eliminates reflections of the wave energy at the prime frequency by joints between sections of the periodic structure.

Drumheller, Douglas S.

2004-09-14T23:59:59.000Z

99

Reducing Livestock Losses To Toxic Plants  

E-Print Network [OSTI]

gait alkaliweed Jatropha Berlandier Purgative oil Vomiting, diarrhea, abdominal This plant is poisonous only to cathartic mettlespurge and phytotoxin pain sheep and goats. Jatropha dioica Leatherstem Purgative oil Severe gastroenteritis, This plant...

McGinty, Allan; Machen, Richard V.

2000-04-25T23:59:59.000Z

100

Sandia National Laboratories: reducing aerodynamic losses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskite oxideplatform size requirementsreduced

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Tuneable dielectric films having low electrical losses  

DOE Patents [OSTI]

The present invention is directed to a method for forming dielectric thin films having substantially reduced electrical losses at microwave and millimeter wave frequencies relative to conventional dielectric thin films. The reduction in losses is realized by dramatically increasing the grain sizes of the dielectric films, thereby minimizing intergranular scattering of the microwave signal due to grain boundaries and point defects. The increase in grain size is realized by heating the film to a temperature at which the grains experience regrowth. The grain size of the films can be further increased by first depositing the films with an excess of one of the compoents, such that a highly mobile grain boundary phase is formed.

Dimos, Duane Brian (Albuquerque, NM); Schwartz, Robert William (Albuquerque, NM); Raymond, Mark Victor (Albuquerque, NM); Al-Shareef, Husam Niman (Boise, ID); Mueller, Carl (Lakewood, CO); Galt, David (Denver, CO)

2000-01-01T23:59:59.000Z

102

Electrolyte injection with electrical resistance heating  

E-Print Network [OSTI]

the effects of dielectric losses (as well as of other high frequency processes) are comparatively small. The heat generated this way elevates the temperature of the reservoir and reduces the viscosity of oil, This results in an increase of the mobility... would like to thank Mobil Oil Corporation, Halliburton Reservoir Services Inc. , and Electromagnetic Oil Recovery Ltd. for the financial support of this project. The author would also like to thank Ecopetrol and its research center, Instituto...

Jaimes Gomez, Olmedo

1992-01-01T23:59:59.000Z

103

Enhanced heat transfer using wire-coil inserts for high-heat-load applications.  

SciTech Connect (OSTI)

Enhanced heat-transfer techniques, used to significantly reduce temperatures and thermally induced stresses on beam-strike surfaces, are routinely used at the APS in all critical high-heat-load components. A new heat-transfer enhancement technique being evaluated at the APS involving the use of wire-coil inserts proves to be superior to previously employed techniques. Wire coils, similar in appearance to a common spring, are fabricated from solid wire to precise tolerances to mechanically fit inside standard 0.375-in-diameter cooling channels. In this study, a matrix of wire coils, fabricated with a series of different pitches from several different wire diameters, has been tested for heat-transfer performance and resulting pressure loss. This paper reviews the experimental data and the analytical calculations, compares the data with existing correlations, and interprets the results for APS front-end high-heat-load components.

Collins, J. T.; Conley, C. M.; Attig, J. N.; Baehl, M. M.

2002-09-20T23:59:59.000Z

104

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

E-Print Network [OSTI]

the demand for cooling energy, urban trees indirectly reducesurfaces and shade trees to reduce energy use and improvethe energy savings and GHG benefits of cool roofs and tree

Akbari, Hashem

2011-01-01T23:59:59.000Z

105

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

106

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

107

Energy costs of heating and cooling homes continue to increase. Both rural and urban homeowners can reduce these costs by strategically planting trees in their landscape. In  

E-Print Network [OSTI]

Energy costs of heating and cooling homes continue to increase. Both rural and urban homeowners can save energy costs while beautifying your property. Summer Cooling: In the summer months we want to keep to the south, we want our south facing windows to be un-obstructed by trees so passive solar energy from

Blanchette, Robert A.

108

Solar steam generation by heat localization  

E-Print Network [OSTI]

Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated ...

Ghasemi, Hadi

109

Reducing emissions by addressing steam turbine inefficiencies  

SciTech Connect (OSTI)

This paper reports that inefficient steam turbines increase fossil plant emissions because additional fuel must be burned to meet the power output requirements. During a turbine outage, plant performance and maintenance staff make and prioritize repair decisions within tight time and budget constraints. This paper describes how Georgia Power identifies performance losses of degraded components in the steam path and determines their impact on heat rate. Turbine performance is assessed by a steam path audit program that Encotech has developed and make available to utilities. Georgia Power has conducted several operating tests that give good correlation with audit results. Georgia Power uses the audit information to make the most cost-effective repairs to maintain a low heat rate and to reduce emissions. The Clean Air Act presents electric utilities with the challenge of reducing emissions from fossil plants in the most cost-effective way possible. Meeting the stack emissions limitations often translates to large capital expenditures and increased cycle heat rate. One resource the electric utilities have to reduce the costly impact of compliance with the Clean Air Act is control over the efficiency of their steam turbines.

Harris, J.C. (Georgia Power Co., Atlanta, GA (United States)); Cioffi, D.H. (Encotech, Inc., Schenectady, NY (United States))

1992-01-01T23:59:59.000Z

110

Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps  

SciTech Connect (OSTI)

In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

Shen, Bo [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

2014-01-01T23:59:59.000Z

111

Absorption heat pump system  

DOE Patents [OSTI]

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

1984-01-01T23:59:59.000Z

112

Evaluating Transformer Losses  

E-Print Network [OSTI]

and replacing them with low loss units. Today few industrials evaluate losses on either power or distribution transformers. TRANSFORMER LOSSES Transformer losses are divided 'nto load losses and no-load losses. Load losses are due to the winding resista... therefore are a function of the load squared. No-load losses occur from energizing the transformer steel and fore are continuous regardless of the transformer load. TRANSFORMER DESIGN Both types of losses are a fun ce here ion of design. If losses...

Grun, R. L. Jr.

113

acute heat stress: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Olivier Chastel; Juan F. Masello 62 The Influence of Osmoreceptors and Baroreceptors on Heat Loss Responses during a Whole-body Passive Heat Stress . Open Access Theses and...

114

Heat pipe array heat exchanger  

DOE Patents [OSTI]

A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

Reimann, Robert C. (Lafayette, NY)

1987-08-25T23:59:59.000Z

115

Energy, Exergy and Uncertainty Analyses of the Thermal Response Test for a Ground Heat Exchanger  

E-Print Network [OSTI]

exchanger, Ground coupled heat pump Corresponding author, Tel.: +1-617-308-7214, Fax: +1-617-253-3484, E calibration DAS data acquisition system g ground H heater loss1 losses from the heating section loss2 losses heating and cooling, water heating, crop drying, agricultural greenhouses, etc. In vertical U

Al-Shayea, Naser Abdul-Rahman

116

Estimating Costs and Efficiency of Storage, Demand, and Heat...  

Energy Savers [EERE]

the stored water compared to the heat content of the water (water heaters with storage tanks) Cycling losses - the loss of heat as the water circulates through a water heater...

117

Numerical Investigation of Natural Convection Loss in Cavity-Type Solar Receivers  

E-Print Network [OSTI]

Work There have been several previous investigations of natural convection heat loss from open the convective heat loss, i.e., (i) the ability to transfer mass and energy across the aperture and (ii to investigate three cases of geometrically different receivers. The calculated heat loss results shows

118

Electrically heated particulate filter with reduced stress  

DOE Patents [OSTI]

A system comprises a particulate matter (PM) filter comprising an inlet for receiving exhaust gas. A zoned heater is arranged in the inlet and comprises a resistive heater comprising N zones, where N is an integer greater than one. Each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates others of the N zones.

Gonze, Eugene V.

2013-03-05T23:59:59.000Z

119

Reducing Home Heating and Cooling Costs  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet) Year JanInformation Administration

120

Proceedings: International Conference on Boiler Tube Failures and Heat Recovery Steam Generator (HRSG) Tube Failures and Inspections  

SciTech Connect (OSTI)

Tube failures remain the leading cause of availability loss in conventional fossil plants and combined cycle/heat recovery steam generator (HRSG) plants. These conference proceedings address state-of-the-art practices and techniques worldwide for understanding and reducing tube failures.

None

2002-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

(Solar clothes dryer and wastewater heat exchanger). Final report  

SciTech Connect (OSTI)

The first project investigated the technical possibilities of adapting a domestic electric clothes dryer to utilize solar-heated water as the heat source, replacing electric resistance heat. The second project attempted to extract wastewater heat from a commercial dishwasher to preheat fresh water to be used in the next dish washing cycle. It is felt that the clothes dryer project has met all of intended goals. Although a solar application has some real-world practical problems, the application of a dryer connected directly to the home heating system will prove to be cost-beneficial over the life of a dryer. The additional cost of a heat exchanger is not excessive, and the installation cost, if installed with the initial house plumbing is less than $100. From a practical point of view, the complexity of installing a wastewater heat extracter is considered impractical. The environment in which such equipment must operate is difficult at best, and most restaurants prefer to maintain as simple an operation as possible. If problems were to occur in this type of equipment, the kitchen would effectively be crippled. In conclusion, further research in the concept is not recommended. Recent advances in commercial dishwashers have also considerably reduced the heat losses which accompanied equipment only a few years old.

Baer, B.F.

1984-12-04T23:59:59.000Z

122

Advanced Soft Switching Inverter for Reducing Switching and Power...  

Broader source: Energy.gov (indexed) [DOE]

lai.pdf More Documents & Publications Advanced Soft Switching Inverter for Reducing Switching and Power Losses Advanced Soft Switching Inverter for Reducing Switching and Power...

123

Gas heat transfer in a heated vertical channel under deteriorated turbulent heat transfer regime  

E-Print Network [OSTI]

Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...

Lee, Jeongik

2007-01-01T23:59:59.000Z

124

Gas Heat Transfer in a Heated Vertical Channel under Deteriorated Turbulent Heat Transfer Regime  

E-Print Network [OSTI]

Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...

Lee, Jeongik

125

Radio-frequency identification could help reduce the spread of plant pathogens  

E-Print Network [OSTI]

frequency identification could help reduce the spread ofeconomic losses. It also helps control the Plant Protection

Luvisi, Andrea; Panattoni, Alessandra; Triolo, Enrico

2012-01-01T23:59:59.000Z

126

Absorption-heat-pump system  

DOE Patents [OSTI]

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, G.; Perez-Blanco, H.

1983-06-16T23:59:59.000Z

127

Worldwide, accelerating glacier loss provides independent and startling evidence that global warming is occurring1 It is now clear that the Earth is warming rapidly due to man-made emissions of carbon dioxide and other heat-trap-  

E-Print Network [OSTI]

of power plants, increase their use of renewable energy sources, and halt investment in new coal plants, with severe threats to human populations and the loss of unique and irreplaceable ecosystems. It is therefore% of worldwide emissions. WWF is challenging the electric power sector to become CO2-free by the middle

Combes, Stacey A.

128

E-Print Network 3.0 - aging heat treatment Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DISORDER CAUSE SIGNS & SYMPTOMS TREATMENT Heat Cramps Heavy sweating Loss of salt -Painful spasms of arms... UFEHS-SAFE-040401 1 Heat Stress Policy UFEHS-SAFE-040401...

129

Solar heating and cooling diode module  

DOE Patents [OSTI]

A high efficiency solar heating system comprising a plurality of hollow modular units each for receiving a thermal storage mass, the units being arranged in stacked relation in the exterior frame of a building, each of the units including a port for filling the unit with the mass, a collector region and a storage region, each region having inner and outer walls, the outer wall of the collector region being oriented for exposure to sunlight for heating the thermal storage mass; the storage region having an opening therein and the collector region having a corresponding opening, the openings being joined for communicating the thermal storage mass between the storage and collector regions by thermosiphoning; the collector region being disposed substantially below and in parallel relation to the storage region in the modular unit; and the inner wall of the collector region of each successive modular unit in the stacked relation extending over the outer wall of the storage region of the next lower modular unit in the stacked relation for reducing heat loss from the system. Various modifications and alternatives are disclosed for both heating and cooling applications.

Maloney, Timothy J. (Winchester, VA)

1986-01-01T23:59:59.000Z

130

The ECA indirectly heated Stirling engine  

SciTech Connect (OSTI)

At the beginning of the 1980s the ECA Company designed and manufactured the first French Stirling engine, partially funded by the French government. The ECA engine has several design features of special interest: indirect heating by sodium heat pipes, cylinder block with four double-acting cylinders in line with a single crankshaft, four identical and demountable heat exchanger modules, piston rod seals with recuperation of leakage losses by means of four integrated rod pumps and with hermetic gas and oil seals using four roll socks, and power control by means of three gas valves and a 3.5-MPa helium bottle. The ECA engine ran for the first time and at the first attempt at the end of June 1982 and rapidly delivered a power of 5 kW at reduced pressure. Further testing of this 4-by 113-cm3 engine is under way to obtain a nominal power of 12 kW and an efficiency of 36% (heat to shaft power) with a very simplified design.

Carlqvist, S.G.; Darche, M.; Ducroux, P.

1983-08-01T23:59:59.000Z

131

Xenon Recirculation-Purification with a Heat Exchanger  

E-Print Network [OSTI]

Liquid-xenon based particle detectors have been dramatically growing in size during the last years, and are now exceeding the one-ton scale. The required high xenon purity is usually achieved by continuous recirculation of xenon gas through a high-temperature getter. This challenges the traditional way of cooling these large detectors, since in a thermally well insulated detector, most of the cooling power is spent to compensate losses from recirculation. The phase change during recondensing requires five times more cooling power than cooling the gas from ambient temperature to -100C (173 K). Thus, to reduce the cooling power requirements for large detectors, we propose to use the heat from the purified incoming gas to evaporate the outgoing xenon gas, by means of a heat exchanger. Generally, a heat exchanger would appear to be only of very limited use, since evaporation and liquefaction occur at zero temperature difference. However, the use of a recirculation pump reduces the pressure of the extracted liquid, forces it to evaporate, and thus cools it down. We show that this temperature difference can be used for an efficient heat exchange process. We investigate the use of a commercial parallel plate heat exchanger with a small liquid xenon detector. Although we expected to be limited by the available cooling power to flow rates of about 2 SLPM, rates in excess of 12 SLPM can easily be sustained, limited only by the pump speed and the impedance of the flow loop. The heat exchanger operates with an efficiency of (96.8 +/- 0.5)%. This opens the possibility for fast xenon gas recirculation in large-scale experiments, while minimizing thermal losses.

K. L. Giboni; E. Aprile; B. Choi; T. Haruyama; R. F. Lang; K. E. Lim; A. J. Melgarejo; G. Plante

2011-03-04T23:59:59.000Z

132

Composite heat damage assessment  

SciTech Connect (OSTI)

The effects of heat damage were determined on the residual mechanical, physical, and chemical properties of IM6/3501-6 laminates, and potential nondestructive techniques to detect and assess material heat damage were evaluated. About one thousand preconditioned specimens were exposed to elevated temperatures, then cooled to room temperature and tested in compression, flexure, interlaminar shear, shore-D hardness, weight loss, and change in thickness. Specimens experienced significant and irreversible reduction in their residual properties when exposed to temperatures exceeding the material upper service temperature of this material (350{degrees}F). The Diffuse Reflectance Infrared Fourier Transform and Laser-Pumped Fluorescence techniques were found to be capable of rapid, in-service, nondestructive detection and quantitation of heat damage in IM6/3501- 6. These techniques also have the potential applicability to detect and assess heat damage effects in other polymer matrix composites.

Janke, C.J.; Wachter, E.A. [Oak Ridge National Lab., TN (United States); Philpot, H.E. [Oak Ridge K-25 Site, TN (United States); Powell, G.L. [Oak Ridge Y-12 Plant, TN (United States)

1993-12-31T23:59:59.000Z

133

3D THERMOGRAPHY FOR QUANTIFICATION OF HEAT GENERATION RESULTING FROM  

E-Print Network [OSTI]

been used for decades by biologists and clinicians to isolate main sites of body heat loss by biologists and clinicians to isolate main sites of body heat loss and to assist with diagnosis3D THERMOGRAPHY FOR QUANTIFICATION OF HEAT GENERATION RESULTING FROM INFLAMMATION THERMOGRAPHIE 3D

Nebel, Jean-Christophe

134

Low temperature barriers with heat interceptor wells for in situ processes  

DOE Patents [OSTI]

A system for reducing heat load applied to a frozen barrier by a heated formation is described. The system includes heat interceptor wells positioned between the heated formation and the frozen barrier. Fluid is positioned in the heat interceptor wells. Heat transfers from the formation to the fluid to reduce the heat load applied to the frozen barrier.

McKinzie, II, Billy John (Houston, TX)

2008-10-14T23:59:59.000Z

135

Effect of steam generator configuration in a loss of the RHR during mid-loop operation at PKL facility  

SciTech Connect (OSTI)

The loss of the residual heat removal system in mid-loop conditions may occur with a non-negligible contribution to the plant risk, so the analysis of the accidental sequences and the actions to mitigate the accident are of great interest in shutdown conditions. In order to plan the appropriate measures to mitigate the accident is necessary to understand the thermal-hydraulic processes following the loss of the residual heat removal system during shutdown. Thus, transients of this kind have been simulated using best-estimate codes in different integral test facilities and compared with experimental data obtained in different facilities. In PKL (Primaerkreislauf-Versuchsanlage, primary coolant loop test facility) test facility different series of experiments have been undertaken to analyze the plant response in shutdown. In this context, the E3 and F2 series consist of analyzing the loss of the residual heat removal system with a reduced inventory in the primary system. In particular, the experiments were developed to investigate the influence of the steam generators secondary side configuration on the plant response, what involves the consideration of different number of steam generators filled with water and ready for activation, on the heat transfer mechanisms inside the steam generators U-tubes. This work presents the results of such experiments calculated using, RELAP5/Mod 3.3. (authors)

Villanueva, J. F.; Carlos, S.; Martorell, S.; Sanchez, F. [Dpto. Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Camino Vera s/n, 46022 Valencia (Spain)

2012-07-01T23:59:59.000Z

136

Plant View On Reducing Steam Trap Energy Loss  

E-Print Network [OSTI]

of the steam traps are passing excess steam. This is caused by neglect of aged steam traps which have worn out and misapplication of steam traps by oversizing or using the 'wrong' type trap. Elimination of steam wastes by an effective well engineered steam trap...

Vallery, S. J.

1982-01-01T23:59:59.000Z

137

Superconductor films with improved flux pinning and reduced AC losses  

DOE Patents [OSTI]

The present invention relates to a method for producing a defect-containing superconducting film, the method comprising (a) depositing a phase-separable layer epitaxially onto a biaxially-textured substrate, wherein the phase-separable layer includes at least two phase-separable components; (b) achieving nanoscale phase separation of the phase-separable layer such that a phase-separated layer including at least two phase-separated components is produced; and (c) depositing a superconducting film epitaxially onto said phase-separated components of the phase-separated layer such that nanoscale features of the phase-separated layer are propagated into the superconducting film.

Goyal, Amit (Knoxville, TN)

2011-04-05T23:59:59.000Z

138

Advanced Soft Switching Inverter for Reducing Switching and Power Losses |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------ChapterJuly 20142 U.S.Advanced

139

Advanced Soft Switching Inverter for Reducing Switching and Power Losses |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| Department ofDepartment of

140

Advanced Soft Switching Inverter for Reducing Switching and Power Losses |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| Department ofDepartment ofDepartment of

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High-Performance Refrigerator Using Novel Rotating Heat Exchanger...  

Broader source: Energy.gov (indexed) [DOE]

pumps have the potentially to reduce energy costs and refrigerant charge in a compact space. Rotating heat exchangers installed in appliances and heat pumps have the potentially...

142

Towards identifying the mechanisms underlying field-aligned edge-loss of HHFW power on NSTX  

SciTech Connect (OSTI)

Fast-wave heating will be a major heating scheme on ITER, as it can heat ions directly and is relatively unaffected by the large machine size unlike neutral beams. However, fast-wave interactions with the plasma edge can lead to deleterious effects such as, in the case of the high-harmonic fast-wave (HHFW) system on NSTX, large losses of fast-wave power in the scrape off layer (SOL) under certain conditions. In such scenarios, a large fraction of the lost HHFW power is deposited on the upper and lower divertors in bright spiral shapes. The responsible mechanism(s) has not yet been identified but may include fast-wave propagation in the scrape off layer, parametric decay instability, and RF currents driven by the antenna reactive fields. Understanding and mitigating these losses is important not only for improving the heating and current-drive on NSTX-Upgrade but also for understanding fast-wave propagation across the SOL in any fast-wave system. This talk summarizes experimental results demonstrating that the flow of lost HHFW power to the divertor regions largely follows the open SOL magnetic field lines. This lost power flux is relatively large close to both the antenna and the last closed flux surface with a reduced level in between, so the loss mechanism cannot be localized to the antenna. At the same time, significant losses also occur along field lines connected to the inboard edge of the bottom antenna plate. The power lost within the spirals is roughly estimated, showing that these field-aligned losses to the divertor are significant but may not account for the total HHFW loss. To elucidate the role of the onset layer for perpendicular fast-wave propagation with regards to fast-wave propagation in the SOL, a cylindrical cold-plasma model is being developed. This model, in addition to advanced RF codes such as TORIC and AORSA, is aimed at identifying the underlying mechanism(s) behind these SOL losses, to minimize their effects in NSTX-U, and to predict their importance in ITER.

Perkins, R. J.; Bell, R. E.; Bertelli, N.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; LeBlanc, B. P.; Kramer, G. J.; Maingi, R.; Phillips, C. K.; Podestà, M.; Roquemore, L.; Scotti, F.; Taylor, G.; Wilson, J. R. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Ahn, J-W.; Gray, T. K.; Green, D. L.; McLean, A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); and others

2014-02-12T23:59:59.000Z

143

Modelling and Computation of AC Fields and Losses in  

E-Print Network [OSTI]

electricity but inherently has energy losses associated with (joule) heating. Fault current limiters would be installed in transmission and distribution systems, especially for electric utilities and large energy users. High-Tc superconductors experience energy loss when exposed to time-varying magnetic fields or carrying

Sóbester, András

144

Monitoring Energy Losses  

E-Print Network [OSTI]

-line performance not new concepts. Many recently designed power plants include monitoring systems more attractive and accessible. By using an extensive computer-based on-line data acquistion system to such a system, plant operators can improve plant heat rate... are collected manually by operating or test A performance monitoring system needs pressure, personnel. Data reduction, analysis, and temperature, flow, power, and fuel data to calculate heat rate performance calculations are also manually and heat rate...

Eulinger, R. D.

145

Unknown: Multifocal scalp hair loss  

E-Print Network [OSTI]

Unknown: Multifocal scalp hair loss Sadllah Shamsadini 1 ,four patches of scalp hair loss. What is your diagnosis?

Shamsadini, Sadollah; Esfandiarpoor, Iraj; Zeinali, Hamid; Kalantari, Behjat; Ebrahimi, Hoseiali

2006-01-01T23:59:59.000Z

146

Reducing Safety Flaring through Advanced Control  

E-Print Network [OSTI]

An advanced process control application, using DMCplus® (Aspen Technology, Inc.), was developed to substantially reduce fuel gas losses to the flare at a large integrated refining / petrochemical complex. Fluctuations in internal fuel gas system...

Hokanson, D.; Lehman, K.; Matsumoto, S.; Takai, N.; Takase, F.

2010-01-01T23:59:59.000Z

147

The Economics of Steam Vs. Electric Pipe Heating  

E-Print Network [OSTI]

To properly design a pipe heating system, the basic principles of heat transfer from an insulated pipe must be understood. The three methods of heat flow are conduction, convection (both forced and natural) and radiation. The total heat loss from a...

Schilling, R. E.

148

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

149

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

150

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

151

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

152

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

153

Energy-efficient water heating  

SciTech Connect (OSTI)

This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

NONE

1995-01-01T23:59:59.000Z

154

New industrial heat pump applications to an integrated thermomechanical pulp and paper mill  

SciTech Connect (OSTI)

Application of pinch technology US industries in an early screening study done by TENSA Services (DOE/ID/12583-1) identified potential for heat pumps in several industrial sectors. Among these, processes with large evaporation units were found to be some of the most promising sectors for advanced heat pump placement. This report summarizes the results of a study for Bowater Incorporated, Carolina Division. The units selected for this study are the thermo-mechanical pulper (TMP), kraft digester, evaporators, boiler feed water (BFW) train and pulp dryer. Based on the present level of operation, the following recommendations are made: 1. Install a mechanical vapor compression (MVR) heat pump between the TMP mill and {number sign}3 evaporator. This heat pump will compress the 22 psig steam from the TMP heat recovery system and use it to replace about 70% of the 60 psig steam required in {number sign} evaporator. The boiler feed water heat losses (in the low pressure deaerator) will be supplied by heat available in the TMR's zero psig vent steam. 2. Study the digester to verify the practicality of installing an MVR heat pump which will compress the dirty weapons from the cyclone separator. The compressed vapors can be directly injected into the digester and thus reduce the 135 psig steam consumption. 31 figs., 9 tabs.

none,

1991-01-01T23:59:59.000Z

155

Recent Fast Wave Coupling and Heating Studies on NSTX, with Possible Implications for ITER  

SciTech Connect (OSTI)

The goal of the high harmonic fast wave (HHFW) research on NSTX is to maximize the coupling of RF power to the core of the plasma by minimizing the coupling of RF power to edge loss processes. HHFW core plasma heating efficiency in helium and deuterium L-mode discharges is found to improve markedly on NSTX when the density 2 cm in front of the antenna is reduced below that for the onset of perpendicular wave propagation (nonset ? B*k|| 2/?). In NSTX, the observed RF power losses in the plasma edge are driven in the vicinity of the antenna as opposed to resulting from multi-pass edge damping. PDI surface losses through ion-electron collisions are estimated to be significant. Recent spectroscopic measurements suggest that additional PDI losses could be caused by the loss of energetic edge ions on direct loss orbits and perhaps result in the observed clamping of the edge rotation. Initial deuterium H-mode heating studies reveal that core heating is degraded at lower k? (- 8 m-1 relative to 13 m-1) as for the Lmode case at elevated edge density. Fast visible camera images clearly indicate that a major edge loss process is occurring from the plasma scrape off layer (SOL) in the vicinity of the antenna and along the magnetic field lines to the lower outer divertor plate. Large type I ELMs, which are observed at both k? values, appear after antenna arcs caused by precursor blobs, low level ELMs, or dust. For large ELMs without arcs, the source reflection coefficients rise on a 0.1 ms time scale, which indicates that the time derivative of the reflection coefficient can be used to discriminate between arcs and ELMs.

J.C. Hosea, R.E. Bell, E. Feibush, R.W. Harvey, E.F. Jaeger, B.P LeBlanc, R. Maingi, C.K. Phillips, L. Roquemore, P.M. Ryan, G. Taylor, K. Tritz, E.J. Valeo, J. Wilgen, J.R. Wilson, and the NSTX Team

2009-07-21T23:59:59.000Z

156

Heating system  

SciTech Connect (OSTI)

A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

Nishman, P.J.

1983-03-08T23:59:59.000Z

157

Assessing and Reducing Miscellaneous Electric Loads (MELs) in Lodging  

SciTech Connect (OSTI)

Miscellaneous electric loads (MELs) are the loads outside of a building's core functions of heating, ventilating, air conditioning, lighting, and water heating. This report reviews methods to reduce MELs in lodging.

Rauch, Emily M.

2011-09-01T23:59:59.000Z

158

Investigation of a radiantly heated and cooled office with an integrated desiccant ventilation unit  

E-Print Network [OSTI]

Radiant heating and cooling has a reputation of increasing the comfort level and reducing the energy consumption of buildings. The main advantages of radiant heating and cooling are low operational noise and reduced fan power cost. Radiant heating...

Gong, Xiangyang

2009-05-15T23:59:59.000Z

159

Factors affect offshore production loss control  

SciTech Connect (OSTI)

Many aspects of petroleum measurement on an offshore production platform are the same as at an onshore facility, but there are some unique differences. Before going into them it should be noted that even in today's climate of low or declining oil prices that stock loss control is still important. Improving measurement of the quantity of oil transfers can help reduce the amount of stock that is ''unaccounted for'' or lost. As stock loss is reduced, the salable quantity increases, the gross revenue increases, and the net revenue increases. Even in cases where transfers are between two departments of the same company, accurate measurement and proper accountability are required because they often are the basis for determining costs and can thus affect the price that is charged on a later custody transfer. Inefficiencies in intracompany transfers can often hide real losses which may occur during intercompany transfers.

Ash, C.S.

1986-05-12T23:59:59.000Z

160

Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System  

E-Print Network [OSTI]

The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more...

Wu, Z.; Li, D.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Waste-heat recovery in batch processes using heat storage  

SciTech Connect (OSTI)

The waste-heat recovery in batch processes has been studied using the pinch-point method. The aim of the work has been to investigate theoretical and practical approaches to the design of heat-exchanger networks, including heat storage, for waste-heat recovery in batch processes. The study is limited to the incorporation of energy-storage systems based on fixed-temperature variable-mass stores. The background for preferring this to the alternatives (variable-temperature fixed-mass and constant-mass constant-temperature (latent-heat) stores) is given. It is shown that the maximum energy-saving targets as calculated by the pinch-point method (time average model, TAM) can be achieved by locating energy stores at either end of each process stream. This theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. A simple procedure for determining a number of heat-storage tanks sufficient to achieve the maximum energy-saving targets as calculated by the pinch-point method is described. This procedure relies on combinatorial considerations, and could therefore be labeled the combinatorial method for incorporation of heat storage in heat-exchanger networks. Qualitative arguments justifying the procedure are presented. For simple systems, waste-heat recovery systems with only three heat-storage temperatures (a hot storage, a cold storage, and a heat store at the pinch temperature) often can achieve the maximum energy-saving targets. Through case studies, six of which are presented, it is found that a theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. The description of these six cases is intended to be sufficiently detailed to serve as benchmark cases for development of alternative methods.

Stoltze, S.; Mikkelsen, J.; Lorentzen, B.; Petersen, P.M.; Qvale, B. [Technical Univ. of Denmark, Lyngby (Denmark). Lab. for Energetics

1995-06-01T23:59:59.000Z

162

A simplistic model of cyclic heat transfer phenomena in closed spaces  

SciTech Connect (OSTI)

Cyclic heat transfer inside closed spaces is investigated analytically using a simple heat transfer model. The model consists of a gas layer exchanging heat with two bounding parallel walls that pulsate against each other in the transverse direction. Correlations for the magnitude and the phase lag of the heat transfer are obtained. Also, an expression for the power loss due to the cyclic heat transfer is presented. It is shown that the loss approaches zero as the heat transfer process approaches either isothermal or adiabatic conditions. The power loss is shown to be a strong function of the phase angle between the bulk gas temperature and the heat transfer.

Lee, K.

1983-08-01T23:59:59.000Z

163

Heat distribution by natural convection  

SciTech Connect (OSTI)

Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.

Balcomb, J.D.

1985-01-01T23:59:59.000Z

164

Heat Pipe Solar Receiver Development Activities at Sandia National Laboratories  

SciTech Connect (OSTI)

Over the past decade, Sandia National Laboratories has been involved in the development of receivers to transfer energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. Through the isothermal evaporation and condensation of sodium. a heat-pipe receiver can efficiently transfer energy to an engine's working fluid and compensate for irregularities in the flux distribution that is delivered by the concentrator. The operation of the heat pipe is completely passive because the liquid sodium is distributed over the solar-heated surface by capillary pumping provided by a wick structure. Tests have shown that using a heat pipe can boost the system performance by twenty percent when compared to directly illuminating the engine heater tubes. Designing heat pipe solar receivers has presented several challenges. The relatively large area ({approximately}0.2 m{sup 2}) of the receiver surface makes it difficult to design a wick that can continuously provide liquid sodium to all regions of the heated surface. Selecting a wick structure with smaller pores will improve capillary pumping capabilities of the wick, but the small pores will restrict the flow of liquid and generate high pressure drops. Selecting a wick that is comprised of very tine filaments can increase the permeability of the wick and thereby reduce flow losses, however, the fine wick structure is more susceptible to corrosion and mechanical damage. This paper provides a comprehensive review of the issues encountered in the design of heat pipe solar receivers and solutions to problems that have arisen. Topics include: flow characterization in the receiver, the design of wick systems. the minimization of corrosion and dissolution of metals in sodium systems. and the prevention of mechanical failure in high porosity wick structures.

Adkins, D.R.; Andraka, C.E.; Moreno, J.B.; Moss, T.A.; Rawlinson, K.S.; Showalter, S.K.

1999-01-08T23:59:59.000Z

165

Heating and Cooling Equipment Selection  

SciTech Connect (OSTI)

This is one of a series of technology fact sheets created to help housing designers and builders adopt a whole-house design approach and energy efficient design practices. The fact sheet helps people choose the correct equipment for heating and cooling to reduce initial costs, increase homeowner comfort, increase operating efficiency, and greatly reduce utility costs.

Not Available

2002-01-01T23:59:59.000Z

166

Catalogue of a Loss  

E-Print Network [OSTI]

Catalogue of a Loss is a collection of sixty-two prose poems written within the past year and half. The work is printed on 4x6 cards. Each poem may be read individually from a single card or the poems can be read in ...

Berger, Larisa (Larisa A.)

2012-01-01T23:59:59.000Z

167

Development of an integrated building load and ground source heat pump model to assess heat pump and ground loop design and performance in a commercial office building.  

E-Print Network [OSTI]

??Ground source heat pumps (GSHPs) offer an efficient method for cooling and heating buildings, reducing energy usage and operating cost. In hot, arid regions such… (more)

Blair, Jacob Dale

2014-01-01T23:59:59.000Z

168

Corrosive resistant heat exchanger  

DOE Patents [OSTI]

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

169

Xenon Recirculation-Purification with a Heat Exchanger  

E-Print Network [OSTI]

Liquid-xenon based particle detectors have been dramatically growing in size during the last years, and are now exceeding the one-ton scale. The required high xenon purity is usually achieved by continuous recirculation of xenon gas through a high-temperature getter. This challenges the traditional way of cooling these large detectors, since in a thermally well insulated detector, most of the cooling power is spent to compensate losses from recirculation. The phase change during recondensing requires five times more cooling power than cooling the gas from ambient temperature to -100C (173 K). Thus, to reduce the cooling power requirements for large detectors, we propose to use the heat from the purified incoming gas to evaporate the outgoing xenon gas, by means of a heat exchanger. Generally, a heat exchanger would appear to be only of very limited use, since evaporation and liquefaction occur at zero temperature difference. However, the use of a recirculation pump reduces the pressure of the extracted liquid...

Giboni, K L; Choi, B; Haruyama, T; Lang, R F; Lim, K E; Melgarejo, A J; Plante, G; 10.1088/1748-0221/6/03/P03002

2011-01-01T23:59:59.000Z

170

Parton Energy Loss with Detailed Balance  

E-Print Network [OSTI]

Stimulated gluon emission and thermal absorption in addition to induced radiation are considered for an energetic parton propagating inside a quark- gluon plasma. In the presence of thermal gluons, stimulated emission reduces while absorption increases the parton's energy. The net effect is a reduction of the parton energy loss. Though decreasing asymptotically as $T/E$ with the parton energy, the relative reduction is found to be important for intermediate energies. The modified energy dependence of the energy loss will affect the shape of suppression of moderately high $p_T$ hadrons due to jet quenching in high-energy heavy-ion collisions.

Enke Wang; Xin-Nian Wang

2001-06-28T23:59:59.000Z

171

CHP: It's Time for Combined Heat and Power  

E-Print Network [OSTI]

and export 16. Creates local jobs for installation, operation and maintenance 17. Supports competitive electricity market structure General Conclusion It is very much in the PUBLIC interest to support CHP distributed energy… even if the private incentives... of use Electricity Electricity Heat Heat Combined Heat and Power Conventional Generation Building Load Power Plant fuel (66 units of remote energy) Boiler fuel (34 units of on-site energy) CHP fuel (x units of on-site energy) Losses Losses 20 29 20...

Herweck, R.

172

Return channel loss reduction in multi-stage centrifugal compressors  

E-Print Network [OSTI]

This thesis presents concepts for improving the performance of return channels in multi-stage centrifugal compressors. Geometries have been developed to reduce both separation and viscous losses. A number of different ...

Aubry, Anne-Raphaëlle

2012-01-01T23:59:59.000Z

173

Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

Not Available

2011-10-01T23:59:59.000Z

174

Using Exergy Analysis Methodology to Assess the Heating Efficiency of an Electric Heat Pump  

E-Print Network [OSTI]

The authors, using exergy analysis methodology, propose that it should consider not only the COP (coefficient of Performance) value of the electric power heat pump set (EPHPS/or HP set), but also the exergy loss at the heating exchanger of the HP...

Ao, Y.; Duanmu, L.; Shen, S.

2006-01-01T23:59:59.000Z

175

Sol-Clad-Siding and Trans-Lucent-Insulation : curtain wall components for conserving dwelling heat by passive-solar means  

E-Print Network [OSTI]

A prototype for a dwelling heat loss compensator is introduced in this thesis, along with its measured thermal performance and suggestions for its future development. As a heat loss compensator, the Sol-Clad-Siding collects, ...

Iliesiu, Doru

1983-01-01T23:59:59.000Z

176

Heating System Specification Specification of Heating System  

E-Print Network [OSTI]

Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

Day, Nancy

177

Error Analysis of Heat Transfer for Finned-Tube Heat-Exchanger Text-Board  

E-Print Network [OSTI]

In order to reduce the measurement error of heat transfer in water and air side for finned-tube heat-exchanger as little as possible, and design a heat-exchanger test-board measurement system economically, based on the principle of test-board system...

Chen, Y.; Zhang, J.

2006-01-01T23:59:59.000Z

178

Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water  

E-Print Network [OSTI]

heaters. The methods presented demonstrate how integrated systems can be of value in reducing daily summertime peaks. INTRODUCTION A need for descriptors to evaluate systems that condition space and heat domestic water has been recognized for several... added to and used by the water from the desuperheated refrigerant - heat normally provided by the electric water heater's resistance elements. DESCRIPTION OF EQUIPMENT The system considered for this study is best described by U.S. Patent No. 4...

Cawley, R.

179

RADIATIVE HEATING OF THE SOLAR CORONA  

SciTech Connect (OSTI)

We investigate the effect of solar visible and infrared radiation on electrons in the Sun's atmosphere using a Monte Carlo simulation of the wave-particle interaction and conclude that sunlight provides at least 40% and possibly all of the power required to heat the corona, with the exception of dense magnetic flux loops. The simulation uses a radiation waveform comprising 100 frequency components spanning the solar blackbody spectrum. Coronal electrons are heated in a stochastic manner by low coherence solar electromagnetic radiation. The wave 'coherence time' and 'coherence volume' for each component is determined from optical theory. The low coherence of solar radiation allows moving electrons to gain energy from the chaotic wave field which imparts multiple random velocity 'kicks' to these particles causing their velocity distribution to broaden or heat. Monte Carlo simulations of broadband solar radiative heating on ensembles of 1000 electrons show heating at per particle levels of 4.0 x 10{sup -21} to 4.0 x 10{sup -20} W, as compared with non-loop radiative loss rates of {approx}1 x 10{sup -20} W per electron. Since radiative losses comprise nearly all of the power losses in the corona, sunlight alone can explain the elevated temperatures in this region. The volume electron heating rate is proportional to density, and protons are assumed to be heated either by plasma waves or through collisions with electrons.

Moran, Thomas G., E-mail: moran@grace.nascom.nasa.gov [Physics Department, Catholic University of America, 200 Hannan Hall, Washington, DC 20064 (United States) and NASA/GSFC, Code 671, Greenbelt, MD 20771 (United States)

2011-10-20T23:59:59.000Z

180

AN INVESTIGATION OF CERTAIN THERMODYNAMIC LOSSES IN MINIATURE  

E-Print Network [OSTI]

of gas temperatures and power losses for a compression volume that included a regenerative heat exchanger for flows between the piston/cylinder volume and the regenerator. The temperature profiles exhibited results for high pressure and low frequency were very unstable with significant high frequency components

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Investigating potential light-duty efficiency improvements through simulation of turbo-compounding and waste-heat recovery systems  

SciTech Connect (OSTI)

Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, achieving similar benefits for light-duty applications is complicated by transient, low-load operation at typical driving conditions and competition with the turbocharger and aftertreatment system for the limited thermal resources. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. The model is used to examine the effects of efficiency-improvement strategies such as cylinder deactivation, use of advanced materials and improved insulation to limit ambient heat loss, and turbo-compounding on the steady-state performance of the ORC system and the availability of thermal energy for downstream aftertreatment systems. Results from transient drive-cycle simulations are also presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and balancing the thermal requirements of waste-heat recovery, turbocharging or turbo-compounding, and exhaust aftertreatment.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Briggs, Thomas E [ORNL

2010-01-01T23:59:59.000Z

182

Plate Fin Heat Exchanger Model with Axial Conduction and Variable Properties  

SciTech Connect (OSTI)

Future superconducting radio frequency (SRF) cavities, as part of Project X at Fermilab, will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule-Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchangers will be utilized. Due to their compact size and ease of fabrication, plate-fin heat exchangers are an effective option. However, the design of compact and high-effectiveness cryogenic heat exchangers operating at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger. The model is used to guide design decisions on heat exchanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger to analyze the effect of heat load and cryogenic supply parameters. A numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger was developed and the effect of various design parameters on overall heat exchanger size was investigated. It was found that highly conductive metals should be avoided in the design of compact JT heat exchangers. For the geometry considered, the optimal conductivity is around 3.5 W/m-K and can range from 0.3-10 W/m-K without a large loss in performance. The model was implemented with an isenthalpic expansion process. Increasing the cold side inlet temperature from 2K to 2.2 K decreased the liquid fraction from 0.856 to 0.839 which corresponds to a 0.12 g/s increase in supercritical helium supply needed to maintain liquid level in the cooling bath. Lastly, it was found that the effectiveness increased when the heat load was below the design value. Therefore, the heat exchanger should be sized on the high end of the required heat load.

Hansen, B.J.; White, M.J.; Klebaner, A.; /Fermilab

2011-06-10T23:59:59.000Z

183

ITP Industrial Distributed Energy: Ultra Efficient Combined Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System A High-Temperature Fuel Cell to Provide On-site Process Reducing Gas, Clean Power, and Heat The project will utilize...

184

Geothermal heating  

SciTech Connect (OSTI)

The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

Aureille, M.

1982-01-01T23:59:59.000Z

185

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1982-01-01T23:59:59.000Z

186

Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city  

E-Print Network [OSTI]

- tainably reducing carbon storage and biodiversity. biodiversity conservation | carbon emissions | reducing, wood production, and biodiversity conservation. The impacts of individual forms of tropical forestPredictable waves of sequential forest degradation and biodiversity loss spreading from an African

Vermont, University of

187

Water and Space Heating Heat Pumps  

E-Print Network [OSTI]

This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

Kessler, A. F.

1985-01-01T23:59:59.000Z

188

Industrial Waste Heat Recovery Using Heat Pipes  

E-Print Network [OSTI]

For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

Ruch, M. A.

1981-01-01T23:59:59.000Z

189

PreHeat: Controlling Home Heating Using Occupancy Prediction  

E-Print Network [OSTI]

with a static program over an average 61 days per house, alternating days between these conditions time that the house was occupied but not warm). In US homes, PreHeat decreased MissTime by a factor goal for saving money and reducing our ecological footprint. Although programmable thermostats provide

Krumm, John

190

Experimental Investigation on Thermal Properties of a Steel-jacketed Steam Heating Pipeline with Vacuum Insulation  

E-Print Network [OSTI]

The steel-jacketed steam heating pipeline employs vacuum insulation to improve the insulating effect and reduce the corrosion, and hence increases the heat transfer efficiency of the heating network and building energy efficiency. It is important...

Na, W.; Zou, P.

2006-01-01T23:59:59.000Z

191

Models for the Prediction of Fouling in Crude Oil Pre-Heat Trains  

E-Print Network [OSTI]

Fouling has two significant effects upon pre-heat train performance. Firstly, any of layer of foulant on the heat transfer surface presents a resistance to heat transfer. This thermal resistance increases as the layer builds up, so fouling reduces...

Yeap, B. L.; Wilson, D. I.; Polley, G. T.

192

Heating systems for heating subsurface formations  

DOE Patents [OSTI]

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

193

Digital Loss-Minimizing Multi-Mode Synchronous Buck Converter Control Angel V. Peterchev Seth R. Sanders  

E-Print Network [OSTI]

transition among the modes. An on-line adaptive algorithm to optimize the SR timing, based on power loss reducing the switching losses. In modern portable applications, minimizing power loss at light load in the controller, or can be obtained on-line by dynamically minimizing the converter power loss via multi

Sanders, Seth

194

UNDERSTANDING THE IMPACT OF RETURN-CURRENT LOSSES ON THE X-RAY EMISSION FROM SOLAR FLARES  

SciTech Connect (OSTI)

I obtain and examine the implications of one-dimensional analytic solutions for return-current losses on an initially power-law distribution of energetic electrons with a sharp low-energy cutoff in flare plasma with classical (collisional) resistivity. These solutions show, for example, that return-current losses are not sensitive to plasma density, but are sensitive to plasma temperature and the low-energy cutoff of the injected nonthermal electron distribution. A characteristic distance from the electron injection site, x{sub rc}, is derived. At distances less than x{sub rc} the electron flux density is not reduced by return-current losses, but plasma heating can be substantial in this region, in the upper, coronal part of the flare loop. Before the electrons reach the collisional thick-target region of the flare loop, an injected power-law electron distribution with a low-energy cutoff maintains that structure, but with a flat energy distribution below the cutoff energy, which is now determined by the total potential drop experienced by the electrons. Modifications due to the presence of collisional losses are discussed. I compare these results with earlier analytical results and with more recent numerical simulations. Emslie's conjecture that there is a maximum integrated X-ray source brightness on the order of 10{sup -15} photons cm{sup -2} s{sup -1} cm{sup -2} is examined. I find that this is not actually the maximum brightness and its value is parameter dependent, but it is nevertheless a valuable benchmark for identifying return-current losses in hard X-ray spectra. I discuss an observational approach to identifying return-current losses in flare data, including identification of a return-current 'bump' in X-ray light curves at low photon energies.

Holman, Gordon D., E-mail: Gordon.D.Holman@nasa.gov [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States)

2012-01-20T23:59:59.000Z

195

MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DANE VACUUM CHAMBER  

E-Print Network [OSTI]

HOM content and reduce the impedance of the remaining HOMs in order to avoid excessive beam power loss harmonics of the beam in order to avoid resonant enhancement of the parasitic power loss. The basic ideas

Istituto Nazionale di Fisica Nucleare (INFN)

196

Reduces electric energy consumption  

E-Print Network [OSTI]

BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

197

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, P.J.

1983-12-08T23:59:59.000Z

198

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

199

A quantitative design and analysis of magnetic nanoparticle heating systems  

E-Print Network [OSTI]

Magnetic particles under the influence of an alternating magnetic field act as localized heating sources due to various loss mechanisms. This effect has been extensively investigated in hypothermia studies over the past ...

Khushrushahi, Shahriar Rohinton

2006-01-01T23:59:59.000Z

200

atomic scale heating: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of a BEC in contact with its thermal cloud. Of course, other mechanisms also provide heat and also particle loss. From varied data on optically trapped cesium BEC's, we...

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Heat distribution by natural convection  

SciTech Connect (OSTI)

Natural convection can provide adequate heat distribution in many situations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others. Natural convection can also be used to reduce the number of auxiliary heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures are predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Experimental results are summarized based on the monitoring of 15 passive solar buildings which employ a wide variety of geometrical configurations including natural convective loops.

Balcomb, J.D.

1985-01-01T23:59:59.000Z

202

Economic Analysis of Home Heating and Cooling  

E-Print Network [OSTI]

, toaster, washer, dryer, etc. are relatively minor compared to these two "energy gulpers". Reducing air conditioning and hot water heating costs are therefore the two items on which homeowners should concentrate....

Wagers, H. L.

1984-01-01T23:59:59.000Z

203

Heat pipe dehumidification for supermarket energy savings  

E-Print Network [OSTI]

This thesis examines the possibility of using a heat pipe installed in the air conditioning unit of a supermarket to increase the level of dehumidification of the inside air. This dehumidification is expected to reduce the ...

Oliver, Eric M. (Eric Michael)

1994-01-01T23:59:59.000Z

204

Ceramic heat exchanger  

DOE Patents [OSTI]

A tube containment system is disclosed. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture. 6 figs.

LaHaye, P.G.; Rahman, F.H.; Lebeau, T.P.; Severin, B.K.

1998-06-16T23:59:59.000Z

205

Ceramic heat exchanger  

DOE Patents [OSTI]

A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

LaHaye, Paul G. (Kennebunk, ME); Rahman, Faress H. (Portland, ME); Lebeau, Thomas P. E. (Portland, ME); Severin, Barbara K. (Biddeford, ME)

1998-01-01T23:59:59.000Z

206

Transmission electron energy-loss spectroscopy study of carbon nanotubes upon high temperature treatment  

E-Print Network [OSTI]

Transmission electron energy-loss spectroscopy study of carbon nanotubes upon high temperature electron energy-loss spectroscopy study of carbon nanotubes upon high temperature treatment B. W. Reed, M of carbon nanotube materials, grown with a pulsed-laser deposition technique but purified and heat treated

Bertsch George F.

207

Recirculation of Factory Heat and Air to Reduce Energy Consumption  

E-Print Network [OSTI]

-makeup ventilation systems. First we must distinguish between gaseous and particulate contaminants in order to select appropriate types of air cleaning equipment. Next the physical (and chemical) char acteristics of those specific contaminants must be considered... particles. (Note that most gases and vapors are colorless and invisible ?...suspended particulates are almost the only visible air con taminants .) Because the chemical vapor pressure of the nuisance contaminants which create visibly polluted factory...

Thiel, G. R.

1983-01-01T23:59:59.000Z

208

Reduce Natural Gas Use in Your Industrial Process Heating Systems |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruit

209

Flathead Electric Cooperative Facility Geothermal Heat Pump System...  

Broader source: Energy.gov (indexed) [DOE]

Cooperative is uniquely positioned to provide marketing of ground source heat pump systems * 15' Static Water Level * Low Pumping Power * Reduced Installation Costs * Good...

210

SELF HELPS ST. LUCIE RESIDENTS BEAT THE FLORIDA HEAT | Department...  

Energy Savers [EERE]

summer heat waves can send Floridians' utility bills soaring. St. Lucie County in the heart of Florida's Treasure Coast committed to helping homeowners reduce their rising...

211

5 Cool Things about Solar Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

or deductions for solar energy systems. Solar heating systems reduce the amount of air pollution and greenhouse gases that generally come from the use of fossil fuels for...

212

Polarization energy loss in hot viscous quark-gluon plasma  

E-Print Network [OSTI]

The gluon polarization tensor for the quark-gluon plasma with shear viscosity is derived with the viscous chromohydrodynamics. The longitudinal and transverse dielectric functions are evaluated from the gluon polarization tensor, through which the polarization energy loss suffered by a fast quark traveling through the viscous quark-gluon plasma is investigated. The numerical analysis indicates that shear viscosity significantly reduces the polarization energy loss.

Bing-Feng Jiang; Defu Hou; Jia-Rong Li

2014-05-19T23:59:59.000Z

213

Tax aspects of casualty losses  

E-Print Network [OSTI]

sudden, unex- 1 pected or unusual nature. The word also signifies an accident, a mishap, or some sudden invasion by a hostile agency. It excludes the progressive deterioration of property through a steadily operating cause, and the loss of an article.... F. T, R. 432, rulings and Court decisions indicate that there may be a tendency to dis- regard suddenness as a requirement for a casualty loss deduction. The casualty loss deduction is allowed only for the loss of pro- 3 perty and the property...

Lehmann, August Herman

1960-01-01T23:59:59.000Z

214

Dual source heat pump  

DOE Patents [OSTI]

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

1982-01-01T23:59:59.000Z

215

Segmented heat exchanger  

DOE Patents [OSTI]

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

216

Enhanced heat transfer for thermionic power modules  

SciTech Connect (OSTI)

The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

Johnson, D.C.

1981-07-01T23:59:59.000Z

217

TILAS: A Simple Analysis Tool for Estimating Power Losses in an IGBT-Diode Pair under  

E-Print Network [OSTI]

measurements the load current of a converter phase leg and the gate switching waveform of the upper IGBT. The sizing and material of heat sinks, in addition to the choice of blowers, liquid cooling, heat pumps, etc case. In [3], an analytical calculation tool for power losses in both voltage-source and current

Kimball, Jonathan W.

218

PPPL-3452 PPPL-3452 Fast Ion Loss Diagnostic Plans for NSTX  

E-Print Network [OSTI]

. There may, in addition, be losses of fast ions arising from high harmonic fast wave (HHFW) heating. Most experimental campaign, thermocouples in the antenna, several infrared camera views, and a Faraday cup lost ion, there will be 5 MW of 30 MHz HHFW heating and current drive available. Starting in October 2000, there will also

219

Investigating potential efficiency improvement for light-duty transportation applications through simulation of an organic Rankine cycle for waste-heat recovery  

SciTech Connect (OSTI)

Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to heat loss and combustion irreversibility. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, the potential benefits of such a strategy for light-duty applications are unknown due to transient operation, low-load operation at typical driving conditions, and the added mass of the system. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. Results from steady-state and drive-cycle simulations are presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and competition between waste-heat recovery systems, turbochargers, aftertreatment devices, and other systems for the limited thermal resources.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL

2010-01-01T23:59:59.000Z

220

Heat pipes for use in a magnetic field  

DOE Patents [OSTI]

A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

Werner, R.W.; Hoffman, M.A.

1983-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Recessed light fixtures: Infiltration energy loss  

SciTech Connect (OSTI)

This article reports that a recent study revealed that fluorescent bulbs can reduce convective energy losses by 15--65% as compared to incandescent bulbs. Recessed light fixtures are commonly installed in offices and homes. However, a problem arises in homes when the fixtures are set in the ceiling such that the top of the light fixture is exposed to the unconditioned air in the attic. Because some air flow is necessary around the light to avoid overheating, the manufacturers do not make all the fixtures leak tight, only those that are rated for lower wattage bulbs. The need for cooling the fixture may conflict with some building efficiency codes.

Bennett, S.M.; Perez-Blanco, H. (Pennsylvania State Univ., University Park, PA (United States))

1994-06-01T23:59:59.000Z

222

Optimum Size of Nanorods for Heating Application  

E-Print Network [OSTI]

Magnetic nanoparticles (MNP's) have become increasingly important in heating applications such as hyperthermia treatment of cancer due to their ability to release heat when a remote external alternating magnetic field is applied. It has been shown that the heating capability of such particles varies significantly with the size of particles used. In this paper, we theoretically evaluate the heating capability of rod-shaped MNP's and identify conditions under which these particles display highest efficiency. For optimally sized monodisperse particles, the power generated by rod-shaped particles is found to be equal to that generated by spherical particles. However, for particles which have a dispersion in size, rod-shaped particles are found to be more effective in heating as a result of the greater spread in the power density distribution curve. Additionally, for rod-shaped particles, a dispersion in the radius of the particle contributes more to the reduction in loss power when compared to a dispersion in the...

Seshadri, Gowrishankar; Mehra, Anurag

2013-01-01T23:59:59.000Z

223

Neutron behavior, reactor control, and reactor heat transfer. Volume four  

SciTech Connect (OSTI)

Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant).

Not Available

1986-01-01T23:59:59.000Z

224

ORNL rod-bundle heat-transfer test data. Volume 6. Thermal-hydraulic test facility experimental data report for test 3. 05. 5B - double-ended cold-leg break simulation  

SciTech Connect (OSTI)

Thermal-Hydraulic Test Facility (THTF) Test 3.05.5B was conducted by members of the ORNL PWR Blowdown Heat Transfer Separate-Effects Program on July 3, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.05.5B was designed to provide transient thermal-hydraulics data in rod bundle geometry under reactor accident-type conditions. Reduced instrument responses are presented. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.; Schwinkendorf, K.N.

1982-05-18T23:59:59.000Z

225

Plating under reduced pressure  

SciTech Connect (OSTI)

Plating under reduced pressure was evaluated for both electroless nickel and electrodeposited copper systems. The objective was to reduce pitting of these coatings thereby further enhancing their usage for diamond turning applications. Cursory experiments with electroless nickel showed reduced porosity when deposition was done at around 500 torr. Detailed experiments with electrodeposited copper at around 100 torr provided similar results. Scanning tunneling microscopy was effectively used to show the improvement in the copper deposits plated under reduced pressure. Benefits included reduced surface roughness and finer and denser grain structure.

Dini, J.W.; Beat, T.G.; Cowden, W.C. (Lawrence Livermore National Lab., CA (United States)); Ryan, L.E.; Hewitt, W.B. (TRW, Inc., Redondo Beach, CA (United States))

1992-06-01T23:59:59.000Z

226

Carbon footprints of heating oil and LPG heating systems  

SciTech Connect (OSTI)

For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

Johnson, Eric P., E-mail: ejohnson@ecosite.co.uk

2012-07-15T23:59:59.000Z

227

Multiple source heat pump  

DOE Patents [OSTI]

A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

228

Heat transfer assembly for a fluorescent lamp and fixture  

DOE Patents [OSTI]

In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

Siminovitch, Michael J. (Richmond, CA); Rubenstein, Francis M. (Berkeley, CA); Whitman, Richard E. (Richmond, CA)

1992-01-01T23:59:59.000Z

229

Heat transfer assembly for a fluorescent lamp and fixture  

DOE Patents [OSTI]

In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

1992-12-29T23:59:59.000Z

230

Heat Pump for High School Heat Recovery  

E-Print Network [OSTI]

The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

231

How Damage Diversification Can Reduce Systemic Risk  

E-Print Network [OSTI]

We consider the problem of risk diversification in complex networks. Nodes represent e.g. financial actors, whereas weighted links represent e.g. financial obligations (credits/debts). Each node has a risk to fail because of losses resulting from defaulting neighbors, which may lead to large failure cascades. Classical risk diversification strategies usually neglect network effects and therefore suggest that risk can be reduced if possible losses (i.e., exposures) are split among many neighbors (exposure diversification, ED). But from a complex networks perspective diversification implies higher connectivity of the system as a whole which can also lead to increasing failure risk of a node. To cope with this, we propose a different strategy (damage diversification, DD), i.e. the diversification of losses that are imposed on neighboring nodes as opposed to losses incurred by the node itself. Here, we quantify the potential of DD to reduce systemic risk in comparison to ED. For this, we develop a branching proce...

Burkholz, Rebekka; Schweitzer, Frank

2015-01-01T23:59:59.000Z

232

GRIEF AND LOSS COUNSELLING AND  

E-Print Network [OSTI]

LEARN TO UNDERSTAND GRIEF AND LOSS COUNSELLING AND PSYCHOLOGICAL SERVICES (CAPS) #12;The death be tired with no energy or feel sick in the stomach and have headaches. People experiencing grief after

Viglas, Anastasios

233

Turbine tip clearance loss mechanisms  

E-Print Network [OSTI]

Three-dimensional numerical simulations (RANS and URANS) were used to assess the impact of two specific design features, and of aspects of the actual turbine environment, on turbine blade tip loss. The calculations were ...

Mazur, Steven (Steven Andrew)

2013-01-01T23:59:59.000Z

234

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

235

Project Profile: Heat Transfer and Latent Heat Storage in Inorganic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants Project Profile: Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants...

236

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

237

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

238

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

239

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

240

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

242

Absorption heat pump system  

DOE Patents [OSTI]

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, G.

1982-06-16T23:59:59.000Z

243

Locating Heat Recovery Opportunities  

E-Print Network [OSTI]

Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

Waterland, A. F.

1981-01-01T23:59:59.000Z

244

Absorption heat pump system  

DOE Patents [OSTI]

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, Gershon (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

245

Integration of analysis and experiment for Stirling cycle processes: Part 1, Gas spring hysteresis loss  

SciTech Connect (OSTI)

Heat transfer-related hysteresis loss can be an important factor in the performance of Stirling and other reciprocating machines. Analytical predictions of hysteresis loss have been available to designers, but until now they were not experimentally verified. Hysteresis loss was measured in a piston-cylinder gas spring over a range of speeds, pressures, gases, bore/stroke ratios, volume ratios, and internal extended surface geometries. An analysis of a simplified one-dimensional energy equation produced non-dimensional parameters that were used to correlate the experimental data. The loss expression from the analysis was adjusted to fit the correlated data. 7 refs., 8 figs.

Kornhauser, A.A.; Smith, J.L. Jr.

1988-01-01T23:59:59.000Z

246

Quantum Lubrication: Suppression of Friction in a First Principle Four Stroke Heat Engine  

E-Print Network [OSTI]

A quantum model of a heat engine resembling the Otto cycle is employed to explore strategies to suppress frictional losses. These losses are caused by the inability of the engine's working medium to follow adiabatically the change in the Hamiltonian during the expansion and compression stages. By adding external noise to the engine, frictional losses can be suppressed.

Tova Feldmann; Ronnie Kosloff

2005-09-19T23:59:59.000Z

247

Woven heat exchanger  

DOE Patents [OSTI]

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

248

"Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"  

SciTech Connect (OSTI)

ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

2008-06-12T23:59:59.000Z

249

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

250

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

251

Towards Intelligent District Heating.  

E-Print Network [OSTI]

??A district heating system consists of one or more production units supplying energy in the form of heated water through a distribution pipe network to… (more)

Johansson, Christian

2010-01-01T23:59:59.000Z

252

Winter Heating Fuels Update  

Gasoline and Diesel Fuel Update (EIA)

Heating Fuels Update For: Congressional Briefings October 20, 2014 | Washington, DC By U.S. Energy Information Administration Winter Heating Fuels Update October 20, 2014 |...

253

Reducible oxide based catalysts  

DOE Patents [OSTI]

A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

2010-04-06T23:59:59.000Z

254

Reducing home lighting expenses  

SciTech Connect (OSTI)

Ways to reduce lighting expenses are summarized. These include: turning off lights when not in use; keeping fixtures and lamps clean; replacing lamps with more efficient types; using three-way bulbs; use of daylighting; buying fewer lamps and reducing lamp wattage; consider repainting rooms; replacing recessed fixtures with tracklighting; and using efficient lamps for outdoor use. (MCW)

Aimone, M.A.

1981-02-01T23:59:59.000Z

255

Industrial Heat Pumps Using Solid/Vapor Working Fluids  

E-Print Network [OSTI]

INDUSTRIAL HEAT PUMPS USING SOLID/VAPOR WORKING FLUIDS Uwe Rockenfeller, Desert Research Institute, Boulder City, Nevada ABSTRACT Industrial heat pumps have the potential to reduce the operating costs of chemical and heat treating processes... with vapor re-compression recovery systems. The state-of-the-art heat pump equipment employing liquid/vapor working fluids fulfills the requirements only in some applications. The employment of solid/vapor complex compounds leads to 'nore cost effective...

Rockenfeller, U.

256

PLASMA HEATING AND L OSSES IN TOROIDAL MULTIPOLE FIELDS C. J. Armentrout, J. D. Barter, R. A. Breun, A. J. Cavallo,  

E-Print Network [OSTI]

PLASMA HEATING AND L OSSES IN TOROIDAL MULTIPOLE FIELDS C. J. Armentrout, J. D. Barter, R. A. Breun;COO-2387-34 PLASMA HEATING AND LOSSES IN TOROIDAL MULTIPOLE FIELDS C. J. Armentrout, J. D. Barter, R Plasma Studies University of Wisconsin #12;lAEA-CN-33/B 4-2 , " PLASMA HEATING AND LOSSES IN TOROIDAL

Sprott, Julien Clinton

257

Water Heating Requirements Overview Page 5-1 5 Water Heating Requirements  

E-Print Network [OSTI]

units with tank volumes of 40 to 50 gallons. Standby loss associated with the center flue gas storage energy use. Whereas natural gas, (liquefied petroleum gas), LPG or oil can be burned directly to heat code from 2008 are listed below: Instantaneous (or tankless) water heaters including gas, oil, small

258

Method for reducing ignition delay of fuels  

SciTech Connect (OSTI)

A method of reducing ignition delay /tau/, of fuels to negligible values and negligible differences is disclosed. Fuels conditioned to have such negligible values and differences are readily used in multiple fuel engines, such fuels self-ignite substantially instantaneously when injected into an oxidant, require substantially no heat transfer from the oxidant to effect the self-ignition, and the self-ignition is sufficient to sustain continued combustion.

Hoppie, L.O.

1984-05-15T23:59:59.000Z

259

Reversible and irreversible processes in dispersive/dissipative optical media: Electro-magnetic free energy and heat production  

E-Print Network [OSTI]

We solve the problem addressed by Landau and Lifshitz in 1958, and Oughstun and Sherman of determining the dynamical losses in a purely dissipative dielectric media. We develop concrete notions of macroscopic free energy and losses as energy which is reversible and irreversible, respectively, in the medium-field interaction. We define the reversible and irreversible energies and outline the derivation of said quantities. We examine the implications of our definition and it's auxiliary quantity, the reversal field, for the single Lorentz oscillator model of a medium. We show that for this model the reversible energy reduces to the sum of the kinetic and potential energy, as found by Loudon. We note that in general, the sum of the kinetic and potential energies is greater than the reversible energy. We show that the reversible and irreversible energy have the characteristics classically defining free energy and heat.

C. Broadbent; G. Hovhannisyan; M. Clayton; J. Peatross; S. A. Glasgow

2002-07-31T23:59:59.000Z

260

Cancer Vulnerabilities Unveiled by Genomic Loss  

E-Print Network [OSTI]

Due to genome instability, most cancers exhibit loss of regions containing tumor suppressor genes and collateral loss of other genes. To identify cancer-specific vulnerabilities that are the result of copy number losses, ...

Nijhawan, Deepak

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

TpPtMe(H)2: Why Is There H/D Scrambling of the Methyl Group but Not Methane Loss?  

E-Print Network [OSTI]

TpPtMe(H)2: Why Is There H/D Scrambling of the Methyl Group but Not Methane Loss? Mark A. Iron, H ) hydrido-tris(pyrazolyl)borate) was investigated. This complex is remarkably resistant to methane loss; heating it in methanol at 55 °C does not lead to either methane or hydrogen loss. When CD3OD is used

Keinan, Ehud

262

Rotary magnetic heat pump  

DOE Patents [OSTI]

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

263

Mass and Heat Recovery  

E-Print Network [OSTI]

In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

Hindawai, S. M.

2010-01-01T23:59:59.000Z

264

Direct fired heat exchanger  

SciTech Connect (OSTI)

A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1986-01-01T23:59:59.000Z

265

Rotary magnetic heat pump  

DOE Patents [OSTI]

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

Kirol, Lance D. (Shelly, ID)

1988-01-01T23:59:59.000Z

266

Free-piston Stirling engine diaphragm-coupled heat-actuated heat pump component technology program. Phase I/IA. Final report  

SciTech Connect (OSTI)

This report presents the results of an effort to develop and demonstrate the technical feasibility of a residential size Stirling engine driven, diaphragm coupled compressor for a heat pump application. The module was to consist of a free piston resonant engine capable of producing 3 kW of useable power, a low loss hydraulic transmission and a nominal 3 ton refrigerant-22 reciprocating compressor. Presented are details of analysis predicted performance goals, design, development of hardware, component testing, and engine/compressor breadboard testing. The test results demonstrated the mechanical feasibility and operational stability of the design concept. The assembly did not stroke out to achieve the full capacity levels predicted, however, and a follow on phase IA was initiated in which the reasons for the short fall will be determined. Details of phase IA are included in the appendix. In general, it was concluded that losses in the hydraulic transmission were excessive to the point where insufficient power was available to the compressor to satisfy its driving requirements at the design point conditions. Future work is recommended to reduce the transmission losses so that full capacity can be achieved. 69 figs., 47 tabs.

Not Available

1985-06-01T23:59:59.000Z

267

Thulium-170 heat source  

DOE Patents [OSTI]

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

268

Heat Treating Apparatus  

DOE Patents [OSTI]

Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

2002-09-10T23:59:59.000Z

269

Thermoelectric heat exchange element  

DOE Patents [OSTI]

A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

2007-08-14T23:59:59.000Z

270

Heat Integrate Heat Engines in Process Plants  

E-Print Network [OSTI]

of forcing a good fit between a heat engine and process T', H profiles extends the ideas of appropriate and inappropriate placement to give bet ter overall integration schemes [7] . The new 'and powerful representations of the thermodynamics of a process... HEAT INTEGRATE HEAT ENGINES IN PROCESS PLANTS E. Hindmarsh, D. Boland and D.W. Townsend TENSA Technology, Houston, Texas Shorter Version Appeared in Chemical Engineering Copyright McGraw Hill, 1985 ABSTRACT This paper presents a novel method...

Hindmarsh, E.; Boland, D.; Townsend, D. W.

271

High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems  

SciTech Connect (OSTI)

In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

Tarau, Calin; Walker, Kara L.; Anderson, William G. [Advanced Cooling Technologies, Inc. 1046 New Holland Ave. Lancaster, PA 17601 (United States)

2009-03-16T23:59:59.000Z

272

Heat Exchanger Technologies for Distillation Columns  

E-Print Network [OSTI]

each type of exchanger in turn. Heat exchanger size is minimised if the temperature driving force is maximised. The design should therefore seek to minimise the temperature changes during phase change. So, streams that are being condensed are kept... Reboiler not always possible (e.g. one part of a unit may be running at reduced load). Result: installed steam driven unit required to ensure integrity or heat recovery not used. Low temperature driving force Operation at low temperature driving force...

Polley, G. T.

273

Heat-driven acoustic cooling engine having no moving parts  

DOE Patents [OSTI]

A heat-driven acoustic cooling engine having no moving parts receives heat from a heat source. The acoustic cooling engine comprises an elongated resonant pressure vessel having first and second ends. A compressible fluid having a substantial thermal expansion coefficient and capable of supporting an acoustic standing wave is contained in the resonant pressure vessel. The heat source supplies heat to the first end of the vessel. A first heat exchanger in the vessel is spaced-apart from the first end and receives heat from the first end. A first thermodynamic element is adjacent to the first heat exchanger and converts some of the heat transmitted by the first heat exchanger into acoustic power. A second thermodynamic element has a first end located spaced-apart from the first thermodynamic element and a second end farther away from the first thermodynamic element than is its first end. The first end of the second thermodynamic element heats while its second end cools as a consequence of the acoustic power. A second heat exchanger is adjacent to and between the first and second thermodynamic elements. A heat sink outside of the vessel is thermally coupled to and receives heat from the second heat exchanger. The resonant pressure vessel can include a housing less than one-fourth wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Santa Fe, NM); Migliori, Albert (Santa Fe, NM); Hofler, Thomas J. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

274

Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate  

SciTech Connect (OSTI)

This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

Mittereder, N.; Poerschke, A.

2013-11-01T23:59:59.000Z

275

Passive magnetic bearing element with minimal power losses  

DOE Patents [OSTI]

Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in US Patent No. 5,495,221 entitled ``Dynamically Stable Magnetic Suspension/Bearing System.`` The improvements relate to increasing the magnitude of the force derivative, while at the same time reducing the power dissipated during the normal operation of the bearing system, to provide a passive bearing system that has virtually no losses under equilibrium conditions, that is, when the supported system is not subject to any accelerations except those of gravity. 8 figs.

Post, R.F.

1998-12-08T23:59:59.000Z

276

Passive magnetic bearing element with minimal power losses  

DOE Patents [OSTI]

Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in U.S. Patent No. 5,495,221 entitled "Dynamically Stable Magnetic Suspension/Bearing System." The improvements relate to increasing the magnitude of the force derivative, while at the same time reducing the power dissipated during the normal operation of the bearing system, to provide a passive bearing system that has virtually no losses under equilibrium conditions, that is, when the supported system is not subject to any accelerations except those of gravity.

Post, Richard F. (Walnut Creek, CA)

1998-01-01T23:59:59.000Z

277

Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)  

SciTech Connect (OSTI)

A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

Not Available

2012-04-01T23:59:59.000Z

278

Cold Climate Heat Pump Projects at Purdue University & the Living Lab  

E-Print Network [OSTI]

11/10/2011 6 #12;System Design · 19 kW (~65000 Btu/h) at -20 OC (-4 OF) · Install strip electric heat pump optimized for heating » Greatly reduce or eliminate need for auxiliary electric resistance heatingCold Climate Heat Pump Projects at Purdue University & the Living Lab at the new Herrick Labs

Oak Ridge National Laboratory

279

Underground Mine Water Heating and Cooling Using Geothermal Heat Pump Systems  

SciTech Connect (OSTI)

In many regions of the world, flooded mines are a potentially cost-effective option for heating and cooling using geothermal heat pump systems. For example, a single coal seam in Pennsylvania, West Virginia, and Ohio contains 5.1 x 1012 L of water. The growing volume of water discharging from this one coal seam totals 380,000 L/min, which could theoretically heat and cool 20,000 homes. Using the water stored in the mines would conservatively extend this option to an order of magnitude more sites. Based on current energy prices, geothermal heat pump systems using mine water could reduce annual costs for heating by 67% and cooling by 50% over conventional methods (natural gas or heating oil and standard air conditioning).

Watzlaf, G.R.; Ackman, T.E.

2006-03-01T23:59:59.000Z

280

Radiant heating tests of several liquid metal heat-pipe sandwich panels  

SciTech Connect (OSTI)

Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors.

Camarda, C.J.; Basiulis, A.

1983-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Optical loss reduction in HIC chalcogenide glass waveguides via thermal reflow  

E-Print Network [OSTI]

A rapid thermal reflow technique is applied to high-index-contrast, sub-micron waveguides in As[subscript 2]S[subscript 3] chalcogenide glass to reduce sidewall roughness and associated optical scattering loss. Up to 50% ...

Hu, Juejun

282

Method to prevent recession loss of silica and silicon-containing materials in combustion gas environments  

DOE Patents [OSTI]

While silicon-containing ceramics or ceramic composites are prone to material loss in combustion gas environments, this invention introduces a method to prevent or greatly reduce the thickness loss by injecting directly an effective amount, generally in the part per million level, of silicon or silicon-containing compounds into the combustion gases.

Brun, Milivoj Konstantin (Ballston Lake, NY); Luthra, Krishan Lal (Niskayuna, NY)

2003-01-01T23:59:59.000Z

283

Tank closure reducing grout  

SciTech Connect (OSTI)

A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr{sup 90}, the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel.

Caldwell, T.B.

1997-04-18T23:59:59.000Z

284

Gas Water Heater Energy Losses  

E-Print Network [OSTI]

hr) 2. Pilot Input Rate (Btu/hr) 3. Excess Air (%) 4. Off-atm) 14. Higher Heating Value (Btu/SCF) 1028.0 15. SpecificProtection Tubes R (hr*ft2*F/Btu)? Fitting Emissivity SCREEN

Biermayer, Peter

2012-01-01T23:59:59.000Z

285

Heat transfer system  

DOE Patents [OSTI]

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

286

Heat transfer system  

DOE Patents [OSTI]

A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

Not Available

1980-03-07T23:59:59.000Z

287

Horizontal Heat Exchanger Design and Analysis for Passive Heat Removal Systems  

SciTech Connect (OSTI)

This report describes a three-year project to investigate the major factors of horizontal heat exchanger performance in passive containment heat removal from a light water reactor following a design basis accident LOCA (Loss of Coolant Accident). The heat exchanger studied in this work may be used in advanced and innovative reactors, in which passive heat removal systems are adopted to improve safety and reliability The application of horizontal tube-bundle condensers to passive containment heat removal is new. In order to show the feasibility of horizontal heat exchangers for passive containment cooling, the following aspects were investigated: 1. the condensation heat transfer characteristics when the incoming fluid contains noncondensable gases 2. the effectiveness of condensate draining in the horizontal orientation 3. the conditions that may lead to unstable condenser operation or highly degraded performance 4. multi-tube behavior with the associated secondary-side effects This project consisted of two experimental investigations and analytical model development for incorporation into industry safety codes such as TRAC and RELAP. A physical understanding of the flow and heat transfer phenomena was obtained and reflected in the analysis models. Two gradute students (one funded by the program) and seven undergraduate students obtained research experience as a part of this program.

Vierow, Karen

2005-08-29T23:59:59.000Z

288

Recover heat from steam reforming  

SciTech Connect (OSTI)

Steam reforming is one of the most important chemical processes--it is used in the manufacture of ammonia, hydrogen, methanol, and many chemicals made from hydrogen and carbon monoxide. Furthermore, many current trends will increase its importance. For example, methanol for addition to gasoline is likely to be produced by steam reforming. Because steam reforming occurs at high temperatures--typically 750 C--900 C--it generates a large amount of waste heat. Clearly, heat recovery is crucial to process economics. A typical 50,000 Nm[sup 3]/h hydrogen plant using natural gas feed has a radiant heat duty of about 50 MW. At a radiant efficiency of 50% and fuel cost of $3/GJ, this means that the reformer fires $9 million worth of fuel per year. Obviously, this amount of fuel justifies a close loot at ways to reduce costs. This article first provides a brief overview of steam reforming. It then outlines the available heat-recovery options and explains how to select the best method.

Fleshman, J.D. (Foster Wheeler USA Corp., Livingston, NJ (United States))

1993-10-01T23:59:59.000Z

289

Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates  

Broader source: Energy.gov [DOE]

Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

290

Geothermal heating from Pinkerton Hot Springs at Colorado Timberline Academy, Durango, Colorado. Final technical report  

SciTech Connect (OSTI)

The efforts to establish a greater pool of knowledge in the field of low temperature heat transfer for the application of geothermal spring waters to space heating are described. A comprehensive set of heat loss experiments involving passive radiant heating panels is conducted and the results presented in an easily interpretable form. Among the conclusions are the facts that heating a 65 to 70 F/sup 0/ space with 90 to 100 F/sup 0/ liquids is a practical aim. The results are compared with the much lower rates published in the American Society of Heating Refrigeration and Air Conditioning Engineers SYSTEMS, 1976. A heat exchange chamber consisting of a 1000 gallon three compartment, insulated and buried tank is constructed and a control and pumping building erected over the tank. The tank is intended to handle the flow of geothermal waters from Pinkerton Hot Springs at 50 GPM prior to the wasting of the spring water at a disposal location. Approximately 375,000 Btu per hour should be available for heating assuming a 15 F/sup 0/ drop in water temperature. A combination of the panel heat loss experiments, construction of the heat exchange devices and ongoing collection of heat loss numbers adds to the knowledge available to engineers in sizing low temperature heat systems, useful in both solar and geothermal applications where source temperature may be often below 110 F/sup 0/.

Allen, C.C.; Allen, R.W.; Beldock, J.

1981-11-08T23:59:59.000Z

291

Increasing LTC Engine Efficiency by Reducing Pressure-Oscillation-Related  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan SystemIna ShawHeat Transfer Losses |

292

Photovoltaic roof heat flux  

E-Print Network [OSTI]

designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

293

HEAT TRANSFER FLUIDS  

E-Print Network [OSTI]

The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

Lenert, Andrej

2012-01-01T23:59:59.000Z

294

Municipal District Heating and Cooling Co-generation System Feasibility Research  

E-Print Network [OSTI]

In summer absorption refrigerating machines provide cold water using excess heat from municipal thermoelectric power plant through district heating pipelines, which reduces peak electric load from electricity networks in summer. The paper simulates...

Zhang, W.; Guan, W.; Pan, Y.; Ding, G.; Song, X.; Zhang, Y.; Li, Y.; Wei, H.; He, Y.

2006-01-01T23:59:59.000Z

295

Ground source heat storage and thermo-physical response of soft clay  

E-Print Network [OSTI]

Ground source heat storage can condition buildings with reduced consumption of fossil fuels, an important issue in modem building design. However, seasonal heat storage can cause soil temperature fluctuations and possibly ...

Saxe, Shoshanna Dawn

2009-01-01T23:59:59.000Z

296

Abrasion resistant heat pipe  

DOE Patents [OSTI]

A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, Donald M. (Leola, PA)

1984-10-23T23:59:59.000Z

297

MA HEAT Loan Overview  

Broader source: Energy.gov [DOE]

Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

298

Abrasion resistant heat pipe  

DOE Patents [OSTI]

A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, D.M.

1984-10-23T23:59:59.000Z

299

Solar heat receiver  

DOE Patents [OSTI]

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

300

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report  

SciTech Connect (OSTI)

Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. [San Francisco State Univ., CA (United States). Div. of Engineering

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California  

SciTech Connect (OSTI)

Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. (San Francisco State Univ., CA (United States). Div. of Engineering)

1992-07-01T23:59:59.000Z

302

Ammoniated salt heat pump  

SciTech Connect (OSTI)

A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat.

Haas, W.R.; Jaeger, F.J.; Giordano, T.J.

1981-01-01T23:59:59.000Z

303

Heat Transfer Guest Editorial  

E-Print Network [OSTI]

Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

Kandlikar, Satish

304

Acoustic Heating Peter Ulmschneider  

E-Print Network [OSTI]

mechanisms. 1. The acoustic heating theory Only a few years after Edlen's (1941) discovery that the solar acoustic wave radiation- · b. field acoustic wave Figure 1. Panel a: Acoustic heating in late-type stars: effective temperature TeJ f, gravity g and mixing length parameter fr. Panel b: Acoustic heating in early

Ulmschneider, Peter

305

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

306

Pioneering Heat Pump Project  

Broader source: Energy.gov [DOE]

Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

307

Naval electrochemical corrosion reducer  

DOE Patents [OSTI]

A corrosion reducer for use with ships having a hull, a propeller mounted a propeller shaft and extending through the hull, bearings supporting the shaft, at least one thrust bearing and one seal. The improvement includes a current collector and a current reduction assembly for reducing the voltage between the hull and shaft in order to reduce corrosion due to electrolytic action. The current reduction assembly includes an electrical contact, the current collector, and the hull. The current reduction assembly further includes a device for sensing and measuring the voltage between the hull and the shaft and a device for applying a reverse voltage between the hull and the shaft so that the resulting voltage differential is from 0 to 0.05 volts. The current reduction assembly further includes a differential amplifier having a voltage differential between the hull and the shaft. The current reduction assembly further includes an amplifier and a power output circuit receiving signals from the differential amplifier and being supplied by at least one current supply. The current selector includes a brush assembly in contact with a slip ring over the shaft so that its potential may be applied to the differential amplifier.

Clark, Howard L. (Ballston Lake, NY)

1991-10-01T23:59:59.000Z

308

A corrosive resistant heat exchanger  

DOE Patents [OSTI]

A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

Richlen, S.L.

1987-08-10T23:59:59.000Z

309

Scope for reducing the concentrations of NO and CH /SUB X/ in forechamber flame ignition of a fuel mixture  

SciTech Connect (OSTI)

This article discusses the reduction of concentrations of toxic components in exhaust gases resulting from using the forechamber ignition method in gasoline engines containing homogeneous mixtures. A method was devised to calculate the pressure and average temperature in the combustion chamber, as well as the temperatures and concentrations for 11 equilibrium combustion products in individual local zones of the combustion chamber with allowance for the Mache effect, and also the true values for the molecular-change coefficients and the loss of heat of combustion due to dissociation, and the NO formation kinetics indicated by Zel'dovich's mechanism. It is concluded that the production of toxic components can be reduced in an engine with forechamber flame ignition and a high compression ratio only by using deliberate stratification and a displacing ring to prevent the fuel from entering peripheral and dead zones of the chamber before and after combustion.

Mekhtiev, R.I.

1983-09-01T23:59:59.000Z

310

Energy-Efficiency Options for Insurance Loss Prevention  

SciTech Connect (OSTI)

Energy-efficiency improvements offer the insurance industry two areas of opportunity: reducing ordinary claims and avoiding greenhouse gas emissions that could precipitate natural disaster losses resulting from global climate change. We present three vehicles for taking advantage of this opportunity, including research and development, in- house energy management, and provision of key information to insurance customers and risk managers. The complementary role for renewable energy systems is also introduced.

Mills, E. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Knoepfel, I. [Swiss Reinsurance Co., Zurich (Switzerland)

1997-06-09T23:59:59.000Z

311

{open_quotes}Open vessel{close_quotes} heat balance for TBP-nitric acid solutions  

SciTech Connect (OSTI)

Heat balances were performed for both single phase (organic) and two phase (organic and aqueous) TBP/HNO{sub 3} solutions at temperatures above 100{degrees}C. The balance included the heat produced from oxidation minus losses from evaporation and butylnitrate formation by esterification. Net heat measurements were performed using an isothermal calorimeter. Losses from evaporation were determined from the volume of condensate produced (ice bath trap) and the component concentrate Carbon and nitrogen balances were performed to determine the stoichiometry of the reaction. The heat from oxidation was then calculated using the heats of formation of the reactants and products. Balances were obtained assuming that the heat from esterification was near zero (negligibly small). For two layered reaction systems the net heat was maintained endothermic, and constant with time, due to the transport of water to the organic phase by bubble mixing at the interface. This transported was replaced the water lost in the organic phase by evaporation.

Smith, J.R.; Cavin, W.S.; Laurinat, J.E. [Westinghouse Savannah River Company, Aiken, SC (United States)

1995-12-31T23:59:59.000Z

312

Heat pump apparatus  

DOE Patents [OSTI]

A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

1983-01-01T23:59:59.000Z

313

Active microchannel heat exchanger  

DOE Patents [OSTI]

The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

2001-01-01T23:59:59.000Z

314

Insights into Cold Water Injection Stimulation Effects through Analytical Solutions to Flow and Heat Transport  

SciTech Connect (OSTI)

Wells in traditional hydrothermal reservoirs are used to extract heat and to dispose of cooled water. In the first case, high productivity (the ratio of production flow rate to the pressure differential required to produce that rate) to is preferred in order to maximize power generation, while minimizing the parasitic energy loss of pumping. In the second case, high injectivity (the ratio of injection flow rate to the pressure differential required to produce that rate) is preferred, in order to reduce pumping costs. In order to improve productivity or injectivity, cold water is sometimes injected into the reservoir in an attempt to cool and contract the surrounding rock matrix and thereby induce dilation and/or extension of existing fractures or to generate new fractures. Though the increases in permeability associated with these changes are likely localized, by improving connectivity to more extensive high-permeability fractures they can at least temporarily provide substantially improved productivity or injectivity.

M.A. Plummer

2013-09-01T23:59:59.000Z

315

ORNL rod-bundle heat-transfer test data. Volume 3. Thermal-hydraulic test facility experimental data report for test 3. 06. 6B - transient film boiling in upflow. [PWR  

SciTech Connect (OSTI)

Reduced instrument responses are presented for Thermal-Hyraulic Test Facility (THTF) Test 3.06.6B. This test was conducted by members of the Oak Ridge National Laboratory Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on August 29, 1980. The objective of the program was to investigate heat transfer phenomena believed to occur in PWR's during accidents, including small and large break loss-of-coolant accidents. Test 3.06.6B was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.06.6B available. Included in the report are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.

1982-05-01T23:59:59.000Z

316

Life cycle assessment of base-load heat sources for district heating system options  

SciTech Connect (OSTI)

Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

Ghafghazi, Saeed [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [Delta Research Corporation

2011-03-01T23:59:59.000Z

317

Reducing Power Factor Cost  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof EnergyReducing Peak DemandLow

318

Right-Size Heating and Cooling Equipment  

SciTech Connect (OSTI)

This is one of a series of technology fact sheets created to help housing designers and builders adopt a whole-house design approach and energy efficient design practices. The fact sheet helps people choose the correct equipment size for heating and cooling to improve comfort and reduce costs, maintenance, and energy use.

Not Available

2002-01-01T23:59:59.000Z

319

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP  

E-Print Network [OSTI]

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer General Electric Company Space Division King of Prussia, Pa. ABSTRACT A heat activated heat pump (HAHP for space heating since it directly utilizes the engine waste heat in addition to the energy obtained

Oak Ridge National Laboratory

320

Influence of Infrared Radiation on Attic Heat Transfer  

E-Print Network [OSTI]

roof temperatures. It was found that a radiant barrier such as aluminum foil can reduce the heat flux significantly. Experimental results were compared to a Three-Region approximate solution developed at Oak Ridge National Laboratories (ORNL). The model...

Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

FACT SHEET: Energy Department Actions to Deploy Combined Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

reuses excess heat to warm Frito-Lay's chip fryer oil - cutting costs and reduce harmful air pollution. The Department is also supporting new CHP technologies that are cleaner,...

322

Building America Webinar: Central Multifamily Water Heating Systems  

Broader source: Energy.gov [DOE]

Hosted by DOE's Building America program, this webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution.

323

Value pricing of surface coatings for mitigating heat exchanger fouling  

E-Print Network [OSTI]

crystallisation fouling; (b) fluorocarbon-based coatings which offer antifouling performance but can reduce heat transfer, for crystallisation fouling; and (c) fluorocarbon-based coatings in a dairy pasteuriser application. A novel strategy, of replacing stainless...

Wilson, D.I.; Gomes da Cruz, L.; Ishiyama, E.M.; Boxler, C.; Augustin, W.; Scholl, S.

2014-05-19T23:59:59.000Z

324

Painted Ponies: Essays on Memory and Loss  

E-Print Network [OSTI]

This collection explores the spiral nature of memory as it examines the way loss and one's reactions to loss repeat themselves in new guises and new contexts. Interspersing poetry with essays of memoir, Klayder examines ...

Klayder, Mary

2008-12-30T23:59:59.000Z

325

Loss mechanisms in turbine tip clearance flows  

E-Print Network [OSTI]

Numerical simulations of tip clearance ow have been carried out to dene the loss generation mechanisms associated with tip leakage in unshrouded axial turbines. Mix- ing loss between the leakage, which takes the form of a ...

Huang, Arthur (Arthur C.)

2011-01-01T23:59:59.000Z

326

Loss of coordination in competitive supply chains  

E-Print Network [OSTI]

The loss of coordination in supply chains quantifies the inefficiency (i.e. the loss of total profit) due to the presence of competition in the supply chain. In this thesis, we discuss four models: one model with multiple ...

Teo, Koon Soon

2009-01-01T23:59:59.000Z

327

Fuel cells: providing heat and power in the urban environment  

E-Print Network [OSTI]

Fuel cells: providing heat and power in the urban environment Jim Halliday, Alan Ruddell, Jane;Fuel cells: providing heat and power in the urban environment Tyndall Centre Technical Report No. 32 efficiencies, and therefore reduced CO2 emissions, compared to conventional centralised generation. Fuel cell

Watson, Andrew

328

Air Quality and Emissions Impacts of Heat Island Mitigation Strategies  

E-Print Network [OSTI]

Air Quality and Emissions Impacts of Heat Island Mitigation Strategies ENVIRONMENTAL AREA RESEARCH the temperature of the ground surface and the ambient air. This situation creates areas called urban heat summertime temperatures reduces electricity demand for air conditioning, which lowers air pollution levels

329

Introduction Ground source heat pump (GSHP) systems are used  

E-Print Network [OSTI]

heating and cooling loads and their distribution over the year, as well as ground thermal properties reduced heating and cooling loads (as compared to conventional construction, USA, spitler@okstate.edu signhilD e.a. gehlin Technical Expert, Swedish Centre for Shallow Geothermal

330

Summer HeatSummer Heat Heat stress solutions  

E-Print Network [OSTI]

occur (then drink a lightly salted beverage like a sports drink). The water's temperature should be cool How should gardeners avoid becoming a safety threat to themselves and others when it's hot? Start to the heat. Become a weather watcher. Set up a small weather station (with a high/low thermom eter, rain

Liskiewicz, Maciej

331

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

332

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F.; Moore, Paul B.

1983-06-21T23:59:59.000Z

333

Policies supporting Heat Pump Technologies  

E-Print Network [OSTI]

Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

Oak Ridge National Laboratory

334

Induction machine stray loss from inter-bar currents  

E-Print Network [OSTI]

Stray load loss refers generally to the sources of induction machine loss not accounted for by typical calculations of primary or secondary copper loss, no load core loss, or friction and windage loss. Harmonic rotor bar ...

Englebretson, Steven Carl

2009-01-01T23:59:59.000Z

335

Pressure reducing regulator  

DOE Patents [OSTI]

A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes.

Whitehead, John C. (Davis, CA); Dilgard, Lemoyne W. (Willits, CA)

1995-01-01T23:59:59.000Z

336

HEAT BUMP MODELING IN HIGH HEAT-LOAD X-RAY OPTICS* E. Windisch IV, Wayne State, Detroit, MI, 48201, U.S.A.  

E-Print Network [OSTI]

HEAT BUMP MODELING IN HIGH HEAT-LOAD X-RAY OPTICS* E. Windisch IV, Wayne State, Detroit, MI, 48201, U.S.A. Abstract Thermal deformation in high heat load X-Ray optics limits coherence and reduces flux-equipped MATLAB program designed to calculate three dimensional energy depostion in a solid. It uses an executable

Cinabro, David

337

Changing photovoltaic array interconnections to reduce mismatch losses: a case study  

E-Print Network [OSTI]

) ­ Grenoble, France **Grupo de Investigacion y Desarollo en Energia Solar y Automatica (IDEA) ­ Jaén, Spain a wide variety of plants ranging from utility-sized solar trackers to residential building-integrated PV, resulting in lower energy production yields. The traditional series-parallel interconnection scheme of solar

Boyer, Edmond

338

Reducing Symbol Loss Probability in the Downlink of an OFDMA Based Wireless Network  

E-Print Network [OSTI]

Technology Research Lab. LG Electronics, Inc. Anyang-shi, Kyungki-Do, Korea, 431-749 Email: ronnykim supported with a grant from LG Electronics, Korea. ratio (SNRth). This threshold is generally determined

Valaee, Shahrokh

339

Reducing Agricultural Nitrate Losses in the Embarras River Watershed through Bioreactors, Constructed Wetlands, and Outreach  

E-Print Network [OSTI]

, Constructed Wetlands, and Outreach Proposed by the University of Illinois at Urbana-Champaign Mark David project will combine research, education, and extension on using tile-fed constructed wetlands and wood of wetlands using three constructed in 1994, while at the same time install two additional wetlands in other

David, Mark B.

340

Heat capacity of liquids: an approach from the solid phase  

E-Print Network [OSTI]

We calculate the energy and heat capacity of a liquid on the basis of its elastic properties and vibrational states. The experimental decrease of liquid heat capacity with temperature is attributed to the increasing loss of two transverse modes with frequency $\\omegaliquid relaxation time. In a simple model, liquid heat capacity is related to viscosity and is compared with the experimental data of mercury. We also calculate the vibrational energy of a quantum liquid, and show that transverse phonons can not be excited in the low-temperature limit. Finally, we discuss the implications of the proposed approach to liquids for the problem of glass transition.

Kostya Trachenko

2008-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fluidized bed heat treating system  

DOE Patents [OSTI]

Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

Ripley, Edward B; Pfennigwerth, Glenn L

2014-05-06T23:59:59.000Z

342

Reducing Energy Consumption on Process Ovens & Oxidation Systems  

E-Print Network [OSTI]

recovery systems are capable of metals in the heat exchangers along with stresses recovering up to 97% of the energy used in the induced by changing process conditions can oxidation process. Most units on the market severely reduce the life...REDUCING ENERGY CONSUMPTION ON PROCESS OVENS & OXIDATION SYSTEMS Chris Worachek Design Engineer MEGTEC Systems De Pere, WI ABSTRACT With the uncertain cost of energy, optimizing the use of air in process dryers, ovens and air pollution...

Worachek, C.

343

Modeled and measured effects of compressor downsizing in an existing air conditioner/heat pump in the cooling mode  

SciTech Connect (OSTI)

It is not uncommon to find oversized central air conditioners in residences. HVAC contractors sometimes oversize central air conditioners for one reason or another--some to the point that they may be 100% larger than needed to meet the load. Retrofit measures done to improve house envelope and distribution system efficiency also contribute to HVAC oversizing, as they reduce house heating and cooling loads. Proper sizing of an air conditioner or heat pump allows more efficient operation and provides a more comfortable environment than a highly oversized unit. Another factor that lowers operating efficiency is an improper refrigerant charge. Field inspections have revealed that about half of the units checked were not properly charged. An option available to homeowners with oversized air conditioners is to replace the existing compressor with a smaller, more efficient compressor, rather than purchasing a new, smaller unit. Such a retrofit may be economically justified, especially during a compressor failure, provided the oversizing of the existing unit is not too great. A used, 15-year old, single-package heat pump with a capillary tube expansion device on the indoor coil was purchased and tested in a set of environmental chambers to determine its cooling performance at various conditions. The system was also modeled to estimate its existing performance, and that with two different types of retrofitted state-of-the-art (SOA) efficient compressors with about 30% less capacity than the original compressor. This reduced the overall system cooling capacity by about 25%. Modeling estimated that the retrofit would increase system EER at 95 F by 30%, SEER by 34%, and reduce power demand by 39% compared to the existing unit. Reduced cycling losses account for the higher increase in SEER.

Levins, W.P.; Rice, C.K.; Baxter, V.D.

1996-05-01T23:59:59.000Z

344

Evaluation of a cryostable low-loss conductor for pulsed field applications  

SciTech Connect (OSTI)

A cryostable, low loss conductor as the basic strand in a 50 kA cable for a 20 MJ prototype, tokamak induction heating coil has been developed, fabricated, and evaluated. The conductor has a copper matrix multifilamentary NbTi core surrounded by a CuNi ring and stabilizing copper segmented by radial CuNi fins. Pulsed loss measurements have been made up to 2.2 T and for decay times from 0.7 to 278 ms. Measurements made on samples with various twists and portions etched away have allowed accurate evaluation of the loss components. Stability measurements were also made on insulated and uninsulated single strands and on subcables. Measured recovery heat flux for the bare strand is about 0.3 W/cm/sup 2/; however, the application of a 0.0005 in. layer of Omega insulation increases the value to about 0.5 W/cm/sup 2/.

Wollan, J.J.; Walker, M.S.; Zeitlin, B.A.; Pollack, D.A.; Shen, S.S.

1980-01-01T23:59:59.000Z

345

Water-heating dehumidifier  

DOE Patents [OSTI]

A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

Tomlinson, John J. (Knoxville, TN)

2006-04-18T23:59:59.000Z

346

Mechanical Compression Heat Pumps  

E-Print Network [OSTI]

MECHANICAL COMPRESSION HEAT PUMPS Thomas-L. Apaloo and K. Kawamura Mycom Corporation, Los Angeles, California J. Matsuda, Mayekawa Mfg. Co., Tokyo, Japan ABSTRACT Mechanical compression heat pumping is not new in industrial applications.... In fact, industry history suggests that the theoretical concept was developed before 1825. Heat pump manufacturers gained the support of consultants and end-users when the energy crisis hit this country in 1973. That interest, today, has been...

Apaloo, T. L.; Kawamura, K.; Matsuda, J.

347

Heat storage duration  

SciTech Connect (OSTI)

Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

348

System Losses Study - FIT (Fuel-cycle Integration and Tradeoffs)  

SciTech Connect (OSTI)

This team aimed to understand the broad implications of changes of operating performance and parameters of a fuel cycle component on the entire system. In particular, this report documents the study of the impact of changing the loss of fission products into recycled fuel and the loss of actinides into waste. When the effort started in spring 2009, an over-simplified statement of the objective was “the number of nines” – how would the cost of separation, fuel fabrication, and waste management change as the number of nines of separation efficiency changed. The intent was to determine the optimum “losses” of TRU into waste for the single system that had been the focus of the Global Nuclear Energy Program (GNEP), namely sustained recycle in burner fast reactors, fed by transuranic (TRU) material recovered from used LWR UOX-51 fuel. That objective proved to be neither possible (insufficient details or attention to the former GNEP options, change in national waste management strategy from a Yucca Mountain focus) nor appropriate given the 2009-2010 change to a science-based program considering a wider range of options. Indeed, the definition of “losses” itself changed from the loss of TRU into waste to a generic definition that a “loss” is any material that ends up where it is undesired. All streams from either separation or fuel fabrication are products; fuel feed streams must lead to fuels with tolerable impurities and waste streams must meet waste acceptance criteria (WAC) for one or more disposal sites. And, these losses are linked in the sense that as the loss of TRU into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. The effort has provided a mechanism for connecting these three Campaigns at a technical level that had not previously occurred – asking smarter and smarter questions, sometimes answering them, discussing assumptions, identifying R&D needs, and gaining new insights. The FIT model has been a forcing function, helping the team in this endeavor. Models don’t like “TBD” as an input, forcing us to make assumptions and see if they matter. A major addition in FY 2010 was exploratory analysis of “modified open fuel” cycles, employing “minimum fuel treatment” as opposed to full aqueous or electrochemical separation treatment. This increased complexity in our analysis and analytical tool development because equilibrium conditions do not appear sustainable in minimum fuel treatment cases, as was assumed in FY 2009 work with conventional aqueous and electrochemical separation. It is no longer reasonable to assume an equilibrium situation exists in all cases.

Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert S. Cherry; Denia Djokic; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros

2010-09-01T23:59:59.000Z

349

Solar Heating in Uppsala.  

E-Print Network [OSTI]

?? The housing corporation Uppsalahem has installed asolar heating system in the neighbourhood Haubitsen,which was renovated in 2011. This report examineshow much energy the solar… (more)

Blomqvist, Emelie; Häger, Klara

2012-01-01T23:59:59.000Z

350

Solar heating in Colombia.  

E-Print Network [OSTI]

?? This report describes the process of a thesis implemented in Colombia concerning solar energy. The project was to install a self-circulating solar heating system,… (more)

Skytt, Johanna

2012-01-01T23:59:59.000Z

351

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

352

Heat and mass exchanger  

DOE Patents [OSTI]

A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

2007-09-18T23:59:59.000Z

353

Heat and mass exchanger  

DOE Patents [OSTI]

A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

2011-06-28T23:59:59.000Z

354

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

355

Heat rejection system  

DOE Patents [OSTI]

A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

1980-01-01T23:59:59.000Z

356

Passive solar space heating  

SciTech Connect (OSTI)

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

357

The Use of Hollow Plastic Balls as Energy Conservation Devices in Heated Open Tanks  

E-Print Network [OSTI]

The problem of heat losses from open liquid filled tanks is as old as industry itself. This paper will present the advantages of using an insulating blanket of hollow plastic spheres as a mechanism to conserve this type of industrial energy loss...

Byrne, T. J.

1983-01-01T23:59:59.000Z

358

Intergalactic dust and its photoelectric heating  

E-Print Network [OSTI]

We have examined the dust photoelectric heating in the intergalactic medium (IGM). The heating rate in a typical radiation field of the IGM is represented by $\\Gamma_{\\rm pe} = 1.2\\times10^{-34}$ erg s$^{-1}$ cm$^{-3}$ $({\\cal D}/10^{-4})(n_{\\rm H}/10^{-5} {\\rm cm^{-3}})^{4/3} (J_{\\rm L}/10^{-21} {\\rm erg s^{-1} cm^{-2} Hz^{-1} sr^{-1}})^{2/3} (T/10^4 {\\rm K})^{-1/6}$, where ${\\cal D}$ is the dust-to-gas mass ratio, $n_{\\rm H}$ is the hydrogen number density, $J_{\\rm L}$ is the mean intensity at the hydrogen Lyman limit of the background radiation, and $T$ is the gas temperature, if we assume the new X-ray photoelectric yield model by Weingartner et al. (2006) and the dust size distribution in the Milky Way by Mathis, Rumpl, & Nordsieck (1977). This heating rate dominates the HI and HeII photoionization heating rates when the hydrogen number density is less than $\\sim10^{-6}$ cm$^{-3}$ if ${\\cal D}=10^{-4}$ which is 1% of that in the Milky Way, although the heating rate is a factor of 2--4 smaller than that with the old yield model by Weingartner & Draine (2001). The grain size distribution is very important. If only large ($\\ge0.1$ $\\mu$m) grains exist in the IGM, the heating rate is reduced by a factor of $\\simeq5$. Since the dust heating is more efficient in a lower density medium relative to the photoionization heating, it may cause an inverted temperature--density relation in the low density IGM suggested by Bolton et al. (2008). Finally, we have found that the dust heating is not very important in the mean IGM before the cosmic reionization.

Akio K. Inoue; Hideyuki Kamaya

2008-10-31T23:59:59.000Z

359

Stewarding a Reduced Stockpile  

SciTech Connect (OSTI)

The future of the US nuclear arsenal continues to be guided by two distinct drivers: the preservation of world peace and the prevention of further proliferation through our extended deterrent umbrella. Timely implementation of US nuclear policy decisions depends, in part, on the current state of stockpile weapons, their delivery systems, and the supporting infrastructure within the Department of Defense (DoD) and the Department of Energy's National Nuclear Security Administration (NNSA). In turn, the present is a product of past choices and world events. Now more than ever, the nuclear weapons program must respond to the changing global security environment and to increasing budget pressures with innovation and sound investments. As the nation transitions to a reduced stockpile, the successes of the Stockpile Stewardship Program (SSP) present options to transition to a sustainable complex better suited to stockpile size, national strategic goals and budgetary realities. Under any stockpile size, we must maintain essential human capital, forefront capabilities, and have a right-sized effective production capacity. We present new concepts for maintaining high confidence at low stockpile numbers and to effectively eliminate the reserve weapons within an optimized complex. We, as a nation, have choices to make on how we will achieve a credible 21st century deterrent.

Goodwin, B T; Mara, G

2008-04-18T23:59:59.000Z

360

The Impact of Heat Transfer Enhancement Techniques on Energy Savings in the U.S. Industry  

E-Print Network [OSTI]

conserving energy in the process and to reduce pumping power, thereby reducing operating costs. This paper attempts to quantify the impact of enhancement on energy savings and capital costs. The overall heat exchanger market was divided into four sectors...

Rebello, W. J.; Peterson, G. R.; Sohal, M.

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

362

2 15.10.2013 Joachim Dietle Optimisation of Air-Water HP's Optimisation of Air-Water Heat Pumps  

E-Print Network [OSTI]

-Water Heat Pumps Ziehl-Abegg SE System boundary Improve Air Flow of Fan Improve System Joachim Dietle.10.2013 Joachim Dietle Optimisation of Air-Water HP's System boundary Air Flow in Heat Pumps V q d p st p P P L fan )( 1 Relevant for cooling or heating! Optimise heat pump: reduce pressure drop increase

Oak Ridge National Laboratory

363

An evaluation of the thermal characteristics of a flat plate heat pipe spreader  

E-Print Network [OSTI]

loss could bc determined. Duc to the axisymmetric nature of the i. echnique, it was necessary to define the effective radial heat pipe dimensions. ln the case of a disk shaped flat heat pipe, the effective radius is equal to the radius of the disk...

Chesser, Jason Blake

2000-01-01T23:59:59.000Z

364

Heat pipes and use of heat pipes in furnace exhaust  

DOE Patents [OSTI]

An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

Polcyn, Adam D. (Pittsburgh, PA)

2010-12-28T23:59:59.000Z

365

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference  

E-Print Network [OSTI]

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference Las Vegas, Nevada, USA July 21-23, 2003 HT2003-47449 HEAT TRANSFER FROM A MOVING AND EVAPORATING MENISCUS ON A HEATED SURFACE meniscus with complete evaporation of water without any meniscus break-up. The experimental heat transfer

Kandlikar, Satish

366

IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER  

E-Print Network [OSTI]

IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS #12;ii IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS............................................................... 2 1.3. Overview of the Parameter Estimation Water-to-Water Heat Pump Model ........... 5 1

367

First university owned district heating system using biomass heat  

E-Print Network [OSTI]

Highlights · First university owned district heating system using biomass heat · Capacity: 15 MMBtu Main Campus District Heating Performance · Avoided: 3500 tonnes of CO2 · Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

Northern British Columbia, University of

368

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

369

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

370

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

371

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

372

Microchannel heat sink assembly  

DOE Patents [OSTI]

The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

Bonde, W.L.; Contolini, R.J.

1992-03-24T23:59:59.000Z

373

Heating remote rooms in passive solar buildings  

SciTech Connect (OSTI)

Remote rooms can be effectively heated by convection through a connecting doorway. A simple steady-state equation is developed for design purposes. Validation of a dynamic model is achieved using data obtained over a 13-day period. Dynamic effects are investigated using a simulation analysis for three different cases of driving temperature; the effect is to reduce the temperature difference between the driving room and the remote room compared to the steady-state model. For large temperature swings in the driving room a strategy which uses the intervening door in a diode mode is effective. The importance of heat-storing mass in the remote room is investigated.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

374

Ash reduction system using electrically heated particulate matter filter  

DOE Patents [OSTI]

A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

2011-08-16T23:59:59.000Z

375

Solar heating system  

DOE Patents [OSTI]

An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

1982-01-01T23:59:59.000Z

376

Improved solar heating systems  

DOE Patents [OSTI]

An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

Schreyer, J.M.; Dorsey, G.F.

1980-05-16T23:59:59.000Z

377

Volatile Loss and Classification of Kuiper Belt Objects  

E-Print Network [OSTI]

Observations indicate that some of the largest Kuiper Belt Objects (KBOs) have retained volatiles in the gas phase, which implies the presence of an atmosphere that can affect their reflectance spectra and thermal balance. Volatile escape rates driven by solar heating of the surface were estimated by Schaller and Brown (2007) (SB) and Levi and Podolak (2009)(LP) using Jeans escape from the surface and a hydrodynamic model respectively. Based on recent molecular kinetic simulations these rates can be hugely in error (e.g., a factor of $\\sim 10^{16}$ for the SB estimate for Pluto). In this paper we estimate the loss of primordial N$_2$ for several large KBOs guided by recent molecular kinetic simulations of escape due to solar heating of the surface and due to UV/EUV heating of the upper atmosphere. For the latter we extrapolate simulations of escape from Pluto (Erwin et al. 2013) using the energy limited escape model recently validated for the KBOs of interest by molecular kinetic simulations (Johnson et al. 2...

Johnson, R E; Young, L A; Volkov, A N; Schmidt, C

2015-01-01T23:59:59.000Z

378

Anisotropic turbulent model for solar coronal heating  

E-Print Network [OSTI]

Context : We present a self-consistent model of solar coronal heating, originally developed by Heyvaert & Priest (1992), in which we include the dynamical effect of the background magnetic field along a coronal structure by using exact results from wave MHD turbulence (Galtier et al. 2000). Aims : We evaluate the heating rate and the microturbulent velocity for comparison with observations in the quiet corona, active regions and also coronal holes. Methods :The coronal structures are assumed to be in a turbulent state maintained by the slow erratic motions of the magnetic footpoints. A description for the large-scale and the unresolved small-scale dynamics are given separately. From the latter, we compute exactly (or numerically for coronal holes) turbulent viscosites that are finally used in the former to close self-consistently the system and derive the heating flux expression. Results : We show that the heating rate and the turbulent velocity compare favorably with coronal observations. Conclusions : Although the Alfven wave turbulence regime is strongly anisotropic, and could reduce a priori the heating efficiency, it provides an unexpected satisfactory model of coronal heating for both magnetic loops and open magnetic field lines.

B. Bigot; S. Galtier; H. Politano

2007-12-12T23:59:59.000Z

379

Abstract The measurement of the total losses of electrical ma-chines is of most interest to designers for verifying their calcula-  

E-Print Network [OSTI]

, Calorimetric Method, Calorimetry. INTRODUCTION Heat run tests performed on electric machines to determine. Keywords: Temperature Measurement, Machine Testing, Losses in Electrical Machines, Loss Measurement. It is a well-known fact that the operating temperature of an electric machine has a very strong relationship

Szabados, Barna

380

Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth  

E-Print Network [OSTI]

Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth C, in particular, on its variation with the wavelength of convection. The heat transfer strongly depends in Earth's mantle can significantly reduce the efficiency of heat transfer. The likely variations

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

HEAT TRANSFER ON A HYPERSONIC SPHERE WITH DIFFUSE RAREFIED-GAS INJECTION  

E-Print Network [OSTI]

HEAT TRANSFER ON A HYPERSONIC SPHERE WITH DIFFUSE RAREFIED-GAS INJECTION Vladimir V. Riabov* Rivier numbers Re0,R.3-7 Mass injection can be considered as an effective way of the reduction of heat transfer in the case of small Reynolds numbers. Moss12 found that mass injection dramatically reduces heat transfer

Riabov, Vladimir V.

382

Eric Moulton, Ferri Hassani, Pejman Nekoovaght Microwave-Assisted Heating in Rock  

E-Print Network [OSTI]

Eric Moulton, Ferri Hassani, Pejman Nekoovaght Microwave-Assisted Heating in Rock INTRODUCTION to expensive replacements. Expansive heating through microwaves breaks up the rock, which reduces the stress the mechanisms and parameters governing the heating rate of a material. Department of Mining and Materials

Barthelat, Francois

383

Our winters of discontent: Addressing the problem of rising home-heating costs1  

E-Print Network [OSTI]

on fossil fuels by using solar energy, reducing residential energy demand, and promoting district heating. 1ERG/200602 Our winters of discontent: Addressing the problem of rising home-heating costs1 Larry Residential space heating is a necessity in northern countries such as Canada. With over 70 percent

Hughes, Larry

384

M. Bahrami ENSC 388 (F09) Steady Conduction Heat Transfer 1 Steady Heat Conduction  

E-Print Network [OSTI]

of the material. In the limiting case where x0, the equation above reduces to the differential form: W dx dT k is the only energy interaction; the energy balance for the wall can be expressed: dt dE QQ wall outin). Thermal Conductivity Thermal conductivity k [W/mK] is a measure of a material's ability to conduct heat

Bahrami, Majid

385

Feedback in AGN heating of galaxy clusters  

E-Print Network [OSTI]

One of the challenges that models of AGN heating of the intracluster medium (ICM) face, is the question how the mechanical luminosity of the AGN is tuned to the radiative losses of the ICM. Here we implement a simple 1D model of a feedback mechanism that links the luminosity of the AGN to the accretion rate. We demonstrate how this simple feedback mechanism leads to a quasi-steady state for a broad range of parameters. Moreover, within this feedback model, we investigate the effect of thermal conduction and find that its relative importance depends strongly on the cluster mass.

M. Hoeft; M. Brueggen

2004-05-21T23:59:59.000Z

386

Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations  

E-Print Network [OSTI]

-807. (5) K. Kesavan. The Use of Dissociating Gases As the Working Fluid in Thermodynamic Power Conversion Cycles, Ph.D. thesis. Carnegie-Mellon University, 1978, Ann Arbor, MI: University Microfilms International, 1978. 5. Heat amplifier with a gas...ABSTRACT Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, hl~a: driven heat pumps in which either heat engine or heat pump working fluid...

Kirol, L. D.

387

Integrating preconcentrator heat controller  

DOE Patents [OSTI]

A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

2007-10-16T23:59:59.000Z

388

Proceedings: Heat exchanger workshop  

SciTech Connect (OSTI)

Heat transfer processes are of controlling importance in the operation of a thermal power plant. Heat exchangers are major cost items and are an important source of problems causing poor power plant availability and performance. A workshop to examine the improvements that can be made to heat exchangers was sponsored by the Electric Power Research Institute (EPRI) on June 10-11, 1986, in Palo Alto, California. This workshop was attended by 25 engineers and scientists representing EPRI-member utilities and EPRI consultants. A forum was provided for discussions related to the design, operation and maintenance of utility heat transfer equipment. The specific objectives were to identify research directions that could significantly improve heat exchanger performance, reliability and life cycle economics. Since there is a great diversity of utility heat transfer equipment in use, this workshop addressed two equipment categories: Boiler Feedwater Heaters (FWH) and Heat Recovery Steam Generators (HRSG). The workshop was divided into the following panel sessions: functional design, mechanical design, operation, suggested research topics, and prioritization. Each panel session began with short presentations by experts on the subject and followed by discussions by the attendees. This report documents the proceedings of the workshop and contains recommendations of potentially valuable areas of research and development. 4 figs.

Not Available

1987-07-01T23:59:59.000Z

389

Micro heat barrier  

DOE Patents [OSTI]

A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

2003-08-12T23:59:59.000Z

390

Analysis of TPV Network Losses (a Presentation)  

SciTech Connect (OSTI)

This talk focuses on the theoretical analysis of electrical losses associated with electrically networking large numbers of TPV cells to produce high power TPV power generators.

DM DePoy; MW Dashiell; DD Rahner; LR Danielson; JE Oppenlander; JL Vell; RJ Wehrer

2004-12-08T23:59:59.000Z

391

PWR blowdown heat transfer separate-effects program - Thermal-Hydraulic Test Facility experimental data report for test 177. [Contains microfiche data  

SciTech Connect (OSTI)

Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) test 177, which is part of the ORNL Pressurized-Water Reactor (PWR) Blowdown Heat Transfer Separate-Effects Program. Objective of the program is to investigate the thermal-hydraulic phenomenon governing the energy transfer and transport processes that occur during a loss-of-coolant accident in a PWR system. Test 177 was conducted at the request of Idaho National Engineering Laboratory ''for use in the independent assessment of RELAP4/MOD6.'' Primary purpose of this report is to make the reduced instrument responses during test 177 available. The responses are presented in graphical form in engineering units and have been analyzed only to the extent necessary to assure reasonableness and consistency. The data are presented in microfiche form.

Clemons, V.D.; Flanders, R.M.; Craddick, W.G.

1980-08-01T23:59:59.000Z

392

Current biofuel feedstock crops such as corn lead to large environmental losses of N through nitrate leaching and N2  

E-Print Network [OSTI]

219 Current biofuel feedstock crops such as corn lead to large environmental losses of N through biofuel crops established on a rich Mollisol soil. Reduced Nitrogen Losses after Conversion of Row Crop Agriculture to Perennial Biofuel Crops Candice M. Smith, Mark B. david,* Corey A. Mitchell, Michael d. Masters

DeLucia, Evan H.

393

Zhang et al Effect of a collector bag for measurement of postpartum blood loss after vaginal1  

E-Print Network [OSTI]

Zhang et al 1 Effect of a collector bag for measurement of postpartum blood loss after vaginal1: severe post-partum haemorrhage, collector bag, cluster-randomised controlled1 trial, Europe2 collector bag for measurement of postpartum blood loss after vaginal delivery in reducing the6 incidence

Paris-Sud XI, Université de

394

Condensing Heating and Water Heating Equipment Workshop Location...  

Energy Savers [EERE]

Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

395

City of Klamath Falls District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath...

396

Economic Options for Upgrading Waste Heat  

E-Print Network [OSTI]

There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

Erickson, D. C.

1983-01-01T23:59:59.000Z

397

Molecular heat pump  

E-Print Network [OSTI]

We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

Dvira Segal; Abraham Nitzan

2005-10-11T23:59:59.000Z

398

Heat treatment furnace  

DOE Patents [OSTI]

A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

2014-10-21T23:59:59.000Z

399

Heat storage with CREDA  

SciTech Connect (OSTI)

The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

Beal, T. (Fostoria Industries, Fostoria, OH (US))

1987-01-01T23:59:59.000Z

400

Heat pumps and under floor heating as a heating system for Finnish low-rise residential buildings.  

E-Print Network [OSTI]

??In bachelor’s thesis the study of under floor heating system with ground source heat pump for the heat transfers fluid heating is considered. The case… (more)

Chuduk, Svetlana

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Promotion of efficient heat pumps for heating (ProHeatPump)  

E-Print Network [OSTI]

Project Promotion of efficient heat pumps for heating (ProHeatPump) EIE/06/072 / S12.444283 Supplementary report: Heat pumps in Norway May 2009 Work Package 4: Policy context and measures Authors: Nils of the industry and markets in the ProHeatPump partner countries, and should provide useful comparisons

402

Fast Ion Loss Diagnostic Plans for NSTX D. S. Darrow, R. Bell, D. W. Johnson, H. Kugel, and J. R. Wilson,  

E-Print Network [OSTI]

. There may, in addition, be losses of fast ions arising from high harmonic fast wave (HHFW) heating. Most experimental campaign, thermocouples in the antenna, several infrared camera views, and a Faraday cup lost ion, there will be 5 MW of 30 MHz HHFW heating and current drive available. Starting in October 2000, there will also

403

Isothermal heat measurements of TBP-nitric acid solutions  

SciTech Connect (OSTI)

Net heats of reaction were measured in an isothermal calorimeter for both single phase (organic) and two phase (organic and aqueous) TBP/HNO{sub 3} reacting solutions at temperatures above 100 C. The oxidation rate constant was determined to be 5.4E-4 min{sup {minus}1} at 110 C for an open ``vented`` system as compared to 1.33 E-3 min{sup {minus}1} in the closed system. The heat released per unit material oxidized was also reduced. The oxidation in both phases was found to be first order in nitric acid and pseudo-zero order in butylnitrate and water. The hydrolysis (esterification) rate constant determined by Nichols` (1.33E-3 min{sup {minus}1}) fit the experimental data from this work well. Forced evaporation of the volatile components by the product gases from oxidation resulted in a cooling mechanism which more than balanced the heat from the oxidation reaction in the two-phased systems. Rate expressions were derived and rate constants determined for both the single and two phase systems. An approximating mathematical model was developed to fit the experimental data and to extrapolate beyond the experimental conditions. This model shows that one foot of ``reacting`` 14.3M HNO{sub 3} aqueous phase solution at 121 C will transport sufficient water to the organic phase to replace evaporative losses, maintaining endothermicity, for organic layers up to 12.2 + 6.0 feet deep. If the pressure in a reacting system is allowed to increase due to insufficient venting the temperature of the organic phase would increase in temperature to reach a new equilibrium. The rate of oxidation would increase not only due to the increase in temperature but also from the increased concentration of dissolved HNO{sub 3} reduction products. Another important factor is that the cooling system described in this work becomes less effective as the total pressure increases. These factors probably contributed to the explosion at Tomsk.

Smith, J.R.; Cavin, W.S.

1994-12-16T23:59:59.000Z

404

Radiative Heat Transfer between Neighboring Particles  

E-Print Network [OSTI]

The near-field interaction between two neighboring particles is known to produce enhanced radiative heat transfer. We advance in the understanding of this phenomenon by including the full electromagnetic particle response, heat exchange with the environment, and important radiative corrections both in the distance dependence of the fields and in the particle absorption coefficients. We find that crossed terms of electric and magnetic interactions dominate the transfer rate between gold and SiC particles, whereas radiative corrections reduce it by several orders of magnitude even at small separations. Radiation away from the dimer can be strongly suppressed or enhanced at low and high temperatures, respectively. These effects must be taken into account for an accurate description of radiative heat transfer in nanostructured environments.

Alejandro Manjavacas; F. Javier Garcia de Abajo

2012-01-26T23:59:59.000Z

405

Utilization of waste heat stream in distillation  

SciTech Connect (OSTI)

Cost of separation can be reduced by utilizing all available energy streams at various temperature levels. In the simplest case a waste energy heat stream can be used to partially vaporize a liquid feed stream. A more beneficial process involves an entire evaporation of a portion of the feed and introducing it into a column below the liquid portion of the feed. One can also use the waste energy stream as a heating medium in an intermediate reboiler in the column. There is, however, a limit to the amount of the waste energy that can be utilized in each case, beyond which this approach is no longer beneficial. Detailed analysis of the waste heat utilization enables one to determine this limit and compare each of these flowsheet options.

Fidkowski, Z.T.; Agrawal, R. [Air Products and Chemicals, Inc., Allentown, PA (United States)

1995-04-01T23:59:59.000Z

406

Evaluation of fluid bed heat exchanger optimization parameters. Final report  

SciTech Connect (OSTI)

Uncertainty in the relationship of specific bed material properties to gas-side heat transfer in fluidized beds has inhibited the search for optimum bed materials and has led to over-conservative assumptions in the design of fluid bed heat exchangers. An experimental program was carried out to isolate the effects of particle density, thermal conductivity, and heat capacitance upon fluid bed heat transfer. A total of 31 tests were run with 18 different bed material loads on 12 material types; particle size variations were tested on several material types. The conceptual design of a fluidized bed evaporator unit was completed for a diesel exhaust heat recovery system. The evaporator heat transfer surface area was substantially reduced while the physical dimensions of the unit increased. Despite the overall increase in unit size, the overall cost was reduced. A study of relative economics associated with bed material selection was conducted. For the fluidized bed evaporator, it was found that zircon sand was the best choice among materials tested in this program, and that the selection of bed material substantially influences the overall system costs. The optimized fluid bed heat exchanger has an estimated cost 19% below a fin augmented tubular heat exchanger; 31% below a commercial design fluid bed heat exchanger; and 50% below a conventional plain tube heat exchanger. The comparisons being made for a 9.6 x 10/sup 6/ Btu/h waste heat boiler. The fluidized bed approach potentially has other advantages such as resistance to fouling. It is recommended that a study be conducted to develop a systematic selection of bed materials for fluidized bed heat exchanger applications, based upon findings of the study reported herein.

Not Available

1980-03-01T23:59:59.000Z

407

Photovoltaic roof heat flux  

E-Print Network [OSTI]

under the offset unit's solar panel, the hf formula (16) wasdrop below the angle unit's solar panel at night time. D u rfor both the units, the solar panel covered roof was a heat

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

408

Solar Heating Contractor Licensing  

Broader source: Energy.gov [DOE]

Michigan offers a solar heating contractor specialty license to individuals who have at least three years of experience installing solar equipment under the direction of a licensed solar contractor...

409

Passive solar heating analysis  

SciTech Connect (OSTI)

This book discusses about the design of solar heating systems. The terms and symbols are clearly defined. Step-by-step procedures are indicated. Worked examples are given with tables, graphs, appendixes.

Balcomb, J.D.; Jones, R.W.; Mc Farland, R.D.; Wray, W.O.

1984-01-01T23:59:59.000Z

410

Wood Heating Fuel Exemption  

Broader source: Energy.gov [DOE]

This statute exempts from the state sales tax all wood or "refuse-derived" fuel used for heating purposes. The law does not make any distinctions about whether the qualified fuels are used for...

411

Heat transfer in porous media with fluid phase changes  

SciTech Connect (OSTI)

A one-dimensional experimental apparatus was built to study the heat pipe phenomenon. Basically, it consists of a 25 cm long, 2.5 cm I.D. Lexane tube packed with Ottawa sand. The two ends of the tube were subjected to different tempratures, i.e., one above the boiling temperature and the other below. The tube was well insulated so that a uniform one-dimensional heat flux could pass through the sand pack. Presence of the heat pipe phenomenon was confirmed by the temperature and saturation profiles of the sand pack at the final steady state condition. A one-dimensional steady state theory to describe the experiment has been developed which shows the functional dependence of the heat pipe phenomenon on liquid saturation gradient, capillary pressure, permeability, fluid viscosity, latent heat, heat flux and gravity. Influence of the heat pipe phenomenon on wellbore heat losses was studied by use of a two-phase two-dimensional cylindrical coordinate computer model.

Su, H.J.

1981-06-01T23:59:59.000Z

412

Self supporting heat transfer element  

DOE Patents [OSTI]

The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.

Story, Grosvenor Cook (Livermore, CA); Baldonado, Ray Orico (Livermore, CA)

2002-01-01T23:59:59.000Z

413

Ground-source Heat Pumps Applied to Commercial Buildings  

SciTech Connect (OSTI)

Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

Parker, Steven A.; Hadley, Donald L.

2009-07-14T23:59:59.000Z

414

Heat Waves, Global Warming, and Mitigation  

E-Print Network [OSTI]

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*II. HEAT WAVE DEFINITIONS .. A . HCHANGE AND HEAT WAVES .. CLIMATE III. IV. HEAT

Carlson, Ann E.

2008-01-01T23:59:59.000Z

415

Heat flux limiting sleeves  

DOE Patents [OSTI]

A heat limiting tubular sleeve extending over only a portion of a tube having a generally uniform outside diameter, the sleeve being open on both ends, having one end thereof larger in diameter than the other end thereof and having a wall thickness which decreases in the same direction as the diameter of the sleeve decreases so that the heat transfer through the sleeve and tube is less adjacent the large diameter end of the sleeve than adjacent the other end thereof.

Harris, William G. (Tampa, FL)

1985-01-01T23:59:59.000Z

416

Handling Food and Supplies during Power Loss  

E-Print Network [OSTI]

ER-017 6-06 Loss of electricity or gas commonly occurs during storms or other natural disasters. However, power loss may continue for weeks after the storm has passed, especially if an area has been damaged by floods or high winds. If you...

Anding, Jenna

2005-09-30T23:59:59.000Z

417

MANAGING JOB LOSS and FINANCIAL STRESS  

E-Print Network [OSTI]

-hunting strategy. Put time and energy into planning actions that will lead to your next job such as preparingMANAGING JOB LOSS and FINANCIAL STRESS a Personal and Family Guide CENTER ON THE FAMILY #12;2 Managing Job Loss and Financial Stress The issues associated with losing one's job or having hours cut

418

Intrinsically irreversible heat engine  

DOE Patents [OSTI]

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-12-25T23:59:59.000Z

419

Radial flow heat exchanger  

DOE Patents [OSTI]

A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

Valenzuela, Javier (Hanover, NH)

2001-01-01T23:59:59.000Z

420

Intrinsically irreversible heat engine  

DOE Patents [OSTI]

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Convective heat flow probe  

DOE Patents [OSTI]

A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

Dunn, J.C.; Hardee, H.C.; Striker, R.P.

1984-01-09T23:59:59.000Z

422

Intrinsically irreversible heat engine  

DOE Patents [OSTI]

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-01-01T23:59:59.000Z

423

Support vector machines with the ramp loss and the hard margin loss  

E-Print Network [OSTI]

Nov 4, 2008 ... Support vector machines with the ramp loss and the hard margin loss. J.P. Brooks (jpbrooks ***at*** vcu.edu). Abstract: In the interest of ...

J.P. Brooks

2008-11-04T23:59:59.000Z

424

Molten Salt Heat Transfer Fluid (HTF)  

Energy Innovation Portal (Marketing Summaries) [EERE]

Sandia has developed a heat transfer fluid (HTF) for use at elevated temperatures that has a lower freezing point than any molten salt mixture available commercially. This allows the HTF to be used in applications in which the expensive parasitic energy costs necessary for freeze protection can be significantly reduced. The higher operating temperature limit significantly increases power cycle efficiency and overall power plan sun-to-net electric efficiency....

2013-03-12T23:59:59.000Z

425

CLASSICAL CEPHEIDS REQUIRE ENHANCED MASS LOSS  

SciTech Connect (OSTI)

Measurements of rates of period change of Classical Cepheids probe stellar physics and evolution. Additionally, better understanding of Cepheid structure and evolution provides greater insight into their use as standard candles and tools for measuring the Hubble constant. Our recent study of the period change of the nearest Cepheid, Polaris, suggested that it is undergoing enhanced mass loss when compared to canonical stellar evolution model predictions. In this work, we expand the analysis to rates of period change measured for about 200 Galactic Cepheids and compare them to population synthesis models of Cepheids including convective core overshooting and enhanced mass loss. Rates of period change predicted from stellar evolution models without mass loss do not agree with observed rates, whereas including enhanced mass loss yields predicted rates in better agreement with observations. This is the first evidence that enhanced mass loss as suggested previously for Polaris and {delta} Cephei must be a ubiquitous property of Classical Cepheids.

Neilson, Hilding R.; Langer, Norbert; Izzard, Robert [Argelander Institute for Astronomy, University of Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany); Engle, Scott G.; Guinan, Ed, E-mail: neilsonh@etsu.edu [Department of Astronomy and Astrophysics, Villanova University, 800 Lancaster Ave. Villanova, PA 19085 (United States)

2012-11-20T23:59:59.000Z

426

Solar air heating system for combined DHW and space heating  

E-Print Network [OSTI]

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren �stergaard Jensen

427

Heat exchanger device and method for heat removal or transfer  

DOE Patents [OSTI]

Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

Koplow, Jeffrey P. (San Ramon, CA)

2012-07-24T23:59:59.000Z

428

Heat exchanger device and method for heat removal or transfer  

DOE Patents [OSTI]

Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

Koplow, Jeffrey P

2013-12-10T23:59:59.000Z

429

Development of a Transient Heat and Mass Transfer Model of Residential Attics to Predict Energy Savings Produced by the Use of Radiant Barriers  

E-Print Network [OSTI]

A transient heat and mass transfer model was developed to predict ceiling heat gain/loss through the attic space in residences and to accurately estimate savings in cooling and heating loads produced by the use of radiant barriers. The model...

Medina, M. A.

430

System transient response to loss of off-site power  

SciTech Connect (OSTI)

A simultaneous trip of the reactor, main circulation pumps, secondary coolant pumps, and pressurizer pump due to loss of off-site power at the High Flux Isotope Reactor (HFIR) located at the Oak Ridge National Laboratory (ORNL) has been analyzed to estimate available safety margin. A computer model based on the Modular Modeling System code has been used to calculate the transient response of the system. The reactor depressurizes from 482.7 psia down to about 23 psia in about 50 seconds and remains stable thereafter. Available safety margin has been estimated in terms of the incipient boiling heat flux ratio. It is a conservative estimate due to assumed less than available primary and secondary flows and higher than normal depressurization rate. The ratio indicates no incipient boiling conditions at the hot spot. No potential damage to the fuel is likely to occur during this transient. 2 refs., 6 figs.

Sozer, A.

1990-01-01T23:59:59.000Z

431

Reduced-dimension transistors: Reduced-dimension transistors  

E-Print Network [OSTI]

1 Reduced-dimension transistors: the HEMT LECTURE 20 · Reduced-dimension transistors · HEMT · 2-D;8 For a finite well · Wavefunction not completely confined · Use undoped spacer #12;9 Employment of a spacer scattering (µ ). · Electrons and donors separated no I I scattering, i.e., µ · Undoped spacer also helps

Pulfrey, David L.

432

Oxygen-reducing catalyst layer  

DOE Patents [OSTI]

An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

O'Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O'Neill, David G. (Lake Elmo, MN)

2011-03-22T23:59:59.000Z

433

Performance of Decay Heat Removal Systems in the LS-VHTR  

SciTech Connect (OSTI)

Investigations are underway to determine the viability of the Liquid Salt-Cooled - Very High Temperature Reactor (LS-VHTR) concept which combines fuel and moderator similar to gas cooled VHTR concepts but utilizes liquid salt coolant which can operate at low pressures with improved heat transfer properties relative to helium. Analyses have been carried out investigating the viability of two alternative passive approaches for emergency decay heat removal for a 2400 MWt LS-VHTR: RVACS air natural circulation cooling of the exterior of the guard vessel and DRACS Direct Reactor Heat Exchangers (DRHXs) immersed in the liquid salt coolant and connected to natural draft air heat exchangers through secondary and tertiary cooling circuits. Results of first principles and integrated systems analyses of RVACS and DRACS performance are presented for a postulated accident scenario involving loss-of-normal heat removal, loss-of-forced (pumped) liquid salt flow, and successful scram of the reactor. (authors)

Sienicki, James J.; Moisseytsev, Anton; Farmer, Mitchell T.; Dunn, Floyd E.; Cahalan, James E. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439 (United States)

2006-07-01T23:59:59.000Z

434

Effective Lone Star program reduces unaccounted-for gas  

SciTech Connect (OSTI)

Lone Star's program for holding down its gas losses implements individual remedies for each of six broad categories of unaccounted-for gas: measurement at other than base conditions, meter inaccuracy, meter-reading errors, accounting mistakes, unmetered or unrecorded gas use, and leakage. Even though some of these remedies will not be fully effective for 2 more years, the program's first year of operation has reduced unaccounted-for gas volumes by 9.2%.

Wallace, J.E.

1982-04-01T23:59:59.000Z

435

Electron loss from fast heavy ions: Target-scaling dependence  

SciTech Connect (OSTI)

The target dependence for projectile electron loss is investigated using experimental data taken from the literature. Impact energies range from a few tens of eV/u to tens of MeV/u. For energies less than several MeV/u, the target dependences are shown to be very similar, independent of projectile species and charge state. Overall, however, with increasing impact energy the cross-section dependence on the target nuclear charge systematically increases. It is shown that none of the existing cross-section target scaling models reproduce these features. A model, based on Born scaling and including both the antiscreening and screening contributions to projectile electron loss, is developed. With the inclusion of relativistic effects, which increase the contribution from both channels at high energies, and ''target saturation'' effects, which reduce the contribution from the screening term for heavy targets and lower impact energies, this model describes quite reasonably all available experimental data. A simple scaling formula that reproduces the measured atomic number and impact velocity dependences is provided. This formula is applicable for projectile electron loss in collisions with either atomic or molecular targets and for impact energies ranging from a few to tens of MeV/u.

DuBois, R. D. [Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States); Santos, A. C. F.; Montenegro, E. C. [Instituto de Fisica, UFRJ, Caixa Postal 68528 Rio de Janeiro, BR-21941-972 RJ (Brazil); Sigaud, G. M. [Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, Caixa Postal 38071, Rio de Janeiro, BR-22452-970 RJ (Brazil)

2011-08-15T23:59:59.000Z

436

Evolution Effects on Parton Energy Loss with Detailed Balance  

E-Print Network [OSTI]

The initial conditions in the chemical non-equilibrated medium and Bjorken expanding medium at RHIC are determined. With a set of rate equations describing the chemical equilibration of quarks and gluons based on perturbative QCD, we investigate the consequence for parton evolution at RHIC. With considering parton evolution, it is shown that the Debye screening mass and the inverse mean free-path of gluons reduce with increasing proper time in the QGP medium. The parton evolution affects the parton energy loss with detailed balance, both parton energy loss from stimulated emission in the chemical non-equilibrated expanding medium and in Bjorken expanding medium are linear dependent on the propagating distance rather than square dependent in the static medium. The energy absorption can not be neglected at intermediate jet energies and small propagating distance of the energetic parton in contrast with that it is important only at intermediate jet energy in the static medium. This will increase the energy and propagating distance dependence of the parton energy loss and will affect the shape of suppression of moderately high P_T hadron spectra.

Luan cheng; Enke Wang

2010-04-30T23:59:59.000Z

437

Optimization of the Low Loss SRF Cavity for the ILC  

SciTech Connect (OSTI)

The Low-Loss shape cavity design has been proposed as a possible alternative to the baseline TESLA cavity design for the ILC main linacs. The advantages of this design over the TESLA cavity are its lower cryogenic loss, and higher achievable gradient due to lower surface fields. High gradient prototypes for such designs have been tested at KEK (ICHIRO) and TJNAF (LL). However, issues related to HOM damping and multipacting still need to be addressed. Preliminary numerical studies of the prototype cavities have shown unacceptable damping factors for some higher-order dipole modes if the typical TESLA HOM couplers are directly adapted to the design. The resulting wakefield will dilute the beam emittance thus reducing the machine luminosity. Furthermore, high gradient tests on a 9-cell prototype at KEK have experienced multipacting barriers although a single LL cell had achieved a high gradient. From simulations, multipacting activities are found to occur in the end-groups of the cavity. In this paper, we will present the optimization results of the end-groups for the Low-Loss designs for effective HOM damping and alleviation of multipacting.

Sekutowicz, J.S.; /DESY; Kneisel, P.; /Jefferson Lab; Higo, T.; Morozumi, Y.; Saito, K.; /KEK, Tsukuba; Ge, L.; Ko, Yong-kyu; Lee, L.; Li, Z.; Ng, C.K.; Schussman, G.L.; Xiao, L.; /SLAC

2008-01-18T23:59:59.000Z

438

Reduced order models for thermal analysis : final report : LDRD Project No. 137807.  

SciTech Connect (OSTI)

This LDRD Senior's Council Project is focused on the development, implementation and evaluation of Reduced Order Models (ROM) for application in the thermal analysis of complex engineering problems. Two basic approaches to developing a ROM for combined thermal conduction and enclosure radiation problems are considered. As a prerequisite to a ROM a fully coupled solution method for conduction/radiation models is required; a parallel implementation is explored for this class of problems. High-fidelity models of large, complex systems are now used routinely to verify design and performance. However, there are applications where the high-fidelity model is too large to be used repetitively in a design mode. One such application is the design of a control system that oversees the functioning of the complex, high-fidelity model. Examples include control systems for manufacturing processes such as brazing and annealing furnaces as well as control systems for the thermal management of optical systems. A reduced order model (ROM) seeks to reduce the number of degrees of freedom needed to represent the overall behavior of the large system without a significant loss in accuracy. The reduction in the number of degrees of freedom of the ROM leads to immediate increases in computational efficiency and allows many design parameters and perturbations to be quickly and effectively evaluated. Reduced order models are routinely used in solid mechanics where techniques such as modal analysis have reached a high state of refinement. Similar techniques have recently been applied in standard thermal conduction problems e.g. though the general use of ROM for heat transfer is not yet widespread. One major difficulty with the development of ROM for general thermal analysis is the need to include the very nonlinear effects of enclosure radiation in many applications. Many ROM methods have considered only linear or mildly nonlinear problems. In the present study a reduced order model is considered for application to the combined problem of thermal conduction and enclosure radiation. The main objective is to develop a procedure that can be implemented in an existing thermal analysis code. The main analysis objective is to allow thermal controller software to be used in the design of a control system for a large optical system that resides with a complex radiation dominated enclosure. In the remainder of this section a brief outline of ROM methods is provided. The following chapter describes the fully coupled conduction/radiation method that is required prior to considering a ROM approach. Considerable effort was expended to implement and test the combined solution method; the ROM project ended shortly after the completion of this milestone and thus the ROM results are incomplete. The report concludes with some observations and recommendations.

Hogan, Roy E., Jr.; Gartling, David K.

2010-09-01T23:59:59.000Z

439

Simulation of a High Efficiency Multi-bed Adsorption Heat Pump  

SciTech Connect (OSTI)

Attaining high energy efficiency with adsorption heat pumps is challenging due to thermodynamic losses that occur when the sorbent beds are thermally cycled without effective heat recuperation. The multi-bed concept described here effectively transfers heat from beds being cooled to beds being heated, which enables high efficiency in thermally driven heat pumps. A simplified lumped-parameter model and detailed finite element analysis are used to simulate the performance of an ammonia-carbon sorption compressor, which is used to project the overall heat pump coefficient of performance. The effects of bed geometry and number of beds on system performance are explored, and the majority of the performance benefit is obtained with four beds. Results indicate that a COP of 1.24 based on heat input is feasible at AHRI standard test conditions for residential HVAC equipment. When compared on a basis of primary energy input, performance equivalent to SEER 13 or 14 are theoretically attainable with this system.

TeGrotenhuis, Ward E.; Humble, Paul H.; Sweeney, J. B.

2012-05-01T23:59:59.000Z

440

Field Study of Performance, Comfort, and Sizing of Two Variable-Speed Heat Pumps Installed in a Single 2-Story Residence  

SciTech Connect (OSTI)

With the recent advancements in the application of variable-speed (VS) compressors to residential HVAC systems, opportunities are now available to size heat pumps (HPs) to more effectively meet heating and cooling loads in many of the climate zones in the US with limited use of inefficient resistance heat. This is in contrast to sizing guidance for traditional single-speed HPs that limits the ability to oversize with regard to cooling loads, because of risks of poor dehumidification during the cooling season and increased cycling losses. VS-drive HPs can often run at 30-40% of their rated cooling capacity to reduce cycling losses, and can adjust fan speed to provide better indoor humidity control. Detailed air-side performance data was collected on two VS-drive heat pumps installed in a single unoccupied research house in Knoxville, TN, a mixed-humid climate. One system provided space conditioning for the upstairs, while the other unit provided space conditioning for the downstairs. Occupancy was simulated by operating the lights, shower, appliances, other plug loads, etc. to simulate the sensible and latent loads imposed on the building space by internal electric loads and human occupants according to the Building America Research Benchmark (2008). The seasonal efficiency and energy use of the units are calculated. Annual energy use is compared to that of the single speed minimum efficiency HPs tested in the same house previously. Sizing of the units relative to the measured building load and manual J design load calculations is examined. The impact of the unit sizing with regards to indoor comfort is also evaluated.

Munk, Jeffrey D [ORNL; Odukomaiya, Adewale O [ORNL; Gehl, Anthony C [ORNL; Jackson, Roderick K [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ORNL rod-bundle heat-transfer test data. Volume 7. Thermal-Hydraulic Test Facility experimental data report for test series 3. 07. 9 - steady-state film boiling in upflow  

SciTech Connect (OSTI)

Thermal-Hydraulic Test Facility (THTF) test series 3.07.9 was conducted by members of the Oak Ridge National Laboratory Pressurized-Water Reactor (ORNL-PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on September 11, September 18, and October 1, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small- and large-break loss-of-coolant accidents. Test series 3.07.9 was designed to provide steady-state film boiling data in rod bundle geometry under reactor accident-type conditions. This report presents the reduced instrument responses for THTF test series 3.07.9. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.

1982-05-01T23:59:59.000Z

442

Shutdown heat removal system reliability in thermal reactors  

SciTech Connect (OSTI)

An analysis of the failure probability per year of the shutdown heat removal system (SHRS) at hot standby conditions for two thermal reactor designs is presented. The selected reactor designs are the Pressurized Water Reactor and the Nonproliferation Alternative System Assessment Program Heavy Water Reactor. Failures of the SHRS following the initiating transients of loss of offsite power and loss of main feedwater system are evaluated. Common mode failures between components are incorporated in this anlaysis via the ..beta..-factor method and the sensitivity of the system reliability to common mode failures is investigated parametrically.

Sun, Y.H.; Bari, R.A.

1980-01-01T23:59:59.000Z

443

Fracture toughness of the IEA heat of F82H ferritic/martensitic stainless steel as a function of loading mode  

SciTech Connect (OSTI)

Mode I and mixed-mode I/III fracture toughness tests were performed for the IEA heat of the reduced activation ferritic/martensitic stainless steel F82H at ambient temperature in order to provide comparison with previous measurements on a small heat given a different heat treatment. The results showed that heat to heat variations and heat treatment had negligible consequences on Mode I fracture toughness, but behavior during mixed-mode testing showed unexpected instabilities.

Li, Huaxin; Gelles, D.S. [Pacific Northwest Labs., Richland, WA (United States); Hirth, J.P. [Washington State Univ., Pullman, WA (United States)] [and others

1997-04-01T23:59:59.000Z

444

An Energy Savings Model for the Heat Treatment of Castings  

SciTech Connect (OSTI)

An integrated system of software, databases, and design rules have been developed, verified, and to be marketed to enable quantitative prediction and optimization of the heat treatment of aluminum castings to increase quality, increase productivity, reduce heat treatment cycle times and reduce energy consumption. The software predicts the thermal cycle in critical locations of individual components in a furnace, the evolution of microstructure, and the attainment of properties in heat treatable aluminum alloy castings. The model takes into account the prior casting process and the specific composition of the component. The heat treatment simulation modules can be used in conjunction with software packages for simulation of the casting process. The system is built upon a quantitative understanding of the kinetics of microstructure evolution in complex multicomponent alloys, on a quantitative understanding of the interdependence of microstructure and properties, on validated kinetic and thermodynamic databases, and validated quantitative models.

Y. Rong; R. Sisson; J. Morral; H. Brody

2006-12-31T23:59:59.000Z

445

Heating of trapped ultracold atoms by collapse dynamics  

E-Print Network [OSTI]

{The Continuous Spontaneous Localization (CSL) theory alters the Schr\\"odinger equation. It describes wave function collapse as a dynamical process instead of an ill-defined postulate, thereby providing macroscopic uniqueness and solving the so-called measurement problem of standard quantum theory. CSL contains a parameter $\\lambda$ giving the collapse rate of an isolated nucleon in a superposition of two spatially separated states and, more generally, characterizing the collapse time for any physical situation. CSL is experimentally testable, since it predicts some behavior different from that predicted by standard quantum theory. One example is the narrowing of wave functions, which results in energy imparted to particles. Here we consider energy given to trapped ultra-cold atoms. Since these are the coldest samples under experimental investigation, it is worth inquiring how they are affected by the CSL heating mechanism. We examine the CSL heating of a BEC in contact with its thermal cloud. Of course, other mechanisms also provide heat and also particle loss. From varied data on optically trapped cesium BEC's, we present an energy audit for known heating and loss mechanisms. The result provides an upper limit on CSL heating and thereby an upper limit on the parameter $\\lambda$. We obtain $\\lambda\\lesssim 1(\\pm1)\\times 10^{-7}$sec$^{-1}$.}

Franck Laloë; William J. Mullin; Philip Pearle

2014-11-12T23:59:59.000Z

446

Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.  

SciTech Connect (OSTI)

This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the overall research effort of the Existing Plants Research Program by evaluating water issues that could impact power plants. A growing challenge to the economic production of electricity from coal-fired power plants is the demand for freshwater, particularly in light of the projected trends for increasing demands and decreasing supplies of freshwater. Nanotechnology uses the unique chemical, physical, and biological properties that are associated with materials at the nanoscale to create and use materials, devices, and systems with new functions and properties. It is possible that nanotechnology may open the door to a variety of potentially interesting ways to reduce freshwater consumption at power plants. This report provides an overview of how applications of nanotechnology could potentially help reduce freshwater use at coal-fired power plants. It was developed by (1) identifying areas within a coal-fired power plant's operations where freshwater use occurs and could possibly be reduced, (2) conducting a literature review to identify potential applications of nanotechnology for facilitating such reductions, and (3) collecting additional information on potential applications from researchers and companies to clarify or expand on information obtained from the literature. Opportunities, areas, and processes for reducing freshwater use in coal-fired power plants considered in this report include the use of nontraditional waters in process and cooling water systems, carbon capture alternatives, more efficient processes for removing sulfur dioxide and nitrogen oxides, coolants that have higher thermal conductivities than water alone, energy storage options, and a variety of plant inefficiencies, which, if improved, would reduce energy use and concomitant water consumption. These inefficiencies include air heater inefficiencies, boiler corrosion, low operating temperatures, fuel inefficiencies, and older components that are subject to strain and failure. A variety of nanotechnology applications that could potentially be used to reduce the amount of freshwater consumed - either directly or indirectly - by these areas and activities was identified. These applications include membranes that use nanotechnology or contain nanomaterials for improved water purification and carbon capture; nano-based coatings and lubricants to insulate and reduce heat loss, inhibit corrosion, and improve fuel efficiency; nano-based catalysts and enzymes that improve fuel efficiency and improve sulfur removal efficiency; nanomaterials that can withstand high temperatures; nanofluids that have better heat transfer characteristics than water; nanosensors that can help identify strain and impact damage, detect and monitor water quality parameters, and measure mercury in flue gas; and batteries and capacitors that use nanotechnology to enable utility-scale storage. Most of these potential applications are in the research stage, and few have been deployed at coal-fired power plants. Moving from research to deployment in today's economic environment will be facilitated with federal support. Additional support for research development and deployment (RD&D) for some subset of these applications could lead to reductions in water consumption and could provide lessons learned that could be applied to future efforts. To take advantage of this situation, it is recommended that NETL pursue funding for further research, development, or deployment for one or more of the potential applications identified in this report.

Elcock, D. (Environmental Science Division)

2010-09-17T23:59:59.000Z

447

Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module  

SciTech Connect (OSTI)

A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

Rice, C Keith [ORNL] [ORNL; Uselton, Robert B. [Lennox Industries, Inc] [Lennox Industries, Inc; Shen, Bo [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Shrestha, Som S [ORNL] [ORNL

2014-01-01T23:59:59.000Z

448

Heat and Power Systems Design  

E-Print Network [OSTI]

HEAT AND POWER SYSTEMS DESIGN H. D. Spriggs and J. V. Shah, Leesburg. VA ABSTRACT The selection of heat and power systems usually does not include a thorough analysis of the process heating. cooling and power requirements. In most cases..., these process requirements are accepted as specifications before heat and power systems are selected and designed. In t~is article we describe how Process Integration using Pinch Technology can be used to understand and achieve the minimum process heating...

Spriggs, H. D.; Shah, J. V.

449

Heat distribution ceramic processing method  

DOE Patents [OSTI]

A multi-layered heat distributor system is provided for use in a microwave process. The multi-layered heat distributors includes a first inner layer of a high thermal conductivity heat distributor material, a middle insulating layer and an optional third insulating outer layer. The multi-layered heat distributor system is placed around the ceramic composition or article to be processed and located in a microwave heating system. Sufficient microwave energy is applied to provide a high density, unflawed ceramic product.

Tiegs, Terry N. (Lenoir City, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

2001-01-01T23:59:59.000Z

450

Microcomputer analysis of regenerative heat exchangers for oscillating flow  

SciTech Connect (OSTI)

Regenerative heat exchangers for use in oscillating flows such as those occurring in Stirling engines present considerable analytical problems to the thermal engineer. A simplified finite element analysis has been implemented in a spreadsheet, providing improved access to analytical assumptions and allowing parametric analysis of current heat transfer data. In addition, an irreversibility analysis has been implemented using the thermal and friction results in the spreadsheet. It is suited for evaluation and insights into loss tradeoffs inside operating regenerators, to suggest new regenerator design concepts, and to focus experimental work. 22 refs., 13 figs.

Hutchinson, R.A.; Lyke, S.E.

1987-03-01T23:59:59.000Z

451

Lack of energy equipartition in homogeneous heated binary granular mixtures  

E-Print Network [OSTI]

We consider the problem of determining the granular temperatures of the components of a homogeneous binary heated mixture of inelastic hard spheres, in the framework of Enskog kinetic theory. Equations are derived for the temperatures of each species and their ratio, which is different from unity, as may be expected since the system is out of equilibrium. We focus on the particular heating mechanism where the inelastic energy loss is compensated by an injection through a random external force (``stochastic thermostat''). The influence of various parameters and their possible experimental relevance is discussed.

A. Barrat; E. Trizac

2002-05-21T23:59:59.000Z

452

Recovering the Heat Dissipated by the Digital Switching Equipment  

E-Print Network [OSTI]

. The disadvantage is a slight loss of thermo dynamic efficiency. 3. OI'HER TYPES OF SYSI'EMS The following systems can also be considered. a) Air to air recovery system b) Air to air recovery using heat exchanger c) Run around system using glycol loop Each... of the study: 10 years Beginning year of the study: 1982 Effective annual cost of capital: 17% Effective cost of debt: 17% Proportion of capital debt: 45% Income tax rate: 50% Scenarios ALTERNATIVE: The alternative is to install a heat recuperation...

Karasseferian, V. V.; Desjardins, R.

1983-01-01T23:59:59.000Z

453

Acoustical heat pumping engine  

DOE Patents [OSTI]

The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1983-08-16T23:59:59.000Z

454

Air heating system  

DOE Patents [OSTI]

A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

1983-03-01T23:59:59.000Z

455

Solar industrial process heat  

SciTech Connect (OSTI)

The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

Lumsdaine, E.

1981-04-01T23:59:59.000Z

456

Acoustical heat pumping engine  

DOE Patents [OSTI]

The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1983-08-16T23:59:59.000Z

457

Heat Exchanger Network Targeting, Design and Analysis: The MIDAS Package  

E-Print Network [OSTI]

HEAT EXCHANGER NETWORK TARGETING, DESIGN AND ANALYSIS: THE MIDAS PACKAGE I. BARTON, D.H. JONES AND G.J. SMITH TENSA Services, Houston, Texas ICI PLC, Wilton England ABSTRACT Recent work to consolidate pinch-based procedures for targeting... was reduced to industrial practice by the U.K. major, ICI PLC. A wide range of pinch-based procedures have been developed for process energy efficiency applications. These incl~de heat exchanger network (HEN) design [2,3], distillation system...

Barton, I.; Jones, D. H.; Smith, G. J.

458

Telling Absence: War Widows, Loss and Memory   

E-Print Network [OSTI]

This thesis concerns feminist sociological analysis of war loss and its consequences as experienced and told by Finnish Karelian war widows of World War 2. They lost their partners and had to leave their homes by force, ...

Loipponen, Jaana

2009-01-01T23:59:59.000Z

459

Reduction of Hydrocarbon Losses to Flare Systems  

E-Print Network [OSTI]

merit consideration because the losses and associated economic penalties are assumed to be small. Flare gas flow is not easily measured and as a result, most plants are unaware of how much product they are actually losing during normal operation...

Page, J.

1979-01-01T23:59:59.000Z

460

Corona losses in HVdc bipolar lines  

SciTech Connect (OSTI)

The problem related to the prediction of corona losses in HVdc bipolar lines has been solved, in the past, by means of semi-empirical monomial formulae. However, the proposed formulae that are simpler to use do not always give adequate calculation precision, while the formulae that provide the closest results require implicit functions of different complexity, which are difficult to apply; moreover, it is not possible to understand clearly what influence the variations of the different line parameters have on the losses themselves. The new monomial semi-empirical relationship, proposed to predict the corona losses in HVdc bipolar lines, is very simple to use; it highlights the dependence of power losses due to the corona effect by the different line parameters. The formula has been developed by elaborating a considerable amount of available experimental data.

Corbellini, U.; Pelacchi, P. [Univ. of Pisa (Italy). Dept. of Electric Systems and Automation] [Univ. of Pisa (Italy). Dept. of Electric Systems and Automation

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Report on fuel pool water loss tests  

SciTech Connect (OSTI)

To resolve potential concerns on the integrity of the fuel storage pool at the West Valley Demonstration Project (WVDP), a highly accurate testing technique was developed to quantify water losses from the pool. The fuel pool is an unlined, single wall, reinforced concrete structure containing approximately 818,000 gallons of water. Since an initial test indicated that water losses could possibly be attributed solely to evaporation, a cover was suspended and sealed over the pool to block evaporation losses. High accuracy water level and temperature instrumentation was procured and installed. The conclusions of this report indicate that unaccounted-for water losses from the pool are insignificant and there is no detectable leakage within the range of test accuracy.

Zalenski, R.F. [West Valley Nuclear Services Co., West Valley, NY (United States)

1995-12-31T23:59:59.000Z

462

Temporary Losses of Highway Capacity and Impacts on Performance: Phase 2  

SciTech Connect (OSTI)

Traffic congestion and its impacts significantly affect the nation's economic performance and the public's quality of life. In most urban areas, travel demand routinely exceeds highway capacity during peak periods. In addition, events such as crashes, vehicle breakdowns, work zones, adverse weather, railroad crossings, large trucks loading/unloading in urban areas, and other factors such as toll collection facilities and sub-optimal signal timing cause temporary capacity losses, often worsening the conditions on already congested highway networks. The impacts of these temporary capacity losses include delay, reduced mobility, and reduced reliability of the highway system. They can also cause drivers to re-route or reschedule trips. Such information is vital to formulating sound public policies for the highway infrastructure and its operation. In response to this need, Oak Ridge National Laboratory, sponsored by the Federal Highway Administration (FHWA), made an initial attempt to provide nationwide estimates of the capacity losses and delay caused by temporary capacity-reducing events (Chin et al. 2002). This study, called the Temporary Loss of Capacity (TLC) study, estimated capacity loss and delay on freeways and principal arterials resulting from fatal and non-fatal crashes, vehicle breakdowns, and adverse weather, including snow, ice, and fog. In addition, it estimated capacity loss and delay caused by sub-optimal signal timing at intersections on principal arterials. It also included rough estimates of capacity loss and delay on Interstates due to highway construction and maintenance work zones. Capacity loss and delay were estimated for calendar year 1999, except for work zone estimates, which were estimated for May 2001 to May 2002 due to data availability limitations. Prior to the first phase of this study, which was completed in May of 2002, no nationwide estimates of temporary losses of highway capacity by type of capacity-reducing event had been made. This report describes the second phase of the TLC study (TLC2). TLC2 improves upon the first study by expanding the scope to include delays from rain, toll collection facilities, railroad crossings, and commercial truck pickup and delivery (PUD) activities in urban areas. It includes estimates of work zone capacity loss and delay for all freeways and principal arterials, rather than for Interstates only. It also includes improved estimates of delays caused by fog, snow, and ice, which are based on data not available during the initial phase of the study. Finally, computational errors involving crash and breakdown delay in the original TLC report are corrected.

Chin, S.M.

2004-11-10T23:59:59.000Z

463

Feasibility of Thermoelectrics for Waste Heat Recovery in Conventional Vehicles  

SciTech Connect (OSTI)

Thermoelectric (TE) generators convert heat directly into electricity when a temperature gradient is applied across junctions of two dissimilar metals. The devices could increase the fuel economy of conventional vehicles by recapturing part of the waste heat from engine exhaust and generating electricity to power accessory loads. A simple vehicle and engine waste heat model showed that a Class 8 truck presents the least challenging requirements for TE system efficiency, mass, and cost; these trucks have a fairly high amount of exhaust waste heat, have low mass sensitivity, and travel many miles per year. These factors help maximize fuel savings and economic benefits. A driving/duty cycle analysis shows strong sensitivity of waste heat, and thus TE system electrical output, to vehicle speed and driving cycle. With a typical alternator, a TE system could allow electrification of 8%-15% of a Class 8 truck's accessories for 2%-3% fuel savings. More research should reduce system cost and improve economics.

Smith, K.; Thornton, M.

2009-04-01T23:59:59.000Z

464

Clean Energy? Can Do! ANZSES 2006 1 of 9 A New Correlation for Predicting the Free Convection Loss from  

E-Print Network [OSTI]

be determined relatively easily by standardised methods given in a heat transfer literature. On the other hand-mail: sawat.paitoonsurikarn@anu.edu.au Abstract The study of free convection loss from an open-cavity receiver An open-cavity type receiver is widely used in solar paraboloidal dish applications, eg

465

Heat driven heat pump using paired ammoniated salts  

SciTech Connect (OSTI)

A cycle for a heat driven heat pump using two salts CaCl/sup 2/.8NH/sup 3/, and ZnCl/sup 2/.4NH3 which may reversibly react with ammonia with the addition or evolution of heat. These salts were chosen so that both ammoniation processes occur at the same temperature so that the heat evolved may be used for comfort heating. The heat to drive the system need only be slightly hotter than 122 C. The low temperature source need only be slightly warmer than 0 C.

Dunlap, R.M.

1980-08-29T23:59:59.000Z

466

Heat-transfer coefficients in agitated vessels. Latent heat models  

SciTech Connect (OSTI)

Latent heat models were developed to calculate heat-transfer coefficients in agitated vessels for two cases: (1) heating with a condensable fluid flowing through coils and jackets; (2) vacuum reflux cooling with an overhead condenser. In either case the mathematical treatment, based on macroscopic balances, requires no iterative schemes. In addition to providing heat-transfer coefficients, the models predict flow rates of service fluid through the coils and jackets, estimate the percentage of heat transfer due to latent heat, and compute reflux rates.

Kumpinsky, E. [Ashland Chemical Co., Columbus, OH (United States)] [Ashland Chemical Co., Columbus, OH (United States)

1996-03-01T23:59:59.000Z

467

Exchanging Ohmic Losses in Metamaterial Absorbers with Useful Optical Absorption for Photovoltaics  

E-Print Network [OSTI]

Using metamaterial absorbers, we have shown that metallic layers in the absorbers do not necessarily constitute undesired resistive heating problem for photovoltaics. Tailoring the geometric skin depth of metals and employing the natural bulk absorbance characteristics of the semiconductors in those absorbers can enable the exchange of undesired resistive losses with the useful optical absorbance in the active semiconductors. Thus, Ohmic loss dominated metamaterial absorbers can be converted into photovoltaic near-perfect absorbers with the advantage of harvesting the full potential of light management offered by the metamaterial absorbers. Based on experimental permittivity data for indium gallium nitride, we have shown that between 75%-95% absorbance can be achieved in the semiconductor layers of the converted metamaterial absorbers. Besides other metamaterial and plasmonic devices, our results may also apply to photodectors and other metal or semiconductor based optical devices where resistive losses and p...

Vora, Ankit; Pala, Nezih; Kulkarni, Anand; Pearce, Joshua M; Güney, Durdu Ö

2014-01-01T23:59:59.000Z

468

The Atmospheric Response to Realistic Reduced Summer Arctic Sea Ice Anomalies  

E-Print Network [OSTI]

for the continued ice melt [Polyakov et al., 2005], and recent work shows that heat from the Atlantic layer can91 The Atmospheric Response to Realistic Reduced Summer Arctic Sea Ice Anomalies Uma S. Bhatt,1 and Robert A. Tomas3 The impact of reduced Arctic summer sea ice on the atmosphere is investigated by forcing

Bhatt, Uma

469

Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage  

E-Print Network [OSTI]

-reaching meaning of solving energy and environment problems if new type energy conservation and environment protection heating system ? solar assisted ground-source heat pump (SAGHP) heating system with a latent heat storage tank will be practical... was established at the laboratory of construction energy conservation in Harbin Institute of Technology (HIT) in 2004. It added a latent heat storage tank in original SAGHP system. The schematic diagram of the system is shown in Figure 1. The experimental...

Han, Z.; Zheng, M.; Liu, W.; Wang, F.

2006-01-01T23:59:59.000Z

470

Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application  

SciTech Connect (OSTI)

In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

471

Neutrino heating of a shock wave within magnetorotational model  

E-Print Network [OSTI]

Based on the magnetorotational model of a supernova explosion with core collapse, we investigate the significant processes of neutrino heating of the supernova shock. These processes should be taken into account in self-consistent modeling, since the neutrino heating mechanism is capable of increasing the explosion efficiency. We show that, even in the presence of a strong magnetic field in the shock formation region, the heating rate is determined with good accuracy by the absorption and emission of neutrinos in direct URCA processes. Moreover, the influence on them of a magnetic field is reduced to insignificant corrections.

A. A. Gvozdev; I. S. Ognev

2006-11-27T23:59:59.000Z

472

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

Kronberg, J.W.

1992-09-01T23:59:59.000Z

473

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

474

Collisional parton energy loss in a finite size QCD medium revisited: Off mass-shell effects  

E-Print Network [OSTI]

We study the collisional energy loss mechanism for particles produced off mass-shell in a finite size QCD medium. The off mass-shell effects introduced are to consider particles produced in wave packets instead of plane waves and the length scale associated to an in-medium particles' life-time. We show that these effects reduce the energy loss as compared to the case when the particles are described as freely propagating from the source. The reduction of the energy loss is stronger as this scale becomes of the order or smaller than the medium size. We discuss possible consequences of the result on the description of the energy loss process in the parton recombination scenario.

Alejandro Ayala; J. Magnin; Luis Manuel Montano; Eduardo Rojas

2008-03-25T23:59:59.000Z

475

Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade  

SciTech Connect (OSTI)

High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

Liu, Xiaobing [Oak Ridge National Lab] [Oak Ridge National Lab

2014-06-01T23:59:59.000Z

476

Losses of heat and particles in the presence of strong magnetic field perturbations.  

E-Print Network [OSTI]

??Thermonuclear fusion has potential to offer an economically, environmentally and socially acceptable supply of energy. A promising reactor design to execute thermonuclear fusion is the… (more)

gupta, abhinav

2009-01-01T23:59:59.000Z

477

Correlation Of Surface Heat Loss And Total Energy Production For Geothermal  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric Coop, IncKilauea Name:Systems | Open

478

Loss Reduction of Power Distribution Network Using Optimum Size and Location of Distributed  

E-Print Network [OSTI]

Generation Adnan Anwar, Student Member, IEEE, and H. R. Pota, Member, IEEE Abstract--Distributed generation be reduced significantly. Index Terms--Distributed generation, Optimum size, Optimum location, Power loss directly to utility distribution system. The insulation level of the machines may not synchronize

Pota, Himanshu Roy

479

Heating dynamics of CO{sub 2}-laser irradiated silica particles with evaporative shrinking: Measurements and modeling  

SciTech Connect (OSTI)

The heating dynamics of CO{sub 2}-laser heated micron-sized particles were determined for temperatures <3500 K measured using infrared imaging. A coupled mass and energy conservation model is derived to predict single particle temperatures and sizes, which were compared with data from particles deposited on non-absorbing substrates to assess the relevant heat transfer processes. Analysis reveals substrate conduction dominates all other heat losses, while laser absorption determined from Mie theory is strongly modulated by particle evaporative shrinking. This study provides insights into the light coupling and heating of particle arrays where the material optical properties are temperature-dependent and particle size changes are significant.

Elhadj, S.; Qiu, S. R.; Stolz, C. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Monterrosa, A. M. [Department of Nuclear Engineering and Department of Materials Science and Engineering, University of California, Berkeley, California 94704 (United States)

2012-05-01T23:59:59.000Z

480

Ultrasonic Emissions Warn of Energy Loss  

E-Print Network [OSTI]

Ultrasonic emissions are utilized as a method for locating sources of energy waste. Included in the discussions will be a description of the unique 'Tone Test' for locating faulty seals and gaskets as well as leaking heat exchanger tubes. Quick...

Goodman, M. A.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce heat loss" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Reduced shedding regenerator and method  

DOE Patents [OSTI]

A reduced shedding regenerator and method are disclosed with regenerator surfaces to minimize shedding of particles from the regenerator thereby alleviating a source of potential damage and malfunction of a thermal regenerative machine using the regenerator.

Qiu, Songgang (Richland, WA); Augenblick, John E. (Richland, WA); Erbeznik, Raymond M. (Kennewick, WA)

2007-05-22T23:59:59.000Z

482

On the maximum efficiency of realistic heat engines  

E-Print Network [OSTI]

In 1975, Courzon and Ahlborn studied a Carnot engine with thermal losses and got an expression for its efficiency that described better the performance of actual heat machines than the traditional result due to Carnot. In their original derivation, time appears explicitly and this is disappointing in the framework of classical thermodynamics. In this note a derivation is given without any explicit reference to time.

E. N. Miranda

2012-08-10T23:59:59.000Z

483

A Study of Transient Behavior During Start-Up of Residential Heat Pumps  

E-Print Network [OSTI]

); and the efficiency of the heat pump was reduced in transient mode. Miller [1985] also studied refrigerant migration in a heat pump in the heating mode. The results indicated that the indoor coil (condenser) had only 0.5 Ib (the heat pump total charge was 12.5 Ib... original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17" x 23" black and white photographic print for an additional charge...

Katipamula, Srinivas

484

Low Level Heat Recovery Through Heat Pumps and Vapor Recompression  

E-Print Network [OSTI]

The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

Gilbert, J.

1980-01-01T23:59:59.000Z

485

TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS  

E-Print Network [OSTI]

heating purposes. BACKGROUND The reduction of heat transfer rates by the use of thermal infraredheating applications should become available on the marketplace. Due to their high reflectivity to thermal infrared

Selkowitz, S.

2011-01-01T23:59:59.000Z

486

Heat Transfer Derivation of differential equations for heat transfer conduction  

E-Print Network [OSTI]

) or kW *h or Btu. U is the change in stored energy, in units of kW *h (kWh) or Btu. qx is the heat conducted (heat flux) into the control volume at surface edge x, in units of kW/m2 or Btu/(h-ft2). qx volume is positive), in kW/m3 or Btu/(h-ft3) (a heat sink, heat drawn out of the volume, is negative

Veress, Alexander

487

Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project  

SciTech Connect (OSTI)

The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL reduce its overall utility costs by decreasing the amount of fuel used to generate steam. Reduced fuel consumption also decreased air emissions. These improvements also helped lower the risk of burn injuries to workers and helped prevent shrapnel injuries resulting from missiles produced by pressurized component failures. In most cases, the economic benefit and cost effectiveness of the SPRS Safety and Energy Efficiency Improvement Project is reflected in payback periods of 1 year or less.

Lower, Mark D [ORNL; Christopher, Timothy W [ORNL; Oland, C Barry [ORNL

2011-06-01T23:59:59.000Z

488

Heat-transfer coefficients in agitated vessels. Sensible heat models  

SciTech Connect (OSTI)

Transient models for sensible heat were developed to assess the thermal performance of agitated vessels with coils and jackets. Performance is quantified with the computation of heat-transfer coefficients by introducing vessel heating and cooling data into model equations. Of the two model categories studied, differential and macroscopic, the latter is preferred due to mathematical simplicity and lower sensitivity to experimental data variability.

Kumpinsky, E. [Ashland Chemical Co., Columbus, OH (United States). Research and Development Dept.

1995-12-01T23:59:59.000Z

489

Heat engine Device that transforms heat into work.  

E-Print Network [OSTI]

, and rocket engines are heat engines. So are steam engines and turbines #12;2 refrigerator Device that uses by steam turbines. Steam turbines, jet engines and rocket engines use a Brayton cycle #12;4 Steam turbines1 Heat engine Device that transforms heat into work. It requires two energy reservoirs at different

Winokur, Michael

490

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents [OSTI]

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, P.R.; McLennan, G.A.

1984-08-30T23:59:59.000Z

491

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents [OSTI]

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

1985-01-01T23:59:59.000Z

492

Experimental investigations of uncovered-bundle heat transfer and two-phase mixture-level swell under high-pressure low heat-flux conditions. [PWR  

SciTech Connect (OSTI)

Results are reported from a series of uncovered-bundle heat transfer and mixture-level swell tests. Experimental testing was performed at Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF). The THTF is an electrically heated bundle test loop configured to produce conditions similar to those in a small-break loss-of-coolant accident. The objective of heat transfer testing was to acquire heat transfer coefficients and fluid conditions in a partially uncovered bundle. Testing was performed in a quasi-steady-state mode with the heated core 30 to 40% uncovered. Linear heat rates varied from 0.32 to 2.22 kW/m.rod (0.1 to 0.68 kW/ft.rod). Under these conditions peak clad temperatures in excess of 1050 K (1430/sup 0/F) were observed, and total heat transfer coefficients ranged from 0.0045 to 0.037 W/cm/sup 2/.K (8 to 65 Btu/h.ft/sup 2/./sup 0/F). Spacer grids were observed to enhance heat transfer at, and downstream of, the grid. Radiation heat transfer was calculated to account for as much as 65% of total heat transfer in low-flow tests.

Anklam, T. M.; Miller, R. J.; White, M. D.

1982-03-01T23:59:59.000Z

493

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.  

E-Print Network [OSTI]

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones. Heat pump water heaters (HPWHs) have the potential to significantly reduce energy use is a function of surrounding air temperature, humidity, hot water usage, and the logic controlling the heat pump

494

Proceedings of the 15th International Heat Transfer Conference, IHTC-15 August 10-15, 2014, Kyoto, Japan  

E-Print Network [OSTI]

pressure drop and reduced heat transfer to the reaction zone. KEY WORDS: Solar energy, Carbon emission combustion as the process heat for calcination. Shimizu et al. performed a thermodynamic analysis on a pairProceedings of the 15th International Heat Transfer Conference, IHTC-15 August 10-15, 2014, Kyoto

495

UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into Waste Heat Recovery Methods for the UBC Microbrewery  

E-Print Network [OSTI]

into Waste Heat Recovery Methods for the UBC Microbrewery Nazanin Bahrami, Michael Huang, Aldrich Huang Heat Recovery Methods for the UBC Microbrewery Written By: Nazanin Bahrami (45179090) Michael Huang. Flue gas recovery and separation can recover 26% of the total heat energy, and can reduce the GHG

496

IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems  

SciTech Connect (OSTI)

With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case has its own refrigeration unit; low-charge direct expansion--similar to conventional multiplex refrigeration systems but with improved controls to limit charge. Means to integrate store HVAC systems for space heating/cooling with the refrigeration system have been investigated as well. One approach is to use heat pumps to recover refrigeration waste heat and raise it to a sufficient level to provide for store heating needs. Another involves use of combined heating and power (CHP) or combined cooling, heating, and power (CCHP) systems to integrate the refrigeration, HVAC, and power services in stores. Other methods including direct recovery of refrigeration reject heat for space and water heating have also been examined.

Baxter, VAN

2003-05-19T23:59:59.000Z

497

Geothermal Heat Pump Grant Program  

Broader source: Energy.gov [DOE]

The Maryland Energy Administration (MEA) offers rebates of $3,000 for residential geothermal heat pump systems and up to $4,500 for non-residential geothermal heat pump systems. The residential...

498

Heat Pipes: An Industrial Application  

E-Print Network [OSTI]

This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

Murray, F.

1984-01-01T23:59:59.000Z

499

Challenges in Industrial Heat Recovery  

E-Print Network [OSTI]

This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

Dafft, T.

2007-01-01T23:59:59.000Z