National Library of Energy BETA

Sample records for reduce harmful emissions

  1. Reducing emissions to improve nuclear test detection | National...

    National Nuclear Security Administration (NNSA)

    Reducing emissions to improve nuclear test detection | National Nuclear Security ... Home NNSA Blog Reducing emissions to improve nuclear test detection Reducing emissions ...

  2. Reducing emissions from uranium dissolving

    SciTech Connect (OSTI)

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO[sub x] emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO[sub x] fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO[sub x] emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO[sub 2] which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  3. Reducing emissions from uranium dissolving

    SciTech Connect (OSTI)

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2} which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  4. Reducing Emissions from Uranium Dissolving

    SciTech Connect (OSTI)

    Griffith, W.L.

    1992-01-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. The trays are steam coil heated. The process has operated satisfactorily, with few difficulties, for decades. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. Because NO{sub x} is hazardous, fumes should be suppressed whenever the electric blower system is inoperable. Because the tray dissolving process has worked well for decades, as much of the current capital equipment and operating procedures as possible were preserved. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2}, which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  5. Low-Cost Packaged CHP System with Reduced Emissions - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by ...

  6. FETC Programs for Reducing Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

  7. Options for reducing carbon dioxide emissions

    SciTech Connect (OSTI)

    Rosenfeld, A.H.; Price, L.

    1991-08-01

    Improvements in energy efficiency can significantly reduce the annual growth in greenhouse gas emissions. Such improvements occur when energy intensity is reduced; no reduction in energy services is required. Using the concept of cost of conserved energy'' to develop conservation supply curves similar to resource supply curves, researchers consistently find that electricity and natural gas savings of nearly 50% of current consumption are possible for US buildings. Such reductions in energy consumption directly reduce emissions of greenhouse gases. To capture these savings, we must continue to develop energy-efficient technologies and strategies. This paper describes three recent energy-efficient technologies that benefited from energy conservation research and development (R D) funding: high-frequency ballasts, compact fluorescent lamps, and low-emissivity windows. Other advanced technologies and strategies of spectrally selective windows, superwindows, electrochromic windows, advanced insulation, low-flow showerheads, improved recessed lamp fixtures, whitening surfaces and planting urban trees, daylighting, and thermal energy storage are also discussed. 33 refs., 9 figs., 3 tabs.

  8. Institute a modest carbon tax to reduce carbon emissions, finance clean energy technology development, cut taxes, and reduce the deficit

    SciTech Connect (OSTI)

    Muro, Mark; Rothwell, Jonathan

    2012-11-15

    The nation should institute a modest carbon tax in order to help clean up the economy and stabilize the nation’s finances. Specifically, Congress and the president should implement a $20 per ton, steadily increasing carbon excise fee that would discourage carbon dioxide emissions while shifting taxation onto pollution, financing energy efficiency (EE) and clean technology development, and providing opportunities to cut taxes or reduce the deficit. The net effect of these policies would be to curb harmful carbon emissions, improve the nation’s balance sheet, and stimulate job-creation and economic renewal.

  9. Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Trucks Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Google Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Delicious

  10. Reducing VOC Press Emission from OSB Manufacturing

    SciTech Connect (OSTI)

    Dr. Gary D. McGinnis; Laura S. WIlliams; Amy E. Monte; Jagdish Rughani: Brett A. Niemi; Thomas M. Flicker

    2001-12-31

    Current regulations require industry to meet air emission standards with regard to particulates, volatile organic compounds (VOCs), hazardous air pollutants (HAPs) and other gases. One of many industries that will be affected by the new regulations is the wood composites industry. This industry generates VOCs, HAPs, and particulates mainly during the drying and pressing of wood. Current air treatment technologies for the industry are expensive to install and operate. As regulations become more stringent, treatment technologies will need to become more efficient and cost effective. The overall objective of this study is to evaluate the use of process conditions and chemical additives to reduce VOC/HAPs in air emitted from presses and dryers during the production of oriented strand board.

  11. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  12. Policies to Reduce Emissions from the Transportation Sector ...

    Open Energy Info (EERE)

    Highlights This guide provides information on policy choices that can drive sustainability. Notes References "Policies To Reduce Emissions From The Transportation...

  13. Cleantech: Innovative Lab Partnership Reduces Emissions from Coal

    Broader source: Energy.gov [DOE]

    Learn how the National Energy Technology Laboratory is working to reduce the emission of pollutants from existing coal-fired power plants.

  14. Novel Application of Air Separation Membranes Reduces NOx Emissions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application of Air Separation Membranes Reduces NOx Emissions Technology available for licensing: Selective permeation of gases using an air separation membrane. Can be retrofitted ...

  15. Novel Application of Air Separation Membranes Reduces NOx Emissions |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Application of Air Separation Membranes Reduces NOx Emissions Technology available for licensing: Selective permeation of gases using an air separation membrane. Can be retrofitted to existing engines Significantly reduces NOx emissions (as much as 70%) with just a 2% nitrogen enrichment of intake air PDF icon air_separation_membranes

  16. EERE Success Story—Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  17. DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    through Deployment of Advanced Technology | Department of Energy Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology September 22, 2005 - 10:45am Addthis WASHINGTON, DC - The Department of Energy today released for public review and comment a plan for accelerating the development and reducing the cost of new and advanced

  18. Apparatus for reducing solvent luminescence background emissions

    DOE Patents [OSTI]

    Affleck, Rhett L.; Ambrose, W. Patrick; Demas, James N.; Goodwin, Peter M.; Johnson, Mitchell E.; Keller, Richard A.; Petty, Jeffrey T.; Schecker, Jay A.; Wu, Ming

    1998-01-01

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region.

  19. Apparatus for reducing solvent luminescence background emissions

    DOE Patents [OSTI]

    Affleck, R.L.; Ambrose, W.P.; Demas, J.N.; Goodwin, P.M.; Johnson, M.E.; Keller, R.A.; Petty, J.T.; Schecker, J.A.; Wu, M.

    1998-11-10

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region. 6 figs.

  20. Reducing the Particulate Emission Numbers in DI Gasoline Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Particulate Emission Numbers in DI Gasoline Engines Reducing the Particulate Emission Numbers in DI Gasoline Engines Formation of droplets was minimized through optimization of fuel vaporization and distribution avoiding air/fuel zones richer than stoichiometric and temperatures that promote particle formation deer10_klindt.pdf (866.03 KB) More Documents & Publications Bosch Powertrain Technologies Vehicle Emissions Review - 2012 Ethanol Effects on Lean-Burn and

  1. Breakthrough Could Improve Turbine Performance, Reduce Carbon Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Power Plants | Department of Energy Could Improve Turbine Performance, Reduce Carbon Emissions from Power Plants Breakthrough Could Improve Turbine Performance, Reduce Carbon Emissions from Power Plants April 26, 2016 - 8:03am Addthis Schematic Diagram of the Breakthrough Thermal Barrier Coating by “Solution Precursor Plasma Spray” Process Schematic Diagram of the Breakthrough Thermal Barrier Coating by "Solution Precursor Plasma Spray" Process Research supported by

  2. Emission Regulations Reduced Impact of Climate Change in CA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emission Regulations Reduced Impact of Climate Change in CA Emission Regulations Reduced Impact of Climate Change in CA Study shows clean diesel programs slashed black carbon, a powerful short-term contributor to global warming June 13, 2013 Jon Weiner 510-486-4014 jrweiner@lbl.gov CA-BC-graphic.jpg Sacramento - Reductions in emissions of black carbon since the late 1980s, mostly from diesel engines as a result of air quality programs, have resulted in a measurable reduction of concentrations of

  3. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions

  4. Reducing Vehicle Emissions to Meet Environmental Goals | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Vehicle Emissions to Meet Environmental Goals Reducing Vehicle Emissions to Meet Environmental Goals Now that both gasoline and diesel vehicles have been cleaned up, it's time to turn to the new challenge of climate change and its effect on California. deer09_cackette.pdf (1.3 MB) More Documents & Publications The Path to Low Carbon Passenger Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles

  5. New Generating Technology to Reduce Greenhouse Gas Emissions

    U.S. Energy Information Administration (EIA) Indexed Site

    Generating Technology to Reduce Greenhouse Gas Emissions ENERGY INFORMATION ADMINISTRATION 30 TH BIRTHDAY CONFERENCE April 7, 2008 Linda G. Stuntz Stuntz, Davis & Staffier, P.C. Stuntz, Davis & Staffier, P.C. 2 The Target * Energy related emissions of CO2 will increase by about 16% in AEO 2008 Reference Case between 2006 and 2030 (5,890 MM metric tons to 6,859 MM metric tons). (#s from Caruso Senate Energy testimony of 3/4/08). * Last year, emissions from electricity generation were 40%

  6. Reducing dust emissions at OAO Alchevskkoks coke battery 10A

    SciTech Connect (OSTI)

    T.F. Trembach; E.N. Lanina

    2009-07-15

    Coke battery 10A with rammed batch is under construction at OAO Alchevskkoks. The design documentation developed by Giprokoks includes measures for reducing dust emissions to the atmosphere. Aspiration systems with dry dust trapping are employed in the new components of coke battery 10A and in the existing coke-sorting equipment. Two-stage purification of dusty air in cyclones and bag filters is employed for the coke-sorting equipment. This system considerably reduces coke-dust emissions to the atmosphere.

  7. Semiconductor technology for reducing emissions and increasing efficiency

    SciTech Connect (OSTI)

    Duffin, B.; Frank, R.

    1997-12-31

    The cooperation and support of all industries are required to significantly impact a worldwide reduction in gaseous emissions that may contribute to climate change. Each industry also is striving to more efficiently utilize the resources that it consumes since this is both conservation for good citizenship and an intelligent approach to business. The semiconductor industry is also extremely concerned with these issues. However, semiconductor manufacturer`s products provide solutions for reduced emissions and increased efficiency in their industry, other industries and areas that can realize significant improvements through control technology. This paper will focus on semiconductor technologies of digital control, power switching and sensing to improve efficiency and reduce emissions in automotive, industrial, and office/home applications. 10 refs., 13 figs.

  8. Can reducing black carbon emissions counteract global warming?

    SciTech Connect (OSTI)

    Tami C. Bond; Haolin Sun

    2005-08-15

    Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black carbon aerosol emissions can form a viable component of mitigating global warming. Black carbon is produced by poor combustion, from our example hard coal cooking fires for and industrial pulverized coal boilers. The authors review and acknowledge scientific arguments against considering aerosols and greenhouse gases in a common framework, including the differences in the physical mechanisms of climate change and relevant time scales. It is argued that such a joint consideration is consistent with the language of the United Nations Framework Convention on Climate Change. Results from published climate-modeling studies are synthesized to obtain a global warming potential for black carbon relative to that of CO{sub 2} (680 on a 100 year basis). This calculation enables a discussion of cost-effectiveness for mitigating the largest sources of black carbon. It is found that many emission reductions are either expensive or difficult to enact when compared with greenhouse gases, particularly in Annex I countries. Finally, a role for black carbon in climate mitigation strategies is proposed that is consistent with the apparently conflicting arguments raised during the discussion. Addressing these emissions is a promising way to reduce climatic interference primarily for nations that have not yet agreed to address greenhouse gas emissions and provides the potential for a parallel climate agreement. 31 refs., 3 figs., 1 tab.

  9. Hydrogen Fuel Cell Project Seeks to Reduce Port Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Project Seeks to Reduce Port Emissions - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste

  10. Method for reducing CO2, CO, NOX, and SOx emissions

    DOE Patents [OSTI]

    Lee, James Weifu; Li, Rongfu

    2002-01-01

    Industrial combustion facilities are integrated with greenhouse gas-solidifying fertilizer production reactions so that CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions can be converted prior to emission into carbonate-containing fertilizers, mainly NH.sub.4 HCO.sub.3 and/or (NH.sub.2).sub.2 CO, plus a small fraction of NH.sub.4 NO.sub.3 and (NH.sub.4).sub.2 SO.sub.4. The invention enhances sequestration of CO.sub.2 into soil and the earth subsurface, reduces N0.sub.3.sup.- contamination of surface and groundwater, and stimulates photosynthetic fixation of CO.sub.2 from the atmosphere. The method for converting CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions into fertilizers includes the step of collecting these materials from the emissions of industrial combustion facilities such as fossil fuel-powered energy sources and transporting the emissions to a reactor. In the reactor, the CO.sub.2, CO, N.sub.2, SO.sub.x, and/or NO.sub.x are converted into carbonate-containing fertilizers using H.sub.2, CH.sub.4, or NH.sub.3. The carbonate-containing fertilizers are then applied to soil and green plants to (1) sequester inorganic carbon into soil and subsoil earth layers by enhanced carbonation of groundwater and the earth minerals, (2) reduce the environmental problem of NO.sub.3.sup.- runoff by substituting for ammonium nitrate fertilizer, and (3) stimulate photosynthetic fixation of CO.sub.2 from the atmosphere by the fertilization effect of the carbonate-containing fertilizers.

  11. Potential options to reduce GHG emissions in Venezuela

    SciTech Connect (OSTI)

    Pereira, N.; Bonduki, Y.; Perdomo, M.

    1996-12-31

    The Government of Venezuela ratified the United Nations Framework Convention on Climate Change (UNFCCC) in December, 1994. The Convention requires all parties to develop and publish national inventories of anthropogenic greenhouse gas emissions (GHG) as well as national plans to reduce or control emissions, taking into account their common but differentiated responsibilities and their specific national and regional development priorities, objectives, and circumstances. Within this context, the Ministry of Environment and Renewable Natural Resources and the Ministry of Energy and Mines developed the `Venezuelan Case-Study to Address Climate Change`. The study was initiated in October 1993, with the financial and technical assistance of the Government of United States, through the U.S. Country Studies Program (USCSP), and the Global Environment Facility (GEF), through the United Nations Environment Programme (UNEP).

  12. Reducing cold-start emissions by catalytic converter thermal management

    SciTech Connect (OSTI)

    Burch, S D; Potter, T F; Keyser, M A; Brady, M J; Michaels, K F

    1995-01-01

    Vacuum insulation and phase-change thermal storage have been used to enhance the heat retention of a prototype catalytic converter. Storing heat in the converter between trips allows exhaust gases to be converted more quickly, significantly reducing cold-start emissions. Using a small metal hydride, the thermal conductance of the vacuum insulation can be varied continuously between 0.49 and 27 W/m{sup 2}K (R-12 to R-0.2 insulation) to prevent overheating of the catalyst. A prototype was installed in a Dodge Neon with a 2.0-liter engine. Following a standard preconditioning and a 23-hour cold soak, an FTP (Federal Test Procedure) emissions test was performed. Although exhaust temperatures during the preconditioning were not hot enough to melt the phase-change material, the vacuum insulation performed well, resulting in a converter temperature of 146{degrees}C after the 23-hour cold soak at 27{degrees}C. Compared to the same converter at ambient conditions, overall emissions of CO and HC were reduced by 52 % and 29 %, to 0.27 and 0.037 g/mile, respectively. The maximum converter temperature during the FTP cycle was 720{degrees}C. This limited testing was performed with a nearly-fresh palladium-only catalyst, but demonstrates the potential of this vacuum insulation approach for emissions reduction and thermal control. Further testing is ongoing. An initial assessment of several production issues is made, including high-volume fabrication challenges, durability, and cost.

  13. Emission of reduced malodorous sulfur gases from wastewater treatment plants

    SciTech Connect (OSTI)

    Devai, I.; DeLaune, R.D.

    1999-03-01

    The emission of malodorous gaseous compounds from wastewater collection and treatment facilities is a growing maintenance and environmental problem. Numerous gaseous compounds with low odor detection thresholds are emitted from these facilities. Sulfur-bearing gases represent compounds with the lowest odor detection threshold. Using solid adsorbent preconcentration and gas chromatographic methods, the quantity and composition of reduced malodorous sulfur gases emitted from various steps of the treatment process were determined in wastewater treatment plants in Baton Rouge, Louisiana. Hydrogen sulfide, which is a malodorous, corrosive, and potentially toxic gas, was the most dominant volatile reduced sulfur (S) compound measured. Concentrations were not only more than the odor detection threshold of hydrogen sulfide, but above levels that may affect health during long-term exposure. The concentrations of methanethiol, dimethyl sulfide, carbon disulfide, and carbonyl sulfide were significantly less than hydrogen sulfide. However, even though emissions of reduced sulfur gases other than hydrogen sulfide were low, previous studies suggested that long-term exposure to such levels may cause respiratory problems and other symptoms.

  14. Gasoline Hybrid Electric Delivery Vehicles Reduce Tailpipe Emissions While

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 07/22/16 07/29/16 08/05/16 08/12/16 08/19/16 08/26/16 View History U.S. 24.8 24.4 24.1 23.8 23.9 24.0 1991 Maintaining Fuel Economy - News Releases | NREL

    Gasoline Hybrid Electric Delivery Vehicles Reduce Tailpipe Emissions While Maintaining Fuel Economy February 23, 2011 The U.S. Department of Energy's (DOE) National Renewable Energy

  15. Reducing GHG emissions in the United States' transportation sector

    SciTech Connect (OSTI)

    Das, Sujit; Andress, David A; Nguyen, Tien

    2011-01-01

    Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions in GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.

  16. EERE Success Story-Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award EERE Success Story-Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award August 19, 2013 - ...

  17. Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award August 19, 2013 - 5:07pm Addthis...

  18. Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award August 19, 2013 - 5:07pm Addthis ...

  19. Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet, 2016 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cost Packaged CHP System with Reduced Emissions - Fact Sheet, 2016 Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet, 2016 Cummins Power Generation, in collaboration with Cummins Engine Business Unit, developed a flexible, packaged CHP system that produces 330 kW of electrical power output and 410 kW of thermal output while increasing efficiency and reducing emissions and cost. The project resulted in one of the highest-efficiency and lowest-emissions

  20. Gas reception uses modern solvents to reduce emissions

    SciTech Connect (OSTI)

    Pelekanou, A.; Vaughan, C.M.

    1996-12-31

    The Point of Ayr Terminal is the first gas plant to be built in Wales. It processes Natural Gas from BHP`s Liverpool Bay Development to feed a new 1,050 mega watt gas fired power station located at Connahs Quay, situated about 27 km south of the Terminal. This paper describes the overall process and focuses in particular on a relatively new process which uses one of a novel range of amines for treatment of natural gases containing both H{sub 2}S and mercaptans. The gas terminal is the first in the United Kingdom to include a Claus Tail Gas Unit to enhance sulfur recovery and achieve the latest HM Inspectorate of Pollution (HMIP) guidelines for recovery, therefore reducing the terminal sulfur dioxide emissions. The authorization includes targets for sulfur recovery at 99.95% and requires the use of low NOx burners for all fired equipment. Strict limits on the water quality are set and water discharged to the watercourse must be of river quality, and require checking prior to discharge.

  1. Researchers Uncover Copper's Potential for Reducing CO2 Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    When used as a part of a promising coal combustion technology known as chemical looping, copper can help economically remove carbon dioxide (CO2) from fossil fuel emissions. In ...

  2. Mexico-NAMA on Reducing GHG Emissions in the Cement Sector |...

    Open Energy Info (EERE)

    similar analyses of the iron and steel, electric power, and aluminum industries in China, Brazil and Mexico." References "CCAP-Mexico-NAMA on Reducing GHG Emissions in...

  3. Low-Cost Packaged Combined Heat and Power System with Reduced Emissions

    SciTech Connect (OSTI)

    2010-10-01

    Fact sheet overviewing how this project will develop a flexible, packaged CHP system that increases efficiency and reduces emissions and cost.

  4. Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet...

    Broader source: Energy.gov (indexed) [DOE]

    Cummins Power Generation, in collaboration with Cummins Engine Business Unit, is ... and 410 kW of thermal output while increasing efficiency and reducing emissions and cost. ...

  5. Capturing Fugitives to Reduce DOE’s GHG Emissions

    Broader source: Energy.gov [DOE]

    Experts are hunting down fugitive carbon emissions from across 20 Energy Department laboratories, sites and program offices — and they’ve already prevented the release of more than 600,000 metric tons of CO2 equivalent since 2009 -- equal to taking 140,000 cars off the road for a year.

  6. Vietnam-Integrated Action Plan to Reduce Vehicle Emissions |...

    Open Energy Info (EERE)

    and reduce air pollution. Furthermore, they are required to ensure that Viet Nam's air quality meets the average standards set by the Association of Southeast Asian Nation...

  7. 330 kWe Packaged CHP System with Reduced Emissions

    SciTech Connect (OSTI)

    Plahn, Paul; Keene, Kevin; Pendray, John

    2015-03-31

    The objective of this project was to develop a flexible, 330 kWe packaged Combined Heat and Power (CHP) system that can be deployed to commercial and light industrial applications at a lower total cost of ownership than current CHP solutions. The project resulted in a CHP system that is easy to use and inexpensive to install, offering world class customer support, while providing a low-emissions, higher-efficiency internal combustion engine for a CHP system of this size.

  8. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Not Available

    1997-10-01

    This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.

  9. Method and apparatus for reducing solvent luminescence background emissions

    DOE Patents [OSTI]

    Affleck, R.L.; Ambrose, W.P.; Demas, J.N.; Goodwin, P.M.; Johnson, M.E.; Keller, R.A.; Petty, J.T.; Schecker, J.A.; Wu, M.

    1998-10-27

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region. 6 figs.

  10. Method and apparatus for reducing solvent luminescence background emissions

    DOE Patents [OSTI]

    Affleck, Rhett L.; Ambrose, W. Patrick; Demas, James N.; Goodwin, Peter M.; Johnson, Mitchell E.; Keller, Richard A.; Petty, Jeffrey T.; Schecker, Jay A.; Wu, Ming

    1998-01-01

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region.

  11. A Path to Reduce Methane Emissions from Gas Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Path to Reduce Methane Emissions from Gas Systems A Path to Reduce Methane Emissions from Gas Systems July 29, 2014 - 3:33pm Addthis A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy Department. A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy

  12. Programs and measures to reduce GHG emissions in agriculture and waste treatment in Slovakia

    SciTech Connect (OSTI)

    Mareckova, K.; Bratislava, S.; Kucirek, S.

    1996-12-31

    Slovakia is a UN FCCC Annex I country and is obliged to limit its anthropogenic GHG emissions in the year 2000 to 1990 level. The key greenhouse gas in Slovakia is CO{sub 2} resulting mainly from fuel combustion processes. However the share of CH{sub 4} and N{sub 2}O is approximately 20% of the total emissions on GWP basis. These gases are occurring mainly in non-energy sectors. The construction of the non-CO{sub 2} emission scenarios to reduce GHG and the uncertainty in N{sub 2}O and CH{sub 4} emission estimation are discussed focusing on agriculture and waste treatment. The presentation will also include information on emission trends of CH{sub 4} and N{sub 2}O since 1988. There are already implemented measures reducing GHG emissions in Slovakia, however, not motivated by global warming. A short view of implemented measures with an assessment of their benefit concerning non-CO{sub 2} GHG emissions reduction and some proposed mitigation options for agriculture and waste treatment are shown. Expected difficulties connected with preparing scenarios and with implementation of reducing measures are discussed.

  13. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOE Patents [OSTI]

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  14. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    SciTech Connect (OSTI)

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

    2011-12-22

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting

  15. Reducing GHG emissions by co-utilization of coal with natural gas or biomass

    SciTech Connect (OSTI)

    Smith, I.M.

    2004-07-01

    Energy reserves price and security of supply issues are discussed in the context of the prospects for coal and policies to reduce greenhouse gas (GHG) emissions. Coal is projected to remain a major source of energy, with most of the demand growth in developing countries. Currently available power-generating technologies, deploying coal with natural gas or biomass, are examined. Examples of successful, partial substitution of coal by other fuels in power stations are highlighted, including the GHG emissions reductions achieved as well as the costs where available. Among various options, hybrid gasification and parallel cofiring of coal with biomass and natural gas appear to have the greatest potential to reduce GHG emissions. Much may also be achieved by cofiring, reburning, and repowering with gas turbines. The best method differs between different power systems. Co-utilization of biomass with coal is a least-cost option to reduce GHG emissions where the fuel prices are comparable, usually due to subsidies or taxes. The role of biomass is likely to increase due to greater use of subsidies, carbon taxes, and emissions trading within the context of the Kyoto Protocol. This should provide opportunities for clean coal technology transfer and diffusion, including biomass co-utilization. 32 refs., 1 fig., 3 tabs.

  16. Review of cost estimates for reducing CO2 emissions. Final report, Task 9

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    Since the ground breaking work of William Nordhaus in 1977, cost estimates for reducing CO{sub 2} emissions have been developed by numerous groups. The various studies have reported sometimes widely divergent cost estimates for reducing CO{sub 2} emissions. Some recent analyses have indicated that large reductions in CO{sub 2} emissions could be achieved at zero or negative costs (e.g. Rocky Mountain Institute 1989). In contrast, a recent study by Alan Manne of Stanford and Richard Richels of the Electric Power Research Institute (Manne-Richels 1989) concluded that in the US the total discounted costs of reducing CO{sub 2} emissions by 20 percent below the 1990 level could be as much as 3.6 trillion dollars over the period from 1990 to 2100. Costs of this order of magnitude would represent about 5 percent of US GNP. The purpose of this briefing paper is to summarize the different cost estimates for CO{sub 2} emission reduction and to identify the key issues and assumptions that underlie these cost estimates.

  17. Assessment of the feasibility of reducing emissions from gasoline and LPG industrial equipment

    SciTech Connect (OSTI)

    Bekken, M.; Wood, M.S.

    1997-12-31

    In 1994, the California Air Resources Board (ARB) approved a State Implementation Plan (SIP) to bring California`s South Coast Air Basin into compliance with federal ozone standards. The plan includes the adoption of emission controls for previously un(der)regulated off-road vehicles and equipment. Off-road industrial equipment in the 25 to 175 horsepower range has been designed to meet power and fuel economy priorities, with little effort going to emission reductions. California`s plan requires substantial emission reductions for such equipment. The application of catalysts or other emission control technologies to spark-ignited industrial equipment can feasibly and cost-effectively achieve the emission reductions required in the SIP. The paper discusses off-road catalyst application, availability, and packaging. In addition, other technologies to reduce emissions are addressed, including engine, fuel system, and exhaust system modifications, and the use of alternate fuels. Anticipated costs are also discussed. There is good reason to presume that spark-ignited industrial equipment will be able to achieve the required emission reductions in the time frame indicated in the SIP.

  18. Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: SO2, Nox, CO2

    Reports and Publications (EIA)

    2001-01-01

    This report responds to a request received from Senator David McIntosh on June 29, 2000 to analyze the impacts on energy consumers and producers of coordinated strategies to reduce emissions of sulfur dioxide, nitrogen oxides, and carbon dioxide at U.S. power plants.

  19. Low-Cost Packaged CHP System with Reduced Emissions- Presentation by Cummins Power Generation, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on 330 kWe Packaged CHP System with Reduced Emissions, given by John Pendray of Cummins Power Generation, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  20. Clean Cities Tools: Tools to Help You Save Money, Use Less Petroleum, and Reduce Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Clean Cities Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.

  1. Clean Cities Tools: Tools to Help You Drive Smarter, Use Less Petroleum, and Reduce Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Clean Cities' Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.

  2. International potential of IGCC technology for use in reducing global warming and climate change emissions

    SciTech Connect (OSTI)

    Lau, F.S.

    1996-12-31

    High efficiency advanced coal-based technologies such as Integrated Gasification Combined Cycle (IGCC) that can assist in reducing CO{sub 2} emissions which contribute to Global Warming and Climate Change are becoming commercially available. U-GAS is an advanced gasification technology that can be used in many applications to convert coal in a high efficiency manner that will reduce the total amount of CO{sub 2} produced by requiring less coal-based fuel per unit of energy output. This paper will focus on the status of the installation and performance of the IGT U-GAS gasifiers which were installed at the Shanghai Cooking and Chemical Plant General located in Shanghai, China. Its use in future IGCC project for the production of power and the benefits of IGCC in reducing CO{sub 2} emissions through its high efficiency operation will be discussed.

  3. Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-01-31

    Revised maps and associated data show potential mercury, sulfur, and chlorine emissions for U.S. coal by county of origin. Existing coal mining and coal washing practices result in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Selection of low-mercury coal is a good mercury control option for plants having hot-side ESP, cold-side ESP, or hot-side ESP/FGD emission controls. Chlorine content is more important for plants having cold-side ESP/FGD or SDA/FF controls; optimum net mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions.

  4. System and method for making metallic iron with reduced CO.sub.2 emissions

    DOE Patents [OSTI]

    Kiesel, Richard F; Englund, David J; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

    2014-10-14

    A method and system for making metallic iron nodules with reduced CO.sub.2 emissions is disclosed. The method includes: assembling a linear hearth furnace having entry and exit portions, at least a conversion zone and a fusion zone, and a moving hearth adapted to move reducible iron bearing material through the furnace on contiguous hearth sections; assembling a shrouded return substantially free of air ingress extending adjacent at least the conversion and fusion zones of the furnace through which hearth sections can move from adjacent the exit portion to adjacent the entry portion of the furnace; transferring the hearth sections from the furnace to the shrouded return adjacent the exit portion; reducing reducible material in the linear hearth furnace to metallic iron nodules; and transporting gases from at least the fusion zone to the shrouded return to heat the hearth sections while in the shrouded return.

  5. POTENTIAL HEALTH RISK REDUCTION ARISING FROM REDUCED MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    SciTech Connect (OSTI)

    Sullivan, T. M.; Lipfert, F. W.; Morris, S. C.; Moskowitz, P. D.

    2001-09-01

    The U.S. Environmental Protection Agency (EPA) has announced plans to regulate mercury (Hg) emissions from coal-fired power plants. EPA has not prepared a quantitative assessment of the reduction in risk that could be achieved through reduction in coal plant emissions of Hg. To address this issue, Brookhaven National Laboratory (BNL) with support from the U.S. Department of Energy Office of Fossil Energy (DOE FE) prepared a quantitative assessment of the reduction in human health risk that could be achieved through reduction in coal plant emissions of Hg. The primary pathway for Hg exposure is through consumption of fish. The most susceptible population to Hg exposure is the fetus. Therefore the risk assessment focused on consumption of fish by women of child-bearing age. Dose response factors were generated from studies on loss of cognitive abilities (language skills, motor skills, etc.) by young children whose mothers consumed large amounts of fish with high Hg levels. Population risks were estimated for the general population in three regions of the country, (the Midwest, Northeast, and Southeast) that were identified by EPA as being heavily impacted by coal emissions. Three scenarios for reducing Hg emissions from coal plants were considered: (1) A base case using current conditions; (2) A 50% reduction; and, (3) A 90% reduction. These reductions in emissions were assumed to translate linearly into a reduction in fish Hg levels of 8.6% and 15.5%, respectively. Population risk estimates were also calculated for two subsistence fisher populations. These groups of people consume substantially more fish than the general public and, depending on location, the fish may contain higher Hg levels than average. Risk estimates for these groups were calculated for the three Hg levels used for the general population analyses. Analysis shows that the general population risks for exposure of the fetus to Hg are small. Estimated risks under current conditions (i.e., no

  6. Reducing emissions from the electricity sector: the costs and benefits nationwide and for the Empire State

    SciTech Connect (OSTI)

    Karen Palmer; Dallas Butraw; Jhih-Shyang Shih

    2005-06-15

    Using four models, this study looks at EPA's Clean Air Interstate Rule (CAIR) as originally proposed, which differs in only small ways from the final rule issued in March 2005, coupled with several approaches to reducing emissions of mercury including one that differs in only small ways from the final rule also issued in March 2005. This study analyzes what costs and benefits each would incur to New York State and to the nation at large. Benefits to the nation and to New York State significantly outweigh the costs associated with reductions in SO{sub 2}, NOx and mercury, and all policies show dramatic net benefits. The manner in which mercury emissions are regulated will have important implications for the cost of the regulation and for emission levels for SO{sub 2} and NOx and where those emissions are located. Contrary to EPA's findings, CAIR as originally proposed by itself would not keep summer emissions of NOx from electricity generators in the SIP region below the current SIP seasonal NOx cap. In the final CAIR, EPA added a seasonal NOx cap to address seasonal ozone problems. The CAIR with the seasonal NOx cap produces higher net benefits. The effect of the different policies on the mix of fuels used to supply electricity is fairly modest under scenarios similar to the EPA's final rules. A maximum achievable control technology (MACT) approach, compared to a trading approach as the way to achieve tighter mercury targets (beyond EPA's proposal), would preserve the role of coal in electricity generation. The evaluation of scenarios with tighter mercury emission controls shows that the net benefits of a maximum achievable control technology (MACT) approach exceed the net benefits of a cap and trade approach. 39 refs., 10 figs., 30 figs., 5 apps.

  7. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    DOE Patents [OSTI]

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  8. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    SciTech Connect (OSTI)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  9. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  10. The National Academies of Sciences, Engineering, and Medicine Release Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions

    Broader source: Energy.gov [DOE]

    The National Academies of Sciences, Engineering, and Medicine releases the Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions report, which focuses on large (single- and twin-aisle) planes that transport more than 100 people. These aircraft account for more than 90% of greenhouse gas emissions from all commercial aircraft.

  11. The Need to Reduce Mobile Source Emissions in the South Coast Air Basin

    Office of Energy Efficiency and Renewable Energy (EERE)

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: South Coast Air Quality Management District

  12. Reduced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reduce Waste and Save Energy this Holiday Season Reduce Waste and Save Energy this Holiday Season December 5, 2014 - 9:55am Addthis Wrap your gifts with recycled paper to reduce waste and save money. | Photo courtesy of istockphoto/diane555 Wrap your gifts with recycled paper to reduce waste and save money. | Photo courtesy of istockphoto/diane555 Paige Terlip Paige Terlip Former Communicator, National Renewable Energy Laboratory What are the key facts? Reduce waste and save energy this holiday

  13. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    SciTech Connect (OSTI)

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but

  14. TV picture-tube manufacturer uses regenerative catalytic oxidizer to reduce VOC emissions

    SciTech Connect (OSTI)

    1995-11-01

    Toshiba Display Services, a television picture-tube manufacturer in Horseheads, NY, recently was able to meet stringent state regulations to reduce emissions from two of its film applications lines by installing a regenerative catalytic oxidation system. Toshiba officials initially evaluated several technologies to control volatile organic compounds. After deciding that oxidation was the best technology for its facility, the company invited a number of suppliers to submit proposals. Because all of the oxidation technologies considered by Toshiba had the capability to achieve the destruction and removal efficiency requirement, the company combined the second and third decision elements and conducted an in-depth comparison of the initial capital and ongoing operating costs for each proposal. Officials narrowed the field to two systems--the lowest-cost regenerative thermal oxidation system on the market and a regenerative catalytic oxidation system. The company selected St. Louis, Mo.-based Monsanto Enviro-Chem Systems Inc., to install its DynaCycle{reg_sign} regenerative catalytic oxidation system, marking the first Dyna-Cycle installation in a US television picture-tube facility.

  15. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such

  16. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Z.; Guan, D.; Wei, W.; Davis, S.; Ciais, P.; Bai, J; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, Gregg; et al

    2015-08-19

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China’s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China’s carbon emissions using updated and harmonized energy consumption andmore » clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000–2012 than the value reported by China’s national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China’s cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China’s CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China’s cumulative carbon emissions. Our findings suggest that overestimation of China’s emissions in 2000–2013 may be larger than China’s estimated total forest sink in 1990–2007 (2.66 gigatonnes of carbon) or China’s land carbon sink in 2000–2009 (2.6 gigatonnes of carbon).« less

  17. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    SciTech Connect (OSTI)

    Liu, Z.; Guan, D.; Wei, W.; Davis, S.; Ciais, P.; Bai, J; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, Gregg; Andres, Robert Joseph; Crawford-Brown, D.; Lin, J.; Zhao, H.; Hong, C.; Boden, Thomas A.; Feng, K.; Peters, Glen P.; Xi, F.; Liu, J.; Li, Y.; Zhao, Y.; Zeng, Ning; He, K.

    2015-08-19

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China’s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China’s carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000–2012 than the value reported by China’s national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China’s cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China’s CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China’s cumulative carbon emissions. Our findings suggest that overestimation of China’s emissions in 2000–2013 may be larger than China’s estimated total forest sink in 1990–2007 (2.66 gigatonnes of carbon) or China’s land carbon sink in 2000–2009 (2.6 gigatonnes of carbon).

  18. Reducing Emissions of Sulfur Dioxide, Nitrogen Oxides, and Mercury from Electric Power Plants

    Reports and Publications (EIA)

    2001-01-01

    This analysis responds to a request from Senators Bob Smith, George Voinovich, and Sam Brownback to examine the costs of specific multi-emission reduction strategies.

  19. DOE and NNSA labs work with CTBTO to reduce medical isotope emissions...

    National Nuclear Security Administration (NNSA)

    monitoring. IRE is a major worldwide producer of radioisotopes used in nuclear medicine and its emissions - while safe from a health perspective - contribute to regional...

  20. Non-Incineration Treatment to Reduce Benzene and VOC Emissions from Green Sand Molding Systems

    SciTech Connect (OSTI)

    Fred S. Cannon; Robert C. Voigt

    2002-06-28

    Final report describing laboratory, pilot scale and production scale evaluation of advanced oxidation systems for emissions and cost reduction in metal casting green sand systems.

  1. Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Parks, II, James E; Wagner, Robert M

    2013-01-01

    Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

  2. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex; Lamarque, Jean-Francois; Barsanti, Kelley

    2015-05-06

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O₃) and fine particulate matter (PM₂̣₅) levels as a result of large changes in biogenic emissions. Using the Community Earth Systemmore » Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O₃ increases of 5–27 ppb in India, 1–9 ppb in China, and 1–6 ppb in the United States, with peak PM₂̣₅ increases of up to 2 μgm⁻³. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10–100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.« less

  3. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    SciTech Connect (OSTI)

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex; Lamarque, Jean-Francois; Barsanti, Kelley

    2015-05-06

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O₃) and fine particulate matter (PM₂̣₅) levels as a result of large changes in biogenic emissions. Using the Community Earth System Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O₃ increases of 5–27 ppb in India, 1–9 ppb in China, and 1–6 ppb in the United States, with peak PM₂̣₅ increases of up to 2 μgm⁻³. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10–100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.

  4. Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.

    SciTech Connect (OSTI)

    Habegger, L. J.; Fernandez, L. E.; Engle, M.; Bailey, J. L.; Peterson, D. P.; MacDonell, M. M.; U.S. Environmental Protection Agency

    2008-06-30

    coagulation and collection of the mercury aerosols in exhaust ducts, which is dependent on the hood and collector configuration, was also evaluated. Prototype demonstration tests verified the theoretical basis for mercury aerosol capture that can be used to optimize the baffle plate design, flow rates, and hood exhaust ducts and plenum to achieve 80% or higher removal efficiencies. Results indicated that installation configuration significantly influences a system's capture efficiency. Configurations that retained existing inlet ducts resulted in system efficiencies of more than 80%, whereas installation configurations without inlet ducts significantly reduced capture efficiency. As an alternative to increasing the volume of inlet ducts, the number of baffle plates in the system baffle assembly could be doubled to increase efficiency. Recommended installation and operation procedures were developed on the basis of these results. A water-based mercury capture system developed in Indonesia for installation in smaller shops was also tested and shown to be effective for certain applications. The cost of construction and installation of the baffle plate prototype was approximately US$400. These costs were reported as acceptable by local gold shop owners and government regulators, and were significantly lower than the cost of an alternate charcoal/copper mesh mercury filter available in the region, which costs about US$10,000. A sampling procedure that consists of a particle filter combined with a vapor analyzer was demonstrated as an effective procedure for analyzing both the aerosol and vapor components of the mercury concentrations. Two key findings for enhancing higher mercury collection were identified. First, the aerosol/vapor mercury emissions must be given sufficient time for the mercury particles to coagulate to a size that can be readily captured by the baffle plates. An interval of at least 6 seconds of transit time between the point of evaporation and contact with the

  5. Kevin Harms | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kevin Harms Principal Applications Performance Engineer Kevin Harms Argonne National Laboratory 9700 South Cass Avenue Building 240 - Rm. 1129 Argonne, IL 60439 630-252-3398 harms@alcf.anl

  6. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    SciTech Connect (OSTI)

    Mills, Evan

    2009-07-16

    available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the

  7. Legal and financial methods for reducing low emission sources: Options for incentives

    SciTech Connect (OSTI)

    Samitowski, W.

    1995-12-31

    There are two types of the so-called low emission sources in Cracow: over 1,000 local boiler houses and several thousand solid fuel-fired stoves. The accomplishment of each of 5 sub-projects offered under the American-Polish program entails solving the technical, financial, legal and public relations-related problems. The elimination of the low emission source requires, therefore, a joint effort of the following pairs: (a) local authorities, (b) investors, (c) owners and users of low emission sources, and (d) inhabitants involved in particular projects. The results of the studies developed by POLINVEST indicate that the accomplishment of the projects for the elimination of low emission sources will require financial incentives. Bearing in mind the today`s resources available from the community budget, this process may last as long as a dozen or so years. The task of the authorities of Cracow City is making a long-range operational strategy enabling reduction of low emission sources in Cracow.

  8. The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector

    SciTech Connect (OSTI)

    Greene, D.L.

    1997-07-01

    The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

  9. Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants with Advanced Technology

    Reports and Publications (EIA)

    2001-01-01

    This analysis responds to a request of Senators James M. Jeffords and Joseph I. Lieberman. This report describes the impacts of technology improvements and other market-based opportunities on the costs of emissions reductions from electricity generators, including nitrogen oxides, sulfur dioxide, mercury, and carbon dioxide.

  10. Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award

    Broader source: Energy.gov [DOE]

    Developed jointly by Da Vinci Emissions Services Ltd., Cummins Inc., and Oak Ridge National Laboratory (ORNL), the Da Vinci Fuel-in-Oil (DAFIO) technology uses a fiber optic probe to obtain real-time measurements of oil in an operating engine to quantify the fuel dissolved in the lubricant oil.

  11. White House Announces New Executive Order To Reduce Greenhouse Gas Emissions in the Federal Government

    Broader source: Energy.gov [DOE]

    The White House today announced that President Obama will issue a new executive order that will cut the federal government's greenhouse gas emissions 40% over the next decade (from 2008 levels) and increase the share of electricity the federal government consumes from renewable sources to 30%.

  12. Researchers Uncover Copper’s Potential for Reducing CO2 Emissions in Chemical Looping

    Broader source: Energy.gov [DOE]

    Researchers at the Department of Energy’s National Energy Technology Laboratory (NETL) believe copper may play an important role in combatting climate change. When used as a part of a promising coal combustion technology known as chemical looping, copper can help economically remove carbon dioxide (CO2) from fossil fuel emissions.

  13. A comparison of estimates of cost-effectiveness of alternative fuels and vehicles for reducing emissions

    SciTech Connect (OSTI)

    Hadder, G.R.

    1995-11-01

    The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain reductions in emissions of air pollutants. The CER can lead to selection of the most effective sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER estimates for alternative fuel vehicles (AFVs) have varied widely among pervious studies. In one of several explanations of LCER differences, this report uses a consistent basis for fuel price to re-estimate CERs for AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton includes compressed natural gas and ed Petroleum gas vehicles; and E85 flexible-fueled vehicles (with fuel mixture of 85 percent cellulose-derived ethanol in gasoline). The E85 system would be much less attractive if corn-derived ethanol were used. The CER for E85 (corn-derived) is higher with higher values placed on the reduction of gas emissions. CER estimates are relative to conventional vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 RFG program will be implemented before significant market penetration by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV type. The relative differences in cost and emissions reduction assumptions can be large, and the effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that methodological differences can make large contributions to CER differences among studies.

  14. Clean Cities Tools: Tools to Help You Drive Smarter, Use Less Petroleum, and Reduce Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    Clean Cities hosts a collection of calculators, interactive maps, and informational tools to assist fleets, fuel providers, and others looking to reduce petroleum consumption in the transportation sector.

  15. Strategies for Integrated Emission Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Emission Control Strategies for Integrated Emission Control A new filter system technology significantly reduces harmful pollutants, uses less precious metals, and offers long-term durability. deer08_copan.pdf (111.58 KB) More Documents & Publications Selective Catalytic Reduction and Exhaust Gas Recirculation Systems Optimization A Bimetmallic Fuel-Borne Catalyst for Reduce Precious Metal Use in Medium-Duty Diesel Engines Diesel Particulate Filters: Market Introducution in Europe

  16. UTILIZING WATER EMULSIFICATION TO REDUCE NOX AND PARTICULATE EMISSIONS ASSOCIATED WITH BIODIESEL

    SciTech Connect (OSTI)

    Kass, Michael D; Lewis Sr, Samuel Arthur; Lee, Doh-Won; Huff, Shean P; Storey, John Morse; Swartz, Matthew M; Wagner, Robert M

    2009-01-01

    A key barrier limiting extended utilization of biodiesel is higher NOx emissions compared to petrodiesel fuels. The reason for this effect is unclear, but various researchers have attributed this phenomena to the higher liquid bulk modulus associated with biodiesel and the additional heat released during the breaking of C-C double bonds in the methyl ester groups. In this study water was incorporated into neat biodiesel (B100) as an emulsion in an attempt to lower NOx and particulate matter (PM) emissions. A biodiesel emulsion containing 10wt% water was formulated and evaluated against an ultra-low sulfur petroleum diesel (ULSD) and neat biodiesel (B100) in a light-duty diesel engine operated at 1500RPM and at loads of 68Nm (50ft-lbs) and 102Nm (75ft-lbs). The influence of exhaust gas recirculation (EGR) was also examined. The incorporation of water was found to significantly lower the NOx emissions of B100, while maintaining fuel efficiency when operating at 0 and 27% EGR. The soot fraction of the particulates (as determined using an opacity meter) was much lower for the B100 and B100-water emulsion compared ULSD. In contrast, total PM mass (for the three fuel types) was unchanged for the 0% EGR condition but was significantly lower for the B100 and B100-emulsion during the 27% EGR condition compared to the ULSD fuel. Analysis of the emissions and heat release data indicate that water enhances air-fuel premixing to maintain fuel economy and lower soot formation. The exhaust chemistry of the biodiesel base fuels (B100 and water-emulsified B100) was found to be unique in that they contained measurable levels of methyl alkenoates, which were not found for the ULSD. These compounds were formed by the partial cracking of the methyl ester groups during combustion.

  17. Cooling the greenhouse effect: Options and costs for reducing CO{sub 2} emissions from the American Electric Power Company

    SciTech Connect (OSTI)

    Helme, N.; Popovich, M.G.; Gille, J.

    1993-05-01

    A recent report from the National Academy of Sciences concludes that the earth is likely to face a doubling of preindustrial greenhouse gases in the next half century. This doubling could be expected to push average global temperatures. up from between 1.8 to 9 degrees Fahrenheit. Much of the potential for human impacts on the global climate is linked to fossil fuel consumption. Carbon dioxide emissions from energy consumption in the US totals about one-quarter of the world`s total emissions from energy consumption. Global warming is different from other environmental problems because CO{sub 2} emissions can be captured naturally by trees, grasses, soil, and other plants. In contrast, acid rain emissions reductions can only be accomplished through switching to lower-polluting fuels, conserving energy, or installing costly retrofit technologies. Terrestrial biota, such as trees, plants, grasses and soils, directly affect the CO{sub 2} concentrations in the atmosphere. A number of reports have concluded that forestry and land-use practices can increase CO{sub 2} sequestration and can help reduce or delay the threat of global warming.

  18. Beyond the Inventory: An Interagency Collaboration to Reduce Greenhouse Gas Emissions in the Greater Yellowstone Area

    SciTech Connect (OSTI)

    Kandt, A.; Hotchkiss, E.; Fiebig, M.

    2010-10-01

    As one of the largest, intact ecosystems in the continental United States, land managers within the Greater Yellowstone Area (GYA) have recognized the importance of compiling and understanding agency greenhouse gas (GHG) emissions. The 10 Federal units within the GYA have taken an active role in compiling GHG inventories on a unit- and ecosystem-wide level, setting goals for GHG mitigation, and identifying mitigation strategies for achieving those goals. This paper details the processes, methodologies, challenges, solutions, and lessons learned by the 10 Federal units within the GYA throughout this ongoing effort.

  19. Dual fuel Russian urban transit buses: Economical reduced emissions. Export trade information

    SciTech Connect (OSTI)

    1998-01-01

    This study, conducted by Caterpillar, was funded by the US Trade and Development Agency. The scope of this project was to examine the financial and environmental aspects of introducing new alternative fuel engines to the buses of Russia`s public transportation system. The report consists of the following: (1) executive summary; (2) background/overview; (3) 3306 design, development, test; (4) electronic governed engines; (5) Moscow bus testing; (6) conclusions; (7) appendices. The appendices include: (1) Caterpillar emissions lab report; (2) dyno tests -- dual fuel data sheets; (3) 3360 horizontal engine lub tilt test; (4) 1000 hour endurance test -- engine operator sheets; (5) 1000 hour endurance test -- 250 hour check; (6) Caterpillar dual fuel electronic engines; (7) product description -- dual fuel electronic governed engines; (8) California Environmental Protection Agency -- certification of caterpillar electronic governed engines; (9) annual payback data.

  20. Clean Cities Tools: Tools to Help You Save Money, Use Less Petroleum, and Reduce Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    Clean Cities offers a large collection of Web-based tools on the Alternative Fuels Data Center. These calculators, interactive maps, and data searches can assist fleets, fuels providers, and other transportation decision makers in their efforts to reduce petroleum use.

  1. Alternative solutions for reducing NO{sub x} emissions from cell burner boilers

    SciTech Connect (OSTI)

    Mali, E.; Laursen, T.; Piepho, J.

    1996-01-01

    Standard, tightly-spaced cell burners were developed by Babcock & Wilcox during the 1960s in response to economic demands for highly efficient burner designs. However, the downside of this 1960s design is the production of elevated levels of nitrogen oxides (NO{sub x}) emissions which negatively impact the environment. Cell-fired units have been designated as Phase II, Group II boilers under Title IV, Acid Rain Control, of the Clean Air Act Amendments of 1990 for NO{sub x} control. This paper will discuss one technology developed under the auspices of the U.S. Department of Energy`s Clean Coal Technology program for pulverized coal, cell-fired units - namely, the Low NO{sub x} Cell burner (LNCB{reg_sign}) technology. The body of this paper will describe the development of Low NO{sub x} Cell burner technology and examine six follow-on commercial contracts. The purpose of the paper is to identify similarities and differences in design, fuels, costs and performance results when compared against the Clean Coal Technology prototype.

  2. Optimizing Techology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2004-01-31

    More than 56,000 coal quality data records from five public data sets have been selected for use in this project. These data will be used to create maps showing where coals with low mercury and acid-gas emissions might be found for power plants classified by air-pollution controls. Average coal quality values, calculated for 51,156 commercial coals by U.S. county-of-origin, are listed in the appendix. Coal moisture values are calculated for commercially shipped coal from 163 U.S. counties, where the raw assay data (including mercury and chlorine values) are reported on a dry basis. The calculated moisture values are verified by comparison with observed moisture values in commercial coal. Moisture in commercial U.S. coal shows provincial variation. For example, high volatile C bituminous rank coal from the Interior province has 3% to 4% more moisture than equivalent Rocky Mountain province coal. Mott-Spooner difference values are calculated for 4,957 data records for coals collected from coal mines and exploration drill holes. About 90% of the records have Mott-Spooner difference values within {+-}250 Btu/lb.

  3. Method and apparatus for reducing cold-phase emissions by utilizing oxygen-enriched intake air

    DOE Patents [OSTI]

    Poola, Ramesh B.; Sekar, Ramanujam R.; Stork, Kevin C.

    1997-01-01

    An oxygen-enriched air intake control system for an internal combustion engine includes air directing apparatus to control the air flow into the intake of the engine. During normal operation of the engine, ambient air flowing from an air filter of the engine flows through the air directing apparatus into the intake of the engine. In order to decrease the amount of carbon monoxide (CO) and hydrocarbon (HC) emissions that tend to be produced by the engine during a short period of time after the engine is started, the air directing apparatus diverts for a short period of time following the start up of the engine at least a portion of the ambient air from the air filter through a secondary path. The secondary path includes a selectively permeable membrane through which the diverted portion of the ambient air flows. The selectively permeable membrane separates nitrogen and oxygen from the diverted air so that oxygen enriched air containing from about 23% to 25% oxygen by volume is supplied to the intake of the engine.

  4. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry

    SciTech Connect (OSTI)

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then

  5. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry

    SciTech Connect (OSTI)

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the

  6. Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    Denholm, P.

    2007-03-01

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

  7. Reducing Emissions of Volatile Organic Compounds - Final Report - 08/15/1997 - 02/14/2001

    SciTech Connect (OSTI)

    Stensel, H. David; Strand, Stuart E.

    2001-03-14

    The overall objective of this research was to determine if the shallow suspended growth reactor (SSGR) could provide sufficient treatment performance of organic and reduced sulfur (TRS) compounds, at 50 C to meet the EPA ''cluster rule'' regulatory limits. The biodegradation of a mixture of organic compounds that could be present in pulp and paper high volume low concentration gas streams was evaluated at 50 C in a bench-scale SSGR. The removal of methanol was followed in particular, and was mathematically modeled to evaluate the effect of process design and operating parameters on methanol removal. Additional tests were performed to obtain mass transfer and biodegradation kinetic parameters for the model. The acclimation of microbial populations capable of degrading TRS compounds from various seed sources was studied in batch reactors at 30 and 50 C. The degradation of TRS compounds in bench-scale SSGR was studied at 20-50 C. Also, the biodegradation kinetic and mass transfer coefficients for alpha-terpinene and gamma-terpinene were studied. Finally, a pilot plant was constructed and operated at Simpson pulp and paper mill in Tacoma, WA.

  8. Emission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emission intensities and line ratios from a fast neutral helium beam J-W. Ahn a͒ Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA D. Craig, b͒ G. Fiksel, and D. J. Den Hartog Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA and Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, Madison, Wisconsin 53706, USA J. K. Anderson Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA M. G.

  9. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; Chen, Jyh-Yuan; Dibble, Robert W.; Nishiyama, Atsushi; Moon, Ahsa; Ikeda, Yuji

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ, microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  10. Refinancing of the upgrade of heating conversion as a financial instrument used in Bytom community to reduce low emission

    SciTech Connect (OSTI)

    Charchula, W.; Wojcik, G.

    1995-12-31

    High concentrations of SO{sub 2}, suspended particulates and benzo-{alpha}-pyrene measured in Bytom town especially during heating season result first of all from the process of coal combustion in households. The analysis of solutions aimed at the reduction of these concentrations was based upon the principles of maximization of the unit effect obtained understood as a cost spent by the town to reduce by a single unit the emission of pollutants into atmospheric air; implementation of tasks consistent to the {open_quotes}company mission{close_quotes} (formally: Master Plan of Environmental Protection for Bytom City) understood as actions aimed at the improvement of living standards of city residents and its value; and minimization of the investment risk under the free market circumstances. These principles resulted in the creation of a local law - Resolution of Bytom City Hall dated April 28, 1994 dealing with refinancing of the upgrade of space heating systems. Thus, as a result of this resolution, it appeared that the residents who implemented the conversion from coal to gas, oil or electricity are authorized to apply for partial refund of capital costs incurred by themselves.

  11. Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions

    SciTech Connect (OSTI)

    Erdemir, Ali

    2013-09-26

    This project was funded under the Department of Energy (DOE) Lab Call on Nanomanufacturing for Energy Efficiency and was directed toward the development of novel boron-based nanocolloidal lubrication additives for improving the friction and wear performance of machine components in a wide range of industrial and transportation applications. Argonne's research team concentrated on the scientific and technical aspects of the project, using a range of state-of-the art analytical and tribological test facilities. Argonne has extensive past experience and expertise in working with boron-based solid and liquid lubrication additives, and has intellectual property ownership of several. There were two industrial collaborators in this project: Ashland Oil (represented by its Valvoline subsidiary) and Primet Precision Materials, Inc. (a leading nanomaterials company). There was also a sub-contract with the University of Arkansas. The major objectives of the project were to develop novel boron-based nanocolloidal lubrication additives and to optimize and verify their performance under boundary-lubricated sliding conditions. The project also tackled problems related to colloidal dispersion, larger-scale manufacturing and blending of nano-additives with base carrier oils. Other important issues dealt with in the project were determination of the optimum size and concentration of the particles and compatibility with various base fluids and/or additives. Boron-based particulate additives considered in this project included boric acid (H{sub 3}BO{sub 3}), hexagonal boron nitride (h-BN), boron oxide, and borax. As part of this project, we also explored a hybrid MoS{sub 2} + boric acid formulation approach for more effective lubrication and reported the results. The major motivation behind this work was to reduce energy losses related to friction and wear in a wide spectrum of mechanical systems and thereby reduce our dependence on imported oil. Growing concern over greenhouse gas

  12. Clean Cities Tools: Tools to Help You Save Money, Use Less Petroleum, and Reduce Emissions (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    offers a large collection of helpful Web-based tools. These calculators, interactive maps, and data searches can assist fleets, fuel providers, and other transportation decision makers in their efforts to reduce petroleum use. Find the Clean Cities coalition in your area, and get the contact information for your Clean Cities coordinator at eere.energy.gov/cleancities/coalitions.html. Clean Cities Tools Tools to help you save money, use less petroleum, and reduce emissions Access Clean Cities

  13. After the Clean Air Mercury Eule: prospects for reducing mercury emissions from coal-fired power plants

    SciTech Connect (OSTI)

    Jana B. Milford; Alison Pienciak

    2009-04-15

    Recent court decisions have affected the EPA's regulation of mercury emissions from coal burning, but some state laws are helping to clear the air. In 2005, the US EPA issued the Clean Air Mercury Rule (CAMR), setting performance standards for new coal-fired power plants and nominally capping mercury emissions form new and existing plants at 38 tons per year from 2010 to 2017 and 15 tpy in 2018 and thereafter; these down from 48.5 tpy in 1999. To implement the CAMR, 21 states with non-zero emissions adopted EPA's new source performance standards and cap and trade program with little or no modification. By December 2007, 23 other states had proposed or adopted more stringent requirements; 16 states prohibited or restricted interstate trading of mercury emissions. On February 2008, the US Court of Appeal for the District of Columbia Circuit unanimously vacated the CAMR. This article assesses the status of mercury emission control requirements for coal-fired power plants in the US in light of this decision, focusing on state actions and prospects for a new federal rule. 34 refs., 1 fig.

  14. Increasing Energy Efficiency and Reducing Emissions from China's Cement Kilns. Audit Report of Two Cement Plants in Shandong Province, China

    SciTech Connect (OSTI)

    Price, Lynn; Hasanbeigi, Ali; Zhou, Nan; Thekdi, Arvind; Lan, Wang

    2011-07-01

    The study documented in this report was initiated in order to conduct an energy assessment and to identify the relationship between combustion issues and emissions from cement kilns. A new suspension preheater/precalciner (NSP) rotary cement kiln at one cement manufacturing facility (referred to as Shui Ni 1 in this report) and a vertical shaft kiln (VSK) at another cement manufacturing facility (referred to as Shui Ni 2 in this report), which are both in Shandong Province, were selected to conduct the energy and emission assessments through collection of data. Based on analysis of the data collected during this assessment, several actions are suggested that could lead to reduction in coal use and reduction in emission of gaseous pollutants from the system.

  15. EERE Success Story—Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award

    Office of Energy Efficiency and Renewable Energy (EERE)

    Developed jointly by Da Vinci Emissions Services Ltd., Cummins Inc., and Oak Ridge National Laboratory (ORNL), the Da Vinci Fuel-in-Oil (DAFIO™) technology uses a fiber optic probe to obtain real-time measurements of oil in an operating engine to quantify the fuel dissolved in the lubricant oil.

  16. The Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    2009-01-18

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH,

  17. AISI/DOE Technology Roadmap Program: Development of an O2-Enriched Furnace System for Reduced CO2 and NOx Emissions For the Steel Industry

    SciTech Connect (OSTI)

    Edward W. Grandmaison; David J. Poirier; Eric Boyd

    2003-01-20

    An oxygen-enriched furnace system for reduced CO2 and NOx emission has been developed. The furnace geometry, with a sidewall-mounted burner, was similar to configurations commonly encountered in a steel reheat furnace. The effect of stack oxygen concentration, oxygen enrichment level and air infiltration on fuel savings/CO2 reduction, NOx emissions and scale formation were investigated. The firing rate required to maintain the furnace temperature at 1100 C decreased linearly with increasing oxygen enrichment. At full oxygen enrichment a reduction of 40-45% in the firing rate was required to maintain furnace temperature. NOx emissions were relatively constant at oxygen enrichment levels below 60% and decreased concentration at all oxygen enrichment levels. Air infiltration also had an effect on NOx levels leading to emissions similar to those observed with no air infiltration but with similar stack oxygen concentrations. At high oxygen enrichment levels, there was a larger variation in the refractory surface-temperature on the roof and blind sidewall of the furnace. Scale habit, intactness, adhesion and oxidation rates were examined for five grades of steel over a range of stack oxygen concentrations and oxygen enrichment levels at 1100 degree C. The steel grade had the largest effect on scaling properties examined in this work. The stack oxygen concentration and the oxygen enrichment level had much smaller effects on the scaling properties.

  18. Making appropriate comparisons of estimated and actual costs of reducing SO{sub 2} emissions under Title IV

    SciTech Connect (OSTI)

    Smith, A.E.

    1998-12-31

    A current sentiment within some parts of the environmental policy community is that market-based regulatory approaches such as emissions trading have proven so effective that actual costs will be only a small fraction of what ex ante cost estimation procedures would project. With this line of reasoning, some have dismissed available cost estimates for major proposed new regulations, such as the new PM and ozone NAAQS, as not meaningful for policy decisions. The most commonly used evidence in support of this position is the experience with SO{sub 2} reductions under Title IV of the 1990 Clean Air Act Amendments. In Title IV, a market for emissions allowances has been used to achieve reductions in sulfur dioxides (SO{sub 2}) to ameliorate acid rain. It is commonly asserted today that the cost of achieving the SO{sub 2} emissions reductions has been only one-tenth or less of what Title IV was originally expected to cost. This paper demonstrates that, to the contrary, actual costs for SO{sub 2} reductions remain roughly in line with original estimates associated with Title IV. Erroneous conclusions about Title IV`s costs are due to inappropriate comparisons of a variety of different measures that appear to be comparable only because they are all stated in dollars per ton. Program cost estimates include the total costs of a fully-implemented regulatory program. The very low costs of Title IV that are commonly cited today are neither directly reflective of a fully implemented Title IV, (which is still many years away) nor reflective of all the costs already incurred. Further, a careful review of history finds that the initial cost estimates that many cite were never associated with Title IV. Technically speaking, people are comparing the estimated control costs for the most-costly power plant associated with earlier acid rain regulatory proposals with prices from a market that do not directly reflect total costs.

  19. NREL Demonstrates Light-Driven Process for Enzymatic Ammonia Production: Carbon emissions and energy requirements reduced with new approach

    Broader source: Energy.gov [DOE]

    A new process using light to reduce dinitrogen into ammonia, the main ingredient in chemical fertilizers could inspire development of new, more sustainable processes that eliminate the energy-intensive, lengthier processes now commonly in use. According to researchers at the Energy Department's National Renewable Energy Laboratory (NREL), photochemical (photon) energy can serve as a substitute for the adenosine 5'-triphosphate (ATP)-dependent electron transfer mechanism typically used in biology to drive nitrogenase to reduce dinitrogen (N2) to ammonia (NH3).

  20. Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants

    SciTech Connect (OSTI)

    Balat, M.; Balat, H.; Oz, C.

    2009-07-01

    The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

  1. Potential for savings in compliance costs for reducing ground-level ozone possible by instituting seasonal versus annual nitric oxide emission limits

    SciTech Connect (OSTI)

    Lookman, A.A.

    1996-12-31

    Ground-level ozone is formed in the atmosphere from its precursor emissions, namely nitric oxide (NO{sub x}) and volatile organic compounds (VOC), with its rate of formation dependent on atmospheric conditions. Since ozone levels tend to be highest during the summer months, seasonal controls of precursors have been suggested as a means of reducing the costs of decreasing ozone concentrations to acceptable levels. This paper attempts to quantify what the potential savings if seasonal control were instituted for coal-fired power plants, assuming that only commercially available NO{sub x} control technologies are used. Cost savings through seasonal control is measured by calculating the total annualized cost of NO{sub x} removal at a given amount of seasonal control for different target levels of annual control. For this study, it is assumed that trading of NO{sub x} emissions will be allowed, as has been proposed by the Ozone Transportation Commission (OTC). The problem has been posed as a binary integer linear programming problem, with decision variables being which control to use at each power plant. The results indicate that requiring annual limits which are lower than seasonal limits can substantially reduce compliance costs. These savings occur because requiring stringent compliance only on a seasonal basis allows power plants to use control methods for which the variable costs are paid for only part of the year, and through the use of gas-based controls, which are much cheaper to operate in the summer months.

  2. Vehicle Technologies Office: Emission Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency & Emissions » Vehicle Technologies Office: Emission Control Vehicle Technologies Office: Emission Control The Vehicle Technologies Office (VTO) supports research and development of aftertreatment technologies to control advanced combustion engine exhaust emissions. All engines that enter the vehicle market must comply with the Environmental Protection Agency's emissions regulations. Harmful pollutants in these emissions include: Carbon monoxide Nitrogen oxides Unburned

  3. EPA programs to reduce NO{sub x} and particulate matter emissions from electric utility sources and the possible impact of deregulation on those EPA programs

    SciTech Connect (OSTI)

    Field, A.B.

    1997-12-31

    At the same time that the electric utility industry is in the midst of deregulation, it could be hit with numerous additional regulatory burdens. For example, EPA now plans to decide by July 1997 whether to make major changes to the current ozone and particulate matter ambient standards -- changes which could force utilities to reduce significantly both their nitrogen oxide (NO{sub x}) and sulfur dioxide (SO{sub 2}) emissions. Even if EPA does not adopt new ambient standards, though, many electric utilities still face the prospect of making additional NO{sub x} reductions if they are found to be contributing to ozone levels in areas that are not meeting the current ozone ambient standards. Several multi-state groups -- notably the Ozone Transport Assessment Group (OTAG) and the Northeast Ozone Transport Commission (OTC) -- are evaluating programs that could lead to calls for additional NO{sub x} reductions from power plants in ozone nonattainment areas and from plants located outside the nonattainment areas but found to be contributing to ozone levels in those areas. And these multi-state groups are motivated not only by pollution levels they see now, but also by what they fear will be increased pollution levels as a result of deregulation. This paper examines the status of the major rulemakings now underway that could force substantial additional reductions in electric utility NO{sub x} and SO{sub 2} emissions. It also discusses the impacts that deregulation could have in those rulemakings.

  4. Combustion and Emissions Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion and Emissions Modeling This email address is being protected from spambots. You need JavaScript enabled to view it. - Computational Fluid Dynamics Project Leader Background Modern transportation engines are designed to use the available fuel resources efficiently and minimize harmful emissions. Optimization of these designs is based on a wealth of practical design, construction and operating experiences, and use of modern testing facilities and sophisticated analyses of the combustion

  5. Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.

    2008-11-18

    This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However

  6. Russian Policy on Methane Emissions in the Oil and Gas Sector: A Case Study in Opportunities and Challenges in Reducing Short-Lived Forcers

    SciTech Connect (OSTI)

    Evans, Meredydd; Roshchanka, Volha

    2014-08-04

    This paper uses Russian policy in the oil and gas sector as a case study in assessing options and challenges for scaling-up emission reductions. We examine the challenges to achieving large-scale emission reductions, successes that companies have achieved to date, how Russia has sought to influence methane emissions through its environmental fine system, and options for helping companies achieve large-scale emission reductions in the future through simpler and clearer incentives.

  7. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    SciTech Connect (OSTI)

    Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

    2011-05-25

    Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling

  8. Opportunities for market-based programs worldwide that reduce greenhouse gas emissions: Initial Observations from Missions to the Philippines, South Africa, and Mexico

    SciTech Connect (OSTI)

    Stanton-Hoyle, D.R.

    1998-07-01

    Globally, governments and industries are implementing innovative voluntary programs to reduce greenhouse gas emissions. Often these programs encourage groups to use cost effective technologies that capture market-based forces. These programs are successful because they capitalize on existing opportunities where both the environment and the participants can benefit (i.e., win-win opportunities). This paper documents efforts to investigate these kinds of win-win opportunities in three developing countries: the Philippines, South Africa, and Mexico. Initial observations are provided as fresh information from the field, drawing on six missions during the last nine months. Utility costs, interest rates, and overall economic health appear to critically affect opportunities in each country. By contrast, details of heating, ventilating and air-conditioning (HVAC) design and local climate were often important differences between countries. These affect opportunities, for example, to achieve significant savings from cooling systems or not. Looking at the success of ESCOs was somewhat surprising. One might expect to see the most successful ESCO activity where utility costs are high and upgrade opportunities are plentiful (such as in the Philippines). This was not the case, however, as research in the Philippines did not reveal even one active ESCO contract yet. Design practices for new construction were in need of the same thing that helps US design teams do a better job of energy-efficient design, better communications between design team members. Finally, industrial firms were doing a variety of EE upgrades in each country, but this level of activity was relatively small compared to what should be cost effective.

  9. Reducing electric sector CO{sub 2} emissions under competition: Facilitating technology development and turnover on both sides of the meter

    SciTech Connect (OSTI)

    Connors, S.R.

    1997-12-31

    This paper reviews the technological and institutional factors involved in achieving long-term reductions in CO{sub 2} emissions in the electric sector. A case study of the New England electric sector is used to illustrate factors associated with energy infrastructure turnover and technology development and use. Opportunities for joint implementation of CO{sub 2} reductions are identified, as well as strategies which leverage CO{sub 2} emissions reductions to achieve reductions in other emissions, and to facilitate cost and environmental risk mitigation. Impacts of environmental performance constraints on the electric industry are also identified and analyzed. 5 figs., 1 tab.

  10. Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro

    SciTech Connect (OSTI)

    Loureiro, S.M.; Rovere, E.L.L.; Mahler, C.F.

    2013-05-15

    Highlights: ? We constructed future scenarios of emissions of greenhouse gases in waste. ? Was used the IPCC methodology for calculating emission inventories. ? We calculated the costs of abatement for emissions reduction in landfill waste. ? The results were compared to Brazil, state and city of Rio de Janeiro. ? The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030. To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management.

  11. mira_boot_camp_2016_harms_io

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Challenges of Portable I/O with Best Practices Scaling Your Science 2016 Kevin Harms - harms@alcf.anl.gov Venkat Vishwanath Phil Carns Rob Latham Storage vs Computation Trend 2 ASC Sequoia 20 PF/s Compute 500GB/s Storage ASCI Red Mira Mira I/O Infrastructure Overview 3 Infiniband QDR SAN Cooley Compute I/O Node mira-fs0 (GPFS) mira-fs1 (GPFS) mira-home (GPFS) Infiniband FDR Cetus Storage resources Mira I/O Infrastructure 4 BG/Q Optical 2x16 Gbit/sec QDR InfiniBand 32 Gbit/sec Serial ATA 6.0

  12. mira_boot_camp_2015_harms_io.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mira Boot Camp 2015 Kevin Harms - harms@alcf.anl.gov Venkat Vishwanath Phil Carns Rob Latham Mira Mira I/O Infrastructure Overview 2 Infiniband QDR S AN Tukey Cooley Compute I/O N ode mira---fs0 (GPFS) mira---fs1 (GPFS) mira---home (GPFS) Infiniband FDR Cetus Storage r esources Mira I/O Infrastructure 3 BG/Q Optical 2x16 Gbit/sec QDR InfiniBand 32 Gbit/sec Serial ATA 6.0 Gbit/sec Gateway nodes run parallel file system client software and forward I/O operations from HPC clients. 384 16-core

  13. Method of reducing chlorofluorocarbon refrigerant emissons to the atmosphere

    DOE Patents [OSTI]

    DeVault, Robert C.; Fairchild, Phillip D.; Biermann, Wendell J.

    1990-01-01

    A method is disclosed for reducing chloroflurocarbon (CFC) refrigerant emissions during removal or transfer or refrigerants from a vapor compression cooling system or heat pump which comprises contacting the refrigerant with a suitable sorbent material. The sorbent material allows for the storage and retention or the chlorofluorocarbon in non-gaseous form so that it does not tend to escape to the atmosphere where it would cause harm by contributing to ozone depletion. In other aspects of the invention, contacting of CFC refrigerants with sorbent material allows for purification and recycling of used refrigerant, and a device containing stored sorbent material can be employed in the detection of refrigerant leakage in a cooling system or heat pump.

  14. White House Announces New Executive Order To Reduce Greenhouse...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    White House Announces New Executive Order To Reduce Greenhouse Gas Emissions in the Federal Government White House Announces New Executive Order To Reduce Greenhouse Gas Emissions ...

  15. Assessment of the Potential to Reduce Emissions from Road Transportation, Notably NOx, Through the Use of Alternative Vehicles and Fuels in the Great Smoky Mountains Region

    SciTech Connect (OSTI)

    Sheffield, J.

    2001-08-30

    Air pollution is a serious problem in the region of the Great Smoky Mountains. The U.S. Environmental Protection Agency (EPA) may designate non-attainment areas by 2003 for ozone. Pollutants include nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), carbon monoxide (CO), volatile organic compounds (VOCs), lead, and particulate matter (PM), which are health hazards, damage the environment, and limit visibility. The main contributors to this pollution are industry, transportation, and utilities. Reductions from all contributors are needed to correct this problem. While improvements are projected in each sector over the next decades, the May 2000 Interim Report issued by the Southern Appalachian Mountains Initiative (SAMI) suggests that the percentage of NO{sub x} emissions from transportation may increase.

  16. Natural Gas | Department of Energy

    Energy Savers [EERE]

    vehicles to run on liquefied natural gas (LNG), reducing fuel costs and harmful emissions ... on liquefied natural gas (LNG), reducing fuel costs and harmful emissions in the process. ...

  17. Emissions Technology Gives Company Clean Win as Energy Innovator

    Broader source: Energy.gov [DOE]

    Umpqua Energy produced an emission control system that can potentially reduce the emissions from vehicles by 90 percent.

  18. Non-harmful insertion of data mimicking computer network attacks

    DOE Patents [OSTI]

    Neil, Joshua Charles; Kent, Alexander; Hash, Jr, Curtis Lee

    2016-06-21

    Non-harmful data mimicking computer network attacks may be inserted in a computer network. Anomalous real network connections may be generated between a plurality of computing systems in the network. Data mimicking an attack may also be generated. The generated data may be transmitted between the plurality of computing systems using the real network connections and measured to determine whether an attack is detected.

  19. Valuing the ozone-related health benefits of methane emission controls

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sarofim, Marcus C.; Waldhoff, Stephanie T.; Anenberg, Susan C.

    2015-06-29

    Methane is a greenhouse gas that oxidizes to form ground-level ozone, itself a greenhouse gas and a health-harmful air pollutant. Reducing methane emissions will both slow anthropogenic climate change and reduce ozone-related mortality. We estimate the benefits of reducing methane emissions anywhere in the world for ozone-related premature mortality globally and for eight geographic regions. Our methods are consistent with those used by the US Government to estimate the social cost of carbon (SCC). We find that the global short- and long-term premature mortality benefits due to reduced ozone production from methane mitigation are (2011) $790 and $1775 per tonnemore » methane, respectively. These correspond to approximately 70 and 150 % of the valuation of methane’s global climate impacts using the SCC after extrapolating from carbon dioxide to methane using global warming potential estimates. Results for monetized benefits are sensitive to a number of factors, particularly the choice of elasticity to income growth used when calculating the value of a statistical life. The benefits increase for emission years further in the future. Regionally, most of the global mortality benefits accrue in Asia, but 10 % accrue in the United States. As a result, this methodology can be used to assess the benefits of methane emission reductions anywhere in the world, including those achieved by national and multinational policies.« less

  20. Valuing the ozone-related health benefits of methane emission controls

    SciTech Connect (OSTI)

    Sarofim, Marcus C.; Waldhoff, Stephanie T.; Anenberg, Susan C.

    2015-06-29

    Methane is a greenhouse gas that oxidizes to form ground-level ozone, itself a greenhouse gas and a health-harmful air pollutant. Reducing methane emissions will both slow anthropogenic climate change and reduce ozone-related mortality. We estimate the benefits of reducing methane emissions anywhere in the world for ozone-related premature mortality globally and for eight geographic regions. Our methods are consistent with those used by the US Government to estimate the social cost of carbon (SCC). We find that the global short- and long-term premature mortality benefits due to reduced ozone production from methane mitigation are (2011) $790 and $1775 per tonne methane, respectively. These correspond to approximately 70 and 150 % of the valuation of methane’s global climate impacts using the SCC after extrapolating from carbon dioxide to methane using global warming potential estimates. Results for monetized benefits are sensitive to a number of factors, particularly the choice of elasticity to income growth used when calculating the value of a statistical life. The benefits increase for emission years further in the future. Regionally, most of the global mortality benefits accrue in Asia, but 10 % accrue in the United States. As a result, this methodology can be used to assess the benefits of methane emission reductions anywhere in the world, including those achieved by national and multinational policies.

  1. Genomic and ecosystem evidence demonstrate the importance of selenium for the harmful alga, Aureococcus anophagefferens

    SciTech Connect (OSTI)

    Gobler, Christopher J; Lobanov, Alexei V; Tang, Ying-Zhong; Turanov, Anton A; Zhang, Yan; Doblin, Martina; Taylor, Gordon T; Sanudo-Wilhelmy, Sergio A; Grigoriev, Igor V; Gladyshev, Vadim N

    2012-10-19

    The trace element selenium (Se) is required for the biosynthesis of selenocysteine (Sec), the 21st amino acid in the genetic code, but its role in the ecology of harmful algal blooms (HABs) is unknown. Here, we examined the role of Se in the biology and ecology of the harmful pelagophyte, Aureococcus anophagefferens, through cell culture, genomic analyses, and ecosystem studies. This organism has the largest and the most diverse selenoproteome identified to date that consists of at least 59 selenoproteins, including known eukaryotic selenoproteins, selenoproteins previously only detected in bacteria, and novel selenoproteins. The A. anophagefferens selenoproteome was dominated by the thioredoxin fold proteins and oxidoreductase functions were assigned to the majority of detected selenoproteins. Insertion of Sec in these proteins was supported by a unique Sec insertion sequence. Se was required for the growth of A. anophagefferens as cultures grew maximally at nanomolar Se concentrations. In a coastal ecosystem, dissolved Se concentrations were elevated before and after A. anophagefferens blooms, but were reduced by >95percent during the peak of blooms to 0.05 nM. Consistent with this pattern, enrichment of seawater with selenite before and after a bloom did not affect the growth of A. anophagefferens, but enrichment during the peak of the bloom significantly increased population growth rates. These findings demonstrate that Se inventories, which can be anthropogenically enriched, can support proliferation of HABs, such as A. anophagefferens through its synthesis of a large arsenal of Se-dependent oxidoreductases that fine-tune cellular redox homeostasis.

  2. Emission Abatement System

    DOE Patents [OSTI]

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander

    2003-05-13

    Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

  3. Emissions Tool Estimates the Impact of Emissions on Smart Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Investments | Department of Energy Emissions Tool Estimates the Impact of Emissions on Smart Grid Infrastructure Investments Emissions Tool Estimates the Impact of Emissions on Smart Grid Infrastructure Investments July 28, 2016 - 2:59pm Addthis In the face of extreme weather events, states, utilities, and other companies are increasingly seeking ways to boost resiliency while reducing their carbon footprint. The Emissions Quantification Tool (EQT), which was conceived of and

  4. Systems and methods for the detection of low-level harmful substances in a large volume of fluid

    DOE Patents [OSTI]

    Carpenter, Michael V.; Roybal, Lyle G.; Lindquist, Alan; Gallardo, Vincente

    2016-03-15

    A method and device for the detection of low-level harmful substances in a large volume of fluid comprising using a concentrator system to produce a retentate and analyzing the retentate for the presence of at least one harmful substance. The concentrator system performs a method comprising pumping at least 10 liters of fluid from a sample source through a filter. While pumping, the concentrator system diverts retentate from the filter into a container. The concentrator system also recirculates at least part of the retentate in the container again through the filter. The concentrator system controls the speed of the pump with a control system thereby maintaining a fluid pressure less than 25 psi during the pumping of the fluid; monitors the quantity of retentate within the container with a control system, and maintains a reduced volume level of retentate and a target volume of retentate.

  5. Reducing Emissions Through Sustainable Transport: Proposal for...

    Open Energy Info (EERE)

    window, in the short term within the fast-start finance being provided in the context of the Copenhagen Accord, and in the long term under a Post-2012 UNFCCC fund, that...

  6. Yellowstone Agencies Plan to Reduce Emissions

    Broader source: Energy.gov [DOE]

    The 10 federal land organizations — including two national parks, six national forests and two national wildlife refuges — in the Greater Yellowstone Area comprise an entire ecosystem of their own. Straddling Wyoming’s borders with Montana and Idaho, the region draws millions of visitors a year, attracted by the dramatic landscapes, geothermal activity and chances to spot wildlife like bison, elk and grizzly bear.

  7. Improved System Performance and Reduced Cost of a Fuel Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Useful Life Requirement Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement An ...

  8. Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled

    Broader source: Energy.gov [DOE]

    For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to reduce vehicle miles traveled, as well as guidance and best practices for each strategy.

  9. RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions

    SciTech Connect (OSTI)

    Wright, Anthony L; Martin, Michaela A; Gemmer, Bob; Scheihing, Paul; Quinn, James

    2007-09-01

    --those that consume a total of 1 trillion British thermal units (Btu) or more annually. The approximately 6800 U.S. facilities that fall into this category collectively account for about 53% of all energy consumed by industry in the United States. The 2006 Save Energy Now energy assessments departed from earlier DOE plant assessments by concentrating solely on steam and process heating systems, which are estimated to account for approximately 74% of all natural gas use for manufacturing. The assessments also integrated a strong training component designed to teach industrial plant personnel how to use DOE's steam or process heating opportunity assessment software tools. This approach had the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the assessment process at the company's other facilities. The Save Energy Now initiative also included provisions to help plants that applied for but did not qualify for assessments (based on the 1 trillion Btu criterion). Services offered to these plants included (1) an assessment by one of DOE's 26 university-based Industrial Assessment Centers (IACs), (2) a telephone consultation with a systems expert at the DOE's Energy Efficiency and Renewable Energy Information Center, or (3) other technical materials and services available through ITP (e.g., the Save Energy Now CD). By the end of 2006, DOE had completed all 200 of the promised assessments, identifying potential natural gas savings of more than 50 trillion Btu and energy cost savings of about $500 million. These savings, if fully implemented, could reduce CO2 emissions by 4.04 million metric tons annually. These results, along with the fact that a large percentage of U.S. energy is used by a relatively small number of very large plants, clearly suggest that assessments are an expedient and cost-effective way to significantly affect large amounts of energy use. Building on the success of

  10. Method to reduce dislocation density in silicon using stress

    DOE Patents [OSTI]

    Buonassisi, Anthony; Bertoni, Mariana; Argon, Ali; Castellanos, Sergio; Fecych, Alexandria; Powell, Douglas; Vogl, Michelle

    2013-03-05

    A crystalline material structure with reduced dislocation density and method of producing same is provided. The crystalline material structure is annealed at temperatures above the brittle-to-ductile transition temperature of the crystalline material structure. One or more stress elements are formed on the crystalline material structure so as to annihilate dislocations or to move them into less harmful locations.

  11. Improved Biomass Cooking Stoves and Improved Stove Emission Equipment

    SciTech Connect (OSTI)

    HATFIELD, MICHAEL; Still, Dean

    2013-04-15

    In developing countries, there is an urgent need for access to safe, efficient, and more affordable cooking technologies. Nearly 2.5 billion people currently use an open fire or traditional cookstove to prepare their meals, and recent models predict that use of biomass for cooking will continue to be the dominant energy use in rural, resource-poor households through 2030. For these families, cooking poses serious risks to health, safety, and income. An alarming 4 million people, primarily women and children, die prematurely each year from indoor and outdoor exposure to the harmful emissions released by solid fuel combustion. Use of traditional stoves can also have a significant impact on deforestation and climate change. This dire situation creates a critical need for cookstoves that significantly and verifiably reduce fuel use and emissions in order to reach protective levels for human health and the environment. Additionally, advances in the scientific equipment needed to measure and monitor stove fuel use and emissions have not kept pace with the significant need within the industry. While several testing centers in the developed world may have hundred thousand-dollar emissions testing systems, organizations in the field have had little more than a thermometer, a scale, and subjective observations to quantify the performance of stove designs. There is an urgent need for easy-to-use, inexpensive, accurate, and robust stove testing equipment for use by laboratory and field researchers around the world. ASAT and their research partner, Aprovecho Research Center (ARC), have over thirty years of experience addressing these two needs, improved cookstoves and emissions monitoring equipment, with expertise spanning the full spectrum of development from conceptual design to product manufacturing and dissemination. This includes: 1) research, design, and verification of clean biomass cookstove technology and emissions monitoring equipment; 2) mass production of quality

  12. Displacing Natural Gas Consumption and Lowering Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE Displacing Natural Gas Consumption and Lowering Emissions By ... full advantage of op- portunity fuels and thereby reduce their natural gas consumption. ...

  13. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect (OSTI)

    G.A. Farthing

    2001-02-06

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses), and wet flue gas desulfurization (WFGD) systems. Development work initially concentrated on the capture of trace metals, fine particulate, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  14. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    G. A. Farthing; G. T. Amrhein; G. A. Kudlac; D. A. Yurchison; D. K. McDonald; M. G. Milobowski

    2001-03-31

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. This objective is being met by identifying ways to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (fabric filters), and wet flue gas desulfurization (wet FGD) systems. Development work initially concentrated on the capture of trace metals, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  15. Mitigating greenhouse gas emissions: Voluntary reporting

    SciTech Connect (OSTI)

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  16. Issue #1: How Do We First Do No Harm with High-R Enclosures? | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 1: How Do We First Do No Harm with High-R Enclosures? Issue #1: How Do We First Do No Harm with High-R Enclosures? What materials and approaches provide the "perfect," cost-effective, production-level, high-R enclosures for all major U.S. climate regions that ensure no moisture damage? issue1_moisture_perf.pdf (3.47 MB) issue1_highr_enclosures.pdf (5.05 MB) issue1_exterior_wall.pdf (2.04 MB) More Documents & Publications Building Science ZERH Webinar: Getting

  17. Reducing the atmospheric impact of wet slaking

    SciTech Connect (OSTI)

    B.D. Zubitskii; G.V. Ushakov; B.G. Tryasunov; A.G.Ushakov

    2009-05-15

    Means of reducing the atmospheric emissions due to the wet slaking of coke are considered. One option, investigated here, is to remove residual active silt and organic compounds from the biologically purified wastewater sent for slaking, by coagulation and flocculation.

  18. NREL: Transportation Research - Emissions and Fuel Economy Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emissions and Fuel Economy Analysis Photo of a man hooking up test instruments to an engine mounted on an engine dynamometer. An NREL engineer maintains an engine fuel economy and emissions test stand at the ReFUEL Laboratory. Photo by Dennis Schroeder, NREL NREL's emissions and fuel economy testing and analysis projects help address greenhouse gas and pollutant emissions by advancing the development of new fuels and engines that deliver both high efficiency and reduced emissions. Emissions that

  19. Novel Application of Air Separation Membranes Reduces Engine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel Application of Air Separation Membranes Reduces Engine NOx Emissions Alternative to Exhaust Gas Recirculation that involves the nitrogen enrichment of intake air. Argonne ...

  20. Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Greenhouse Gas Emissions: The Combined Potential of Hybrid Technology and Behavioral Adaptation Title Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

  1. EV Everywhere: Reducing Pollution with Electric Vehicles | Department...

    Energy Savers [EERE]

    Benefits of Electric Vehicles EV Everywhere: Reducing Pollution with Electric Vehicles ... All-electric vehicles produce zero direct emissions, which specifically helps improve air ...

  2. Integrated Evaluation of Cost, Emissions, and Resource Potential for Algal Biofuels at the National Scale

    SciTech Connect (OSTI)

    Davis, Ryan; Fishman, Daniel; Frank, Edward D.; Johnson, Michael C.; Jones, Susanne B.; Kinchin, Christopher; Skaggs, Richard; Venteris, Erik R.; Wigmosta, Mark S.

    2014-04-21

    Costs, emissions, and resource availability were modeled for the production of 5 billion gallons yr-1 (5 BGY) of renewable diesel in the United States from Chlorella biomass by hydrothermal liquefaction (HTL). The HTL model utilized data from a continuous 1-L reactor including catalytic hydrothermal gasification of the aqueous phase, and catalytic hydrotreatment of the HTL oil. A biophysical algae growth model coupled with weather and pond simulations predicted biomass productivity from experimental growth parameters, allowing site-by-site and temporal prediction of biomass production. The 5 BGY scale required geographically and climatically distributed sites. Even though screening down to 5 BGY significantly reduced spatial and temporal variability, site-to-site, season-to-season, and inter-annual variations in productivity affected economic and environmental performance. Performance metrics based on annual average or peak productivity were inadequate; temporally and spatially explicit computations allowed more rigorous analysis of these dynamic systems. For example, 3-season operation with a winter shutdown was favored to avoid high greenhouse gas emissions, and economic performance was harmed by underutilized equipment during slow-growth periods. Thus, analysis of algal biofuel pathways must combine spatiotemporal resource assessment, economic analysis, and environmental analysis integrated over many sites when assessing national scale performance.

  3. EPA proposes to control automotive VOC emissions

    SciTech Connect (OSTI)

    Not Available

    1987-09-01

    US Environmental Protection Agency has proposed a vehicle control system for reducing gasoline vapors that can escape into the environment during refueling of motor vehicles. It has also has been proposed that gasoline refiners lower the volatility of commercial fuels in summer to reduce vehicle evaporative emissions. EPA said nationwide emissions of volatile organic compounds (VOC), a major contributor to the formation of urban ozone, could be reduced as much as 10% under the proposed pollution-control measures.

  4. New Energy Efficiency Standards for Electric Motors and Walk-in Coolers and Freezers to Save on Energy Bills and Reduce Carbon Pollution

    Broader source: Energy.gov [DOE]

    These standards combined will help reduce harmful carbon pollution by up to 158 million metric tons – equivalent to the annual electricity use of more than 21 million homes – and save businesses $26 billion on utility bills through 2030.

  5. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2010

    SciTech Connect (OSTI)

    NSTec Ecological and Environmental Monitoring

    2011-06-30

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS, formerly the Nevada Test Site) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as those from the damaged Fukushima nuclear power plant in Japan. Because this report is intended to discuss radioactive air emissions during calendar year 2010, data on radionuclides in air from the 2011 Fukushima nuclear power plant releases are not presented but will be included in the report for calendar year 2011. The NNSS demonstrates compliance with the NESHAP

  6. Healthy habits: reducing our carbon footprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Healthy habits: reducing our carbon footprint Healthy habits: reducing our carbon footprint We're dedicated to cutting greenhouse gas emissions by 30 percent across the Lab, from facilities to transportation. January 30, 2014 Healthy habits: reducing our carbon footprint From monitoring storm water run-off in Los Alamos Canyon to riding their bikes to work, employees in the field all over the Lab's 36 square miles see the landscape around them as an inspiration and reminder to go green at work

  7. Emission abatement system utilizing particulate traps

    DOE Patents [OSTI]

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander

    2004-04-13

    Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

  8. EERE Success Story-Iowa: Geothermal System Creates Jobs, Reduces

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions in Rural Community | Department of Energy Geothermal System Creates Jobs, Reduces Emissions in Rural Community EERE Success Story-Iowa: Geothermal System Creates Jobs, Reduces Emissions in Rural Community November 6, 2013 - 12:00am Addthis Utilizing funding from EERE and cost shares from other federal agencies, the City of West Union, Iowa, drilled geothermal wells in order to install a closed-loop geothermal heating and cooling system. The system is designed to serve 330,000

  9. Effect of low emission sources on air quality in Cracow

    SciTech Connect (OSTI)

    Nedoma, J.

    1995-12-31

    The paper presents calculation of power engineering low emission and results of stimulation of the effect of this emission on air quality in Cracow, Poland. It has been stated that the segment of low emission in central areas of the town makes up ca. 40% of the observed concentration of sulfur dioxide. Furthermore it has been stated that the capital investment must be concentrated in the central part of the town in order to reach noticeable improvement of air quality in Cracow. Neither the output of a separate power source nor the emission level and its individual harmful effect, but the location of the source and especially packing density of the sources must decide the priority of upgrading actions.

  10. EIA - Greenhouse Gas Emissions - Methane Emissions

    Gasoline and Diesel Fuel Update (EIA)

    3. Methane Emissions 3.1. Total emissions The major sources of U.S. methane emissions are energy production, distribution, and use; agriculture; and waste management (Figure 17). U.S. methane emissions in 2009 totaled 731 MMTCO2e, 0.9 percent higher than the 2008 total of 724 MMTCO2e (Table 17). Methane emissions declined steadily from 1990 to 2001, as emissions from coal mining and landfills fell, then rose from 2002 to 2009 as a result of moderate increases in emissions related to energy,

  11. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  12. EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions

    Gasoline and Diesel Fuel Update (EIA)

    4. Nitrous Oxide Emissions 4.1 Total emissions U.S. nitrous oxide emissions in 2009 were 4 MMTCO2e (1.7 percent) below their 2008 total (Table 22). Sources of U.S. nitrous oxide emissions include agriculture, energy use, industrial processes, and waste management (Figure 22). The largest source is agriculture (73 percent), and the majority of agricultural emissions result from nitrogen fertilization of agricultural soils (87 percent of the agriculture total) and management of animal waste (13

  13. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2013

    SciTech Connect (OSTI)

    Warren, R.

    2014-06-04

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitations to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan in 2011. NNSA/NFO demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations on the NNSS (U.S. Environmental Protection Agency [EPA] and DOE 1995). This method was approved by the EPA for use on the NNSS in 2001 (EPA 2001a) and has

  14. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2009

    SciTech Connect (OSTI)

    NSTec Ecological and Environmental Monitoring

    2010-06-11

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada Test Site (NTS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the NLVF, an NTS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy facility to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from sources such as medically or commercially used radionuclides. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no

  15. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2009

    SciTech Connect (OSTI)

    Ciucci, John

    2010-06-11

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada Test Site (NTS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the NLVF, an NTS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy facility to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from sources such as medically or commercially used radionuclides. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no

  16. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2011

    SciTech Connect (OSTI)

    NSTec Ecological and Environmental Monitoring

    2012-06-19

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan. Radionuclides from the Fukushima nuclear power plant were detected at the NNSS in March 2011 and are discussed further in Section III. The NNSS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the EPA for use on the

  17. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2012

    SciTech Connect (OSTI)

    Warren, R.

    2013-06-10

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan in 2011. NNSA/NFO demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations on the NNSS (U.S. Environmental Protection Agency [EPA] and DOE 1995). This method was approved by the EPA for use on the NNSS in 2001 (EPA 2001a) and has

  18. 2013 R&D 100 Award: 'SHIELD' protects NIF optics from harmful pulses

    SciTech Connect (OSTI)

    Chou, Jason

    2014-04-03

    In the past, it took as long as 12 hours to manually screen 48 critical checkpoints at the National Ignition Facility (NIF) for harmful laser pulses. The screening equipment had to be moved from point to point throughout a facility the size of three football fields. Now with a new technology, called Laser SHIELD (Screening at High-throughput to Identify Energetic Laser Distortion), and with the push of a button, the screening can be done in less than one second. Proper screening of pulses is critical for the operation of high-energy lasers to ensure that the laser does not exceed safe operating conditions for optics. The energetic beams of light are so powerful that, when left uncontrolled, they can shatter the extremely valuable glass inside the laser. If a harmful pulse is found, immediate adjustments can be made in order to protect the optics for the facility. Laser SHIELD is a custom-designed high-throughput screening system built from low-cost and commercially available components found in the telecommunications industry. Its all-fiber design makes it amenable to the unique needs of high-energy laser facilities, including routing to intricate pick-off locations, immunity to electromagnetic interference and low-loss transport (up to several kilometers). The technology offers several important benefits for NIF. First, the facility is able to fire more shots in less time-an efficiency that saves the facility millions of dollars each year. Second, high-energy lasers are more flexible to wavelength changes requested by target physicists. Third, by identifying harmful pulses before they damage the laser's optics, the facility potentially saves hundreds of thousands of dollars in maintenance costs each year.

  19. 2013 R&D 100 Award: 'SHIELD' protects NIF optics from harmful pulses

    ScienceCinema (OSTI)

    Chou, Jason

    2014-07-22

    In the past, it took as long as 12 hours to manually screen 48 critical checkpoints at the National Ignition Facility (NIF) for harmful laser pulses. The screening equipment had to be moved from point to point throughout a facility the size of three football fields. Now with a new technology, called Laser SHIELD (Screening at High-throughput to Identify Energetic Laser Distortion), and with the push of a button, the screening can be done in less than one second. Proper screening of pulses is critical for the operation of high-energy lasers to ensure that the laser does not exceed safe operating conditions for optics. The energetic beams of light are so powerful that, when left uncontrolled, they can shatter the extremely valuable glass inside the laser. If a harmful pulse is found, immediate adjustments can be made in order to protect the optics for the facility. Laser SHIELD is a custom-designed high-throughput screening system built from low-cost and commercially available components found in the telecommunications industry. Its all-fiber design makes it amenable to the unique needs of high-energy laser facilities, including routing to intricate pick-off locations, immunity to electromagnetic interference and low-loss transport (up to several kilometers). The technology offers several important benefits for NIF. First, the facility is able to fire more shots in less time-an efficiency that saves the facility millions of dollars each year. Second, high-energy lasers are more flexible to wavelength changes requested by target physicists. Third, by identifying harmful pulses before they damage the laser's optics, the facility potentially saves hundreds of thousands of dollars in maintenance costs each year.

  20. Reducing Forestry Emissions in Indonesia | Open Energy Information

    Open Energy Info (EERE)

    critically at the trade-offs between development pathways based on land-intensive enterprises and climate change mitigation. Without a coordinated approach to multiple...

  1. Reducing Nitrogen Oxide Emissions: 1996 Compliance with Title IV Limits

    Reports and Publications (EIA)

    1998-01-01

    The purpose of this article is to summarize the existing federal nitrogen oxide (Nox) regulations and the 1996 performance of the 239 Title IV generating units. It also reviews the basics of low-Nox burner technology and presents cost and performance data for retrofits at Title IV units.

  2. Saving Energy and Reducing Emissions with Fuel-Flexible Burners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the byproducts of biodiesel production, present a viable alternative to natural gas for process heating applications. Two components of biodiesel production are glycerin ...

  3. Iowa: Geothermal System Creates Jobs, Reduces Emissions in Rural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    geothermal wells in order to install a closed-loop geothermal heating and cooling system. ... The district geothermal system is designed to be scalable, so that more buildings can be ...

  4. 330 kWe Packaged CHP System with Reduced Emissions

    Energy Savers [EERE]

    Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. ...

  5. Florida County Seeks to Reduce Emissions and Improve Traffic

    Broader source: Energy.gov [DOE]

    St. Johns County, Florida is tackling its traffic-timing problem with a little help from an Energy Department Energy Efficiency and Conservation Block grant. The county will use the grant to improve traffic flow by re-synchronizing signals at five major road segments. In total, 23 traffic signals will be retimed and synchronized, resulting in lower fuel consumption, shorter travel times, increased travel speed, less stopping and less engine idling.

  6. Emission Regulations Reduced Impact of Climate Change in CA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    It is the first comprehensive regional assessment of the climate impact of black carbon on California. In conducting the study, scientists used computer models and air pollution ...

  7. Energy Department Announces $10 Million to Advance Zero-Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles and infrastructure will reduce petroleum use, carbon emissions, and air pollution at transportation hubs, such as ports. The Energy Department seeks...

  8. #AskBerkeleyLab: Jeff Greenblatt Talks Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Greenblatt, Jeff

    2015-02-02

    We received questions from our social media audience around California's goal to dramatically reduce its greenhouse gas emissions by 2030. Berkeley Lab scientist Jeff Greenblatt answers them here.

  9. PLASMA EMISSION BY WEAK TURBULENCE PROCESSES

    SciTech Connect (OSTI)

    Ziebell, L. F.; Gaelzer, R.; Yoon, P. H.; Pavan, J. E-mail: rudi.gaelzer@ufrgs.br E-mail: joel.pavan@ufpel.edu.br

    2014-11-10

    The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.

  10. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    Broader source: Energy.gov [DOE]

    Factsheet summarizing Univ. of Alabama project to save energy and reduce emissions with fuel-flexible burners

  11. Software solutions for emission monitoring

    SciTech Connect (OSTI)

    DeFriez, H.; Schillinger, S.; Seraji, H.

    1996-12-31

    Industry and state and federal environmental regulatory agencies are becoming ever more conciliatory due to the high cost of implementing the Clean Air Act Amendments of 1990 (CAAA) for the operation of Continuous Emissions Monitoring Systems (CEMS). In many cases the modifications do nothing to reduce emissions or even to measure the pollution, but simply let the source owner or operator and the permitting authority agree on a monitoring method and/or program. The EPA methods and standards developed under the Code of Federal Regulations (CFRs) have proven to be extremely costly and burdensome. Now, the USEPA and state agencies are making efforts to assure that emissions data has a strong technical basis to demonstrate compliance with regulations such as Title V.

  12. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect (OSTI)

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small

  13. Diesel Emission Control Review

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and technology approaches for diesel emission control for heavy and light duty applications

  14. Advanced Emission Control Development Program.

    SciTech Connect (OSTI)

    Evans, A.P.

    1997-12-31

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  15. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    A. P. Evans

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

  16. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    Evans, A P

    1998-12-03

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W's new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  17. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    M. J. Holmes

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

  18. Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SCR Aftertreatment System Meeting Emissions Useful Life Requirement | Department of Energy System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement An advanced exhaust aftertreatment system developed to meet EPA 2010 and final Tier 4 emission regulations show substantial

  19. Feedstock Supply and Logistics: Biomass as a Commodity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... These effciency enhancements have helped reduce delivered costs, improve net energy ratios, and reduce harmful emissions. Five Advanced Logistics Projects Lead Description ...

  20. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  1. Minimising greenhouse gas emissions from fossil fuels

    SciTech Connect (OSTI)

    Freund, P.

    1997-07-01

    Combustion of fossil fuels is the main anthropogenic source of carbon dioxide, the principal greenhouse gas. Generation of electricity is the single largest user of fossil fuels, world-wide. If there is international agreement about the need to make substantial reductions in greenhouse gas emissions, then having access to suitable, effective technology would be important. This would help avoid the need for precipitate action, such as radical changes in the energy supply systems. Capture and disposal of greenhouse gases from flue gases can achieve substantial reductions in greenhouse gas emissions. This can be realized with known technology. In this paper, the range of options will be summarized and steps needed to achieve further progress will be identified. Emissions of other gases, such as methane, are also expected to influence the climate. Methane is emitted from many anthropogenic sources; the IEA Greenhouse Gas programme is investigating ways of reducing these emissions. Opportunities for abatement of methane emissions associated with coal mining will be described. Reduction in emissions from drainage gas is relatively straightforward and can, in appropriate circumstances, generate useful income for the none operator. More substantial amounts of methane are discharged in mine ventilation air but these are more difficult to deal with. In this paper, a summary will be given of recent progress in reducing methane emissions. Opportunities will be examined for further research to progress these technologies.

  2. How America Can Look Within to Achieve Energy Security and Reduce...

    Office of Scientific and Technical Information (OSTI)

    ways our nation can wean itself off its dependence on foreign oil and reduce its emissions of greenhouse gases. Transportation and buildings, which account for two thirds of...

  3. Reducible oxide based catalysts

    DOE Patents [OSTI]

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  4. Future Sulfur Dioxide Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  5. Reduced shear power spectrum

    SciTech Connect (OSTI)

    Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Northwestern U.; Shapiro, Charles; /Chicago U. /KICP, Chicago; White, Martin J.; /UC, Berkeley, Astron.

    2005-08-01

    Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.

  6. Reducing Power Factor Cost

    Broader source: Energy.gov [DOE]

    Low power factor is expensive and inefficient. Many utility companies charge an additional fee if your power factor is less than 0.95. Low power factor also reduces your electrical system’s distribution capacity by increasing current flow and causing voltage drops. This fact sheet describes power factor and explains how you can improve your power factor to reduce electric bills and enhance your electrical system’s capacity.

  7. Field Emission Measurements from Niobium Electrodes

    SciTech Connect (OSTI)

    M. BastaniNejad, P.A. Adderley, J. Clark, S. Covert, J. Hansknecht, C. Hernandez-Garcia, R. Mammei, M. Poelker

    2011-03-01

    Increasing the operating voltage of a DC high voltage photogun serves to minimize space charge induced emittance growth and thereby preserve electron beam brightness, however, field emission from the photogun cathode electrode can pose significant problems: constant low level field emission degrades vacuum via electron stimulated desorption which in turn reduces photocathode yield through chemical poisoning and/or ion bombardment and high levels of field emission can damage the ceramic insulator. Niobium electrodes (single crystal, large grain and fine grain) were characterized using a DC high voltage field emission test stand at maximum voltage -225kV and electric field gradient > 10MV/m. Niobium electrodes appear to be superior to diamond-paste polished stainless steel electrodes.

  8. Field emission chemical sensor

    DOE Patents [OSTI]

    Panitz, J.A.

    1983-11-22

    A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.

  9. Carbon Emissions: Paper Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994...

  10. Secondary Emission Calorimetry

    SciTech Connect (OSTI)

    Winn, David Roberts

    2015-03-24

    This report describes R&D on a new type of calorimeter using secondary emission to measure the energy of radiation, particularly high energy particles.

  11. Biological Air Emissions Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Air quality standards are becoming more stringent for the U.S. wood products industry. Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) (including methanol,...

  12. Reduce Radiation Losses from Heating Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiation Losses from Heating Equipment Reduce Radiation Losses from Heating Equipment This tip sheet describes how to save process heating energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces. PROCESS HEATING TIP SHEET #7 Reduce Radiation Losses from Heating Equipment (January 2006) (277.28 KB) More Documents & Publications Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A

  13. National Emission Standards for Hazardous Air Pollutants Calendar Year 2005

    SciTech Connect (OSTI)

    Bechtel Nevada

    2006-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). From 1951 through 1992, the NTS was operated as the nations site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides that are resuspended into the air (e.g., by winds, dust-devils) along with historically-contaminated soils on the NTS. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (40 Code of Federal Regulations 61 Subpart H) limits the release of radioactivity from a U. S. Department of Energy (DOE) facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent (EDE) to any member of the public. This is the dose limit established for someone living off of the NTS for inhaling radioactive particles that may be carried by wind off of the NTS. This limit assumes that members of the public surrounding the NTS may also inhale background levels or radioactive particles unrelated to NTS activities that come from naturally-occurring elements in the environment (e.g., radon gas from the earth or natural building materials) or from other man-made sources (e.g., cigarette smoke). The U. S. Environmental Protection Agency (EPA) requires DOE facilities (e.g., the NTS) to demonstrate compliance with the NESHAP dose limit by annually estimating the dose to a hypothetical member of the public, referred to as the maximally exposed individual (MEI), or the member of the public who resides within an 80-kilometer (50-mile) radius

  14. Diesel engine emissions reduction by multiple injections having increasing pressure

    SciTech Connect (OSTI)

    Reitz, Rolf D.; Thiel, Matthew P.

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  15. 2007: make or break for emissions trading

    SciTech Connect (OSTI)

    Vitelli, A.

    2006-11-15

    With the Kyoto Protocol's first compliance period beginning in 2008, much of 2007 will be focussed on implementing the institutions needed to ensure the Protocol's effectiveness. The big unknown is whether governments and international bodies can make tough decisions in time to let the emissions market function effectively to reduce greenhouse gases.

  16. Mitigating Greenhouse Gas Emissions: Voluntary Reporting 1996

    Reports and Publications (EIA)

    1997-01-01

    Presents information on voluntary actions to reduce greenhouse gases or remove such gases from the atmosphere in 1995. It provides an overview of participation in the Voluntary Reporting Program, a perspective on the composition of activities reported, and a review of some key issues in interpreting and evaluating achievements associated with reported emissions mitigation initiatives.

  17. NOx Emission Reduction by Oscillating Combustion

    SciTech Connect (OSTI)

    2005-09-01

    This project focuses on a new technology that reduces NOx emissions while increasing furnace efficiency for both air- and oxygen-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace.

  18. Air Emission Inventory for the INEEL -- 1999 Emission Report

    SciTech Connect (OSTI)

    Zohner, Steven K

    2000-05-01

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  19. Protecting Public Health through Cleaner Fuels and Lower Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    through Cleaner Fuels and Lower Emissions." Mr. Sarkar will speak on DOE's Co-Optimization of Fuels and Engines (Optima) program; this multi-year initiative aims to reduce...

  20. Forest County Potawatomi Tribe Cuts Emissions, Promotes Green...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forest County Potawatomi Tribe Cuts Emissions, Promotes Green Growth February 23, 2012 - ... In pursuit of its long-term energy goal of reducing its carbon footprint to zero, the ...

  1. State Regulations on Airborne Emissions: Update Through 2006 (Update) (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    In May 2005, the Environmental Protection Agency published two final rules aimed at reducing emissions from coal-fired power plants. The Clean Air Interstate Rule (CAIR) requires 28 states and the District of Columbia to reduce emissions of SO2 and/or NOx. The Clean Air Mercury Rule (CAMR) requires the states to reduce emissions of mercury from new and existing coal-fired plants.

  2. Reducing Configuration Complexity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ams AG 2015 Reducing Configuration Complexity The contribution of chipscale integrated solutions Tom Griffiths Sr. Marketing Manager ams AG November 2015 © ams AG 2015 Agenda Architecture of IoT smart lighting Importance of the sensors The puzzle pieces Focus on adoption (turn... key...) A quick case study Industry's to-do list (an opinion) © ams AG 2015 Page 3 The Opportunity of Smart Lighting "Sufficient" light 24x7 Worker Productivity Decorative Use Utilitarian Lights Following in

  3. Energy Efficiency as a Low-Cost Resource for Achieving Carbon Emissions Reductions

    SciTech Connect (OSTI)

    none,

    2009-09-01

    Summarizes the scale and economic value of energy efficiency for reducing carbon emissions and discusses barriers to achieving the potential for cost-effective energy efficiency.

  4. New Jersey: EERE-Supported Technology Lowers GHG Emissions 70%, Wins R&D 100 Award

    Office of Energy Efficiency and Renewable Energy (EERE)

    R&D 100 Award-winning technology helps reduce greenhouse gas emissions in cement and concrete products up to 70%.

  5. Naval electrochemical corrosion reducer

    DOE Patents [OSTI]

    Clark, Howard L.

    1991-10-01

    A corrosion reducer for use with ships having a hull, a propeller mounted a propeller shaft and extending through the hull, bearings supporting the shaft, at least one thrust bearing and one seal. The improvement includes a current collector and a current reduction assembly for reducing the voltage between the hull and shaft in order to reduce corrosion due to electrolytic action. The current reduction assembly includes an electrical contact, the current collector, and the hull. The current reduction assembly further includes a device for sensing and measuring the voltage between the hull and the shaft and a device for applying a reverse voltage between the hull and the shaft so that the resulting voltage differential is from 0 to 0.05 volts. The current reduction assembly further includes a differential amplifier having a voltage differential between the hull and the shaft. The current reduction assembly further includes an amplifier and a power output circuit receiving signals from the differential amplifier and being supplied by at least one current supply. The current selector includes a brush assembly in contact with a slip ring over the shaft so that its potential may be applied to the differential amplifier.

  6. Utilization of UV Curing Technology to Significantly Reduce the Manufacturing Cost of LIB Electrodes

    SciTech Connect (OSTI)

    Voelker, Gary; Arnold, John

    2015-11-30

    Previously identified novel binders and associated UV curing technology have been shown to reduce the time required to apply and finish electrode coatings from tens of minutes to less than one second. This revolutionary approach can result in dramatic increases in process speeds, significantly reduced capital (a factor of 10 to 20) and operating costs, reduced energy requirements, and reduced environmental concerns and costs due to the virtual elimination of harmful volatile organic solvents and associated solvent dryers and recovery systems. The accumulated advantages of higher speed, lower capital and operating costs, reduced footprint, lack of VOC recovery, and reduced energy cost is a reduction of 90% in the manufacturing cost of cathodes. When commercialized, the resulting cost reduction in Lithium batteries will allow storage device manufacturers to expand their sales in the market and thereby accrue the energy savings of broader utilization of HEVs, PHEVs and EVs in the U.S., and a broad technology export market is also envisioned.

  7. Segmented electrode hall thruster with reduced plume

    DOE Patents [OSTI]

    Fisch, Nathaniel J.; Raitses, Yevgeny

    2004-08-17

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with segmented electrodes along the channel, which make the acceleration region as localized as possible. Also disclosed are methods of arranging the electrodes so as to minimize erosion and arcing. Also disclosed are methods of arranging the electrodes so as to produce a substantial reduction in plume divergence. The use of electrodes made of emissive material will reduce the radial potential drop within the channel, further decreasing the plume divergence. Also disclosed is a method of arranging and powering these electrodes so as to provide variable mode operation.

  8. Advanced CIDI Emission Control System Development

    SciTech Connect (OSTI)

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key design

  9. GBTL Workshop GHG Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    emissions relative to petroleum. * DOE is interested in ... key role in helping the United States meet its continually ... the Average of U.S. Refineries Lower Life Cycle GHG ...

  10. Photon enhanced thermionic emission

    DOE Patents [OSTI]

    Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

    2014-10-07

    Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

  11. National Emission Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... in-growth of Rn from the decay of Th in thorium 222 230 wastes would not exceed the ... RADON EMISSIONS FROM U AND Th SOURCES 238 232 In the past, material from Mound Applied ...

  12. Field emission electron source

    DOE Patents [OSTI]

    Zettl, Alexander Karlwalter; Cohen, Marvin Lou

    2000-01-01

    A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

  13. Vehicle Technologies Program: Goals, Strategies, and Top Accomplishmen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and economically harmful price shocks, while petroleum-powered transportation generates air pollution and one third of U.S. greenhouse gas emissions. Reducing transportation's...

  14. Alta Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    renewable power purchases required for California's regulated utilities. By not utilizing fossil fuels that emit harmful gases, the AWEC will reduce air emissions on an annual...

  15. FreedomCAR and fuel partnership plan

    SciTech Connect (OSTI)

    None, None

    2006-03-01

    Plan that details the research effort necessary to develop the technologies to reduce dependence of the nation's personal transportation system on imported oil and minimize harmful vehicle emissions.

  16. Zolo Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    to improve the efficiency and reduce harmful emission, including GHG's, from large combustion sources such as coal-fired power plants and gas turbines. References: Zolo...

  17. Catalysts, systems and methods to reduce NOX in an exhaust gas stream

    DOE Patents [OSTI]

    Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard

    2010-07-20

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.

  18. Environmental Emissions Nonenergy Benefits Working Paper: ARRA Period

    SciTech Connect (OSTI)

    Carroll, David; Bausch, Daniel

    2015-03-01

    Weatherization reduces energy usage by low-income households, and thereby reduces the environmental impacts of the production and consumption of energy and reduces the social costs associated with those environmental impacts. The nonenergy benefits study conducted as part of the American Recovery and Reinvestment Act of 2009 (ARRA) Weatherization Assistance Program (WAP) evaluation focused on measuring the emissions reductions resulting from WAP program energy usage reductions and estimating the societal value of those emission reductions. While there are other environmental impacts associated with the WAP program, this study focused on emissions impacts because the 2010 National Research Council (NRC) report Hidden Costs of Energy: The Unpriced Consequences of Energy Production and Use recommended that Congress focus on emissions costs because they have the highest documented social impact costs

  19. Pressure reducing regulator

    DOE Patents [OSTI]

    Whitehead, John C. (Davis, CA); Dilgard, Lemoyne W. (Willits, CA)

    1995-01-01

    A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes.

  20. Pressure reducing regulator

    DOE Patents [OSTI]

    Whitehead, J.C.; Dilgard, L.W.

    1995-10-10

    A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure is disclosed. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes. 10 figs.

  1. Emissions characteristics of Military Helicopter Engines Fueled with JP-8 and a Fischer-Tropsch Fuel

    SciTech Connect (OSTI)

    Corporan, E.; DeWitt, M.; Klingshirn, Christopher D; Striebich, Richard; Cheng, Mengdawn

    2010-01-01

    The rapid growth in aviation activities and more stringent U.S. Environmental Protection Agency regulations have increased concerns regarding aircraft emissions, due to their harmful health and environmental impacts, especially in the vicinity of airports and military bases. In this study, the gaseous and particulate-matter emissions of two General Electric T701C engines and one T700 engine were evaluated. The T700 series engines power the U.S. Army's Black Hawk and Apache helicopters. The engines were fueled with standard military JP-8 fuel and were tested at three power settings. In addition, one of the T701C engines was operated on a natural-gas-derived Fischer-Tropsch synthetic paraffinic kerosene jet fuel. Test results show that the T701C engine emits significantly lower particulate-matter emissions than the T700 for all conditions tested. Particulate-matter mass emission indices ranged from 0.2-1.4 g/kg fuel for the T700 and 0.2-0.6 g/kg fuel for the T701C. Slightly higher NOx and lower CO emissions were observed for the T701C compared with the T700. Operation of the T701C with the Fischer-Tropsch fuel rendered dramatic reductions in soot emissions relative to operation on JP-8, due primarily to the lack of aromatic compounds in the alternative fuel. The Fischer-Tropsch fuel also produced smaller particles and slight reductions in CO emissions.

  2. Light collection device for flame emission detectors

    DOE Patents [OSTI]

    Woodruff, Stephen D.; Logan, Ronald G.; Pineault, Richard L.

    1990-01-01

    A light collection device for use in a flame emission detection system such as an on-line, real-time alkali concentration process stream monitor is disclosed which comprises a sphere coated on its interior with a highly diffuse reflective paint which is positioned over a flame emission source, and one or more fiber optic cables which transfer the light generated at the interior of the sphere to a detecting device. The diffuse scattering of the light emitted by the flame uniformly distributes the light in the sphere, and the collection efficiency of the device is greater than that obtainable in the prior art. The device of the present invention thus provides enhanced sensitivity and reduces the noise associated with flame emission detectors, and can achieve substantial improvements in alkali detection levels.

  3. Methods for reduction of charging emissions

    SciTech Connect (OSTI)

    Schuecker, F.J.; Schulte, H.

    1997-12-31

    One of the most critical subjects in coking plants are charging emissions. The paper reviews the systems that have been used over the years to reduce charging emissions. The advantages and disadvantages are summarized for the following systems: Double collecting main with aspiration on both oven sides; Single collecting main with/without aspiration via standpipe, and extraction and cleaning of charging gas on charging car; Single collecting main with aspiration via standpipe and pretreatment of charging gas on the charging car as well as additional stationary exhaust and cleaning of charging gas; Single collecting main with aspiration via single standpipe; and Single collecting main with simultaneous aspiration via two standpipes and a U-tube connecting the oven chamber with the neighboring oven. The paper then briefly discusses prerequisites for reduction of charging emissions.

  4. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    SciTech Connect (OSTI)

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

    2010-05-01

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

  5. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  6. Exhaust emission control and diagnostics

    SciTech Connect (OSTI)

    Mazur, Christopher John; Upadhyay, Devesh

    2006-11-14

    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  7. Stewarding a Reduced Stockpile

    SciTech Connect (OSTI)

    Goodwin, B T; Mara, G

    2008-04-18

    The future of the US nuclear arsenal continues to be guided by two distinct drivers: the preservation of world peace and the prevention of further proliferation through our extended deterrent umbrella. Timely implementation of US nuclear policy decisions depends, in part, on the current state of stockpile weapons, their delivery systems, and the supporting infrastructure within the Department of Defense (DoD) and the Department of Energy's National Nuclear Security Administration (NNSA). In turn, the present is a product of past choices and world events. Now more than ever, the nuclear weapons program must respond to the changing global security environment and to increasing budget pressures with innovation and sound investments. As the nation transitions to a reduced stockpile, the successes of the Stockpile Stewardship Program (SSP) present options to transition to a sustainable complex better suited to stockpile size, national strategic goals and budgetary realities. Under any stockpile size, we must maintain essential human capital, forefront capabilities, and have a right-sized effective production capacity. We present new concepts for maintaining high confidence at low stockpile numbers and to effectively eliminate the reserve weapons within an optimized complex. We, as a nation, have choices to make on how we will achieve a credible 21st century deterrent.

  8. EM Goes Beyond DOE Goals Again to Reduce Carbon Footprint

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM reduced its carbon footprint by 34 percent in fiscal year 2015, exceeding the Department’s target of 19 percent, and moved past other sustainability goals DOE set in its initiative to cut greenhouse gas emissions and lower energy use intensity.

  9. Particulate emission abatement for Krakow boiler houses

    SciTech Connect (OSTI)

    Wysk, R.

    1995-12-31

    Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissions which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.

  10. Final Technical Report HFC Concrete: A Low-­‐Energy, Carbon-­Dioxide-­Negative Solution for reducing Industrial Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Dr. Larry McCandlish, Principal Investigator; Dr. Richard Riman, Co-Principal Investigator

    2012-05-14

    Solidia/CCSM received funding for further research and development of its Low Temperature Solidification Process (LTS), which is used to create hydrate-free concrete (HFC). LTS/HFC is a technology/materials platform that offers wide applicability in the built infrastructure. Most importantly, it provides a means of making concrete without Portland cement. Cement and concrete production is a major consumer of energy and source of industrial greenhouse gas (GHG) emissions. The primary goal of this project was to develop and commercialize a novel material, HFC, which by replacing traditional concrete and cement, reduces both energy use and GHG emissions in the built infrastructure. Traditional concrete uses Portland Cement (PC) as a binder. PC production involves calcination of limestone at {approx}1450 C, which releases significant amounts of CO{sub 2} gas to the atmosphere and consumes a large amount of energy due to the high temperature required. In contrast, HFC is a carbonate-based hydrate-free concrete (HFC) that consumes CO{sub 2} gas in its production. HFC is made by reaction of silicate minerals with CO{sub 2} at temperatures below 100 C, more than an order-of-magnitude below the temperature required to make PC. Because of this significant difference in temperature, it is estimated that we will be able to reduce energy use in the cement and concrete industry by up to 30 trillion Btu by 2020. Because of the insulating properties of HFC, we believe we will also be able to significantly reduce energy use in the Building sector, though the extent of this saving is not yet quantified. It is estimated that production of a tonne of PC-based concrete requires about 6.2 million Btu of energy and produces over 1 tonne of CO{sub 2} emissions (Choate, 2003). These can be reduced to 1.9 million Btu and 0.025 tonnes of CO{sub 2} emissions per tonne of HFC (with overall CO{sub 2}-negativity possible by increasing carbonation yield). In this way, by replacing PC

  11. Emissions from premixed charge compression ignition (PCCI) combustion and affect on emission control devices

    SciTech Connect (OSTI)

    Parks, II, James E; Kass, Michael D; Huff, Shean P; Barone, Teresa L; Lewis Sr, Samuel Arthur; Prikhodko, Vitaly Y; Storey, John Morse

    2010-01-01

    A light-duty diesel engine has been operated in advanced combustion modes known generally as premixed charge compression ignition (PCCI). The emissions have been characterized for several load and speed combinations. Fewer NO{sub x} and particulate matter (PM) emissions are produced by PCCI, but higher CO and hydrocarbon (HC) emissions result. In addition, the nature of the PM differs from conventional combustion; the PM is smaller and has a much higher soluble organic fraction (SOF) content (68% vs. 30% for conventional combustion). Three catalyst technologies were studied to determine the affects of HECC on catalyst performance; the technologies were a lean NO{sub x} trap (LNT), diesel oxidation catalyst (DOC), and diesel particulate filter (DPF). The LNT benefited greatly from the reduced NO{sub x} emissions associated with PCCI. NO{sub x} capacity requirements are reduced as well as overall tailpipe NO{sub x} levels particularly at low load and temperature conditions where regeneration of the LNT is difficult. The DOC performance requirements for PCCI are more stringent due to the higher CO and HC emissions; however, the DOC was effective at controlling the higher CO and HC emissions at conditions above the light-off temperature. Below light-off, CO and HC emissions are problematic. The study of DPF technology focused on the fuel penalties associated with DPF regeneration or 'desoot' due to the different PM loading rates from PCCI vs. conventional combustion. Less frequent desoot events were required from the lower PM from PCCI and, when used in conjunction with an LNT, the lower PM from less frequent LNT regeneration. The lower desoot frequency leads a {approx}3% fuel penalty for a mixture of PCCI and conventional loads vs. {approx}4% for conventional only combustion.

  12. Reducing gas generators and methods for generating a reducing gas

    DOE Patents [OSTI]

    Scotto, Mark Vincent; Perna, Mark Anthony

    2015-11-03

    One embodiment of the present invention is a unique reducing gas generator. Another embodiment is a unique method for generating a reducing gas. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for generating reducing gas. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  13. U.S. Government Supports Low Emission Economic Growth

    SciTech Connect (OSTI)

    2015-11-01

    Countries around the world face the challenge of maintaining long-term sustainable economic growth and development under the threat of climate change. By identifying and pursuing a sustainable development pathway now, they are better positioned to reach their economic growth goals while addressing climate change impacts and lowering greenhouse gas (GHG) emissions. Low emission development strategies - development plans that promote sustainable social and economic development while reducing long-term GHG emissions - provide a pathway to preparing for a global low emission future. Partner country governments are working with the U.S. government through the Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program to further their national development objectives.

  14. Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    Broader source: Energy.gov [DOE]

    Numerous transportation strategies are directed at reducing energy use and greenhouse gas (GHG) emissions by changing the behavior of individual drivers or travelers. These behavioral changes may have the effect of reducing travel, shifting travel to more efficient modes, or improving the efficiency of existing travel. Since the 1970s, federal, regional, state and municipal agencies have tried to reduce energy use, emissions, and congestion by influencing travel behavior. This report reviews and summarizes the literature on relationships between these strategies and transportation-related energy use and GHG emissions to examine how changes to travel behavior can reduce transportation energy use and discuss the potential for federal actions to affect travel behavior.

  15. NREL: Transportation Research - NREL Study Predicts Fuel and Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Automated Mobility District Study Predicts Fuel and Emissions Impact of Automated Mobility District January 21, 2016 With emerging technologies, travel behavior may shift from personal vehicles to automated transit systems. An NREL study shows that a campus-sized -- ranging from four to 10 square miles -- automated mobility district (AMD) has the potential to reduce fuel consumption and greenhouse gas emissions by 4% to 14% depending on various operating and ridership factors.

  16. Passive Catalytic Approach to Low Temperature NOx Emission Abatement |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Catalytic Approach to Low Temperature NOx Emission Abatement Passive Catalytic Approach to Low Temperature NOx Emission Abatement Numerically evaluated and optimized proposed state-of-the-art passive catalytic technology designed to reduce NOx released during vehicle cold start portion of the FTP-75 cycle deer11_henry.pdf (1.27 MB) More Documents & Publications Advanced Technology Light Duty Diesel Aftertreatment System Cummins' Next Generation Tier 2, Bin 2 Light

  17. Fossil fuel derivatives with reduced carbon. Phase I final report

    SciTech Connect (OSTI)

    Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

    1999-06-30

    This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

  18. Emissions credit trading: A new revenue stream for refiners

    SciTech Connect (OSTI)

    Henry, J.; Hirshfeld, D.

    1994-12-31

    This presentation describes several innovations in the fossil fuels and automotive/petroleum industries which have been improved or invented as a result of the necessity to comply with Clean Air Act regulations. Such innovations as boiler modifications, usage of low-sulfur coal, improved combustion, pre-combustion cleaning of coal, reformulated gasolines, and oxygenated fuels have all contributed to reductions in air pollution emissions from fossil fuel-powered plants and automotive emissions. Market alternatives for reducing the impacts of the usage of fossil fuels and automotive emissions on the ozone layer are also described.

  19. Selective emission multilayer coatings for a molybdenum thermophotovoltaic radiator

    DOE Patents [OSTI]

    Cockeram, Brian Vern

    2004-01-27

    Multilayer coating designs have been developed to provide selective emission for a molybdenum thermophotovoltaic (TPV) radiator surface. These coatings increase the surface emissivity of a molybdenum TPV radiator substrate in the wavelength range that matches the bandgap of the TPV cells to increase the power density of the TPV system. Radiator emission at wavelengths greater than the bandgap energy of the TPV cells is greatly reduced through the use of these coatings, which significantly increases the efficiency of the TPV system. The use of this coating greatly improves the performance of a TPV system, and the coating can be tailored to match the bandgap of any practical TPV system.

  20. Climate Change Technology Scenarios: Energy, Emissions, and Economic Implications

    SciTech Connect (OSTI)

    Placet, Marylynn; Humphreys, Kenneth K.; Mahasenan, N Maha

    2004-08-15

    This report describes three advanced technology scenarios and various illustrative cases developed by staff of Pacific Northwest National Laboratory (PNNL) for the U.S. Climate Change Technology Program. These scenarios and illustrative cases explore the energy, emissions and economic implications of using advanced energy technologies and other climate change related technologies to reduce future emissions of greenhouse gases (GHGs). The cases were modeled using the Mini Climate Assessment Model (MiniCAM) developed by PNNL. The report describes the scenarios, the specifications for the cases, and the results. The report also provides background information on current emissions of GHGs and issues associated with stabilizing GHG concentrations.

  1. Ultrasonic processor reduces drill-cuttings size and eliminates subsea mounds

    SciTech Connect (OSTI)

    Gaddy, D.E.

    1997-10-06

    Drill cuttings size reduction using ultrasonics eliminated a subsea clean-up and significantly reduced the environmental impact in a North Sea drilling project. Reduction in cuttings size allows for a wider areal dispersion when released into the ocean because they are held in suspension longer than larger sizes. Thus, ocean currents carry the smaller cuttings farther away from the well template, leaving a much wider footprint than larger cuttings sizes. This eliminates the pile-up of cuttings that otherwise would contaminate and harm the marine habitat.

  2. ELECTRON EMISSION REGULATING MEANS

    DOE Patents [OSTI]

    Brenholdt, I.R.

    1957-11-19

    >An electronic regulating system is described for controlling the electron emission of a cathode, for example, the cathode in a mass spectrometer. The system incorporates a transformer having a first secondary winding for the above-mentioned cathode and a second secondary winding for the above-mentioned cathode and a second secondary winding load by grid controlled vacuum tubes. A portion of the electron current emitted by the cathode is passed through a network which develops a feedback signal. The system arrangement is completed by using the feedback signal to control the vacuum tubes in the second secondary winding through a regulator tube. When a change in cathode emission occurs, the feedback signal acts to correct this change by adjusting the load on the transformer.

  3. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

    1998-05-05

    A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  4. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, Alicia L.; Griffith, William L.; Dorsey, George F.; West, Brian H.

    1998-01-01

    A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  5. Power plant emissions reduction

    SciTech Connect (OSTI)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  6. Particulate and Gaseous Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Gaseous Emissions - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  7. Acoustic emission monitoring system

    DOE Patents [OSTI]

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  8. Energy-Related Carbon Emissions in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Energy-Related Carbon Emissions Detailed Energy-Related Carbon Emissions All Industry Groups 1994 emissions Selected Industries Petroleum refining Chemicals Iron & Steel...

  9. GBTL Workshop GHG Emissions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GHG Emissions GBTL Workshop GHG Emissions EERE Presentation of Greenhouse Gas EmissionsResource Potential gbtlworkshopghgemissions.pdf (1.37 MB) More Documents & Publications ...

  10. Alternative Fuels Data Center: Propane Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Emissions on ...

  11. Trading permanent and temporary carbon emissions credits

    SciTech Connect (OSTI)

    Marland, Gregg; Marland, Eric

    2009-08-01

    In this issue of Climatic Change, Van Kooten (2009) addresses an issue that has bedeviled negotiators since the drafting stage of the Kyoto Protocol. If we accept that increasing withdrawals of carbon dioxide from the atmpshere has the same net impact on the climate system as reducing emissions of carbon dioxide to the atmosphere, how do we design a system that allows trading of one for the other? As van Kooten expresses the challenge: 'The problem is that emissions reduction and carbon sequestration, while opposite sides of the same coin in some sense, are not directly comparable, thereby inhibiting their trade in carbon markets.' He explains: 'The difficulty centers on the length of time that mitigation strategies without CO{sub 2} from entering the atmosphere - the duration problem.' While reducing emissions of CO{sub 2} represents an essentially permanent benefit for the atmosphere, capturing CO{sub 2} that has been produced (whether capture is from the atmosphere or directly from, for example, the exhaust from power plants) there is the challenge of storing the carbon adn the risk that it will yet escape to the atmosphere. Permanent benefit to the atmosphere is often not assured for carbon sequestration activities. This is especially true if the carbon is taken up and stored in the biosphere - e.g. in forest trees or agricultural soils.

  12. Krakow conference on low emissions sources: Proceedings

    SciTech Connect (OSTI)

    Pierce, B.L.; Butcher, T.A.

    1995-12-31

    The Krakow Conference on Low Emission Sources presented the information produced and analytical tools developed in the first phase of the Krakow Clean Fossil Fuels and Energy Efficiency Program. This phase included: field testing to provide quantitative data on missions and efficiencies as well as on opportunities for building energy conservation; engineering analysis to determine the costs of implementing pollution control; and incentives analysis to identify actions required to create a market for equipment, fuels, and services needed to reduce pollution. Collectively, these Proceedings contain reports that summarize the above phase one information, present the status of energy system management in Krakow, provide information on financing pollution control projects in Krakow and elsewhere, and highlight the capabilities and technologies of Polish and American companies that are working to reduce pollution from low emission sources. It is intended that the US reader will find in these Proceedings useful results and plans for control of pollution from low emission sources that are representative of heating systems in central and Eastern Europe. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  13. Optical emission line monitor with background observation and cancellation

    DOE Patents [OSTI]

    Goff, D.R.; Notestein, J.E.

    1985-01-04

    A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium D-line emission in coal combustion, may be detected in the presence of interferring background or blackbody radiation with emissions much greater in intensity than that of the emission line being detected. A bifurcated fiber optic light guide is adapted at the end of one branch to view the combustion light which is guided to a first bandpass filter, adapted to the common trunk end of the fiber. A portion of the light is reflected back through the common trunk portion of the fiber to a second bandpass filter adapted to the end of the other branch of the fiber. The first filter bandpass is centered at a wavelength corresponding to the emission line to be detected with a bandwidth of about three nanometers (nm). The second filter is centered at the same wavelength but having a width of about 10 nm. First and second light detectors are located to view the light passing through the first and second filters respectively. Thus, the second detector is blind to the light corresponding to the emission line of interest detected by the first detector and the difference between the two detector outputs is uniquely indicative of the intensity of only the combustion flame emission of interest. This instrument can reduce the effects of interfering blackbody radiation by greater than 20 dB.

  14. Optical emission line monitor with background observation and cancellation

    DOE Patents [OSTI]

    Goff, David R.; Notestein, John E.

    1986-01-01

    A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium D-line emission in coal combustion, may be detected in the presence of interferring background or blackbody radiation with emissions much greater in intensity than that of the emission line being detected. A bifurcated fiber optic light guide is adapted at the end of one branch to view the combustion light which is guided to a first bandpass filter, adapted to the common trunk end of the fiber. A portion of the light is reflected back through the common trunk portion of the fiber to a second bandpass filter adapted to the end of the other branch of the fiber. The first filter bandpass is centered at a wavelength corresponding to the emission line to be detected with a bandwidth of about three nanometers (nm). The second filter is centered at the same wavelength but having a width of about 10 nm. First and second light detectors are located to view the light passing through the first and second filters respectively. Thus, the second detector is blind to the light corresponding to the emission line of interest detected by the first detector and the difference between the two detector outputs is uniquely indicative of the intensity of only the combustion flame emission of interest. This instrument can reduce the effects of interferring blackbody radiation by greater than 20 dB.

  15. Emissions Benefits of Distributed Generation in the Texas Market

    SciTech Connect (OSTI)

    Hadley, SW

    2005-06-16

    One potential benefit of distributed generation (DG) is a net reduction in air emissions. While DG will produce emissions, most notably carbon dioxide and nitrogen oxides, the power it displaces might have produced more. This study used a system dispatch model developed at Oak Ridge National Laboratory to simulate the 2012 Texas power market with and without DG. This study compares the reduction in system emissions to the emissions from the DG to determine the net savings. Some of the major findings are that 85% of the electricity displaced by DG during peak hours will be simple cycle natural gas, either steam or combustion turbine. Even with DG running as baseload, 57% of electricity displaced will be simple cycle natural gas. Despite the retirement of some gas-fired steam units and the construction of many new gas turbine and combined cycle units, the marginal emissions from the system remain quite high (1.4 lb NO{sub x}/MWh on peak and 1.1 lb NO{sub x}/MWh baseload) compared to projected DG emissions. Consequently, additions of DG capacity will reduce emissions in Texas from power generation in 2012. Using the DG exhaust heat for combined heat and power provides an even greater benefit, since it eliminates further boiler emissions while adding none over what would be produced while generating electricity. Further studies are warranted concerning the robustness of the result with changes in fuel prices, demands, and mixes of power generating technology.

  16. Atmospheric Inverse Estimates of Methane Emissions from Central California

    SciTech Connect (OSTI)

    Zhao, Chuanfeng; Andrews, Arlyn E.; Bianco, Laura; Eluszkiewicz, Janusz; Hirsch, Adam; MacDonald, Clinton; Nehrkorn, Thomas; Fischer, Marc L.

    2008-11-21

    Methane mixing ratios measured at a tall-tower are compared to model predictions to estimate surface emissions of CH{sub 4} in Central California for October-December 2007 using an inverse technique. Predicted CH{sub 4} mixing ratios are calculated based on spatially resolved a priori CH{sub 4} emissions and simulated atmospheric trajectories. The atmospheric trajectories, along with surface footprints, are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. An uncertainty analysis is performed to provide quantitative uncertainties in estimated CH{sub 4} emissions. Three inverse model estimates of CH{sub 4} emissions are reported. First, linear regressions of modeled and measured CH{sub 4} mixing ratios obtain slopes of 0.73 {+-} 0.11 and 1.09 {+-} 0.14 using California specific and Edgar 3.2 emission maps respectively, suggesting that actual CH{sub 4} emissions were about 37 {+-} 21% higher than California specific inventory estimates. Second, a Bayesian 'source' analysis suggests that livestock emissions are 63 {+-} 22% higher than the a priori estimates. Third, a Bayesian 'region' analysis is carried out for CH{sub 4} emissions from 13 sub-regions, which shows that inventory CH{sub 4} emissions from the Central Valley are underestimated and uncertainties in CH{sub 4} emissions are reduced for sub-regions near the tower site, yielding best estimates of flux from those regions consistent with 'source' analysis results. The uncertainty reductions for regions near the tower indicate that a regional network of measurements will be necessary to provide accurate estimates of surface CH{sub 4} emissions for multiple regions.

  17. The quantum mechanics of ion-enhanced field emission and how it influences microscale gas breakdown

    SciTech Connect (OSTI)

    Li, Yingjie; Go, David B.

    2014-09-14

    The presence of a positive gas ion can enhance cold electron field emission by deforming the potential barrier and increasing the tunneling probability of electronsa process known as ion-enhanced field emission. In microscale gas discharges, ion-enhanced field emission produces additional emission from the cathode and effectively reduces the voltage required to breakdown a gaseous medium at the microscale (<10 ?m). In this work, we enhance classic field emission theory by determining the impact of a gaseous ion on electron tunneling and compute the effect of ion-enhanced field emission on the breakdown voltage. We reveal that the current density for ion-enhanced field emission retains the same scaling as vacuum cold field emission and that this leads to deviations from traditional breakdown theory at microscale dimensions.

  18. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    SciTech Connect (OSTI)

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2005-05-15

    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This work provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum optics in photonic-band-gap crystals and for applications wherein directional emission and total emission power are controlled.

  19. Ultrafast thermionic emission from metal irradiated using a femtosecond laser and an electric field in combination

    SciTech Connect (OSTI)

    Wang, Tingfeng; Guo, Jin; Shao, Junfeng; Wang, Dinan; Chen, Anmin E-mail: mxjin@jlu.edu.cn; Jin, Mingxing E-mail: mxjin@jlu.edu.cn

    2015-03-15

    Ultrafast thermionic emission from gold film irradiated with a femtosecond laser pulse in the presence of an additional electric field is analyzed using a two-temperature equation combined with a modified Richardson equation. The calculated results show that the duration of the emission is below 1 ps. Supplying an additional electric field is found to change the emission from the metal surface. Given the same laser fluence, this additional field reduces the work function of the metal, and thus improves the efficiency of thermionic emission. These results help to understand the mechanism and suggest ways to improve emissions in the context of ultrafast thermalized electron systems.

  20. Regional versus global? -- Will strategies for reduction of sulfur dioxide emissions from electric utilities increase carbon dioxide emissions?

    SciTech Connect (OSTI)

    Randolph, J.C.; Dolsak, N.

    1996-12-31

    Electric utilities, which are dependent on high-sulfur coal are expected to reduce their SO{sub 2} emissions. The strategies for reduction of SO{sub 2} emissions may result in increased CO{sub 2} emissions. Thereby decrease of regional pollution may cause increase of global pollution. Environmental, political, moral, and economic consequences of the two types of pollution differ significantly. Midwestern electric utilities, USA, which are dependent on high-sulfur coal, are analyzed in the paper. However, the same problem is relevant for some European coal fueled power plants. Strategies for reduction of SO{sub 2} emissions, employed by Midwestern electric utilities to comply with the clean Air Act amendments (CAAA) of 1990 and their possible affects on CO{sub 2} emissions, are presented. The paper focuses on two general strategies for reduction of SO{sub 2} emissions. First is coal-switching or blending with a low-sulfur coal. Second is construction and use of flue-gas desulfurization devices (scrubbers). A combination of both strategies is also a viable option. Switching to low-sulfur coal may result in larger CO{sub 2} emissions because that coal has different characteristics and has to be transported much greater distances. Scrubbers require significant amounts of energy for their operation which requires burning more coal. This increases the level of CO{sub 2} emissions.

  1. Oxygen-reducing catalyst layer

    DOE Patents [OSTI]

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; Yang, Ruizhi; Easton, E. Bradley; Dahn, Jeffrey R.; O'Neill, David G.

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  2. Positron Emission Tomography (PET)

    DOE R&D Accomplishments [OSTI]

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  3. Acoustic emission intrusion detector

    DOE Patents [OSTI]

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  4. Multi-Pollutant Emissions Control: Pilot Plant Study of Technologies for Reducing Hg, SO3, NOx and CO2 Emissions

    SciTech Connect (OSTI)

    Michael L. Fenger; Richard A. Winschel

    2005-08-31

    A slipstream pilot plant was built and operated to investigate technology to adsorb mercury (Hg) onto the existing particulate (i.e., fly ash) by cooling flue gas to 200-240 F with a Ljungstrom-type air heater or with water spray. The mercury on the fly ash was then captured in an electrostatic precipitator (ESP). An alkaline material, magnesium hydroxide (Mg(OH){sub 2}), is injected into flue gas upstream of the air heater to control sulfur trioxide (SO{sub 3}), which prevents acid condensation and corrosion of the air heater and ductwork. The slipstream was taken from a bituminous coal-fired power plant. During this contract, Plant Design and Construction (Task 1), Start Up and Maintenance (Task 2), Baseline Testing (Task 3), Sorbent Testing (Task 4), Parametric Testing (Task 5), Humidification Tests (Task 6), Long-Term Testing (Task 7), and a Corrosion Study (Task 8) were completed. The Mercury Stability Study (Task 9), ESP Report (Task 11), Air Heater Report (Task 12) and Final Report (Task 14) were completed. These aspects of the project, as well as progress on Public Outreach (Task 15), are discussed in detail in this final report. Over 90% mercury removal was demonstrated by cooling the flue gas to 200-210 F at the ESP inlet; baseline conditions with 290 F flue gas gave about 26% removal. Mercury removal is sensitive to flue gas temperature and carbon content of fly ash. At 200-210 F, both elemental and oxidized mercury were effectively captured at the ESP. Mg(OH){sub 2} injection proved effective for removal of SO{sub 3} and eliminated rapid fouling of the air heater. The pilot ESP performed satisfactorily at low temperature conditions. Mercury volatility and leaching tests did not show any stability problems. No significant corrosion was detected at the air heater or on corrosion coupons at the ESP. The results justify larger-scale testing/demonstration of the technology. These conclusions are presented and discussed in two presentations given in July and September of 2005 and are included in Appendices E and F.

  5. Measurement and Characterization of Unregulated Emissions from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Measurement and Characterization of Unregulated Emissions from Advanced Technologies...

  6. The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation

    SciTech Connect (OSTI)

    Price, Lynn; Marnay, Chris; Sathaye, Jayant; Muritshaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

    2002-08-01

    The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We find that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

  7. Reducing fuel consumption on the field, by continuously measuring fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    quality on electronically fuel injected engines. | Department of Energy fuel consumption on the field, by continuously measuring fuel quality on electronically fuel injected engines. Reducing fuel consumption on the field, by continuously measuring fuel quality on electronically fuel injected engines. Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-03_flot.pdf (270.06 KB) More Documents &

  8. Tribal Facilities Retrofits: Freeing Up Resources through Reduced Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    up resources through reduced demand" Elias Duran - Facilities Manager ¡ Day to day operations of facilities ¡ Budget control over facilities ¡ Project needs for future space requirements ¡ Maintenance ¡ Capital improvements ¡ Brief history of the Tlingit & Haida Tribes ¡ Tour of our existing facilities ¡ Historical utility cost data ¡ Summary of Project Objectives ¡ Expected cost and emission reductions ¡ Strategic planning for future implementation Two separate Tribes United

  9. Mitigation options for methane emissions from rice fields in the Philippines

    SciTech Connect (OSTI)

    Lantin, R.S.; Buendia, L.V.; Wassmann, R.

    1996-12-31

    The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of the total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.

  10. Elastic emission polishing

    SciTech Connect (OSTI)

    Loewenthal, M.; Loseke, K.; Dow, T.A.; Scattergood, R.O.

    1988-12-01

    Elastic emission polishing, also called elastic emission machining (EEM), is a process where a stream of abrasive slurry is used to remove material from a substrate and produce damage free surfaces with controlled surface form. It is a noncontacting method utilizing a thick elasto-hydrodynamic film formed between a soft rotating ball and the workpiece to control the flow of the abrasive. An apparatus was built in the Center, which consists of a stationary spindle, a two-axis table for the workpiece, and a pump to circulate the working fluid. The process is controlled by a programmable computer numerical controller (CNC), which presently can operate the spindle speed and movement of the workpiece in one axis only. This apparatus has been used to determine material removal rates on different material samples as a function of time, utilizing zirconium oxide (ZrO{sub 2}) particles suspended in distilled water as the working fluid. By continuing a study of removal rates the process should become predictable, and thus create a new, effective, yet simple tool for ultra-precision mechanical machining of surfaces.

  11. Zero emission coal

    SciTech Connect (OSTI)

    Ziock, H.; Lackner, K.

    2000-08-01

    We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

  12. Reducing Regulatory Burden | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request for information on reducing regulatory burden Reducing Regulatory Burden (177.64 KB) More Documents & Publications Reducing Regulatory Burden Reducing Regulatory Burden

  13. Control of SOx emission in tail gas of the Claus Plant at Kwangyang Steel Works

    SciTech Connect (OSTI)

    Kang, H.S.; Park, J.W.; Hyun, H.D.; Lee, D.S.; Paik, S.C.; Chung, J.S.

    1995-12-01

    Pilot and/or laboratory studies were conducted in order to find methods for reducing the SOx emission in the Claus tail gas of the cokes unit. The TGT process which is based on the complete hydrogenation of the sulfur-containing compounds (SO{sub 2}, S) into H{sub 2}S and returning to the COG main line can reduce the SOx emission to zero. In case the return to the COG main is impossible, the SPOR process (Sulfur removal based on Partial Oxidation and Reduction) can be successfully applied to reduce the SOx emission.

  14. A Community Emissions Data System (CEDS) for Historical Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Zhou, Yuyu; Kyle, G. Page; Wang, Hailong; Yu, Hongbin

    2015-04-21

    Historical emission estimates for anthropogenic aerosol and precursor compounds are key data needed for Earth system models, climate models, and atmospheric chemistry and transport models; both for general analysis and assessment and also for model validation through comparisons with observations. Current global emission data sets have a number of shortcomings, including timeliness and transparency. Satellite and other earth-system data are increasingly available in near real-time, but global emission estimates lag by 5-10 years. The CEDS project will construct a data-driven, open source framework to produce annually updated emission estimates. The basic methodologies to be used for this system have been used for SO2 (Smith et al. 2011, Klimont, Smith and Cofala 2013), and are designed to complement existing inventory efforts. The goal of this system is to consistently extend current emission estimates both forward in time to recent years and also back over the entire industrial era. The project will produce improved datasets for global and (potentially) regional model, allow analysis of trends across time, countries, and sectors of emissions and emission factors, and facilitate improved scientific analysis in general. Consistent estimation of uncertainty will be an integral part of this system. This effort will facilitate community evaluation of emissions and further emission-related research more generally.

  15. STATUS OF DIAMOND SECONDARY EMISSION ENHANCED PHOTOCATHODE

    SciTech Connect (OSTI)

    RAO,T.; BEN-ZVI, I.; CHANG, X.; GRIMES, J.; GROVER, R.; ISAKOVIC, A.; SMEDLEY, J.; TODD, R.; WARREN, J.; WU, Q.

    2007-05-25

    The diamond secondary emission enhanced photocathode (SEEP) provides an attractive alternative for simple photo cathodes in high average current electron injectors. It reduces the laser power required to drive the cathode, simultaneously isolating the cathode and the FW cavity from each other, thereby protecting them from contamination and increasing their life time. In this paper, we present the latest results on the secondary electron yield using pulsed thermionic and photo cathodes as primary electron sources, shaping the diamond using laser ablation and reactive ion etching as well as the theoretical underpinning of secondary electron generation and preliminary results of modeling.

  16. Sulfur dioxide emissions from primary copper smelters in the western US

    SciTech Connect (OSTI)

    Mangeng, C.A.; Mead, R.W.

    1980-01-01

    The body of information presented is directed to environmental scientists and policy makers without chemical or metallurgical engineering backgrounds. This paper addresses the problems of reducing sulfur dioxide emissions from primary copper smelters in the western United States and projects the future impact of emissions within a framework of legal, technological, and economic considerations. Methodology used to calculate historical sulfur dioxide emissions is described. Sulfur dioxide emission regulations are outlined as they apply to primary copper smelters. A discussion of available sulfur dioxide control technology and copper smelting processes summarizes the technological and economic problems of reducing copper smelter emissions. Based upon these technological and economic considerations, projections of smelter emissions indicate that compliance with existing legislative requirements will be achieved by 1990. Three smelters are projected to close by 1985.

  17. Study Pinpoints Sources of Polluting Vehicle Emissions (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Unburned lubricant produces 60%-90% of organic carbon emissions. While diesel fuel is often viewed as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more significantly degrade air quality. Gasoline exhaust is at least as toxic on a per-unit-mass basis as diesel exhaust, and contributes up to 10 times more particulate matter (PM) to the emission inventory. Because emissions from both fuels can gravely impact health and the environment, researchers at the National Renewable Energy Laboratory (NREL) launched a study to understand how these pollutants relate to fuels, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE) project tested a variety of vehicles over different drive cycles at moderate (72 F) and cold (20 F) temperatures. Testing included: (1) Normal and high-emitting light-, medium-, and heavy-duty vehicles; (2) Gasoline, diesel, and compressed natural gas (CNG)-powered vehicles; (3) New and aged lubricants representative of those currently on the market; and (4) Gasoline containing no ethanol, E10, Texas-mandated low-emission diesel fuel, biodiesel, and CNG. The study confirmed that normally functioning emission control systems for gasoline light-duty vehicles are very effective at controlling organic carbon (OC) emissions. Diesel vehicles without aftertreatment emission control systems exhibited OC emissions approximately one order of magnitude higher than gasoline vehicles. High-emitter gasoline vehicles produced OC emissions similar to diesel vehicles without exhaust aftertreatment emission control. Exhaust catalysts combusted or converted more than 75% of lubricating oil components in the exhaust gases. Unburned crankcase lubricant made up 60%-90% of OC emissions. This OC represented 20%-50% of emitted PM in all but two of the vehicles. Three-way catalysts proved effective at reducing most of the OC. With high PM emitters or vehicles with deteriorated

  18. Limiting net greenhouse gas emissions in the United States

    SciTech Connect (OSTI)

    Bradley, R A; Watts, E C; Williams, E R

    1991-09-01

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  19. Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

    SciTech Connect (OSTI)

    McCormick, R. L.; Tennant, C. J.; Hayes, R. R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C. A.

    2005-11-01

    Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were the following: 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NO{sub x}+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NO{sub x} emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NO{sub x} increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines. The cetane improver 2-ethyl hexyl nitrate was shown to have no measurable effect on NO{sub x} emissions from B20 in these engines, in contrast to observations reported for older engines. The effect of intake air humidity on NO{sub x} emissions from the Cummins ISB was quantified. The CFR NO{sub x}/humidity correction factor was shown to be valid for an engine equipped with EGR, operating at 1700 m above sea level, and operating on conventional or biodiesel.

  20. Analysis of Strategies for Multiple Emissions from Electric Power SO2, NOX, CO2, Mercury and RPS

    Reports and Publications (EIA)

    2001-01-01

    At the request of the Subcommittee, the Energy Information Administration prepared an initial report that focused on the impacts of reducing power sector NOx, SO2, and CO2 emissions. The current report extends the earlier analysis to add the impacts of reducing power sector mercury emissions and introducing renewable portfolio standard (RPS) requirements.

  1. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Electricity suppliers and electricity companies must also provide a fuel mix report to customers twice annually, within the June and December billing cycles. Emissions information must be disclos...

  2. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Fuel Disclosure: Virginia’s 1999 electric industry restructuring law requires the state's electricity providers to disclose -- "to the extent feasible" -- fuel mix and emissions data regarding...

  3. Biodiesel and Pollutant Emissions (Presentation)

    SciTech Connect (OSTI)

    McCormick, R.; Williams, A.; Ireland, J.; Hayes, B.

    2006-09-28

    Presents the results from three methods of testing--engine, chassis, and PEM--for testing nitrogen oxide (NOx) emissions from B20.

  4. Fugitive Emissions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fugitive emissions refers to the release of greenhouse gases (GHGs) from pressurized ... substitutes for high-impact fugitive greenhouse gases (GHGs) among the DOE sites. ...

  5. Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2008

    SciTech Connect (OSTI)

    Ronald Warren and Robert F. Grossman

    2009-06-30

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to under-ground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by winds) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the North Las Vegas Facility (NLVF), an NTS support complex in the city of North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2008a) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from other man-made sources such as medical treatments. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo

  6. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  7. Controlling NOx emission from industrial sources

    SciTech Connect (OSTI)

    Srivastava, R.K.; Nueffer, W.; Grano, D.; Khan, S.; Staudt, J.E.; Jozewicz, W.

    2005-07-01

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, and the NOx SIP Call rulemakings. In addition to these regulations, the recent Interstate Air Quality Rulemaking proposal and other bills in the Congress are focusing on additional reductions of NOx. Industrial combustion sources accounted for about 18016 of NOx emissions in the United States in 2000 and constituted the second largest emitting source category within stationary sources, only behind electric utility sources. Based on these data, reduction of NOx emissions from industrial combustion sources is an important consideration in efforts undertaken to address the environmental concerns associated with NOx. This paper discusses primary and secondary NOx control technologies applicable to various major categories of industrial sources. The sources considered in this paper include large boilers, furnaces and fired heaters, combustion turbines, large IC engines, and cement kilns. For each source category considered in this paper, primary NOx controls are discussed first, followed by a discussion of secondary NOx controls.

  8. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    SciTech Connect (OSTI)

    Andres, Robert Joseph; Boden, Thomas A; Breon, F.-M.; Erickson, D; Gregg, J. S.; Jacobson, Andrew; Marland, Gregg; Miller, J.; Oda, T; Raupach, Michael; Rayner, P; Treanton, K.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

  9. Reducing Regulatory Burden | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Burden Reducing Regulatory Burden Request for information on reducing regulatory burden Reducing Regulatory Burden (289.74 KB) More Documents & Publications Reducing Regulatory Burden; Retrospective Review Under E.O. 13563 SEVENTH RFI COMMENTS ON REDUCING REGULATORY BURDEN

  10. Determining Reduced Order Models for Optimal Stochastic Reduced Order Models

    SciTech Connect (OSTI)

    Bonney, Matthew S.; Brake, Matthew R.W.

    2015-08-01

    The use of parameterized reduced order models(PROMs) within the stochastic reduced order model (SROM) framework is a logical progression for both methods. In this report, five different parameterized reduced order models are selected and critiqued against the other models along with truth model for the example of the Brake-Reuss beam. The models are: a Taylor series using finite difference, a proper orthogonal decomposition of the the output, a Craig-Bampton representation of the model, a method that uses Hyper-Dual numbers to determine the sensitivities, and a Meta-Model method that uses the Hyper-Dual results and constructs a polynomial curve to better represent the output data. The methods are compared against a parameter sweep and a distribution propagation where the first four statistical moments are used as a comparison. Each method produces very accurate results with the Craig-Bampton reduction having the least accurate results. The models are also compared based on time requirements for the evaluation of each model where the Meta- Model requires the least amount of time for computation by a significant amount. Each of the five models provided accurate results in a reasonable time frame. The determination of which model to use is dependent on the availability of the high-fidelity model and how many evaluations can be performed. Analysis of the output distribution is examined by using a large Monte-Carlo simulation along with a reduced simulation using Latin Hypercube and the stochastic reduced order model sampling technique. Both techniques produced accurate results. The stochastic reduced order modeling technique produced less error when compared to an exhaustive sampling for the majority of methods.

  11. Sources of CO and UHC Emissions in Low-Temperature Diesel Combustion Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The sources of unburned hydrocarbons and CO emissions from a PCI-like, early-injection low-temperature combustion system are examined through a combination of homogeneous reactor modeling employing detailed kinetics, multi-dimensional modeling using a reduced kinetic scheme, engine-out emissions measurements, and in-cylinder imaging of the spatial distributions of UHC and CO.

  12. Reduced waste generation, FY 1986

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    The United States Department of Energy is committed to the principles of minimizing the quantity and transuranic content of its transuranium (TRU) waste being generated at its nuclear facilities. The reasons are to reduce costs associated with waste handling and disposal, and also to reduce radiation exposure to workers and risk for radionuclide release to man and the environment. The purpose of this document is to provide the USDOE with a plan of research and development tasks for waste minimization, and is prepared so as to provide the maximum impact on volumes based on cost/benefit factors. The document is to be updated annually or as needed to reflect current and future tasks. The Reduced Waste Generation (RWG) tasks encompass a wide range of activities with the principal goals of (1) preventing the generation of waste and (2) converting TRU waste into low-level wastes (LLW) by sorting or decontamination. Concepts for reducing the volume such as in incineration and compaction are considered within the discipline of Reduced Waste Generation, but are considered as somewhat developed technology with only a need for implementation. 33 refs.

  13. Reduce air, reduce compliance cost new patented spray booth technology

    SciTech Connect (OSTI)

    McGinnis, F.

    1997-12-31

    A New Paint Spray Booth System that dramatically reduces air volumes normally required for capturing and controlling paint overspray that contains either Volatile Organic Compounds (VOC) or Hazardous Air Pollutants (HAP), or both. In turn, a substantial reduction in capital equipment expenditures for air abatement systems and air make-up heaters as well as related annual operating expenses is realized.

  14. China Energy and Emissions Paths to 2030

    SciTech Connect (OSTI)

    Fridley, David; Zheng, Nina; Zhou, Nan; Ke, Jing; Hasanbeigi, Ali; Morrow, Bill; Price, Lynn

    2011-01-14

    After over two decades of staggering economic growth and soaring energy demand, China has started taking serious actions to reduce its economic energy and carbon intensity by setting short and medium-term intensity reduction targets, renewable generation targets and various supporting policies and programs. In better understanding how further policies and actions can be taken to shape China's future energy and emissions trajectory, it is important to first identify where the largest opportunities for efficiency gains and emission reduction lie from sectoral and end-use perspectives. Besides contextualizing China's progress towards reaching the highest possible efficiency levels through the adoption of the most advanced technologies from a bottom-up perspective, the actual economic costs and benefits of adopting efficiency measures are also assessed in this study. This study presents two modeling methodologies that evaluate both the technical and economic potential of raising China's efficiency levels to the technical maximum across sectors and the subsequent carbon and energy emission implications through 2030. The technical savings potential by efficiency measure and remaining gap for improvements are identified by comparing a reference scenario in which China continues the current pace of with a Max Tech scenario in which the highest technically feasible efficiencies and advanced technologies are adopted irrespective of costs. In addition, from an economic perspective, a cost analysis of selected measures in the key industries of cement and iron and steel help quantify the actual costs and benefits of achieving the highest efficiency levels through the development of cost of conserved energy curves for the sectors. The results of this study show that total annual energy savings potential of over one billion tonne of coal equivalent exists beyond the expected reference pathway under Max Tech pathway in 2030. CO2 emissions will also peak earlier under Max Tech

  15. Microbial methods of reducing technetium

    DOE Patents [OSTI]

    Wildung, Raymond E. [Richland, WA; Garland, Thomas R. [Greybull, WY; Gorby, Yuri A. [Richland, WA; Hess, Nancy J. [Benton City, WA; Li, Shu-Mei W. [Richland, WA; Plymale, Andrew E. [Richland, WA

    2001-01-01

    The present invention is directed toward a method for microbial reduction of a technetium compound to form other compounds of value in medical imaging. The technetium compound is combined in a mixture with non-growing microbial cells which contain a technetium-reducing enzyme system, a stabilizing agent and an electron donor in a saline solution under anaerobic conditions. The mixture is substantially free of an inorganic technetium reducing agent and its reduction products. The resulting product is Tc of lower oxidation states, the form of which can be partially controlled by the stabilizing agent. It has been discovered that the microorganisms Shewanella alga, strain Bry and Shewanelia putrifacians, strain CN-32 contain the necessary enzyme systems for technetium reduction and can form both mono nuclear and polynuclear reduced Tc species depending on the stabilizing agent.

  16. Generalized local emission tomography

    DOE Patents [OSTI]

    Katsevich, Alexander J.

    1998-01-01

    Emission tomography enables locations and values of internal isotope density distributions to be determined from radiation emitted from the whole object. In the method for locating the values of discontinuities, the intensities of radiation emitted from either the whole object or a region of the object containing the discontinuities are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the isotope density discontinuity. The asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) knowing pointwise values of the attenuation coefficient within the object. In the method for determining the location of the discontinuity, the intensities of radiation emitted from an object are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the density discontinuity and the location .GAMMA. of the attenuation coefficient discontinuity. Pointwise values of the attenuation coefficient within the object need not be known in this case.

  17. Vehicle Emissions Review - 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Vehicle Emissions Review - 2011 Reviews regulatory requirements and general technology approaches for heavy- and light-duty vehicle emissions control - filter technology, new catalysts, NOx control, diesel oxidation catalysts, gasoline particulate filters deer11_johnson.pdf (2.67 MB) More Documents & Publications Vehicle Emissions Review - 2012 Diesel Emission Control Review Review of Emerging Diesel Emissions and Control

  18. Vehicle Emissions Review - 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Vehicle Emissions Review - 2012 Reviews vehicle emission control highlighting representative studies that illustrate the state-of-the-art deer12_johnson.pdf (4.79 MB) More Documents & Publications Diesel Emission Control Review Review of Emerging Diesel Emissions and Control Diesel Emission Control Technology in Review

  19. REDUCTION OF EMISSIONS FROM A HIGH SPEED FERRY

    SciTech Connect (OSTI)

    Thompson,G.; Gautam, M; Clark, N; Lyons, D; Carder, D; Riddle, W; Barnett, R; Rapp, B; George, S

    2003-08-24

    Emissions from marine vessels are being scrutinized as a major contributor to the total particulate matter (TPM), oxides of sulfur (SOx) and oxides of nitrogen (NOx) environmental loading. Fuel sulfur control is the key to SOx reduction. Significant reductions in the emissions from on-road vehicles have been achieved in the last decade and the emissions from these vehicles will be reduced by another order of magnitude in the next five years: these improvements have served to emphasize the need to reduce emissions from other mobile sources, including off road equipment, locomotives, and marine vessels. Diesel-powered vessels of interest include ocean going vessels with low- and medium-speed engines, as well as ferries with high speed engines, as discussed below. A recent study examined the use of intake water injection (WIS) and ultra low sulfur diesel (ULSD) to reduce the emissions from a high-speed passenger ferry in southern California. One of the four Detroit Diesel 12V92 two-stroke high speed engines that power the Waverider (operated by SCX, inc.) was instrumented to collect intake airflow, fuel flow, shaft torque, and shaft speed. Engine speed and shaft torque were uniquely linked for given vessel draft and prevailing wind and sea conditions. A raw exhaust gas sampling system was utilized to measure the concentration of NOx, carbon dioxide (CO2), and oxygen (O2) and a mini dilution tunnel sampling a slipstream from the raw exhaust was used to collect TPM on 70 mm filters. The emissions data were processed to yield brake-specific mass results. The system that was employed allowed for redundant data to be collected for quality assurance and quality control. To acquire the data, the Waverider was operated at five different steady state speeds. Three modes were in the open sea off Oceanside, CA, and idle and harbor modes were also used. Data have showed that the use of ULSD along with water injection (WIS) could significantly reduce the emissions of NOx and PM

  20. Characterization of emissions from advanced automotive power plant concepts

    SciTech Connect (OSTI)

    Montalvo, D.A.; Hare, C.T.

    1984-11-01

    Emissions from three diesel cars using two fuel formulations were assessed. The three diesel cars included a prototype naturally-aspirated Fiat 131, a prototype turbocharged Fiat 131, and a 1981 Oldsmobile Cutlass Supreme. Each Fiat was tested with and without a prototype catalytic trap. Vehicle operating procedures used for test purposes included the 1981 Federal Test Procedures as well as the Highway Fuel Economy Test, the New York City Cycle, and an 85 km/hr steady-state cruise. Both regulated and unregulated gaseous and particulate emissions were measured. Organic solubles in particulate were analyzed for various constituents and characteristics including fractionation by relative polarity, benzo(a)pyrene (BaP), and mutagenic activity by Ames bioassay. Application of the catalytic trap oxidizer system to the Fiat prototypes resulted in significant reductions of organic and carbon monoxide emissions under all transient driving conditions examined. Total particulate emissions were reduced an average of 55 percent with the turbocharged engine and 65 percent with the naturally-aspirated engine. The Ames assay mutagenic response (revertants/microgram) of the particulate-phase organics was elevated by the catalytic exhaust aftertreatment device, however the emission rates (revertants/km) were reduced an average of 66 percent with the turbocharged and 73 percent with the naturally-aspirated engines.

  1. Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology

    SciTech Connect (OSTI)

    McGill, R.N.

    1998-08-04

    Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

  2. Cofiring waste biofuels and coal for emissions reduction

    SciTech Connect (OSTI)

    Brouwer, J.; Owens, W.D.; Harding, N.S.

    1995-12-01

    Combustion tests have been performed in two pilot-scale combustion facilities to evaluate the emissions reduction possible while firing coal blended with several different biofuels. Two different boiler simulations, pulverized coal fired boilers and stoker coal fired boilers, were simulated. The pc-fired studies investigated the use of waste hardwood, softwood, and sludge as potential reburning fuels and compared the results with coal and natural gas. The results of this program showed that a reduction of 50-60% NO was obtained with approximately 10% wood heat input. Reburn stoichiometry was the most important variable. The reduction was strongly dependent on initial NO and only slightly dependent upon temperature. The stoker program investigated barriers to the successful blending of coal with waste railroad ties; parameters evaluated included blend firing rate, chip size, optimum feed location, overfire/underfire air ratio, and natural gas addition. The results of this study demonstrated that NO emissions could be reduced by more than 50% without any significant increase in CO or THC emissions by the proper use of zoned reburning. Both programs demonstrated several benefits of biofuel blends, including: (1) lower operating costs due to reduced fuel prices; (2) reduced waste disposal; (3) reduced maintenance costs; (4) reduced environmental costs, and (5) extension of the useful life of existing equipment.

  3. Catalysts to reduce NO.sub.x in an exhaust gas stream and methods of preparation

    DOE Patents [OSTI]

    Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard; Schmieg, Steven J.; Blint, Richard J.

    2011-05-17

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having a catalyst comprising silver and a platinum group metal on a particulate alumina support, the atomic fraction of the platinum group metal being less than or equal to about 0.25. Methods of manufacturing catalysts are described in which silver is impregnated on alumina particles.

  4. Catalysts to reduce NO.sub.x in an exhaust gas stream and methods of preparation

    DOE Patents [OSTI]

    Koermer, Gerald S.; Moini, Ahmad; Furbeck, Howard; Castellano, Christopher R.

    2012-05-08

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having a catalyst comprising silver on a particulate alumina support, the silver having a diameter of less than about 20 nm. Methods of manufacturing catalysts are described in which ionic silver is impregnated on particulate hydroxylated alumina particles.

  5. METHOD OF REDUCING PLUTONIUM COMPOUNDS

    DOE Patents [OSTI]

    Johns, I.B.

    1958-06-01

    A method is described for reducing plutonium compounds in aqueous solution from a higher to a lower valence state. This reduction of valence is achieved by treating the aqueous solution of higher valence plutonium compounds with hydrogen in contact with an activated platinum catalyst.

  6. Reduced-vibration tube array

    DOE Patents [OSTI]

    Bruck, Gerald J.; Bartolomeo, Daniel R.

    2004-07-20

    A reduced-vibration tube array is disclosed. The array includes a plurality of tubes in a fixed arrangement and a plurality of damping members positioned within the tubes. The damping members include contoured interface regions characterized by bracing points that selectively contact the inner surface of an associated tube. Each interface region is sized and shaped in accordance with the associated tube, so that the damping member bracing points are spaced apart a vibration-reducing distance from the associated tube inner surfaces at equilibrium. During operation, mechanical interaction between the bracing points and the tube inner surfaces reduces vibration by a damage-reducing degree. In one embodiment, the interface regions are serpentine shaped. In another embodiment, the interface regions are helical in shape. The interface regions may be simultaneously helical and serpentine in shape. The damping members may be fixed within the associated tubes, and damping member may be customized several interference regions having attributes chosen in accordance with desired flow characteristics and associated tube properties.

  7. Advanced Collaborative Emissions Study (ACES)

    SciTech Connect (OSTI)

    Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon; Shaikh, Rashid; Bailey, Brent; Tennant, Chris; Khalek, Imad; Mauderly, Joe; McDonald, Jacob; Zielinska, Barbara; Bemis, Jeffrey; Storey, John; Hallberg, Lance; Clark, Nigel

    2013-12-31

    The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested engines was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.

  8. Emissions Tool Estimates the Impact of Emissions on Smart Grid...

    Energy Savers [EERE]

    The free, web-based calculator aims to estimate the impact of NOx, SO2 and CO2 emissions on smart grid infrastructure investments, taking into account specific context and project ...

  9. Metal tritides helium emission

    SciTech Connect (OSTI)

    Beavis, L.C.

    1980-02-01

    Over the past several years, we have been measuring the release of helium from metal tritides (primarily erbium tritide). We find that qualitatively all tritides of interest to us behave the same. When they are first formed, the helium is released at a low rate that appears to be related to the amount of surface area which has access to the outside of the material (either film or bulk). For example, erbium tritide films initially release about 0.3% of the helium generated. Most tritide films emit helium at about this rate initially. At some later time, which depends upon the amount of helium generated, the parent occluding element and the degree of tritium saturation of the dihydride phase the helium emission changes to a new mode in which it is released at approximately the rate at which it is generated (for example, we measure this value to be approx. = .31 He/Er for ErT/sub 1/./sub 9/ films). If erbium ditritide is saturated beyond 1.9 T/Er, the critical helium/metal ratio decreases. For example, in bulk powders ErT/sub 2/./sub 15/ reaches critical release concentration at approx. = 0.03. Moderate elevation of temperature above room temperature has little impact on the helium release rate. It appears that the process may have approx. = 2 kcal/mol activation energy. The first helium formed is well bound. As the tritide ages, the helium is found in higher energy sites. Similar but less extensive measurements on scandium, titanium, and zirconium tritides are also described. Finally, the thermal desorption of erbium tritides of various ages from 50 days to 3154 days is discussed. Significant helium is desorbed along with the tritium in all but the youngest samples during thermodesorption.

  10. Observation of CH4 and other Non-CO2 Green House Gas Emissions from California

    SciTech Connect (OSTI)

    Fischer, Marc L.; Zhao, Chuanfeng; Riley, William J.; Andrews, Arlyn C.

    2009-01-09

    In 2006, California passed the landmark assembly bill AB-32 to reduce California's emissions of greenhouse gases (GHGs) that contribute to global climate change. AB-32 commits California to reduce total GHG emissions to 1990 levels by 2020, a reduction of 25 percent from current levels. To verify that GHG emission reductions are actually taking place, it will be necessary to measure emissions. We describe atmospheric inverse model estimates of GHG emissions obtained from the California Greenhouse Gas Emissions Measurement (CALGEM) project. In collaboration with NOAA, we are measuring the dominant long-lived GHGs at two tall-towers in central California. Here, we present estimates of CH{sub 4} emissions obtained by statistical comparison of measured and predicted atmospheric mixing ratios. The predicted mixing ratios are calculated using spatially resolved a priori CH{sub 4} emissions and surface footprints, that provide a proportional relationship between the surface emissions and the mixing ratio signal at tower locations. The footprints are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Integral to the inverse estimates, we perform a quantitative analysis of errors in atmospheric transport and other factors to provide quantitative uncertainties in estimated emissions. Regressions of modeled and measured mixing ratios suggest that total CH{sub 4} emissions are within 25% of the inventory estimates. A Bayesian source sector analysis obtains posterior scaling factors for CH{sub 4} emissions, indicating that emissions from several of the sources (e.g., landfills, natural gas use, petroleum production, crops, and wetlands) are roughly consistent with inventory estimates, but livestock emissions are significantly higher than the inventory. A Bayesian 'region' analysis is used to identify spatial variations in CH{sub 4} emissions from 13 sub-regions within California. Although, only

  11. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012

    SciTech Connect (OSTI)

    Geron, Chris; Gu, Lianhong; Daly, Ryan; Harley, Peter; Rasmussen, Rei; Seco, Roger; Guenther, Alex; Karl, Thomas

    2015-12-17

    Here, leaf-level isoprene and monoterpene emissions were collected and analyzed from five of the most abundant oak (Quercus) species in Central Missouri's Ozarks Region in 2012 during PINOT NOIR (Particle Investigations at a Northern Ozarks Tower – NOx, Oxidants, Isoprene Research). June measurements, prior to the onset of severe drought, showed isoprene emission rates and leaf temperature responses similar to those previously reported in the literature and used in Biogenic Volatile Organic Compound (BVOC) emission models. During the peak of the drought in August, isoprene emission rates were substantially reduced, and response to temperature was dramatically altered, especially for the species in the red oak subgenus (Erythrobalanus).

  12. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.

    1999-05-11

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  13. Power Plant Emission Reductions Using a Generation Performance Standard

    Reports and Publications (EIA)

    2001-01-01

    In an earlier analysis completed in response to a request received from Representative David McIntosh, Chairman of the Subcommittee on National Economic Growth, Natural Resources, and Regulatory Affairs, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides, sulfur dioxide, and carbon dioxide emissions, assuming a policy instrument patterned after the sulfur dioxide allowance program created in the Clean Air Act Amendments of 1990. This paper compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard as an instrument for reducing carbon dioxide emissions.

  14. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, Alan R.; Gruen, Dieter M.

    1999-01-01

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  15. Will regulation impede the market for emissions allowances

    SciTech Connect (OSTI)

    Anderson, B.S.; Casey, W.T.

    1994-03-15

    Title IV of the Clean Air Act Amendments of 1990 allow for trading of allowances for SO[sub 2] emissions. For this process to be efficient and to achieve the goal of reducing emissions by 10 million tons from 1980 levels, a freely functioning market in allowance trading needs to exist. This market could be threatened by some state regulations that require utilities to obtain prior approval from state commissions before selling property. There are several solutions for state regulators to employ to avoid inadvertently interfering with the allowance trading market. This article describes some of those possible solutions.

  16. Life Cycle Greenhouse Gas Emissions from Electricity Generation Fact Sheet

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  17. Financing Innovation is Preventing Emissions Now and in the Future

    Broader source: Energy.gov [DOE]

    Today, the Department’s Loan Programs Office (LPO) released a report highlighting the role it has played in financing commercial-scale deployments of energy technology innovation that are already helping the U.S. to reduce carbon dioxide emissions. As of September 2015, the clean energy and auto manufacturing projects in LPO’s portfolio have avoided nearly 25 million metric tons of carbon dioxide emissions. This is equivalent to taking 5.28 million gasoline-powered cars off the road.

  18. High Thermal Efficiency and Low Emissions with Supercritical Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection-Ignition in a Light Duty Engine | Department of Energy High Thermal Efficiency and Low Emissions with Supercritical Gasoline Injection-Ignition in a Light Duty Engine High Thermal Efficiency and Low Emissions with Supercritical Gasoline Injection-Ignition in a Light Duty Engine A novel fuel injector has been developed and tested that addresses the technical challenges of LTC, HCCI, gasoline PPC, and RCCI by reducing complexity and cost. p-16_zoldak.pdf (698.09 KB) More Documents

  19. Trading Emissions PLC | Open Energy Information

    Open Energy Info (EERE)

    Trading Emissions PLC Jump to: navigation, search Name: Trading Emissions PLC Place: London, United Kingdom Zip: EC2N 4AW Product: Trading Emissions PLC is an investment fund...

  20. Active Diesel Emission Control Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Active Diesel Emission Control Systems 2004 Diesel Engine Emissions Reduction (DEER) Conferencen Presentation: RYPOS Active Diesel Emission Control Systems ...

  1. Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency

    Broader source: Energy.gov [DOE]

    An advanced engine design that is 15 percent more efficient than diesel, pollution free, and uses any fuel.

  2. New Report: Integrating More Wind and Solar Reduces Utilities' Carbon Emissions and Fuel Costs

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) released Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2), a follow-up to the initial WWSIS released in May 2010, which examined the viability, benefits, and challenges of integrating as much as 33% wind and solar power into the electricity grid of the western United States.

  3. Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries

    SciTech Connect (OSTI)

    Gary D. McGinnis

    2001-12-31

    The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

  4. Battery Electric Vehicles can reduce greenhouse has emissions and make renewable energy cheaper in India

    SciTech Connect (OSTI)

    Gopal, Anand R; Witt, Maggie; Sheppard, Colin; Harris, Andrew

    2015-07-01

    India's National Mission on Electric Mobility (NMEM) sets a countrywide goal of deploying 6 to 7 million hybrid and electric vehicles (EVs) by 2020. There are widespread concerns, both within and outside the government, that the Indian grid is not equipped to accommodate additional power demand from battery electric vehicles (BEVs). Such concerns are justified on the grounds of India's notorious power sector problems pertaining to grid instability and chronic blackouts. Studies have claimed that deploying BEVs in India will only

  5. Reduce Your Company's Energy Costs and Carbon Emissions with DOE Tools and Resources (Revised)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    A two-page overview fact sheet that describes the Industrial Technologies Program's Save Energy Now initiative and voluntary pledge program.

  6. Methods and systems to facilitate reducing NO.sub.x emissions in combustion systems

    DOE Patents [OSTI]

    Lacy, Benjamin Paul; Kraemer, Gilbert Otto; Varatharajan, Balachandar; Yilmaz, Ertan; Lipinski, John Joseph; Ziminsky, Willy Steve

    2011-02-15

    A method for assembling a gas turbine combustor system is provided. The method includes providing a combustion liner including a center axis, an outer wall, a first end, and a second end. The outer wall is orientated substantially parallel to the center axis. The method also includes coupling a transition piece to the liner second end. The transition piece includes an outer wall. The method further includes coupling a plurality of lean-direct injectors along at least one of the liner outer wall and the transition piece outer wall such that the injectors are spaced axially apart along the wall.

  7. Secretary Chu Announces Two New Projects to Reduce Emissions from Coal Plants

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Secretary Steven Chu announced today that projects by Basin Electric Power Cooperative and Hydrogen Energy International LLC have been selected for up to $408 million in funding from the American Recovery and Reinvestment Act.

  8. Secretary Chu Announces Two New Projects to Reduce Emissions from Coal Plants

    Broader source: Energy.gov [DOE]

    Up to $408 million in Recovery Act Funding for New Technologies to Advance Carbon Capture and Storage

  9. CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS- CASE STUDY, 2015

    Broader source: Energy.gov [DOE]

    Frito-Lay North America, Inc., a division of PepsiCo, in cooperation with the Energy Solutions Center, demonstrated and evaluated a CHP plant at a large food processing facility in Connecticut. CHP...

  10. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    SciTech Connect (OSTI)

    Xu, Jinzhuo; Ou-Yang, Wei Chen, Xiaohong; Guo, Pingsheng; Piao, Xianqing; Sun, Zhuo; Xu, Peng; Wang, Miao; Li, Jun

    2015-02-16

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V μm{sup −1} and threshold field of 0.657 V μm{sup −1} corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  11. Alternative Fuels Data Center: Ethanol Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Ethanol Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Vehicle

  12. Correlated Electrons in Reduced Dimensions

    SciTech Connect (OSTI)

    Bonesteel, Nicholas E

    2015-01-31

    This report summarizes the work accomplished under the support of US DOE grant # DE-FG02-97ER45639, "Correlated Electrons in Reduced Dimensions." The underlying hypothesis of the research supported by this grant has been that studying the unique behavior of correlated electrons in reduced dimensions can lead to new ways of understanding how matter can order and how it can potentially be used. The systems under study have included i) fractional quantum Hall matter, which is realized when electrons are confined to two-dimensions and placed in a strong magnetic field at low temperature, ii) one-dimensional chains of spins and exotic quasiparticle excitations of topologically ordered matter, and iii) electrons confined in effectively ``zero-dimensional" semiconductor quantum dots.

  13. Reducing carbon dioxide to products

    DOE Patents [OSTI]

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  14. Ferroelectric capacitor with reduced imprint

    DOE Patents [OSTI]

    Evans, Jr., Joseph T.; Warren, William L.; Tuttle, Bruce A.; Dimos, Duane B.; Pike, Gordon E.

    1997-01-01

    An improved ferroelectric capacitor exhibiting reduced imprint effects in comparison to prior art capacitors. A capacitor according to the present invention includes top and bottom electrodes and a ferroelectric layer sandwiched between the top and bottom electrodes, the ferroelectric layer comprising a perovskite structure of the chemical composition ABO.sub.3 wherein the B-site comprises first and second elements and a dopant element that has an oxidation state greater than +4. The concentration of the dopant is sufficient to reduce shifts in the coercive voltage of the capacitor with time. In the preferred embodiment of the present invention, the ferroelectric element comprises Pb in the A-site, and the first and second elements are Zr and Ti, respectively. The preferred dopant is chosen from the group consisting of Niobium, Tantalum, and Tungsten. In the preferred embodiment of the present invention, the dopant occupies between 1 and 8% of the B-sites.

  15. Acoustic emission linear pulse holography

    DOE Patents [OSTI]

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  16. emissions | OpenEI Community

    Open Energy Info (EERE)

    cities CO2 emissions OpenEI suburbs US New research from the University of California-Berkeley shows that those who live in cities in the United States have significantly smaller...

  17. Advanced Collaborative Emissions Study (ACES)

    Broader source: Energy.gov [DOE]

    ACES is a cooperative multi-party effort to characterize emissions and possible health effects of new, advanced heavy duty engine and control systems and fuels in the market 2007 - 2010.

  18. EIA - Greenhouse Gas Emissions Overview

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    grasslands 34 Net carbon dioxide sequestration in U.S. urban trees, yard trimmings, and food scraps 35 Emissions of carbon dioxide from biofuelbioenergy use by sector and fuel

  19. Diesel Emission Control in Review

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  20. Dielectric Resonator Metamasurfaces: Optical Magnetism Emission...

    Office of Scientific and Technical Information (OSTI)

    Optical Magnetism Emission and Optical Devices. Citation Details In-Document Search Title: Dielectric Resonator Metamasurfaces: Optical Magnetism Emission and Optical Devices. ...

  1. IPCC Emission Factor Database | Open Energy Information

    Open Energy Info (EERE)

    Emission Factor Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IPCC Emission Factor Database AgencyCompany Organization: World Meteorological Organization,...

  2. Steinbeis Technology Transfer Centre for Emissions Trading |...

    Open Energy Info (EERE)

    Steinbeis Technology Transfer Centre for Emissions Trading Jump to: navigation, search Name: Steinbeis Technology Transfer Centre for Emissions Trading Place: Augsburg, Bavaria,...

  3. IGES GHG Emissions Data | Open Energy Information

    Open Energy Info (EERE)

    GHG inventory Resource Type: Dataset Website: www.iges.or.jpencdmreportkyoto.html References: IGES GHG Emissions Data1 Summary "IGES GHG Emissions Data is aimed at...

  4. Energy-Related Carbon Emissions in Manufacturing

    Reports and Publications (EIA)

    2000-01-01

    Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

  5. Low Emissions Asian Development (LEAD) Program - Bangladesh ...

    Open Energy Info (EERE)

    Low Emissions Asian Development (LEAD) Program - Bangladesh Redirect page Jump to: navigation, search REDIRECT Low Emissions Asian Development (LEAD) Program Retrieved from...

  6. Zero Emissions Leasing LLC | Open Energy Information

    Open Energy Info (EERE)

    Zero Emissions Leasing LLC Jump to: navigation, search Name: Zero Emissions Leasing LLC Place: Honolulu, Hawaii Zip: 96822 Sector: Solar Product: Honolulu-based developer of solar...

  7. How the Carbon Emissions Were Estimated

    U.S. Energy Information Administration (EIA) Indexed Site

    dioxide emissions are the main component of greenhouse gas emissions caused by human activity. Carbon dioxide is emitted mostly as a byproduct of the combustion of fossil fuels...

  8. Emission Factors (EMFAC) | Open Energy Information

    Open Energy Info (EERE)

    The EMission FACtors (EMFAC) model is used to calculate emission rates from all motor vehicles, such as passenger cars to heavy-duty trucks, operating on highways, freeways...

  9. Measurement and Characterization of Unregulated Emissions from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Measurement and Characterization of Unregulated Emissions from Advanced Technologies Measurement and Characterization ...

  10. MapReduce SVM Game

    SciTech Connect (OSTI)

    Vineyard, Craig M.; Verzi, Stephen J.; James, Conrad D.; Aimone, James B.; Heileman, Gregory L.

    2015-08-10

    Despite technological advances making computing devices faster, smaller, and more prevalent in today's age, data generation and collection has outpaced data processing capabilities. Simply having more compute platforms does not provide a means of addressing challenging problems in the big data era. Rather, alternative processing approaches are needed and the application of machine learning to big data is hugely important. The MapReduce programming paradigm is an alternative to conventional supercomputing approaches, and requires less stringent data passing constrained problem decompositions. Rather, MapReduce relies upon defining a means of partitioning the desired problem so that subsets may be computed independently and recom- bined to yield the net desired result. However, not all machine learning algorithms are amenable to such an approach. Game-theoretic algorithms are often innately distributed, consisting of local interactions between players without requiring a central authority and are iterative by nature rather than requiring extensive retraining. Effectively, a game-theoretic approach to machine learning is well suited for the MapReduce paradigm and provides a novel, alternative new perspective to addressing the big data problem. In this paper we present a variant of our Support Vector Machine (SVM) Game classifier which may be used in a distributed manner, and show an illustrative example of applying this algorithm.

  11. MapReduce SVM Game

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vineyard, Craig M.; Verzi, Stephen J.; James, Conrad D.; Aimone, James B.; Heileman, Gregory L.

    2015-08-10

    Despite technological advances making computing devices faster, smaller, and more prevalent in today's age, data generation and collection has outpaced data processing capabilities. Simply having more compute platforms does not provide a means of addressing challenging problems in the big data era. Rather, alternative processing approaches are needed and the application of machine learning to big data is hugely important. The MapReduce programming paradigm is an alternative to conventional supercomputing approaches, and requires less stringent data passing constrained problem decompositions. Rather, MapReduce relies upon defining a means of partitioning the desired problem so that subsets may be computed independently andmore » recom- bined to yield the net desired result. However, not all machine learning algorithms are amenable to such an approach. Game-theoretic algorithms are often innately distributed, consisting of local interactions between players without requiring a central authority and are iterative by nature rather than requiring extensive retraining. Effectively, a game-theoretic approach to machine learning is well suited for the MapReduce paradigm and provides a novel, alternative new perspective to addressing the big data problem. In this paper we present a variant of our Support Vector Machine (SVM) Game classifier which may be used in a distributed manner, and show an illustrative example of applying this algorithm.« less

  12. Interactions between energy efficiency and emission trading under the 1990 Clean Air Act Amendments

    SciTech Connect (OSTI)

    Hillsman, E.L.; Alvic, D.R.

    1994-08-01

    The 1990 Clean Air Act Amendments affect electric utilities in numerous ways. The feature that probably has received the greatest attention is the provision to let utilities trade emissions of sulfur dioxide (SO{sub 2}), while at the same time requiring them to reduce S0{sub 2} emissions in 2000 by an aggregate 43%. The emission trading system was welcomed by many as a way of reducing the cost of reducing emissions, by providing greater flexibility than past approaches. This report examines some of the potential interactions between trading emissions and increasing end-use energy efficiency. The analysis focuses on emission trading in the second phase of the trading program, which begins in 2000. The aggregate effects, calculated by an emission compliance and trading model, turn out to be rather small. Aggressive improvement of end-use efficiency by all utilities might reduce allowance prices by $22/ton (1990 dollars), which is small compared to the reduction that has occurred in the estimates of future allowance prices and when compared to the roughly $400/ton price we estimate as a base case. However, the changes in the allowance market that result are large enough to affect some compliance decisions. If utilities in only a few states improve end-use efficiency aggressively, their actions may not have a large effect on the price of an allowance, but they could alter the demand for allowances and thereby the compliance decisions of utilities in other states. The analysis shows how improving electricity end-use efficiency in some states can cause smaller emission reductions in other states, relative to what would have happened without the improvements. Such a result, while not surprising given the theory behind the emission trading system, is upsetting to people who view emissions, environmental protection, and energy efficiency in moral rather than strictly economic terms.

  13. NOx Emission Reduction by Oscillating Combustion

    SciTech Connect (OSTI)

    John C. Wagner

    2004-03-31

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  14. NOx Emission Reduction by Oscillating combustion

    SciTech Connect (OSTI)

    Institute of Gas Technology

    2004-01-30

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  15. Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E; Franzese, Oscar

    2014-01-01

    We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends in the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.

  16. Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions

    SciTech Connect (OSTI)

    Yogeshwar Sahai

    2007-07-31

    Abstract: Chlorine gas is traditionally used for fluxing of aluminum melt for removal of alkali and alkaline earth elements. However this results in undesirable emissions of particulate matter and gases such as HCl and chlorine, which are often at unacceptable levels. Additionally, chlorine gas is highly toxic and its handling, storage, and use pose risks to employees and the local community. Holding of even minimal amounts of chlorine necessitates extensive training for all plant employees. Fugitive emissions from chlorine usage within the plant cause accelerated corrosion of plant equipment. The Secondary Aluminum Maximum Achievable Control Technology (MACT) under the Clean Air Act, finalized in March 2000 has set very tough new limits on particulate matter (PM) and total hydrogen chloride emissions from aluminum melting and holding furnaces. These limits are 0.4 and 0.1 lbs per ton of aluminum for hydrogen chloride and particulate emissions, respectively. Assuming new technologies for meeting these limits can be found, additional requirements under the Clean Air Act (Prevention of Significant Deterioration and New Source Review) trigger Best Available Control Technology (BACT) for new sources with annual emissions (net emissions not expressed per ton of production) over specified amounts. BACT currently is lime coated bag-houses for control of particulate and HCl emissions. These controls are expensive, difficult to operate and maintain, and result in reduced American competitiveness in the global economy. Solid salt fluxing is emerging as a viable option for the replacement of chlorine gas fluxing, provided emissions can be consistently maintained below the required levels. This project was a cooperative effort between the Ohio State University and Alcoa to investigate and optimize the effects of solid chloride flux addition in molten metal for alkali impurity and non-metallic inclusion removal minimizing dust and toxic emissions and maximizing energy

  17. Cofiring waste biofuels and coal for emissions reduction

    SciTech Connect (OSTI)

    Brouwer, J.; Owens, W.D.; Harding, N.S.

    1995-12-31

    Combustion tests have been performed in two pilot-scale combustion facilities to evaluate the emissions reduction possible while firing coal blended with several different biofuels. Two different boiler simulations, pulverized coal fired boilers and stoker coal fired boilers, were simulated. The pc-fired studies investigated the use of waste hardwood, softwood and sludge as potential reburning fuels and compared the results with coal and natural gas. The use of these wood wastes is attractive because: wood contains little nitrogen and virtually no sulfur; wood is a regenerable biofuel; wood utilization results in a net reduction in CO{sub 2} emissions; and, since reburning accounts for 10-20% of the total heat input, large quantities of wood are not necessary. The results of this program showed that a reduction of 50-60% NO was obtained with approximately 10% wood heat input. Reburn stoichiometry was the most important variable. The reduction was strongly dependent upon initial NO and only slightly dependent upon temperature. The stoker program investigated barriers for the successful blending of coal with waste railroad ties. Parameters evaluated included blending firing rate, chip size, optimum feed location, overfire/underfire air ratio, and natural gas addition. The results of this study demonstrated that NO emissions can be reduced by more than 50% without any significant increase in CO or THC emissions by the proper use of zoned reburning. Both programs demonstrated several benefits of biofuel blends, including: (1) lower operating costs due to reduced fuel prices; (2) reduced waste disposal; (3) reduced maintenance costs; (4) reduced environmental costs; and (5) extension of the useful life of existing equipment.

  18. Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2007

    SciTech Connect (OSTI)

    Robert Grossman; Ronald Warren

    2008-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was operated as the nation's site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides which come from historically contaminated soils resuspended into the air (e.g., by winds) and tritium-contaminated soil moisture emitted to the air from soils through evapotranspiration. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This is the dose limit established for someone living off of the NTS from radionuclides emitted to air from the NTS. This limit does not include the radiation doses that members of the public may receive through the intake of radioactive particles unrelated to NTS activities, such as those that come from naturally occurring elements in the environment (e.g., naturally occurring radionuclides in soil or radon gas from the earth or natural building materials), or from other man-made sources (e.g., medical treatments). The NTS demonstrates compliance using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole

  19. Development of methodologies for calculating greenhouse gas emissions from electricity generation for the California climate action registry

    SciTech Connect (OSTI)

    Price, Lynn; Marnay, Chris; Sathaye, Jayant; Murtishaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

    2002-04-01

    The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We fi nd that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

  20. Emissions of greenhouse gases in the United States, 1985--1990

    SciTech Connect (OSTI)

    Not Available

    1993-11-10

    The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

  1. Distributed Energy Resources for Carbon Emissions Mitigation

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris

    2007-05-01

    The era of publicly mandated GHG emissions restrictions inthe United States has begun with recent legislation in California andseven northeastern states. Commercial and industrial buildings canimprove the carbon-efficiency of end-use energy consumption by installingtechnologies such as on-site cogeneration of electricity and useful heatin combined heat and power systems, thermally-activated cooling, solarelectric and thermal equipment, and energy storage -- collectively termeddistributed energy resources (DER). This research examines a collectionof buildings in California, the Northeast, and the southern United Statesto demonstrate the effects of regional characteristics such as the carbonintensity of central electricity grid, the climate-driven demand forspace heating and cooling, and the availability of solar insolation. Theresults illustrate that the magnitude of a realistic carbon tax ($100/tC)is too small to incent significant carbon-reducing effects oneconomically optimal DER adoption. In large part, this is because costreduction and carbon reduction objectives are roughly aligned, even inthe absence of a carbon tax.

  2. Adaptive engine injection for emissions reduction

    DOE Patents [OSTI]

    Reitz, Rolf D. : Sun, Yong

    2008-12-16

    NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

  3. Relating adatom emission to improved durability of Pt-Pd diesel oxidation catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johns, Tyne Richele; Goeke, Ronald S.; Ashbacher, Valerie; Thune, Peter C.; Niemantsverdriet, J. W.; Kiefer, Boris; Kim, Chang H.; Balogh, Michael P.; Datye, Abhaya K.

    2015-06-05

    Sintering of nanoparticles is an important contributor to loss of activity in heterogeneous catalysts, such as those used for controlling harmful emissions from automobiles. But mechanistic details, such as the rates of atom emission or the nature of the mobile species, remain poorly understood. Herein we report a novel approach that allows direct measurement of atom emission from nanoparticles. We use model catalyst samples and a novel reactor that allows the same region of the sample to be observed after short-term heat treatments (seconds) under conditions relevant to diesel oxidation catalysts (DOCs). Monometallic Pd is very stable and does notmore » sinter when heated in air (T ≤ 800 °C). Pt sinters readily in air, and at high temperatures (≥800 °C) mobile Pt species emitted to the vapor phase cause the formation of large, faceted particles. In Pt–Pd nanoparticles, Pd slows the rate of emission of atoms to the vapor phase due to the formation of an alloy. However, the role of Pd in Pt DOCs in air is quite complex: at low temperatures, Pt enhances the rate of Pd sintering (which otherwise would be stable as an oxide), while at higher temperature Pd helps to slow the rate of Pt sintering. DFT calculations show that the barrier for atom emission to the vapor phase is much greater than the barrier for emitting atoms to the support. Thus, vapor-phase transport becomes significant only at high temperatures while diffusion of adatoms on the support dominates at lower temperatures.« less

  4. Relating adatom emission to improved durability of Pt-Pd diesel oxidation catalysts

    SciTech Connect (OSTI)

    Johns, Tyne Richele; Goeke, Ronald S.; Ashbacher, Valerie; Thune, Peter C.; Niemantsverdriet, J. W.; Kiefer, Boris; Kim, Chang H.; Balogh, Michael P.; Datye, Abhaya K.

    2015-06-05

    Sintering of nanoparticles is an important contributor to loss of activity in heterogeneous catalysts, such as those used for controlling harmful emissions from automobiles. But mechanistic details, such as the rates of atom emission or the nature of the mobile species, remain poorly understood. Herein we report a novel approach that allows direct measurement of atom emission from nanoparticles. We use model catalyst samples and a novel reactor that allows the same region of the sample to be observed after short-term heat treatments (seconds) under conditions relevant to diesel oxidation catalysts (DOCs). Monometallic Pd is very stable and does not sinter when heated in air (T ≤ 800 °C). Pt sinters readily in air, and at high temperatures (≥800 °C) mobile Pt species emitted to the vapor phase cause the formation of large, faceted particles. In Pt–Pd nanoparticles, Pd slows the rate of emission of atoms to the vapor phase due to the formation of an alloy. However, the role of Pd in Pt DOCs in air is quite complex: at low temperatures, Pt enhances the rate of Pd sintering (which otherwise would be stable as an oxide), while at higher temperature Pd helps to slow the rate of Pt sintering. DFT calculations show that the barrier for atom emission to the vapor phase is much greater than the barrier for emitting atoms to the support. Thus, vapor-phase transport becomes significant only at high temperatures while diffusion of adatoms on the support dominates at lower temperatures.

  5. Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.

    2011-09-01

    In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

  6. Energy development and CO{sub 2} emissions in China

    SciTech Connect (OSTI)

    Xiaolin Xi

    1993-03-01

    The objective of this research is to provide a better understanding of future Chinese energy development and CO{sub 2} emissions from burning fossil fuels. This study examines the current Chinese energy system, estimates CO{sub 2} emissions from burning fossil fuels and projects future energy use and resulting CO{sub 2} emissions up to the year of 2050. Based on the results of the study, development strategies are proposed and policy implications are explored. This study first develops a Base scenario projection of the Chinese energy development based upon a sectoral analysis. The Base scenario represents a likely situation of future development, but many alternatives are possible. To explore this range of alternatives, a systematic uncertainty analysis is performed. The Base scenario also represents an extrapolation of current policies and social and economic trends. As such, it is not necessarily the economically optimal future course for Chinese energy development. To explore this issue, an optimization analysis is performed. For further understanding of developing Chinese energy system and reducing CO{sub 2} emissions, a Chinese energy system model with 84 supply and demand technologies has been constructed in MARKAL, a computer LP optimization program for energy systems. Using this model, various technological options and economic aspects of energy development and CO{sub 2} emissions reduction in China during the 1985-2020 period are examined.

  7. Limiting net greenhouse gas emissions in the United States

    SciTech Connect (OSTI)

    Bradley, R A; Watts, E C; Williams, E R

    1991-09-01

    In 1988, Congress requested that DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity) and the relationship between energy production and use and the emission of radiatively important gases. Topics discussed include: state of the science in estimating atmosphere/climate change relationships, the potential consequences of atmosphere/climate change, us greenhouse emissions past and present, an approach to analyzing the technical potential and cost of reducing US energy-related greenhouse gas emissions, current policy base and National Energy Strategy actions, fiscal instruments, regulatory instruments, combined strategies and instruments, macroeconomic impacts, carbon taxation and international trade, a comparison to other studies.

  8. Apparatus having reduced background for measuring radiation activity in aerosol particles

    DOE Patents [OSTI]

    Rodgers, John C.; McFarland, Andrew R.; Oritz, Carlos A.; Marlow, William H.

    1992-01-01

    Apparatus having reduced background for measuring radiation activity in aerosol particles. A continuous air monitoring sampler is described for use in detecting the presence of alpha-emitting aerosol particles. An inlet fractionating screen has been demonstrated to remove about 95% of freshly formed radon progeny from the aerosol sample, and approximately 33% of partially aged progeny. Addition of an electrical condenser and a modified dichotomous virtual impactor are expected to produce considerable improvement in these numbers, the goal being to enrich the transuranic (TRU) fraction of the aerosols. This offers the possibility of improving the signal-to-noise ratio for the detected alpha-particle energy spectrum in the region of interest for detecting TRU materials associated with aerosols, thereby enhancing the performance of background-compensation algorithms for improving the quality of alarm signals intended to warn personnel of potentially harmful quantities of TRU materials in the ambient air.

  9. Reduced vibration motor winding arrangement

    DOE Patents [OSTI]

    Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

    1997-11-11

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

  10. Reduced vibration motor winding arrangement

    DOE Patents [OSTI]

    Slavik, Charles J.; Rhudy, Ralph G.; Bushman, Ralph E.

    1997-01-01

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of .sqroot.3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency.

  11. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    SciTech Connect (OSTI)

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-07-12

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented.

  12. Emission Market Opportunities for Federal Energy Projects

    SciTech Connect (OSTI)

    Vimmerstedt, L.; Shah, C.

    2005-06-01

    This document assists federal agencies in incorporating emissions market opportunities in their energy projects, including emission reduction credit markets and cap and trade. It looks at how potential emissions costs/revenues can be incorporated into project proposals, how groups can apply for emissions allowances, and how agencies can sell emissions allowances and receive the financial benefit. The fact sheet also outlines how FEMP can provide assistance throughout the process.

  13. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    SciTech Connect (OSTI)

    Zohner, S.K.

    2000-05-30

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  14. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    SciTech Connect (OSTI)

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  15. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    SciTech Connect (OSTI)

    S. K. Zohner

    1999-10-01

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  16. Transportable Emissions Testing Laboratory for Alternative Vehicles Emissions Testing

    SciTech Connect (OSTI)

    Clark, Nigel

    2012-01-31

    The overall objective of this project was to perform research to quantify and improve the energy efficiency and the exhaust emissions reduction from advanced technology vehicles using clean, renewable and alternative fuels. Advanced vehicle and alternative fuel fleets were to be identified, and selected vehicles characterized for emissions and efficiency. Target vehicles were to include transit buses, school buses, vocational trucks, delivery trucks, and tractor-trailers. Gaseous species measured were to include carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter. An objective was to characterize particulate matter more deeply than by mass. Accurate characterization of efficiency and emissions was to be accomplished using a state-of-the-art portable emissions measurement system and an accompanying chassis dynamometer available at West Virginia University. These two units, combined, are termed the Transportable Laboratory. An objective was to load the vehicles in a real-world fashion, using coast down data to establish rolling resistance and wind drag, and to apply the coast down data to the dynamometer control. Test schedules created from actual vehicle operation were to be employed, and a specific objective of the research was to assess the effect of choosing a test schedule which the subject vehicle either cannot follow or can substantially outperform. In addition the vehicle loading objective was to be met better with an improved flywheel system.

  17. Low emission internal combustion engine

    DOE Patents [OSTI]

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  18. Multiyear Program Plan: Reducing Friction and Wear in Heavy Vehicles

    SciTech Connect (OSTI)

    R.R. Fessler; G.R. Fenske

    1999-12-13

    As described in its multiyear program plan for 1998-2000, the Office of Heavy Vehicle Technologies (OHVT) envisions the development of a fuel-flexible, energy-efficient, near-zero-emissions, heavy-duty U.S. diesel engine technology devolving into all truck classes as a real and viable strategy for reducing energy requirements for commercial transport services and the rapidly growing multipurpose vehicle market (pickups, vans, and sport utility vehicles). Implementation of the OHVT program plan will have significant national benefits in energy savings, cleaner air, more jobs, and increased gross domestic product (GDP). Successful implementation will reduce the petroleum consumption of Class 1-8 trucks by 1.4 million barrels of oil per day by 2020 and over 1.8 million by 2030, amounting to a reduction in highway petroleum consumption of 13.2% and 18.6%, respectively. All types of regulated emissions will be reduced, that is, 20% drop in PM10 emissions (41,000 metric tons per year) by 203 0, 17% reduction in CO2 greenhouse gases (205 million metric tons per year), 7% reduction in NOx, 20% reduction in NMHC, and 30% reduction in CO. An increase of 15,000 jobs by 2020 is expected, as is an increase of $24 billion in GDP. The strategy of OHVT is to focus primarily on the diesel engine since it has numerous advantages. It has the highest efficiency of any engine today, 45% versus 30% for production gasoline engines; and it can be made more efficient at least to 55% and possibly up to 63%. It is the engine of choice for heavy vehicles (trucks), because it offers power, efficiency, durability, and reliability and is used extensively in rail, marine, and off-road applications. Its emission can be ultra-low to near zero, and the production infrastructure is already in place. The primary goals of OHVT are as follows: (1) Develop by 2002 the diesel-engine enabling technologies to support large-scale industry dieselization of light trucks, achieving a 35% fuel efficiency

  19. A Bimetmallic Fuel-Borne Catalyst for Reduce Precious Metal Use in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium-Duty Diesel Engines | Department of Energy A Bimetmallic Fuel-Borne Catalyst for Reduce Precious Metal Use in Medium-Duty Diesel Engines A Bimetmallic Fuel-Borne Catalyst for Reduce Precious Metal Use in Medium-Duty Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_valentine.pdf (223.64 KB) More Documents & Publications Diesel Particulate Filters: Market Introducution in Europe Improvement and Simplification of Diesel

  20. LEDS Global Partnership in Action: Advancing Climate-Resilient Low Emission Development Around the World (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Many countries around the globe are designing and implementing low emission development strategies (LEDS). These LEDS seek to achieve social, economic, and environmental development goals while reducing long-term greenhouse gas (GHG) emissions and increasing resiliency to climate change impacts. The LEDS Global Partnership (LEDS GP) harnesses the collective knowledge and resources of more than 120 countries and international donor and technical organizations to strengthen climate-resilient low emission development efforts around the world.

  1. Energy, emissions, and social consequences of telecommuting. Technical Report One

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    By reducing transportation use, telecommuting can help reduce some of the social costs of travel (traffic congestion, time lost, emissions, dependence on imported fuels, accident deaths and property damage). These positive direct effects will be both offset and supplemented by indirect effects of telecommuting: improved traffic flow, latent demand (people will start driving more), and increased urban sprawl. The study indicates that the energy and emissions benefits of telecommuting are not likely to be entirely offset by latent travel demand or by the geographical expansion of cities; perhaps half the potential reduction in vehicle-miles traveled will be replaced by new traffic. From a fuel-use perspective, the indirect benefit of lower average emissions and fuel consumption rates appears sufficient to offset impacts from the third indirect effect, additional travel brought about by increased suburbanization. Substantial levels of telecommuting will also reduce the need for highway capacity expansion, saving capital, maintenance, and urban land. Telecommuting and its benefits will be concentrated in the largest, most congested, and most polluted urban areas (20--25% in the NYC and LA areas; 50% in the 10 largest cities; 90% in the 75 largest).Telecommuting may also have a synergistic beneficial effect on other transportation strategies, e.g., congestion pricing, parking fees, taxes discouraging travel during peak periods, etc. Other beneficial effects may include greater presence of adults at home and on residential communities. Effects of improved telecommunications technology on transportation, freight, economy, industrial operations are discussed, including implications of an ``information superhighway.``

  2. New waste-heat refrigeration unit cuts flaring, reduces pollution

    SciTech Connect (OSTI)

    Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

    1998-05-18

    Planetec Utility Services Co. Inc. and Energy Concepts Co. (ECC), with the help of the US Department of Energy (DOE), developed and commissioned a unique waste-heat powered LPG recovery plant in August 1997 at the 30,000 b/d Denver refinery, operated by Ultramar Diamond Shamrock (UDS). This new environmentally friendly technology reduces flare emissions and the loss of salable liquid-petroleum products to the fuel-gas system. The waste heat ammonia absorption refrigeration plant (Whaarp) is the first technology of its kind to use low-temperature waste heat (295 F) to achieve sub-zero refrigeration temperatures ({minus}40 F) with the capability of dual temperature loads in a refinery setting. The ammonia absorption refrigeration is applied to the refinery`s fuel-gas makeup streams to condense over 180 b/d of salable liquid hydrocarbon products. The recovered liquid, about 64,000 bbl/year of LPG and gasoline, increases annual refinery profits by nearly $1 million, while substantially reducing air pollution emissions from the refinery`s flare.

  3. The reduced environmental liability of clean coal technologies

    SciTech Connect (OSTI)

    Leslie, A.C.D.; McMillen, M.

    1997-08-01

    In this paper the authors will discuss the waste stream minimization that future commercially operated clean coal technologies can effect. They will explore the ability of these now-beginning-to-mature technologies to reduce those aspects of the emission streams that have greatest potential for what the authors term as environmental liability. Environmental liability is manifested in a variety of forms. There are both current liabilities and future liabilities. In addition, uncertainties may reside in future anticipated regulatory compliance and the costs of such compliance. Exposure to liability translates into perceived risk which creates an air of uncertainty to the power industry and its lenders who provide the capital to build new power plants. In the context of electric power generation, newer, high efficiency power generation technologies developed in the course of the Clean Coal Technology Program of the US Department of Energy result in reduced waste stream emissions when compared against more aging conventional combustion technologies. This paper will discuss how the introduction of new clean coal technologies will help balance the conflict between adverse environmental impact and the global demand for increased energy. The authors will discuss how clean coal technologies will facilitate compliance with future air standards that may otherwise expose power producers to modification and cleanup costs, noncompliance penalties, or premature shut down.

  4. Effects of Headspace and Oxygen Level on Off-gas Emissions from Wood Pellets in Storage

    SciTech Connect (OSTI)

    Sokhansanj, Shahabaddine; Kuang, Xingya; Shankar, T.S.; Lim, C. Jim; Bi, X.T.; Melin, Staffan

    2009-10-01

    Few papers have been published in the open literature on the emissions from biomass fuels, including wood pellets, during the storage and transportation and their potential health impacts. The purpose of this study is to provide data on the concentrations, emission factors, and emission rate factors of CO2, CO, and CH4 from wood pellets stored with different headspace to container volume ratios with different initial oxygen levels, in order to develop methods to reduce the toxic off-gas emissions and accumulation in storage spaces. Metal containers (45 l, 305 mm diameter by 610 mm long) were used to study the effect of headspace and oxygen levels on the off-gas emissions from wood pellets. Concentrations of CO2, CO, and CH4 in the headspace were measured using a gas chromatograph as a function of storage time. The results showed that the ratio of the headspace ratios and initial oxygen levels in the storage space significantly affected the off-gas emissions from wood pellets stored in a sealed container. Higher peak emission factors and higher emission rates are associated with higher headspace ratios. Lower emissions of CO2 and CO were generated at room temperature under lower oxygen levels, whereas CH4 emission is insensitive to the oxygen level. Replacing oxygen with inert gases in the storage space is thus a potentially effective method to reduce the biomass degradation and toxic off-gas emissions. The proper ventilation of the storage space can also be used to maintain a high oxygen level and low concentrations of toxic off-gassing compounds in the storage space, which is especially useful during the loading and unloading operations to control the hazards associated with the storage and transportation of wood pellets.

  5. Reducing Your Electricity Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel Appliances & Electronics Reducing Your Electricity Use Reducing Your Electricity Use An energy audit can help you find the most effective ways to save...

  6. PROJECT PROFILE: Scientific Approach to Reducing Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scientific Approach to Reducing Photovoltaic Module Material Costs While Increasing Durability PROJECT PROFILE: Scientific Approach to Reducing Photovoltaic Module Material Costs ...

  7. Challenges and Potential Solutions for Reducing Climate Control Loads in Conventional and Hybrid Vehicles

    SciTech Connect (OSTI)

    Farrington, R.B., Anderson, R., Blake, D.M., Burch, S.D.; Cuddy, M.R., Keyser, M.A., Rugh, J.P.

    1999-01-01

    The National Renewable Energy Laboratory, a U.S. Department of Energy national laboratory, is collaborating with U.S. automotive manufacturers to develop innovative techniques to reduce national fuel consumption and vehicle tailpipe emissions by reducing vehicle climate control loads. A new U.S. emissions test, the Supplemental Federal Test Procedure (SFTP), will soon begin measuring tailpipe emissions with the air conditioning system operating. Modeled results show that emissions of oxides of nitrogen (NOx) and carbon monoxide (CO) more than double during the air conditioning part of the SFTP. Reducing the transmittance of the glazing can have a greater impact on the cabin soak temperature than ventilating the vehicle during a hot soak. Reducing the amount of outside air can decrease cooling and heating loads but requires that the recirculated air be cleaned. We discuss a photocatalytic oxidation air-cleaning process for removing volatile organic compounds and bioareosols. We conclude with an example of modeling the thermal comfort of the occupants. An auxiliary load increase of only 400 Watts (W) results in a 0.4 km/L (1 mpg) decrease for a conventional 11.9-L/100-km (28-mpg) vehicle. If every vehicle in the United States were to save only 0.4 km/L (1 mpg), $4 billion (U.S. dollars) would be saved annually in gasoline and oil costs. Further information can be found at http://www.ctts.nrel.gov/auxload.html.

  8. Fission Particle Emission Multiplicity Simulation

    Energy Science and Technology Software Center (OSTI)

    2006-09-27

    Simulates discrete neutron and gamma-ray emission from the fission of heavy nuclei that is either spontaneous or neutron induced. This is a function library that encapsulates the fission physics and is intended to be called Monte Carlo transport code.

  9. Fiber optics spectrochemical emission sensors

    DOE Patents [OSTI]

    Griffin, J.W.; Olsen, K.B.

    1992-02-04

    A method is described of in situ monitoring of a body of a fluid stored in a tank or groundwater or vadose zone gases in a well for the presence of selected chemical species. The method uses a probe insertable into the well or tank via a cable and having an electrical apparatus for exciting selected chemical species in the body of fluid. The probe can have a pair of electrodes for initiating a spark or a plasma cell for maintaining a plasma to excite the selected chemical species. The probe also has an optical apparatus for receiving optical emissions emitted by the excited species and optically transmitting the emissions via the cable to an analysis location outside the well. The analysis includes detecting a selected wavelength in the emissions indicative of the presence of the selected chemical species. A plurality of probes can be suspended at an end of a respective cable, with the transmitting and analyzing steps for each probe being synchronized sequentially for one set of support equipment and instrumentation to monitor at multiple test points. The optical apparatus is arranged about the light guide axis so that the selected chemical species are excited in the fluid in alignment with the light guide axis. Optical emissions are received from the excited chemical species along such axis. 18 figs.

  10. Fiber optics spectrochemical emission sensors

    DOE Patents [OSTI]

    Griffin, Jeffrey W.; Olsen, Khris B.

    1992-01-01

    A method of in situ monitoring of a body of a fluid stored in a tank or groundwater or vadose zone gases in a well for the presence of selected chemical species uses a probe insertable into the well or tank via a cable and having electrical apparatus for exciting selected chemical species in the body of fluid. The probe can have a pair of electrodes for initiating a spark or a plasma cell for maintaining a plasma to excite the selected chemical species. The probe also has optical apparatus for receiving optical emissions emitted by the excited species and optically transmitting the emissions via the cable to an analysis location outside the well. The analysis includes detecting a selected wavelength in the emissions indicative of the presence of the selected chemical species. A plurality of probes can be suspended at an end of a respective cable, with the transmitting and analyzing steps for each probe being synchronized sequentially for one set of support equipment and instrumentation to monitor at multiple test points. The optical apparatus is arranged about the light guide axis so that the selected chemical species are excited the fluid in alignment with the light guide axis and optical emissions are received from the excited chemical species along such axis.

  11. China's growing CO{sub 2} emissions - a race between increasing consumption and efficiency gains

    SciTech Connect (OSTI)

    Glen P. Peters; Christopher L. Weber; Dabo Guan; Klaus Hubacek

    2007-09-15

    China's rapidly growing economy and energy consumption are creating serious environmental problems on both local and global scales. Understanding the key drivers behind China's growing energy consumption and the associated CO{sub 2} emissions is critical for the development of global climate policies and provides insight into how other emerging economies may develop a low emissions future. Using recently released Chinese economic input-output data and structural decomposition analysis we analyze how changes in China's technology, economic structure, urbanization, and lifestyles affect CO{sub 2} emissions. We find that infrastructure construction and urban household consumption, both in turn driven by urbanization and lifestyle changes, have outpaced efficiency improvements in the growth of CO{sub 2} emissions. Net trade had a small effect on total emissions due to equal, but significant, growth in emissions from the production of exports and emissions avoided by imports. Technology and efficiency improvements have only partially offset consumption growth, but there remains considerable untapped potential to reduce emissions by improving both production and consumption systems. As China continues to rapidly develop there is an opportunity to further implement and extend policies, such as the Circular Economy, that will help China avoid the high emissions path taken by today's developed countries. 65 refs., 3 figs., 1 tab.

  12. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative

  13. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    This case study describes the Southern California Gas Company’s Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

  14. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    SciTech Connect (OSTI)

    2010-06-25

    This case study describes the Southern California Gas Company’s Industrial End User program that helps large industrial customers increase energy efficiency and reduce energy use and GHG emissions.

  15. The role of the Federal Relighting Initiative in emission controls

    SciTech Connect (OSTI)

    Nicholls, A.K.; Purcell, C.W.; Friedman, J.R.

    1992-10-01

    The Department of Energy`s (DOE) Federal Relighting Initiative (FRI), under the Federal Energy Management Program (FEMP), has developed a comprehensive process to assist federal agencies in meeting the nation`s energy mandate. This mandate states that federal facilities must use 20% less energy by the year 2000, based on 1985 consumption levels. Because lighting accounts for about 40% of total federal electricity consumption, the FRI was conceived to help reduce energy use in this important area while improving lighting quality and increasing productivity through relighting. Selected federal rules and regulations provide guidance on the types of energy efficiency techniques required, life-cycle costing methods and lighting levels that should be employed to achieve the federal mandate. Although the central focus of this paper is on the environment, this paper takes the perspective that the energy efficiency gains achieved through the FRI would produce both environmental and economic benefits for the United States. For example, improvements in energy efficiency would reduce electricity demand, and would consequently reduce the emissions associated with fossil fuel combustion for power production. These reduced emissions include carbon dioxide, which is associated with the potential for global climate change, and heavy metals, which pose a potential health threat to humans and aquatic ecosystems. Economic benefits of the FRI would include reduced federal expenditures on energy or, possibly, avoiding new power plant construction.This paper begins with a brief overview of the FRI process. Next, current lighting energy use in federal buildings is evaluated and the potential future energy savings achievable through full implementation of the FRI are estimated. The paper then translates these energy savings into avoided emissions of carbon dioxide and heavy metals and into avoided fuel expenditures.

  16. The role of the Federal Relighting Initiative in emission controls

    SciTech Connect (OSTI)

    Nicholls, A.K.; Purcell, C.W.; Friedman, J.R.

    1992-10-01

    The Department of Energy's (DOE) Federal Relighting Initiative (FRI), under the Federal Energy Management Program (FEMP), has developed a comprehensive process to assist federal agencies in meeting the nation's energy mandate. This mandate states that federal facilities must use 20% less energy by the year 2000, based on 1985 consumption levels. Because lighting accounts for about 40% of total federal electricity consumption, the FRI was conceived to help reduce energy use in this important area while improving lighting quality and increasing productivity through relighting. Selected federal rules and regulations provide guidance on the types of energy efficiency techniques required, life-cycle costing methods and lighting levels that should be employed to achieve the federal mandate. Although the central focus of this paper is on the environment, this paper takes the perspective that the energy efficiency gains achieved through the FRI would produce both environmental and economic benefits for the United States. For example, improvements in energy efficiency would reduce electricity demand, and would consequently reduce the emissions associated with fossil fuel combustion for power production. These reduced emissions include carbon dioxide, which is associated with the potential for global climate change, and heavy metals, which pose a potential health threat to humans and aquatic ecosystems. Economic benefits of the FRI would include reduced federal expenditures on energy or, possibly, avoiding new power plant construction.This paper begins with a brief overview of the FRI process. Next, current lighting energy use in federal buildings is evaluated and the potential future energy savings achievable through full implementation of the FRI are estimated. The paper then translates these energy savings into avoided emissions of carbon dioxide and heavy metals and into avoided fuel expenditures.

  17. High Efficiency, Ultra-Low Emission, Integrated Process Heater System

    SciTech Connect (OSTI)

    Mason, Howard; Boral, Anindya; Chhotray, San; Martin, Matthew

    2006-06-19

    The team of TIAX LLC, ExxonMobil Research and Engineering Company, and Callidus Technologies, LLC conducted a six-year program to develop an ultra-low emission process heater burner and an advanced high efficiency heater design. This project addresses the critical need of process heater operators for reliable, economical emission reduction technologies to comply with stringent emission regulations, and for heater design alternatives that reduce process heater energy requirements without significant cost increase. The key project targets were NOx emissions of 10 ppm (@ 3% O2), and a heater thermal efficiency of 95 percent. The ultra low NOx burner was developed through a series of pilot-scale and field tests combined with computational fluid dynamic modeling to arrive at simultaneous low emissions and suitable flame shape and stability. Pilot scale tests were run at TIAX, at the 2 MMBtu/hr scale, and at Callidus at 8 MMBtu/hr. The full scale burner was installed on a 14 burner atmospheric pipestill furnace at an ExxonMobil refinery. A variety of burner configurations, gas tips and flame stabilizers were tested to determine the lowest emissions with acceptable flame shape and stability. The resulting NOx emissions were 22 ppm on average. Starting in 2001, Callidus commercialized the original ultra low NOx burner and made subsequent design improvements in a series of commercial burners evolving from the original concept and/or development. Emissions in the field with the ultra low-NOx burner over a broad spectrum of heater applications have varied from 5 ppm to 30 ppm depending on heater geometry, heater service, fuel and firing capacity. To date, 1550 of the original burners, and 2500 of subsequent generation burners have been sold by Callidus. The advanced heater design was developed by parametric evaluations of a variety of furnace and combustion air preheater configurations and technologies for enhancing convective and radiative heat transfer. The design evolution

  18. Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models

    SciTech Connect (OSTI)

    Di Bella, Gaetano; Di Trapani, Daniele; Viviani, Gaspare

    2011-08-15

    Methane (CH{sub 4}) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH{sub 4} is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH{sub 4} emissions from landfill sites and the quantification of CH{sub 4} emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH{sub 4} diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH{sub 4} diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH{sub 4} contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH{sub 4} mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.

  19. Junction-based field emission structure for field emission display

    DOE Patents [OSTI]

    Dinh, Long N.; Balooch, Mehdi; McLean, II, William; Schildbach, Marcus A.

    2002-01-01

    A junction-based field emission display, wherein the junctions are formed by depositing a semiconducting or dielectric, low work function, negative electron affinity (NEA) silicon-based compound film (SBCF) onto a metal or n-type semiconductor substrate. The SBCF can be doped to become a p-type semiconductor. A small forward bias voltage is applied across the junction so that electron transport is from the substrate into the SBCF region. Upon entering into this NEA region, many electrons are released into the vacuum level above the SBCF surface and accelerated toward a positively biased phosphor screen anode, hence lighting up the phosphor screen for display. To turn off, simply switch off the applied potential across the SBCF/substrate. May be used for field emission flat panel displays.

  20. U.S. Government Supports Low Emission Economic Growth (Fact Sheet)

    SciTech Connect (OSTI)

    Watson, A.; Sandor, D.; Butheau, M.

    2013-11-01

    Countries around the world face the challenge of maintaining long-term sustainable economic growth and development under the threat of climate change. By identifying and pursuing a sustainable development pathway now, they are better positioned to reach their economic growth goals while addressing climate change impacts and lowering greenhouse gas (GHG) emissions. Low emission development strategies - development plans that promote sustainable social and economic development while reducing long-term GHG emissions - provide a pathway to preparing for a global low emission future. Partner country governments are working with the U.S. government through the Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program to further their national development objectives.

  1. Field emission from carbon films deposited by VHF CVD on difference substrates

    SciTech Connect (OSTI)

    Abramov, A A; Andronov, A N; Felter, T E; Ioffe, A F; Kosarev, A I; Shotov, M V; Vinogradov, A J

    1999-04-01

    As previously demonstrated, non-diamond carbon (NDC) films deposited at low temperatures 200-300 C on silicon tips reduced the threshold of field emission. In this paper we will present the results of the study of field emission from flat NDC films prepared by VHF CVD. Emission measurements were performed in a diode configuration at approximately 10{sup {minus}10} Torr. NDC films were deposited on ceramic and on c-Si substrates sputter coated with layers of Ti, Cu, Ni and Pt. The back contact material influences the emission characteristics but not as a direct correlation to work function. A model of field emission from metal-NDC film structures will be discussed.

  2. Control technology for radioactive emissions to the atmosphere at US Department of Energy facilities

    SciTech Connect (OSTI)

    Moore, E.B.

    1984-10-01

    The purpose of this report is to provide information to the US Environmental Protection agency (EPA) on existing technology for the control of radionuclide emissions into the air from US Department of Energy (DOE) facilities, and to provide EPA with information on possible additional control technologies that could be used to further reduce these emissions. Included in this report are generic discussions of emission control technologies for particulates, iodine, rare gases, and tritium. Also included are specific discussions of existing emission control technologies at 25 DOE facilities. Potential additional emission control technologies are discussed for 14 of these facilities. The facilities discussed were selected by EPA on the basis of preliminary radiation pathway analyses. 170 references, 131 figures, 104 tables.

  3. Emissions of dioxins and furans from garbage-burning incinerators can be minimized by good combustion practices

    SciTech Connect (OSTI)

    Not Available

    1987-10-01

    The American Society of Mechanical Engineers (ASME) have stated that emissions of dioxin and furan from garbage-burning incinerators can be minimized by good combustion practices. They have found that maintaining the heat of combustion above 815 degrees centigrade and reducing the carbon monoxide level to below 100 ppm will reduce the emissions of furan and dioxin. The combustion research that lead to these conclusions was sponsored by ASME and the New York energy authority

  4. Impact of Light-Duty Vehicle Emissions on 21st Century Carbon Dioxide Concentrations

    SciTech Connect (OSTI)

    Smith, Steven J.; Kyle, G. Page

    2007-08-04

    The impact of light-duty passenger vehicle emissions on global carbon dioxide concentrations was estimated using the MAGICC reduced-form climate model combined with the PNNL contribution to the CCSP scenarios product. Our central estimate is that tailpipe light duty vehicle emissions of carbon-dioxide over the 21st century will increase global carbon dioxide concentrations by slightly over 12 ppmv by 2100.

  5. Material system for tailorable white light emission and method for making thereof

    DOE Patents [OSTI]

    Smith, Christine A.; Lee, Howard W.

    2004-08-10

    A method of processing a composite material to tailor white light emission of the resulting composite during excitation. The composite material is irradiated with a predetermined power and for a predetermined time period to reduce the size of a plurality of nanocrystals and the number of a plurality of traps in the composite material. By this irradiation process, blue light contribution from the nanocrystals to the white light emission is intensified and red and green light contributions from the traps are decreased.

  6. Material system for tailorable white light emission and method for making thereof

    DOE Patents [OSTI]

    Smith, Christine A.; Lee, Howard W. H.

    2009-05-19

    A method of processing a composite material to tailor white light emission of the resulting composite during excitation. The composite material is irradiated with a predetermined power and for a predetermined time period to reduce the size of a plurality of nanocrystals and the number of a plurality of traps in the composite material. By this irradiation process, blue light contribution from the nanocrystals to the white light emission is intensified and red and green light contributions from the traps are decreased.

  7. JISEA News: Study on Methane Emissions from Natural Gas Systems Indicates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Priorities - News Releases | NREL JISEA News: Study on Methane Emissions from Natural Gas Systems Indicates New Priorities Study findings published in Policy Forum of Journal Science February 18, 2014 A new study published in the journal Science says that the total impact of switching to natural gas depends heavily on leakage of methane (CH4) during the natural gas life cycle, and suggests that more can be done to reduce methane emissions and to improve measurement tools which help

  8. Can Future Emissions Limits be Met with a Hybrid EGR System Alone? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Future Emissions Limits be Met with a Hybrid EGR System Alone? Can Future Emissions Limits be Met with a Hybrid EGR System Alone? Presents application of hybrid EGR system in terms of deliverable EGR-rate, air/fuel ratio, pumping losses and fuel use, taking into account interaction between EGR and boosting technology. Control strategies and hardware optimized parameters and reduced costs. deer08_czarnowski.pdf (782.9 KB) More Documents & Publications Control Strategy

  9. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  10. EIA - Greenhouse Gas Emissions Overview

    Gasoline and Diesel Fuel Update (EIA)

    ... that inject and store CO2 underground for the purposes ... production, underground coal mines, industrial ... The project focuses on reducing energy consumption in the ...

  11. Chipping Away at Emissions Toward a Green Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chipping Away at Emissions Toward a Green Future Chipping Away at Emissions Toward a Green Future December 6, 2009 - 3:24pm Addthis Joshua DeLung What are the key facts? A CHP system allows facility to run independently from the grid, while improving efficiency by roughly 25 percent, reducing emissions by 5 percent annually and relieving an overburdened power grid in the Northeast region. A few months ago, the primary electric feed to the Frito-Lay facility in Killingly, Conn., went down. It was

  12. School Bus Emissions Study | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Investigation of the Effects of Fuels and Aftertreatment Devices on the Emission Profiles of Trucks and Buses ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses ...

  13. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  14. Improving Dryer and Press Efficiencies Through Combustion of Hydrocarbon Emissions

    SciTech Connect (OSTI)

    Sujit Banerjee

    2005-10-31

    Emission control devices on dryers and presses have been legislated into the industry, and are now an integral part of the drying system. These devices consume large quantities of natural gas and electricity and down-sizing or eliminating them will provide major energy savings. The principal strategy taken here focuses on developing process changes that should minimize (and in some cases eliminate) the need for controls. A second approach is to develop lower-cost control options. It has been shown in laboratory and full-scale work that Hazardous Air Pollutants (HAPs) emerge mainly at the end of the press cycle for particleboard, and, by extension, to other prod-ucts. Hence, only the air associated with this point of the cycle need be captured and treated. A model for estimating terpene emissions in the various zones of veneer dryers has been developed. This should allow the emissions to be concentrated in some zones and minimized in others, so that some of the air could be directly released without controls. Low-cost catalysts have been developed for controlling HAPs from dryers and presses. Catalysts conventionally used for regenerative catalytic oxidizers can be used at much lower temperatures for treating press emissions. Fluidized wood ash is an especially inexpensive mate-rial for efficiently reducing formaldehyde in dryer emissions. A heat transfer model for estimating pinene emissions from hot-pressing strand for the manufacture of flakeboard has been constructed from first principles and validated. The model shows that most of the emissions originate from the 1-mm layer of wood adjoining the platen surface. Hence, a simple control option is to surface a softwood mat with a layer of hardwood prior to pressing. Fines release a disproportionate large quantity of HAPs, and it has been shown both theo-retically and in full-scale work that particles smaller than 400 µm are principally responsible. Georgia-Pacific is considering green

  15. Potential Cost-Effective Opportunities for Methane Emission Abatement

    SciTech Connect (OSTI)

    Warner, Ethan; Steinberg, Daniel; Hodson, Elke; Heath, Garvin

    2015-08-01

    The energy sector was responsible for approximately 84% of carbon dioxide equivalent (CO2e) greenhouse gas (GHG) emissions in the U.S. in 2012 (EPA 2014a). Methane is the second most important GHG, contributing 9% of total U.S. CO2e emissions. A large portion of those methane emissions result from energy production and use; the natural gas, coal, and oil industries produce approximately 39% of anthropogenic methane emissions in the U.S. As a result, fossil-fuel systems have been consistently identified as high priority sectors to contribute to U.S. GHG reduction goals (White House 2015). Only two studies have recently attempted to quantify the abatement potential and cost associated with the breadth of opportunities to reduce GHG emissions within natural gas, oil, and coal supply chains in the United States, namely the U.S. Environmental Protection Agency (EPA) (2013a) and ICF (2014). EPA, in its 2013 analysis, estimated the marginal cost of abatement for non-CO2 GHG emissions from the natural gas, oil, and coal supply chains for multiple regions globally, including the United States. Building on this work, ICF International (ICF) (2014) provided an update and re-analysis of the potential opportunities in U.S. natural gas and oil systems. In this report we synthesize these previously published estimates as well as incorporate additional data provided by ICF to provide a comprehensive national analysis of methane abatement opportunities and their associated costs across the natural gas, oil, and coal supply chains. Results are presented as a suite of marginal abatement cost curves (MACCs), which depict the total potential and cost of reducing emissions through different abatement measures. We report results by sector (natural gas, oil, and coal) and by supply chain segment - production, gathering and boosting, processing, transmission and storage, or distribution - to facilitate identification of which sectors and supply chain

  16. Finalize Historic National Program to Reduce Greenhouse Gases...

    Open Energy Info (EERE)

    greenhouse gas emissions and improve fuel economy. EPA is finalizing the first-ever national greenhouse gas (GHG) emissions standards under the Clean Air Act References...

  17. Integrated Emissivity And Temperature Measurement

    DOE Patents [OSTI]

    Poulsen, Peter

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  18. Effects of Biodiesel on NOx Emissions

    SciTech Connect (OSTI)

    McCormick, R.

    2005-06-01

    A presentation about the effects of biodiesel on nitrogen oxide emissions presented at the ARB Biodiesel Workshop June 8, 2005.

  19. Module: Estimating Historical Emissions from Deforestation |...

    Open Energy Info (EERE)

    Website: www.leafasia.orgtoolstechnical-guidance-series-estimating-historical Cost: Free Language: English Module: Estimating Historical Emissions from Deforestation Screenshot...

  20. FUELS; 54 ENVIRONMENTAL SCIENCES; RADIOACTIVE EFFLUENTS; EMISSION...

    Office of Scientific and Technical Information (OSTI)

    SRP radioactive waste releases. Startup through 1959 Ashley, C. 05 NUCLEAR FUELS; 54 ENVIRONMENTAL SCIENCES; RADIOACTIVE EFFLUENTS; EMISSION; ENVIRONMENTAL MATERIALS;...

  1. Anisotropic Lyman-alpha emission

    SciTech Connect (OSTI)

    Zheng, Zheng; Wallace, Joshua

    2014-10-20

    As a result of resonant scatterings off hydrogen atoms, Lyα emission from star-forming galaxies provides a probe of the (hardly isotropic) neutral gas environment around them. We study the effect of the environmental anisotropy on the observed Lyα emission by performing radiative transfer calculations for models of neutral hydrogen clouds with prescriptions of spatial and kinematic anisotropies. The environmental anisotropy leads to corresponding anisotropy in the Lyα flux and spectral properties and induces correlations among them. The Lyα flux (or observed luminosity) depends on the viewing angle and shows an approximate correlation with the initial Lyα optical depth in the viewing direction relative to those in all other directions. The distribution of Lyα flux from a set of randomly oriented clouds is skewed to high values, providing a natural contribution to the Lyα equivalent width (EW) distribution seen in observation. A narrower EW distribution is found at a larger peak offset of the Lyα line, similar to the trend suggested in observation. The peak offset appears to correlate with the line shape (full width at half-maximum and asymmetry), pointing to a possibility of using Lyα line features alone to determine the systemic redshifts of galaxies. The study suggests that anisotropies in the spatial and kinematic distributions of neutral hydrogen can be an important ingredient in shaping the observed properties of Lyα emission from star-forming galaxies. We discuss the implications of using Lyα emission to probe the circumgalactic and intergalactic environments of galaxies.

  2. Are renewables portfolio standards cost-effective emission abatement policy?

    SciTech Connect (OSTI)

    Katerina Dobesova; Jay Apt; Lester B. Lave

    2005-11-15

    Renewables portfolio standards (RPS) could be an important policy instrument for 3P and 4P control. The authors examine the costs of renewable power, accounting for the federal production tax credit, the market value of a renewable credit, and the value of producing electricity without emissions of SO{sub 2}, NOx, mercury, and CO{sub 2}. The focus is on Texas, which has a large RPS and is the largest U.S. electricity producer and one of the largest emitters of pollutants and CO{sub 2}. The private and social costs of wind generation in an RPS is compared with the current cost of fossil generation, accounting for the pollution and CO{sub 2} emissions. It was found that society paid about 5.7 cents/kWh more for wind power, counting the additional generation, transmission, intermittency, and other costs. The higher cost includes credits amounting to 1.1 cents/kWh in reduced SO{sub 2}, NOx, and Hg emissions. These pollution reductions and lower CO{sub 2} emissions could be attained at about the same cost using pulverized coal (PC) or natural gas combined cycle (NGCC) plants with carbon capture and sequestration (CCS); the reductions could be obtained more cheaply with an integrated coal gasification combined cycle (IGCC) plant with CCS. 35 refs., 7 tabs.

  3. Greenhouse gas emissions trading in U.S. States: observations and lessons from the OTC NOx Budget Program

    SciTech Connect (OSTI)

    Andrew Aulisi; Alexander E. Farrell; Jonathan Pershing; Stacy VanDeveer

    2005-07-01

    A number of U.S. states are considering market-based policies to reduce emissions of greenhouse gases (GHGs). The experience gained from emissions trading for sulfur dioxide and oxides of nitrogen (NOx) offers a useful body of information and data to draw on to design a GHG emissions trading system. This report examines NOx trading under the Ozone Transport Commission (OTC) NOx Budget Program, which resulted principally from the leadership, decisions, and actions by a group of states, ultimately becoming the first multilateral cap-and-trade system for emissions of air pollutants. 72 refs.

  4. Module: Emission Factors for Deforestation | Open Energy Information

    Open Energy Info (EERE)

    www.leafasia.orgtoolstechnical-guidance-series-emission-factors-defo Cost: Free Language: English Module: Emission Factors for Deforestation Screenshot Logo: Module: Emission...

  5. Catalyzing Cooperative Action for Low Emissions Development Agenda...

    Open Energy Info (EERE)

    Emissions Development Agenda Jump to: navigation, search Low Emission Development Strategies Global Partnership Advancing climate-resilient, low-emission development around the...

  6. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction ...

  7. Energy-Related Carbon Emissions, by Industry, 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Efficiency Page > Energy Energy-Related Carbon Emissions > Total Table Total Energy-Related Carbon Emissions for Manufacturing Industries, 1994 Carbon Emissions (million...

  8. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference ...

  9. Retrofit Diesel Emissions Control System Providing 50% NOxControl...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference ...

  10. Perspectives Regarding Diesel Engine Emissions Reduction in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions ...

  11. Impacts of Biodiesel on Emission Control Devices | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel on Emission Control Devices Impacts of Biodiesel on Emission Control Devices Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) ...

  12. Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Characterized particulate emissions from U.S.-legal ...

  13. EIA-Voluntary Reporting of Greenhouse Gases Program - Emission...

    U.S. Energy Information Administration (EIA) Indexed Site

    Emission Factors Voluntary Reporting of Greenhouse Gases Program Emission Factors and Global Warming Potentials The greenhouse gas emission factors and global warming potentials ...

  14. Assessment of Health Hazards of Repeated Inhalation of Diesel Emissions, with Comparisons to Other Source Emissions

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: National Environmental Respiratory Center

  15. The last decade of global anthropogenic sulfur dioxide: 2000-2011 emissions

    SciTech Connect (OSTI)

    Klimont, Z.; Smith, Steven J.; Cofala, Janusz

    2013-01-09

    Evolution of global and regional anthropogenic SO2 emissions in the last decade has been estimated through a bottom-up calculation for recent years. After a strong increase in emissions that peaked about 2006, we estimate a declining trend continuing until 2011. However, there is a strong spatial variability with North America and Europe continuing to reduce emissions with an increasing role of Asia and international shipping. China remains a key contributor but the introduction of stricter emission limits followed by an ambitious program of installing flue gas desulfurization on power plants resulted in significant decline in emissions from energy sector and stabilization of Chinese SO2 emissions. Comparable mitigation strategies are not yet present in several other Asian countries and industrial sectors in general, while emissions from international shipping are expected to start declining soon following agreed reduction of sulfur content of fuel oil. Estimated trends in global SO2 emissions are within the range of RCP projections and uncertainty calculated for the year 2005.

  16. Reducing Your Electricity Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing energy use in your home saves you money, increases our energy security, and reduces the pollution that is emitted from non-renewable sources of energy. If you are planning ...

  17. Reducing Plant Lignin for Cheaper Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Plant Lignin for Cheaper Biofuels Reducing Plant Lignin for Cheaper Biofuels Print Wednesday, 04 May 2016 12:11 Lignin is a polymer that permeates plant cell walls. ...

  18. 2008 LANL radionuclide air emissions report

    SciTech Connect (OSTI)

    Fuehne, David P.

    2009-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2008. This report meets the reporting requirements established in the regulations.

  19. 2009 LANL radionuclide air emissions report

    SciTech Connect (OSTI)

    Fuehne, David P.

    2010-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2009. This report meets the reporting requirements established in the regulations.

  20. 2010 LANL radionuclide air emissions report /

    SciTech Connect (OSTI)

    Fuehne, David P.

    2011-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2010. This report meets the reporting requirements established in the regulations.

  1. Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Manufacturing Office (AMO) at the U.S. Department of Energy (DOE)’s Office of Energy Efficiency and Renewable Energy and the Office of Fossil Energy (FE) hosted a workshop, November 12-13, 2014, in Coraopolis, Pennsylvania, as a follow-up to the President’s Climate Action Plan and the DOE meeting series on reducing methane emissions from natural gas pipeline systems. The workshop is part of the larger Administration Strategy to Reduce Methane Emissions associated with natural gas transmission and distribution infrastructure.

  2. Electrically-Assisted Turbocharger Development for Performance and Emissions

    SciTech Connect (OSTI)

    Bailey, Milton

    2000-08-20

    Turbocharger transient lag inherently imposes a tradeoff between a robust engine response to transient load shifts and exhaust emissions. By itself, a well matched turbocharger for an engine has limited flexibility in improving this transient response. Electrically-assisted turbocharging has been seen as an attractive option to improve response and lower transient emissions. This paper presents the results of a multi-year joint CRADA between DDC and ORNL. Virtual lab diesel simulation models characterized the performance improvement potential of an electrically assisted turbocharger technology. Operating requirements to reduce transient duration between load shift time by up to 50% were determined. A turbomachine has been conceptualized with an integrated motor-generator, providing transient burst boost plus energy recovery capability. Numerous electric motor designs were considered, and a prototype motor was developed, fabricated, and is undergoing tests. Power controls have been designed and fabricated.

  3. Mercury Emissions Control Technologies (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    The Annual Energy Outlook 2006 reference case assumes that states will comply with the requirements of the Environmental Protection Agency's new Clean Air Mercury Rule (CAMR) regulation. CAMR is a two-phase program, with a Phase I cap of 38 tons of mercury emitted from all U.S. power plants in 2010 and a Phase II cap of 15 tons in 2018. Mercury emissions in the electricity generation sector in 2003 are estimated at around 50 tons. Generators have a variety of options to meet the mercury limits, such as: switching to coal with a lower mercury content, relying on flue gas desulfurization or selective catalytic reduction equipment to reduce mercury emissions, or installing conventional activated carbon injection (ACI) technology.

  4. Implement emission control strategies based on demonstrated effectiveness

    SciTech Connect (OSTI)

    1995-09-01

    The ozone transport Commission (OTC) is a Congressionally chartered organization of the 12 states (and District of Columbia) in the Northeast U.S. Its mandate is to develop innovative, regionwide solutions to the ground-level ozone problem experienced throughout the region, especially in the summer. Since its inception in 1991, the OTC has worked with a variety of interested parties in industry, government and the environmental community to fashion strategies for reducing mobile-source and stationary-source emissions. In a discussion with Executive Director Bruce Carhart, Fuel Reformulation`s Fred Potter, Kevin Adler and Linda Micco discuss the OTC`s accomplishments and goals for low-emission vehicles, reformulated gasoline (RFG) and other programs.

  5. New process to avoid emissions: Constant pressure in coke ovens

    SciTech Connect (OSTI)

    Giertz, J.; Huhn, F.; Hofherr, K.

    1995-12-01

    A chamber pressure regulation (PROven), especially effective in regard to emission control problems of coke ovens is introduced for the first time. Because of the partial vacuum in the collecting main system, it is possible to keep the oven`s raw gas pressure constant on a low level over the full coking time. The individual pressure control for each chamber is assured directly as a function of the oven pressure by an immersion system controlling the flow resistance of the collecting main valve. The latter is a fixed-position design (system name ``FixCup``). By doing away with the interdependence of collecting main pressure and chamber pressure, a parameter seen as a coking constant could not be made variable. This opens a new way to reduce coke oven emissions and simultaneously to prevent the ovens from damage caused by air ingress into the oven.

  6. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    SciTech Connect (OSTI)

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C.; Howden, Kenneth C.; Chalk, Steven

    2002-06-01

    Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulations. Meeting the Tier II standards requires NOX and PM emissions to be reduced dramatically. Achieving such low emissions while minimizing fuel economy penalty cannot be done through engine development and fuel reformulation alone, and requires application of NOX and PM aftertreatment control devices. A joint effort was made between Cummins Inc. and the Department of Energy to develop the generic aftertreatment subsystem technologies applicable for Light-Duty Vehicle (LDV) and Light-Duty Truck (LDT) engines. This paper provides an update on the progress of this joint development program. Three NOX reduction technologies including plasmaassisted catalytic NOX reduction (PACR), active lean NOX catalyst (LNC), and adsorber catalyst (AC) technology using intermittent rich conditions for NOX reduction were investigated in parallel in an attempt to select the best NOX control approach for light-duty aftertreatment subsystem integration and development. Investigations included

  7. Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions

    SciTech Connect (OSTI)

    Marr, L.C.; Kirchstetter, T.W.; Harley, R.A.; Hammond, S.K.; Miguel, A.H.; Hering, S.V.

    1999-09-15

    Motor vehicles are a significant source of polycyclic aromatic hydrocarbon (PAH) emissions. Improved understanding of the relationship between fuel composition and PAH emissions is needed to determine whether fuel reformulation is a viable approach for reducing PAH emissions. PAH concentrations were quantified in gasoline and diesel fuel samples collected in summer 1997 in northern California. Naphthalene was the predominant PAH in both fuels, with concentrations of up to 2,600 mg L{sup {minus}1} in gasoline and 1,600 mg L{sup {minus}1} in diesel fuel. Particle-phase PAH size distributions and exhaust emission factors were measured in two bores of a roadway tunnel. Emission factors were determined separately for light-duty vehicles and for heavy-duty diesel trucks, based on measurements of PAHs, CO, and CO{sub 2}. Particle-phase emission factors, expressed per unit mass of fuel burned, ranged up to 21 {micro}g kg{sup {minus}1} for benzo[ghi]perylene for light-duty vehicles and up to {approximately} 1,000 {micro}g kg{sup {minus}1} for pyrene for heavy-duty diesel vehicles. Light-duty vehicles were found to be a significant source of heavier (four- and five-ring) PAHs, whereas heavy-duty diesel engines were the dominant source of three-ring PAHs, such as fluoranthene and pyrene. While no correlation between heavy-duty diesel truck PAH emission factors and PAH concentrations in diesel fuel was found, light-duty vehicle PAH emission factors were found to be correlated with PAH concentrations in gasoline, suggesting that gasoline reformulation may be effective in reducing PAH emissions from motor vehicles.

  8. Central vacuum system with programmable controller reduces energy costs 40%

    SciTech Connect (OSTI)

    De Silva, R.; Varnes, W.; Gaines, A.

    1985-11-01

    The B.F. Goodrich Company needed a more efficient vacuum source for the pilot plant facilities in Avon Lake, OH where new products and manufacturing procedures are developed and evaluated. Fourteen multi-stage steam jet ejector vacuum systems were installed in one building, since a number of vacuum users could be operating concurrently at different levels in the range of 15 to 150 Torr. Ejectors were normally turned on or off to provide the desired vacuum and to conserve steam. Steam is wasted, however, if all stages are on and the amount of vacuum is regulated by bleeding inert gas into the system. Water can also enter the system by kick back, if steam to the ejectors is abruptly shut off. The jet ejector vacuum systems required a steady supply of high pressure steam day and night, but fluctuating demands could create problems in the quality of vacuum obtained. Steam and maintenance costs were also significant. Goodrich decided to replace most of the steam-operated vacuum units because of the high energy requirements, and concurrently reduce hydrocarbon emissions. A major manufacturer or mechanical vacuum equipment was asked to design a vacuum system that could provide steady vacuum in the range of 10 to 250 Torr. The system had to have sufficient capacity for a number of concurrently operating processes, and handle a wide variety of hydrocarbons. The system, designed to meet these requirements and installed in June 1984, consists of a Roots-type vacuum booster with bypass valves, discharging into an intercondenser. The progammable-controlled vacuum system has reduced energy requirements by approximately 40%, and has helped in minimizing emissions. The projected pay-back for the entire system is 1 1/2 years.

  9. High-emission cold cathode

    DOE Patents [OSTI]

    Mancebo, L.

    1974-01-29

    A field-emission cathode having a multitude of field emission points for emitting a copious stream of electrons when subjected to a high field is described. The cathode is constructed by compressing a multitude of tungsten strips alternately arranged with molybdenum strips and copper ribbons or compressing alternately arranged copper plated tungsten and molybdenum strips, heating the arrangement to braze the tungsten and molybdenum strips together with the copper, machining and grinding the exposed strip edges of one side of the brazed arrangement to obtain a precisely planar surface, etching a portion of the molybdenum and copper to leave the edges of the tungsten strips protruding for electron emission, and subjecting the protruding edges of the tungsten strips to a high electric field to degas and roughen the surface to pnovide a large number of emitting points. The resulting structure is particularly useful as a cathode in a transversely excited gaseous laser where the cathode is mounted in a vacuum chamber for emitting electrons under the influence of a high electric field between the cathode and an extractor grid. The electrons pass through the extractor grid, a thin window in the wall of the laser chamber and into the laser chamber which is filled with a gaseous mixture of helium, nitrogen, and carbon dioxide. A second grid is mounted on the gaseous side of the window. The electrons pass into the laser chamber under the influence of a second electric field between the second grid and an anode in the laser chamber to raise selected gas atoms of the gaseous mixture to appropriately excited states so that a subsequent coherent light beam passing through the mixture transversely to the electron stream through windows in opposite ends of the laser chamber stimulates the excited atoms to amplify the beam. (Official Gazette)

  10. Modification of Thermal Emission via Metallic Photonic Crystals

    SciTech Connect (OSTI)

    Norris, David J.; Stein, Andreas; George, Steven M.

    2012-07-30

    Photonic crystals are materials that are periodically structured on an optical length scale. It was previously demonstrated that the glow, or thermal emission, of tungsten photonic crystals that have a specific structure - known as the 'woodpile structure' - could be modified to reduce the amount of infrared radiation from the material. This ability has implications for improving the efficiency of thermal emission sources and for thermophotovoltaic devices. The study of this effect had been limited because the fabrication of metallic woodpile structures had previously required a complex fabrication process. In this project we pursued several approaches to simplify the fabrication of metallic photonic crystals that are useful for modification of thermal emission. First, we used the self-assembly of micrometer-scale spheres into colloidal crystals known as synthetic opals. These opals can then be infiltrated with a metal and the spheres removed to obtain a structure, known as an inverse opal, in which a three-dimensional array of bubbles is embedded in a film. Second, we used direct laser writing, in which the focus of an infrared laser is moved through a thin film of photoresist to form lines by multiphoton polymerization. Proper layering of such lines can lead to a scaffold with the woodpile structure, which can be coated with a refractory metal. Third, we explored a completely new approach to modified thermal emission - thin metal foils that contain a simple periodic surface pattern, as shown in Fig. 1. When such a foil is heated, surface plasmons are excited that propagate along the metal interface. If these waves strike the pattern, they can be converted into thermal emission with specific properties.

  11. PARTICULATE EMISSION ABATEMENT FOR KRAKOW BOILERHOUSES

    SciTech Connect (OSTI)

    Bruce H. Easom; Leo A, Smolensky; S. Ronald Wysk; Jan Surowka; Miroslaw Litke; Jacek Ginter

    1998-09-30

    A U.S./Polish Bilateral Steering Committee (BSC) and the Department of Energy (DOE) selected LSR Technologies, Inc. as a contractor to participate in the Krakow Clean Fuels and Energy Efficiency Program. The objective of this program was the formation of business ventures between U.S. and Polish firms to provide equipment and services to reduce air emissions in the city of Krakow. A cooperative agreement was entered into by DOE and LSR to begin work in April 1994 involving implementation of particulate control technology called a Core Separator{trademark} for coal-fueled boilerhouses in the city. The major work tasks included: (1) conducting a market analysis, (2) completion of a formal marketing plan, (3) obtaining patent protection within Poland, (4) selecting a manufacturing partner, and (5) completing a demonstration unit and commercial installations. In addition to work performed by LSR Technologies, key contributors to this project were (1) the Polish Foundation for Energy Efficiency (FEWE), a non-profit consulting organization specializing in energy and environmental-related technologies, and (2) EcoInstal, a privately held Polish company serving the air pollution control market. As the project concluded in late 1998, five (5) Core Separator{trademark} installations had been implemented in the city of Krakow, while about 40 others were completed in other regions of Poland.

  12. Workplace Charging Challenge Partner: Sprint | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    of plug-in electric vehicles (PEVs) to reduce harmful CO2 emissions. Sprint has installed 30 charging stations for employees at its company headquarters in Overland Park, Kansas. ...

  13. Innovative Drying Technology Extracts More Energy from High Moisture Coal

    Broader source: Energy.gov [DOE]

    An innovative coal-drying technology that will extract more energy from high moisture coal at less cost and simultaneously reduce potentially harmful emissions is ready for commercial use after successful testing at a Minnesota electric utility.

  14. Modeling of Lean Exhaust Emissions Control Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean Exhaust Emissions Control Systems Modeling of Lean Exhaust Emissions Control Systems 2002 DEER Conference Presentation: National Renewable Energy Laboratory ...

  15. SUMMARY GREENHOUSE GAS EMISSIONS DATA WORKSHEET JANUARY 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUMMARY GREENHOUSE GAS EMISSIONS DATA WORKSHEET JANUARY 2015 SUMMARY GREENHOUSE GAS EMISSIONS DATA WORKSHEET JANUARY 2015 SUMMARYGREENHOUSEGASEMISSIONSDATAWORKSHEETJANUARY20...

  16. ARCADE 2 OBSERVATIONS OF GALACTIC RADIO EMISSION

    SciTech Connect (OSTI)

    Kogut, A.; Fixsen, D. J.; Mirel, P.; Wollack, E.; Levin, S. M.; Limon, M.; Seiffert, M.; Lubin, P. M.; Singal, J.; Villela, T.; Wuensche, C. A.

    2011-06-10

    We use absolutely calibrated data from the ARCADE 2 flight in 2006 July to model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure in the data is consistent with a superposition of free-free and synchrotron emission. Emission with spatial morphology traced by the Haslam 408 MHz survey has spectral index {beta}{sub synch} = -2.5 {+-} 0.1, with free-free emission contributing 0.10 {+-} 0.01 of the total Galactic plane emission in the lowest ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the polar caps using either a simple plane-parallel model with csc |b| dependence or a model of high-latitude radio emission traced by the COBE/FIRAS map of C II emission. Both methods are consistent with a single power law over the frequency range 22 MHz to 10 GHz, with total Galactic emission toward the north polar cap T{sub Gal} = 10.12 {+-} 0.90 K and spectral index {beta} = -2.55 {+-} 0.03 at reference frequency 0.31 GHz. Emission associated with the plane-parallel structure accounts for only 30% of the observed high-latitude sky temperature, with the residual in either a Galactic halo or an isotropic extragalactic background. The well-calibrated ARCADE 2 maps provide a new test for spinning dust emission, based on the integrated intensity of emission from the Galactic plane instead of cross-correlations with the thermal dust spatial morphology. The Galactic plane intensity measured by ARCADE 2 is fainter than predicted by models without spinning dust and is consistent with spinning dust contributing 0.4 {+-} 0.1 of the Galactic plane emission at 23 GHz.

  17. Greenhouse gases emission from municipal waste management: The role of separate collection

    SciTech Connect (OSTI)

    Calabro, Paolo S.

    2009-07-15

    The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO{sub 2}, CH{sub 4}, N{sub 2}O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.

  18. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; Finney, Charles; Daw, Charles; LaClair, Tim J.; Smith, David

    2014-09-30

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energymore » (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.« less

  19. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; Finney, Charles; Daw, Charles; LaClair, Tim J.; Smith, David

    2014-09-30

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  20. Energy use and carbon dioxide emissions in the steel sector in key developing countries

    SciTech Connect (OSTI)

    Price, L.K.; Phylipsen, G.J.M.; Worrell, E.

    2001-04-01

    Iron and steel production consumes enormous quantities of energy, especially in developing countries where outdated, inefficient technologies are still used to produce iron and steel. Carbon dioxide emissions from steel production, which range between 5 and 15% of total country emissions in key developing countries (Brazil, China, India, Mexico, and South Africa), will continue to grow as these countries develop and as demand for steel products such as materials, automobiles, and appliances increases. In this report, we describe the key steel processes, discuss typical energy-intensity values for these processes, review historical trends in iron and steel production by process in five key developing countries, describe the steel industry in each of the five key developing countries, present international comparisons of energy use and carbon dioxide emissions among these countries, and provide our assessment of the technical potential to reduce these emissions based on best-practice benchmarking. Using a best practice benchmark, we find that significant savings, in the range of 33% to 49% of total primary energy used to produce steel, are technically possible in these countries. Similarly, we find that the technical potential for reducing intensities of carbon dioxide emissions ranges between 26% and 49% of total carbon dioxide emissions from steel production in these countries.

  1. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; FINNEY, Charles E A; Daw, C Stuart; LaClair, Tim J; Smith, David E

    2014-01-01

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  2. Top-down methane emissions estimates for the San Francisco Bay Area from 1990 to 2012

    SciTech Connect (OSTI)

    Fairley, David; Fischer, Marc L.

    2015-01-30

    Methane is a potent greenhouse gas (GHG) that is now included in both California State and San Francisco Bay Area (SFBA) bottom-up emission inventories as part of California's effort to reduce anthropogenic GHG emissions. Here we provide a top-down estimate of methane (CH4) emissions from the SFBA by combining atmospheric measurements with the comparatively better estimated emission inventory for carbon monoxide (CO). Local enhancements of CH4 and CO are estimated using measurements from 14 air quality sites in the SFBA combined together with global background measurements. Mean annual CH4 emissions are estimated from the product of Bay Area Air Quality Management District (BAAQMD) emission inventory CO and the slope of ambient local CH4 to CO. The resulting top-down estimates of CH4 emissions are found to decrease slightly from 1990 to 2012, with a mean value of 240 ± 60 GgCH4 yr⁻¹ (at 95% confidence) in the most recent (2009–2012) period, and correspond to reasonably a constant factor of 1.5–2.0 (at 95% confidence) times larger than the BAAQMD CH4 emission inventory. However, we note that uncertainty in these emission estimates is dominated by the variation in CH4:CO enhancement ratios across the observing sites and we expect the estimates could represent a lower-limit on CH4 emissions because BAAQMD monitoring sites focus on urban air quality and may be biased toward CO rather than CH4 sources.

  3. Top-down methane emissions estimates for the San Francisco Bay Area from 1990 to 2012

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fairley, David; Fischer, Marc L.

    2015-01-30

    Methane is a potent greenhouse gas (GHG) that is now included in both California State and San Francisco Bay Area (SFBA) bottom-up emission inventories as part of California's effort to reduce anthropogenic GHG emissions. Here we provide a top-down estimate of methane (CH4) emissions from the SFBA by combining atmospheric measurements with the comparatively better estimated emission inventory for carbon monoxide (CO). Local enhancements of CH4 and CO are estimated using measurements from 14 air quality sites in the SFBA combined together with global background measurements. Mean annual CH4 emissions are estimated from the product of Bay Area Air Qualitymore » Management District (BAAQMD) emission inventory CO and the slope of ambient local CH4 to CO. The resulting top-down estimates of CH4 emissions are found to decrease slightly from 1990 to 2012, with a mean value of 240 ± 60 GgCH4 yr⁻¹ (at 95% confidence) in the most recent (2009–2012) period, and correspond to reasonably a constant factor of 1.5–2.0 (at 95% confidence) times larger than the BAAQMD CH4 emission inventory. However, we note that uncertainty in these emission estimates is dominated by the variation in CH4:CO enhancement ratios across the observing sites and we expect the estimates could represent a lower-limit on CH4 emissions because BAAQMD monitoring sites focus on urban air quality and may be biased toward CO rather than CH4 sources.« less

  4. Impacts of urban transportation mode split on CO{sub 2} emissions in Jinan, China.

    SciTech Connect (OSTI)

    He, D.; Meng, F.; Wang, M.; He, K.

    2011-04-01

    As the world's largest developing country, China currently is undergoing rapid urbanization and motorization, which will result in far-reaching impacts on energy and the environment. According to estimates, energy use and carbon emissions in the transportation sector will comprise roughly 30% of total emissions by 2030. Since the late 1990s, transportation-related issues such as energy, consumption, and carbon emissions have become a policy focus in China. To date, most research and policies have centered on vehicle technologies that promote vehicle efficiency and reduced emissions. Limited research exists on the control of greenhouse gases through mode shifts in urban transportation - in particular, through the promotion of public transit. The purpose of this study is to establish a methodology to analyze carbon emissions from the urban transportation sector at the Chinese city level. By using Jinan, the capital of China's Shandong Province, as an example, we have developed an analytical model to simulate energy consumption and carbon emissions based on the number of trips, the transportation mode split, and the trip distance. This model has enabled us to assess the impacts of the transportation mode split on energy consumption and carbon emissions. Furthermore, this paper reviews a set of methods for data collection, estimation, and processing for situations where statistical data are scarce in China. This paper also describes the simulation of three transportation system development scenarios. The results of this study illustrate that if no policy intervention is implemented for the transportation mode split (the business-as-usual (BAU) case), then emissions from Chinese urban transportation systems will quadruple by 2030. However, a dense, mixed land-use pattern, as well as transportation policies that encourage public transportation, would result in the elimination of 1.93 million tons of carbon emissions - approximately 50% of the BAU scenario emissions.

  5. New York MARKAL: An evaluation of carbon dioxide emission control strategies in New York State

    SciTech Connect (OSTI)

    Hamilton, L.D.

    1992-12-31

    A MARKAL model was developed for the State of New York. It represents the State`s energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO2 emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO2 emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  6. Evaluation of carbon dioxide emission control strategies in New York State

    SciTech Connect (OSTI)

    Morris, S.C.; Lee, J.; Goldstein, G.; Hill, D.

    1992-01-01

    A MARKAL model was developed for the State of New York. It represents the state's energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO{sub 2} emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Staff members from both organizations and other state agencies were trained in its use. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO{sub 2} emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  7. Evaluation of carbon dioxide emission control strategies in New York State. Final report, 1990--1991

    SciTech Connect (OSTI)

    Morris, S.C.; Lee, J.; Goldstein, G.; Hill, D.

    1992-01-01

    A MARKAL model was developed for the State of New York. It represents the state`s energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO{sub 2} emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Staff members from both organizations and other state agencies were trained in its use. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO{sub 2} emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  8. Protecting Public Health through Cleaner Fuels and Lower Emissions

    Broader source: Energy.gov [DOE]

    Reuben Sarkar, the Energy Department’s (DOE’s) Deputy Assistant Secretary for Sustainable Transportation, will take part in an Environmental and Energy Study Institute panel on the health and environmental benefits of cleaner octane sources in fuel, “Protecting Public Health through Cleaner Fuels and Lower Emissions.” Mr. Sarkar will speak on DOE’s Co-Optimization of Fuels and Engines (Co-Optima) program; this multi-year initiative aims to reduce petroleum consumption by 30% beyond currently mandated engine efficiency measures by 2030 through the co-optimization of new advanced high octane fuels and engines.

  9. Implementing Strategies for Drying and Pressing Wood Without Emissions Controls

    SciTech Connect (OSTI)

    Sujit Banerjee; Terrance Conners

    2007-09-07

    Drying and pressing wood for the manufacture of lumber, particleboard, oriented strand board (OSB), veneer and medium density fiberboard (MDF) release volatile organic compounds (VOCs) into the atmosphere. These emissions require control equipment that are capital-intensive and consume significant quantities of natural gas and electricity. The objective of our work was to understand the mechanisms through which volatile organic compounds are generated and released and to develop simple control strategies. Of the several strategies developed, two have been implemented for OSB manufacture over the course of this study. First, it was found that increasing final wood moisture by about 2-4 percentage points reduced the dryer emissions of hazardous air pollutants by over 70%. As wood dries, the escaping water evaporatively cools the wood. This cooling tapers off wood when the wood is nearly dry and the wood temperature rises. Thermal breakdown of the wood tissue occurs and VOCs are released. Raising the final wood moisture by only a few percentage points minimizes the temperature rise and reduces emissions. Evaporative cooling also impacts has implications for VOC release from wood fines. Flaking wood for OSB manufacture inevitable generates fines. Fines dry out rapidly because of their high surface area and evaporative cooling is lost more rapidly than for flakes. As a result, fines emit a disproportionate quantity of VOCs. Fines can be reduced in two ways: through screening of the green furnish and through reducing their generation during flaking. The second approach is preferable because it also increased wood yield. A procedure to do this by matching the sharpness angle of the flaker knife to the ambient temperature was also developed. Other findings of practical interests are as follows: Dielectric heating of wood under low-headspace conditions removes terpenes and other extractives from softwood; The monoterpene content in trees depend upon temperature and seasonal

  10. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect (OSTI)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  11. Field Emission and Nanostructure of Carbon Films

    SciTech Connect (OSTI)

    Merkulov, V.I.; Lowndes, D.H.; Baylor, L.R.

    1999-11-29

    The results of field emission measurements of various forms of carbon films are reported. It is shown that the films nanostructure is a crucial factor determining the field emission properties. In particular, smooth, pulsed-laser deposited amorphous carbon films with both high and low sp3 contents are poor field emitters. This is similar to the results obtained for smooth nanocrystalline, sp2-bonded carbon films. In contrast, carbon films prepared by hot-filament chemical vapor deposition (HE-CVD) exhibit very good field emission properties, including low emission turn-on fields, high emission site density, and excellent durability. HF-CVD carbon films were found to be predominantly sp2-bonded. However, surface morphology studies show that these films are thoroughly nanostructured, which is believed to be responsible for their promising field emission properties.

  12. Combustion with reduced carbon in the ash

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, III, Lawrence E.

    2005-12-27

    Combustion of coal in which oxygen is injected into the coal as it emerges from burner produces ash having reduced amounts of carbon.

  13. Reduced AC losses in HTS coated conductors

    DOE Patents [OSTI]

    Ashworth, Stephen P.

    2004-10-05

    Methods for reducing hysteresis losses in superconductor coated ribbons where a flux distribution is set into the superconductor coated ribbon prior to the application of alternating current.

  14. Reducing Petroleum Despendence in California: Uncertainties About...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Petroleum Despendence in California: Uncertainties About Light-Duty Diesel Reducing Petroleum Despendence in California: Uncertainties About Light-Duty Diesel 2002 DEER Conference ...

  15. Reducing Logistics Footprints and Replenishment Demands: Nano...

    Office of Scientific and Technical Information (OSTI)

    Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water Treatment Citation Details In-Document Search Title: Reducing Logistics ...

  16. Reducing Logistics Footprints and Replenishment Demands: Nano...

    Office of Scientific and Technical Information (OSTI)

    Water Treatment Citation Details In-Document Search Title: Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water ...

  17. Innovative Computational Tools for Reducing Exploration Risk...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computational Tools for Reducing Exploration Risk Through Integration of Water-Rock ... More Documents & Publications track 4: enhanced geothermal systems (EGS) | geothermal 2015 ...

  18. Concentrating Solar Power Commercial Application Study: Reducing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation Report to Congress U.S. Department of Energy ...

  19. Kevin Harms | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel File Systems High Performance Computing and Storage Platform Analysis and Benchmarking Projects ALCF Darshan: HPC IO Characterization Tool Triton CODES: Enabling...

  20. QUANTIFICATION OF FUGITIVE REACTIVE ALKENE EMISSIONS FROM PETROCHEMICAL PLANTS WITH PERFLUOROCARBON TRACERS.

    SciTech Connect (OSTI)

    SENUM,G.I.; DIETZ,R.N.

    2004-06-30

    Recent studies demonstrate the impact of fugitive emissions of reactive alkenes on the atmospheric chemistry of the Houston Texas metropolitan area (1). Petrochemical plants located in and around the Houston area emit atmospheric alkenes, such as ethene, propene and 1,3-butadiene. The magnitude of emissions is a major uncertainty in assessing their effects. Even though the petrochemical industry reports that fugitive emissions of alkenes have been reduced to less than 0.1% of daily production, recent measurement data, obtained during the TexAQS 2000 experiment indicates that emissions are perhaps a factor of ten larger than estimated values. Industry figures for fugitive emissions are based on adding up estimated emission factors for every component in the plant to give a total estimated emission from the entire facility. The dramatic difference between estimated and measured rates indicates either that calculating emission fluxes by summing estimates for individual components is seriously flawed, possibly due to individual components leaking well beyond their estimated tolerances, that not all sources of emissions for a facility are being considered in emissions estimates, or that there are known sources of emissions that are not being reported. This experiment was designed to confirm estimates of reactive alkene emissions derived from analysis of the TexAQS 2000 data by releasing perfluorocarbon tracers (PFTs) at a known flux from a petrochemical plant and sampling both the perfluorocarbon tracer and reactive alkenes downwind using the Piper-Aztec research aircraft operated by Baylor University. PFTs have been extensively used to determine leaks in pipelines, air infiltration in buildings, and to characterize the transport and dispersion of air parcels in the atmosphere. Over 20 years of development by the Tracer Technology Center (TTC) has produced a range of analysis instruments, field samplers and PFT release equipment that have been successfully deployed in a