National Library of Energy BETA

Sample records for reduce energy intensity

  1. Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet

    Broader source: Energy.gov [DOE]

    This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Mississippi.

  2. Energy Intensity Indicators: Electricity Generation Energy Intensity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electricity Generation Energy Intensity Energy Intensity Indicators: Electricity Generation Energy Intensity A kilowatt-hour (kWh) of electric energy delivered to the final user has an energy equivalent to 3,412 British thermal units (Btu). Figure E1, below, tracks how much energy was used by the various categories of electricity generators to produce a kWh of electricity (i.e., the heat rate). As shown in the figure, in 1950, central power plants producing only

  3. Energy Market and Economic Impacts Proposal to Reduce Greenhouse Gas Intensity with a Cap and Trade System

    Reports and Publications (EIA)

    2007-01-01

    This report was prepared by the Energy Information Administration (EIA), in response to a September 27, 2006, request from Senators Bingaman, Landrieu, Murkowski, Specter, Salazar, and Lugar. The Senators requested that EIA assess the impacts of a proposal that would regulate emissions of greenhouse gases (GHGs) through an allowance cap-and-trade system. The program would set the cap to achieve a reduction in emissions relative to economic output, or greenhouse gas intensity.

  4. ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio:

    Office of Environmental Management (EM)

    Addressing Key Energy Challenges Across U.S. Industry | Department of Energy Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry PDF icon eip_report.pdf More Documents & Publications Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy Technology

  5. Energy Intensity Indicators: Efficiency vs. Intensity

    Broader source: Energy.gov [DOE]

    Efficiency improvements in processes and equipment and other explanatory factors can contribute to observed changes in energy intensity. Within the category "other explanatory factors" we can...

  6. Energy Intensity Indicators: Coverage

    Broader source: Energy.gov [DOE]

    This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors—transportation, industry, commercial, and residential, as well as the electric power sector. These sectors are shown in Figure 1. More detail for some of these sectors can be obtained by accessing the file "End-Use Sector Flowchart" below Figure 1.

  7. Energy Intensity Indicators: Manufacturing Energy Intensity

    Broader source: Energy.gov [DOE]

    The manufacturing sector comprises 18 industry sectors, generally defined at the three-digit level of the North American Industrial Classification System (NAICS). The manufacturing energy data...

  8. Energy Intensity Indicators: Highlights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highlights Energy Intensity Indicators: Highlights This page highlights the major changes in the overall energy intensity for the United States, as well as summarizing changes in ...

  9. Energy Intensity and Carbon Intensity by the Numbers | Department of Energy

    Energy Savers [EERE]

    Intensity and Carbon Intensity by the Numbers Energy Intensity and Carbon Intensity by the Numbers

  10. Strategies for the Commercialization & Deployment of GHG Intensity-Reducing Technologies & Practices

    Broader source: Energy.gov [DOE]

    This report looks at the best methods of commercializing and deploying energy technologies that reduce greenhouse gas intensity.

  11. Energy Intensity Baselining and Tracking Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learn more at betterbuildings.energy.gov Energy Intensity Baselining and Tracking Guidance i Preface The U.S. Department of Energy's (DOE's) Better Buildings, Better Plants Program (Better Plants) is a voluntary energy efficiency leadership initiative for U.S. manufacturers. The program encourages companies to commit to reduce the energy intensity of their U.S. manufacturing operations, usually by 25% over a 10-year period. Companies joining Better Plants are recognized by DOE for their

  12. Energy Intensity Indicators | Department of Energy

    Office of Environmental Management (EM)

    Data & Tools » Energy Intensity Indicators Energy Intensity Indicators Energy efficiency is a vital part of the nation's energy strategy and has been since the first oil crisis in 1973. As part of a national priority for improving energy efficiency, the Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) has established a national system of indicators to track changes in the energy intensity of our economy and economic sectors over time. This system of

  13. reduce CFRP embodied energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reduce CFRP embodied energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  14. Energy Intensity Indicators: Commercial Source Energy Consumption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Commercial Source Energy Consumption Energy Intensity Indicators: Commercial Source Energy Consumption Figure C1 below reports as index numbers over the period 1970 through 2011: 1) commercial building floor space, 2) energy use based on source energy consumption, 3) energy intensity, and 4) the year-to-year influence of weather. Activity: Since 1970, the quantity of commercial floor space has nearly doubled, with about half of that increase occurring after 1985. There

  15. Energy Intensity Indicators: Residential Source Energy Consumption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Source Energy Consumption Energy Intensity Indicators: Residential Source Energy Consumption Figure R1 below reports as index numbers over the period 1970 through 2011: 1) the number of U.S. households, 2) the average size of those housing units, 3) residential source energy consumption, 4) energy intensity, and 5) an overall structural component that represents "other explanatory factors." Activity: Since 1970, the number of household (occupied

  16. Energy Intensity Indicators: Transportation Energy Consumption | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Transportation Energy Consumption Energy Intensity Indicators: Transportation Energy Consumption This section contains an overview of the aggregate transportation sector, combining both passenger and freight segments of this sector. The specific energy intensity indicators for passenger and freight can be obtained from the links, passenger transportation, or freight transportation. For further detail within the transportation sector, download the appropriate Trend Data worksheet

  17. Energy Intensity Indicators Data | Department of Energy

    Office of Environmental Management (EM)

    Intensity Indicators Data Energy Intensity Indicators Data The files listed below contain energy intensity data and documentation that supports the information presented on this website. The files are in Microsoft® Excel® format (2007 and later versions). Package icon Entire Set File Economywide File Transportation Sector File Industrial Sector File Residential Buildings Sector File Commercial Buildings Sector File Electricity Sector More Documents & Publications Home Performance

  18. Energy Intensity Indicators: Overview of Concepts

    Broader source: Energy.gov [DOE]

    The Energy Intensity Indicators website reports changes in energy intensity in the United States since 1970. The website discusses, and presents data for, energy intensity trends by major end-use...

  19. Energy Intensity Indicators: Industrial Source Energy Consumption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Industrial Source Energy Consumption Energy Intensity Indicators: Industrial Source Energy Consumption The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the three-digit level of the North American Industrial Classification System (NAICS). The nonmanufacturing sectors are agriculture, forestry and fisheries, mining, and

  20. INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers |

    Energy Savers [EERE]

    Department of Energy INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers February 19, 2016 - 11:53am Addthis Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs Watch our CO2 drop dramatically compared to other countries in this interactive Curious about the total amount of carbon we emit into the atmosphere? Compare countries from around the globe using this tool. If

  1. Southeastern Center for Industrial Energy Intensity Reduction | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Southeastern Center for Industrial Energy Intensity Reduction Southeastern Center for Industrial Energy Intensity Reduction Map of Southeastern U.S. with Mississippi highlighted The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) has developed multiple resources and a best practices suite of tools to help industrial manufacturers reduce their energy intensity. AMO adopted the Energy Policy Act of 2005 objective

  2. Reducing Energy Loss

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will learn about the Law of Conservation of Energy. They will also compare and contrast Energy Guide Labels to study energy efficiency and conservation as well.

  3. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of...

  4. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges

    Office of Environmental Management (EM)

    Across U.S. Industry | Department of Energy Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry PDF icon eip_report_pg9.pdf More Documents & Publications ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy Technology Solutions Energy Technology Solutions: Public-Private

  5. Energy Intensity Baselining and Tracking Guidance | Department of Energy

    Office of Environmental Management (EM)

    Technical Assistance » Better Plants » Energy Intensity Baselining and Tracking Guidance Energy Intensity Baselining and Tracking Guidance The Energy Intensity Baselining and Tracking Guidance for the Better Buildings, Better Plants Program helps companies meet the program's reporting requirements by describing the steps necessary to develop an energy consumption and energy intensity baseline and calculating consumption and intensity changes over time. Most of the calculation steps described

  6. Energy Department Funding Helping Energy-Intensive Dairy Industry |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Funding Helping Energy-Intensive Dairy Industry Energy Department Funding Helping Energy-Intensive Dairy Industry July 17, 2015 - 12:55pm Addthis Energy Department Funding Helping Energy-Intensive Dairy Industry Emiley Mallory Emiley Mallory Communications Specialist, Weatherization Assistance Program John Coggin John Coggin Communications Specialist, Weatherization and Intergovernmental Programs What are the key facts? The Colorado Energy Office implemented a Dairy and

  7. Iron and Steel Energy Intensities

    U.S. Energy Information Administration (EIA) Indexed Site

    MECS Survey Year 1985 1988 1991 1994 All Energy Sources 46.47 30.61 34.77 33.98 Electricity 3.66 2.44 3.17 3.05 Natural Gas 11.33 7.86 10.25 9.97 Coal 29.13 19.12 20.08 18.40...

  8. Description of Energy Intensity Tables (12)

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Description of Energy Intensity Data Tables There are 12 data tables used as references for this report. Specifically, these tables are categorized as tables 1 and 2 present...

  9. Energy Intensity of Federal Buildings Slashed 25% in Past Decade

    Broader source: Energy.gov [DOE]

    The U.S. General Services Administration (GSA), which builds and manages federal buildings, recently announced that it cut federal energy spending by $65.5 million in fiscal year (FY) 2012 by reducing the energy use intensity levels in its buildings by nearly 25% since FY 2003.

  10. Energy Intensity Indicators: Indicators for Major Sectors

    Broader source: Energy.gov [DOE]

    This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors—transportation, industry, commercial, and residential, as well as the electric power sector. These sectors are shown in Figure 1.

  11. China-Energy Intensity Reduction Strategy | Open Energy Information

    Open Energy Info (EERE)

    Intensity Reduction Strategy Jump to: navigation, search Name China-ESMAP Low Carbon Growth Country Studies Program AgencyCompany Organization Energy Sector Management Assistance...

  12. Energy End-Use Intensities in Commercial Buildings 1989 -- Executive...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Energy End-Use Intensities > Executive Summary Executive Summary Energy End Uses Ranked by Energy Consumption, 1989 Energy End Uses Ranked by Energy Consumption, 1989 Source:...

  13. Changes in energy intensity in the manufacturing sector 1985--1991

    SciTech Connect (OSTI)

    1995-09-15

    In this report, energy intensity is defined as the ratio of energy consumption per unit of output. Output is measured as the constant dollar of value of shipments and receipts, and two measures of energy consumption are presented in British thermal units (Btu): Offsite-Produced Energy and Total Inputs of Energy. A decrease in energy intensity from one period to another suggests an increase in energy efficiency, and vice versa. Energy efficiency can be defined and measured in various ways. Certain concepts of energy efficiency, especially those limited to equipment efficiencies, cannot be measured over time using changes in energy-intensity ratios. While improved energy efficiency will tend to reduce energy intensity, it is also true that a change in energy intensity can be due to factors unrelated to energy efficiency. For this report, energy intensity is used as a surrogate measure for energy efficiency, based on industry knowledge and current methodological analyses.

  14. Reducing Your Electricity Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliances & Electronics » Reducing Your Electricity Use Reducing Your Electricity Use An energy audit can help you find the most effective ways to save money and reduce energy use in your home. | Photo courtesy of Dennis Schroeder, NREL. An energy audit can help you find the most effective ways to save money and reduce energy use in your home. | Photo courtesy of Dennis Schroeder, NREL. Reducing energy use in your home saves you money, increases our energy security, and reduces the

  15. Reducing Energy Demand in Buildings Through State Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in ... More Documents & Publications Technology Performance Exchange - 2013 BTO Peer Review ...

  16. Energy Intensity Indicators: Caveats and Cautions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caveats and Cautions Energy Intensity Indicators: Caveats and Cautions This website contains a diverse collection of indicators that track changes in energy intensity at the national and end-use sector levels (after taking into account other explanatory factors). Indicators are based on readily available and publicly accessible data, although some of this data has been interpolated between published years, or extrapolated beyond the last published year. To help facilitate the appropriate

  17. Energy Intensity Indicators: Indicators Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Energy Intensity Indicators: Indicators Data The files listed below contain energy intensity data and documentation that supports the information presented on this website. The files are in Microsoft® Excel® format (2007 and later versions) and are available to view and/or download. The entire set of files is also available for download as a zipped* (compressed) file. Economywide Transportation Sector Industrial Sector Residential Buildings Sector Commercial Buildings Sector Electricity

  18. Table 22. Energy Intensity, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / $Billion 2005 Chained GDP)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",10.89145253,10.73335719,10.63428655,10.48440125,10.33479508,10.20669515,10.06546105,9.94541493,9.822393757,9.707148466,9.595465524,9.499032573,9.390723436,9.29474735,9.185496812,9.096176848,9.007677565,8.928276581 "AEO

  19. Reducing Regulatory Burden | Department of Energy

    Energy Savers [EERE]

    Burden Reducing Regulatory Burden Request for information on reducing regulatory burden PDF icon Reducing Regulatory Burden More Documents & Publications Reducing Regulatory Burden; Retrospective Review Under E.O. 13563 Reducing Regulatory Burden Department of Energy Request for Information: Reducing Regulatory Burden (Reply Comments)

  20. Energy Intensity Indicators: Methodology Downloads | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Indicators: Methodology Downloads Energy Intensity Indicators: Methodology Downloads The files listed below contain methodology documentation and related studies that support the information presented on this website. The files are available to view and/or download as Adobe Acrobat PDF files. PDF icon Energy Indicators System: Index Construction Methodology PDF icon Changing the Base Year for the Index PDF icon "A Note on the Fisher Ideal Index Decomposition for Structural Change in Energy

  1. Reducing Your Electricity Use | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    An energy audit can help you find the most effective ways to save money and reduce energy use in your home. | Photo courtesy of Dennis Schroeder, NREL. An energy audit can help you find the most effective ways to save money and reduce energy use in your home. | Photo courtesy of Dennis Schroeder, NREL. Reducing energy use in your home saves you money, increases our energy security, and reduces the pollution that is emitted from non-renewable sources of energy. If you are planning to install a

  2. Energy End-Use Intensities in Commercial Buildings 1989

    U.S. Energy Information Administration (EIA) Indexed Site

    1989 Energy End-Use Intensities Overview Full Report Tables National estimates and analysis of energy consumption by fuel (electricity, natural gas, fuel oil, and district...

  3. Industrial Assessment Centers Small Manufacturers Reduce Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOEEE-1278 Industrial Assessment Centers Small Manufacturers Reduce Energy & Increase Productivity Since 1976, the Industrial Assessment Centers (IACs), administered by the US...

  4. High-Intensity Discharge Lighting Basics | Department of Energy

    Energy Savers [EERE]

    High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics August 15, 2013 - 5:59pm Addthis High-intensity discharge (HID) lighting provides the second highest efficacy and longest service life of any lighting type. Both HIDs and LEDs can save 75%-90% of lighting energy when they replace incandescent lighting. In a high-intensity discharge lamp, electricity arcs between two electrodes, creating an intensely bright light. Mercury, sodium, or metal halide gas acts as the

  5. Energy Intensity Changes by Sector, 1985-2011 - Alternative Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Changes by Sector, 1985-2011 - Alternative Measures by Type of Energy Energy Intensity Changes by Sector, 1985-2011 - Alternative Measures by Type of Energy Further insight with ...

  6. Energy Intensity Indicators: Terminology and Definitions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Terminology and Definitions Energy Intensity Indicators: Terminology and Definitions The Energy Intensity Indicators website uses the following terms with their associated definitions. The terms related to various definitions of energy are discussed first. Three separate definitions of energy are used in the system of indicators: 1) delivered, 2) source, and 3) source, adjusted for electricity generation efficiency change. These definitions are discussed below. Delivered energy is the

  7. A Comprehensive System of U.S. Energy Intensity Indicators

    Broader source: Energy.gov [DOE]

    This report describes a comprehensive system of energy intensity indicators for the United States that has been developed for the Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) over the past decade. This system of indicators is hierarchical in nature, beginning with detailed indexes of energy intensity for various sectors of the economy, which are ultimately aggregated to an overall energy intensity index for the economy as a whole. The aggregation of energy intensity indexes to higher levels in the hierarchy is performed with a version of the Log Mean Divisia index (LMDI) method. Based upon the data and methods in the system of indicators, the economy-wide energy intensity index shows a decline of about 14% in 2011 relative to a 1985 base year.

  8. Reducing Energy Demand in Buildings Through State Energy Codes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building Technologies Office's Program Peer Review PDF icon bldgcodes03_guttman_040213.pdf More Documents & Publications Technology Performance Exchange - 2013 BTO Peer Review Atmospheric Pressure Deposition for Electrochromic Windows Building America System Research

  9. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Intensities The purpose of this section is to provide information on how energy was used for space conditioning--heating, cooling, and ventilation--in commercial...

  10. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers PDF icon biomass-firedboilers.pdf More Documents &...

  11. Energy Detectives Help Pennsylvania Town Reduce Costs

    Broader source: Energy.gov [DOE]

    Judith Mondre spent the past two months learning the ins and outs of Upper Darby Township, Pa.'s energy usage. She's analyzed energy bills, observed town facilities and interviewed staff to put together a plan to help the municipality reduce its total energy usage.

  12. Reducing Your Electricity Use | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    If you are planning to install a small renewable energy system to make your own electricity, such as a solar electric system or small wind turbine, reducing your electricity...

  13. SEP Success Story: Energy Department Funding Helping Energy-Intensive Dairy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry | Department of Energy Energy Department Funding Helping Energy-Intensive Dairy Industry SEP Success Story: Energy Department Funding Helping Energy-Intensive Dairy Industry July 20, 2015 - 1:24pm Addthis SEP Success Story: Energy Department Funding Helping Energy-Intensive Dairy Industry With help from the State Energy Program, eight dairies in Colorado received a free energy audit and energy saving recommendations through the Colorado Dairy and Irrigation Efficiency Pilot. The

  14. National Renewable Energy Laboratory To Reduce Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To Reduce Staff Last updated: November 14, 1995 For information contact: Robert Noun, (303) 275-3062 Kerry Masson (303) 275-4083 Golden, Colo., November 3, 1995 -- The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) announced today a schedule for restructuring and reducing its work force in response to impending reductions in federal research budgets. Work force reductions may ultimately eliminate more than 10 percent of the present work force of about 900 full-time

  15. Energy Intensity Trends in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Energy intensity (energy consumption per dollar of real GDP) indicates how much energy a country uses to produce its goods and services. From the early 1950s to the early 1970s, U.S. total primary energy consumption and real GDP increased at nearly the same annual rate. During that period, real oil prices remained virtually flat. In contrast, from the mid-1970s to 2008, the relationship between energy consumption and real GDP growth changed, with primary energy consumption growing at less than one-third the previous average rate and real GDP growth continuing to grow at its historical rate. The decoupling of real GDP growth from energy consumption growth led to a decline in energy intensity that averaged 2.8% per year from 1973 to 2008. In the Annual Energy Outlook 2010 Reference case, energy intensity continues to decline, at an average annual rate of 1.9% from 2008 to 2035.

  16. Reduce Hot Water Use for Energy Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating » Reduce Hot Water Use for Energy Savings Reduce Hot Water Use for Energy Savings One easy energy lifehack: fix leaky faucets to save money and energy. One easy energy lifehack: fix leaky faucets to save money and energy. You can lower your water heating costs by using and wasting less hot water in your home. To conserve hot water, you can fix leaks, install low-flow fixtures, and purchase an energy-efficient dishwasher and clothes washer. Fix Leaks You can significantly reduce

  17. Renewable Energy Can Help Reduce Oil Dependency

    ScienceCinema (OSTI)

    Arvizu, Dan

    2013-05-29

    In a speech to the Economic Club of Kansas City on June 23, 2010, NREL Director Dan Arvizu takes a realistic look at how renewable energy can help reduce America's dependence on oil, pointing out that the country gets as much energy from renewable sources now as it does from offshore oil production. For a transcript, visit http://www.nrel.gov/director/pdfs/energy_overview_06_10.pdf

  18. Energy Intensity Baselining and Tracking Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... acquisitions, and divestitures, can have significant ... its energy data to the corporate office for Acme's first ... Protocol for Industry, November 19, 2012. Learn ...

  19. Energy Intensity Baselining and Tracking Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... being used as the corporate-wide energy ... or some other financial metric 5 Use regression analysis to normalize each ... Protocol for Industry, November 19, 2012. ...

  20. Changes in Energy Intensity in the Manufacturing Sector 1985...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Introduction Rankeda EI Numbers of Total Inputs of Energy SIC Codeb Intensity for 1985c Intensity for 1994c 29 18.11 25.85 26 17.82 17.71 33 19.57 16.27 32 14.75 14.69 28 11.09...

  1. Reducing Energy Demand in Buildings Through State Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Codes Assistance Project Maureen Guttman, AIA Executive Director, BCAP Alliance to Save Energy 202-530-2211 mguttman@ase.org Tuesday, April 2, 2013 - Thursday, April 4, 2013 Reducing Energy Demand in Buildings Through State Energy Codes - Providing Technical Support and Assistance to States - 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Buildings = largest sector of energy consumption in America * Energy codes are a ready-made regulatory mechanism

  2. Helping Alaska Native Communities Reduce Their Energy Costs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Helping Alaska Native Communities Reduce Their Energy Costs Helping Alaska Native Communities Reduce Their Energy Costs May 3, 2013 - 12:50pm Addthis The Energy Department is helping Alaska Native communities reduce their energy costs by investing in renewable energy and energy efficiency upgrades. | Photo courtesy of Western Community Energy. The Energy Department is helping Alaska Native communities reduce their energy costs by investing in renewable energy and energy efficiency

  3. Strategies for the Commercialization and Deployment of Greenhouse Gas Intensity-Reducing Technologies and Practices

    SciTech Connect (OSTI)

    Committee on Climate Change Science and Technology Integration

    2009-01-01

    New technologies will be a critical component--perhaps the critical component--of our efforts to tackle the related challenges of energy security, climate change, and air pollution, all the while maintaining a strong economy. But just developing new technologies is not enough. Our ability to accelerate the market penetration of clean energy, enabling, and other climate-related technologies will have a determining impact on our ability to slow, stop, and reverse the growth in greenhouse gas (GHG) emissions. Title XVI, Subtitle A, of the Energy Policy Act of 2005 (EPAct 2005) directs the Administration to report on its strategy to promote the commercialization and deployment (C&D) of GHG intensity-reducing technologies and practices. The Act also requests the Administration to prepare an inventory of climate-friendly technologies suitable for deployment and to identify the barriers and commercial risks facing advanced technologies. Because these issues are related, they are integrated here within a single report that we, representing the Committee on Climate Change Science and Technology Integration (CCCSTI), are pleased to provide the President, the Congress, and the public. Over the past eight years, the Administration of President George W. Bush has pursued a series of policies and measures aimed at encouraging the development and deployment of advanced technologies to reduce GHG emissions. This report highlights these policies and measures, discusses the barriers to each, and integrates them within a larger body of other extant policy. Taken together, more than 300 policies and measures described in this document may be viewed in conjunction with the U.S. Climate Change Technology Program's (CCTP's) Strategic Plan, published in September 2006, which focuses primarily on the role of advanced technology and associated research and development (R&D) for mitigating GHG emissions. The CCTP, a multi-agency technology planning and coordination program, initiated by President Bush, and subsequently authorized in EPAct2005, is responsible for preparing this report on behalf CCCSTI. This report systematically examines the market readiness of key technologies important to meeting climate change mitigation goals. It assesses the barriers and business risks impeding their progress and greater market application. Importantly, by documenting the hundreds of Federal policies, programs, regulations, incentives, and other activities that are in effect and operating today to address these barriers, it provides a broad context for evaluating the adequacy of current policy and the potential need, if any, for additional measures that might be undertaken by government or industry. Finally, it draws conclusions about the current situation, identifies gaps and opportunities, and suggests analytical principles that should be applied to assess and formulate policies and measures to accelerate the commercialization and deployment of these technologies.

  4. Examination of Beryllium Under Intense High Energy Proton Beam...

    Office of Scientific and Technical Information (OSTI)

    Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility ... 6th International Particle Accelerator Conference. Richmond, Virginia, USA, 3-8 May 2015.

  5. Department of Energy Commercial Building Benchmarks (New Construction): Energy Use Intensities, May 5, 2009

    Broader source: Energy.gov [DOE]

    This file contains the energy use intensities (EUIs) for the benchmark building files by building type and climate zone.

  6. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  7. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect (OSTI)

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  8. ISSUANCE 2015-12-02: Energy Conservation Program: Energy Conservation Standards for High-Intensity Discharge Lamps, Final Determination

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for High-Intensity Discharge Lamps, Final Determination

  9. Reducing Waste and Harvesting Energy This Halloween | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste and Harvesting Energy This Halloween Reducing Waste and Harvesting Energy This Halloween October 30, 2013 - 9:57am Addthis This graphic shows how seasonal waste can be used to generate power. | Graphic by BCS for the Energy Department This graphic shows how seasonal waste can be used to generate power. | Graphic by BCS for the Energy Department Paul Grabowski Demonstration and Deployment, Bioenergy Technologies Office This Halloween, think of turning seasonal municipal solid waste (MSW) to

  10. On-Bill Financing: Reducing Cost Barriers to Energy Efficiency...

    Office of Environmental Management (EM)

    On-Bill Financing: Reducing Cost Barriers to Energy Efficiency Improvements (201) On-Bill Financing: Reducing Cost Barriers to Energy Efficiency Improvements (201) October 8...

  11. DOE Announces Webinars on Reducing Energy Use in Buildings, Integratin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Energy Use in Buildings, Integrating Bioenergy into the Classroom, and More DOE Announces Webinars on Reducing Energy Use in Buildings, Integrating Bioenergy into the ...

  12. Reducing Cost Barriers to Energy Efficiency Improvements (201...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Cost Barriers to Energy Efficiency Improvements (201) Reducing Cost Barriers to Energy Efficiency Improvements (201) Better Buildings Residential Network Peer Exchange...

  13. Project Profile: Reducing the Cost of Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

  14. IRS Parking Facility Lighting Retrofit Reduces Annual Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IRS Parking Facility Lighting Retrofit Reduces Annual Energy Use by 76% IRS Parking Facility Lighting Retrofit Reduces Annual Energy Use by 76% IRS Parking Facility Lighting ...

  15. Next-Generation Power Electronics: Reducing Energy Waste and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future January 15, 2014 - ...

  16. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  17. Reducing Regulatory Burden | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request for information on reducing regulatory burden PDF icon Reducing Regulatory Burden More Documents & Publications Reducing Regulatory Burden Reducing Regulatory Burden

  18. Reduced Regeneration Energy CO2 Adsorbent | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Reduced Regeneration Energy CO2 Adsorbent

  19. EIA Energy Efficiency-Iron and Steel Energy Intensity, 1998-2002

    Gasoline and Diesel Fuel Update (EIA)

    Energy Intensity Table 5a. Consumption of Energy for All Purposes per Value of Production html table 5a. excel table 5a. pdf table 5. Table 5b. Consumption of Energy for All...

  20. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  1. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  2. Energy spectrum, dissipation, and spatial structures in reduced Hall magnetohydrodynamic

    SciTech Connect (OSTI)

    Martin, L. N.; Dmitruk, P.; Gomez, D. O.

    2012-05-15

    We analyze the effect of the Hall term in the magnetohydrodynamic turbulence under a strong externally supported magnetic field, seeing how this changes the energy cascade, the characteristic scales of the flow, and the dynamics of global magnitudes, with particular interest in the dissipation. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics are performed, for different values of the Hall parameter (the ratio of the ion skin depth to the macroscopic scale of the turbulence) controlling the impact of the Hall term. The Hall effect modifies the transfer of energy across scales, slowing down the transfer of energy from the large scales up to the Hall scale (ion skin depth) and carrying faster the energy from the Hall scale to smaller scales. The final outcome is an effective shift of the dissipation scale to larger scales but also a development of smaller scales. Current sheets (fundamental structures for energy dissipation) are affected in two ways by increasing the Hall effect, with a widening but at the same time generating an internal structure within them. In the case where the Hall term is sufficiently intense, the current sheet is fully delocalized. The effect appears to reduce impulsive effects in the flow, making it less intermittent.

  3. Reducing Waste and Saving Energy with Composting | Department of Energy

    Energy Savers [EERE]

    Reducing Waste and Saving Energy with Composting Reducing Waste and Saving Energy with Composting January 16, 2012 - 9:29am Addthis Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist, Office of Public Affairs "Hey, don't throw that away!" This a phrase I heard quite often when I visited my parents over the holidays. What were they referring to? All the banana and carrot peelings I would discard, nonchalantly into the garbage bin. My father, an avid gardener for as

  4. Energy end-use intensities in commercial buildings

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and other. The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand. The source of data for the analysis is the 1989 Commercial Buildings Energy Consumption survey (CBECS), which collected detailed data on energy-related characteristics and energy consumption for a nationally representative sample of approximately 6,000 commercial buildings. The analysis used 1989 CBECS data because the 1992 CBECS data were not yet available at the time the study was initiated. The CBECS data were fed into the Facility Energy Decision Screening (FEDS) system, a building energy simulation program developed by the US Department of Energy`s Pacific Northwest Laboratory, to derive engineering estimates of end-use consumption for each building in the sample. The FEDS estimates were then statistically adjusted to match the total energy consumption for each building. This is the Energy Information Administration`s (EIA) first report on energy end-use consumption in commercial buildings. This report is part of an effort to address customer requests for more information on how energy is used in buildings, which was an overall theme of the 1992 user needs study. The end-use data presented in this report were not available for publication in Commercial Buildings Energy Consumption and Expenditures 1989 (DOE/EIA-0318(89), Washington, DC, April 1992). However, subsequent reports on end-use energy consumption will be part of the Commercial Buildings Energy Consumption and Expenditures series, beginning with a 1992 data report to be published in early 1995.

  5. Reducing Photovoltaic Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Reducing Photovoltaic Costs Reducing Photovoltaic Costs Photo of gloved hands pouring liquid from a glass bottle to glass beaker. The development of more ...

  6. EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Building Activity (Table 1b) html table 1b excel table 1b pdf table 1b. Total Primary Energy Consumption (U.S. and Census Region) By Principal Building Activity (Table 1c) html...

  7. SEP Success Story: Energy Department Funding Helping Energy-Intensive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on the Frey Farm landfill adjacent to Turkey Hill Dairy's ice cream and sweet iced tea ... Management Authority. SEP Success Story: Turkey Hill Dairy: Where Energy is Not Left ...

  8. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

    SciTech Connect (OSTI)

    2011-03-07

    AMO is developing advanced technologies that cut energy use and carbon emissions in some of the most energy-intensive processes within U.S. manufacturing. The brochure describes the AMO R&D projects that address these challenges.

  9. Department of Energy Request for Information: Reducing Regulatory...

    Office of Environmental Management (EM)

    Request for Information: Reducing Regulatory Burden (Reply Comments) Department of Energy Request for Information: Reducing Regulatory Burden (Reply Comments) Comments on RFI on...

  10. Reducing Power Factor Cost | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Power Factor Cost Reducing Power Factor Cost Low power factor is expensive and inefficient. Many utility companies charge an additional fee if your power factor is less than 0.95. Low power factor also reduces your electrical system's distribution capacity by increasing current flow and causing voltage drops. This fact sheet describes power factor and explains how you can improve your power factor to reduce electric bills and enhance your electrical system's capacity. PDF icon Reducing

  11. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boilers | Department of Energy Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers PDF icon biomass-fired_boilers.pdf More Documents & Publications Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Guide to Low-Emission Boiler and Combustion

  12. Assessing Internet energy intensity: A review of methods and results

    SciTech Connect (OSTI)

    Coroama, Vlad C.; Hilty, Lorenz M.; Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstr. 5, 9014 St. Gallen; Centre for Sustainable Communications, KTH Royal Institute of Technology, Lindstedtsvgen 5, 100 44 Stockholm

    2014-02-15

    Assessing the average energy intensity of Internet transmissions is a complex task that has been a controversial subject of discussion. Estimates published over the last decade diverge by up to four orders of magnitude from 0.0064 kilowatt-hours per gigabyte (kWh/GB) to 136 kWh/GB. This article presents a review of the methodological approaches used so far in such assessments: i) topdown analyses based on estimates of the overall Internet energy consumption and the overall Internet traffic, whereby average energy intensity is calculated by dividing energy by traffic for a given period of time, ii) model-based approaches that model all components needed to sustain an amount of Internet traffic, and iii) bottomup approaches based on case studies and generalization of the results. Our analysis of the existing studies shows that the large spread of results is mainly caused by two factors: a) the year of reference of the analysis, which has significant influence due to efficiency gains in electronic equipment, and b) whether end devices such as personal computers or servers are included within the system boundary or not. For an overall assessment of the energy needed to perform a specific task involving the Internet, it is necessary to account for the types of end devices needed for the task, while the energy needed for data transmission can be added based on a generic estimate of Internet energy intensity for a given year. Separating the Internet as a data transmission system from the end devices leads to more accurate models and to results that are more informative for decision makers, because end devices and the networking equipment of the Internet usually belong to different spheres of control. -- Highlights: Assessments of the energy intensity of the Internet differ by a factor of 20,000. We review topdown, model-based, and bottomup estimates from literature. Main divergence factors are the year studied and the inclusion of end devices. We argue against extending the Internet system boundary beyond data transmission. Decision-makers need data that differentiates between end devices and transmission.

  13. How Do You Reduce Energy Use from Computers and Electronics?...

    Broader source: Energy.gov (indexed) [DOE]

    discussed some ways to reduce the energy used by computers and electronics. Some tips include ensuring your computer is configured for optimal energy savings, turning off devices...

  14. Construction of energy-stable projection-based reduced order...

    Office of Scientific and Technical Information (OSTI)

    Construction of energy-stable projection-based reduced order models Prev Next Title: Construction of energy-stable projection-based reduced order models Our paper aims to ...

  15. Reduce Waste and Save Energy this Holiday Season

    Broader source: Energy.gov [DOE]

    Reduce waste and save energy this holiday season whether you're shopping, eating, partying, decorating, or wrapping.

  16. Reducing Cost Barriers to Energy Efficiency Improvements (201)

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: On Bill Financing: Reducing Cost Barriers to Energy Efficiency Improvements (201)

  17. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    SciTech Connect (OSTI)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700C and a frequency response up to 150 kHz, the worlds smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700C capability, UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, a single crystal sapphire fiber-based sensor with a temperature capability up to 1600C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  18. New Energy Efficiency Standards for Furnace Fans to Reduce Carbon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pollution, Help Americans Save on Energy Bills | Department of Energy Furnace Fans to Reduce Carbon Pollution, Help Americans Save on Energy Bills New Energy Efficiency Standards for Furnace Fans to Reduce Carbon Pollution, Help Americans Save on Energy Bills June 25, 2014 - 9:56am Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of President Obama's Climate Action Plan, the Energy Department today announced a new energy efficiency standard for furnace fans, the latest of eight

  19. Reducing Energy Costs and Rebuilding the Past

    Broader source: Energy.gov [DOE]

    People across the country are looking for ways to make homes and buildings more energy efficient and save money on their energy bill. The same goes for many local governments.

  20. Reduce NOx and Improve Energy Efficiency

    SciTech Connect (OSTI)

    2005-05-01

    The U.S. Department of Energy's NOx and Energy Assessment Tool (NxEAT) is available at no charge to help the petroleum refining and chemicals industries develop a cost-effective, plant-wide strategy for NOx reduction and energy efficiency improvements.

  1. Reducing Regulatory Burden | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As part of its implementation of Executive Order 13563, ''Improving Regulation and Regulatory Review,'' PDF icon RRB_EO_13563.pdf More Documents & Publications Reducing Regulatory Burden; Retrospective Review Under E.O. 13563 Reducing Regulatory Burden EO 13563 Third RFI

  2. Energy Department Announces $7 Million to Reduce Non-Hardware...

    Broader source: Energy.gov (indexed) [DOE]

    Energy's SunShot Initiative, Energy Secretary Steven Chu today announced up to 7 million to reduce the non-hardware costs of residential and commercial solar energy installations. ...

  3. Dense Servers for Reduced Energy Use and Facility Space Requirements |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Dense Servers for Reduced Energy Use and Facility Space Requirements Dense Servers for Reduced Energy Use and Facility Space Requirements Server Architecture Improves Energy Consumption and Utilization Information technology (IT) and telecommunications facilities account for ~3% of all U.S. electricity consumption. In data centers, volume servers account for 68% of the power consumed. The U.S. Department of Energy (DOE) identified the main areas where energy use or loss

  4. DOE Announces Webinars on Reducing Energy Use in Buildings, Integrating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy into the Classroom, and More | Department of Energy Reducing Energy Use in Buildings, Integrating Bioenergy into the Classroom, and More DOE Announces Webinars on Reducing Energy Use in Buildings, Integrating Bioenergy into the Classroom, and More November 30, 2015 - 8:22am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free;

  5. Department of Energy Request for Information: Reducing Regulatory Burden

    Energy Savers [EERE]

    (Reply Comments) | Department of Energy Request for Information: Reducing Regulatory Burden (Reply Comments) Department of Energy Request for Information: Reducing Regulatory Burden (Reply Comments) Comments on RFI on reducing regulatory burden PDF icon Department of Energy Request for Information: Reducing Regulatory Burden (Reply Comments) More Documents & Publications Re: Regulatory Burden RFI RegReview_ReplyComments_Lennox_Hearth_Products.PDF .Hearth, Patio & Barbecue

  6. CONNECTICUT CHALLENGES TOWNS TO REDUCE ENERGY USE

    Broader source: Energy.gov [DOE]

    With both the household use and cost of electricity increasing and an abundance of older homes, Connecticut’s market was ripe for residential energy efficiency upgrades. Through a two-year pilot...

  7. New York: Weatherizing Westbeth Reduces Energy Consumption |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 517.8 Million in Weatherization Funding and Energy Efficiency Grants for New York One Sky Homes, San Jose, CA, Custom Builder, Grand Award Winner. | California prides itself on ...

  8. Energy use and energy intensity of the U.S. chemical industry

    SciTech Connect (OSTI)

    Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

    2000-04-01

    The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is the main electricity consuming process in the chemical industry, next to oxygen and nitrogen production. We estimate final electricity use at 173 PJ (48 TWh) and fuel use of 38 PJ. Total primary energy consumption is estimated at 526 PJ (including credits for hydrogen export). The energy intensity is estimated at an electricity consumption of 4380 kWh/tonne chlorine and fuel consumption of 3.45 GJ/tonne chlorine, where all energy use is allocated to chlorine production. Assuming an average power generation efficiency of 33% the primary energy consumption is estimated at 47.8 GJ/tonne chlorine (allocating all energy use to chlorine).

  9. GovEnergy 2011 Offers Federal Energy Professionals Strategies for Reducing

    Office of Environmental Management (EM)

    Energy Use | Department of Energy GovEnergy 2011 Offers Federal Energy Professionals Strategies for Reducing Energy Use GovEnergy 2011 Offers Federal Energy Professionals Strategies for Reducing Energy Use September 13, 2011 - 11:08am Addthis Timothy Unruh, Program Manager for the Office of Energy Efficiency and Renewable Energy Image: Energy Department Image | Photo By Mark Bealer (Contractor) Timothy Unruh, Program Manager for the Office of Energy Efficiency and Renewable Energy Image:

  10. Energy Permitting Wizard Helps Reduce Project Barriers in Hawai...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permitting Wizard Helps Reduce Project Barriers in Hawai'i Energy Permitting Wizard Helps Reduce Project Barriers in Hawai'i To address the complex permitting process for renewable...

  11. New Jersey: Reducing Energy Bills for Camden's Families | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Reducing Energy Bills for Camden's Families New Jersey: Reducing Energy Bills for Camden's Families April 25, 2013 - 12:58pm Addthis The Northgate II, a 308-unit apartment building, was treated with Aeroseal, thanks to a grant from New Jersey's Multifamily Weatherization Assistance Program. Aeroseal, developed at DOE's Lawrence Berkeley National Laboratory by Dr. Mark Modera, uses airborne adhesive particles to seal leaky air ducts. The Aeroseal treatment is expected to reduce

  12. Table 7. Carbon intensity of the energy supply by State (2000...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carbon intensity of the energy supply by State (2000-2011)" "kilograms of energy-related carbon dioxide per million Btu" ,,,"Change" ,,,"2000 to 2011"...

  13. New Water Booster Pump System Reduces Energy Consumption by 80...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability This case study outlines how General Motors (GM) developed a highly efficient ...

  14. New Energy Efficiency Standards for Furnace Fans to Reduce Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    over 60 billion and reduce carbon pollution by 340 million metric tons through ... help Americans save money by saving energy while also protecting the environment. ...

  15. Energy Department Awards Nearly $7 Million for Research to Reduce...

    Broader source: Energy.gov (indexed) [DOE]

    As part of the Obama Administration's commitment to reduce America's dependence on oil ... With support from the Energy Department, manufacturers in California, New Jersey, New York ...

  16. New Water Booster Pump System Reduces Energy Consumption by 80...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BENEFITS A Motor Challeng NEW WATER BOOSTER PUMP SYSTEM REDUCES ENERGY CONSUMPTION BY 80 ... General Motors (GM) needed to relocate the facility's city water booster pumping system. ...

  17. Reduce Your Heating Bills with Better Insulation | Department of Energy

    Energy Savers [EERE]

    Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation October 3, 2008 - 11:09am Addthis John Lippert If you pay your own energy bills, you don't need to be reminded that energy prices are escalating. Energy price projections for this coming winter are not encouraging. According to the Energy Information Administration, residential natural gas prices during the upcoming heating season (October though March) are projected to average $14.93 per Mcf, an

  18. NEMA Comments on Reducing Regulatory Burden | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Regulatory Burden NEMA Comments on Reducing Regulatory Burden The National Electrical Manufacturers Association (NEMA) thanks you for the opportunity to provide comments on the Department of Energy's efforts to make its regulatory program more effective and less burdensome in achieving its regulatory objectives. PDF icon NEMA_Comments_on_Reducing_Reg_Burden.pdf More Documents & Publications NEMA Comments on DOE Reducing Regulatory Burden RFI NEMA Comments on DOE Reducing Regulatory

  19. NREL: Technology Deployment - Renewable Energy Project Helps Tribe Reduce

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Footprint by 20,000 Tons Renewable Energy Project Helps Tribe Reduce Carbon Footprint by 20,000 Tons News DOE Supports Renewable Energy Deployment Projects for Forest County Potawatomi Community Publications Advancing Energy Development in Indian Country Renewable Energy Development in Indian Country: A Handbook for Tribes Sponsors U.S. DOE Office of Energy Efficiency & Renewable Energy Key Partners Forest County Potawatomi Tribe Contact Sarah Booth, 303-275-4383 A photo of a

  20. Reducing the High Energy Costs of Alaska's Rural Water Systems

    Energy Savers [EERE]

    Reducing the High Energy Costs of Alaska's Rural Water Systems Gavin Dixon Senior Project Manager ANTHC Rural Energy Initiative The Alaska Native Tribal Health Consortium's (ANTHC) Rural Energy Initiative works with communities to implement innovative energy efficiency and renewable energy solutions to make public sanitation affordable for the people we serve across Alaska. Our Purpose ANTHC Rural Energy Initiative We believe basic sanitation should be efficient, sustainable and affordable The

  1. Energy Intensity Changes by Sector, 1985-2011 - Alternative Measures by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Type of Energy | Department of Energy Changes by Sector, 1985-2011 - Alternative Measures by Type of Energy Energy Intensity Changes by Sector, 1985-2011 - Alternative Measures by Type of Energy Further insight with regard to the comparison of intensity changes by sector can be gained by looking at how they differ with respect to different definitions of energy use. Source energy attributes all the energy used for electricity generation and transmission to the specific end-use sector,

  2. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    lighting intensities per lighted square foot-hour (Figure 23). * Food service and health care buildings had the highest water-heating intensities per square foot--more than...

  3. Reduce Pumping Costs Through Optimum Pipe Sizing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumping Costs Through Optimum Pipe Sizing Reduce Pumping Costs Through Optimum Pipe Sizing This tip sheet discusses how to reduce pumping system costs through optimum pipe sizing. PUMPING SYSTEMS TIP SHEET #9 PDF icon Reduce Pumping Costs Through Optimum Pipe Sizing (October 2005) More Documents & Publications Select an Energy-Efficient Centrifugal Pump Effect of Intake on Compressor Performance Pump Selection Considerations

  4. ISSUANCE 2015-01-26: Energy Conservation Program: Energy Conservation Standards for High-Intensity Lamps, Notice to Reopen Comment Period

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Energy Conservation Standards for High-Intensity Lamps, Notice to Reopen Comment Period

  5. New York: Weatherizing Westbeth Reduces Energy Consumption | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Weatherizing Westbeth Reduces Energy Consumption New York: Weatherizing Westbeth Reduces Energy Consumption August 21, 2013 - 12:00am Addthis The New York State Homes and Community Renewal (HCR) initiated a weatherization project on a Westbeth Artists Housing complex-home to almost 400 low- and middle-income artists from a variety of artistic disciplines-in New York City's West Village. The Westbeth complex is on the National Register of Historic Places and was designated a New York

  6. EERE Success Story-New York: Weatherizing Westbeth Reduces Energy

    Office of Environmental Management (EM)

    Consumption | Department of Energy New York: Weatherizing Westbeth Reduces Energy Consumption EERE Success Story-New York: Weatherizing Westbeth Reduces Energy Consumption August 21, 2013 - 12:00am Addthis The New York State Homes and Community Renewal (HCR) initiated a weatherization project on a Westbeth Artists Housing complex-home to almost 400 low- and middle-income artists from a variety of artistic disciplines-in New York City's West Village. The Westbeth complex is on the National

  7. Comments on reducing regulatory burden | Department of Energy

    Energy Savers [EERE]

    reducing regulatory burden Comments on reducing regulatory burden Comments on reducing regulatory burden from Ingersoll Rand, Residential Solutions, manufacturer of Trane and American Standard residential air conditioners, heat pumps, furnaces, and accessories PDF icon Comments on reducing regulatory burden More Documents & Publications Regulatory Burden RFI [76 FR 75798] Notice of Availability of Preliminary Plan for Retrospective Analysis of Existing Rules 2014-09-18 Issuance: Energy

  8. Table 22. Energy Intensity, Projected vs. Actual Projected

    Gasoline and Diesel Fuel Update (EIA)

    Energy Intensity, Projected vs. Actual Projected (quadrillion Btu / $Billion 2005 Chained GDP) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 10.9 10.7 10.6 10.5 10.3 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 AEO 1995 10.5 10.4 10.3 10.1 10.0 9.8 9.7 9.6 9.4 9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 AEO 1996 10.4 10.3 10.1 10.0 9.8 9.7 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 8.7 8.6 8.5 AEO 1997 10.0 9.9 9.8 9.7 9.6 9.5 9.4 9.3

  9. Changes in Energy Intensity in the Manufacturing Sector 1985...

    U.S. Energy Information Administration (EIA) Indexed Site

    (34) Machinery (35) El. Equip.(36) Instruments (38) Misc. (39) Appendices Survey Design Quality of Data Sector Description Nonobservation Errors Glossary Intensity Sites...

  10. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOE Patents [OSTI]

    Skupsky, Stanley (Rochester, NY); Kessler, Terrance J. (Rochester, NY); Short, Robert W. (Rochester, NY); Craxton, Stephen (Rochester, NY); Letzring, Samuel A. (Honeoye Falls, NY); Soures, John (Pittsford, NY)

    1991-01-01

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies ("colors") cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers.

  11. Fact #554: January 19, 2009 Energy Intensity of Light Rail Transit Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 4: January 19, 2009 Energy Intensity of Light Rail Transit Systems Fact #554: January 19, 2009 Energy Intensity of Light Rail Transit Systems According to the 2007 National Transit Databases, the energy intensity of light transit rail systems in the U.S. ranges from about 2,000 Btu per passenger-mile to about 31,000 Btu per passenger-mile. There are only four light rail systems with energy intensity over 10,000 Btu per passenger-mile. These systems may have improved

  12. Louisiana Save Energy Now Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    manufacturers reduce their energy intensity. AMO adopted the Energy Policy Act of 2005 objective of reducing industrial energy intensity 2.5% annually over the next 10 years....

  13. Energy End-Use Intensities in Commercial Buildings1995 -- Overview...

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Commercial Buildings Energy Consumption Survey (CBECS) and (2) building energy simulations provided by the Facility Energy Decision Screening (FEDS) system. The...

  14. Energy End-Use Intensities in Commercial Buildings1995 -- Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    model using survey data from the 1995 commercial buildings energy consumption survey and building energy simulations provided by the Facility Energy Decision Screening system....

  15. Energy Lab Reduces Impact on Environment - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Lab Reduces Impact on Environment April 18, 2003 Golden, CO. - Employees at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) are "walking the talk" by reducing their impact on the environment at work through the Laboratory's "Sustainable NREL" program. "Our mission has always focused on a sustainable energy future for our nation and the world," said Bob Westby, leader of the Sustainable NREL program. "Sustainability at NREL, in

  16. Energy Department Announces New Investment to Reduce Fuel Cell Costs |

    Office of Environmental Management (EM)

    Department of Energy Investment to Reduce Fuel Cell Costs Energy Department Announces New Investment to Reduce Fuel Cell Costs August 1, 2013 - 12:00pm Addthis In support of the Obama Administration's all-of-the-above strategy to develop clean, domestic energy sources, the Energy Department today announced a $4.5 million investment in two projects-led by Minnesota-based 3M and the Colorado School of Mines-to lower the cost, improve the durability, and increase the efficiency of

  17. Special Feature: Reducing Energy Costs with Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    than today's gasoline-powered cars, and costs about the same or less to consumers. Such a vehicle would reduce the United States' reliance on foreign oil and lower energy costs for...

  18. PPPL wins Department of Energy award for reducing greenhouse...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins Department of Energy award for reducing greenhouse gases By Jeanne Jackson DeVoe October 2, 2012 Tweet Widget Google Plus One Share on Facebook PPPL engineer Tim Stevenson...

  19. Reduce Risk, Increase Clean Energy: How States and Cities are...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Cities are Using Old Finance Tools to Scale Up a New Industry Reduce Risk, Increase Clean Energy: How States and Cities are Using Old Finance Tools to Scale Up a New ...

  20. Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy Transfer

    Office of Scientific and Technical Information (OSTI)

    in Direct-Drive-Implosion Experiments (Journal Article) | SciTech Connect Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy Transfer in Direct-Drive-Implosion Experiments Citation Details In-Document Search Title: Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy Transfer in Direct-Drive-Implosion Experiments Authors: Froula, D. H. ; Igumenshchev, I. V. ; Michel, D. T. ; Edgell, D. H. ; Follett, R. ; Glebov, V. Yu. ; Goncharov, V. N. ; Kwiatkowski, J. ;

  1. Reduce Air Infiltration in Furnaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Infiltration in Furnaces Reduce Air Infiltration in Furnaces This tip sheet describes how to save process heating energy and costs by reducing air infiltration in industrial furnaces; tips include repairing leaks and increasing insulation. PROCESS HEATING TIP SHEET #5 PDF icon Reduce Air Infiltration in Furnaces (January 2006) More Documents & Publications Furnace Pressure Controllers Load Preheating Using Flue Gases from a Fuel-Fired Heating System

  2. Reducing LED Costs Through Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing LED Costs Through Innovation Reducing LED Costs Through Innovation November 27, 2013 - 12:00am Addthis Jim Brodrick, Lighting Program Manager A Wisconsin-based company is developing an innovative way to reduce manufacturing costs of light-emitting diodes (LEDs). With help from a $2.4 million Energy Department research grant that is matched dollar-for-dollar by the company, researchers at Eaton Corporation in Menomonee Falls, Wisconsin, are creating a manufacturing process that not only

  3. Reducing Non-Hardware Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soft Costs » Reducing Non-Hardware Costs Reducing Non-Hardware Costs DOE supports efforts to dramatically reduce the non-hardware, balance of systems costs associated with solar energy systems. Representing as much as 64% of the total installed system price, these "soft costs" include: Customer Acquisition Financing and Contracting Permitting, Interconnection, and Inspection Installation and Performance Operations and Maintenance. To meet SunShot goals, the industry must innovate new

  4. Hybrid Solar Lighting Provides Energy Savings and Reduces Waste Heat

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss; Maxey, L Curt; Earl, Dennis Duncan; Beshears, David L; Ward, Christina D; Parks, James Edgar

    2006-01-01

    ABSTRACT Artificial lighting is the largest component of electricity use in commercial U.S. buildings. Hybrid solar lighting (HSL) provides an exciting new means of reducing energy consumption while also delivering significant ancillary benefits associated with natural lighting in buildings. As more than half of all federal facilities are in the Sunbelt region (defined as having an average direct solar radiation of greater than 4 kWh/m2/day) and as more than half of all square footage available in federal buildings is also in the Sunbelt, HSL is an excellent technology fit for federal facilities. The HSL technology uses a rooftop, 4-ft-wide dish and secondary mirror that track the sun throughout the day (Fig. 1). The collector system focuses the sunlight onto 127 optical fibers. The fibers serve as flexible light pipes and are connected to hybrid light fixtures that have special diffusion rods that spread out the light in all directions. One collector powers about eight hybrid light fixtures-which can illuminate about 1,000 square feet. The system tracks at 0.1 accuracy, required by the two-mirror geometry to keep the focused beam on the fiber bundle. When sunlight is plentiful, the optical fibers in the luminaires provide all or most of the light needed in an area. During times of little or no sunlight, a sensor controls the intensity of the artificial lamps to maintain a desired illumination level. Unlike conventional electric lamps, the natural light produces little to no waste heat and is cool to the touch. This is because the system's solar collector removes the infrared light-the part of the spectrum that generates a lot of the heat in conventional bulbs-from the sunlight.

  5. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    as buildings of the 1980's. In this section, intensities are based upon the entire building stock, not just those buildings using a particular fuel for a given end use. This...

  6. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    SciTech Connect (OSTI)

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

    2011-12-22

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting iron ore to metallic iron nodules. Various types of coals including a bio-coal produced though torrefaction can result in production of NRI at reduced GHG levels. The process results coupled with earlier already reported developments indicate that this process technique should be evaluated at the next level in order to develop parameter information for full scale process design. Implementation of the process to full commercialization will require a full cost production analysis and comparison to other reduction technologies and iron production alternatives. The technical results verify that high quality NRI can be produced under various operating conditions at the pilot level.

  7. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimates The end-use estimates had two main sources: the 1989 Commercial Buildings Energy Consumption Survey (CBECS) and the Facility Energy Decision Screening (FEDS) system....

  8. PNNL Data-Intensive Computing for a Smarter Energy Grid

    ScienceCinema (OSTI)

    Carol Imhoff; Zhenyu (Henry) Huang; Daniel Chavarria

    2012-12-31

    The Middleware for Data-Intensive Computing (MeDICi) Integration Framework, an integrated platform to solve data analysis and processing needs, supports PNNL research on the U.S. electric power grid. MeDICi is enabling development of visualizations of grid operations and vulnerabilities, with goal of near real-time analysis to aid operators in preventing and mitigating grid failures.

  9. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Active Solar: As an energy source, energy from the sun collected and stored using mechanical pumps or fans to circulate heat-laden fluids or air between solar collectors and the...

  10. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Energy Use in Commercial Buildings The purpose of this section is to provide an overview of how energy was used in commercial buildings. Focusing on 1989 buildings, the section...

  11. Special Feature: Reducing Energy Costs with Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Energy Costs with Better Batteries Special Feature: Reducing Energy Costs with Better Batteries September 9, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov Electricvehicles8331019248.jpg Electric vehicles lined up in Cascade Locks. Credit: Oregon Department of Transportation A better battery-one that is cheap and safe, but packs a lot of power-could lead to an electric vehicle that performs better than today's gasoline-powered cars, and costs about the same or less to consumers.

  12. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOE Patents [OSTI]

    Skupsky, S.; Kessler, T.J.; Short, R.W.; Craxton, S.; Letzring, S.A.; Soures, J.

    1991-09-10

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies (''colors'') cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers. 8 figures.

  13. PPPL wins Department of Energy award for reducing greenhouse gases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab wins Department of Energy award for reducing greenhouse gases By Jeanne Jackson DeVoe October 2, 2012 Tweet Widget Google Plus One Share on Facebook PPPL engineer Tim Stevenson checks for possible leaks of sulfur hexafluoride (SF6), the gas used to insulate electronic equipment that has the potential to cause global warming at many times the rate of carbon dioxide. PPPL reduced leaks of SF6 by 65 percent over three years - reducing overall greenhouse gas

  14. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    SciTech Connect (OSTI)

    2015-11-06

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. The IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.

  15. Energy End-Use Intensities in Commercial Buildings 1989 data...

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings Energy Consumption Survey. Divider Bar To View andor Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties,...

  16. Energy End-Use Intensities in Commercial Buildings 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey. divider line To View andor Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties,...

  17. Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals

    Reports and Publications (EIA)

    2006-01-01

    This report responds to a request from Senator Ken Salazar that the Energy Information Administration (EIA) analyze the impacts of implementing alternative variants of an emissions cap-and-trade program for greenhouse gases (GHGs).

  18. Reducing Data Center Loads for a Large-scale, Low Energy Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The project's request for proposals (RFP) set a whole-building demand-side energy use ... use intensity FEMP Federal Energy Management Program FLOPS Floating point ...

  19. 'Top 25' City Aims to Reduce Energy Use | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    According to Julie Smith, manager of McKinney's Office of Environmental Stewardship, the ... Smith believes that providing citizens with the tools to reduce their energy demand is ...

  20. USDA Helps Reduce High Energy Costs in Tribal Lands | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USDA Helps Reduce High Energy Costs in Tribal Lands USDA Helps Reduce High Energy Costs in Tribal Lands September 17, 2015 - 3:08pm Addthis On Sept. 16, 2015, the U.S. Department of Agriculture (USDA) announced five grants to help reduce energy costs for tribes in Alaska, Arizona, and South Dakota where the cost of producing electricity is extremely high. Through the High Energy Cost Grant program, the USDA will provide $7.9 million to nine grantees to help improve the environment by reducing

  1. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  2. Coatings and Process Development for Reduced Energy Automotive OEM Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Furar, PPG Industries, Inc. U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 1 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Develop coatings, processes and facility design to reduce energy consumption in automotive OEM paint shops  Technical Barriers  Maintaining coating properties at lower temperature cure  Low temperature cross-link chemistries not commercial

  3. Construction of energy-stable Galerkin reduced order models.

    SciTech Connect (OSTI)

    Kalashnikova, Irina; Barone, Matthew Franklin; Arunajatesan, Srinivasan; van Bloemen Waanders, Bart Gustaaf

    2013-05-01

    This report aims to unify several approaches for building stable projection-based reduced order models (ROMs). Attention is focused on linear time-invariant (LTI) systems. The model reduction procedure consists of two steps: the computation of a reduced basis, and the projection of the governing partial differential equations (PDEs) onto this reduced basis. Two kinds of reduced bases are considered: the proper orthogonal decomposition (POD) basis and the balanced truncation basis. The projection step of the model reduction can be done in two ways: via continuous projection or via discrete projection. First, an approach for building energy-stable Galerkin ROMs for linear hyperbolic or incompletely parabolic systems of PDEs using continuous projection is proposed. The idea is to apply to the set of PDEs a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. The resulting ROM will be energy-stable for any choice of reduced basis. It is shown that, for many PDE systems, the desired transformation is induced by a special weighted L2 inner product, termed the %E2%80%9Csymmetry inner product%E2%80%9D. Attention is then turned to building energy-stable ROMs via discrete projection. A discrete counterpart of the continuous symmetry inner product, a weighted L2 inner product termed the %E2%80%9CLyapunov inner product%E2%80%9D, is derived. The weighting matrix that defines the Lyapunov inner product can be computed in a black-box fashion for a stable LTI system arising from the discretization of a system of PDEs in space. It is shown that a ROM constructed via discrete projection using the Lyapunov inner product will be energy-stable for any choice of reduced basis. Connections between the Lyapunov inner product and the inner product induced by the balanced truncation algorithm are made. Comparisons are also made between the symmetry inner product and the Lyapunov inner product. The performance of ROMs constructed using these inner products is evaluated on several benchmark test cases.

  4. Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan

    SciTech Connect (OSTI)

    Ohshita, Stephanie; Price, Lynn

    2011-03-21

    Experience with China's 20% energy intensity improvement target during the 11th Five-Year Plan (FYP) (2006-2010) has shown the challenges of rapidly setting targets and implementing measures to meet them. For the 12th FYP (2011-2015), there is an urgent need for a more scientific methodology to allocate targets among the provinces and to track physical and economic indicators of energy and carbon saving progress. This report provides a sectoral methodology for allocating a national energy intensity target - expressed as percent change in energy per unit gross domestic product (GDP) - among China's provinces in the 12th FYP. Drawing on international experience - especially the European Union (EU) Triptych approach for allocating Kyoto carbon targets among EU member states - the methodology here makes important modifications to the EU approach to address an energy intensity rather than a CO{sub 2} emissions target, and for the wider variation in provincial energy and economic structure in China. The methodology combines top-down national target projections and bottom-up provincial and sectoral projections of energy and GDP to determine target allocation of energy intensity targets. Total primary energy consumption is separated into three end-use sectors - industrial, residential, and other energy. Sectoral indicators are used to differentiate the potential for energy saving among the provinces. This sectoral methodology is utilized to allocate provincial-level targets for a national target of 20% energy intensity improvement during the 12th FYP; the official target is determined by the National Development and Reform Commission. Energy and GDP projections used in the allocations were compared with other models, and several allocation scenarios were run to test sensitivity. The resulting allocations for the 12th FYP offer insight on past performance and offer somewhat different distributions of provincial targets compared to the 11th FYP. Recommendations for reporting and monitoring progress on the targets, and methodology improvements, are included.

  5. Potential for the Use of Energy Savings Performance Contracts to Reduce

    Energy Savers [EERE]

    Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications | Department of Energy the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications Document provides information on the use of energy savings performance contracts to reduce

  6. Department of Energy Support of Energy Intensive Manufacturing Related to Refractory Research

    SciTech Connect (OSTI)

    Hemrick, James Gordon

    2013-01-01

    For many years, the United States Department of Energy (DOE) richly supported refractory related research to enable greater energy efficiency processes in energy intensive manufacturing industries such as iron and steel, glass, aluminum and other non-ferrous metal production, petrochemical, and pulp and paper. Much of this support came through research projects funded by the former DOE Energy Efficiency and Renewable Energy (EERE) Office of Industrial Technologies (OIT) under programs such as Advanced Industrial Materials (AIM), Industrial Materials of the Future (IMF), and the Industrial Technologies Program (ITP). Under such initiatives, work was funded at government national laboratories such as Oak Ridge National Laboratory (ORNL), at universities such as West Virginia University (WVU) and the Missouri University of Science and Technology (MS&T) which was formerly the University of Missouri Rolla, and at private companies engaged in these manufacturing areas once labeled industries of the future by DOE due to their strategic and economic importance to American industry. Examples of such projects are summarized below with information on the scope, funding level, duration, and impact. This is only a sampling of representative efforts funded by the DOE in which ORNL was involved over the period extending from 1996 to 2011. Other efforts were also funded during this time at various other national laboratories, universities and private companies under the various programs mentioned above. Discussion of the projects below was chosen because I was an active participant in them and it is meant to give a sampling of the magnitude and scope of investments made by DOE in refractory related research over this time period.

  7. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect (OSTI)

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  8. Method for reducing energy losses in laser crystals

    DOE Patents [OSTI]

    Atherton, L.J.; DeYoreo, J.J.; Roberts, D.H.

    1992-03-24

    A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light. 12 figs.

  9. Method for reducing energy losses in laser crystals

    DOE Patents [OSTI]

    Atherton, L. Jeffrey (Pleasanton, CA); DeYoreo, James J. (Livermore, CA); Roberts, David H. (Pleasanton, CA)

    1992-01-01

    A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light.

  10. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel; Chunxia, Zhang; Xiuping, Li; Fangqin, Shangguan

    2011-06-15

    Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel industry, and final steel product mix in both countries. The share of lower energy intensity electric arc furnace production in each country was a key determinant of total steel sector energy efficiency. Overall steel sector structure, in terms of average plant vintage and production capacity, is also an important variable though data were not available to quantify this in a scenario. The methodology developed in this report, along with the accompanying quantitative and qualitative analyses, provides a foundation for comparative international assessment of steel sector energy intensity.

  11. In-situ determination of energy species yields of intense particle beams

    DOE Patents [OSTI]

    Kugel, Henry W. (Somerset, NJ); Kaita, Robert (Englishtown, NJ)

    1987-01-01

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  12. Comparison of International Energy Intensities across the G7 and other parts of Europe, including Ukraine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of International Energy Intensities across the G7 and other parts of Europe, including Ukraine Elizabeth Sendich November 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES November 2014

  13. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's

    Office of Scientific and Technical Information (OSTI)

    HiRadMat Facility (Conference) | SciTech Connect Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility Citation Details In-Document Search Title: Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility Authors: Ammigan, K. ; et al. Publication Date: 2015-05-01 OSTI Identifier: 1230046 Report Number(s): IPAC-2015-WEPTY015 DOE Contract Number: AC02-07CH11359 Resource Type: Conference Resource Relation: Conference: 6th

  14. Reducing Forestry Emissions in Indonesia | Open Energy Information

    Open Energy Info (EERE)

    critically at the trade-offs between development pathways based on land-intensive enterprises and climate change mitigation. Without a coordinated approach to multiple...

  15. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOE Patents [OSTI]

    Reilly, Peter T. A. [Knoxville, TN

    2010-12-14

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  16. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOE Patents [OSTI]

    Reilly, Peter T.A.

    2013-12-03

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  17. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOE Patents [OSTI]

    Reilly, Peter T.A.

    2014-05-13

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  18. Central vacuum system with programmable controller reduces energy costs 40%

    SciTech Connect (OSTI)

    De Silva, R.; Varnes, W.; Gaines, A.

    1985-11-01

    The B.F. Goodrich Company needed a more efficient vacuum source for the pilot plant facilities in Avon Lake, OH where new products and manufacturing procedures are developed and evaluated. Fourteen multi-stage steam jet ejector vacuum systems were installed in one building, since a number of vacuum users could be operating concurrently at different levels in the range of 15 to 150 Torr. Ejectors were normally turned on or off to provide the desired vacuum and to conserve steam. Steam is wasted, however, if all stages are on and the amount of vacuum is regulated by bleeding inert gas into the system. Water can also enter the system by kick back, if steam to the ejectors is abruptly shut off. The jet ejector vacuum systems required a steady supply of high pressure steam day and night, but fluctuating demands could create problems in the quality of vacuum obtained. Steam and maintenance costs were also significant. Goodrich decided to replace most of the steam-operated vacuum units because of the high energy requirements, and concurrently reduce hydrocarbon emissions. A major manufacturer or mechanical vacuum equipment was asked to design a vacuum system that could provide steady vacuum in the range of 10 to 250 Torr. The system had to have sufficient capacity for a number of concurrently operating processes, and handle a wide variety of hydrocarbons. The system, designed to meet these requirements and installed in June 1984, consists of a Roots-type vacuum booster with bypass valves, discharging into an intercondenser. The progammable-controlled vacuum system has reduced energy requirements by approximately 40%, and has helped in minimizing emissions. The projected pay-back for the entire system is 1 1/2 years.

  19. Energy Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building Preprint Rob Guglielmetti, Jennifer Scheib, Shanti D. Pless, and Paul Torcellini National Renewable Energy Laboratory Rachel Petro RNL Design Presented at the ASHRAE Winter Conference Las Vegas, Nevada January 29 - February 2, 2011 Conference Paper NREL/CP-5500-49103 March 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC

  20. IRS Parking Facility Lighting Retrofit Reduces Annual Energy Use by 76% |

    Office of Environmental Management (EM)

    Department of Energy IRS Parking Facility Lighting Retrofit Reduces Annual Energy Use by 76% IRS Parking Facility Lighting Retrofit Reduces Annual Energy Use by 76% IRS Parking Facility Lighting Retrofit Reduces Annual Energy Use by 76% Document provides an overview of how the IRS and MC Realty Group, its property management firm, achieved a 76% reduction in lighting energy use at an IRS facility parking garage in Kansas City, Missouri. The retrofit resulted in annual energy savings of 2

  1. EECBG Success Story: Energy Detectives Help Pennsylvania Town Reduce Costs

    Broader source: Energy.gov [DOE]

    Upper Darby Township, Pennsylvania received a $695,600 Energy Efficiency and Conservation Block Grant (EECBG) through the Recovery Act to study its energy use and set conservation goals with help from Mondre Energy. Learn more.

  2. NREL: Technology Deployment - U.S. Coast Guard Sees Reduced Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guard Sees Reduced Energy Costs and Usage After NREL's Energy Assessment Training A man with a notebook references the machinery and equipment he is standing next to NREL...

  3. Reduce Operating Costs with an EnergySmart School Project

    Broader source: Energy.gov [DOE]

    EnergySmart Schools fact sheet on how school operations and maintenance (O&M) personnel can play a greater role in managing ever-increasing energy costs.

  4. Reducing LED Costs Through Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing LED Costs Through Innovation Reducing LED Costs Through Innovation November 19, 2013 - 3:49pm Addthis A combination solid-state laser turret cutter and stamping machine ...

  5. Reduce Waste and Save Energy this Holiday Season | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Wrap your gifts with recycled paper to reduce waste and save money. | Photo courtesy of istockphotodiane555 Wrap your gifts with recycled paper to reduce waste and save money. |...

  6. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL TECHNOLOGIES PROGRAM Improved Heat Recovery in Biomass-Fired Boilers Reducing Superheater Corrosion to Enable Maximum Energy Effi ciency This project will develop materials and coatings to reduce corrosion and improve the life span of boiler superheater tubes exposed to high-temperature biomass exhaust. This improvement in boiler ef ciency will reduce fuel consumption, fuel cost, and CO 2 emissions. Introduction Industrial boilers are commonly used to make process steam, provide

  7. Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a partnership with the Energy Solutions Center Inc. (ESC), a technology commercialization and market development organization...

  8. Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    Broader source: Energy.gov [DOE]

    Abengoa, under the Thermal Storage FOA, is looking at innovative ways to reduce thermal energy storage (TES) system costs.

  9. NREL's Renewable Energy Development Expertise Reduces Project Risks (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    This National Renewable Energy Laboratory (NREL) success story fact sheet highlights a June 2012 solar power purchase agreement between the Virgin Islands Water and Power Authority and three corporations. The fact sheet describes how technical assistance from DOE's National Renewable Energy Laboratory enabled the U.S. Virgin Islands to realistically assess its clean energy resources and identify the most viable and cost-effective solutions to its energy challenges--resulting in a $65 million investment in solar energy in the territory.

  10. Novel high-energy physics studies using intense lasers and plasmas

    SciTech Connect (OSTI)

    Leemans, Wim P.; Bulanov, Stepan; Esarey, Eric; Schroeder, Carl

    2015-06-29

    In the framework of the project Novel high-energy physics studies using intense lasers and plasmas we conducted the study of ion acceleration and flying mirrors with high intensity lasers in order to develop sources of ion beams and high frequency radiation for different applications. Since some schemes of laser ion acceleration are also considered a good source of flying mirrors, we proposed to investigate the mechanisms of mirror formation. As a result we were able to study the laser ion acceleration from thin foils and near critical density targets. We identified several fundamental factors limiting the acceleration in the RPA regime and proposed the target design to compensate these limitations. In the case of near critical density targets, we developed a concept for the laser driven ion source for the hadron therapy. Also we studied the mechanism of flying mirror generation during the intense laser interaction with thin solid density targets. As for the laser-based positron creation and capture we initially proposed to study different regimes of positron beam generation and positron beam cooling. Since the for some of these schemes a good quality electron beam is required, we studied the generation of ultra-low emittance electron beams. In order to understand the fundamental physics of high energy electron beam interaction with high intensity laser pulses, which may affect the efficient generation of positron beams, we studied the radiation reaction effects.

  11. Construction of energy-stable projection-based reduced order models

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | DOE PAGES Construction of energy-stable projection-based reduced order models « Prev Next » Title: Construction of energy-stable projection-based reduced order models Our paper aims to unify and extend several approaches for building stable projection-based reduced order models (ROMs) using the energy method and the concept of "energy-stability". Attention is focused on linear time-invariant (LTI) systems. First, an approach for building energy stable Galerkin

  12. Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Costs | Department of Energy Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs One-page factsheet describing how ArcelorMittal Indiana Harbor Energy Recovery & Reuse 504 Boiler was constructed and installed with DOE Recovery Act Funding. PDF icon Blast Furnace Gas

  13. Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel

    Energy Savers [EERE]

    Production Costs | Department of Energy Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs March 17, 2014 - 2:24pm Addthis Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs One-page factsheet describing how ArcelorMittal Indiana Harbor Energy Recovery & Reuse 504 Boiler was constructed and installed with DOE Recovery Act

  14. Energy Department Announces $7 Million to Reduce Non-Hardware Costs of Solar Energy Systems

    Broader source: Energy.gov [DOE]

    Washington, D.C. – As part of the U.S. Department of Energy’s SunShot Initiative, Energy Secretary Steven Chu today announced up to $7 million to reduce the non-hardware costs of residential and...

  15. PPPL Wins Department of Energy Award For Reducing Greenhouse...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PPPL) has received a federal Sustainability Award for reducing overall greenhouse ... Members of the PPPL staff were among the 20 recipients of the Sustainability Awards in a ...

  16. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Broader source: Energy.gov (indexed) [DOE]

    products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass manufacturers are...

  17. Using Wireless Technology to Reduce Facility Energy Usage

    Broader source: Energy.gov [DOE]

    This presentation details the U.S. Department of Energy's TEAM initiative's wireless technologies and their applications.

  18. Energy Permitting Wizard Helps Reduce Project Barriers in Hawai'i |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Permitting Wizard Helps Reduce Project Barriers in Hawai'i Energy Permitting Wizard Helps Reduce Project Barriers in Hawai'i To address the complex permitting process for renewable energy projects in many jurisdictions across the Hawai'ian Islands, the Hawai'i Clean Energy Initiative and its partners developed the Renewable Energy Permitting Wizard. The tool helps utilities, developers, and policymakers meet Hawai'i's renewable energy goals by simplifying and expediting

  19. How the Smart Grid Helps Homeowners Reduce Their Energy Use | Department of

    Office of Environmental Management (EM)

    Energy How the Smart Grid Helps Homeowners Reduce Their Energy Use How the Smart Grid Helps Homeowners Reduce Their Energy Use Addthis 1 of 7 Deputy Secretary of Energy Daniel Poneman explores the new home energy monitor at the Center for Commercialization of Electric Technologies (CCET) Discovery Center's Model Home. He is joined by Kenny Mercado, CenterPoint Energy Houston Electric's Division Senior Vice President, Regulated Operations Technology; Dr. Milton Holloway, President of CCET;

  20. A Comprehensive System of Energy Intensity Indicators for the U.S.: Methods, Data and Key Trends

    SciTech Connect (OSTI)

    Belzer, David B.

    2014-08-31

    This report describes a comprehensive system of energy intensity indicators for the United States that has been developed for the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) over the past decade. This system of indicators is hierarchical in nature, beginning with detailed indexes of energy intensity for various sectors of the economy, which are ultimately aggregated to an overall energy intensity index for the economy as a whole. The aggregation of energy intensity indexes to higher levels in the hierarchy is performed with a version of the Log Mean Divisia Index (LMDI) method. Based upon the data and methods in the system of indicators, the economy-wide energy intensity index shows a decline of about 14% in 2010 relative to a 1985 base year. Discussion of energy intensity indicators for each of the broad end-use sectors of the economy—residential, commercial, industrial, and transportation—is presented in the report. An analysis of recent changes in the efficiency of electricity generation in the U.S. is also included. A detailed appendix describes the data sources and methodology behind the energy intensity indicators for each sector.

  1. Steelmaker Matches Recovery Act Funds to Save Energy & Reduce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Costs One-page factsheet describing how ArcelorMittal Indiana Harbor Energy Recovery & Reuse 504 Boiler was constructed and installed with DOE Recovery Act Funding. PDF icon...

  2. Carbon Dioxide Capture at a Reduced Cost - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Carbon Dioxide Capture at a Reduced Cost Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Scientists at Berkeley Lab have developed a method that reduces the expense of capturing carbon dioxide generated by the combustion of fossil fuels. This technology would allow power plants and the chemical and cement industries to better sequester carbon dioxide and

  3. EECBG Success Story: Reducing Energy Costs and Rebuilding the Past

    Broader source: Energy.gov [DOE]

    In 1969, the Franklin County Courthouse in Union, Missouri was destroyed by a bomb. Thanks to an Energy Efficiency and Conservation Block Grant, the town was able to install an energy-efficient HVAC system, which will allow this historic building to operate efficiently. Learn more.

  4. The potential for reducing energy utilization in the refining industry

    SciTech Connect (OSTI)

    Petrick, M.; Pellegrino, J.

    1999-10-08

    The paper first discusses energy use in petroleum refineries and CO{sub 2} emissions because of the fuels used. Then the paper looks at near-, mid-, and long-term opportunities for energy reduction. Some of the options are catalysts, cooling water recycling, steam system efficiency, and the use of coke and petroleum residues.

  5. Working with Alaska to Reduce Energy Use and #ActOnClimate | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Alaska to Reduce Energy Use and #ActOnClimate Working with Alaska to Reduce Energy Use and #ActOnClimate December 21, 2015 - 4:35pm Addthis New Energy Department competition to help rural Alaskan communities save energy and fight climate change. | Graphic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department New Energy Department competition to help rural Alaskan communities save energy and fight climate change. | Graphic by Carly Wilkins, Energy

  6. HOT ELECTRON ENERGY DISTRIBUTIONS FROM ULTRA-INTENSE LASER SOLID INTERACTIONS

    SciTech Connect (OSTI)

    Chen, H; Wilks, S C; Kruer, W; Patel, P; Shepherd, R

    2008-10-08

    Measurements of electron energy distributions from ultra-intense (>10{sup 19} W/cm{sup 2}) laser-solid interactions using an electron spectrometer are presented. These measurements were performed on the Vulcan petawatt laser at Rutherford Appleton Laboratory and the Callisto laser at Lawrence Livermore National Laboratory. The effective hot electron temperatures (T{sub hot}) have been measured for laser intensities (I{lambda}{sup 2}) from 10{sup 18} W/cm{sup 2} {micro}m{sup 2} to 10{sup 21} W/cm{sup 2} {micro}m{sup 2} for the first time, and T{sub hot} is found to increase as (I{lambda}{sup 2}){sup 0.34} {+-} 0.4. This scaling agrees well with the empirical scaling published by Beg et al. (1997), and is explained by a simple physical model that gives good agreement with experimental results and particle-in-cell simulations.

  7. Chicago Solar Express Reduces Costs, Wait Times | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chicago Solar Express Reduces Costs, Wait Times Chicago Solar Express Reduces Costs, Wait Times October 28, 2014 - 10:48am Addthis The Solar Express program in Chicago, Illinois-funded through a SunShot Initiative Rooftop Solar Challenge (RSC) I award of $750,000-is making it faster, easier, and cheaper for residents to go solar by cutting long wait times and fees for solar permits. Residents of Chicago can now acquire permits for their residential solar installations in one day, compared to 30

  8. Reduce Risk, Increase Clean Energy: How States and Cities are...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The DSEU was set up in 2007 by the Delaware Legislature to finance energy efficiency ... American Mortgage Market & Today's Financial Crisis," by Alan R. Fowler, SuSheila Dhillon ...

  9. EERE Success Story-New York: Weatherizing Westbeth Reduces Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Addthis Related Articles EERE Success Story-New York: EERE-Supported Catalyst Licensed for ... Project provides energy savings and the improved health and safety of the residents within ...

  10. Saving Energy and Reducing Emissions with Fuel-Flexible Burners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude glycerin contains signifcant energy, but its high viscosity at room temperature and ... the fexibility for use with other high-viscosity fuels such as pyrolysis oil or vegetable ...

  11. DOE Announces $27 Million to Reduce Costs of Solar Energy Projects,

    Energy Savers [EERE]

    Streamline Permitting and Installations | Department of Energy 7 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations DOE Announces $27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations June 1, 2011 - 12:00am Addthis WASHINGTON, DC - As part of the Obama Administration's SunShot Initiative to make solar energy cost-competitive with fossil fuels within the decade, U.S. Department of Energy Secretary Steven Chu today

  12. Michigan Company Eaton Awarded $2 Million by Energy Department to Reduce

    Office of Environmental Management (EM)

    Cost of Advanced Fuel Cells | Department of Energy Michigan Company Eaton Awarded $2 Million by Energy Department to Reduce Cost of Advanced Fuel Cells Michigan Company Eaton Awarded $2 Million by Energy Department to Reduce Cost of Advanced Fuel Cells March 29, 2012 - 3:40pm Addthis In support of the Obama Administration's all-of-the-above approach to American energy, the Energy Department today announced the investment of $2 million to Eaton Corporation in Southfield, Michigan, to lower

  13. How the Smart Grid Helps Homeowners Reduce Their Energy Use | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy the Smart Grid Helps Homeowners Reduce Their Energy Use How the Smart Grid Helps Homeowners Reduce Their Energy Use August 9, 2011 - 11:09am Addthis Deputy Secretary Daniel Poneman sees firsthand how new in-home monitors help consumers save money. <a href = "http://energy.gov/photos/how-smart-grid-helps-homeowners-reduce-their-energy-use">Click here to see more photos</a> and learn how new smart grid technology can help you save. | Energy Department Image | Photo

  14. Reduce Risk, Increase Clean Energy: How States and Cities are Using Old

    Energy Savers [EERE]

    Finance Tools to Scale Up a New Industry | Department of Energy Reduce Risk, Increase Clean Energy: How States and Cities are Using Old Finance Tools to Scale Up a New Industry Reduce Risk, Increase Clean Energy: How States and Cities are Using Old Finance Tools to Scale Up a New Industry Provides a overview of finance tools available to scale-up to clean energy. Author: Clean Energy and Bond Finance Initiative (CE+BFI) PDF icon Reduce Risk, Increase Clean Energy More Documents &

  15. Question of the Week: How Do You Reduce the Energy Used by Computers and

    Energy Savers [EERE]

    Office Electronics? | Department of Energy Do You Reduce the Energy Used by Computers and Office Electronics? Question of the Week: How Do You Reduce the Energy Used by Computers and Office Electronics? March 5, 2009 - 10:08am Addthis This week, John told us about purchasing an energy-efficient computer. Buying an efficient computer is a great start to reducing the energy used by your office equipment, but computers aren't they only office electronics that use energy. Between monitors,

  16. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  17. Enhancing the energy of terahertz radiation from plasma produced by intense femtosecond laser pulses

    SciTech Connect (OSTI)

    Jahangiri, Fazel; Laser and Plasma Research Institute, Shahid Beheshti University, Tehran ; Hashida, Masaki; Tokita, Shigeki; Sakabe, Shuji; Department of Physics, GSS, Kyoto University, Kyoto ; Nagashima, Takeshi; Hangyo, Masanori; Institute of Laser Engineering, Osaka University, Osaka

    2013-05-13

    Terahertz (THz) radiation from atomic clusters illuminated by intense femtosecond laser pulses is investigated. By studying the angular distribution, polarization properties and energy dependence of THz waves, we aim to obtain a proper understanding of the mechanism of THz generation. The properties of THz waves measured in this study differ from those predicted by previously proposed mechanisms. To interpret these properties qualitatively, we propose that the radiation is generated by time-varying quadrupoles, which are produced by the ponderomotive force of the laser pulse.

  18. Method for Reducing Background Clutter in a Camera Image - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Startup America Startup America Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Method for Reducing Background Clutter in a Camera Image Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (832 KB) Technology Marketing SummarySandia has developed an eye-safe, robust, lightweight, and low-cost 3D structured lighting sensor for use in broad

  19. Reducing LED Costs Through Innovation | Department of Energy

    Energy Savers [EERE]

    LED Costs Through Innovation Reducing LED Costs Through Innovation November 19, 2013 - 3:49pm Addthis A combination solid-state laser turret cutter and stamping machine cuts a thin steel plate that will be formed into lighting fixture housing. Wisconsin-based Eaton Corporation is developing a new manufacturing process that streamlines LED fixture designs. | Photo courtesy of Eaton Corporation A combination solid-state laser turret cutter and stamping machine cuts a thin steel plate that will be

  20. Reducing the Cost of Energy in Northwest Alaska

    Energy Savers [EERE]

    in Reducing the Cost of Northwest Alaska NANA Regional Corporation, Inc. Shopping Trip in Alaska Shopping list: Anchorage Northwest Alaska (average) $20 $60 Diapers Sugar Flour Milk Eggs Bread Keeping the Lights On * This increasing cost of living impacts every aspect of economic life. * Families are choosing between food and fuel. * Organizations make tough choices about maintaining essential services under cost pressure. Real Risks, Real People * There are real risks if we don't find long-

  1. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    District Washington built the foundation for a comprehensive energy program that reduced energy intensity by nearly 19% and water intensity by 13% from the respective baselines...

  2. How America Can Look Within to Achieve Energy Security and Reduce Global

    Office of Scientific and Technical Information (OSTI)

    Warming (Journal Article) | SciTech Connect How America Can Look Within to Achieve Energy Security and Reduce Global Warming Citation Details In-Document Search Title: How America Can Look Within to Achieve Energy Security and Reduce Global Warming Making major gains in energy efficiency is one of the most economical and effective ways our nation can wean itself off its dependence on foreign oil and reduce its emissions of greenhouse gases. Transportation and buildings, which account for two

  3. Energy Department Awards Nearly $7 Million for Research to Reduce Costs of

    Energy Savers [EERE]

    Electric Vehicle Chargers | Department of Energy 7 Million for Research to Reduce Costs of Electric Vehicle Chargers Energy Department Awards Nearly $7 Million for Research to Reduce Costs of Electric Vehicle Chargers December 21, 2011 - 12:49pm Addthis As part of the Obama Administration's commitment to reduce America's dependence on oil through advanced vehicle technologies, U.S. Energy Secretary Steven Chu today announced awards totaling nearly $7 million in research and development

  4. How America Can Look Within to Achieve Energy Security and Reduce...

    Office of Scientific and Technical Information (OSTI)

    How America Can Look Within to Achieve Energy Security and Reduce Global Warming Citation Details In-Document Search Title: How America Can Look Within to Achieve Energy Security ...

  5. Liquid lithium target as a high intensity, high energy neutron source

    DOE Patents [OSTI]

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  6. A Path to Reduce Methane Emissions from Gas Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Path to Reduce Methane Emissions from Gas Systems A Path to Reduce Methane Emissions from Gas Systems July 29, 2014 - 3:33pm Addthis A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy Department. A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy

  7. Energy conversion device and method of reducing friction therein

    DOE Patents [OSTI]

    Solovyeva, Lyudmila Mikhaylovna; Jansson, Kyle S; Elmoursi, Alaa AbdelAzim; Zhu, Dong; Milner, Robert; Daughterty, Early Eugene; Higdon, Clifton Baxter; Elagamy, Kamel Abdel-Khalik; Hicks, Aaron Michael

    2013-10-08

    A device configured for converting energy includes a first surface, a second surface configured for moving with respect to the first surface during operation of the device, and a coating disposed on at least one of the first surface and the second surface. The coating includes a first layer of a ceramic alloy represented by the general formula AlMgB.sub.14--X, wherein X is present in an amount of from 0 to 70 parts by weight based on 100 parts by weight of the ceramic alloy and is a doping agent selected from the group of Group IV elements and borides and nitrides thereof, and a second layer disposed on the first layer and including carbon in a gradient concentration. The coating has a hardness of from 10 to 20 GPa and a coefficient of friction of less than or equal to 0.12.

  8. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications A Joint Study by the United States Secretaries of Energy and Defense Authorized in the Energy Independence and Security Act 2007 by Congress Prepared by US Department of Energy Office of Energy Efficiency and Renewable Energy, Federal Energy Management Program For questions and comments please contact: Schuyler Schell Federal Energy Management Program

  9. Energy Department Announces Up to $25 Million to Reduce Costs of Algal

    Office of Environmental Management (EM)

    Biofuels | Department of Energy Up to $25 Million to Reduce Costs of Algal Biofuels Energy Department Announces Up to $25 Million to Reduce Costs of Algal Biofuels September 30, 2014 - 10:15am Addthis In support of President Obama's all-of-the-above energy strategy, the Energy Department today announced up to $25 million in funding to reduce the cost of algal biofuels to less than $5 per gasoline gallon equivalent (gge) by 2019. This funding supports the development of a bioeconomy that can

  10. National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China

    SciTech Connect (OSTI)

    Zhou, Nan; Price, Lynn; Zheng, Nina; Ke, Jing; Hasanbeigi, Ali

    2011-10-15

    Since 2006, China has set goals of reducing energy intensity, emissions, and pollutants in multiple guidelines and in the Five Year Plans. Various strategies and measures have then been taken to improve the energy efficiency in all sectors and to reduce pollutants. Since controlling energy, CO{sub 2} emissions, and pollutants falls under the jurisdiction of different government agencies in China, many strategies are being implemented to fulfill only one of these objectives. Co-controls or integrated measures could simultaneously reduce greenhouse gas (GHG) emissions and criteria air pollutant emissions. The targets could be met in a more cost effective manner if the integrated measures can be identified and prioritized. This report provides analysis and insights regarding how these targets could be met via co-control measures focusing on both CO{sub 2} and SO{sub 2} emissions in the cement, iron &steel, and power sectors to 2030 in China. An integrated national energy and emission model was developed in order to establish a baseline scenario that was used to assess the impact of actions already taken by the Chinese government as well as planned and expected actions. In addition, CO{sub 2} mitigation scenarios and SO{sub 2} control scenarios were also established to evaluate the impact of each of the measures and the combined effects. In the power sector, although the end of pipe SO{sub 2} control technology such as flue gas desulfurization (FGD) has the largest reduction potential for SO{sub 2} emissions, other CO{sub 2} control options have important co-benefits in reducing SO{sub 2} emissions of 52.6 Mt of SO{sub 2} accumulatively. Coal efficiency improvements along with hydropower, renewable and nuclear capacity expansion will result in more than half of the SO{sub 2} emission reductions as the SO{sub 2} control technology through 2016. In comparison, the reduction from carbon capture and sequestration (CCS) is much less and has negative SO{sub 2} reductions potential. The expanded biomass generation scenario does not have significant potential for reducing SO{sub 2} emissions, because of its limited availability. For the cement sector, the optimal co-control strategy includes accelerated adoption of energy efficiency measures, decreased use of clinker in cement production, increased use of alternative fuels, and fuel-switching to biomass. If desired, additional SO{sub 2} mitigation could be realized by more fully adopting SO{sub 2} abatement mitigation technology measures. The optimal co-control scenario results in annual SO{sub 2} emissions reductions in 2030 of 0.16 Mt SO{sub 2} and annual CO{sub 2} emissions reductions of 76 Mt CO{sub 2}. For the iron and steel sector, the optimal co-control strategy includes accelerated adoption of energy efficiency measures, increased share of electric arc furnace steel production, and reduced use of coal and increased use of natural gas in steel production. The strategy also assumes full implementation of sinter waste gas recycling and wet desulfurization. This strategy results in annual SO{sub 2} emissions reductions in 2030 of 1.3 Mt SO{sub 2} and annual CO{sub 2} emissions reductions of 173 Mt CO{sub 2}.

  11. New Water Booster Pump System Reduces Energy Consumption by 80 Percent and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increases Reliability | Department of Energy New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability This case study outlines how General Motors (GM) developed a highly efficient pumping system for their Pontiac Operations Complex in Pontiac, Michigan. In short, GM was able to replace five original 60- to 100-hp pumps with three 15-hp pumps whose speed

  12. The Department of Energy's Request for Information on Reducing Regulatory Burden

    Energy Savers [EERE]

    Department of Energy's Request for Information on Reducing Regulatory Burden Submitted on June 18, 2012 On behalf of the Natural Resources Defense Council and our more than 1.3 million members and online activists, we submit the following comments in response to the Department of Energy's (DOE) Request for Information on Reducing Regulatory Burden. (77 Federal Register 28518, May 15, 2012) NRDC has spent decades working to build and improve the Department of Energy's ("DOE") federal

  13. EERE Success Story-New Jersey: Reducing Energy Bills for Camden's

    Office of Environmental Management (EM)

    Families | Department of Energy Reducing Energy Bills for Camden's Families EERE Success Story-New Jersey: Reducing Energy Bills for Camden's Families April 25, 2013 - 12:58pm Addthis The Northgate II, a 308-unit apartment building, was treated with Aeroseal, thanks to a grant from New Jersey's Multifamily Weatherization Assistance Program. Aeroseal, developed at DOE's Lawrence Berkeley National Laboratory by Dr. Mark Modera, uses airborne adhesive particles to seal leaky air ducts. The

  14. Institute a modest carbon tax to reduce carbon emissions, finance clean energy technology development, cut taxes, and reduce the deficit

    SciTech Connect (OSTI)

    Muro, Mark; Rothwell, Jonathan

    2012-11-15

    The nation should institute a modest carbon tax in order to help clean up the economy and stabilize the nation’s finances. Specifically, Congress and the president should implement a $20 per ton, steadily increasing carbon excise fee that would discourage carbon dioxide emissions while shifting taxation onto pollution, financing energy efficiency (EE) and clean technology development, and providing opportunities to cut taxes or reduce the deficit. The net effect of these policies would be to curb harmful carbon emissions, improve the nation’s balance sheet, and stimulate job-creation and economic renewal.

  15. NEMA Comments on DOE Reducing Regulatory Burden RFI | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Reducing Regulatory Burden RFI NEMA Comments on DOE Reducing Regulatory Burden RFI The National Electrical Manufacturers Association (NEMA) thanks you for the opportunity to provide comments on the Department of Energy's efforts to make its regulatory program more effective and less burdensome in achieving its regulatory objectives. PDF icon NEMA Comments on Reducing REgulatory Burden July 2014 More Documents & Publications NEMA Comments on DOE Reducing Regulatory Burden RFI NEMA

  16. Minnesota Company 3M Awarded $3 Million by Energy Department to Reduce Cost

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Advanced Fuel Cells | Department of Energy Minnesota Company 3M Awarded $3 Million by Energy Department to Reduce Cost of Advanced Fuel Cells Minnesota Company 3M Awarded $3 Million by Energy Department to Reduce Cost of Advanced Fuel Cells March 29, 2012 - 4:20pm Addthis In support of the Obama Administration's all-of-the-above approach to American energy, the Energy Department today announced the investment of $3 million to 3M Company in St. Paul, Minnesota, to lower the cost of

  17. Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

    SciTech Connect (OSTI)

    Das, Sujit

    2014-01-01

    Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production ( Baseline ), an advanced high strength steel and aluminum design ( LWSV ), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body lightweighting are considered for the vehicles engine, driveline and suspension. A cradle-to-cradle life cycle assessment (LCA) was conducted for these three vehicle material alternatives. LCA methodology for this study included material production, mill semi-fabrication, vehicle use phase operation, and end-of-life recycling. This study followed international standards ISO 14040:2006 [1] and ISO 14044:2006 [2], consistent with the automotive LCA guidance document currently being developed [3]. Vehicle use phase mass reduction was found to account for over 90% of total vehicle life cycle energy and CO2e emissions. The AIV design achieved mass reduction of 25% (versus baseline) resulting in reductions in total life cycle primary energy consumption by 20% and CO2e emissions by 17%. Overall, the AIV design showed the best breakeven vehicle mileage from both primary energy consumption and climate change perspectives.

  18. Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams

    DOE Patents [OSTI]

    Gammel, George M. (Merrick, NY); Kugel, Henry W. (Somerset, NJ)

    1992-10-06

    A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

  19. Energy Permitting Wizard Helps Reduce Project Barriers in Hawaii

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Playbook Lesson Learned Phase 6: Process Improvement Energy Permitting Wizard Helps Reduce Project Barriers in Hawai'i Similar to many jurisdictions, the complex permitting process for renewable energy projects has been identifed as a critical barrier to renewable energy development in Hawaiʻi. The inability of project proponents to reliably predict the duration, outcome, and cost of the permitting process increases the investment risk for renewable energy projects, preventing the construction

  20. Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs ArcelorMittal Indiana Harbor Energy Recovery & Reuse 504 Boiler constructed and installed with DOE Recovery Act Funding The Advanced Manufacturing Office (AMO) at the U.S. Department of Energy provided $31.6 million in American Recovery & Reinvestment Act (ARRA) funding to construct and install an energy-efficient boiler and upgrade ArcelorMittal Indiana Harbor steelmaking complex facilities. One of

  1. Reducing heat loss from the energy absorber of a solar collector

    DOE Patents [OSTI]

    Chao, Bei Tse; Rabl, Ari

    1976-01-01

    A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.

  2. High-albedo materials for reducing building cooling energy use (Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report) | SciTech Connect High-albedo materials for reducing building cooling energy use Citation Details In-Document Search Title: High-albedo materials for reducing building cooling energy use × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A

  3. NASA Ames Saves Energy and Reduces Project Costs with Non-Invasive Retrofit Technologies

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers the NASA Ames Research Center's effort to save energy and reduce project costs with non-invasive retrofit technologies.

  4. Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RFI, 77 Fed. Reg. 28518 Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 The Edison Electric Institute (EEI) is submitting these comments in response to the above-referenced request for information (RFI) issued by the Department of Energy (DOE). In the RFI, DOE is again asking for information on ways to streamline and to reduce the burden imposed by its regulations. PDF icon Reg_review_ EEI_cmts.pdf More Documents & Publications Edison Electric Institute (EEI) Reducing Regulatory Burden

  5. Sherwin-Williams Richmond, Kentucky, Facility Achieves 26% Energy Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    C L E A N C I T I E S Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER When Sherwin-Williams' Richmond, Kentucky, manufacturing plant made the decision to advance its energy effciency efforts, the company capitalized on the resources made available to industry by the U.S. Department of Energy's (DOE's) Industrial Technologies Program (ITP). In 2008, ITP conducted an assessment on the site's steam system

  6. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  7. Studies on low energy beam transport for high intensity high charged ions at IMP

    SciTech Connect (OSTI)

    Yang, Y. Lu, W.; Fang, X.; University of Chinese Academy of Sciences, Beijing 100039 ; Sun, L. T.; Hu, Q.; Cao, Y.; Feng, Y. C.; Zhang, X. Z.; Zhao, H. W.; Xie, D. Z.

    2014-02-15

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 1824 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110 analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberration of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110 analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper.

  8. Economic benefits of an economizer system: Energy savings and reduced sick leave

    SciTech Connect (OSTI)

    Fisk, William J.; Seppanen, Olli; Faulkner, David; Huang, Joe

    2004-02-01

    This study estimated the health, energy, and economic benefits of an economizer ventilation control system that increases outside air supply during mild weather to save energy. A model of the influence of ventilation rate on airborne transmission of respiratory illnesses was used to extend the limited data relating ventilation rate with illness and sick leave. An energy simulation model calculated ventilation rates and energy use versus time for an office building in Washington, D.C. with fixed minimum outdoor air supply rates, with and without an economizer. Sick leave rates were estimated with the disease transmission model. In the modeled 72-person office building, our analyses indicate that the economizer reduces energy costs by approximately $2000 and, in addition, reduces sick leave. The annual financial benefit of the decrease in sick leave is estimated to be between $6,000 and $16,000. This modeling suggests that economizers are much more cost effective than currently recognized.

  9. SU-E-T-340: Use of Intensity Modulated Proton Therapy (IMPT) for Reducing the Dose to Cochlea in Craniospinal Irradiation (CSI) of Pediatric Patients

    SciTech Connect (OSTI)

    Dormer, J; Kassaee, A; Lin, H; Ding, X; Lustig, R

    2014-06-01

    Purpose: To evaluate use of intensity modulated proton therapy (IMPT) and number of beams for sparing cochlea in treatment of whole brain for pediatric medulloblastoma patients. Methods: In our institution, craniospinal irradiation patients are treated in supine position on our proton gantries using pencil beam scanning with each beam uniformly covering the target volume (SFUD). Each treatment plan consists of two opposed lateral whole brain fields and one or two spinal fields. For sparing the cochlea for the whole brain treatment, we created three different plans using IMPT for five pediatric patients. The first plan consisted of two lateral fields, the second two lateral fields and a superior-inferior field, and the third two lateral fields and two superior oblique fields. Optimization was performed with heavy weights applied to the eye, lens and cochlea while maintaining a dose prescription of 36 Gy to the whole brain. Results: IMPT plans reduce the dose to the cochlea. Increasing the number of treatment fields was found to lower the average dose to the cochlea: 15.0, 14.5 and 12.5 Gy for the two-field, three-field, and four-field plans respectively. The D95 for the two-field plan was 98.2%, compared to 100.0% for both the three-field and four-field plan. Coverage in the mid-brain was noticeably better in the three- and four-field plans, with more dose conformality surrounding the cochlea. Conclusion: IMPT plans for CSI and the whole brain irradiations are capable of sparing cochlea and reduce the dose considerably without compromising treating brain tissues. The reduction in average dose increases with three and four field plans as compared to traditional two lateral beam plans.

  10. Using Qualified Energy Conservation Bonds for Public Building Upgrades. Reducing Energy Bills in the City of Philadelphia

    SciTech Connect (OSTI)

    Zimring, Mark

    2012-07-18

    Qualified Energy Conservation Bonds (QECBs) are federally-subsidized bonds that enable state, tribal, and local government issuers to borrow money to fund a range of energy conservation projects, including public building upgrades that reduce energy use by at least 20 percent, at very attractive borrowing rates and long terms. As part of the American Recovery and Reinvestment Act (ARRA), the City of Philadelphia received a $15 million QECB award from the U.S. Department of the Treasury (Treasury). The city leveraged $6.25 million of its QECB allocation to finance half of a $12.6 million initiative to upgrade the energy efficiency of City buildings. The upgrades to four city facilities are expected to deliver over $10 million of net savings, and are a major step towards achieving the city’s goal of reducing government energy consumption by 30 percent by 2015.

  11. Kodak: Optimizing the Pumping System Saves Energy and Reduces Demand Charges at a Chemical Plant

    SciTech Connect (OSTI)

    Not Available

    2005-06-01

    This two-page performance spotlight describes how, in 2003, Kodak's facilities in Rochester, New York, significantly improved the energy efficiency of its two lake-water pumping stations to save more than $100,000 annually in energy and maintenance costs. The project reduced energy use by more than 1 million kilowatt-hours per year and allowed fewer pumps to operate at any one time, while maintaining previous pumping performance levels. A U.S. Department of Energy Qualified Pumping System Assessment Tool Specialist at Flowserve Corporation assisted in the initial system assessment that resulted in this project.

  12. How America can look within to achieve energy security and reduce global warming.

    SciTech Connect (OSTI)

    Richter, B.; Goldston, D.; Crabtree, G.; Glicksman, L.; Goldstein, D.; Greene, D.; Kammen, D.; Levin, M.; Lubell, M.; Savitz, M.; Sperling, D.; Schlachter, F.; Scofield, J.; Dawson, J.

    2008-12-01

    Making major gains in energy efficiency is one of the most economical and effective ways our nation can wean itself off its dependence on foreign oil and reduce its emissions of greenhouse gases. Transportation and buildings, which account for two thirds of American energy usage, consume far more than they need to, but even though there are many affordable energy efficient technologies that can save consumers money, market imperfections inhibit their adoption. To overcome the barriers, the federal government must adopt policies that will transform the investments into economic and societal benefit. And the federal government must invest in research and development programs that target energy efficiency. Energy efficiency is one of America's great hidden energy reserves. We should begin tapping it now. Whether you want the United States to achieve greater energy security by weaning itself off foreign oil, sustain strong economic growth in the face of worldwide competition or reduce global warming by decreasing carbon emissions, energy efficiency is where you need to start. Thirty-five years ago the U.S. adopted national strategies, implemented policies and developed technologies that significantly improved energy efficiency. More than three decades have passed since then, and science and technology have progressed considerably, but U.S. energy policy has not. It is time to revisit the issue. In this report we examine the scientific and technological opportunities and policy actions that can make the United States more energy efficient, increase its security and reduce its impact on global warming. We believe the findings and recommendations will help Congress and the next administration to realize these goals. Our focus is on the transportation and buildings sectors of the economy. The opportunities are huge and the costs are small.

  13. Reducing Enzyme Costs Increases Market Potential of Biofuels, The Spectrum of Clean Energy Innovation (Fact Sheet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Enzyme Costs Increases Market Potential of Biofuels Cellulosic ethanol prices depend heavily on the cost of the cellulase enzymes used to break down the cellulosic biomass into fermentable sugars. To reduce these costs, the National Renewable Energy Laboratory (NREL) partnered with two leading enzyme companies, Novozymes and Genencor, to engineer new cellulase enzymes that are exceptionally good at breaking down cellulose. This innovative research has led to improvements in sugar yields

  14. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    SciTech Connect (OSTI)

    Mills, Evan

    2009-07-16

    The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the energy savings. Commissioning also improves worker comfort, mitigates indoor air quality problems

  15. Method to Reduce Camber in Anode-Supported SOFCs - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Method to Reduce Camber in Anode-Supported SOFCs Pacific Northwest National Laboratory Contact PNNL About This Technology A) Typical camber developed in 7 cm x 7 cm anode-supported SOFC. B) Details on matched TEC backing layer opposite electrolyte surface for camber control (Invention 13536). A) Typical camber developed in 7 cm x 7 cm anode-supported

  16. How America Can Look Within to Achieve Energy Security and Reduce Global Warming

    SciTech Connect (OSTI)

    Richter, Burton; Savitz, Maxine; Schlachter, Fred; Dawson, James; Crabtree, George; Greene, David L; Levine, Mark; Sperling, Daniel; Scofield, John; Glicksman, Leon; Goldstein, David; Goldston, David

    2008-01-01

    Making major gains in energy efficiency is one of the most economical and effective ways our nation can wean itself off its dependence on foreign oil and reduce its emissions of greenhouse gases. Transportation and buildings, which account for two thirds of American energy usage, consume far more than they need to, but even though there are many affordable energy efficient technologies that can save consumers money, market imperfections inhibit their adoption. To overcome the barriers, the federal government must adopt policies that will transform the investments into economic and societal benefit. And the federal government must invest in research and development programs that target energy efficiency. Energy efficiency is one of America s great hidden energy reserves. We should begin tapping it now.

  17. Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)

    SciTech Connect (OSTI)

    Sheppy, M.; Lobato, C.; Van Geet, O.; Pless, S.; Donovan, K.; Powers, C.

    2011-12-01

    This publication detailing the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. Data centers are energy-intensive spaces that facilitate the transmission, receipt, processing, and storage of digital data. These spaces require redundancies in power and storage, as well as infrastructure, to cool computing equipment and manage the resulting waste heat (Tschudi, Xu, Sartor, and Stein, 2003). Data center spaces can consume more than 100 times the energy of standard office spaces (VanGeet 2011). The U.S. Environmental Protection Agency (EPA) reported that data centers used 61 billion kilowatt-hours (kWh) in 2006, which was 1.5% of the total electricity consumption in the U.S. (U.S. EPA, 2007). Worldwide, data centers now consume more energy annually than Sweden (New York Times, 2009). Given their high energy consumption and conventional operation practices, there is a potential for huge energy savings in data centers. The National Renewable Energy Laboratory (NREL) is world renowned for its commitment to green building construction. In June 2010, the laboratory finished construction of a 220,000-square-foot (ft{sup 2}), LEED Platinum, Research Support Facility (RSF), which included a 1,900-ft{sup 2} data center. The RSF will expand to 360,000 ft{sup 2} with the opening of an additional wing December, 2011. The project's request for proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 35 kBtu/ft{sup 2} per year. On-site renewable energy generation will offset the annual energy consumption. To support the RSF's energy goals, NREL's new data center was designed to minimize its energy footprint without compromising service quality. Several implementation challenges emerged during the design, construction, and first 11 months of operation of the RSF data center. This document highlights these challenges and describes in detail how NREL successfully overcame them. The IT settings and strategies outlined in this document have been used to significantly reduce data center energy requirements in the RSF; however, these can also be used in existing buildings and retrofits.

  18. Reduced Toxicity With Intensity Modulated Radiation Therapy (IMRT) for Desmoplastic Small Round Cell Tumor (DSRCT): An Update on the Whole Abdominopelvic Radiation Therapy (WAP-RT) Experience

    SciTech Connect (OSTI)

    Desai, Neil B.; Stein, Nicholas F.; LaQuaglia, Michael P.; Alektiar, Kaled M.; Kushner, Brian H.; Modak, Shakeel; Magnan, Heather M.; Goodman, Karyn; Wolden, Suzanne L.

    2013-01-01

    Purpose: Desmoplastic small round cell tumor (DSRCT) is a rare malignancy typically involving the peritoneum in young men. Whole abdominopelvic radiation therapy (WAP-RT) using conventional 2-dimensional (2D) radiation therapy (RT) is used to address local recurrence but has been limited by toxicity. Our objectives were to assess the benefit of intensity modulated radiation therapy (IMRT) on toxicity and to update the largest series on radiation for DSRCT. Methods and Materials: The records of 31 patients with DSRCT treated with WAP-RT (22 with 2D-RT and 9 with IMRT) between 1992 and 2011 were retrospectively reviewed. All received multi-agent chemotherapy and maximal surgical debulking followed by 30 Gy of WAP-RT. A further focal boost of 12 to 24 Gy was used in 12 cases. Boost RT and autologous stem cell transplantation were nearly exclusive to patients treated with 2D-RT. Toxicities were assessed with the Common Terminology Criteria for Adverse Events. Dosimetric analysis compared IMRT and simulated 2D-RT dose distributions. Results: Of 31 patients, 30 completed WAP-RT, with a median follow-up after RT of 19 months. Acute toxicity was reduced with IMRT versus 2D-RT: P=.04 for gastrointestinal toxicity of grade 2 or higher (33% vs 77%); P=.02 for grade 4 hematologic toxicity (33% vs 86%); P=.01 for rates of granulocyte colony-stimulating factor; and P=.04 for rates of platelet transfusion. Post treatment red blood cell and platelet transfusion rates were also reduced (P=.01). IMRT improved target homogeneity ([D05-D95]/D05 of 21% vs 46%) and resulted in a 21% mean bone dose reduction. Small bowel obstruction was the most common late toxicity (23% overall). Updated 3-year overall survival and progression-free survival rates were 50% and 24%, respectively. Overall survival was associated with distant metastasis at diagnosis on multivariate analysis. Most failures remained intraperitoneal (88%). Conclusions: IMRT for consolidative WAP-RT in DSRCT improves hematologic toxicity in particular. Although the long-term efficacy of current treatment options remains disappointing, the improved therapeutic index of IMRT may aid in generalizing its use and allowing the addition of novel approaches such as intraperitoneal immunotherapy.

  19. Reducing energy costs in multifamily housing: guidelines for using energy-management companies

    SciTech Connect (OSTI)

    Shafer, P.

    1986-03-01

    This publication is designed to provide guidelines to help sponsors of multi-family projects assisted or insured by the U.S. Department of Housing and Urban Development (HUD), as well as other building owners, utilize performance agreements as a way to make energy-efficiency improvements. These guidelines are based on experience gained in a demonstration project initiated by HUD to test the feasibility of using Energy Management Companies (EMCs) to make energy improvements in assisted housing for the elderly or handicapped.

  20. Replace Pressure-Reducing Valves with Backpressure Turbogenerators, Energy Tips: STEAM, Steam Tip Sheet #20 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Replace Pressure-Reducing Valves with Backpressure Turbogenerators Many industrial facilities produce steam at a pressure higher than that demanded by process requirements. Steam passes through pressure-reducing valves (PRVs, also known as letdown valves) at various locations in the steam distribution system to let down or reduce its pressure. A noncondensing or backpressure steam turbine can perform the same pressure-reducing function as a PRV while converting steam energy into electrical

  1. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    SciTech Connect (OSTI)

    Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

  2. Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems

    Broader source: Energy.gov [DOE]

    Process heating plays a key role in producing steel, aluminum, and glass and in manufacturing products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass manufacturers are considering a variety of options for reducing overall energy consumption. As 38% of the energy used in U.S. industrial plants is consumed for process heating applications, metal and glass manufacturers are discovering that process heating technologies provide significant opportunities for improving industrial productivity, energy efficiency, and global competitiveness. This fact sheet is the first in a series to describe such opportunities that can be realized in industrial systems by conducting plant-wide assessments (PWA).

  3. Reducing Energy Use in Existing Homes by 30%: Learning From Home Performance with ENERGY STAR

    SciTech Connect (OSTI)

    Liaukus, C.

    2014-12-01

    The improvement of existing homes in the United States can have a much greater impact on overall residential energy use than the construction of highly efficient new homes. There are over 130 million existing housing units in the U.S., while annually new construction represents less than two percent of the total supply (U.S. Census Bureau, 2013). Therefore, the existing housing stock presents a clear opportunity and responsibility for Building America (BA) to guide the remodeling and retrofit market toward higher performance existing homes. There are active programs designed to improve the energy performance of existing homes. Home Performance with ENERGY STAR (HPwES) is a market-rate program among them. BARA's research in this project verified that the New Jersey HPwES program is achieving savings in existing homes that meet or exceed BA's goal of 30%. Among the 17 HPwES projects with utility data included in this report, 15 have actual energy savings ranging from 24% to 46%. Further, two of the homes achieved that level of energy savings without the costly replacement of heating and cooling equipment, which indicates that less costly envelope packages could be offered to consumers unable to invest in more costly mechanical packages, potentially creating broader market impact.

  4. Indian Bureau of Energy Efficiency | Open Energy Information

    Open Energy Info (EERE)

    Place: New Delhi, Delhi (NCT), India Zip: 110066 Product: Focused on reducing the energy intensity in the Indian economy. References: Indian Bureau of Energy Efficiency1...

  5. Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    As part of a two-year project to demonstrate energy efficiency measures, renewable energy generation, and energy systems integration, the National Renewable Energy Laboratory (NREL) has identified advanced plug load controls as a promising technology for reducing energy use and related costs in the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) office spaces.

  6. Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

    2004-12-21

    Heightened natural gas prices have emerged as a key energy-policy challenge for at least the early part of the 21st century. With the recent run-up in gas prices and the expected continuation of volatile and high prices in the near future, a growing number of voices are calling for increased diversification of energy supplies. Proponents of renewable energy and energy efficiency identify these clean energy sources as an important part of the solution. Increased deployment of renewable energy (RE) and energy efficiency (EE) can hedge natural gas price risk in more than one way, but this paper touches on just one potential benefit: displacement of gas-fired electricity generation, which reduces natural gas demand and thus puts downward pressure on gas prices. Many recent modeling studies of increased RE and EE deployment have demonstrated that this ''secondary'' effect of lowering natural gas prices could be significant; as a result, this effect is increasingly cited as justification for policies promoting RE and EE. This paper summarizes recent studies that have evaluated the gas-price-reduction effect of RE and EE deployment, analyzes the results of these studies in light of economic theory and other research, reviews the reasonableness of the effect as portrayed in modeling studies, and develops a simple tool that can be used to evaluate the impact of RE and EE on gas prices without relying on a complex national energy model. Key findings are summarized.

  7. Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs As part of a two-year project to demonstrate energy efficiency measures, renewable energy generation, and energy systems integration, the National Renewable Energy Laboratory (NREL) has identified advanced plug load controls as a promising technology for reducing energy use and related costs in the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) office spaces. The demonstration was one of eight

  8. New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability

    Office of Energy Efficiency and Renewable Energy (EERE)

    This case study outlines how General Motors (GM) developed a highly efficient pumping system for their Pontiac Operations Complex in Pontiac, Michigan. In short, GM was able to replace five original 60- to 100-hp pumps with three 15-hp pumps whose speed could be adjusted to meet plant requirements. As a result, the company reduced pumping system energy consumption by 80 percent (225,100 kWh per year), saving an annual $11,255 in pumping costs. With a capital investment of $44,966 in the energy efficiency portion of their new system, GM projected a simple payback of 4 years.

  9. Reduced Energy Consumption through the Development of Fuel-Flexible Gas Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines ADVANCED MANUFACTURING OFFICE Reduced Energy Consumption through the Development of Fuel-Flexible Gas Turbines Introduction Gas turbines-heat engines that use high-temperature and high-pressure gas as the combustible fuel-are used extensively throughout U.S. industry to power industrial processes. The majority of turbines are operated using natural gas because of its availability, low cost, and

  10. Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle

    SciTech Connect (OSTI)

    Jehlik, Forrest; LaClair, Tim J

    2014-01-01

    Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

  11. Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project

    SciTech Connect (OSTI)

    Lower, Mark D; Christopher, Timothy W; Oland, C Barry

    2011-06-01

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL reduce its overall utility costs by decreasing the amount of fuel used to generate steam. Reduced fuel consumption also decreased air emissions. These improvements also helped lower the risk of burn injuries to workers and helped prevent shrapnel injuries resulting from missiles produced by pressurized component failures. In most cases, the economic benefit and cost effectiveness of the SPRS Safety and Energy Efficiency Improvement Project is reflected in payback periods of 1 year or less.

  12. China's Top-1000 Energy-Consuming Enterprises Program:Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    SciTech Connect (OSTI)

    Price, Lynn; Price, Lynn; Wang, Xuejun; Yun, Jiang

    2008-06-02

    In 2005, the Chinese government announced an ambitious goal of reducing energy consumption per unit of GDP by 20% between 2005 and 2010. One of the key initiatives for realizing this goal is the Top-1000 Energy-Consuming Enterprises program. The energy consumption of these 1000 enterprises accounted for 33% of national and 47% of industrial energy usage in 2004. Under the Top-1000 program, 2010 energy consumption targets were determined for each enterprise. The objective of this paper is to evaluate the program design and initial results, given limited information and data, in order to understand the possible implications of its success in terms of energy and carbon dioxide emissions reductions and to recommend future program modifications based on international experience with similar target-setting agreement programs. Even though the Top-1000 Program was designed and implemented rapidly, it appears that--depending upon the GDP growth rate--it could contribute to somewhere between approximately 10% and 25% of the savings required to support China's efforts to meet a 20% reduction in energy use per unit of GDP by 2010.

  13. Impacts on U.S. Energy Markets and the Economy of Reducing Oil Imports

    Reports and Publications (EIA)

    1996-01-01

    This study was undertaken at the request of the General Accounting Office (GAO). Its purpose is to evaluate the impacts on U.S. energy markets and the economy of reducing oil imports. The approach and assumptions underlying this report were specified by GAO and are attached as an Appendix. The study focuses on two approaches: (1) a set of cases with alternative world crude oil price trajectories and (2) two cases which investigate the use of an oil import tariff to achieve a target reduction in the oil imports. The analysis presented uses the National Energy Modeling System, which is maintained by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), and the DRI/McGraw Hill Macroeconomic Model of the U.S. Economy, a proprietary model maintained by DRI and subscribed to by EIA.

  14. In-situ determination of energy species yields of intense particle beams

    DOE Patents [OSTI]

    Kugel, H.W.; Kaita, R.

    1983-09-26

    Objects of the present invention are provided for a particle beam having a full energy component at least as great as 25 keV, which is directed onto a beamstop target, such that Rutherford backscattering, preferably near-surface backscattering occurs. The geometry, material composition and impurity concentration of the beam stop are predetermined, using any suitable conventional technique. The energy-yield characteristic response of backscattered particles is measured over a range of angles using a fast ion electrostatic analyzer having a microchannel plate array at its focal plane. The knee of the resulting yield curve, on a plot of yield versus energy, is analyzed to determine the energy species components of various beam particles having the same mass.

  15. Experimental study of magnetically confined hollow electron beams in the Tevatron as collimators for intense high-energy hadron beams

    SciTech Connect (OSTI)

    Stancari, G.; Annala, G.; Shiltsev, V.; Still, D.; Valishev, A.; Vorobiev, L.; /Fermilab

    2011-03-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable losses. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and tested at Fermilab for this purpose. It was installed in one of the Tevatron electron lenses in the summer of 2010. We present the results of the first experimental tests of the hollow-beam collimation concept on 980-GeV antiproton bunches in the Tevatron.

  16. Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species

    DOE Patents [OSTI]

    Cross, J.B.; Cremers, D.A.

    1986-01-10

    Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species is described. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

  17. Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species

    DOE Patents [OSTI]

    Cross, Jon B. (Santa Fe, NM); Cremers, David A. (Los Alamos, NM)

    1988-01-01

    Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

  18. Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Brochure on Vehicle Testing and Integration Facility, featuring the Vehicle Modification Facility, Vehicle Test Pad and ReCharge Integrated Demonstration System. Plug-in electric vehicles (PEVs) offer the opportunity to shift transportation energy demands from petroleum to electricity, but broad adoption will require integration with other systems. While automotive experts work to reduce the cost of PEVs, fossil fueled cars and trucks continue to burn hundreds of billions of gallons of petroleum each year - not only to get from point A to point B, but also to keep passengers comfortable with air conditioning and heat. At the National Renewable Energy Laboratory (NREL), three installations form a research laboratory known as the Vehicle Testing and Integration Facility (VTIF). At the VTIF, engineers are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle-grid integration and minimizing fuel consumption related to vehicle climate control. Part of NREL's Center for Transportation Technologies and Systems (CTTS), the VTIF is dedicated to renewable and energy efficient solutions. This facility showcases technology and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for electric vehicle (EV) components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies and industry partners. Research conducted at the VTIF examines the interaction of building energy systems, utility grids, renewable energy sources and PEVs, integrating energy management solutions, and maximizing potential greenhouse gas (GHG) reduction, while smoothing the transition and reducing costs for EV owners. NREL's collaboration with automakers, charging station manufacturers, utilities and fleet operators to assess technologies using VTIF resources is designed to enable PEV communication with the smart grid and create opportunities for vehicles to play an active role in building and grid management. Ultimately, this creates value for the vehicle owner and will help renewables be deployed faster and more economically, making the U.S. transportation sector more flexible and sustainable.

  19. Energy Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building: Preprint

    SciTech Connect (OSTI)

    Guglielmetti , R.; Scheib, J.; Pless, S. D.; Torcellini , P.; Petro, R.

    2011-03-01

    Net-zero energy buildings generate as much energy as they consume and are significant in the sustainable future of building design and construction. The role of daylighting (and its simulation) in the design process becomes critical. In this paper we present the process the National Renewable Energy Laboratory embarked on in the procurement, design, and construction of its newest building, the Research Support Facility (RSF) - particularly the roles of daylighting, electric lighting, and simulation. With a rapid construction schedule, the procurement, design, and construction had to be tightly integrated; with low energy use. We outline the process and measures required to manage a building design that could expect to operate at an efficiency previously unheard of for a building of this type, size, and density. Rigorous simulation of the daylighting and the electric lighting control response was a given, but the oft-ignored disconnect between lighting simulation and whole-building energy use simulation had to be addressed. The RSF project will be thoroughly evaluated for its performance for one year; preliminary data from the postoccupancy monitoring efforts will also be presented with an eye toward the current efficacy of building energy and lighting simulation.

  20. Colorado Industrial Energy Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State and Utility Engagement Activities » Colorado Industrial Energy Challenge Colorado Industrial Energy Challenge Colorado The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) has developed multiple resources and a Best Practices suite of tools to help industrial manufacturers reduce their energy intensity. AMO adopted the Energy Policy Act of 2005 objective of reducing industrial energy intensity 2.5% annually over the next

  1. Save Energy Now LEADER Pledge Next Steps

    SciTech Connect (OSTI)

    2010-04-07

    Provides an overview of next steps for industrial companies after they sign the Save Energy Now LEADER pledge to reduce their energy intensity 25% in 10 years.

  2. Ohio Center for Industrial Energy Efficiency

    Broader source: Energy.gov [DOE]

    Ohio Center for Industrial Energy Efficiency establishes partnerships among DOE, state and local government, universities, end users, and utilities to reduce industrial energy intensity.

  3. U.S. Energy Information Administration (EIA) - Pub

    Gasoline and Diesel Fuel Update (EIA)

    intensity Energy intensity (measured both by energy use per capita and by energy use per dollar of GDP) declines in the AEO2015 Reference case over the projection period (Figure 19). While a portion of the decline results from a small shift from energy-intensive to nonenergy-intensive manufacturing, most of it results from changes in other sectors. figure data Increasing energy efficiency reduces the energy intensity of many residential end uses between 2013 and 2040. Total energy consumption

  4. Potential of Renewable Energy to Reduce the Dependence of the State of Hawaii on Oil

    SciTech Connect (OSTI)

    Arent, D.; Barnett, J.; Mosey, G.; Wise, A.

    2009-01-01

    Deriving nearly 90% of its primary energy resources from oil, the State of Hawaii is more dependent on oil than any other U.S. state. The price of electricity in Hawaii is also more than twice the U.S. average. The Energy Policy Act of 2005 directed assessment of the economic implications of Hawaii's oil dependence and the feasibility of using renewable energy to help meet the state's electrical generation and transportation fuel use. This paper is based on the assessments and report prepared in response to that directive.Current total installed electrical capacity for the State of Hawaii is 2,414 MWe, 83% of which is fuel-oil generated, but already including about 170 MWe of renewable capacity. The assessments identified about 2,133 MWe (plus another estimated 2,000 MWe of rooftop PV systems) of potential new renewable energy capacity. Most notable, in addition to the rooftop solar potential, is 750 MWe and 140 MWe of geothermal potential on Hawaii and Maui, respectively, 840 MWe of potential wind capacity, primarily on Lanai and Molokai, and one potential 285 MWe capacity specific solar project (PV or solar thermal) identified on Kauai. Important social, political, and electrical-grid infrastructure challenges would need to be overcome to realize this potential. Among multiple crop and acreage scenarios, biofuels assessment found 360,000 acres in Hawaii zoned for agriculture and appropriate for sugarcane, enough to produce 429 million gallons of ethanol-enough to meet about 64% of current 2005 Hawaiian gasoline use. Tropical oil seed crops-potentially grown on the same land-might meet a substantial portion of current diesel use, but there has been little experience growing such crops in Hawaii. The U.S. Department of Energy and the State of Hawaii initiated in January 2008 a program that seeks to reduce Hawaii's oil dependence and provide 70% of the state's primary energy from clean energy sources by 2030. The Hawaii Clean Energy Initiative (HCEI) activities will be concentrated in two areas: (1) HCEI Working Groups will be formed and made up of private, state, and U.S. government experts in the areas of Transportation and Fuels, Electricity Generation, Energy Delivery and Transmission, and End-Use Efficiency; and (2) Partnership Projects will be undertaken with local and mainland partners that demonstrate and commercialize new technologies and relieve technical barriers.

  5. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market- ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology- retrofitting rooftop air- conditioning units with an advanced rooftop control system-was identified as a

  6. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  7. -South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings After receiving an energy assessment from the U.S. Department of Energy's (DOE's) Industrial Assessment Center (IAC) at Tennessee Technological University, Mid-South Metallurgical implemented several resulting recommendations, which included installing new furnace insulation, implementing an electrical demand system, installing energy efficient equipment on its natural gas furnace

  8. Quasi-particle energy spectra in local reduced density matrix functional theory

    SciTech Connect (OSTI)

    Lathiotakis, Nektarios N.; Helbig, Nicole; Rubio, Angel

    2014-10-28

    Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C{sub 20} isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids.

  9. Energy Use, Loss, and Opportunities Analysis for U.S. Manufacturing and Mining

    SciTech Connect (OSTI)

    Pellegrino, Joan L.; Margolis, Nancy; Justiniano, Mauricio; Miller, Melanie; Thedki, Arvind

    2004-12-01

    An analysis of the energy consumption and losses associated with industrial energy systems in the top energy-intensive industries and opportunities for reducing losses.

  10. French intensive truck garden

    SciTech Connect (OSTI)

    Edwards, T D

    1983-01-01

    The French Intensive approach to truck gardening has the potential to provide substantially higher yields and lower per acre costs than do conventional farming techniques. It was the intent of this grant to show that there is the potential to accomplish the gains that the French Intensive method has to offer. It is obvious that locally grown food can greatly reduce transportation energy costs but when there is the consideration of higher efficiencies there will also be energy cost reductions due to lower fertilizer and pesticide useage. As with any farming technique, there is a substantial time interval for complete soil recovery after there have been made substantial soil modifications. There were major crop improvements even though there was such a short time since the soil had been greatly disturbed. It was also the intent of this grant to accomplish two other major objectives: first, the garden was managed under organic techniques which meant that there were no chemical fertilizers or synthetic pesticides to be used. Second, the garden was constructed so that a handicapped person in a wheelchair could manage and have a higher degree of self sufficiency with the garden. As an overall result, I would say that the garden has taken the first step of success and each year should become better.

  11. RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions

    SciTech Connect (OSTI)

    Wright, Anthony L; Martin, Michaela A; Gemmer, Bob; Scheihing, Paul; Quinn, James

    2007-09-01

    In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. A major thrust of the campaign was to ensure that the nation's natural gas supplies would be adequate for all Americans, especially during home heating seasons. In a presentation to the National Press Club on October 3, 2005, Secretary Bodman said: 'America's businesses, factories, and manufacturing facilities use massive amounts of energy. To help them during this period of tightening supply and rising costs, our Department is sending teams of qualified efficiency experts to 200 of the nation's most energy-intensive factories. Our Energy Saving Teams will work with on-site managers on ways to conserve energy and use it more efficiently.' DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy assessments. The approach for these assessments drew heavily on the existing resources of ITP's Technology Delivery component. Over the years, ITP-Technology Delivery had worked with industry partners to assemble a suite of respected software decision tools, proven assessment protocols, training curricula, certified experts, and strong partnerships for deployment. Because of the program's earlier activities and the resources that had been developed, ITP was prepared to respond swiftly and effectively to the sudden need to promote improved industrial energy efficiency. Because of anticipated supply issues in the natural gas sector, the Save Energy Now initiative strategically focused on natural gas savings and targeted the nation's largest manufacturing plants--those that consume a total of 1 trillion British thermal units (Btu) or more annually. The approximately 6800 U.S. facilities that fall into this category collectively account for about 53% of all energy consumed by industry in the United States. The 2006 Save Energy Now energy assessments departed from earlier DOE plant assessments by concentrating solely on steam and process heating systems, which are estimated to account for approximately 74% of all natural gas use for manufacturing. The assessments also integrated a strong training component designed to teach industrial plant personnel how to use DOE's steam or process heating opportunity assessment software tools. This approach had the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the assessment process at the company's other facilities. The Save Energy Now initiative also included provisions to help plants that applied for but did not qualify for assessments (based on the 1 trillion Btu criterion). Services offered to these plants included (1) an assessment by one of DOE's 26 university-based Industrial Assessment Centers (IACs), (2) a telephone consultation with a systems expert at the DOE's Energy Efficiency and Renewable Energy Information Center, or (3) other technical materials and services available through ITP (e.g., the Save Energy Now CD). By the end of 2006, DOE had completed all 200 of the promised assessments, identifying potential natural gas savings of more than 50 trillion Btu and energy cost savings of about $500 million. These savings, if fully implemented, could reduce CO2 emissions by 4.04 million metric tons annually. These results, along with the fact that a large percentage of U.S. energy is used by a relatively small number of very large plants, clearly suggest that assessments are an expedient and cost-effective way to significantly affect large amounts of energy use. Building on the success of the 2006 initiative, ITP has expanded the effort in 2007 with the goal of conducting 250 more asse

  12. The potential for reducing urban air temperatures and energy consumption through vegetative cooling

    SciTech Connect (OSTI)

    Kurn, D.M.; Bretz, S.E.; Huang, B.; Akbari, H.

    1994-05-01

    A network of 23 weather stations was used to detect existing oases in Southern California. Four stations, separated from one another by 15--25 miles (24--40 km), were closely examined. Data were strongly affected by the distance of the stations from the Pacific Ocean. This and other city-scale effects made the network inadequate for detection of urban oases. We also conducted traverse measurements of temperature and humidity in the Whittier Narrows Recreation Area in Los Angeles County on September 8--10, 1993. Near-surface air temperatures over vegetated areas were 1--2{degrees}C lower than background air temperatures. We estimate that vegetation may lower urban temperatures by 1{degrees}C, while the establishment of vegetative canopies may lower local temperatures by an additional 2{degrees}C. An increase in vegetation in residential neighborhoods may reduce peak loads in the Los Angeles area by 0.3 GW, and reduce energy consumption by 0.2 BkWh/year, saving $20 million annually. Large additional savings would result from regional cooling.

  13. Terra nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment. Industrial Technologies Program (ITP) Save Energy Now Case Study.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Terra Nitrogen plant in Verdigris, Oklahoma. Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment Industrial Technologies Program Case Study Benefits * Saves approximately $3.5 million annually * Achieves annual natural gas savings of 497,000 MMBtu * Achieves a simple payback of 11 months Key Findings * Accurately quantifying potential energy savings can provide renewed impetus to reduce energy use. * Although Terra Nitrogen actively managed

  14. Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions

    SciTech Connect (OSTI)

    Erdemir, Ali

    2013-09-26

    This project was funded under the Department of Energy (DOE) Lab Call on Nanomanufacturing for Energy Efficiency and was directed toward the development of novel boron-based nanocolloidal lubrication additives for improving the friction and wear performance of machine components in a wide range of industrial and transportation applications. Argonne?s research team concentrated on the scientific and technical aspects of the project, using a range of state-of-the art analytical and tribological test facilities. Argonne has extensive past experience and expertise in working with boron-based solid and liquid lubrication additives, and has intellectual property ownership of several. There were two industrial collaborators in this project: Ashland Oil (represented by its Valvoline subsidiary) and Primet Precision Materials, Inc. (a leading nanomaterials company). There was also a sub-contract with the University of Arkansas. The major objectives of the project were to develop novel boron-based nanocolloidal lubrication additives and to optimize and verify their performance under boundary-lubricated sliding conditions. The project also tackled problems related to colloidal dispersion, larger-scale manufacturing and blending of nano-additives with base carrier oils. Other important issues dealt with in the project were determination of the optimum size and concentration of the particles and compatibility with various base fluids and/or additives. Boron-based particulate additives considered in this project included boric acid (H{sub 3}BO{sub 3}), hexagonal boron nitride (h-BN), boron oxide, and borax. As part of this project, we also explored a hybrid MoS{sub 2} + boric acid formulation approach for more effective lubrication and reported the results. The major motivation behind this work was to reduce energy losses related to friction and wear in a wide spectrum of mechanical systems and thereby reduce our dependence on imported oil. Growing concern over greenhouse gas emissions was also a major reason. The transportation sector alone consumes about 13 million barrels of crude oil per day (nearly 60% of which is imported) and is responsible for about 30% of the CO{sub 2} emission. When we consider manufacturing and other energy-intensive industrial processes, the amount of petroleum being consumed due to friction and wear reaches more than 20 million barrels per day (from official energy statistics, U.S. Energy Information Administration). Frequent remanufacturing and/or replacement of worn parts due to friction-, wear-, and scuffing-related degradations also consume significant amounts of energy and give rise to additional CO{sub 2} emission. Overall, the total annual cost of friction- and wear-related energy and material losses is estimated to be rather significant (i.e., as much as 5% of the gross national products of highly industrialized nations). It is projected that more than half of the total friction- and wear-related energy losses can be recovered by developing and implementing advanced friction and wear control technologies. In transportation vehicles alone, 10% to 15% of the fuel energy is spent to overcome friction. If we can cut down the friction- and wear-related energy losses by half, then we can potentially save up to 1.5 million barrels of petroleum per day. Also, less friction and wear would mean less energy consumption as well as less carbon emissions and hazardous byproducts being generated and released to the environment. New and more robust anti-friction and -wear control technologies may thus have a significant positive impact on improving the efficiency and environmental cleanliness of the current legacy fleet and future transportation systems. Effective control of friction in other industrial sectors such as manufacturing, power generation, mining and oil exploration, and agricultural and earthmoving machinery may bring more energy savings. Therefore, this project was timely and responsive to the energy and environmental objectives of DOE and our nation. In this project, most of the boron-based mater

  15. Save Energy Now Indiana | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Indiana Save Energy Now Indiana Map highlighting Indiana The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) has developed multiple resources and a best practices suite of tools to help industrial manufacturers reduce their energy intensity. AMO adopted the Energy Policy Act of 2005 objective of reducing industrial energy intensity 2.5% annually over the next 10 years. To help achieve this goal, AMO engaged state and regional

  16. Reduce Pumping Costs through Optimum Pipe Sizing: Industrial Technologies Program (ITP) Energy Tips - Pumping Systems Tip Sheet #9 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 * October 2005 Reduce Pumping Costs through Optimum Pipe Sizing Every industrial facility has a piping network that carries water or other fluids. According to the U.S. Department of Energy (DOE), 16% of a typical facility's electricity costs are for its pumping systems. The power consumed to overcome the static head in a pumping system varies linearly with flow, and very little can be done to reduce the static component of the system requirement. However, there are several energy- and

  17. Multi-layer Lanczos iteration approach to calculations of vibrational energies and dipole transition intensities for polyatomic molecules

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Hua-Gen

    2015-01-28

    We report a rigorous full dimensional quantum dynamics algorithm, the multi-layer Lanczos method, for computing vibrational energies and dipole transition intensities of polyatomic molecules without any dynamics approximation. The multi-layer Lanczos method is developed by using a few advanced techniques including the guided spectral transform Lanczos method, multi-layer Lanczos iteration approach, recursive residue generation method, and dipole-wavefunction contraction. The quantum molecular Hamiltonian at the total angular momentum J = 0 is represented in a set of orthogonal polyspherical coordinates so that the large amplitude motions of vibrations are naturally described. In particular, the algorithm is general and problem-independent. An applicationmore » is illustrated by calculating the infrared vibrational dipole transition spectrum of CH₄ based on the ab initio T8 potential energy surface of Schwenke and Partridge and the low-order truncated ab initio dipole moment surfaces of Yurchenko and co-workers. A comparison with experiments is made. The algorithm is also applicable for Raman polarizability active spectra.« less

  18. Energy Intensity Indicators: Methodology

    Broader source: Energy.gov [DOE]

    The files listed below contain methodology documentation and related studies that support the information presented on this website. The files are available to view and/or download as Adobe Acrobat...

  19. High-Tech Garage Showcases Strategies for Reducing Energy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    The parking garage fact sheet highlights the many features of NREL's garage, including energy efficiency, renewable energy, water conservation, building materials, and waste minimization.

  20. Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

  1. NWTC Collaborative Increases Gearbox Reliability and Helps Reduce Cost of Wind Energy; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    A collaborative at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) leads to wind turbine gearbox reliability and lowers the cost of wind energy.

  2. Energy Assessment Training Reduces Energy Costs for the U.S. Coast Guard Sector Guam: Success Stories (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    U.S. Coast Guard Sector Guam experiences considerable energy cost and use savings after implementing training from NREL's energy assessment training.

  3. How America Can Look Within to Achieve Energy Security and Reduce...

    Office of Scientific and Technical Information (OSTI)

    ways our nation can wean itself off its dependence on foreign oil and reduce its emissions of greenhouse gases. Transportation and buildings, which account for two thirds of...

  4. How Do You Reduce the Time You Spend Idling? | Department of Energy

    Energy Savers [EERE]

    Reduce the Time You Spend Idling? How Do You Reduce the Time You Spend Idling? November 4, 2010 - 7:30am Addthis On Tuesday, Shannon discussed some efforts by Clean Cities, parents, and students to reduce the time that parents spend idling in school parking lots. Some schools have even become idle-free zones. The Alternative Fuels and Advanced Vehicles Data Center offers a few tips for reducing idling, including turning off your engine if you are parked for more than a minute, switching to a

  5. Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Sheppy, M.; Metzger, I.; Cutler, D.; Holland, G.; Hanada, A.

    2014-01-01

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of the technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.

  6. Reduce Your Company's Energy Costs and Carbon Emissions with DOE Tools and Resources (Revised)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    A two-page overview fact sheet that describes the Industrial Technologies Program's Save Energy Now initiative and voluntary pledge program.

  7. Webinar: Make Your Building Sing!: Building-Retuning to Reduce Energy Waste

    Broader source: Energy.gov [DOE]

    Panelists: Eileen Gohr and Steve Harrison, Parameter Realty Partners; Dennis Bohlayer, Towson University; Benjamin Goldstein, U.S. Department of Energy; Lisa Shulock, Building Owners and Managers...

  8. Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future

    Broader source: Energy.gov [DOE]

    From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future.

  9. Clean Cities Tools: Tools to Help You Save Money, Use Less Petroleum, and Reduce Emissions (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    offers a large collection of helpful Web-based tools. These calculators, interactive maps, and data searches can assist fleets, fuel providers, and other transportation decision makers in their efforts to reduce petroleum use. Find the Clean Cities coalition in your area, and get the contact information for your Clean Cities coordinator at eere.energy.gov/cleancities/coalitions.html. Clean Cities Tools Tools to help you save money, use less petroleum, and reduce emissions Access Clean Cities

  10. HID Laboratories Inc | Open Energy Information

    Open Energy Info (EERE)

    Park, California Zip: 94025 Product: HID Laboratories develops commercial-grade, high intensity lighting products that manage lighting demand and reduce energy use. References:...

  11. 3 Easy Tips to Reduce Your Standby Power Loads | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Easy Tips to Reduce Your Standby Power Loads 3 Easy Tips to Reduce Your Standby Power Loads November 1, 2012 - 3:35pm Addthis Using a power strip to turn off electronics and appliances when they aren't in use ensures that they are truly off and not using extra electricity. | Photo courtesy of ©iStockphoto.com/DonNichols. Using a power strip to turn off electronics and appliances when they aren't in use ensures that they are truly off and not using extra electricity. | Photo courtesy of

  12. How Do You Reduce the Amount of Energy Used by Your Televisions...

    Broader source: Energy.gov (indexed) [DOE]

    changes to television labeling that will help you compare the energy use of different models when you're shopping. Many households have more than one television, and many of those...

  13. Reducing Plug and Process Loads for a Large Scale, Low Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 25 ... IT and management put in place policies that have eliminated shared and personal ...

  14. EECBG Success Story: Top 25 City Aims to Reduce Energy Use

    Broader source: Energy.gov [DOE]

    The city of McKinney in Texas is using funding from an Energy Efficiency and Conservation Block Grant to fund eight projects and hire someone to manage them. Learn more.

  15. Annual Energy Outlook 2014 projects reduced need for U.S. oil imports due to tight oil production growth

    Gasoline and Diesel Fuel Update (EIA)

    7, 2014 Annual Energy Outlook 2014 projects reduced need for U.S. oil imports due to tight oil production growth U.S. production of tight crude oil is expected to make up a larger share of total U.S. oil output in the years ahead, and help lower imports share of total U.S. oil consumption. In its annual long-term projections, the U.S. Energy Information Administration (EIA) expects total U.S. crude oil production to reach a record 9.6 million barrels per day (bbl/d) in 2019, under its baseline

  16. Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy

    SciTech Connect (OSTI)

    Maples, B.; Saur, G.; Hand, M.; van de Pieterman, R.; Obdam, T.

    2013-07-01

    Currently, installation, operation, and maintenance (IO&M) costs contribute approximately 30% to the LCOE of offshore wind plants. To reduce LCOE while ensuring safety, this paper identifies principal cost drivers associated with IO&M and quantifies their impacts on LCOE. The paper identifies technology improvement opportunities and provides a basis for evaluating innovative engineering and scientific concepts developed subsequently to the study. Through the completion of a case study, an optimum IO&M strategy for a hypothetical offshore wind project is identified.

  17. Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy

    SciTech Connect (OSTI)

    B. Maples, G. Saur, M. Hand (NREL), R. van de Pietermen and T. Obdam (Energy Research Centre)

    2013-07-09

    Currently, installation, operation, and maintenance (IO&M) costs contribute approximately 30% to the LCOE of offshore wind plants. To reduce LCOE while ensuring safety, this paper identifies principal cost drivers associated with IO&M and quantifies their impacts on LCOE. The paper identifies technology improvement opportunities and provides a basis for evaluating innovative engineering and scientific concepts developed subsequently to the study. Through the completion of a case study, an optimum IO&M strategy for a hypothetical offshore wind project is identified.

  18. Reducing Petroleum, One Billion Gallons at a Time | Department of Energy

    Energy Savers [EERE]

    Petroleum, One Billion Gallons at a Time Reducing Petroleum, One Billion Gallons at a Time October 22, 2014 - 10:01am Addthis This hybrid electric Prius that was on display at the National Alternative Fuels Day Odyssey kick-off event has been specially modified for training purposes. With this "cut-away" vehicle, mechanics and other students learning about hybrid electric vehicles can see the inside of the car and better understand how it is different from a conventional gasoline

  19. Distributed Wireless Multi-Sensor Technologies, A Novel Approach to Reduce Motor Energy Usage

    SciTech Connect (OSTI)

    Daniel Sexton

    2008-03-28

    This report is the final report for the General Electric Distributed Wireless Multi-Sensor Technologies project. The report covers the research activities and benefits surrounding wireless technology used for industrial sensing applications. The main goal of this project was to develop wireless sensor technology that would be commercialized and adopted by industry for a various set of applications. Many of these applications will yield significant energy savings. One application where there was significant information to estimate a potential energy savings was focused on equipment condition monitoring and in particular electric motor monitoring. The results of the testing of the technology developed are described in this report along with the commercialization activities and various new applications and benefits realized.

  20. Joining techniques for a reduced activation 12Cr steel for inertial fusion energy

    SciTech Connect (OSTI)

    Hunt, R. M.; El-Dasher, B.; Choi, B. W.; Torres, S. G.

    2014-10-01

    At Lawrence Livermore National Laboratory, we are developing a reduced activation ferritic martensitic steel that is based on the ferritic martensitic steel HT-9. As a part of the development of this steel, we tested a series of welding processes for characterization, including conventional welds (electron beam, tungsten inert gas, and laser) as well as solid-state welds (hot isostatic pressing). We also heat treated the joints at various temperatures between 750 C and 1050 C to find a suitable normalization scheme. The modified HT-9 reduced activation ferritic martensitic steel appears highly suitable to welding and diffusion bonding. All welds showed good quality fusion zones with insignificant cracking or porosity. Additionally, a heat treatment schedule of 950 C for one hour caused minimal grain growth while still converging the hardness of the base metal with that of the fusion and heat-affected zones. Also, modified HT-9 diffusion bonds that were created at temperatures of at least 950 C for two hours at 103 MPa had interface tensile strengths of greater than 600 MPa. The diffusion bonds showed no evidence of increased hardness nor void formation at the diffusion bonded interface.

  1. Generation of very low energy-spread electron beams using low-intensity laser pulses in a low-density plasma

    SciTech Connect (OSTI)

    Upadhyay, Ajay K.; Samant, Sushil Arun; Sarkar, Deepangkar; Krishnagopal, Srinivas; Jha, Pallavi

    2011-03-15

    The possibility of obtaining high-energy electron beams of high quality by using a low-density homogeneous plasma and a low-intensity laser (just above the self-injection threshold in the bubble regime) has been explored. Three-dimensional simulations are used to demonstrate, for the first time, an energy-spread of less than 1%, from self-trapping. More specifically, for a plasma density of 2x10{sup 18} cm{sup -3} and a laser intensity of a{sub 0}=2, a high-energy (0.55 GeV), ultrashort (1.4 fs) electron beam with very low energy-spread (0.55%) and high current (3 kA) is obtained. These parameters satisfy the requirements for drivers of short-wavelength free-electron lasers. It is also found that the quality of the electron beam depends strongly on the plasma length, which therefore needs to be optimized carefully to get the best performance in the experiments.

  2. Analysis of the research and development effort in the private sector to reduce energy consumption in irrigated agriculture

    SciTech Connect (OSTI)

    Rogers, E.A.; Cone, B.W.

    1980-09-01

    Manufacturers of irrigation equipment perform research and development in an effort to improve or maintain their position in a very competitive market. The market forces and conditions that create the intense competition and provide incentive for invention are described. Particular emphasis is placed on the market force of increased energy costs, but the analysis is developed from the perspective that energy is but one of many inputs to agricultural production. The analysis is based upon published literature, patent activity profiles, microeconomic theory, and conversations with many representatives of the irrigation industry. The published literature provides an understanding of the historical development of irrigation technology, a description of the industry's structure, and various data, which were important for the quantitative analyses. The patent activity profiles, obtained from the US Patent Office, provided details of patent activity within the irrigation industry over the past decade. Microeconomic theory was used to estimate industry-wide research and development expenditures on energy-conserving products. The results of these analyses were then compared with the insights gained from conversations with the industry representatives.

  3. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  4. Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    SciTech Connect (OSTI)

    Gawlik, Keith

    2013-06-25

    Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

  5. Energy Efficiency and Least-Cost Planning: The Best Way to Save Money and Reduce Energy Use in Hawaii

    SciTech Connect (OSTI)

    Mowris, Robert J.

    1990-05-21

    If the 500 MW geothermal project on the Big Island of Hawaii is developed as planned, the Wao Kele O Puna rain forest will be severely damaged or destroyed. If this happens the State will lose one of its most precious resources. It would be tragic for this to happen, since on a least-cost basis, the geothermal project does not make economic sense. Improving energy efficiency in the commercial and residential sectors of Hawaii can save about 500 MW of power at a cost of $700 million.

  6. Role of Modeling When Designing for Absolute Energy Use Intensity Requirements in a Design-Build Framework: Preprint

    SciTech Connect (OSTI)

    Hirsch, A.; Pless, S.; Guglielmetti, R.; Torcellini, P. A.; Okada, D.; Antia, P.

    2011-03-01

    The Research Support Facility was designed to use half the energy of an equivalent minimally code-compliant building, and to produce as much renewable energy as it consumes on an annual basis. These energy goals and their substantiation through simulation were explicitly included in the project's fixed firm price design-build contract. The energy model had to be continuously updated during the design process and to match the final building as-built to the greatest degree possible. Computer modeling played a key role throughout the design process and in verifying that the contractual energy goals would be met within the specified budget. The main tool was a whole building energy simulation program. Other models were used to provide more detail or to complement the whole building simulation tool. Results from these specialized models were fed back into the main whole building simulation tool to provide the most accurate possible inputs for annual simulations. This paper will detail the models used in the design process and how they informed important program and design decisions on the path from preliminary design to the completed building.

  7. What is Data-Intensive Science?

    SciTech Connect (OSTI)

    Critchlow, Terence J.; Kleese van Dam, Kerstin

    2013-06-03

    What is Data Intensive Science? Today we are living in a digital world, where scientists often no longer interact directly with the physical object of their research, but do so via digitally captured, reduced, calibrated, analyzed, synthesized and, at times, visualized data. Advances in experimental and computational technologies have lead to an exponential growth in the volumes, variety and complexity of this data and while the deluge is not happening everywhere in an absolute sense, it is in a relative one. Science today is data intensive. Data intensive science has the potential to transform not only how we do science, but how quickly we can translate scientific progress into complete solutions, policies, decisions and ultimately economic success. Critically, data intensive science touches some of the most important challenges we are facing. Consider a few of the grand challenges outlined by the U.S. National Academy of Engineering: make solar energy economical, provide energy from fusion, develop carbon sequestration methods, advance health informatics, engineer better medicines, secure cyberspace, and engineer the tools of scientific discovery. Arguably, meeting any of these challenges requires the collaborative effort of trans-disciplinary teams, but also significant contributions from enabling data intensive technologies. Indeed for many of them, advances in data intensive research will be the single most important factor in developing successful and timely solutions. Simple extrapolations of how we currently interact with and utilize data and knowledge are not sufficient to meet this need. Given the importance of these challenges, a new, bold vision for the role of data in science, and indeed how research will be conducted in a data intensive environment is evolving.

  8. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam, Energy Tips: STEAM, Steam Tip Sheet #29 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam Large industrial plants often vent signifcant quantities of low-pressure steam to the atmosphere, wasting energy, water, and water-treatment chemicals. Recovery of the latent heat content of low-pressure steam reduces the boiler load, resulting in energy and fuel cost savings. Low-pressure steam's potential uses include driving evaporation and distillation processes, producing hot water, space heating,

  9. U.S. Energy Information Administration (EIA) - Pub

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    by 26% over the period. More use of distributed generation, such as from rooftop solar panels, would further reduce delivered energy intensity, but it is not projected to...

  10. Efficiency and Intensity in the AEO 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Session 9 Energy Efficiency: Measuring Gains and Quantifying Opportunities April 7, 2010 2010 Energy Conference Washington, DC Steve Wade, Economist Efficiency and Intensity in the ...

  11. Coastal Ohio Wind Project for Reduced Barriers to Deployment of Offshore Wind Energy

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Carroll, Michael

    2014-04-09

    The Coastal Ohio Wind Project was created to establish the viability of wind turbines on the coastal and offshore regions of Northern Ohio. The projects main goal was to improve operational unit strategies used for environmental impact assessment of offshore turbines on lake wildlife by optimizing and fusing data from the multi-instrument surveillance system and providing an engineering analysis of potential design/operational alternatives for offshore wind turbines. The project also developed a general economic model for offshore WTG deployment to quantify potential revenue losses due to wind turbine shutdown related to ice and avian issues. In a previous phase of this project (Award Number: DE-FG36-06GO86096), we developed a surveillance system that was used to collect different parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species, movements of birds and bats, and bird calls for assessing patterns and peak passage rates during migration. To derive such parameters we used thermal IR imaging cameras, acoustic recorders, and marine radar Furuno (XANK250), which was coupled with a XIR3000B digitizing card from Russell Technologies and open source radR processing software. The integration yielded a development of different computational techniques and methods, which we further developed and optimized as a combined surveillance system. To accomplish this task we implemented marine radar calibration, optimization of processing parameters, and fusion of the multi-sensor data in order to make inferences about the potential avian targets. The main goal of the data fusion from the multi-sensor environment was aimed at reduction of uncertainties while providing acceptable confidence levels with detailed information about the migration patterns. Another component comprised of an assessment of wind resources in a near lake environment and an investigation of the effectiveness of ice coating materials to mitigate adverse effects of ice formation on wind turbine structures. Firstly, a Zephir LiDAR system was acquired and installed at Woodlands School in Huron, Ohio, which is located near Lake Erie. Wind resource data were obtained at ten measurement heights, 200m, 150m, 100m, 80m, 60m, 40m, 38m, 30m, 20m, and 10m. The Woodlands Schools wind turbine anemometer also measured the wind speed at the hub height. These data were collected for approximately one year. The hub anemometer data correlated well with the LiDAR wind speed measurements at the same height. The data also showed that on several days different power levels were recorded by the turbine at the same wind speed as indicated by the hub anemometer. The corresponding LiDAR data showed that this difference can be attributed to variability in the wind over the turbine rotor swept area, which the hub anemometer could not detect. The observation suggests that single point hub wind velocity measurements are inadequate to accurately estimate the power generated by a turbine at all times since the hub wind speed is not a good indicator of the wind speed over the turbine rotor swept area when winds are changing rapidly. To assess the effectiveness of ice coatings to mitigate the impact of ice on turbine structures, a closed-loop icing research tunnel (IRT) was designed and constructed. By controlling the temperature, air speed, water content and liquid droplet size, the tunnel enabled consistent and repeatable ice accretion under a variety of conditions with temperatures between approximately 0C and -20C and wind speeds up to 40 miles per hour in the tunnels test section. The tunnels cooling unit maintained the tunnel temperature within 0.2C. The coatings evaluated in the study were Boyd Coatings Research Companys CRC6040R3, MicroPhase Coatings Inc.s PhaseBreak TP, ESL and Flex coatings. Similar overall performance was observed in all coatings tested in that water droplets form on the test articles beginning at the stagnation region and spreading in the downstream direction in time. When comparing ice accumulation characteristics for the four coatings tested, for ice thickness during accumulation the CRC6040R3 had the least, followed by the ESL, Flex, and TP. However, when comparing the coatings ability to reduce ice adhesion, the Flex showed the highest adhesion reduction, followed by the ESL, TP and CRC 6040R3 coatings. The ice accumulated on the Flex coated surface shed under gravity when rotated 90 degrees following the tests while the other coatings required application of varying degrees of force to remove the ice. In conclusion, the ice coatings tested were not sufficient in preventing ice accumulation on all surfaces. However, Flex coating shows promise in mitigating ice on the rotor blades under the gravitational and centrifugal forces. Only the effect of gravity in shedding the ice was considered in this study. Further research will be needed to evaluate this coating on rotating blades in the icing tunnel to characterize its effectiveness. Lastly, the development of economic feasibility models used existing approaches adapted for offshore deployment in marine settings to one more suitable for Lake Erie deployment. Two different wind turbine models were tested and dynamic return on investment (ROI) model scenarios were generated. For the purpose of estimating power generation three bladed wind turbines of 3 MW capacity were selected including Model1- Leitwind LTW101-3.000-kW and Model2-Vostro V90-3.0 MW. The analysis were based on the revenue aspect of decision making of deploying wind turbines in the Ohio coastal region. The installation cost, maintenance and operational aspects were disregarded due to unavailability of data. The adjusted varying price (residential and industrial sector) and projected future price of electricity in different years suggested that the Leitwind model could generate $32.4 million of revenue in 25 years if the supply electricity is in the residential sector, while it would be $14.7million if the supply is in the industrial sector. For the Vostro model these figures are $28.6 million for residential sector and $12.9 million for industrial sector for 25 years.

  12. Data-Intensive Benchmarking Suite

    Energy Science and Technology Software Center (OSTI)

    2008-11-26

    The Data-Intensive Benchmark Suite is a set of programs written for the study of data-or storage-intensive science and engineering problems, The benchmark sets cover: general graph searching (basic and Hadoop Map/Reduce breadth-first search), genome sequence searching, HTTP request classification (basic and Hadoop Map/Reduce), low-level data communication, and storage device micro-beachmarking

  13. Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499

    SciTech Connect (OSTI)

    Smith, K.

    2013-10-01

    Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

  14. Implementing an Industrial Energy Efficiency Program in Minnesota

    Broader source: Energy.gov [DOE]

    Minnesota implemented an Industrial Energy Efficiency Program utilizing the state award from AMO to develop and implement an industrial energy efficiency program that identified key manufacturing sectors and accelerated technology adoption to reduce energy intensity.

  15. The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector

    SciTech Connect (OSTI)

    Greene, D.L.

    1997-07-01

    The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

  16. Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems; Industrial Technologies Program (ITP) BestPractices: Process Heating (Fact sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process heating plays a key role in the production of basic materials such as steel, aluminum, and glass and in the manufacture of value-added products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass manufacturers are considering a variety of options for reducing overall energy consumption. As 38% of the energy used in U.S. industrial plants is consumed for process heating appli- cations, metal and glass

  17. Investigation Of Plasma Produced By High-Energy Low-Intensity Laser Pulses For Implantation Of Ge Ions Into Si And Sio2 Substrates

    SciTech Connect (OSTI)

    Rosinski, M.; Wolowski, J.; Badziak, J.; Parys, P.; Boody, F. P.; Gammino, S.; Krasa, J.; Laska, L.; Pfeifer, M.; Rohlena, K.; Ullschmied, J.; Mezzasalma, A.; Torrisi, L.

    2006-01-15

    The development of implantation techniques requires investigation of laser plasma as a potential source of multiply charged ions. The laser ion source delivers ions with kinetic energy and a charge state dependent on the irradiated target material and the parameters of the laser radiation used. By the focusing the laser beam on the solid target the higher current densities of ions than by using other currently available ion sources can be produced. The crucial issue for efficiency of the ion implantation technology is selection of proper laser beam characteristics. Implantation of different kinds of laser-produced ions into metals and organic materials were performed recently at the PALS Research Center in Prague, in cooperative experiments using 0.4-ns iodine laser pulses having energies up to 750 J at wavelength of 1315 nm or up to 250 J at wavelength of 438 nm. In this contribution we describe the characterization and optimization of laser-produced Ge ion streams as well as analysis of the direct implantation of these ions into Si and SiO2 substrates. The Ge target was irradiated with the use of laser pulses of energy up to 50 J at radiation intensities of {approx}1011 W/cm2 and {approx}2'1013 W/cm2. The implanted samples were placed along the target normal at distances of 17, 31 and 83 cm from the target surface. The ion stream parameters were measured using the time-of-fight method. The depth of ion implantation was determined by the Rutherford backscattering method (RBS). The maximum depth of implantation of Ge ions was {approx}450 nm. These investigations were carried out for optimization of low and medium energy laser-generated Ge ion streams, suitable for specific implantation technique, namely for fabrication of semiconductor nanostructures within the SRAP 'SEMINANO' project.

  18. DOE Announces Webinars on the National Fuel Cell Technology Evaluation Center, Engaging Building Occupants to Reduce Energy Use, and More

    Broader source: Energy.gov [DOE]

    EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. View this week's webinars.

  19. Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

  20. Coal-Based Oxy-Fuel System Evaluation and Combustor Development; Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications

    SciTech Connect (OSTI)

    Hollis, Rebecca

    2013-03-31

    Clean Energy Systems, Inc. (CES) partnered with the U.S. Department of Energy’s National Energy Technology Laboratory in 2005 to study and develop a competing technology for use in future fossil-fueled power generation facilities that could operate with near zero emissions. CES’s background in oxy-fuel (O-F) rocket technology lead to the award of Cooperative Agreement DE-FC26-05NT42645, “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” where CES was to first evaluate the potential of these O-F power cycles, then develop the detailed design of a commercial-scale O-F combustor for use in these clean burning fossil-fueled plants. Throughout the studies, CES found that in order to operate at competitive cycle efficiencies a high-temperature intermediate pressure turbine was required. This led to an extension of the Agreement for, “Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications” where CES was to also develop an intermediate-pressure O-F turbine (OFT) that could be deployed in O-F industrial plants that capture and sequester >99% of produced CO2, at competitive cycle efficiencies using diverse fuels. The following report details CES’ activities from October 2005 through March 2013, to evaluate O-F power cycles, develop and validate detailed designs of O-F combustors (main and reheat), and to design, manufacture, and test a commercial-scale OFT, under the three-phase Cooperative Agreement.

  1. Kentucky Save Energy Now Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » State and Utility Engagement Activities » Kentucky Save Energy Now Initiative Kentucky Save Energy Now Initiative Kentucky The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program), has developed multiple resources and a suite of tools focused on best practices to help industrial manufacturers reduce their energy intensity. AMO adopted the Energy Policy Act of 2005 (EPAct) objective of reducing industrial

  2. Supporting Texas Manufacturing to Save Energy Now Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy State and Utility Engagement Activities » Supporting Texas Manufacturing to Save Energy Now Program Supporting Texas Manufacturing to Save Energy Now Program Texas The industrial sector in Texas is very energy intensive, with approximately 53% of all energy consumed in the state occurring in industrial plants. Therefore, Texas industrials have a great opportunity to reduce their energy intensity and related carbon emissions. In 2009, the U.S. Department of Energy's (DOE's) Advanced

  3. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    SciTech Connect (OSTI)

    Langner, R.; Hendron, B.; Bonnema, E.

    2014-08-01

    The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

  4. Colorado Dairy Industry Boosts Energy Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dairy Industry Boosts Energy Efficiency Colorado Dairy Industry Boosts Energy Efficiency December 21, 2015 - 2:12pm Addthis Colorado Dairy Industry Boosts Energy Efficiency Historically, the U.S. dairy industry has been one of the most energy-intensive forms of agriculture. Colorado is at the forefront of the fight to increase energy efficiency in this sector. In 2014, the Colorado Energy Office invested $240,000 of State Energy Program funds to help reduce the dairy industry's electricity

  5. combines high intensity and short pulse duration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combines high intensity and short pulse duration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  6. Intense fusion neutron sources

    SciTech Connect (OSTI)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-15

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10{sup 15}-10{sup 21} neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10{sup 20} neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  7. Turning off the heat. Why America must double energy efficiency to save money and reduce global warming

    SciTech Connect (OSTI)

    Casten, T.R.

    1998-12-31

    Turning Off the Heat targets a main source of overuse of fossil fuels--the energy producers themselves who, through their government-approved monopolies have led to energy inefficiency and needless pollution. A leading authority with 20 years of experience in the development and operation of energy conversions in the development and operation of energy conversions, Thomas R. Casten clearly explains that the US and other nations of the world can, and must, double the efficiency of energy utilities. This efficiency improvement will lead to a reduction of electric prices by 30 to 40% and cut carbon dioxide emissions (a greenhouse gas) in half. Two-thirds of the fuel used to make US Electricity is wasted, resulting in higher energy prices and excess pollution. If market forces are unleased and monopolies ended, competition will save money and fuel, Casten says. Turning Off the Heat is an essential volume for policy-makers, legislators, leaders in industry, environmentalists, and concerned citizens.

  8. Reducing Our Carbon Footprint: A Low-Energy House in Berkeley, Kabul, and Washington DC (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Diamond, Rick

    2011-04-28

    How well can we assess and improve building energy performance in California homes? How much energy-and carbon-do homes use in other parts of the world? Rick Diamond, deputy group leader of the Berkeley Lab Energy Performance of Buildings Group, discusses change, global solutions, and the stories of three houses in Berkeley, Kabul (Afghanistan), and Washington, D.C. Diamond, who is also a senior advisor at the California Institute for Energy and Environment, investigates user interactions with the built environment for improved building energy performance. The group has studied a wide range of issues related to energy use in housing, including duct system efficiency, user behavior, and infiltration and ventilation measurements.

  9. Replace Pressure-Reducing Valves with Backpressure Turbogenerators (International Fact Sheet), Energy Tips-Steam, Steam Tip Sheet #20c

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This English/Chinese ITP steam tip sheet on replacing pressure-reducing valves provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  10. Neutral particle beam intensity controller

    DOE Patents [OSTI]

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  11. Save Energy Now West Virginia | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State and Utility Engagement Activities » Save Energy Now West Virginia Save Energy Now West Virginia Map highlighting West Virginia The West Virginia Division of Energy and the Industries of the Future-West Virginia, along with their partners, took a regional approach to reducing industrial energy intensity by developing and implementing a comprehensive energy-reduction package. This package incorporated an enhanced energy assessment process that included investment-grade cost analysis, as

  12. Theoretical investigation of the origin of the multipeak structure of kinetic-energy-release spectra from charge-resonance-enhanced ionization of H{sub 2}{sup +} in intense laser fields

    SciTech Connect (OSTI)

    He Haixiang; Guo Yahui [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); China and Graduate School of the Chinese Academy of Sciences, Beijing, 10039 (China); Lu Ruifeng [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Zhang Peiyu; Han Keli; He Guozhong [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2011-09-15

    The dynamics of hydrogen molecular ions in intense laser pulses (100 fs, I = 0.77 x 10{sup 14} W/cm{sup 2} to 2.5 x 10{sup 14} W/cm{sup 2}) has been studied, and the kinetic-energy-release spectra of Coulomb explosion channel have been calculated by numerically solving the time-dependent Schroedinger equation. In a recent experiment, a multipeak structure from charge-resonance-enhanced ionization is interpreted by a vibrational 'comb' at a critical nuclear distance. We found that the peaks could not be attributed to a single vibrational level but a collective contribution of some typical vibrational states in our calculated Coulomb explosion spectra, and the main peak shifts toward the low-energy region with increasing vibrational level, which is also different from the explanation in that experiment. We have also discussed the proton's kinetic-energy-release spectra for different durations with the same laser intensity.

  13. On the possibility of the generation of high harmonics with photon energies greater than 10 keV upon interaction of intense mid-IR radiation with neutral gases

    SciTech Connect (OSTI)

    Emelina, A S; Emelin, M Yu; Ryabikin, M Yu

    2014-05-30

    Based on the analytical quantum-mechanical description in the framework of the modified strong-field approximation, we have investigated high harmonic generation of mid-IR laser radiation in neutral gases taking into account the depletion of bound atomic levels of the working medium and the electron magnetic drift in a high-intensity laser field. The possibility is shown to generate high-order harmonics with photon energies greater than 10 keV under irradiation of helium atoms by intense femtosecond laser pulses with a centre wavelength of 8 – 10.6 μm. (interaction of radiation with matter)

  14. Ford Van Dyke: Compressed Air Management Program Leads to Improvements that Reduce Energy Consumption at an Automotive Transmission Plant

    SciTech Connect (OSTI)

    2010-06-25

    Staff at the Ford Van Dyke Transmission Plant in Sterling Heights, Michigan, have increased the efficiency of the plants compressed air system to enhance its performance while saving energy and improving production.

  15. Reduce Air Infiltration in Furnaces; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #5 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 * January 2006 Industrial Technologies Program Reduce Air Infiltration in Furnaces Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to

  16. Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint

    SciTech Connect (OSTI)

    Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

    2011-02-01

    This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

  17. Measuring Arithmetic Intensity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » For Users » Application Performance » Measuring Arithmetic Intensity Measuring Arithmetic Intensity Arithmetic intensity is a measure of floating-point operations (FLOPs) performed by a given code (or code section) relative to the amount of memory accesses (Bytes) that are required to support those operations. It is most often defined as a FLOP per Byte ratio (F/B). This application note provides a methodology for determining arithmetic intensity using Intel's Software Development

  18. Energy-Saving Opportunities for Manufacturing Companies, International Fact Sheet (Spanish)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    This English/Spanish fact sheet describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

  19. Energy-Saving Opportunities for Manufacturing Companies, (English/Russian Fact Sheet) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This English/Russian brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

  20. Energy-Saving Opportunities for Manufacturing Companies (English/Portuguese Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This English/Portuguese brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

  1. Energy-Saving Opportunities for Manufacturing Enterprises in China (International Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This English/Chinese brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help Chinese manufacturing facilities reduce industrial energy intensity.

  2. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    SciTech Connect (OSTI)

    Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

    2011-05-25

    Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.

  3. Mark Johnson | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mark Johnson About Us Mark Johnson - Advanced Manufacturing Office Director Mark Johnson, Ph.D., serves as the Director of the Advanced Manufacturing Office (AMO) in the Office of Energy Efficiency and Renewable Energy (EERE). AMO is focused on creating a fertile innovation environment for advanced manufacturing, enabling vigorous domestic development of new energy-efficient manufacturing processes and materials technologies to reduce the energy intensity and life-cycle energy consumption of

  4. Anion A HX Clusters with Reduced Electron Binding Energies: Proton vs Hydrogen Atom Relocation Upon Electron Detachment

    SciTech Connect (OSTI)

    Wang, Xue B.; Kass, Steven R.

    2014-12-10

    Clustering an anion with one or more neutral molecules is a stabilizing process that enhances the oxidation potential of the complex relative to the free ion. Several hydrogen bond clusters (i.e., A HX, where A = H2PO4 and CF3CO2 and HX = MeOH, PhOH, and Me2NOH or Et2NOH) are examined by photoelectron spectroscopy and M06-2X and CCSD(T) computations. Remarkably, these species are experimentally found to have adiabatic detachment energies that are smaller than those for the free ion and reductions of 0.47 to 1.87 eV are predicted computationally. Hydrogen atom and proton transfers upon vertical photodetachment are two limiting extremes on the neutral surface in a continuum of mechanistic pathways that account for these results, and the whole gamut of possibilities are predicted to occur.

  5. Diffuse Shortwave Intensive Observation Period

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Diffuse Shortwave Intensive Observation Period The Diffuse Shortwave IOP ran from September 23 to October 12, 2001. During this IOP, Joe Michalsky (The State University of New York-Albany) and Tom Stoffel (National Renewable Energy Laboratory) deployed approximately 15 radiometers of various designs and manufacturers on the SGP Radiometer Calibration Facility. The purpose was to compare the accuracy of the radiometers for diffuse shortwave measurements. The Scripps Institution of Oceanography

  6. Building-Level Intensities

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Electricity Consumption",,,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  7. federal energy management prog | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Energy Management Program The U.S. Department of Energy's Federal Energy Management Program (FEMP) plays a critical role in reducing energy use and increasing the use of renewable energy at Federal agencies. The U.S. Federal government is the nation's largest energy user, and it has both a tremendous opportunity and an acknowledged responsibility to lead by example in saving energy. Thanks in part to the technical assistance provided by FEMP, the energy intensity of Federal facilities

  8. Light intensity compressor

    DOE Patents [OSTI]

    Rushford, Michael C. (Livermore, CA)

    1990-01-01

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  9. Trends in Commercial Buildings--Trends in Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Part 1. Energy Consumption Data Tables Total Energy Intensity Intensity by Energy Source Background: Site and Primary Energy Trends in Energy Consumption and Energy Sources Part...

  10. Neutral particle beam intensity controller

    DOE Patents [OSTI]

    Dagenhart, William K. (Oak Ridge, TN)

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  11. Save Energy Now South Carolina | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    South Carolina Save Energy Now South Carolina Map of Southeastern U.S. with South Carolina highlighted South Carolina is home to a diverse manufacturing base with more than 3,500 industries. The manufacturing sector in South Carolina accounts for approximately 40% of the energy consumed in the state. The South Carolina Manufacturing Extension Program (SCMEP) and South Carolina Energy Office (SCEO) have partnered to help the state's industrial sector reduce its energy intensity by 2.5 percent

  12. Best Management Practice #13: Other Water-Intensive Processes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 13: Other Water-Intensive Processes Best Management Practice #13: Other Water-Intensive Processes Many water-intensive processes beyond the Federal Energy Management Program's best management practices (BMPs) for water efficiency are in place at federal facilities, including laundry equipment, vehicle wash systems, evaporative coolers, and water softening systems. When assessing facility water use, it is important to identify and analyze all water-intensive processes for potential

  13. Rob Ivester | Department of Energy

    Energy Savers [EERE]

    Rob Ivester About Us Rob Ivester - Deputy Director, Advanced Manufacturing Office Photo of Rob Ivester Dr. Robert W. Ivester currently serves as the Deputy Director of the Advanced Manufacturing Office (AMO) in the Office of Energy Efficiency and Renewable Energy. AMO is focused on creating a fertile innovation environment for advanced manufacturing, enabling vigorous domestic development of new energy-efficient manufacturing processes and materials technologies to reduce the energy intensity

  14. Role of an Energy Manager

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Role of an Energy Manager" Richard Miller Corporate Energy Manager Mannington Mills Presented at the U.S. Department of Energy Industrial Technologies Program July 1, 2010 Webcast Outline  Energy benchmarking  Goal-setting  Monitoring and verification of energy flows  Training and communications  Carbon footprint reduction initiatives  Scouting for new technologies and best practices Energy Benchmarking  Track energy consumption - Reduce energy intensity by 25% in 10

  15. Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk

    SciTech Connect (OSTI)

    Buscheck, T A; Chen, M; Sun, Y; Hao, Y; Elliot, T R

    2012-02-02

    We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine, which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.

  16. Creating Jobs through Energy Efficiency Using Wisconsin's Successful Focus on Energy Program

    SciTech Connect (OSTI)

    Akhtar, Masood; Corrigan, Edward; Reitter, Thomas

    2012-03-30

    The purpose of this project was to provide administrative and technical support for the completion of energy efficiency projects that reduce energy intensity and create or save Wisconsin industrial jobs. All projects have been completed. Details in the attached reports include project management, job development, and energy savings for each project.

  17. Los Angeles Recognized for Leadership in Energy Efficiency | Department of

    Office of Environmental Management (EM)

    Energy Los Angeles Recognized for Leadership in Energy Efficiency Los Angeles Recognized for Leadership in Energy Efficiency February 5, 2014 - 12:00am Addthis The Energy Department on January 29 recognized the City of Los Angeles, California, for its leadership in the Energy Department's Better Buildings Challenge €helping the city save on energy costs and cut greenhouse gas emissions. Through the Better Buildings Challenge, Los Angeles has pledged to reduce the energy intensity for 30

  18. Isothermal Melting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Isothermal Melting Isothermal Melting New Energy-Efficient Melting Process Saves Energy and Reduces Production Losses Aluminum melting is an energy intensive process that exhibits a 2% to 3% loss rate due to the generally open heating method for melting. An immersion heating process, Isothermal Melting (ITM), has been developed by Apogee Technology, Inc., with support from AMO. The system uses immersion heaters in a closed loop multiple bay arrangement. Each bay contributes to an efficiency

  19. Beam intensity upgrade at Fermilab

    SciTech Connect (OSTI)

    Marchionni, A.; /Fermilab

    2006-07-01

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  20. Intensity Frontier| U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intensity Frontier High Energy Physics (HEP) HEP Home About Research Science Drivers of Particle Physics Energy Frontier Intensity Frontier Experiments Cosmic Frontier Theoretical and Computational Physics Advanced Technology R&D Accelerator R&D Stewardship Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW

  1. Methodology of Energy Intensities - Appendix A

    U.S. Energy Information Administration (EIA) Indexed Site

    nonresponse. The first component is the reciprocal of the establishment's overall probability of selection into the ASM and subsequent selection for the MECS. The second...

  2. Changes in Energy Intensity 1985-1991

    U.S. Energy Information Administration (EIA) Indexed Site

    586-7237 Fax: (202) 586-0018 URL: http:www.eia.govemeumecsmecs91intensitymecs1b.html File Last Modified: May 25, 1996 If you are having any technical problems with this...

  3. Energy Conservation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Goal 1: Energy Conservation LANL strives to reduce greenhouse gas emissions to meet and surpass Department of Energy goals. The Lab's goal is to reduce emissions from energy...

  4. Massachusetts Save Energy Now-State, Local, and Regional Delivery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technical Assistance » State and Utility Engagement Activities » Massachusetts Save Energy Now-State, Local, and Regional Delivery Massachusetts Save Energy Now-State, Local, and Regional Delivery Massachusetts The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) has developed multiple resources and a best practices suite of tools to help industrial manufacturers reduce their energy intensity. AMO

  5. Intensity Frontier Instrumentation

    SciTech Connect (OSTI)

    Kettell S.; Rameika, R.; Tshirhart, B.

    2013-09-24

    The fundamental origin of flavor in the Standard Model (SM) remains a mystery. Despite the roughly eighty years since Rabi asked Who ordered that? upon learning of the discovery of the muon, we have not understood the reason that there are three generations or, more recently, why the quark and neutrino mixing matrices and masses are so different. The solution to the flavor problem would give profound insights into physics beyond the Standard Model (BSM) and tell us about the couplings and the mass scale at which the next level of insight can be found. The SM fails to explain all observed phenomena: new interactions and yet unseen particles must exist. They may manifest themselves by causing SM reactions to differ from often very precise predictions. The Intensity Frontier (1) explores these fundamental questions by searching for new physics in extremely rare processes or those forbidden in the SM. This often requires massive and/or extremely finely tuned detectors.

  6. H. R. 1001: A Bill to authorize appropriations for the Reduced Enrichment Research and Test Reactors Program of the Department of Energy. Introduced in the House of Representatives, One Hundred Third Congress, First Session, February 18, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This Act may be cited as the [open quotes]Bomb-Grade Uranium Export Substitution Act of 1993[close quotes]. The purpose of this Bill is to authorize appropriations for the Reduced Enrichment Research and Test Reactors Program of the Department of Energy. This document presents Congressional findings and a statement of authorization of appropriations.

  7. 2012 Better Buildings Federal Award Winners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012 Better Buildings Federal Award Winners 2012 Better Buildings Federal Award Winners The 2012 Better Buildings Federal Award recognized the federal government's highest-performing buildings through a competition to reduce annual energy use intensity (Btu per square foot of facility space) on a year-over-year basis. The federal building that achieved the greatest percentage energy intensity savings for 2012 was the winner. Thank you to all the participants of the 2012 Better Buildings Federal

  8. 2013 Better Buildings Federal Award Winners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 Better Buildings Federal Award Winners 2013 Better Buildings Federal Award Winners The 2013 Better Buildings Federal Award recognized the federal government's highest-performing buildings through a competition to reduce annual energy use intensity (Btu per square foot of facility space) on a year-over-year basis. The federal building that achieved the greatest percentage energy intensity savings for 2013 won. Thank you to all the participants of the 2013 Better Buildings Federal Award

  9. Comment On: DOE-HQ-2011-0014-0001 Reducing Regulatory Burden | Department

    Energy Savers [EERE]

    of Energy Comments on reducing regulatory burden

  10. Audit Report: OAS-L-11-02 | Department of Energy

    Energy Savers [EERE]

    1-02 Audit Report: OAS-L-11-02 February 9, 2011 The Department of Energy's Energy Conservation Efforts The Energy Independence and Security Act of 2007 (EISA) requires Federal agencies to apply energy efficiency measures to Federal buildings so that by Fiscal Year (FY) 2015, each agency's energy intensity is reduced by 30 percent from the baseline established in FY 2003. Energy intensity is calculated as the energy consumption in British Thermal Units (BTUs) per gross square foot of the Federal

  11. Eight Projects Selected for NERSC's Data Intensive Computing Pilot Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eight Projects Selected for NERSC's Data Intensive Computing Pilot Program Eight Projects Selected for NERSC's Data Intensive Computing Pilot Program April 30, 2012 by Francesca Verdier Eight projects have been selected to participate in NERSC's Data Intensive Computing Pilot Program. They will help us investigate new data methods and understand their usefulness to scientists using NERSC resources. The selected projects are: High Throughput Computational Screening of Energy Materials, with PI

  12. Energy 101: Energy Efficient Data Centers

    SciTech Connect (OSTI)

    2011-01-01

    Data centers provide mission-critical computing functions vital to the daily operation of top U.S. economic, scientific, and technological organizations. These data centers consume large amounts of energy to run and maintain their computer systems, servers, and associated high-performance componentsup to 3% of all U.S. electricity powers data centers. And as more information comes online, data centers will consume even more energy. Data centers can become more energy efficient by incorporating features like power-saving "stand-by" modes, energy monitoring software, and efficient cooling systems instead of energy-intensive air conditioners. These and other efficiency improvements to data centers can produce significant energy savings, reduce the load on the electric grid, and help protect the nation by increasing the reliability of critical computer operations.

  13. Energy 101: Energy Efficient Data Centers

    ScienceCinema (OSTI)

    None

    2013-05-29

    Data centers provide mission-critical computing functions vital to the daily operation of top U.S. economic, scientific, and technological organizations. These data centers consume large amounts of energy to run and maintain their computer systems, servers, and associated high-performance components?up to 3% of all U.S. electricity powers data centers. And as more information comes online, data centers will consume even more energy. Data centers can become more energy efficient by incorporating features like power-saving "stand-by" modes, energy monitoring software, and efficient cooling systems instead of energy-intensive air conditioners. These and other efficiency improvements to data centers can produce significant energy savings, reduce the load on the electric grid, and help protect the nation by increasing the reliability of critical computer operations.

  14. Mission and Goals | Department of Energy

    Office of Environmental Management (EM)

    Key Activities » Mission and Goals Mission and Goals Mission Develop and demonstrate new, energy-efficient processing and materials technologies at a scale adequate to prove their value to manufacturers and spur investment. Develop broadly applicable manufacturing processes that reduce energy intensity and improve production. Develop and demonstrate pervasive materials technologies, enabling improved products that use less energy throughout their lifecycles. Conduct technical assistance

  15. Wind energy | Open Energy Information

    Open Energy Info (EERE)

    help industry reduce the cost of energy so that wind can compete with traditional energy sources, providing a clean, renewable alternative for our nation's energy needs. Worldwide...

  16. Supporting industries energy and environmental profile

    SciTech Connect (OSTI)

    None, None

    2005-09-21

    As part of its Industries of the Future strategy, the Industrial Technologies Program within the U.S. Department of Energys (DOE) Office of Energy Efficiency and Renewable Energy works with energy-intensive industries to improve efficiency, reduce waste, and increase productivity. These seven Industries of the Future (IOFs) aluminum, chemicals, forest products, glass, metal casting, mining, and steel rely on several other so-called supporting industries to supply materials and processes necessary to the products that the IOFs create. The supporting industries, in many cases, also provide great opportunities for realizing energy efficiency gains in IOF processes.

  17. Energy Technology Solutions | Department of Energy

    Office of Environmental Management (EM)

    Technology Solutions Energy Technology Solutions Public-private partnerships transforming industry and list of commercialized technologies, knowledge-based results, and promising technologies PDF icon itp_successes.pdf More Documents & Publications Energy Technology Solutions: Public-Private Partnerships Transforming Industry, November 2010 ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes

  18. Fermilab | Science at Fermilab | Experiments & Projects | Intensity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontier | MINERvA In this Section: Energy Frontier Intensity Frontier Experiments at the Intensity Frontier ArgoNeuT MicroBooNE MINERvA MINOS NOvA LBNF/DUNE Cosmic Frontier Proposed Projects and Experiments MINERvA MINERvA Intensity Frontier MINERvA MINERvA is a neutrino-scattering experiment that uses the NuMI beamline at Fermilab to search for low-energy neutrino interactions. It is designed to study neutrino-nucleus interactions with unprecedented detail. The number of neutrinos that

  19. Annual Energy Outlook 2015 - Energy Information Administration

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    by primary fuel Energy intensity Energy production, imports, and exports Electricity ... Analysis of Heat Rate Improvement Potential at Coal-Fired Power Plants Wind and Solar ...

  20. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  1. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  2. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  3. Reduce Radiation Losses from Heating Equipment

    Broader source: Energy.gov [DOE]

    This tip sheet describes how to save process heating energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

  4. Industries & Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Industries & Technologies Industries & Technologies The Advanced Manufacturing Office (AMO) emphasizes innovative technologies to increase manufacturing agility and open new markets. AMO also maintains a range of projects, analyses, protocols, and strategies to reduce industrial energy intensity and carbon emissions in specific industries and technology areas: Industries Aluminum Chemicals Forest Products Glass Metal Casting Mining Other Industries Petroleum

  5. Electronic structure of graphene oxide and reduced graphene oxide monolayers

    SciTech Connect (OSTI)

    Sutar, D. S.; Singh, Gulbagh; Divakar Botcha, V.

    2012-09-03

    Graphene oxide (GO) monolayers obtained by Langmuir Blodgett route and suitably treated to obtain reduced graphene oxide (RGO) monolayers were studied by photoelectron spectroscopy. Upon reduction of GO to form RGO C1s x-ray photoelectron spectra showed increase in graphitic carbon content, while ultraviolet photoelectron spectra showed increase in intensity corresponding to C2p-{pi} electrons ({approx}3.5 eV). X-ray excited Auger transitions C(KVV) and plasmon energy loss of C1s photoelectrons have been analyzed to elucidate the valence band structure. The effective number of ({pi}+{sigma}) electrons as obtained from energy loss spectra was found to increase by {approx}28% on reduction of GO.

  6. CO2 Capture and Regeneration at Low Temperatures: Novel Non-Aqueous CO2 Solvents and Capture Process with Substantially Reduced Energy Penalties

    SciTech Connect (OSTI)

    None

    2010-07-01

    IMPACCT Project: RTI is developing a solvent and process that could significantly reduce the temperature associated with regenerating solvent and CO2 captured from the exhaust gas of coal-fired power plants. Traditional CO2 removal processes using water-based solvents require significant amount of steam from power plants in order to regenerate the solvent so it can be reused after each reaction. RTIs solvents can be better at absorbing CO2 than many water-based solvents, and are regenerated at lower temperatures using less steam. Thus, industrial heat that is normally too cool to re-use can be deployed for regeneration, rather than using high-value steam. This saves the power plant money, which results in increased cost savings for consumers.

  7. substantially reduced production costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    production costs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  8. substantially reduced reserve margins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reserve margins - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  9. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national energy security by developing energy sources with limited impacts on environment improving efficiency and reliability of nation's energy infrastructure Research...

  10. The High Intensity Horizon at Fermilab

    SciTech Connect (OSTI)

    Tschirhart, R.S.; /Fermilab

    2012-05-01

    Fermilab's high intensity horizon is 'Project-X' which is a US led initiative with strong international participation that aims to realize a next generation proton source that will dramatically extend the reach of Intensity Frontier research. The Project-X research program includes world leading sensitivity in long-baseline and short-baseline neutrino experiments, a rich program of ultra-rare muon and kaon decays, opportunities for next-generation electric dipole moment experiments and other nuclear/particle physics probes, and a platform to investigate technologies for next generation energy applications. A wide range of R&D activities has supported mission critical accelerator subsystems, such as high-gradient superconducting RF accelerating structures, efficient RF power systems, cryo-modules and cryogenic refrigeration plants, advanced beam diagnostics and instrumentation, high-power targetry, as well as the related infrastructure and civil construction preparing for a construction start of a staged program as early as 2017.

  11. EM Exceeds DOE Sustainability Goals and Reduces its Carbon Footprint

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM continues to excel in its support of DOE’s aggressive initiative to cut greenhouse gas (GHG) emissions and energy intensity, which is a measure of building energy use per unit area.

  12. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  13. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  14. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  15. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  16. ENERGY

    Office of Environmental Management (EM)

    U.S. Department of ENERGY Department of Energy Quadrennial Technology Review-2015 Framing Document http://energy.gov/qtr 2015-01-13 Page 2 The United States faces serious energy-linked challenges as well as substantial energy opportunities. Disruptions, both natural and man-made, threaten our aging energy infrastructure; global patterns of energy use are changing our climate; and our nation's dependence on foreign sources of energy comes at a significant cost to our economy. We need clean,

  17. International Energy Outlook 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 1, 2015 | Palo Alto, CA by Howard Gruenspecht, Deputy Administrator Improvements in energy intensity largely offset impact of growth in GDP leading to slow growth in energy...

  18. Better Plants Program Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Plants Program Partners Better Plants Program Partners Regional distribution of Better Plants partner facilities. Regional distribution of Better Plants partner facilities. Better Plants Logo.jpg DOE recognizes the following companies for their commitment to reducing the energy intensity of their U.S. manufacturing operations by 25% or more within 10 years. These Better Plants Program Partners set ambitious goals, establish energy management plans, and report progress annually to DOE.

  19. COLLIMATION OPTIMIZATION IN HIGH INTENSITY RINGS.

    SciTech Connect (OSTI)

    CATALAN-LASHERAS,N.

    2001-06-18

    In high intensity proton rings, collimation is needed in order to maintain reasonable levels of residual activation and allow hands-on maintenance. Small acceptance to emittance ratio and restrained longitudinal space become important restrictions when dealing with low energy rings. The constraints and specifications when designing a collimation system for this type of machine will be reviewed. The SNS accumulator ring will serve as an examples long which we will illustrate the optimization path. Experimental studies of collimation with 1.3 GeV proton beams are currently under way in the U-70 machine in Protvino. The first results will be presented.

  20. Table 8. Carbon intensity of the economy by State (2000-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    Carbon intensity of the economy by State (2000-2011)" "metric tons energy-related carbon dioxide per million dollars of GDP" ,,,"Change" ,,,"2000 to 2011"...

  1. Building America Case Study: Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing PROJECT INFORMATION Project Name: Reduced Flow Room Air Mixing Risks Location: Various U.S. areas IBACOS, ibacos.com Application: Retrofit Component: Heating and cooling equipment Year Tested: 2013-2014 Climate Zone: All PERFORMANCE DATA Modeled Load Reduction (Btu/h) Heating Load: Pre-Retrofit: 80,000 Btu/h Post-Retrofit: 25,000 Btu/h Cooling Load: Pre-Retrofit: 30,000 Btu/h Post-Retrofit: 12,000 Btu/h Modeled Airflow Reduction

  2. Federal Agencies Combine Efforts to Protect Environment and Reduce Home

    Energy Savers [EERE]

    Energy Bills | Department of Energy Combine Efforts to Protect Environment and Reduce Home Energy Bills Federal Agencies Combine Efforts to Protect Environment and Reduce Home Energy Bills July 11, 2005 - 2:07pm Addthis Department of Housing and Urban Development; Department of Energy; Environmental Protection Agency WASHINGTON, DC- The Bush administration today announced a major new partnership aimed at reducing household energy costs by 10 percent over the next decade. The Partnership for

  3. Engineering Strength, Porosity, and Emission Intensity of Nanostructured

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CdSe Networks by Altering the Building-Block Shape | Energy Frontier Research Centers Engineering Strength, Porosity, and Emission Intensity of Nanostructured CdSe Networks by Altering the Building-Block Shape Home Author: H. Yu, R. Bellair, R. M. Kannan, S. L. Brock Year: 2008 Abstract: The effect of primary particle shape on the porosity, mechanical strength, and luminescence intensity of metal chalcogenide aerogels was probed by comparison of CdSe aerogels prepared from spherical and

  4. Buildings and Energy in the 1980s

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Expenditures Consumption and Energy Intensities for Major Energy Sources Throughout the 1980's, energy consumption in residential buildings was greater than...

  5. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy /newsroom/_assets/images/energy-icon.png Energy Research into alternative forms of energy, and improving and securing the power grid, is a major national security imperative. Health Space Computing Energy Earth Materials Science Technology The Lab All The Grid Modernization Initiative represents a comprehensive DOE effort to help shape the future of our nation's grid and solve the challenges of integrating conventional and renewable sources with energy storage and smart buildings. Los

  6. NWTC Collaborative Increases Gearbox Reliability and Helps Reduce...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaborative Increases Gearbox Reliability and Helps Reduce Cost of Wind Energy A collaborative at the National Renewable Energy Laboratory's (NREL's) National Wind Technology...

  7. THE CENTER FOR DATA INTENSIVE COMPUTING

    SciTech Connect (OSTI)

    GLIMM,J.

    2002-11-01

    CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook.

  8. THE CENTER FOR DATA INTENSIVE COMPUTING

    SciTech Connect (OSTI)

    GLIMM,J.

    2001-11-01

    CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook.

  9. THE CENTER FOR DATA INTENSIVE COMPUTING

    SciTech Connect (OSTI)

    GLIMM,J.

    2003-11-01

    CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook.

  10. Energy Conservation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    own home energy audits to construct a plan to reduce their energy usage. Curriculum Language Arts, Mathematics, Economics Plan Time 60+ minutes Materials Handouts and other...

  11. High intensity proton operation at the Brookhaven AGS accelerator complex

    SciTech Connect (OSTI)

    Ahrens, L.A.; Blaskiewicz, M.; Bleser, E.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Onillon, E.; Reece, R.K.; Roser, T.; Soukas, A.

    1994-08-01

    With the completion of the AGS rf upgrade, and the implementation of a transition {open_quotes}jump{close_quotes}, all of accelerator systems were in place in 1994 to allow acceleration of the proton intensity available from the AGS Booster injector to AGS extraction energy and delivery to the high energy users. Beam commissioning results with these new systems are presented. Progress in identifying and overcoming other obstacles to higher intensity are given. These include a careful exploration of the stopband strengths present on the AGS injection magnetic porch, and implementation of the AGS single bunch transverse dampers throughout the acceleration cycle.

  12. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect (OSTI)

    Grote, David P.; Friedman, Alex; Vay, Jean-Luc; Haber, Irving

    2005-03-15

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse 'slice' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{sub s}ummary.html.

  13. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect (OSTI)

    Grote, D P; Friedman, A; Vay, J L; Haber, I

    2004-12-09

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{_}summary.html.

  14. Iowa Community College Campuses Reduce Energy Use

    Broader source: Energy.gov [DOE]

    Des Moines Area Community College (DMACC) serves more than 65,000 Iowans on six campuses, making it the largest two-year college in the state of Iowa.

  15. Home Energy Management Systems and Reduced Consumption

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "What emerging innovations are the key to future homes?"

  16. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  17. Intensive Observation Period Projects Scheduled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Intensive Observation Period Projects Scheduled Several IOP projects have been scheduled for the SGP CART site this spring. These projects either have already begun or will begin shortly. Radiosondes The RS-90 Transition IOP is currently under way. The RS-90 model radiosonde is gradually replacing the older RS-80 model. Radiosondes are instrument packages attached to and launched by weather balloons. The instruments measure atmospheric pressure, temperature, and relative humidity as the

  18. Reducing Power Factor Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low power factor is expensive and inefficient. Many utility companies charge you an additional fee if your power factor is less than 0.95. Low power factor also reduces your electrical system's distribu- tion capacity by increasing current flow and causing voltage drops. This fact sheet describes power factor and explains how you can improve your power factor to reduce electric bills and enhance your electrical system's capacity. REDUCING POWER FACTOR COST To understand power factor, visualize a

  19. Reduced waste generation, FY 1986

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    The United States Department of Energy is committed to the principles of minimizing the quantity and transuranic content of its transuranium (TRU) waste being generated at its nuclear facilities. The reasons are to reduce costs associated with waste handling and disposal, and also to reduce radiation exposure to workers and risk for radionuclide release to man and the environment. The purpose of this document is to provide the USDOE with a plan of research and development tasks for waste minimization, and is prepared so as to provide the maximum impact on volumes based on cost/benefit factors. The document is to be updated annually or as needed to reflect current and future tasks. The Reduced Waste Generation (RWG) tasks encompass a wide range of activities with the principal goals of (1) preventing the generation of waste and (2) converting TRU waste into low-level wastes (LLW) by sorting or decontamination. Concepts for reducing the volume such as in incineration and compaction are considered within the discipline of Reduced Waste Generation, but are considered as somewhat developed technology with only a need for implementation. 33 refs.

  20. Energy Analysis by Sector | Department of Energy

    Office of Environmental Management (EM)

    Information Resources » Energy Analysis by Sector Energy Analysis by Sector Manufacturers often rely on energy-intensive technologies and processes. AMO conducts a range of analyses to explore energy use and trends by sector. Manufacturing Energy and Carbon Footprints Static Manufacturing Energy Sankey Diagrams Dynamic Manufacturing Energy Sankey Tool Energy & Environmental Profiles Bandwidth Studies Large Energy User Manufacturing Facilities by State MANUFACTURING ENERGY and carbon

  1. International Energy and Climate Initiative - Energy+ | Open...

    Open Energy Info (EERE)

    reduce greenhouse gas emissions in developing Partner countries by scaling up access to renewable energy sources and increasing energy efficiency. Energy+ will use public sources...

  2. Reducible oxide based catalysts

    DOE Patents [OSTI]

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  3. Dynamic characteristic of intense short microwave propagation in an atmosphere

    SciTech Connect (OSTI)

    Yee, J.H.; Alvarez, R.A.; Mayhall, D.J.; Madsen, N.K.; Cabayan, H.S.

    1983-07-01

    The dynamic behavior of an intense microwave pulse which propagates through the atmosphere will be presented. Our theoretical results are obtained by solving Maxwell's equations, together with the electron fluid equations. Our calculations show that although large portions of the initial energy are absorbed by the electrons that are created through the avalanche process, a significant amount of energy is still able to reach the earth's surface. The amount of energy that reaches the earth's surface as a function of initial energy and wave shape after having propagated through 100 km in the atmosphere are investigated. Results for the air breakdown threshold intensity as a function of the pressure for different pulse widths and different frequencies will also be presented. In addition, we will present a comparison between the theoretical and the experimental results for the pulse shape of a short microwave pulse after it has traveled through a rectangular wave guide which contains a section of air. 23 references, 9 figures.

  4. Position, rotation, and intensity invariant recognizing method

    DOE Patents [OSTI]

    Ochoa, Ellen (Pleasanton, CA); Schils, George F. (San Ramon, CA); Sweeney, Donald W. (Alamo, CA)

    1989-01-01

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.

  5. High Intensity Polarized Electron Gun

    SciTech Connect (OSTI)

    Redwine, Robert P.

    2012-07-31

    The goal of the project was to investigate the possibility of building a very high intensity polarized electron gun for the Electron-Ion Collider. This development is crucial for the eRHIC project. The gun implements a large area cathode, ring-shaped laser beam and active cathode cooling. A polarized electron gun chamber with a large area cathode and active cathode cooling has been built and tested. A preparation chamber for cathode activation has been built and initial tests have been performed. Major parts for a load-lock chamber, where cathodes are loaded into the vacuum system, have been manufactured.

  6. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman; Vladimir Romanovsky; William Cable

    Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

  7. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman; Vladimir Romanovsky; William Cable

    2014-11-06

    Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

  8. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption (million gallons) Total Floorspace of Buildings Using...

  9. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North...

  10. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Using Electricity (million square feet) Electricity Energy Intensity (kWhsquare foot) New England Middle Atlantic East North Central New England Middle Atlantic East North...

  11. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feetsquare foot) New England Middle Atlantic East North Central New England Middle Atlantic East North...

  12. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

  13. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  14. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  15. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  16. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  17. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

  18. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

  19. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

  20. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  1. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  2. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  3. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  4. SEADS 3.0. Sectoral Energy/Employment Analysis and Data System Methodology, Description, and Users Guide. Two Policy Scenarios Examined: An Increase in Government R&D Implementation of Voluntary Intensity. Reductions in Industry

    SciTech Connect (OSTI)

    Roop, J. M.; Anderson, D. M.; Elliott, D. B.; Schultz, R. W.

    2007-12-01

    This report describes the tool and the underlying methodology for SEADS 3.0, the Sectoral Energy/Employment Analysis and Data System, which is a software package designed for the analysis of policy that could be described by modifying final demands of consumer, businesses, or governments. The report also provides a users manual, examples for two analyses and the results for them.

  5. Energy

    Office of Legacy Management (LM)

    ..) ".. _,; ,' . ' , ,; Depar?.me.nt ,of.' Energy Washington; DC 20585 : . ' , - $$ o"\ ' ~' ,' DEC ?;$ ;y4,,, ~ ' .~ The Honorable John Kalwitz , 200 E. Wells Street Milwaukee, W~isconsin 53202, . . i :. Dear,Mayor 'Kalwitz: " . " Secretary of Energy Hazel' O'Leary has announceha new,approach 'to,openness in " the Department of Ene~rgy (DOE) and its communications with'the public. In -. support of~this initiative, we areipleased to forward the enclosed information

  6. Reduced shear power spectrum

    SciTech Connect (OSTI)

    Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Northwestern U.; Shapiro, Charles; /Chicago U. /KICP, Chicago; White, Martin J.; /UC, Berkeley, Astron.

    2005-08-01

    Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.

  7. Short-term Human Vision Protection from Intense Light Sources | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Short-term Human Vision Protection from Intense Light Sources The primary objective of this invention is to minimize the sensitivity of the human eye to intense visible light by blocking or reducing the incident fluence of light before it can cause the eye to become insensitive to the light, or temporarily blinded. Typical applications may be pilots subjected to light from laser pointers, or workers in occupations that may expose them to temporary intense light sources.

  8. Improvement of the Lost Foam Casting Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement of the Lost Foam Casting Process Improvement of the Lost Foam Casting Process Improved Process Reduces Energy Use, Waste and Emissions, While Lowering Product Defects and Costs Casting is an energy-intensive manufacturing process within the metal casting and aluminum industries, requiring natural gas to melt aluminum and electricity to run equipment. The higher-than-acceptable faults and scrap rates in the lost foam casting process for the complex L61 engine previously resulted from

  9. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas intensity by 18% over the 2002 to 2012 time frame. For the purposes of the initiative, greenhouse gas intensity is defined as the ratio of total U.S. greenhouse gas emissions to economic output.

  10. The Effect of Driving Intensity and Incomplete Charging on the Fuel Economy of a Hymotion Prius PHEV

    SciTech Connect (OSTI)

    Richard Barney Carlson

    2009-10-01

    On-road testing was conducted on a Hymotion Prius plug-in hybrid electric vehicle (PHEV) at the Electric Transportation Engineering Corporation in Phoenix, Arizona. The tests were comprised of on-road urban and highway driving during charge-depleting and charge-sustaining operation. Determining real-world effectiveness of PHEVs at reducing petroleum consumption in real world driving was the main focus of the study. Throughout testing, several factors that affect fuel consumption of PHEVs were identified. This report discusses two of these factors: driving intensity (i.e., driving aggressiveness) and battery charging completeness. These two factors are unrelated, yet both significantly impact the vehicles fuel economy. Driving intensity was shown to decrease fuel economy by up to half. Charging completeness, which was affected by human factors and ambient temperature conditions, also showed to have great impact on fuel economy for the Hymotion Prius. These tests were performed for the U.S. Department of Energys Advanced Vehicle Testing Activity. The Advanced Vehicle Testing Activity, part of the U.S. Department of Energys Vehicle Technology Program, is conducted by the Idaho National Laboratory and the Electric Transportation Engineering Corporation.

  11. Measurements of radiation doses induced by high intensity laser between

    Office of Scientific and Technical Information (OSTI)

    10^16 and 10^21 w/cm^2 onto solid targets at LCLS MEC instrument (Conference) | SciTech Connect Conference: Measurements of radiation doses induced by high intensity laser between 10^16 and 10^21 w/cm^2 onto solid targets at LCLS MEC instrument Citation Details In-Document Search Title: Measurements of radiation doses induced by high intensity laser between 10^16 and 10^21 w/cm^2 onto solid targets at LCLS MEC instrument × You are accessing a document from the Department of Energy's (DOE)

  12. ARM - AIP1OGREN: AOS Intensive Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govDataAIP1OGREN: AOS Intensive Properties AIP1OGREN: AOS Intensive Properties The aip1ogren value-added product produces aerosol intensive properties from Aerosol Observing Station data. Information Last Updated: October 2008 General Description The aip1ogren value-added product (VAP) computes several aerosol intensive properties. It requires as input calibrated, corrected, aerosol extensive properties (scattering and absorption coefficients, primarily) from the Aerosol Observing Station (AOS).

  13. Energy

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    M onthly Energy Re< view Ila A a m 0 II 8 IIIW *g U In this issue: New data on nuclear electricity in Eastern Europe (Table 10.4) 9'Ij a - Ordering Information This publication...

  14. Continuous Digester Control Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuous Digester Control Technology Continuous Digester Control Technology Pulp Process Model Identifies Improvements that Save Energy and Improve Productivity The pulp digester is known as the bottleneck unit in the pulp mill flow sheet because it can require 5% to 50% of typical on-line operation time, making this component of the pulping process very capital intensive. Improving digester performance can significantly reduce production losses, operating costs, and negative environmental

  15. High Performance Energy Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Energy Management Reduce energy use and meet your business objectives By applying continuous improvement practices similar to Lean and Six Sigma, the BPA Energy Smart...

  16. Energy Service Companies

    Broader source: Energy.gov [DOE]

    Energy service companies (ESCOs) develop, design, build, and fund projects that save energy, reduce energy costs, decrease operations and maintenance costs at their customers' facilities.

  17. Energy Conservation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Goal 1: Energy Conservation LANL strives to reduce greenhouse gas emissions to meet and surpass Department of Energy goals. The Lab's goal is to reduce emissions from energy use in our facilities and driving vehicles in our fleet by 28 percent. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science Serving Sustainability» ENVIRONMENTAL

  18. Naval electrochemical corrosion reducer

    DOE Patents [OSTI]

    Clark, Howard L. (Ballston Lake, NY)

    1991-10-01

    A corrosion reducer for use with ships having a hull, a propeller mounted a propeller shaft and extending through the hull, bearings supporting the shaft, at least one thrust bearing and one seal. The improvement includes a current collector and a current reduction assembly for reducing the voltage between the hull and shaft in order to reduce corrosion due to electrolytic action. The current reduction assembly includes an electrical contact, the current collector, and the hull. The current reduction assembly further includes a device for sensing and measuring the voltage between the hull and the shaft and a device for applying a reverse voltage between the hull and the shaft so that the resulting voltage differential is from 0 to 0.05 volts. The current reduction assembly further includes a differential amplifier having a voltage differential between the hull and the shaft. The current reduction assembly further includes an amplifier and a power output circuit receiving signals from the differential amplifier and being supplied by at least one current supply. The current selector includes a brush assembly in contact with a slip ring over the shaft so that its potential may be applied to the differential amplifier.

  19. Reduce Hot Water Use for Energy Savings | Department of Energy

    Office of Environmental Management (EM)

    with shut-off valves that allow you to stop the flow of water without affecting the temperature. When replacing an aerator, bring the one you're replacing to the store with you to...

  20. Reduce Hot Water Use for Energy Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Low-flow fixtures and showerheads can achieve water savings of 25%60%. | Photo courtesy of iStockphotoDaveBolton. Low-flow fixtures and showerheads can achieve water...

  1. NASA Net Zero Energy Buildings Roadmap

    SciTech Connect (OSTI)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  2. Energy policy and economic development in the Philippines, 1973-2000

    SciTech Connect (OSTI)

    Bensel, T.G.; Harriss, R.C.

    1995-12-31

    This paper reviews energy policy and energy-economy interactions in the Philippines since 1973 and presents projections of energy development and use to the year 2000. Dependent on imported oil for over 90 percent of its commercial energy requirements in 1973, the Philippines initiated one of the most aggressive energy development and conservation programs in the developing world. Energy and oil intensities of the economy were reduced, and domestic coal, hydroelectric, geothermal and biomass resources were developed to meet nearly half of commercial energy requirements by 1985. Low world oil prices and domestic political developments combined to reverse trends in the energy sector after 1985. Imported oil dependence grew again to 70 percent by 1992, and an electric power crisis became the focus of government energy policy. An innovative private power development program has helped reduce power shortages and is expected to account for the bulk of needed capacity expansion into the next century.

  3. Conserving Energy | Department of Energy

    Energy Savers [EERE]

    Energy Assurance » Emergency Preparedness » Community Guidelines » Conserving Energy Conserving Energy Conserving Energy During an energy emergency, customers can reduce stress on infrastructure by conserving energy. This will help you and your community recover more quickly. Officials can ask the public to conserve energy, including: Cutting back on driving, using public transportation, and telecommuting when possible; Refraining from using non-essential lights and appliances, especially

  4. NAESCO Comments on Reducing Regulatory Burden RFI Final | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy NAESCO Comments on Reducing Regulatory Burden RFI Final NAESCO Comments on Reducing Regulatory Burden RFI Final The National Association of Energy Service Companies (NAESCO) appreciates the opportunity to submit these comments in response to the Request for Information (RFI) entitled, "Reducing Regulatory Burden," published in the Federal Register on May 15, 2012. PDF icon NAESCO_Cmts_Reducing_Reg_Burden_RFI_Final.pdf More Documents & Publications FPCC Regulatory

  5. Cleantech: Innovative Lab Partnership Reduces Emissions from Coal

    Broader source: Energy.gov [DOE]

    Learn how the National Energy Technology Laboratory is working to reduce the emission of pollutants from existing coal-fired power plants.

  6. Resin Wafer Electrodeionization Technology Reduces the Cost of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Resin Wafer Electrodeionization Technology Reduces the Cost of Clean Energy, Chemicals, and...

  7. Ice Energy | Open Energy Information

    Open Energy Info (EERE)

    solutions that promote the efficient use of energy resources, reduce our dependency on fossil fuels, and enable the transition to a cleaner, smarter, more sustainable power...

  8. Optimum Energy | Open Energy Information

    Open Energy Info (EERE)

    Northwest Area Sector: Efficiency Product: Develops software and systems to reduce energy consumption in commercial buildings Website: www.optimumenergyhvac.com Coordinates:...

  9. Zigzag laser with reduced optical distortion

    DOE Patents [OSTI]

    Albrecht, Georg F. (Livermore, CA); Comaskey, Brian (Stockton, CA); Sutton, Steven B. (Manteca, CA)

    1994-01-01

    The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends.

  10. Zigzag laser with reduced optical distortion

    DOE Patents [OSTI]

    Albrecht, G.F.; Comaskey, B.; Sutton, S.B.

    1994-04-19

    The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends. 11 figures.

  11. Reducing Petroleum Despendence in California: Uncertainties About

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Diesel | Department of Energy Petroleum Despendence in California: Uncertainties About Light-Duty Diesel Reducing Petroleum Despendence in California: Uncertainties About Light-Duty Diesel 2002 DEER Conference Presentation: Center for Energy Efficiency and Renewable Technologies PDF icon 2002_deer_phillips.pdf More Documents & Publications Diesel Use in California Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market Dumping Dirty Diesels: The

  12. Pressure reducing regulator

    DOE Patents [OSTI]

    Whitehead, John C. (Davis, CA); Dilgard, Lemoyne W. (Willits, CA)

    1995-01-01

    A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes.

  13. Pressure reducing regulator

    DOE Patents [OSTI]

    Whitehead, J.C.; Dilgard, L.W.

    1995-10-10

    A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure is disclosed. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes. 10 figs.

  14. PNNL Energy Efficiency | Open Energy Information

    Open Energy Info (EERE)

    to the marketplace, and reducing America's dependence on imported oil. "With a long history of funding from DOE's Office of Energy Efficiency and Renewable Energy (EERE) and...

  15. Energy Incentive Programs, Mississippi | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other resources include the Business Energy Advisor, which provides calculators and tips on common ways to reduce energy. What load managementdemand response options are available ...

  16. Reducing Regulatory Burden; Retrospective Review Under E.O. 13563 |

    Energy Savers [EERE]

    Department of Energy Burden; Retrospective Review Under E.O. 13563 Reducing Regulatory Burden; Retrospective Review Under E.O. 13563 Request for information on reducing regulatory burden, E.O. 13563 PDF icon Reducing Regulatory Burden; Retrospective Review Under E.O. 13563 More Documents & Publications Notice of Availability of Preliminary Plan for Retrospective Analysis of Existing Rules Reducing Regulatory Burden Reducing Regulatory Burden

  17. S. 2166: A bill to reduce the Nation's dependence on imported oil, to provide for the energy security of the Nation, and for other purposes, introduced in the United States Senate, One Hundred Second Congress, Second Session, January 29, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This bill, also referred to as the National Energy Security Act of 1992, contains the following: Title I - Findings and purposes: Goals, least-cost energy strategy, and Director of climate protection: Title II - Definitions; Title III (none); Title IV - Fleets and alternative fuels: Alternative fuel fleets, Electric and electric-hybrid vehicle demonstration, infrastructure development, and conforming amendments, Alternative fuels, Mass transit and training; Title V - Renewable energy: CORECT and COEECT, Renewable energy initiatives, Hydropower; Title VI - Energy efficiency: Industrial, commercial, and residential, Federal energy management, Utilities, State, local, insular, and tribal energy assistance, LIHEAP options pilot program; Title VII (none); Title VIII - Advanced nuclear reactor commercialization; Title IX - Nuclear reactor licensing; Title X - Uranium: Uranium enrichment, Uranium; Title XI - Natural gas; Title XII - Outer continental shelf; Title XIII - Research, development, demonstration and commercialization activities; Title XIV - Coal, coal technology, and electricity; Title XV - Public Utility Holding Company Act reform; Title XVI - Strategic Petroleum Reserve.

  18. Document Library | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    water, stress, vibration, and an intense neutron field. Degradation of materials in this environment can lead to reduced performance, and in some cases, sudden failure. A recent...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    customers to reduce energy demand and consumption in order to reduce the utility bills of DME customers, reduce peak load, reduce... Eligibility: Commercial, Construction,...

  20. Reducing GHG emissions in the United States' transportation sector

    SciTech Connect (OSTI)

    Das, Sujit [ORNL; Andress, David A [ORNL; Nguyen, Tien [U.S. DOE

    2011-01-01

    Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions in GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.