Sample records for reduce energy demand

  1. Reducing Energy Demand in Buildings Through State Energy Codes...

    Energy Savers [EERE]

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building...

  2. Strategies for reducing energy demand in the materials sector

    E-Print Network [OSTI]

    Sahni, Sahil

    2013-01-01T23:59:59.000Z

    This research answers a key question - can the materials sector reduce its energy demand by 50% by 2050? Five primary materials of steel, cement, aluminum, paper, and plastic, contribute to 50% or more of the final energy ...

  3. Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful

    E-Print Network [OSTI]

    Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful emissions, and minimizes the cost of providing energy to the campus. As a result of energy conservation initiatives that have been implemented over the past 20 years, growth in the average demand per

  4. Reducing Energy Demand in Buildings Through State Energy Codes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumpingStudy

  5. Reducing Energy Demand in Buildings Through State Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof Energy Redefining9Codes

  6. Barriers to reducing energy demand in existing building stock -a perspective based on

    E-Print Network [OSTI]

    Carletta, Jean

    Barriers to reducing energy demand in existing building stock - a perspective based on observation another radiator." #12;Typical End User Training #12;Demand Side Problem #12;Workman Mis(?)conceptions "If, interviews, probes, home inspections intervention - management committees, "message of the month", magazine

  7. Converting 15-Minute Interval Electricity Load Data into Reduced Demand, Energy Reduction and Cash Flow

    E-Print Network [OSTI]

    Herrin, D. G.

    , store managers are intimidated. 5 So what are the solutions? • A data acquisition system. • Pro-active with alarming and demand-response. Is there staff to maintain and ensure a response? • Passive. Acquire the data and then evaluate and assess... is not required, this will prevent the requirement for additional costs of installing an OAT sensor at the building and potentially adding costs to the datalogger hardware or configuration. If possible, it is best to use and on-site OAT sensor. If a demand-response...

  8. CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy-2 Demand Forecast Disaggregation......................................................1-4 Statewide

  9. Energy-efficiency standards for homes have the potential to reduce energy consumption and peak electrical demand.

    E-Print Network [OSTI]

    The Issue Energy-efficiency standards for homes have the potential to reduce energy consumption HVAC system efficiency, including problems with airflows, refrigerant system components, and ductwork standards, but little data is available on the actu- al energy performance of new homes. The Solution

  10. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

  11. reduced demand for power by nearly 1,500 megawatts through investments in energy

    E-Print Network [OSTI]

    are in energy-efficient water heaters, lighting, windows and equipment for heating, ventilation and air and state water laws, as well as with recommendations in the biological opinions. The amendments describe

  12. Energy Demand Staff Scientist

    E-Print Network [OSTI]

    Eisen, Michael

    Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused on End-Use Energy Efficiency ~ 40 Current Projects in China Collaborations with ~50 Institutions in China Researcher #12;Talk OutlineTalk Outline · Overview · China's energy use and CO2 emission trends · Energy

  13. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Lekov, Alex

    2009-01-01T23:59:59.000Z

    in significant energy and demand savings for refrigeratedbe modified to reduce energy demand during demand responsein refrigerated warehouse energy demand if they are not

  14. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

  15. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

  16. Reduces electric energy consumption

    E-Print Network [OSTI]

    BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

  17. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Data for Automated Demand Response in Commercial Buildings,Demand Response Infrastructure for Commercial Buildings",demand response and energy efficiency functions into the design of buildings,

  18. Demand Control Utilizing Energy Management Systems - Report of Field Tests

    E-Print Network [OSTI]

    Russell, B. D.; Heller, R. P.; Perry, L. W.

    1984-01-01T23:59:59.000Z

    Energy Management systems and particularly demand controllers are becoming more popular as commercial and light industrial operations attempt to reduce their electrical usage and demand. Numerous techniques are used to control energy use and demand...

  19. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

  20. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01T23:59:59.000Z

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  1. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

  2. Real-Time Demand Side Energy Management

    E-Print Network [OSTI]

    Victor, A.; Brodkorb, M.

    2006-01-01T23:59:59.000Z

    Real-Time Demand Side Energy Management Annelize Victor Michael Brodkorb Sr. Business Consultant Business Development Manager Aspen Technology, Inc. Aspen Technology España, S.A. Houston, TX Barcelona, Spain ABSTRACT To remain... competitive, manufacturers must capture opportunities to increase bottom-line profitability. The goal of this paper is to present a new methodology for reducing energy costs – “Demand-Side Energy Management.” Learn how process manufacturers assess energy...

  3. Driving Demand | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    strategies, results achieved to date, and advice for other programs. Driving Demand for Home Energy Improvements. This guide, developed by the Lawrence Berkeley National...

  4. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

  5. Reducing Electricity Demand Charge for Data Centers with Partial Execution

    E-Print Network [OSTI]

    Li, Baochun

    . INTRODUCTION Data centers are the powerhouse behind many Internet services today. A modern data centerReducing Electricity Demand Charge for Data Centers with Partial Execution Hong Xu Department@eecg.toronto.edu ABSTRACT Data centers consume a large amount of energy and incur substantial electricity cost

  6. Turkey's energy demand and supply

    SciTech Connect (OSTI)

    Balat, M. [Sila Science, Trabzon (Turkey)

    2009-07-01T23:59:59.000Z

    The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

  7. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29T23:59:59.000Z

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  8. Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5... for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 5 What is Demand Response? ?The temporary reduction of electricity demanded from the grid by an end-user in response to capacity shortages, system reliability events, or high wholesale...

  9. Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application

    E-Print Network [OSTI]

    Meckler, G.

    1985-01-01T23:59:59.000Z

    energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility...

  10. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

  11. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    In terms of demand response capability, building operatorsautomated demand response and improve building energy andand demand response features directly into building design

  12. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

  13. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

  14. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product estimates. Margaret Sheridan provided the residential forecast. Mitch Tian prepared the peak demand

  15. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined provided estimates for demand response program impacts and contributed to the residential forecast. Mitch

  16. High-Performance with Solar Electric Reduced Peak Demand: Premier...

    Energy Savers [EERE]

    energy systems with high-performance homes and showing how they align with utility peak-demand reduction interests. In addition to substantial energy savings, solar electric home...

  17. Global energy demand to 2060

    SciTech Connect (OSTI)

    Starr, C. (Electric Power Research Institute, Palo Alto, CA (USA))

    1989-01-01T23:59:59.000Z

    The projection of global energy demand to the year 2060 is of particular interest because of its relevance to the current greenhouse concerns. The long-term growth of global energy demand in the time scale of climatic change has received relatively little attention in the public discussion of national policy alternatives. The sociological, political, and economic issues have rarely been mentioned in this context. This study emphasizes that the two major driving forces are global population growth and economic growth (gross national product per capita), as would be expected. The modest annual increases assumed in this study result in a year 2060 annual energy use of >4 times the total global current use (year 1986) if present trends continue, and >2 times with extreme efficiency improvements in energy use. Even assuming a zero per capita growth for energy and economics, the population increase by the year 2060 results in a 1.5 times increase in total annual energy use.

  18. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    DEMAND RESPONSE .7 Wholesale Marketuse at times of high wholesale market prices or when systemenergy expenditure. In wholesale markets, spot energy prices

  19. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Broader source: Energy.gov (indexed) [DOE]

    Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant...

  20. Demand Response | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005Department ofDOE AccidentWasteZone Modeling |Demand Response Demand

  1. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    and Demand Response A pilot program from NSTAR in Massachusetts,Massachusetts, aiming to test whether an intensive program of energy efficiency and demand response

  2. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 1 in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard. Margaret Sheridan contributed to the residential forecast. Mitch Tian prepared the peak demand

  3. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 2 Director #12; i ACKNOWLEDGEMENTS The demand forecast is the combined product prepared the peak demand forecast. Ravinderpal Vaid provided the projections of commercial

  4. Energy demand and population changes

    SciTech Connect (OSTI)

    Allen, E.L.; Edmonds, J.A.

    1980-12-01T23:59:59.000Z

    Since World War II, US energy demand has grown more rapidly than population, so that per capita consumption of energy was about 60% higher in 1978 than in 1947. Population growth and the expansion of per capita real incomes have led to a greater use of energy. The aging of the US population is expected to increase per capita energy consumption, despite the increase in the proportion of persons over 65, who consume less energy than employed persons. The sharp decline in the population under 18 has led to an expansion in the relative proportion of population in the prime-labor-force age groups. Employed persons are heavy users of energy. The growth of the work force and GNP is largely attributable to the growing participation of females. Another important consequence of female employment is the growth in ownership of personal automobiles. A third factor pushing up labor-force growth is the steady influx of illegal aliens.

  5. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy for demand response program impacts and contributed to the residential forecast. Mitch Tian prepared

  6. Modeling Energy Demand Aggregators for Residential Consumers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators are new actors in the energy scenario: they gather a group of energy consumers and implement a demand

  7. Transportation Energy: Supply, Demand and the Future

    E-Print Network [OSTI]

    Saldin, Dilano

    Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05 as a source of energy. Global supply and demand trends will have a profound impact on the ability to use our) Transportation energy demand in the U.S. has increased because of the greater use of less fuel efficient vehicles

  8. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    in peak demand. This definition of energy efficiency makesthe following definitions are used: Energy efficiency refersThis definition implicitly distinguishes energy efficiency

  9. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    produce the greatest energy and demand savings. Aeration andand C.Y. Chang (2005). "Energy Demand in Sludge Dewatering."be modified to reduce energy demand during demand response

  10. CALIFORNIA ENERGY CALIFORNIA ENERGY DEMAND 2010-2020

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2010-2020 ADOPTED FORECAST for this report: Kavalec, Chris and Tom Gorin, 2009. California Energy Demand 20102020, Adopted Forecast. California Energy Commission. CEC2002009012CMF #12; i Acknowledgments The demand forecast

  11. US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

    E-Print Network [OSTI]

    that energy intensity is not necessarily a good indicator of energy efficiency, whereas by controllingUS Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

  12. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work to the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

  13. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work and expertise of numerous the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

  14. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work Sheridan provided the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid

  15. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work provided estimates for demand response program impacts and contributed to the residential forecast. Mitch

  16. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    ED2, September. CEC (2005b) Energy demand forecast methodsCalifornia Baseline Energy Demands to 2050 for Advancedof a baseline scenario for energy demand in California for a

  17. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    description of six energy and demand management concepts.how quickly it can modify energy demand. This is not a newimprovements in both energy efficiency and demand response (

  18. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    Institute, “Curbing Global Energy Demand Growth: The Energyup Assessment of Energy Demand in India Transportationa profound effect on energy demand. Policy analysts wishing

  19. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity forecast is the combined product of the hard work and expertise of numerous staff members in the Demand prepared the peak demand forecast. Ravinderpal Vaid provided the projections of commercial floor space

  20. Demand-response (DR) programs, in which facilities reduce their electric loads in response to a utility signal, represent a

    E-Print Network [OSTI]

    The Issue Demand-response (DR) programs, in which facilities reduce their electric loads (Figure 1). The testing covered four Lighting the Way to Demand ResponseLighting the Way to Demand Response California Energy Commission's Public Interest Energy Research Program Technical Brief PIER

  1. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  2. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema (OSTI)

    Arun Majumdar

    2010-01-08T23:59:59.000Z

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  3. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    SciTech Connect (OSTI)

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19T23:59:59.000Z

    The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  4. Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing

    E-Print Network [OSTI]

    Boutaba, Raouf

    Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing Jin Xiao, Jae--In this paper, we present demand-side energy manage- ment under real-time demand-response pricing as a task, demand-response, energy management I. INTRODUCTION The growing awareness of global climate change has

  5. Electricity Demand and Energy Consumption Management System

    E-Print Network [OSTI]

    Sarmiento, Juan Ojeda

    2008-01-01T23:59:59.000Z

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  6. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01T23:59:59.000Z

    iv Chapter 5: National energy demand and potential energyEnergy Demands and Efficiency Strategies   in Data Center AC02?05CH11231.   Energy Demands and Efficiency Strategies

  7. A residential energy demand system for Spain

    E-Print Network [OSTI]

    Labandeira Villot, Xavier

    2005-01-01T23:59:59.000Z

    Sharp price fluctuations and increasing environmental and distributional concerns, among other issues, have led to a renewed academic interest in energy demand. In this paper we estimate, for the first time in Spain, an ...

  8. Energy technologies and their impact on demand

    SciTech Connect (OSTI)

    Drucker, H.

    1995-06-01T23:59:59.000Z

    Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

  9. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    BEST PRACTICES AND RESULTS OF DR IMPLEMENTATION . 31 Encouraging End-User Participation: The Role of Incentives 16 Demand Response

  10. Behavioral Aspects in Simulating the Future US Building Energy Demand

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    Importance Total off- site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decrease

  11. Learning Energy Demand Domain Knowledge via Feature Transformation

    E-Print Network [OSTI]

    Povinelli, Richard J.

    Learning Energy Demand Domain Knowledge via Feature Transformation Sanzad Siddique Department -- Domain knowledge is an essential factor for forecasting energy demand. This paper introduces a method knowledge substantially improves energy demand forecasting accuracy. However, domain knowledge may differ

  12. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    these trends lead to declining natural gas consumption byNatural gas demand has been rising in California and this trendnatural gas demands regionally, to account for variability in energy usage trends

  13. Oncor Energy Efficiency Programs Solar Photovoltaic and Demand Response

    E-Print Network [OSTI]

    Tyra, K.; Hanel, J.

    2012-01-01T23:59:59.000Z

    Oncor Energy Efficiency Programs Solar Photovoltaic and Demand Response October 10, 2012 ENERGY EFFICIENCY PROGRAMS OVERVIEW ?Program rules and guidelines established by Public Utility Commission of Texas (PUCT) ?All Texas investor... to be administered by transmission-distribution utilities ?Programs are implemented by Energy Efficiency Services Providers and Retail Electric Providers 1 WHY DOES ONCOR DO SOLAR PV? ?Helps meet our energy efficiency goals ?Helps customers reduce...

  14. Demand Response Initiatives at CPS Energy

    E-Print Network [OSTI]

    Luna, R.

    2013-01-01T23:59:59.000Z

    Demand Response Initiatives at CPS Energy Clean Air Through Energy Efficiency (CATEE) Conference December 17, 2013 ESL-KT-13-12-53 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 CPSE’s DR Program • DR... than the military bases and Toyota combined. • Schools & Universities contributed 6 MW’s of Demand Response in 2013. 2013 DR Participants Trinity University - $5,654 Fort Sam ISD - $18,860 Judson ISD - $45,540 Alamo Colleges - $98,222 UTSA - $168...

  15. Response to several FOIA requests - Renewable Energy. Demand...

    Office of Environmental Management (EM)

    Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA...

  16. Energy Upgrade California Drives Demand From Behind the Wheel...

    Energy Savers [EERE]

    Upgrade California Drives Demand From Behind the Wheel Energy Upgrade California Drives Demand From Behind the Wheel Photo of a trailer with the Energy Upgrade California logo and...

  17. Energy Demand (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

  18. Drivers of Future Energy Demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnalCommittee Draft Advice9DrillingDrive

  19. Global Climate Change and Demand for Energy

    E-Print Network [OSTI]

    Subramanian, Venkat

    -CARES) Washington University in St. Louis #12;9 Jun ­ Jul ­ Aug Temperature Anomaly Distribution Frequency of air and water temperatures Losses of ice from Greenland and Antarctica Sea-level rise Energy demands 169 390 327 90 16 H2O, CO2, O3 Earth receives visible light from hot Sun and Earth radiates to space

  20. AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.

    E-Print Network [OSTI]

    Povinelli, Richard J.

    AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

  1. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    for each day type for the demand response study - moderate8.4 Demand Response Integration . . . . . . . . . . .for each day type for the demand response study - moderate

  2. Demand-Side Management and Energy Efficiency Revisited

    E-Print Network [OSTI]

    Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

    2007-01-01T23:59:59.000Z

    EPRI). 1984. ”Demand Side Management. Vol. 1:Overview of Key1993. ”Industrial Demand-Side Management Programs: What’sJ. Kulick. 2004. ”Demand side management and energy e?ciency

  3. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    for Demand Response in a New Commercial Building in NewDemand Response and Energy Efficiency in Commercial Buildings.Demand Response Mary Ann Piette, Sila Kiliccote, and Girish Ghatikar Lawrence Berkeley National Laboratory Building

  4. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST Energy Demand 2008-2018 forecast supports the analysis and recommendations of the 2007 Integrated Energy Commission demand forecast models. Both the staff draft energy consumption and peak forecasts are slightly

  5. THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND

    E-Print Network [OSTI]

    LBNL-49947 THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND? ..................................... 8 What are the seasonal aspects of electric peak demand?............................ 9 What because of the California electricity crisis (Borenstein 2001). Uncertainties surrounding the reliability

  6. Optimal Demand Response with Energy Storage Management

    E-Print Network [OSTI]

    Huang, Longbo; Ramchandran, Kannan

    2012-01-01T23:59:59.000Z

    In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

  7. Univariate Modeling and Forecasting of Monthly Energy Demand Time Series

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    Univariate Modeling and Forecasting of Monthly Energy Demand Time Series Using Abductive and Neural demand time series based only on data for six years to forecast the demand for the seventh year. Both networks, Neural networks, Modeling, Forecasting, Energy demand, Time series forecasting, Power system

  8. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    services provided to the energy markets, Order 745 advancesin the wholesale energy market (both day-ahead and real-the capacity market is. The energy market does not feature

  9. Demand Response (transactional control) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data FilesFeFe-HydrogenaseDemandEnergy Analysis

  10. Examining Synergies between Energy Management and Demand Response: A Case Study at Two California Industrial Facilities

    E-Print Network [OSTI]

    Olsen, Daniel

    2013-01-01T23:59:59.000Z

    and Demand Response History Energy Management Activities o #and Demand Response History Energy Management Activities

  11. PAN-on-Demand: Leveraging multiple radios to build self-organizing, energy-efficient PANs

    E-Print Network [OSTI]

    Flinn, Jason

    , it adapts the network struc- ture to minimize energy usage. Our results show that PAN-on- Demand reducesPAN-on-Demand: Leveraging multiple radios to build self-organizing, energy-efficient PANs Manish- area network (PAN) that balances performance and energy con- cerns by scaling the structure

  12. The Window Market in Texas: Opportunities for Energy Savings and Demand Reduction

    E-Print Network [OSTI]

    Zarnikau, J.; Campbell, L.

    2002-01-01T23:59:59.000Z

    The use of high performance windows represents a promising opportunity to reduce energy consumption and summer electrical demand in homes and commercial buildings in Texas and neighboring states. While low-e glass coatings and other energy...

  13. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

  14. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    Vehicle Conventional and Alternative Fuel Response Simulatormodified to include alternative fuel demand scenarios (whichvehicle adoption and alternative fuel demand) later in the

  15. Modeling supermarket refrigeration energy use and demand

    SciTech Connect (OSTI)

    Blatt, M.H.; Khattar, M.K. (Electric Power Research Inst., Palo Alto, CA (US)); Walker, D.H. (Foster Miller Inc., Waltham, MA (US))

    1991-07-01T23:59:59.000Z

    A computer model has been developed that can predict the performance of supermarket refrigeration equipment to within 3% of field test measurements. The Supermarket Refrigeration Energy Use and Demand Model has been used to simulate currently available refrigerants R-12, R-502 and R-22, and is being further developed to address alternative refrigerants. This paper reports that the model is expected to be important in the design, selection and operation of cost-effective, high-efficiency refrigeration systems. It can profile the operation and performance of different types of compressors, condensors, refrigerants and display cases. It can also simulate the effects of store humidity and temperature on display cases; the efficiency of various floating head pressure setpoints, defrost alternatives and subcooling methods; the efficiency and amount of heat reclaim from refrigeration systems; and the influence of other variables such as store lighting and building design. It can also be used to evaluate operational strategies such as variable-speed drive or cylinder unloading for capacity control. Development of the model began in 1986 as part of a major effort, sponsored by the U.S. electric utility industry, to evaluate energy performance of then conventional single compressor and state-of-the-art multiplex refrigeration systems, and to characterize the contribution of a variety of technology enhancement features on system energy use and demand.

  16. Reduced-Order Modeling of Aggregated Thermostatic Loads With Demand Response

    E-Print Network [OSTI]

    Zhang, Wei

    Reduced-Order Modeling of Aggregated Thermostatic Loads With Demand Response Wei Zhang, Jianming Lian, Chin-Yao Chang, Karanjit Kalsi and Yannan Sun Abstract-- Demand Response is playing population of appliances under demand response is especially important to evaluate the effec- tiveness

  17. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST forecast is the combined product of the hard work and expertise of numerous staff members in the Demand, and utilities. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption

  18. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST forecast is the combined product of the hard work and expertise of numerous staff in the Demand Analysis. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption data

  19. Examining Synergies between Energy Management and Demand Response: A

    E-Print Network [OSTI]

    LBNL-5719E Examining Synergies between Energy Management and Demand Response: A Case Study at Two Summary #12;Introduction Energy Management · · · · · · · · · · #12;Demand Response #12;#12;Bentley Prince-Project Personnel Changes #12;Enablement of Demand Response Capabilities due to Energy Management Improvement

  20. Opportunities for Energy Efficiency and Demand Response in the California

    E-Print Network [OSTI]

    LBNL-4849E Opportunities for Energy Efficiency and Demand Response in the California Cement in this report was coordinated by the Demand Response Research Center and funded by the California Energy. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry. PIER Industrial

  1. Alberta's Energy Reserves 2007 and Supply/Demand Outlook

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Alberta's Energy Reserves 2007 and Supply/Demand Outlook 2008-2017 0 ST98-2008 Energy Resources RESOURCES CONSERVATION BOARD ST98-2008: Alberta's Energy Reserves 2007 and Supply/Demand Outlook 2008: Reserves Andy Burrowes, Rick Marsh, Nehru Ramdin, and Curtis Evans; Supply/Demand and Economics

  2. Unique University and Utility Team Reduces Energy and Pollutants

    E-Print Network [OSTI]

    Smith, K. L.; Traill, D. A.; Sears, R. L.; Spielman, M.

    In 1992 the Center for Energy Systems Research of the College of Engineering and Applied Sciences and the Arizona State University (ASU) Facilities Management Department formed a unique Demand Side Management (DSM) team dedicated to reducing energy...

  3. Pseudo dynamic transitional modeling of building heating energy demand using artificial neural network

    E-Print Network [OSTI]

    Paudel, Subodh; Elmtiri, Mohamed; Kling, Wil L; Corre, Olivier Le; Lacarriere, Bruno

    2014-01-01T23:59:59.000Z

    R. Satake, Prediction of energy demands using neural networkof Building Heating Energy Demand Using Artificial Neuralknow energy flows and energy demand of the buildings for the

  4. Energy and Security in Northeast Asia: Supply and Demand, Conflict and

    E-Print Network [OSTI]

    Fesharaki, Fereidun; Banaszak, Sarah; WU, Kang; Valencia, Mark J.; Dorian, James P.

    1998-01-01T23:59:59.000Z

    favorable economically, energy demand, and particularly oil3 Energy Policies and Energy Demand in Northeastissue of whether rising energy demand generates new security

  5. Residential Energy Demand Reduction Analysis and Monitoring Platform...

    Broader source: Energy.gov (indexed) [DOE]

    objective will be achieved by - Energy efficient home construction with roof- integrated PV system - Demand Side Management - Battery Energy Storage System Project schematic...

  6. Coordination of Energy Efficiency and Demand Response: A Resource...

    Open Energy Info (EERE)

    Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Coordination of Energy Efficiency and...

  7. Smoothing the Energy Consumption: Peak Demand Reduction in Smart Grid

    E-Print Network [OSTI]

    Li, Xiang-Yang

    for autonomous demand side management within one house. The DRS devices are able to sense and control the peak energy consumption or demand. We assume that several appliances within one building access to oneSmoothing the Energy Consumption: Peak Demand Reduction in Smart Grid Shaojie Tang , Qiuyuan Huang

  8. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReport #Study | Department of Energy

  9. COMBINING DIVERSE DATA SOURCES FOR CEDSS, AN AGENT-BASED MODEL OF DOMESTIC ENERGY DEMAND

    E-Print Network [OSTI]

    Gotts, Nicholas Mark; Polhill, Gary; Craig, Tony; Galan-Diaz, Carlos

    2014-01-01T23:59:59.000Z

    Model CEDSS (Community Energy Demand Social Simulator) wasthe determinants of domestic energy demand and covering fivescenarios of domestic energy demand to 2050, and for its

  10. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    on the forecast of total energy demand. Based on this, weIndustrialization and Energy Demand Scenarios Nathaniel T.adjustment spurred energy demand for construction of new

  11. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01T23:59:59.000Z

    of Distributed Energy Resources and Demand Response underof Distributed Energy Resources and Demand Response underof Distributed Energy Resources and Demand Response under

  12. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01T23:59:59.000Z

    ABORATORY Japan’s Residential Energy Demand Outlook to 2030o r n i a Japan’s Residential Energy Demand Outlook to 2030residential sector, where energy demand has grown vigorously

  13. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    in the presence of renewable resources and on the amount ofprimarily from renewable resources, and to a limited extentintegration of renewable resources and deferrable demand. We

  14. Demand Response - Policy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    prices or when grid reliability is jeopardized. In regions with centrally organized wholesale electricity markets, demand response can help stabilize volatile electricity prices...

  15. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    water heaters with embedded demand responsive controls can be designed to automatically provide day-ahead and real-time response

  16. PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022

    E-Print Network [OSTI]

    PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022 AUGUST 2011 CEC-200-2011-011-SD CALIFORNIA or adequacy of the information in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

  17. UK Energy Research Centre Demand Reduction Theme, University of Oxford

    E-Print Network [OSTI]

    UK Energy Research Centre Demand Reduction Theme, University of Oxford The Experience of Carbon Energy Research Centre ­ Demand Reduction Theme Environmental Change Institute Oxford University Centre for the Environment South Parks Road Oxford OX1 3QY www.eci.ox.ac.uk www.ukerc.ac.uk #12;UK Energy Research Centre 2 1

  18. Agreement for Energy Conservation and Demand Side Management...

    Broader source: Energy.gov (indexed) [DOE]

    agreement between a U.S. Federal agency and a utility company for the implementation of energy conservation measures (ECMs) and demand side management (DSM) services....

  19. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01T23:59:59.000Z

    Total Energy Source Demand Coal, Oil, Gas, Heat, ElectricityEnergy Source Demand per Household Coal, Oil, Gas, Heat,ton of oil equivalent Considerable increases in demand for

  20. The Integration of Energy Efficiency, Renewable Energy, Demand Response and Climate Change: Challenges and Opportunities for Evaluators and Planners

    E-Print Network [OSTI]

    Vine, Edward

    2007-01-01T23:59:59.000Z

    to inform projected energy and demand reductions in regionaldown to reflect energy and demand savings due to spillover (market and estimate the energy and demand savings associated

  1. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    Energy. “Benefits of Demand Response in Electricity MarketsEnergy Efficiency and Demand Response?7 3.1.Demand Response in Commercial

  2. A Successful Case Study of Small Business Energy Efficiency and Demand Response with Communicating Thermostats

    E-Print Network [OSTI]

    Herter, Karen

    2010-01-01T23:59:59.000Z

    to everyone at the Demand Response Research Center, theEnergy Efficiency and Demand Response with CommunicatingEnergy Efficiency and Demand Response with Communicating

  3. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01T23:59:59.000Z

    Energy Resources and Demand Response under Uncertainty AfzalEnergy Resources and Demand Response under Uncertainty ?DER in conjunction with demand response (DR): the expected

  4. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    PA. 3. DEMAND RESPONSE IN COMMERCIAL BUILDINGS ElectricityDemand Response and Energy Efficiency in Commercial BuildingsDemand Response and Energy Efficiency in Commercial Buildings

  5. The Economics of Energy (and Electricity) Demand

    E-Print Network [OSTI]

    Platchkov, Laura M.; Pollitt, Michael G.

    home to charge up at night. 12 The Tesla Roadster is an electric sport car prototype manufactured by Tesla Motors (http://www.teslamotors.com/). 13 This is based on there being around 25 million homes... 25 3.3.2 Electrification of personal transport New sources of electricity demand may emerge which substantially change the total demand for electricity and the way electricity is consumed by the household. The Tesla Roadster12 stores 53 k...

  6. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    Scale Renewable Energy Integration . . . . . . . . . . .Impacts of Renewable Energy Supply . . . . . . . . . . . . .1.3 Coupling Renewable Energy with Deferrable

  7. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    energy scenarios to explore alternative energy pathways indo not include the alternative energy pathways (such asmodeling to investigate alternative energy supply strategies

  8. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Majumdar, Arun

    2008-07-29T23:59:59.000Z

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  9. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Majumdar, Arun

    2011-04-28T23:59:59.000Z

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  10. Using Compressed Air Efficiency Projects to Reduce Peak Industrial Electric Demands: Lessons Learned

    E-Print Network [OSTI]

    Skelton, J.

    "To help customers respond to the wildly fluctuating energy markets in California, Pacific Gas & Electric (PG&E) initiated an emergency electric demand reduction program in October 2000 to cut electric use during peak periods. One component...

  11. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    Programs Integrated Energy Audit Provide engineeringtechnicians performed energy audits and provided advice to8 PG&E’s Integrated Energy Audit, a program for businesses

  12. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    of locational renewable energy production in each renewableto total renewable energy production, although accountingproduction data from the 2006 data set of the National Renewable Energy

  13. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    as marketing and outreach, energy audits, and installationPrograms Integrated Energy Audit Provide engineeringtechnicians performed energy audits and provided advice to

  14. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    has for years used “New York Energy $mart” as the umbrellaevent days. The New York State Energy Research & DevelopmentEnergy Challenge”). The New York State Energy Research and

  15. Continuous Improvement Energy Projects Reduce Energy Consumption

    E-Print Network [OSTI]

    Niemeyer, E.

    2014-01-01T23:59:59.000Z

    Continuous Improvement Energy Projects Reduce Energy Consumption Eric Niemeyer, Operations Superintendent Drilling Specialties Company A division of Chevron Phillips Chemical Company LP ESL-IE-14-05-31 Proceedings of the Thrity...

  16. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01T23:59:59.000Z

    L ABORATORY Japan’s Residential Energy Demand Outlook tol i f o r n i a Japan’s Residential Energy Demand Outlook toParticularly in Japan’s residential sector, where energy

  17. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    energy efficiency savings that are achieved through monitoring- based commissioning, as well as documenting best practicesEnergy Efficiency Alliance Sue Gander Director, Environment, Energy, and Natural Resources Division National Governors Association—Center for Best Practices

  18. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Lekov, Alex

    2009-01-01T23:59:59.000Z

    your Power. (2008). "Demand Response Programs." RetrievedS. (2008). Automated Demand Response Results from Multi-Yearusing Open Automated Demand Response, California Energy

  19. DemandDirect | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park,Dell Prairie,DeltaDemand

  20. Energy Demand Modelling Introduction to the PhD project

    E-Print Network [OSTI]

    Energy Demand Modelling Introduction to the PhD project Erika Zvingilaite Risø DTU System Analysis for optimization of energy systems Environmental effects Global externalities cost of CO2 Future scenarios for the Nordic energy systems 2010, 2020, 2030, 2040, 2050 (energy-production, consumption, emissions, net costs

  1. A Full Demand Response Model in Co-Optimized Energy and

    SciTech Connect (OSTI)

    Liu, Guodong [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

    2014-01-01T23:59:59.000Z

    It has been widely accepted that demand response will play an important role in reliable and economic operation of future power systems and electricity markets. Demand response can not only influence the prices in the energy market by demand shifting, but also participate in the reserve market. In this paper, we propose a full model of demand response in which demand flexibility is fully utilized by price responsive shiftable demand bids in energy market as well as spinning reserve bids in reserve market. A co-optimized day-ahead energy and spinning reserve market is proposed to minimize the expected net cost under all credible system states, i.e., expected total cost of operation minus total benefit of demand, and solved by mixed integer linear programming. Numerical simulation results on the IEEE Reliability Test System show effectiveness of this model. Compared to conventional demand shifting bids, the proposed full demand response model can further reduce committed capacity from generators, starting up and shutting down of units and the overall system operating costs.

  2. Examining Synergies between Energy Management and Demand Response: A Case Study at Two California Industrial Facilities

    E-Print Network [OSTI]

    Olsen, Daniel

    2013-01-01T23:59:59.000Z

    Capabilities due to Energy Management Improvement inSummary Introduction Energy Management Demand Responseand Processes Energy Management and Demand Response History

  3. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    E-Print Network [OSTI]

    Olsen, Daniel

    2012-01-01T23:59:59.000Z

    Opportunities for Energy  Efficiency and Demand Response in Agricultural/Water End?Use Energy Efficiency Program.    i 1   4.0   Energy Efficiency and Demand Response 

  4. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01T23:59:59.000Z

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  5. Energy and Demand Savings from Implementation Costs in Industrial Facilities

    E-Print Network [OSTI]

    Razinha, J. A.; Heffington, W. M.

    1 ENERGY AND DEMAND SAVINGS FROM IMPLEMENTATION COSTS IN INDUSTRIAL FACILITIES 1 Razinha, J.A. and Heffington, W.M. Industrial Assessment Center and Mechanical Engineering Department Texas A&M University, College Station, Texas 77843.... noted that a direct calculation of cost savings from the implementation cost could eliminate as much as 30% of the preparation time (and associated cost) for the LoanSTAR reports. The savings result from not having to calculate energy or demand...

  6. Solar in Demand | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on Energy andDepartment ofAnShare yourAof Energy

  7. OFWAR: Reducing SSD Response Time Using On-Demand Fast-Write-and-Rewrite

    E-Print Network [OSTI]

    Zhang, Tong

    OFWAR: Reducing SSD Response Time Using On-Demand Fast-Write-and-Rewrite Qi Wu and Tong Zhang to degrade SSD response time, we speed up memory programming at the penalty of shorter data retention time the average SSD response time by up to 52.3%. Index Terms--Solid-state drive, data retention, workload

  8. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    to ensure reliability. Capacity market programs: Customerswholesale, forward capacity markets offer new opportunitiesinto the forward-capacity market. Coordination of Energy

  9. Demand Response - Policy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. DepartmenttoJuneEnergy This document

  10. Exhausting Battery Statistics Understanding the energy demands on mobile handsets

    E-Print Network [OSTI]

    Cambridge, University of

    energy models and resources managers designed for laptops [20] and data cen- ters [4] inapplicableExhausting Battery Statistics Understanding the energy demands on mobile handsets Narseo Vallina.surname@telekom.de ABSTRACT Despite the advances in battery technologies, mobile phones still suffer from severe energy

  11. Retrofitting Existing Buildings for Demand Response & Energy Efficiency

    E-Print Network [OSTI]

    California at Los Angeles, University of

    partnership) · Plug loads, data centers ­ remainder (solution: WTR, WBM) Source: US Energy Information, higher "critical peak" energy charges will be assessed for usage between noon and 6pm. - CustomersRetrofitting Existing Buildings for Demand Response & Energy Efficiency www

  12. Energy Demands and Efficiency Strategies in Data Center Buildings

    SciTech Connect (OSTI)

    Shehabi, Arman

    2009-09-01T23:59:59.000Z

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands haveincreased by nearly a factor of four over the past decade. Data centers house IT equipment and require significantly more energy to operate per unit floor area thanconventional buildings. The economic and environmental ramifications of continued data center growth motivate the need to explore energy-efficient methods to operate these buildings. A substantial portion of data center energy use is dedicated to removing the heat that is generated by the IT equipment. Using economizers to introduce large airflow rates of outside air during favorable weather could substantially reduce the energy consumption of data center cooling. Cooling buildings with economizers is an established energy saving measure, but in data centers this strategy is not widely used, partly owing to concerns that the large airflow rates would lead to increased indoor levels of airborne particles, which could damage IT equipment. The environmental conditions typical of data centers and the associated potential for equipment failure, however, are not well characterized. This barrier to economizer implementation illustrates the general relationship between energy use and indoor air quality in building design and operation. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously.As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature for office or residential buildings. Estimates using a material-balance model match well with empirical results, indicating that the dominant particle sources and losses -- ventilation and filtration -- have been characterized. Measurements taken at a data center using economizers show nearly an order of magnitude increase in particle concentration during economizer activity. However, even with the increase, themeasured particle concentrations are still below concentration limits recommended in most industry standards. The research proceeds by exploring the feasibility of using economizers in data centers while simultaneously controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at a data center using economizers and varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to the measurements when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh the increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration couldsignificantly reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design. The emphasis of the dissertation then shifts to evaluate the energy benefits of economizer use in data centers under different design strategies. Economizer use with high ventilation rates is compared against an alternative, water-side economizer design that does not affect indoor particle concentrations. Building energy models are employed to estimate energy savings of both economizer designs for data centers in

  13. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2013-10-01T23:59:59.000Z

    Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

  14. Distributed Automated Demand Response - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocation oftheAmperometricEnergy Analysis Energy Analysis

  15. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    Net- Energy Buildings with Demand Response Michael Stadler,Net-Energy Buildings with Demand Response 1 Michael Stadlerbuilding simulation tools, e.g. , EnergyPlus, require specification of the demand response

  16. Reducing the demand forecast error due to the bullwhip effect in the computer processor industry

    E-Print Network [OSTI]

    Smith, Emily (Emily C.)

    2010-01-01T23:59:59.000Z

    Intel's current demand-forecasting processes rely on customers' demand forecasts. Customers do not revise demand forecasts as demand decreases until the last minute. Intel's current demand models provide little guidance ...

  17. BPA, Energy Northwest launch demand response pilot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES ReportsExperiment Rain drop

  18. Measured energy savings and demand reduction from a reflective roof membrane on a large retail store in Austin

    E-Print Network [OSTI]

    Konopacki, Steven J.; Akbari, Hashem

    2001-01-01T23:59:59.000Z

    the abated annual energy and demand expenditures, simplea/c annual abated energy and demand expenditures and presentof future abated energy and demand expenditures is estimated

  19. Energy demand and indoor climate of a traditional low-energy building in a hot climate.

    E-Print Network [OSTI]

    Li, Ang

    2009-01-01T23:59:59.000Z

    ?? Energy demand in the built environment is quite important. China holds a large population and the energy use in the building sector is about… (more)

  20. A dynamic model of industrial energy demand in Kenya

    SciTech Connect (OSTI)

    Haji, S.H.H. [Gothenburg Univ. (Sweden)

    1994-12-31T23:59:59.000Z

    This paper analyses the effects of input price movements, technology changes, capacity utilization and dynamic mechanisms on energy demand structures in the Kenyan industry. This is done with the help of a variant of the second generation dynamic factor demand (econometric) model. This interrelated disequilibrium dynamic input demand econometric model is based on a long-term cost function representing production function possibilities and takes into account the asymmetry between variable inputs (electricity, other-fuels and Tabour) and quasi-fixed input (capital) by imposing restrictions on the adjustment process. Variations in capacity utilization and slow substitution process invoked by the relative input price movement justifies the nature of input demand disequilibrium. The model is estimated on two ISIS digit Kenyan industry time series data (1961 - 1988) using the Iterative Zellner generalized least square method. 31 refs., 8 tabs.

  1. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    s natural gas and electricity sectors within the timeframeto California’s electricity sector led to rolling blackoutsimpacts on the electricity sector is the hourly demand

  2. Reduced-Order Modeling of Aggregated Thermostatic Loads With Demand Response

    SciTech Connect (OSTI)

    Zhang, Wei; Lian, Jianming; Chang, Chin-Yao; Kalsi, Karanjit; Sun, Yannan

    2012-12-12T23:59:59.000Z

    Demand Response is playing an increasingly important role in smart grid control strategies. Modeling the behavior of populations of appliances under demand response is especially important to evaluate the effectiveness of these demand response programs. In this paper, an aggregated model is proposed for a class of Thermostatically Controlled Loads (TCLs). The model efficiently includes statistical information of the population, systematically deals with heterogeneity, and accounts for a second-order effect necessary to accurately capture the transient dynamics in the collective response. However, an accurate characterization of the collective dynamics however requires the aggregate model to have a high state space dimension. Most of the existing model reduction techniques require the stability of the underlying system which does not hold for the proposed aggregated model. In this work, a novel model reduction approach is developed for the proposed aggregated model, which can significantly reduce its complexity with small performance loss. The original and the reducedorder aggregated models are validated against simulations of thousands of detailed building models using GridLAB-D, which is a realistic open source distribution simulation software. Index Terms – demand response, aggregated model, ancillary

  3. A study of industrial equipment energy use and demand control

    E-Print Network [OSTI]

    Dooley, Edward Scott

    2001-01-01T23:59:59.000Z

    Technologies. A battery storage system, capable of providing up to 5, 000 kW was installed (Hunt 1999). The batterics allow the plant's demand peaks to be lowcrcd by using energy stored in the batteries during off-peak periods to provide a portion...

  4. ENABLING ENERGY DEMAND RESPONSE WITH VEHICULAR MESH NETWORKS

    E-Print Network [OSTI]

    Chuah, Chen-Nee

    ENABLING ENERGY DEMAND RESPONSE WITH VEHICULAR MESH NETWORKS Howard CheHao Chang1, Haining Du2 compared to their counterparts such as laptops in nomad computing or sensor networks. First, vehicles response (DR) [1] for automatic utility usage retrievals and price dispatching. DR is a project in- itiated

  5. An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network

    E-Print Network [OSTI]

    An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network Sheetalkumar Doshi of an on-demand minimum energy routing protocol and suggests mechanisms for their imple- mentation. We of an on-demand minimum energy routing protocol in terms of energy savings with an existing on-demand ad

  6. A Supply-Demand Model Based Scalable Energy Management System for Improved Energy

    E-Print Network [OSTI]

    Bhunia, Swarup

    the dependency of an electronic system to primary energy sources (i.e. AC power or battery). For reliable energy generation and consumption parameters. The system uses economics inspired supply-demand modelA Supply-Demand Model Based Scalable Energy Management System for Improved Energy Utilization

  7. Tankless or Demand-Type Water Heaters | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-Type Water Heaters Tankless or Demand-Type Water

  8. Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs

    E-Print Network [OSTI]

    Victoria, University of

    Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs Supervisory Committee Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management of Environmental Studies) Departmental Member For energy utilities faced with expanded jurisdictional energy

  9. Reducing Energy Loss | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumpingStudyReducing

  10. E-Print Network 3.0 - assessment demand-side energy Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Demand Response (DR) and Energy Efficiency (EE... Collaborators: Jose M. Pinto, Praxair Inc., Danbury, CT Nikhil Arora, Praxair Inc., Tonawanda, NY 12;DemandSide......

  11. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

  12. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    that energy efficiency or energy intensity for a particularbased upon trends in energy intensity parameters which areBuilding type (12) Energy intensity Industrial Shipments

  13. Reducing the Energy Usage of Oce Applications

    E-Print Network [OSTI]

    Flinn, Jason

    Reducing the Energy Usage of OÆce Applications Jason Flinn 1 , Eyal de Lara 2 , M. Satyanarayanan 1 of the energy usage of Microsoft's PowerPoint application and show that adaptive policies can reduce energy research e#11;ort, no silver bullet for reducing energy usage has yet been found. Instead, a comprehensive

  14. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    E-Print Network [OSTI]

    Dudley, Junqiao Han

    2010-01-01T23:59:59.000Z

    of Automated Demand Response in a Large Office Building”, inBuilding Control Strategies and Techniques for Demand Response.Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

  15. Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under

    E-Print Network [OSTI]

    Boutaba, Raouf

    Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under Real-time Demand of appliance specific adapters. Designed and implemented GHS Modeled the demand-side energy management problem (NP-hard) Designed a scheduling algorithm for demand side energy management Showed that our

  16. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    E-Print Network [OSTI]

    Akbari, Hashem

    2011-01-01T23:59:59.000Z

    the demand for cooling energy, urban trees indirectly reducesurfaces and shade trees to reduce energy use and improvethe energy savings and GHG benefits of cool roofs and tree

  17. How to Reduce Energy Supply Costs

    E-Print Network [OSTI]

    Swanson, G.

    2007-01-01T23:59:59.000Z

    Rising energy costs have many businesses looking for creative ways to reduce their energy usage and lower the costs of energy delivered to their facilities. This paper explores innovative renewable and alternative energy technologies that can help...

  18. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2015-01-01T23:59:59.000Z

    This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

  19. Pseudo Dynamic Transitional Modeling of Building Heating Energy Demand Using Artificial1 Neural Network2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Transitional Modeling of Building Heating Energy Demand Using Artificial1 Neural Network2 Subodh Paudel a, it is39 essential to know energy flows and energy demand of the buildings for the control of heating and40 cooling energy production from plant systems. The energy demand of the building system, thus,41

  20. Conserving Energy with On-Demand Topology Management

    E-Print Network [OSTI]

    Kravets, Robin

    @cs.uiuc.edu Abstract-- To reduce idle-time energy consumption, nodes in ad hoc networks can switch to a power-save mode], [4]. A common approach to idle- time energy conservation is to switch to a power-save mode where of potential energy savings from proactive and reactive approaches. We show that proactive approaches save

  1. Demand Response Resources for Energy and Ancillary Services (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01T23:59:59.000Z

    Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind an solar power generation. However, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado test system. We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating

  2. Web-based energy information systems for energy management and demand response in commercial buildings

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18T23:59:59.000Z

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS are discussed: Metering and Connectivity; Visualization and Analysis Features; Demand Response Features; and Remote Control Features. This report also describes the following technologies and the potential benefits of incorporating them into future EIS products: Benchmarking; Load Shape Analysis; Fault Detection and Diagnostics; and Savings Analysis.

  3. Demand Response Energy Consulting LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park,Dell Prairie,DeltaDemand Response

  4. Tracking Progress Last updated 5/7/2014 Statewide Energy Demand 1

    E-Print Network [OSTI]

    dollars) to $1.8 trillion in 2012 (2012 dollars). Forecast Electricity Demand Although the California Energy Commission's energy demand forecast includes multiple scenarios, the Energy Commission worked together1 to agree upon a single managed demand forecast that incorporates all energy efficiency

  5. An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network

    E-Print Network [OSTI]

    Brown, Timothy X.

    An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network Sheetalkumar Doshi the necessary features of an on-demand minimum energy routing protocol and suggests mechanisms the performance of an on-demand minimum energy routing protocol in terms of energy savings with an existing on

  6. STRENGTH AND ENERGY DEMANDS FROM THE AUGUST 1999 KOCAELI EARTHQUAKE GROUND MOTIONS

    E-Print Network [OSTI]

    Manuel, Lance

    STRENGTH AND ENERGY DEMANDS FROM THE AUGUST 1999 KOCAELI EARTHQUAKE GROUND MOTIONS A. Sari 1 and L the demands placed on structures during earthquakes one might also employ an energy-based approach, especially such as absorbed energy (Chou and Uang, 2000) and input energy (Chapman, 1999). Understanding seismic demands

  7. Autonomous Demand Side Management Based on Game-Theoretic Energy Consumption

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Autonomous Demand Side Management Based on Game-Theoretic Energy Consumption Scheduling distributed demand side energy management strategy requires each user to simply apply its best response-average ratio of the total energy demand, the total energy costs, as well as each user's individual daily

  8. ECEEE 2005 SUMMER STUDY WHAT WORKS & WHO DELIVERS? 183 Local energy efficiency and demand-side

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ECEEE 2005 SUMMER STUDY ­ WHAT WORKS & WHO DELIVERS? 183 1,202 Local energy efficiency and demand be the basis for local energy policies and energy efficiency/demand-side management activities1, have been) activities in 1. DSM: Demand-Side Management; EE: energy efficiency (here, does not include renewable

  9. Cooling energy demand evaluation by means of regression models obtained from dynamic simulations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Cooling energy demand evaluation by means of regression models obtained from dynamic simulations Ph, Université Lyon1, FRANCE ABSTRACT The forecast of the energy heating/cooling demand would be a good indicator between simple and complex methods of evaluating the cooling energy demand we have proposed to use energy

  10. Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

    2006-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities.for Energy Efficiency and Demand Response”, Proceedings ofAuthority (NYSERDA), the Demand Response Research Center (

  11. Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

    2006-01-01T23:59:59.000Z

    potential demand response in commercial buildings with EMCSbuildings for integrated energy efficiency and demand response (buildings provide an excellent resource for demand response.

  12. A critical review of single fuel and interfuel substitution residential energy demand models

    E-Print Network [OSTI]

    Hartman, Raymond Steve

    1978-01-01T23:59:59.000Z

    The overall purpose of this paper is to formulate a model of residential energy demand that adequately analyzes all aspects of residential consumer energy demand behavior and properly treats the penetration of new technologies, ...

  13. Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity

    E-Print Network [OSTI]

    Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity Chris in this paper. Energy consumption data was sourced from the Bureau of Resources and Energy Economics' Australian Energy Statistics publication. Price and income data were sourced from the Australian Bureau

  14. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01T23:59:59.000Z

    No.4 Japan's Long-term Energy Demand and Supply Scenario towe projected Japan's energy demand/supply and energy-relatedcrises (to cut primary energy demand per GDP ( T P E S / G D

  15. Assumption to the Annual Energy Outlook 2014 - Residential Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural8U.S.NA NAOil and GasDemand

  16. energy: Supply, Demand, and impacts CooRDinATinG LeAD AUThoR

    E-Print Network [OSTI]

    Kammen, Daniel M.

    240 chapter 12 energy: Supply, Demand, and impacts CooRDinATinG LeAD AUThoR Vincent C. Tidwell the potential to impact the production, demand, and delivery of energy in a number of ways. Chapter citation;energy: supply, demand, and impacts 241 · Delivery of electricity may become more vulnerable

  17. CSEM WP 165R Demand-Side Management and Energy Efficiency

    E-Print Network [OSTI]

    Auffhammer, Maximilian

    CSEM WP 165R Demand-Side Management and Energy Efficiency Revisited Maximilian Auffhammer, Carl, California 94720-5180 www.ucei.org #12;Demand-Side Management and Energy Efficiency Revisited Maximilian associated with energy efficiency demand side management (DSM) programs. This claim is based on point

  18. Real-Time Demand Response with Uncertain Renewable Energy in Smart Grid

    E-Print Network [OSTI]

    Low, Steven H.

    Real-Time Demand Response with Uncertain Renewable Energy in Smart Grid Libin Jiang and Steven Low manages user load through real-time demand response and purchases balancing power on the spot market and demand response in the presence of uncertain renewable supply and time-correlated demand. The overall

  19. Big Problems. Big Results. Energy demands, environmental impacts, and national security are some of America's toughest challenges.

    E-Print Network [OSTI]

    Big Problems. Big Results. Energy demands, environmental impacts, and national security are some-leading expertise in subsurface science is reducing the environmental impacts of human activ- ities. Environmental to size. EMSL, the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy national

  20. The Impact of CO2-Based Demand-Controlled Ventilation on Energy Consumptions for Air Source Heat Pumps in Schools

    E-Print Network [OSTI]

    AlRaees, N.; Nassif, N.

    2013-01-01T23:59:59.000Z

    There have been increasingly growing concerns for many years over the quality of the air inside buildings and the associated energy use. The CO2-based demand-controlled ventilation DCV offers a great opportunity to reduce energy consumption in HVAC...

  1. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

    2008-05-15T23:59:59.000Z

    As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

  2. EnergySolve Demand Response | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformation Contracts (ESPC) WebinarEnergyConnectEnergySolve

  3. Increasing primary energy and electricity demand. Persistent energy deficit situation.

    E-Print Network [OSTI]

    greater commercial utilization of solar energy in India. · Determination of market acceptance for SLC (PV, T, and PV/T). · Design Solar Linear Concentrators to address market expectations in India) Grid connected (only 2MWp currently). Technical And Economic Potential Of Solar Linear Concentrators

  4. 39610 Energy Conversion & Supply (6) 39611 Energy Demand &Utilization (6)

    E-Print Network [OSTI]

    McGaughey, Alan

    . Energy & Environment (12) 19740 (24740) Combustion & Air Pollution Cntrl (12) 19612 Int. Life Cycle:20 12711 Adv. Project Management for Construction (12) 12742 Data Mining in Infrastructure (6) 12750 Infrastructure Systems (12) 12651/751 Air Quality Engr. (9/12) TR10:3011:50/NA 12740 Data Acq

  5. 39610 Energy Conversion & Supply (6) 39611 Energy Demand &Utilization (6)

    E-Print Network [OSTI]

    McGaughey, Alan

    () 19740 (24740) Comb. & Air Pollution Ctrl 19612 Int. Life Cycle Assessment (12) 19739 (18875) Econ& Engr Combustion & Air Pollution (12) 24642 Fuel Cell Systems (12)MW9:3011:20 24643 S.T. Electrochem. Energy Course (18) 12711 Adv. Project Management for Construction (12) 12742 Data Mining

  6. Analysis of the influence of residential location on light passenger vehicle energy demand.

    E-Print Network [OSTI]

    Williamson, Mark

    2013-01-01T23:59:59.000Z

    ??New Zealand???s current urban environment assumes a constant availability and affordability of energy (oil) and as such the energy demand of private vehicles is rarely… (more)

  7. Conservation Cores: Reducing the Energy of

    E-Print Network [OSTI]

    Wang, Deli

    1 Conservation Cores: Reducing the Energy of Mature Computations Ganesh Venkatesh, Jack Sampson! Dark Silicon #12;9 Conservation Cores Specialized cores for reducing energy ­ Automatically generated Conservation Core Architecture & Synthesis Patchable Hardware Results Conclusions #12;12 Constructing a C

  8. Demand-Side Load Scheduling Incentivized by Dynamic Energy Hadi Goudarzi, Safar Hatami, and Massoud Pedram

    E-Print Network [OSTI]

    Pedram, Massoud

    Demand-Side Load Scheduling Incentivized by Dynamic Energy Prices Hadi Goudarzi, Safar Hatami growth in electrical energy consumption under worst- case demand conditions [1]. To avoid expending 90089 {hgoudarz, shatami, pedram}@usc.edu Abstract--Demand response is an important part of the smart

  9. Control and Optimization Meet the Smart Power Grid: Scheduling of Power Demands for Optimal Energy

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    Control and Optimization Meet the Smart Power Grid: Scheduling of Power Demands for Optimal Energy technologies to enforce sensible use of energy through effective demand load management. We envision a scenario con- sumer power demand requests with different power require- ments, durations, and deadlines

  10. Demand Response and Smart Metering Policy Actions Since the Energy...

    Broader source: Energy.gov (indexed) [DOE]

    This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response...

  11. Tankless or Demand-Type Water Heaters | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tankless or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters May 2, 2012 - 6:47pm Addthis Diagram of a tankless water heater. Diagram of a tankless water heater. How...

  12. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    January 2008. Biography Mary Ann Piette is a Staff ScientistAutomated Demand Response Mary Ann Piette, Sila Kiliccote,

  13. Driving change : evaluating strategies to control automotive energy demand growth in China

    E-Print Network [OSTI]

    Bonde Åkerlind, Ingrid Gudrun

    2013-01-01T23:59:59.000Z

    As the number of vehicles in China has relentlessly grown in the past decade, the energy demand, fuel demand and greenhouse gas emissions associated with these vehicles have kept pace. This thesis presents a model to project ...

  14. Proceedings of the Chinese-American symposium on energy markets and the future of energy demand

    SciTech Connect (OSTI)

    Meyers, S. (ed.)

    1988-11-01T23:59:59.000Z

    The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

  15. Phase-Change Frame Walls (PCFWs) for On-Peak Demand Reduction and Energy Conservation in Residential Buildings: Development, Construction and Evaluation

    E-Print Network [OSTI]

    Zhang, M.; Medina, M. A.; King, J. B.

    2004-01-01T23:59:59.000Z

    The main purpose of this work was to develop a thermally enhanced frame wall that would reduce peak load air conditioning demand, shift a portion of the thermal load, and conserve energy in residential buildings. A frame wall containing...

  16. Energy-Agile Laptops: Demand Response of Mobile Plug Loads Using Sensor/Actuator Networks

    E-Print Network [OSTI]

    Culler, David E.

    Energy-Agile Laptops: Demand Response of Mobile Plug Loads Using Sensor/Actuator Networks Nathan@me.berkeley.edu Abstract--This paper explores demand response techniques for managing mobile, distributed loads with on observed. Our first simulation study explores a classic demand response scenario in which a large number

  17. Comfort demand leading the optimization to energy supply from the Smart Grid

    E-Print Network [OSTI]

    Aduba,K.; Zeiler,W.; Boxem,G.

    2014-01-01T23:59:59.000Z

    ). The control of loads in the building, may also be a resource to the grid using the flexibilities in service of the grid in Demand Side Management (DSM) scenarios as so called Demand Response (DR) or Load Control (LC). (Callaway and Hiskens 2011) However... of energy management, building management, and comfort management have to be developed to anticipate on the coming possible changes on Demand Side Management by Demand Response (DR) and Load Control (LC). This study is a first step towards...

  18. Large-Scale Integration of Deferrable Demand and Renewable Energy Sources

    E-Print Network [OSTI]

    Oren, Shmuel S.

    1 Large-Scale Integration of Deferrable Demand and Renewable Energy Sources Anthony Papavasiliou. In order to accurately assess the impacts of renewable energy integration and demand response integration model for assessing the impacts of the large-scale integration of renewable energy sources

  19. Generation Scheduling for Power Systems with Demand Response and a High Penetration of Wind Energy.

    E-Print Network [OSTI]

    Liu, Guodong

    2014-01-01T23:59:59.000Z

    ??With renewable energy sources and demand response programs expanding in many power systems, traditional unit commitment and economic dispatch approaches are inadequate. The power system… (more)

  20. Sustainable Energy Resources for Consumers (SERC)- On-Demand Tankless Water Heaters

    Broader source: Energy.gov [DOE]

    This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of On-Demand Tankless Water Heaters.

  1. Program Strategies and Results for California’s Energy Efficiency and Demand Response Markets

    E-Print Network [OSTI]

    Ehrhard, R.; Hamilton, G.

    2008-01-01T23:59:59.000Z

    Global Energy Partners provides a review of California’s strategic approach to energy efficiency and demand response implementation, with a focus on the industrial sector. The official role of the state, through the California Energy Commission (CEC...

  2. Renewable Energy Can Help Reduce Oil Dependency

    ScienceCinema (OSTI)

    Arvizu, Dan

    2013-05-29T23:59:59.000Z

    In a speech to the Economic Club of Kansas City on June 23, 2010, NREL Director Dan Arvizu takes a realistic look at how renewable energy can help reduce America's dependence on oil, pointing out that the country gets as much energy from renewable sources now as it does from offshore oil production. For a transcript, visit http://www.nrel.gov/director/pdfs/energy_overview_06_10.pdf

  3. Reducing Regulatory Burden | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReport #Study | Department of EnergyReducingBurden

  4. Model for Analysis of Energy Demand (MAED-2) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine:Energy Information23.Energy Demand (MAED-2)

  5. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01T23:59:59.000Z

    2011).pdf. ———. 2012a. “Annual Energy Outlook (AEO) 2012. ”2013. “Annual Energy Outlook - Model Documentation. ”forecast, the Annual Energy Outlook (AEO) (DOE EIA 2012a).

  6. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  7. Reducing Regulatory Burden | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |Rebecca MatulkaDeliveryUpdatedRFI ReducingBurden Reducing

  8. Reducing Power Factor Cost | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |Reducing LED Costs ThroughReducing Power

  9. Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water Treatment

    SciTech Connect (OSTI)

    Daily, W; Coleman, S; Love, A; Reynolds, J; O'Brien, K; Gammon, S

    2004-09-22T23:59:59.000Z

    Rapid deployment and the use of objective force aggressively reduce logistic footprints and replenishment demands. Maneuver Sustainment requires that Future Combat Systems be equipped with water systems that are lightweight, have small footprints, and are highly adaptable to a variety of environments. Technologies employed in these settings must be able to meet these demands. Lawrence Livermore National Laboratory has designed and previously field tested nano-engineered materials for the treatment of water. These materials have been either based on silica aerogel materials or consist of composites of these aerogels with granular activated carbon (GAC). Recent tests have proven successful for the removal of contaminants including uranium, hexavalent chromium, and arsenic. Silica aerogels were evaluated for their ability to purify water that had been spiked with the nerve agent VX (O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate). These results demonstrated that silica aerogels were able to remove the VX from the supply water and were nearly 30 times more adsorbent than GAC. This performance could result in REDUCING CHANGEOUT FREQUENCY BY A FACTOR OF 30 or DECREASING the VOLUME of adsorbent BY A FACTOR OF 30; thereby significantly reducing logistic footprints and replenishment demands. The use of the nano-engineered Silica Aerogel/GAC composites would provide a water purification technology that meets the needs of Future Combat Systems.

  10. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    Linking Continuous Energy Management and Open AutomatedKeywords: Continuous Energy Management, Automated Demandlinking continuous energy management and continuous

  11. THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY PROFESSION

    E-Print Network [OSTI]

    1 THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY, Iowa State University ABSTRACT There is a tremendous imbalance between engineering workforce demand and supply in the world in general, and in the US, in particular. The electric power and energy industry

  12. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Stadler, Michael; Marnay, Chris; Lai, Judy

    2010-06-01T23:59:59.000Z

    We take the perspective of a microgrid that has installed distribution energy resources (DER) in the form of distributed generation with combined heat and power applications. Given uncertain electricity and fuel prices, the microgrid minimizes its expected annual energy bill for various capacity sizes. In almost all cases, there is an economic and environmental advantage to using DER in conjunction with demand response (DR): the expected annualized energy bill is reduced by 9percent while CO2 emissions decline by 25percent. Furthermore, the microgrid's risk is diminished as DER may be deployed depending on prevailing market conditions and local demand. In order to test a policy measure that would place a weight on CO2 emissions, we use a multi-criteria objective function that minimizes a weighted average of expected costs and emissions. We find that greater emphasis on CO2 emissions has a beneficial environmental impact only if DR is available and enough reserve generation capacity exists. Finally, greater uncertainty results in higher expected costs and risk exposure, the effects of which may be mitigated by selecting a larger capacity.

  13. Residential energy demand modeling and the NIECS data base : an evaluation

    E-Print Network [OSTI]

    Cowing, Thomas G.

    1982-01-01T23:59:59.000Z

    The purpose of this report is to evaluate the 1978-79 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance ...

  14. Impacts of Temperature Variation on Energy Demand in Buildings (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    In the residential and commercial sectors, heating and cooling account for more than 40% of end-use energy demand. As a result, energy consumption in those sectors can vary significantly from year to year, depending on yearly average temperatures.

  15. Economic development and the structure of the demand for commerial energy

    E-Print Network [OSTI]

    Judson, Ruth A.

    To deepen the understanding of the relation between economic development and energy demand, this study estimates the Engel curves that relate per-capita energy consumption in major economic sectors to per-capita GDP. Panel ...

  16. Economic development and the structure of the demand for commerial energy

    E-Print Network [OSTI]

    Judson, Ruth A.; Schmalensee, Richard.; Stoker, Thomas M.

    To deepen understanding of the relation between economic development and energy demand, this study estimates the Engel curves that relate per-capita energy consumption in major economic sectors to per-capita GDP. Panel ...

  17. 1.0 INTRODUCTION As the world's demand for energy continues to grow, unconventional gas will

    E-Print Network [OSTI]

    CHAPTER 1 1.0 INTRODUCTION As the world's demand for energy continues to grow, unconventional gas energy source in the world and plays host to a lot of natural gas resources. Between 3,500 and 9

  18. Factors Influencing Water Heating Energy Use and Peak Demand in a Large Scale Residential Monitoring Study

    E-Print Network [OSTI]

    Bouchelle, M. P.; Parker, D. S.; Anello, M. T.

    2000-01-01T23:59:59.000Z

    , as well as obtain improved appliance energy consumption indexes and load profiles. A portion of the monitoring measures water heater energy use and demand in each home on a 15-minute basis....

  19. Electrical Energy Conservation and Peak Demand Reduction Potential for Buildings in Texas: Preliminary Results

    E-Print Network [OSTI]

    Hunn, B. D.; Baughman, M. L.; Silver, S. C.; Rosenfeld, A. H.; Akbari, H.

    1985-01-01T23:59:59.000Z

    This paper presents preliminary results of a study of electrical energy conservation and peak demand reduction potential for the building sector in Texas. Starting from 1980 building stocks and energy use characteristics, technical conservation...

  20. Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel use and CO2 emissions, has resulted in

    E-Print Network [OSTI]

    Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel, combined with the expanded demand for biofuels, will result in higher food prices, since less land by using biofuels (vegetable oils). But the use of biofuels may not reduce CO2 emissions, even when

  1. Calculating Energy and Demand Retrofit Savings for Victoria High School: Interim Report

    E-Print Network [OSTI]

    Liu, Y.; Reddy, T. A.; Katipamula, S.; Claridge, D. E.

    1992-01-01T23:59:59.000Z

    ESL-TR-92/12-03 Calculating Energy and Demand Retrofit Savings For Victoria High School Yue Liu, T. Agami Reddy, S. Katipamula and David E. Claridge. Interim Report Energy Systems Laboratory Texas A&M University College Station, TX 77843 December... 1992 Calculating Energy and Demand Retrofit Savings For Victoria High School Yue Liu, T. Agami Reddy, S. Katipamula and David E. Claridge. Interim Report Energy Systems Laboratory Texas A&M University College Station, TX 77843 December 1992 Abstract...

  2. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    SciTech Connect (OSTI)

    Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

    2009-09-01T23:59:59.000Z

    In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

  3. Control and Optimization Meet the Smart Power Grid - Scheduling of Power Demands for Optimal Energy Management

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    2010-01-01T23:59:59.000Z

    The smart power grid aims at harnessing information and communication technologies to enhance reliability and enforce sensible use of energy. Its realization is geared by the fundamental goal of effective management of demand load. In this work, we envision a scenario with real-time communication between the operator and consumers. The grid operator controller receives requests for power demands from consumers, with different power requirement, duration, and a deadline by which it is to be completed. The objective is to devise a power demand task scheduling policy that minimizes the grid operational cost over a time horizon. The operational cost is a convex function of instantaneous power consumption and reflects the fact that each additional unit of power needed to serve demands is more expensive as demand load increases.First, we study the off-line demand scheduling problem, where parameters are fixed and known. Next, we devise a stochastic model for the case when demands are generated continually and sched...

  4. Intelligent Building Energy Information and Control Systems for Low-Energy Operations and Optimal Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2014-01-01T23:59:59.000Z

    account  demand  response  signals,  building?integrated of Automated Demand Response in Commercial Buildings.  and Demand Response in Commercial  Buildings. , LBNL 

  5. Deployment of Behind-The-Meter Energy Storage for Demand Charge...

    Office of Scientific and Technical Information (OSTI)

    It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand....

  6. China's Building Energy Demand: Long-Term Implications from a Detailed Assessment

    SciTech Connect (OSTI)

    Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Kyle, G. Page; Patel, Pralit L.

    2012-10-01T23:59:59.000Z

    We present here a detailed, service-based model of China’s building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of China’s building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how China’s building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China’s building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy.

  7. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    11% oil, 6% coal, and traditional energy. A survey conductedand Renewable Energy Ministry of Coal Ministry of Commerce &in Figure 10, coal represents the largest energy product

  8. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    10. Final and Primary Energy Consumption in the Industry35 Figure 16. Primary Energy Consumption byby end users while primary energy consumption includes final

  9. Reducing Regulatory Burden | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof EnergyReducing PeakReducing

  10. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    U.S. DOE, 2006, “Buildings Energy Data Book 2006”, Septembersame period (US Buildings Energy Data Book). Over the next

  11. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11T23:59:59.000Z

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  12. OG&E Uses Time-Based Rate Program to Reduce Peak Demand

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactor TechnologyOFFICE: NEPA REVIEWS: No NEPA reviews areOFPP1

  13. Tankless Demand Water Heater Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 SpecialMaximizingResidential Buildings »Coil andDemand

  14. Project Profile: Reducing the Cost of Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

  15. New Water Booster Pump System Reduces Energy Consumption by 80...

    Broader source: Energy.gov (indexed) [DOE]

    Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases...

  16. Reducing Regulatory Burden | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |Rebecca MatulkaDeliveryUpdatedRFI Reducing

  17. Reducing Photovoltaic Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |Reducing LED Costs Through

  18. Reducing Your Electricity Use | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartment ofManagementManagementReduce Hot Water Use

  19. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response can help reduce the threat of planned rotational outages. Demand response is also widely regarded as having

  20. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01T23:59:59.000Z

    site location into energy-efficient design strategies. Theof IT and non-IT energy efficient design measures (Brown etcenter with an energy-efficient design. A closer evaluation

  1. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    an estimated total energy consumption of 19 GWh (0.07PJ),to 28% in 2005. Total energy consumption in 2020 in thecan have similar total energy consumption but produce very

  2. Experts Meeting: Behavioral Economics as Applied to Energy Demand...

    U.S. Energy Information Administration (EIA) Indexed Site

    - Maps out how to convert the intention to save energy with an actual plan to save energy: - Organizations interact with consumers in many ways in addition to pricing....

  3. Lifestyle studies Market demand Usage patterns Funding: Calif. Energy Commission, BMW, Calif. ARB, ECOtality

    E-Print Network [OSTI]

    California at Davis, University of

    as much energy as it consumes. When done in 2014, the 130-acre UC Davis West Village will be home to 3Consumers Lifestyle studies · Market demand · Usage patterns Funding: Calif. Energy Commission, BMW operation · Energy savings Funding: Chrysler, US Dept of Energy Lead researcher: Kevin Nesbitt, Ph

  4. June 10, 2013 Canada's energy future meeting demand AND the climate change challenge

    E-Print Network [OSTI]

    Pedersen, Tom

    MEDIA TIP June 10, 2013 Canada's energy future ­meeting demand AND the climate change challenge Energy and business reporters are welcome to attend a high-level energy experts' presentation and panel on "Seeking Common Ground on Canada's Energy Future" during the Pacific Institute for Climate Solutions (PICS

  5. 1.0 Motivation............................................................................................................2 1.1Overview of Energy Supply and Demand in the 21st

    E-Print Network [OSTI]

    ............................................................................................................2 1.1Overview of Energy Supply and Demand in the 21st Century..........................2 1.2 UK Energy ...................................................................................24 6.6 Correlation between Wind Strength and Demand for Electricity..................24 6

  6. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Demand Side Strategies for Energy Efficiency in University of British Columbia

    E-Print Network [OSTI]

    of a project/report". #12;DEMAND&SIDE)STRATEGIES)FOR)ENERGY)EFFICIENCY) INUBC Social Ecological Economic Development Studies (SEEDS) Student Report Demand Side Strategies for Energy Efficiency in University of British Columbia Residences Jennifer Clark, Nate Croft, Liam Fast

  7. Potential For Energy, Peak Demand, and Water Savings in California Tomato Processing Facilities

    E-Print Network [OSTI]

    Trueblood, A. J.; Wu, Y. Y.; Ganji, A. R.

    2013-01-01T23:59:59.000Z

    of electrical energy in these plants will be shown. Results from potential electrical efficiency, demand response, and natural gas efficiency measures that have applications in tomato processing facilities will be presented. Additionally, water conservation...

  8. Deployment of Behind-The-Meter Energy Storage for Demand Charge...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deployment of Behind-The- Meter Energy Storage for Demand Charge Reduction J. Neubauer and M. Simpson Technical Report NRELTP-5400-63162 January 2015 NREL is a national laboratory...

  9. Cooling Energy Demand Evaluation by Meansof Regression Models Obtained From Dynamic Simulations

    E-Print Network [OSTI]

    Catalina, T.; Virgone, J.

    2011-01-01T23:59:59.000Z

    The forecast of the energy heating/cooling demand would be a good indicator for the choice between different conception solutions according to the building characteristics and the local climate. A previous study (Catalina T. et al 2008...

  10. Three Case Studues of the Application of Energy Systems Optimization Best Prectices for Automatic Demand Response

    E-Print Network [OSTI]

    Shi, Y.; Guiberteau, K.; Yagua, C.; Watt, J.

    2013-01-01T23:59:59.000Z

    This paper summarizes three case study buildings located in Austin, Texas that were selected for inclusion in a review of the demand reduction program of the utility company Austin Energy. The buildings studied include a city government office...

  11. The Impact of Neighbourhood Density on the Energy Demand of Passive Houses and on Potential Energy Sources from the Waste Flows and Solar Energy.

    E-Print Network [OSTI]

    Stupka, Robert

    2011-01-01T23:59:59.000Z

    ??This study demonstrates how the density of a neighbourhood affects its energy demand, metabolism (energy and material flows) and its ability to produce its own… (more)

  12. Energy-Efficient Reliable Paths for On-Demand Routing Protocols Tamer Nadeem, Suman Banerjee, Archan Misra, Ashok Agrawala

    E-Print Network [OSTI]

    Banerjee, Suman

    1 Energy-Efficient Reliable Paths for On-Demand Routing Protocols Tamer Nadeem, Suman Banerjee does not work for on-demand protocols and some additional mechanisms are needed to compute energy-efficient-Demand routing proto- col (AODV), and show how it can be enhanced to compute such energy-efficient reliable paths

  13. EnergyEfficient Reliable Paths for OnDemand Routing Protocols Tamer Nadeem, Suman Banerjee, Archan Misra, Ashok Agrawala

    E-Print Network [OSTI]

    Banerjee, Suman

    1 Energy­Efficient Reliable Paths for On­Demand Routing Protocols Tamer Nadeem, Suman Banerjee does not work for on­demand protocols and some additional mechanisms are needed to compute energy­efficient­Demand routing proto­ col (AODV), and show how it can be enhanced to compute such energy­efficient reliable paths

  14. Design Considerations for an On-Demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network

    E-Print Network [OSTI]

    Brown, Timothy X.

    1 Design Considerations for an On-Demand Minimum Energy Routing Protocol for a Wireless Ad Hoc- demand minimum energy routing protocol and suggests mechanisms for their implementation. We highlight of an 'energy aware' link cache for storing this information. We also compare the performance of an on-demand

  15. National Action Plan on Demand Response | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy Auditor U.S. Department 6 3 9 12 6 3

  16. Energy demand and conservation in Kenya: initial appraisal

    SciTech Connect (OSTI)

    Schipper, L.

    1980-03-01T23:59:59.000Z

    Ongoing research into the use and conservation of energy in Kenya is reported briefly. A partial accounting of energy use in Kenya is presented, and evidence that some energy conservation has been taking place is discussed. A fuller accounting for all commercial energy flows is both possible and desirable. The work presented should serve as a basis for further data collection and analysis in Kenya, and can be used as a model for similar efforts in other countries. The author intends to continue much of this energy accounting in Kenya in the latter half of 1980.

  17. Reducing Demand through Efficiency and Services: Impacts and Opportunities in Buildings Sector (Carbon Cycle 2.0)

    SciTech Connect (OSTI)

    Piette, Mary Ann [Director, Demand Response Research Center] [Director, Demand Response Research Center

    2010-02-02T23:59:59.000Z

    Mary Ann Piette, Deputy of LBNL's Building Technologies Department and Director of the Demand Response Research Center, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  18. Reducing Demand through Efficiency and Services: Impacts and Opportunities in Buildings Sector (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Piette, Mary Ann [Director, Demand Response Research Center

    2011-06-08T23:59:59.000Z

    Mary Ann Piette, Deputy of LBNL's Building Technologies Department and Director of the Demand Response Research Center, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  19. High Electric Demand Days: Clean Energy Strategies for Improving Air Quality

    Broader source: Energy.gov [DOE]

    This presentation by Art Diem of the State and Local Capacity Building Branch in the U.S. Environmental Protection Agency was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  20. High-Performance with Solar Electric Reduced Peak Demand: Premier Homes

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many| Department HIGHImageDepartment ofRancho

  1. Generating Demand for Multifamily Building Upgrades | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy FreeportEnergyPrivacy Act GuidanceGenerating

  2. Retail Demand Response in Southwest Power Pool | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015Department ofRequirementsEnergyJ u l yEnergyRetail

  3. Agreement for Energy Conservation and Demand Side Management Services

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet,ProposedEnergySITINGDepartment

  4. Demand Response - Policy: More Information | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. Department of Energy | December 2012 Table of

  5. Environmental and Resource Economics Household Energy Demand in Urban China: Accounting for regional prices and rapid

    E-Print Network [OSTI]

    Energy Demand in Urban China: Accounting for regional prices and rapid income change Article Type and changing demographics. We estimate income and price elasticities for these energy types using a two effects into account, we find that total energy is price-inelastic for all income groups. For individual

  6. Comfort-Aware Home Energy Management Under Market-Based Demand-Response

    E-Print Network [OSTI]

    Boutaba, Raouf

    pricing and consumption data in South Korea. Index Terms--smart grid, demand-response, energy management I-based pricing. In peak capping, each home is allocated an energy quota. In market-based pricing, the price-term viable way of regulating energy consumptions. We work with day-ahead market pricing in this paper

  7. A Multipath Energy-Aware On demand Source Routing Protocol for Mobile Ad-Hoc Networks

    E-Print Network [OSTI]

    Boyer, Edmond

    to re-establish broken routes. Thus, a considerable global energy gain can be achieved by minimizing. The choice of the primary route in MEA-DSR is conditioned by two factors: 1) the residual energy of nodesA Multipath Energy-Aware On demand Source Routing Protocol for Mobile Ad-Hoc Networks S. Chettibi

  8. Energy Department Announces $7 Million to Reduce Non-Hardware...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Million to Reduce Non-Hardware Costs of Solar Energy Systems Energy Department Announces 7 Million to Reduce Non-Hardware Costs of Solar Energy Systems November 15, 2011 -...

  9. India Energy Outlook: End Use Demand in India to 2020

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    2009-03-30T23:59:59.000Z

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

  10. An overview of energy supply and demand in China

    SciTech Connect (OSTI)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01T23:59:59.000Z

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world`s largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China`s energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China`s energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  11. An overview of energy supply and demand in China

    SciTech Connect (OSTI)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01T23:59:59.000Z

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world's largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China's energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China's energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  12. Draft Chapter 3: Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S.7685 Vol. 76, No. 29DoingSRS-WD-2010-001 Revision 0

  13. Assessment of Achievable Potential from Energy Efficiency and Demand

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior, Ontario: EnergyAskja Energy JumpGuide |

  14. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demands

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment of Energy Watch itEnergyOptimization

  15. Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes

    SciTech Connect (OSTI)

    Hun, Diana E [ORNL; Jackson, Mark C [University of Texas at Austin; Shrestha, Som S [ORNL

    2014-01-01T23:59:59.000Z

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

  16. Hydrogen Demand and Resource Assessment Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,isHydro orHydroelectricA)

  17. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01T23:59:59.000Z

    Boyd et al. : “Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

  18. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01T23:59:59.000Z

    Boyd et al. : “Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

  19. Energy and Demand Savings from Implementation Costs in Industrial Facilities

    E-Print Network [OSTI]

    Razinha, J. A.; Heffington, W. M.

    Improve Lubrication Practices 0.91 4 na 3 na 0 24 16 487 Use Waste Heat from Hot Flue Gases to Preheat Combustion Air 0.29 483 na 2 0.31 449 25 11 464 Use Synthetic Lubricant 0.03 198 0.03 198 na 0 5 Table 3. National IAC... 2 25 11 Use Synthetic Lubricant 0.00 159 0.00 24 6 Table 4. Texas A&M University IAC Energy Conservation - Implementation Cost Correlations Rank No. TAMU Assessment Recommendation (AR) Total Energy Electrical Consumption Natural...

  20. Behavioral Economics Applied to Energy Demand Analysis: A Foundation -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi, P.2.2 Beamline21BeckyEnergy

  1. Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Kiliccote, S.; Piette, M. A.

    2005-01-01T23:59:59.000Z

    an overview of the economic opportunities for demand responsive control technologies and strategies in commercial buildings. The economic opportunities focus on advanced controls from a building owner’s perspective. The secondary objective is to evaluate.... Table 1 outlines how DR fits into historical demand side management (DSM) concepts. Column three compares DR with energy efficiency and daily peak load management. The emphasis for DR is dynamic control and event driven building response...

  2. U.S. Energy Demand, Offshore Oil Production and

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    that is outside of us. Instead, we are a part of a bigger system that comprises us and technology PE departments the Earth The resource size (current balance of a banking account) is mistakenly equated with the speed supply Energy flow-based solutions (wind turbines, photovoltaics, and biofuels) will require most radical

  3. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    best practices that could be applied to form the basis for demand responsebest practices that could be applicable in improving the energy efficiency and demand responsedemand response activities. The following case studies illustrate best practices

  4. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    best practices that could be applicable in improving the energy efficiency and demand responsebest practices that could be applied to form the basis for demand responsedemand response activities. The following case studies illustrate best practices

  5. Energy Demand in China (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Price, Lynn

    2011-06-08T23:59:59.000Z

    Lynn Price, LBNL scientist, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  6. Assisting Mexico in Developing Energy Supply and Demand Projections | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio EnergyInstituteFunding Jump to:

  7. SmartHG: Energy Demand Aware Open Services for Smart Grid Intelligent Automation

    E-Print Network [OSTI]

    Tronci, Enrico

    solar panels)], for each time slot (say each hour) the DNO price policy defines an interval of energySmartHG: Energy Demand Aware Open Services for Smart Grid Intelligent Automation Enrico Tronci.prodanovic,jorn.gruber, barry.hayes}@imdea.org I. INTRODUCTION The SmartHG project [1], [2] has the goal of developing

  8. Fabricate-on-Demand Vacuum Insulating Glazings | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department-5 METRIC SUMMARY FY 2015

  9. Indianapolis Offers a Lesson on Driving Demand | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012Pathways toDayThe flier for

  10. Assumption to the Annual Energy Outlook 2014 - Commercial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural8U.S.NA NA NA NADemand Module

  11. Assumption to the Annual Energy Outlook 2014 - Industrial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural8U.S.NA NA NA

  12. Assumption to the Annual Energy Outlook 2014 - Transportation Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural8U.S.NA NAOil and

  13. Residential Energy Demand Reduction Analysis and Monitoring Platform - REDRAMP

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments onReply CommentsNext-GenerationDryerDramatic Peak

  14. International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity GenerationIndustry

  15. Light-Duty Vehicle Energy Demand, Demographics, and Travel Behavior

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 § ¨,43332EIA

  16. Behavioral Economics Applied to Energy Demand Analysis: A Foundation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1Vulture SpatialBECOMEBehaviorBehavior

  17. Energy Upgrade California Drives Demand From Behind the Wheel | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClick on the graphic to learn more the

  18. Network-Driven Demand Side Management Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithunCenter Jump to:2 Rules,NellisAntilles:

  19. Regulation Services with Demand Response - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST3 AÇORIANONews Mediaexcitation-induced

  20. Reduce Risk, Increase Clean Energy: How States and Cities are...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Risk, Increase Clean Energy: How States and Cities are Using Old Finance Tools to Scale Up a New Industry Reduce Risk, Increase Clean Energy: How States and Cities are Using...

  1. Reduce Operating Costs with an EnergySmart School Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ballasts can reduce lighting energy by 20 to 30 percent. * ENERGY STAR light-emitting diode (LED) exit signs can last 25 years without lamp replacement. Compact...

  2. Reducing Industrial Energy Intensity in the Southeast Project...

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Energy Intensity in the Southeast Project Fact Sheet Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet This fact sheet contains details regarding...

  3. Regional Differences in the Price-Elasticity of Demand for Energy

    SciTech Connect (OSTI)

    Bernstein, M. A.; Griffin, J.

    2006-02-01T23:59:59.000Z

    At the request of the National Renewable Energy Laboratory (NREL), the RAND Corporation examined the relationship between energy demand and energy prices with the focus on whether the relationships between demand and price differ if these are examined at different levels of data resolution. In this case, RAND compares national, regional, state, and electric utility levels of data resolution. This study is intended as a first step in helping NREL understand the impact that spatial disaggregation of data can have on estimating the impacts of their programs. This report should be useful to analysts in NREL and other national laboratories, as well as to policy nationals at the national level. It may help them understand the complex relationships between demand and price and how these might vary across different locations in the United States.

  4. Consideration of the environmental impact of aircraft has become critical in commercial aviation. The continued growth of air traffic has caused increasing demands to reduce aircraft emissions,

    E-Print Network [OSTI]

    Papalambros, Panos

    ABSTRACT Consideration of the environmental impact of aircraft has become critical in commercial. Demands by the public, environ- mentalists, and governments to reduce aircraft environmental impact, have technologies can reduce the environmental impact of air travel per passenger-mile flown. However, with current

  5. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response (DR) can.S. and internationally and lay out ideas that could help move California forward. KEY WORDS demand response, peak

  6. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  7. Opportunities for Energy Efficiency and Demand Response in Corrugated Cardboard Manufacturing Facilities

    E-Print Network [OSTI]

    Chow, S.; Hackett, B.; Ganji, A. R.

    2005-01-01T23:59:59.000Z

    OPPORTUNITIES FOR ENERGY EFFICIENCY AND DEMAND RESPONSE IN CORRUGATED CARDBOARD MANUFACTURING FACILITIES Sandra Chow BASE Energy, Inc.* San Francisco, CA 94103 Ahmad R. Ganji, Ph.D., P.E. San Francisco State University San Francisco, CA....6 Plant F 7 53,307 0.7 Plant G 14 294,544 0.3 Plant H 13 61,553 0.8 Plant I 9 28,945 1.1 Plant J 9 24,759 2.9 Plant K 12 124,854 0.8 Plant L 18 113,640 1.2 MAJOR OPPORTUNITIES IN DEMAND RESPONSE In recent years, due...

  8. Reducing Energy Costs and Rebuilding the Past | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumpingStudy |Reducing

  9. Demand Response and Open Automated Demand Response

    E-Print Network [OSTI]

    LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

  10. Methodology for Analyzing Energy and Demand Savings From Energy Services Performance Contract Using Short-Term Data

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J. S.; Cho, S.; Lynn, B.; Cook, M.

    2006-01-01T23:59:59.000Z

    ..iilJlf t '_:pUIltaD ? (e) (d) ? ? I I , , ., ? BJ ? AmmJl.thm:pIIILt1II:l ....iind?t.m'.m1R.Dl (,) (f) r ~ ~, ~I-----------'l,----------f .. AmmJl.thJII.:p1mt1ll:1 ., February 9, 2009 Energy Systems Laboratory 10 CONCLUSIONSCASE STUDIESMETHODOLOGY DEMAND SAVINGS...METHODOLOGY FOR ANALYZING ENERGY AND DEMAND SAVINGS FROM ENERGY SERVICES PERFORMANCE CONTRACT USING SHORT-TERM DATA Zi Liu, Jeff Haberl, Soolyeon Cho Energy Systems Laboratory Texas A&M University System College Station, TX 77843 Bobby...

  11. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOE Patents [OSTI]

    Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

    2011-12-06T23:59:59.000Z

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  12. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOE Patents [OSTI]

    Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

    2006-12-12T23:59:59.000Z

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  13. Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach

    SciTech Connect (OSTI)

    Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

    2015-01-01T23:59:59.000Z

    This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to perform detailed hourly impact studies of building adaptation and mitigation strategies on energy use and electricity peak demand within the context of the entire grid and economy.

  14. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    SciTech Connect (OSTI)

    DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2013-06-02T23:59:59.000Z

    In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

  15. Calibration of an EnergyPlus Building Energy Model to Assess the Impact of Demand Response Measures

    E-Print Network [OSTI]

    Lavigne, K.; Sansregret, S.; Daoud, A.; Leclair, L. A.

    2013-01-01T23:59:59.000Z

    1 Karine Lavigne Simon Sansregret Ahmed DaoudLouis-Alexandre Leclaire CALIBRATION OF AN ENERGYPLUS BUILDING ENERGY MODEL TO ASSESS THE IMPACT OF DEMAND RESPONSE MEASURES ICEBO 2013, Montr?al Groupe ? Technologie2 ICEBO-2013 Contextualization... ICEBO-2013 Groupe ? Technologie Calibrated Results 22 ICEBO-2013 12 Groupe ? Technologie Conclusion 23 ICEBO-2013 > Calibrating model for a demand response objective : Challenging and High Effort > Capturing building and human erratic behaviour...

  16. Increasing Underwater Vehicle Autonomy by Reducing Energy Consumption

    E-Print Network [OSTI]

    Chyba, Monique

    : Autonomous Underwater Vehicle, Minimum Energy Consumption, Optimal Control, Experiments. 1 IntroductionIncreasing Underwater Vehicle Autonomy by Reducing Energy Consumption M. Chybaa , T. Haberkornd , S, we concern ourselves with finding a control strategy that minimizes energy consumption along

  17. Economic Development and the Structure of the Demand for Commercial Energy Ruth A. Judson, Richard Schmalensee and Thomas M. Stoker*

    E-Print Network [OSTI]

    development and energy demand, this study estimates the Engel curves that relate per-capita energy consumption in major economic sectors to per- capita GDP. Panel data covering up to 123 nations are employedEconomic Development and the Structure of the Demand for Commercial Energy Ruth A. Judson, Richard

  18. DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program

    E-Print Network [OSTI]

    Hofmann, Hans A.

    DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program 4 operating hours for the lights in each room a. Assign a usage category to each room in all buildings (e electrical usage and savings in room by room spreadsheet d. Subtotal savings by building

  19. DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program

    E-Print Network [OSTI]

    Hofmann, Hans A.

    DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program 4 Works Association Research Foundation (AwwaRF) and building demographics for savings calculations 4-retrofit; calculate savings in room by room spreadsheet 5. Pre-retrofit (Process water audit) ­ Walk buildings

  20. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01T23:59:59.000Z

    to cut primary energy demand per GDP ( T P E S / G D P ) inhowever, primary energy supply per GDP decelerated a declineattention to primary energy supply per GDP, per capita GDP

  1. REDUCING ENERGY USE IN FLORIDA BUILDINGS

    E-Print Network [OSTI]

    Raustad, R.; Basarkar, M.; Vieira, R.

    to determine the energy saving features available which are, in most cases, stricter than the current Florida Building Code. The energy savings features include improvements to building envelop, fenestration, lighting and equipment, and HVAC efficiency...

  2. Property:OpenEI/UtilityRate/FlatDemandMonth8 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to:FlatDemandMonth8 Jump to:

  3. Property:OpenEI/UtilityRate/FlatDemandMonth9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to:FlatDemandMonth8 Jump

  4. Reduce Hot Water Use for Energy Savings | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartment ofManagementManagementReduce Hot Water Use for

  5. Reducing the Energy Consumption of Mobile Applications Behind the Scenes

    E-Print Network [OSTI]

    Tilevich, Eli

    Reducing the Energy Consumption of Mobile Applications Behind the Scenes Young-Woo Kwon and Eli, an increasing number of perfective maintenance tasks are concerned with optimizing energy consumption. However, optimizing a mobile application to reduce its energy consumption is non-trivial due to the highly volatile

  6. GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS

    E-Print Network [OSTI]

    Schott, René - Institut de Mathématiques �lie Cartan, Université Henri Poincaré

    GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS Maha IDRISSI AOUAD.loria.fr/zendra Keywords: Energy consumption reduction, Genetic heuristics, memory allocation management, optimizations on heuristic methods for SPMs careful management in order to reduce memory energy consumption. We propose

  7. Reducing Network Energy Consumption via Sleeping and Rate-Adaptation

    E-Print Network [OSTI]

    California at Irvine, University of

    Reducing Network Energy Consumption via Sleeping and Rate-Adaptation Sergiu Nedevschi Lucian Popa of two forms of power management schemes that reduce the energy consumption of networks. The first the energy consumed when actively processing packets. For real-world traffic workloads and topologies and us

  8. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities”NYSERDA) and the Demand Response Research Center (LLC “Working Group 2 Demand Response Program Evaluation –

  9. Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann

    2005-01-01T23:59:59.000Z

    Fully Automated Demand Response Tests in Large Facilities”.also provided through the Demand Response Research Center (of Fully Automated Demand Response in Large Facilities”

  10. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    buildings. A demand-side management framework from buildingthe integration of DR in demand-side management activitiesdevelopments. The demand-side management (DSM) framework

  11. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    perspective, a demand-side management framework with threethe integration of DR in demand-side management activitiesdevelopments. The demand-side management (DSM) framework

  12. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    Demand Response in Commercial Buildings 3.1. Demand Response in Commercial Buildings ElectricityDemand Response: Understanding the DR potential in commercial buildings

  13. Model documentation report: Industrial sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  14. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13T23:59:59.000Z

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy giants', a phenomenon that is expected to continue, accelerate and spread to other countries. This paper explores the potential for slowing energy consumption and greenhouse gas emissions in the residential sector in developing countries and evaluates the potential of energy savings and emissions mitigation through market transformation programs such as, but not limited to Energy Efficiency Standards and Labeling (EES&L). The bottom-up methodology used allows one to identify which end uses and regions have the greatest potential for savings.

  15. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    SciTech Connect (OSTI)

    Stadler , Michael; Siddiqui, Afzal; Marnay, Chris; ,, Hirohisa Aki; Lai, Judy

    2009-05-26T23:59:59.000Z

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.

  16. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    SciTech Connect (OSTI)

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

    2011-12-22T23:59:59.000Z

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting iron ore to metallic iron nodules. Various types of coals including a bio-coal produced though torrefaction can result in production of NRI at reduced GHG levels. The process results coupled with earlier already reported developments indicate that this process technique should be evaluated at the next level in order to develop parameter information for full scale process design. Implementation of the process to full commercialization will require a full cost production analysis and comparison to other reduction technologies and iron production alternatives. The technical results verify that high quality NRI can be produced under various operating conditions at the pilot level.

  17. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  18. Pantex installs new meters to help to reduce energy consumption...

    National Nuclear Security Administration (NNSA)

    installs new meters to help to reduce energy consumption | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  19. PPPL wins Department of Energy award for reducing greenhouse...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an executive order signed on Oct. 5, 2009, to reduce energy consumption in federal buildings by 30 percent by 2015. "Today's Sustainability Award winners are leading by...

  20. Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options Neufville Professor of Engineering Systems Chair, ESD Education Committee #12;2 #12;3 Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities By Chia

  1. CONSULTANT REPORT DEMAND FORECAST EXPERT

    E-Print Network [OSTI]

    CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

  2. Model documentation report: Industrial sector demand module of the national energy modeling system

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  3. Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann

    2005-01-01T23:59:59.000Z

    driven building response. Demand Side Management Energybuildings. Table 1 outlines how DR fits into historical demand side management (

  4. How Do You Reduce Energy Use from Computers and Electronics?...

    Energy Savers [EERE]

    Energy Use from Computers and Electronics? How Do You Reduce Energy Use from Computers and Electronics? December 16, 2010 - 6:30am Addthis On Monday, John discussed some ways to...

  5. Projections up for total energy demand by IEA nations in 1990

    SciTech Connect (OSTI)

    Vielvoye, R.

    1985-06-17T23:59:59.000Z

    The author reviews the most recent IEA projections for energy demand to the year 2000 in IEA countries. These show that the expectations for 1990 are now higher than estimates made last year. Production of solid fuels is expected to increase from 814 million toe in 1983 to 1044 million toe in 1990 and 1345 million toe by 2000. Nearly all the increase is expected in the US, Canada and Australia.

  6. Property:OpenEI/UtilityRate/FixedDemandChargeMonth8 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to: navigation,Information FixedDemandChargeMonth8

  7. Property:OpenEI/UtilityRate/FlatDemandMonth4 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to: navigation, search This

  8. Property:OpenEI/UtilityRate/FlatDemandMonth5 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to: navigation, search

  9. Property:OpenEI/UtilityRate/FlatDemandMonth6 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to: navigation,

  10. Property:OpenEI/UtilityRate/FlatDemandMonth7 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to:

  11. Intelligent Building Automation: A Demand Response Management Perspective

    E-Print Network [OSTI]

    Qazi, T.

    2010-01-01T23:59:59.000Z

    the energy consumption in response to energy price fluctuations, demand charges, or a direct request to reduce demand when the power grid reaches critical levels. However, in order for a demand response regime to be effective the building will need to have a...

  12. A Multipath Energy-Aware On demand Source Routing Protocol for Mobile Ad-Hoc Networks

    E-Print Network [OSTI]

    Chettibi, Saloua

    2009-01-01T23:59:59.000Z

    Energy consumption is the most challenging issue in routing protocol design for mobile ad-hoc networks (MANETs), since mobile nodes are battery powered. Furthermore, replacing or recharging batteries is often impossible in critical environments such as in military or rescue missions. In a MANET, the energy depletion of a node does not affect the node itself only, but the overall network lifetime. In this paper, we present multipath and energy-aware on demand source routing (MEA-DSR) protocol, which exploits route diversity and information about batteries-energy levels for balancing energy consumption between mobile nodes. Simulation results, have shown that MEA-DSR protocol is more energy efficient than DSR in almost mobility scenarios.

  13. Sandia National Laboratories: reduce wind energy costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskite oxideplatform size requirements

  14. The Impact of Energy Efficiency and Demand Response Programs on the U.S. Electricity Market

    SciTech Connect (OSTI)

    Baek, Young Sun [ORNL; Hadley, Stanton W [ORNL

    2012-01-01T23:59:59.000Z

    This study analyzes the impact of the energy efficiency (EE) and demand response (DR) programs on the grid and the consequent level of production. Changes in demand caused by EE and DR programs affect not only the dispatch of existing plants and new generation technologies, the retirements of old plants, and the finances of the market. To find the new equilibrium in the market, we use the Oak Ridge Competitive Electricity Dispatch Model (ORCED) developed to simulate the operations and costs of regional power markets depending on various factors including fuel prices, initial mix of generation capacity, and customer response to electricity prices. In ORCED, over 19,000 plant units in the nation are aggregated into up to 200 plant groups per region. Then, ORCED dispatches the power plant groups in each region to meet the electricity demands for a given year up to 2035. In our analysis, we show various demand, supply, and dispatch patterns affected by EE and DR programs across regions.

  15. Exposing Datapath Elements to Reduce Microprocessor Energy Consumption

    E-Print Network [OSTI]

    to Reduce Microprocessor Energy Consumption by Mark Jerome Hampton Submitted to the Department of ElectricalExposing Datapath Elements to Reduce Microprocessor Energy Consumption by Mark Jerome Hampton B Submitted to the Department of Electrical Engineering and Computer Science in partial ful llment

  16. Sandia National Laboratories: reduce energy consumption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskite oxide High-Efficiency Solaremissions

  17. Local government involvement in long term resource planning for community energy systems. Demand side management

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  18. Property:OpenEI/UtilityRate/DemandWindow | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms JumpEnergyDemandWindow Jump to: navigation,

  19. Property:OpenEI/UtilityRate/EnableDemandCharge | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms JumpEnergyDemandWindow Jump to:

  20. Reducing Energy Consumption on Process Ovens & Oxidation Systems

    E-Print Network [OSTI]

    Worachek, C.

    recovery systems are capable of metals in the heat exchangers along with stresses recovering up to 97% of the energy used in the induced by changing process conditions can oxidation process. Most units on the market severely reduce the life...REDUCING ENERGY CONSUMPTION ON PROCESS OVENS & OXIDATION SYSTEMS Chris Worachek Design Engineer MEGTEC Systems De Pere, WI ABSTRACT With the uncertain cost of energy, optimizing the use of air in process dryers, ovens and air pollution...

  1. Centre on Innovation and Energy Demand The UK's climate goals are ambitious and challenging. Achieving an 80% reduction in GHG emissions

    E-Print Network [OSTI]

    Jensen, Max

    Centre on Innovation and Energy Demand The UK's climate goals are ambitious and challenging demand. While many low-energy innovations represent relatively incremental changes to existing on energy demand and carbon emissions; and to provide practical recommendations for UK energy and climate

  2. Nodes Placement for reducing Energy Consumption in Multimedia Transmissions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    quality of multimedia traffic. Index Terms--Wireless Sensor Networks, Multimedia, Energy Saving, Quality on the energy saving by extending the lifetime of the network up to more than 15% while preserving video qualityNodes Placement for reducing Energy Consumption in Multimedia Transmissions Pasquale Pace Valeria

  3. Reducing "Search Cost" and Risk in Energy-efficiency Investments

    E-Print Network [OSTI]

    Reducing "Search Cost" and Risk in Energy-efficiency Investments: Two Success Stories Philip E "search Cost"and Risk in Energy-Eficiency Investments: Two Success Stories - 4.91 #12;Perspectives significant transaction costs related to searching for and analyzing information on prospective energy

  4. Model documentation report: Residential sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  5. Impact of the renewable oxygenate standard for reformulated gasoline on ethanol demand, energy use, and greenhouse gas emissions

    SciTech Connect (OSTI)

    Stork, K.C.; Singh, M.K.

    1995-04-01T23:59:59.000Z

    To assure a place for renewable oxygenates in the national reformulated gasoline (RFG) program, the US Environmental Protection Agency has promulgated the renewable oxygenate standard (ROS) for RFG. It is assumed that ethanol derived from corn will be the only broadly available renewable oxygenate during Phase I of the RFG program. This report analyzes the impact that the ROS could have on the supply of ethanol, its transported volume, and its displacement from existing markets. It also considers the energy and crude oil consumption and greenhouse gas (GHG) emissions that could result from the production and use of various RFGs that could meet the ROS requirements. The report concludes that on the basis of current and projected near-term ethanol capacity, if ethanol is the only available renewable oxygenate used to meet the requirements of the ROS, diversion of ethanol from existing use as a fuel is likely to be necessary. Year-round use of ethanol and ETBE would eliminate the need for diversion by reducing winter demand for ethanol. On an RFG-program-wide basis, using ethanol and ETBE to satisfy the ROS can be expected to slightly reduce fossil energy use, increase crude oil use, and have essentially no effect on GHG emissions or total energy use relative to using RFG oxygenated only with MTBE.

  6. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    Japan‘s 2007 primary plastics demand of 107.95 kilograms perChina reaches a lower plastic demand level of 75 kilogramsper capita primary plastics demand was used to estimate per

  7. Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann

    2005-01-01T23:59:59.000Z

    and individuals. DEMAND RESPONSE BUILDINGS RESEARCH Recentand event driven building response. Demand Side ManagementDemand Response does not involve human intervention, but is initiated at a home, building,

  8. Intelligent Building Energy Information and Control Systems for Low-Energy Operations and Optimal Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2014-01-01T23:59:59.000Z

    As  we  develop low?energy buildings, the need for models Building Energy Information and Control Systems for Low-Building  Energy  Information  and  Control  Systems  for  Low­

  9. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Lekov, Alex

    2009-01-01T23:59:59.000Z

    Best Practices. Kiliccote, S. (2008). Automated Demand Responsebest operation practices and behaviors to enhance the impact of DR activities. 1.0 Introduction Background and Overview Demand Response (

  10. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01T23:59:59.000Z

    travel demand, reducing energy intensity and reducing carbonVehicles Vehicle Energy Intensity (E) MPGGE 1990 CA Fleetthe improvements in energy intensity that could be achieved

  11. Reduced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 RevisionDivisionReduced intermittency in

  12. Reducing 3G energy consumption on mobile devices

    E-Print Network [OSTI]

    Deng, Shuo

    2012-01-01T23:59:59.000Z

    The 3G wireless interface is a significant contributor to battery drain on mobile devices. This paper describes the design, implementation, and experimental evaluation of methods to reduce the energy consumption of the 3G ...

  13. Reducing Air-Conditioning System Energy Using a PMV Index

    E-Print Network [OSTI]

    Li, H.; Zhang, Q.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China Maximize Comfort: Temperature, Humidity and IAQ Vol.I-4-1 Reducing Air-Conditioning System Energy Using a PMV Index Hui Li Qingfan Zhang Associate professor...

  14. Reducing energy use comes at a costReducing energy use comes at a cost ----the EU casethe EU case

    E-Print Network [OSTI]

    Deputy Director and Chief Economist Centre for Global Energy StudiesCentre for Global Energy Studies Athens emissions, which are deemed to cause globalemissions, which are deemed to cause global warming regions ofsupplies (especially oil) from unstable regions of the world.the world. Why reduce energy use

  15. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

    2009-04-01T23:59:59.000Z

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  16. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22T23:59:59.000Z

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  17. Property:OpenEI/UtilityRate/DemandChargePeriod2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump to:DemandChargePeriod2 Jump

  18. Property:OpenEI/UtilityRate/DemandChargePeriod2FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump to:DemandChargePeriod2

  19. Property:OpenEI/UtilityRate/DemandChargePeriod4 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: Demand Charge Period 4

  20. Property:OpenEI/UtilityRate/DemandChargePeriod4FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: Demand Charge Period

  1. Property:OpenEI/UtilityRate/DemandChargePeriod5 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: Demand Charge

  2. Property:OpenEI/UtilityRate/DemandChargePeriod5FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: Demand

  3. Property:OpenEI/UtilityRate/DemandChargePeriod6 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber. Name:

  4. Property:OpenEI/UtilityRate/DemandChargePeriod6FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber.

  5. Property:OpenEI/UtilityRate/DemandChargePeriod7 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber.This is a

  6. Property:OpenEI/UtilityRate/DemandChargePeriod7FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber.This is

  7. Property:OpenEI/UtilityRate/DemandChargePeriod8 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber.This is

  8. Property:OpenEI/UtilityRate/DemandChargePeriod8FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber.This

  9. Property:OpenEI/UtilityRate/DemandChargePeriod9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber.This

  10. Property:OpenEI/UtilityRate/FlatDemandMonth3 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to: navigation, search This is

  11. Economic development and the structure of the demand for commercial energy

    SciTech Connect (OSTI)

    Judson, R.A.; Schmalensee, R.; Stoker, T.M.

    1999-07-01T23:59:59.000Z

    To deepen understanding of the relation between economic development and energy demand, this study estimates the relations between per-capita GDP and per-capita energy consumption in major economic sectors. Panel data covering up to 123 nations are employed, and measurement problems are treated both in dataset construction and in estimation. Time and country fixed effects are assumed, and flexible forms for income effects are employed. There are substantial differences among sectors in the structure of country, time, and income effects. In particular, the household sector's share of aggregate energy consumption tends to fall with income, the share of transportation tends to rise, and the share of industry follows an inverse-U pattern.

  12. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  13. World population growth, industrialization, energy demand, and environmental goals are presently driving rapid global change in emissions with complex conse-

    E-Print Network [OSTI]

    Mauzerall, Denise

    395 World population growth, industrialization, energy demand, and environmental goals the average transport time is 2­3 weeks (Liu and Mauzerall 2005). Circumpolar trans- port of pollution around

  14. World population growth, industrialization, energy demand, and environmental goals are presently driving rapid global change in emissions with complex conse-

    E-Print Network [OSTI]

    Mauzerall, Denise

    377 World population growth, industrialization, energy demand, and environmental goals the average transport time is 2­3 weeks (Liu and Mauzerall 2005). Circumpolar trans- port of pollution around

  15. Study of Energy and Demand Savings on a High Efficiency Hydraulic Pump System with Infinite Turn Down Technology (ITDT)

    E-Print Network [OSTI]

    Sfeir, R. A.; Kanungo, A.; Liou, S.

    2005-01-01T23:59:59.000Z

    Detailed field measurement and verification of electrical energy (kWh) and demand (kW) savings is conducted on an injection molding machine used in typical plastic manufacturing facility retrofitted with a high efficiency hydraulic pump system...

  16. Industrial Demand-Side Management in Texas

    E-Print Network [OSTI]

    Jaussaud, D.

    of programs result in lower consumption and/or lower peak demand, and ultimately reduce the need to build new capacity. Hence demand-side management can be used as a resource option to be considered alongside more traditional supply-side resources in a...INDUSTRIAL DEMAND-SIDE MANAGEMENT IN TEXAS Danielle Jaussaud Economic Analysis Section Public Utility Commission of Texas Austin, Texas ABSTRACT The industrial sector in Texas is highly energy intensive and represents a large share...

  17. PET: Reducing Database Energy Cost via Query Optimization

    E-Print Network [OSTI]

    Tu, Yicheng

    PET: Reducing Database Energy Cost via Query Optimization Zichen Xu The Ohio State University xuz not necessarily have the shortest processing time. This demo proposal introduces PET ­ an energy-aware query op- timization framework that is built as a part of the PostgreSQL ker- nel. PET, via its power cost estimation

  18. A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making

    SciTech Connect (OSTI)

    Puig, Rita, E-mail: rita.puig@eei.upc.edu [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Fullana-i-Palmer, Pere [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain); Baquero, Grau; Riba, Jordi-Roger [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Bala, Alba [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain)

    2013-12-15T23:59:59.000Z

    Highlights: • We developed a methodology useful to environmentally compare industrial waste management options. • The methodology uses a Net Energy Demand indicator which is life cycle based. • The method was simplified to be widely used, thus avoiding cost driven decisions. • This methodology is useful for governments to promote the best environmental options. • This methodology can be widely used by other countries or regions around the world. - Abstract: Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

  19. Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand for deployment of autonomous

    E-Print Network [OSTI]

    Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand wind energy harvesting is presented, with a focus on an anemometer-based solution. By utilizing for localized, independent energy harvesting capabilities for each node. In this paper, a method of remote area

  20. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich; Dunham Whitehead, Camilla; Brown, Rich

    2010-09-30T23:59:59.000Z

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  1. IMPACT Vol. 5 No. 1 | Spring 2010 CLeAn eneRGy DeMAnDS

    E-Print Network [OSTI]

    Hill, Wendell T.

    IMPACT Vol. 5 No. 1 | Spring 2010 CLeAn eneRGy DeMAnDS: SCienCe, innovATion, PUBLiC PoLiCy Maryland on foreign oil and become the world leader in tomorrow's clean-energy economy," says Steve Fetter, a former researchers shape the new energy economy #12;impact overview impact overview EnErgy rEsEarcH EnErgy r

  2. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

  3. Journal of Artificial Intelligence Research 50 (2014) 885-922 Submitted 4/14; published 8/14 Demand Side Energy Management via Multiagent Coordination in

    E-Print Network [OSTI]

    Sadeh, Norman M.

    Abstract A key challenge in creating a sustainable and energy-efficient society is to make consumer demand propose a novel multiagent coordination algorithm, to shape the energy demand of the cooperativeJournal of Artificial Intelligence Research 50 (2014) 885-922 Submitted 4/14; published 8/14 Demand

  4. Residential-energy-demand modeling and the NIECS data base: an evaluation

    SciTech Connect (OSTI)

    Cowing, T.G.; Dubin, J.A.; McFadden, D.

    1982-01-01T23:59:59.000Z

    The purpose of this report is to evaluate the 1978-1979 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance choice and utilization decisions. The NIECS contains detailed energy usage information at the household level for 4081 households during the April 1978 to March 1979 period. Among the data included are information on the structural and thermal characteristics of the housing unit, demographic characteristics of the household, fuel usage, appliance characteristics, and actual energy consumption. The survey covers the four primary residential fuels-electricity, natural gas, fuel oil, and liquefied petroleum gas - and includes detailed information on recent household conservation and retrofit activities. Section II contains brief descriptions of the major components of the NIECS data set. Discussions are included on the sample frame and the imputation procedures used in NIECS. There are also two extensive tables, giving detailed statistical and other information on most of the non-vehicle NIECS variables. Section III contains an assessment of the NIECS data, focusing on four areas: measurement error, sample design, imputation problems, and additional data needed to estimate appliance choice/use models. Section IV summarizes and concludes the report.

  5. Energy and Security in Northeast Asia: Supply and Demand, Conflict and

    E-Print Network [OSTI]

    Fesharaki, Fereidun; Banaszak, Sarah; WU, Kang; Valencia, Mark J.; Dorian, James P.

    1998-01-01T23:59:59.000Z

    increased to 18 percent, nuclear power's to 15 percent, andgovernment is promoting nuclear power to meet the demand for

  6. Abstract --Due to the potentially large number of Distributed Energy Resources (DERs) demand response, distributed

    E-Print Network [OSTI]

    Zhang, Wei

    to accurately estimate the transients caused by demand response is especially important to analyze the stability of the system under different demand response strategies, where dynamics on time scales of seconds to minutes demand response. The aggregated model efficiently includes statistical information of the population

  7. Development of a local carbon dioxide emissions inventory based on energy demand and waste production

    SciTech Connect (OSTI)

    Joao Gomes; Joana Nascimento; Helena Rodrigues [Instituto Superior de Engenharia de Lisboa, Lisboa (Portugal)

    2007-09-15T23:59:59.000Z

    The paper describes the study that led to the development of a carbon dioxide emissions matrix for the Oeiras municipality, one of the largest Portuguese municipalities, located in the metropolitan area of Lisbon. This matrix takes into account the greenhouse gas (GHG) emissions due to an increase of electricity demand in buildings as well as solid and liquid wastes treatment from the domestic and services sectors. Using emission factors that were calculated from the relationship between the electricity produced and amount of treated wastes, the GHC emissions in the Oeiras municipality were estimated for a time series of 6 yr (1998 - 2003). The obtained results showed that the electricity sector accounts for approximately 75% of the municipal emissions in 2003. This study was developed to obtain tools to base options and actions to be undertaken by local authorities such as energy planning and also public information. 11 refs., 12 tabs.

  8. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportationsearchDEMAND Freight

  9. A First Look at Colocation Demand Response Shaolei Ren

    E-Print Network [OSTI]

    Ren, Shaolei

    programs and receive financial benefits by reducing energy consumption upon utility's request. However, on the other hand, can reduce server energy consumption but may not desire demand response unless response by using a trace-based simulation to show that iCODE can significantly reduce energy consumption

  10. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Ponderosa Commons Energy Conservation Studies

    E-Print Network [OSTI]

    and evaluation of possible demand side management strategies for reducing energy demand reduce heating loads in residential buildings, the fourth option of the use

  11. A Unit Commitment Model with Demand Response for the Integration of Renewable Energies

    E-Print Network [OSTI]

    Ikeda, Yuichi; Kataoka, Kazuto; Ogimoto, Kazuhiko

    2011-01-01T23:59:59.000Z

    The output of renewable energy fluctuates significantly depending on weather conditions. We develop a unit commitment model to analyze requirements of the forecast output and its error for renewable energies. Our model obtains the time series for the operational state of thermal power plants that would maximize the profits of an electric power utility by taking into account both the forecast of output its error for renewable energies and the demand response of consumers. We consider a power system consisting of thermal power plants, photovoltaic systems (PV), and wind farms and analyze the effect of the forecast error on the operation cost and reserves. We confirm that the operation cost was increases with the forecast error. The effect of a sudden decrease in wind power is also analyzed. More thermal power plants need to be operated to generate power to absorb this sudden decrease in wind power. The increase in the number of operating thermal power plants within a short period does not affect the total opera...

  12. Using occupancy to reduce energy consumption of buildings

    E-Print Network [OSTI]

    Balaji, Bharathan

    2011-01-01T23:59:59.000Z

    Response The demand response actions give building managersdemand response (DR) events are handled in our system. Both end users and buildingbuilding managers to actuate the plug loads in case of a demand response

  13. Building Energy Codes Collaborative Technical Assistance for...

    Energy Savers [EERE]

    State Energy Officials - 2014 BTO Peer Review Southeast Energy Efficiency Alliance's Building Energy Codes Project Reducing Energy Demand in Buildings Through State Energy Codes...

  14. Reducing Waste and Harvesting Energy This Halloween | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research | DepartmentDepartmentHatch,DepartmentDeliveryMay 1,HereWrap yourAs''This

  15. The worldwide demand for green energy systems is evident. In this context, wind energy converters will play a paramount role. Extending the service life of a

    E-Print Network [OSTI]

    Stanford University

    ABSTRACT The worldwide demand for green energy systems is evident. In this context, wind energy converters will play a paramount role. Extending the service life of a wind energy converter translates and operation of the wind energy converters make it beneficial to know the structural condition

  16. Reducing Energy Costs And Minimizing Capital Requirements: Case Studies of Thermal Energy Storage (TES)

    E-Print Network [OSTI]

    Andrepont, J. S.

    2007-01-01T23:59:59.000Z

    , and thus during those times when power has its highest cost or value. Thermal Energy Storage (TES) provides a means of de-coupling the generation of cooling from the provision of cooling to the peak cooling loads. In this manner, peak power demand...

  17. Mobile applications constantly demand additional memory, and traditional

    E-Print Network [OSTI]

    Lee, Hsien-Hsin "Sean"

    . This remote access could reduce local storage space, thereby reducing energy demands on the mobile plat- form60 Mobile applications constantly demand additional memory, and traditional designs increase- port connected ubiquitous environments. Engineers attempt to minimize network use because of its

  18. The addition of a US Rare Earth Element (REE) supply-demand model improves the characterization and scope of the United States Department of Energy's effort to forecast US REE Supply and Demand

    E-Print Network [OSTI]

    Mancco, Richard

    2012-01-01T23:59:59.000Z

    This paper presents the development of a new US Rare Earth Element (REE) Supply-Demand Model for the explicit forecast of US REE supply and demand in the 2010 to 2025 time period. In the 2010 Department of Energy (DOE) ...

  19. Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

    2010-04-08T23:59:59.000Z

    In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

  20. An Energy-Aware On-Demand Routing Protocol for Ad-Hoc Wireless Networks

    E-Print Network [OSTI]

    Veerayya, Mallapur

    2008-01-01T23:59:59.000Z

    An ad-hoc wireless network is a collection of nodes that come together to dynamically create a network, with no fixed infrastructure or centralized administration. An ad-hoc network is characterized by energy constrained nodes, bandwidth constrained links and dynamic topology. With the growing use of wireless networks (including ad-hoc networks) for real-time applications, such as voice, video, and real-time data, the need for Quality of Service (QoS) guarantees in terms of delay, bandwidth, and packet loss is becoming increasingly important. Providing QoS in ad-hoc networks is a challenging task because of dynamic nature of network topology and imprecise state information. Hence, it is important to have a dynamic routing protocol with fast re-routing capability, which also provides stable route during the life-time of the flows. In this thesis, we have proposed a novel, energy aware, stable routing protocol named, Stability-based QoS-capable Ad-hoc On-demand Distance Vector (SQ-AODV), which is an enhancement...

  1. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19T23:59:59.000Z

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  2. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

  3. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01T23:59:59.000Z

    analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

  4. DOE Announces $27 Million to Reduce Costs of Solar Energy Projects...

    Energy Savers [EERE]

    DOE Announces 27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations DOE Announces 27 Million to Reduce Costs of Solar Energy Projects,...

  5. Reducing Regulatory Burden EO 13563 Third RFI | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |Rebecca MatulkaDeliveryUpdatedRFI Reducing Regulatory

  6. Reducing LED Costs Through Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |Reducing LED Costs Through Innovation

  7. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27T23:59:59.000Z

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  8. Energy spectrum, dissipation, and spatial structures in reduced Hall magnetohydrodynamic

    SciTech Connect (OSTI)

    Martin, L. N.; Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Gomez, D. O. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, CONICET, Buenos Aires (Argentina)

    2012-05-15T23:59:59.000Z

    We analyze the effect of the Hall term in the magnetohydrodynamic turbulence under a strong externally supported magnetic field, seeing how this changes the energy cascade, the characteristic scales of the flow, and the dynamics of global magnitudes, with particular interest in the dissipation. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics are performed, for different values of the Hall parameter (the ratio of the ion skin depth to the macroscopic scale of the turbulence) controlling the impact of the Hall term. The Hall effect modifies the transfer of energy across scales, slowing down the transfer of energy from the large scales up to the Hall scale (ion skin depth) and carrying faster the energy from the Hall scale to smaller scales. The final outcome is an effective shift of the dissipation scale to larger scales but also a development of smaller scales. Current sheets (fundamental structures for energy dissipation) are affected in two ways by increasing the Hall effect, with a widening but at the same time generating an internal structure within them. In the case where the Hall term is sufficiently intense, the current sheet is fully delocalized. The effect appears to reduce impulsive effects in the flow, making it less intermittent.

  9. PURDUE UNIVERSITY LEADERSHIP IN ENERGY RESEARCH Recognizing the grand-challenge problems of global energy demands with evidence of climate change

    E-Print Network [OSTI]

    PURDUE UNIVERSITY LEADERSHIP IN ENERGY RESEARCH Recognizing the grand-challenge problems of global of energy including fossil fuels, nuclear, solar, wind and bioenergy. The activities incorporate socio energy demands with evidence of climate change and broader environmental impacts, Purdue is building

  10. The Impact of Technological Change and Lifestyles on the Energy Demand

    E-Print Network [OSTI]

    Steininger, Karl W.

    demand into a model of total private consumption. Private consumption is determined by economic variables of technological and socio- demographic variables on the demand for gasoline/diesel, heating and electricity. Key, households' electricity and heat consumption are growing rapidly despite of technological progress

  11. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    A demand-side management framework from building operationsdemand-side management (DSM) framework presented in Table 2 provides three major areas for changing electric loads in buildings:buildings in California. This paper summarizes the integration of DR in demand-side management

  12. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    a building operations perspective, a demand-side managementdemand-side management (DSM) framework presented in Table 2 provides three major areas for changing electric loads in buildings:buildings in California. This report summarizes the integration of DR in demand-side management

  13. China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01T23:59:59.000Z

    World Best Practice Energy Intensity Values for SelectedChina’s Target for Energy Intensity Reduction in 2010: Angoal of reducing energy intensity, defined as energy

  14. The increasing world energy demand, depletion and unequal distribution of fossil resources, and the dangers caused by climate change are the driving forces for the

    E-Print Network [OSTI]

    van den Brink, Jeroen

    Summary Summary The increasing world energy demand, depletion and unequal distribution of fossil demand, many nations have established new regimes on renewable energy. For instance, the European of alternative energy sources. In view of the GHG emission reduction target agreed upon in the Kyoto protocol

  15. Field Verification of Energy and Demand Savings of Two Injection Molding Machines Retrofitted with Variable Frequency Drives

    E-Print Network [OSTI]

    Liou, S. P.; Aguiar, D.

    Detailed field measurements of energy consumption (kWh) and demand (kW) are conducted on two injection molding machines (IMMs) used in a typical plastic manufacturing facility in the San Francisco Bay Area, with/without Variable Frequency Drives...

  16. Construction of energy-stable Galerkin reduced order models.

    SciTech Connect (OSTI)

    Kalashnikova, Irina; Barone, Matthew Franklin; Arunajatesan, Srinivasan; van Bloemen Waanders, Bart Gustaaf

    2013-05-01T23:59:59.000Z

    This report aims to unify several approaches for building stable projection-based reduced order models (ROMs). Attention is focused on linear time-invariant (LTI) systems. The model reduction procedure consists of two steps: the computation of a reduced basis, and the projection of the governing partial differential equations (PDEs) onto this reduced basis. Two kinds of reduced bases are considered: the proper orthogonal decomposition (POD) basis and the balanced truncation basis. The projection step of the model reduction can be done in two ways: via continuous projection or via discrete projection. First, an approach for building energy-stable Galerkin ROMs for linear hyperbolic or incompletely parabolic systems of PDEs using continuous projection is proposed. The idea is to apply to the set of PDEs a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. The resulting ROM will be energy-stable for any choice of reduced basis. It is shown that, for many PDE systems, the desired transformation is induced by a special weighted L2 inner product, termed the %E2%80%9Csymmetry inner product%E2%80%9D. Attention is then turned to building energy-stable ROMs via discrete projection. A discrete counterpart of the continuous symmetry inner product, a weighted L2 inner product termed the %E2%80%9CLyapunov inner product%E2%80%9D, is derived. The weighting matrix that defines the Lyapunov inner product can be computed in a black-box fashion for a stable LTI system arising from the discretization of a system of PDEs in space. It is shown that a ROM constructed via discrete projection using the Lyapunov inner product will be energy-stable for any choice of reduced basis. Connections between the Lyapunov inner product and the inner product induced by the balanced truncation algorithm are made. Comparisons are also made between the symmetry inner product and the Lyapunov inner product. The performance of ROMs constructed using these inner products is evaluated on several benchmark test cases.

  17. Evaluation of the Heating & Cooling Energy Demand of a Case Residential Building by Comparing The National Calculation Methodology of Turkey and EnergyPlus through Thermal Capacity Calculations

    E-Print Network [OSTI]

    Atamaca, Merve; Kalaycioglu, Ece; Yilmaz, Zerrin

    2011-10-01T23:59:59.000Z

    In all around the world, because of the rapid population growth and exhausting energy sources over time, energy efficiency and energy conservation gradually come into prominence. Hence, in 2002, a directive (EPBD) which obligates reducing energy...

  18. Unexpected consequences of demand response : implications for energy and capacity price level and volatility

    E-Print Network [OSTI]

    Levy, Tal Z. (Tal Ze'ev)

    2014-01-01T23:59:59.000Z

    Historically, electricity consumption has been largely insensitive to short term spot market conditions, requiring the equating of supply and demand to occur almost exclusively through changes in production. Large scale ...

  19. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    your Power. (2008). "Demand Response Programs." RetrievedUsing Open Automated Demand Response, Lawrence Berkeley2008). "What is Demand Response?" Retrieved 10/10/2008, from

  20. Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

    2006-01-01T23:59:59.000Z

    introduction of a demand-side management (DSM) framework forof building controls. Demand-Side Management Framework forDOE 2006). The demand-side management (DSM) framework

  1. Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    Brochure on Vehicle Testing and Integration Facility, featuring the Vehicle Modification Facility, Vehicle Test Pad and ReCharge Integrated Demonstration System. Plug-in electric vehicles (PEVs) offer the opportunity to shift transportation energy demands from petroleum to electricity, but broad adoption will require integration with other systems. While automotive experts work to reduce the cost of PEVs, fossil fueled cars and trucks continue to burn hundreds of billions of gallons of petroleum each year - not only to get from point A to point B, but also to keep passengers comfortable with air conditioning and heat. At the National Renewable Energy Laboratory (NREL), three installations form a research laboratory known as the Vehicle Testing and Integration Facility (VTIF). At the VTIF, engineers are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle-grid integration and minimizing fuel consumption related to vehicle climate control. Part of NREL's Center for Transportation Technologies and Systems (CTTS), the VTIF is dedicated to renewable and energy efficient solutions. This facility showcases technology and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for electric vehicle (EV) components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies and industry partners. Research conducted at the VTIF examines the interaction of building energy systems, utility grids, renewable energy sources and PEVs, integrating energy management solutions, and maximizing potential greenhouse gas (GHG) reduction, while smoothing the transition and reducing costs for EV owners. NREL's collaboration with automakers, charging station manufacturers, utilities and fleet operators to assess technologies using VTIF resources is designed to enable PEV communication with the smart grid and create opportunities for vehicles to play an active role in building and grid management. Ultimately, this creates value for the vehicle owner and will help renewables be deployed faster and more economically, making the U.S. transportation sector more flexible and sustainable.

  2. Method for reducing energy losses in laser crystals

    DOE Patents [OSTI]

    Atherton, L.J.; DeYoreo, J.J.; Roberts, D.H.

    1992-03-24T23:59:59.000Z

    A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light. 12 figs.

  3. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01T23:59:59.000Z

    Building Energy Use Unaccounted-for Water Demand Managementdetermine whether its unaccounted-for losses exceed typicalof distribution zones Unaccounted-for treated water Units

  4. State Energy Program Helps States Plan and Implement Energy Efficiency...

    Energy Savers [EERE]

    to states and U.S. territories to promote energy conservation and reduce the growth of energy demand in ways that are consistent with national energy goals....

  5. Demand Forecast INTRODUCTION AND SUMMARY

    E-Print Network [OSTI]

    Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required of any forecast of electricity demand and developing ways to reduce the risk of planning errors that could arise from this and other uncertainties in the planning process. Electricity demand is forecast

  6. Reduced density matrix hybrid approach: Application to electronic energy transfer

    SciTech Connect (OSTI)

    Berkelbach, Timothy C.; Reichman, David R. [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Markland, Thomas E. [Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305 (United States)

    2012-02-28T23:59:59.000Z

    Electronic energy transfer in the condensed phase, such as that occurring in photosynthetic complexes, frequently occurs in regimes where the energy scales of the system and environment are similar. This situation provides a challenge to theoretical investigation since most approaches are accurate only when a certain energetic parameter is small compared to others in the problem. Here we show that in these difficult regimes, the Ehrenfest approach provides a good starting point for a dynamical description of the energy transfer process due to its ability to accurately treat coupling to slow environmental modes. To further improve on the accuracy of the Ehrenfest approach, we use our reduced density matrix hybrid framework to treat the faster environmental modes quantum mechanically, at the level of a perturbative master equation. This combined approach is shown to provide an efficient and quantitative description of electronic energy transfer in a model dimer and the Fenna-Matthews-Olson complex and is used to investigate the effect of environmental preparation on the resulting dynamics.

  7. SciTech Connect: Reducing Energy Use in Existing Homes by 30...

    Office of Scientific and Technical Information (OSTI)

    Reducing Energy Use in Existing Homes by 30%: Learning From Home Performance with ENERGY STAR Citation Details In-Document Search Title: Reducing Energy Use in Existing Homes by...

  8. Energy Policy The university is committed to reducing its consumption of energy and promoting low carbon, energy

    E-Print Network [OSTI]

    Haase, Markus

    Energy Policy June 2009 The university is committed to reducing its consumption of energy and promoting low carbon, energy saving and energy efficiency initiatives as part of its Sustainable Development programme. Tackling climate change is one of our highest priorities and this reflects UK policy. Our Energy

  9. China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01T23:59:59.000Z

    Monitoring of Direct Energy Consumption in Long-Term2007. “Constraining Energy Consumption of China’s LargestProgram: Reducing Energy Consumption of the 1000 Largest

  10. Building Energy Management Open-Source Software Development ...

    Broader source: Energy.gov (indexed) [DOE]

    be able to optimize electricity usage to reduce energy consumption and help implement demand response (DR). This opens up demand side ancillary services markets and creates...

  11. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    reliability of the electricity system; reducing costs associated with generation, transmission and distribution;

  12. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    reliability of the electricity system; Reducing costs associated with generation, transmission and distribution;

  13. Scalable, Secure Energy Information Management for Demand-Response Analysis Yogesh Simmhan1,2

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    , pricing, and demand among utility providers and consumers. While the smart meter infrastructure the events streaming from smart meters through the smart grid, to meaningful analysis and feedback for these decisions comes from diverse sources: smart meters that report near real-time power usage and quality

  14. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOE Patents [OSTI]

    Reilly, Peter T.A.

    2014-05-13T23:59:59.000Z

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  15. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOE Patents [OSTI]

    Reilly, Peter T. A. [Knoxville, TN

    2010-12-14T23:59:59.000Z

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  16. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOE Patents [OSTI]

    Reilly, Peter T.A.

    2013-12-03T23:59:59.000Z

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  17. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    was provided by the New York State Energy and ResearchCalifornia Energy Commission and the New York State Energysupplies of affordable energy. In New York and California,

  18. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    was provided by the New York State Energy and Researchwork was supported by the New York State Energy and Researchsupplies of affordable energy. In New York and California,

  19. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    and Operation in Zero-Net- Energy Buildings with Demandand Operation in Zero-Net-Energy Buildings with Demandhas launched the Zero-Net- Energy (ZNE) Commercial Building

  20. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    Study in Energy Efficiency in Buildings August Nationalelectric loads in buildings: energy efficiency (for steady-and Energy Efficiency Options Using Commercial Building

  1. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    ammonia production energy intensity lags behind the worldworld best practice primary energy intensity for ethylene productionproduction using only 23% more energy than the current world

  2. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    urbanization and trade to elucidate the energy and emissionsindustrial energy use, lower urbanization and trade as wellof urbanization rate and trade as well as energy efficiency

  3. Fact Sheet: U.S. and China Actions Matter for Global Energy Demand...

    Energy Savers [EERE]

    work together to increase energy security through: Fostering transparent and efficient energy markets; Lowering trade barriers, particularly for clean energy and other...

  4. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    21 Figure 13: Primary Energy Consumption byEffects on Industry Primary Energy Consumption, 1995-share of total primary energy consumption surged even higher

  5. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    2007. 27 3.2.3 Energy Intensity and Fuel Mix As a result ofEnergy Intensity and Fuel Mix Energy Intensity and Fuel Mix

  6. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Lekov, Alex

    2009-01-01T23:59:59.000Z

    white wine production instead of the more energy intensiveand dairy and wine processors. The energy loads in these

  7. Energy and Security in Northeast Asia: Supply and Demand, Conflict and

    E-Print Network [OSTI]

    Fesharaki, Fereidun; Banaszak, Sarah; WU, Kang; Valencia, Mark J.; Dorian, James P.

    1998-01-01T23:59:59.000Z

    with coal the main energy supplier for the industry. Theboth potential energy suppliers--Russia and possibly

  8. Lessons learned from new construction utility demand side management programs and their implications for implementing building energy codes

    SciTech Connect (OSTI)

    Wise, B.K.; Hughes, K.R.; Danko, S.L.; Gilbride, T.L.

    1994-07-01T23:59:59.000Z

    This report was prepared for the US Department of Energy (DOE) Office of Codes and Standards by the Pacific Northwest Laboratory (PNL) through its Building Energy Standards Program (BESP). The purpose of this task was to identify demand-side management (DSM) strategies for new construction that utilities have adopted or developed to promote energy-efficient design and construction. PNL conducted a survey of utilities and used the information gathered to extrapolate lessons learned and to identify evolving trends in utility new-construction DSM programs. The ultimate goal of the task is to identify opportunities where states might work collaboratively with utilities to promote the adoption, implementation, and enforcement of energy-efficient building energy codes.

  9. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Lekov, Alex

    2009-01-01T23:59:59.000Z

    Best Practices Guide. Walla Walla, WA, Cascade Energy Engineering, Inc. , Northwest Energy EfficiencyBest Practices Guide. Walla Walla, WA, Cascade Energy Engineering, Inc. , Northwest Energy EfficiencyBest Practices Guide. Walla Walla, WA, Cascade Energy Engineering, Inc. , Northwest Energy Efficiency

  10. Energy watchers IV. Energy, economics and environment: Imperatives realities, and balance and Pacific Basin Demand and downstream activities: Is Middle East supply the answer

    SciTech Connect (OSTI)

    El Mallakh, D.H. (ed.)

    1993-01-01T23:59:59.000Z

    Since 1974, the International Research Center for Energy and Economic Development (ICEED) has been holding annual international energy conferences that seek to bring together the public and private sectors from the United States and overseas in order to facilitate the exchange of views and information. The nineteenth annual international energy sessions on [open quotes]Energy, Economics, and Environment: Imperatives, Realities, and Balance,[close quotes] opened April 21, 1992. The goal was to look at the complex linkage between energy and the environment that cannot be decoupled in the near to medium future. The thirteenth annual international area conference, held from April 23-24, 1992, reflected appreciation and acknowledgement of the primacy of the Arabian/Persian Gulf in international energy trade. The area theme, [open quotes]Pacific Basin Demand and Downstream Activities: Is Middle East Supply the Answer ,[close quotes] was premised on the solidification of trade blocs globally and on these two regions which represent the major areas of growth in energy demand and petroleum supply, respectively. Issues addressed in the papers presented included the impact on the world oil sector of these demand and supply zones in the direction of upstream and downstream investment, the approaches and instruments that may be initiated or honed in terms of joint ventures and supply arrangements in the 1990s, and the possibility that the former USSR will become an energy land bridge between the Pacific Basin and Europe.

  11. Multi-period Optimal Procurement and Demand Responses in the Presence of Uncertain Supply

    E-Print Network [OSTI]

    Low, Steven H.

    Smart Grid involves changes in both the demand side and supply side. On the supply side, more renewable energy will be integrated to reduce greenhouse gas emissions and other pollution. On the demand side, smarter demand management systems will be available to respond to the electricity price and improve

  12. Strategies for Demand Response in Commercial Buildings

    SciTech Connect (OSTI)

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-06-20T23:59:59.000Z

    This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

  13. ASHRAE's Guideline 14-2002 for Measurement of Energy and Demand Savings: How to Determine What Was Really Saved by the Retrofit

    E-Print Network [OSTI]

    Haberl, J. S.; Claridge, D. E.; Culp, C.

    2005-01-01T23:59:59.000Z

    developed standards for the laboratory measurement of temperature, pressure, airflow, liquid flow, power, thermal energy, and the testing standards for chillers, fans, pumps, motors, boilers, and furnaces. Guideline 14 also relied on the previous work... Guideline 14-2002 to fill a need for a standard set of energy (and demand) savings calculation procedures. Guideline 14-2002 is intended to be a guideline that provides a minimum acceptable level of performance in the measurement of energy and demand...

  14. Using occupancy to reduce energy consumption of buildings

    E-Print Network [OSTI]

    Balaji, Bharathan

    2011-01-01T23:59:59.000Z

    inaccuracies. However, we do waste energy when a vacant roombuildings, thus indicating energy waste. In order to makein each room. The energy waste information gives feedback to

  15. Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet

    Broader source: Energy.gov [DOE]

    This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Mississippi.

  16. Teamwork Plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility

    E-Print Network [OSTI]

    Booker, G.; Robinson, J.

    Suncor Energy Inc. developed a long term plan to expand production from its oil sands operation north of Fort McMurray, Alberta up to 500,000 to 550,000 barrels/day in 2010-2012, while reducing the per barrel energy usage, emissions, and long term...

  17. Question of the Week: How Do You Reduce the Energy Used by Computers...

    Broader source: Energy.gov (indexed) [DOE]

    Question of the Week: How Do You Reduce the Energy Used by Computers and Office Electronics? Question of the Week: How Do You Reduce the Energy Used by Computers and Office...

  18. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    430 million tonnes coal-equivalent energy use by 2025. More187 kilograms of coal equivalent primary energy use for eachof usable acquired energy from coal, oil and natural over

  19. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    urban and rural total energy consumption per square meter ofas % Industry Total Energy Consumption Source: NBS 1.3.2its share of total primary energy consumption surged even

  20. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    Agency. 2008. ?2008 World Energy Outlook. ? Japan Petroleumbelow the 2008 World Energy Outlook‘s projection (FigureSource: IEA, 2008 World Energy Outlook; LBNL CLU Model. 4.2