Sample records for reduce energy demand

  1. Reducing Energy Demand in Buildings Through State Energy Codes...

    Energy Savers [EERE]

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building...

  2. Strategies for reducing energy demand in the materials sector

    E-Print Network [OSTI]

    Sahni, Sahil

    2013-01-01T23:59:59.000Z

    This research answers a key question - can the materials sector reduce its energy demand by 50% by 2050? Five primary materials of steel, cement, aluminum, paper, and plastic, contribute to 50% or more of the final energy ...

  3. Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful

    E-Print Network [OSTI]

    Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful emissions, and minimizes the cost of providing energy to the campus. As a result of energy conservation initiatives that have been implemented over the past 20 years, growth in the average demand per

  4. Reducing Energy Demand in Buildings Through State Energy Codes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8,PastRadiation LossesReducing

  5. Reducing Energy Demand in Buildings Through State Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012Energy ReliabilityNews FlashesRedbird Red

  6. Implementation and Evaluation of an On-Demand Parameter-Passing Strategy for Reducing Energy

    E-Print Network [OSTI]

    Zhang, Wei

    Implementation and Evaluation of an On-Demand Parameter-Passing Strategy for Reducing Energy M Abstract In this paper, we present an energy-aware parameter- passing strategy called on-demand parameter UMIST Manchester M60 1QD, UK W.Zhang CSE Department Penn State University University Park, PA, 16802

  7. Barriers to reducing energy demand in existing building stock -a perspective based on

    E-Print Network [OSTI]

    Carletta, Jean

    Barriers to reducing energy demand in existing building stock - a perspective based on observation another radiator." #12;Typical End User Training #12;Demand Side Problem #12;Workman Mis(?)conceptions "If, interviews, probes, home inspections intervention - management committees, "message of the month", magazine

  8. Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application

    E-Print Network [OSTI]

    Meckler, G.

    1985-01-01T23:59:59.000Z

    Based on an experimental residential retrofit incorporating thermal storage, and extensive subsequent modeling, a commercial design was developed and implemented to use hot thermal storage to significantly reduce electric demand and utility energy...

  9. Converting 15-Minute Interval Electricity Load Data into Reduced Demand, Energy Reduction and Cash Flow

    E-Print Network [OSTI]

    Herrin, D. G.

    , store managers are intimidated. 5 So what are the solutions? • A data acquisition system. • Pro-active with alarming and demand-response. Is there staff to maintain and ensure a response? • Passive. Acquire the data and then evaluate and assess... is not required, this will prevent the requirement for additional costs of installing an OAT sensor at the building and potentially adding costs to the datalogger hardware or configuration. If possible, it is best to use and on-site OAT sensor. If a demand-response...

  10. Energy-efficiency standards for homes have the potential to reduce energy consumption and peak electrical demand.

    E-Print Network [OSTI]

    Standards for Resi- dential Buildings. Data gathered in the field on lighting, heat- ing, ventilationThe Issue Energy-efficiency standards for homes have the potential to reduce energy consumption standards, but little data is available on the actu- al energy performance of new homes. The Solution

  11. Energy Demand Staff Scientist

    E-Print Network [OSTI]

    Eisen, Michael

    Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused,000 2,000 3,000 4,000 5,000 6,000 7,000 2007 USChina #12;Overview:Overview: Key Energy Demand DriversKey Energy Demand Drivers · 290 million new urban residents 1990-2007 · 375 million new urban residents 2007

  12. reduced demand for power by nearly 1,500 megawatts through investments in energy

    E-Print Network [OSTI]

    are in energy-efficient water heaters, lighting, windows and equipment for heating, ventilation and air and state water laws, as well as with recommendations in the biological opinions. The amendments describe

  13. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

  14. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Lekov, Alex

    2009-01-01T23:59:59.000Z

    in significant energy and demand savings for refrigeratedbe modified to reduce energy demand during demand responsein refrigerated warehouse energy demand if they are not

  15. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

  16. CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Manager Kae Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency Demand Forecast report is the product of the efforts of many current and former California Energy

  17. Reduces electric energy consumption

    E-Print Network [OSTI]

    BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

  18. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting Executive

  19. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Data for Automated Demand Response in Commercial Buildings,Demand Response Infrastructure for Commercial Buildings",demand response and energy efficiency functions into the design of buildings,

  20. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01T23:59:59.000Z

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  1. Demand Control Utilizing Energy Management Systems - Report of Field Tests

    E-Print Network [OSTI]

    Russell, B. D.; Heller, R. P.; Perry, L. W.

    1984-01-01T23:59:59.000Z

    Energy Management systems and particularly demand controllers are becoming more popular as commercial and light industrial operations attempt to reduce their electrical usage and demand. Numerous techniques are used to control energy use and demand...

  2. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

  3. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 1: Statewide Electricity Demand, End-User Natural Gas Demand, and Energy Efficiency The California Energy Demand 2014-2024 Preliminary Forecast, Volume 1: Statewide Electricity Demand

  4. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

  5. Reducing Electricity Demand Charge for Data Centers with Partial Execution

    E-Print Network [OSTI]

    Li, Baochun

    . INTRODUCTION Data centers are the powerhouse behind many Internet services today. A modern data centerReducing Electricity Demand Charge for Data Centers with Partial Execution Hong Xu Department@eecg.toronto.edu ABSTRACT Data centers consume a large amount of energy and incur substantial electricity cost

  6. Real-Time Demand Side Energy Management

    E-Print Network [OSTI]

    Victor, A.; Brodkorb, M.

    2006-01-01T23:59:59.000Z

    Real-Time Demand Side Energy Management Annelize Victor Michael Brodkorb Sr. Business Consultant Business Development Manager Aspen Technology, Inc. Aspen Technology España, S.A. Houston, TX Barcelona, Spain ABSTRACT To remain... competitive, manufacturers must capture opportunities to increase bottom-line profitability. The goal of this paper is to present a new methodology for reducing energy costs – “Demand-Side Energy Management.” Learn how process manufacturers assess energy...

  7. Driving Demand | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    strategies, results achieved to date, and advice for other programs. Driving Demand for Home Energy Improvements. This guide, developed by the Lawrence Berkeley National...

  8. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

  9. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29T23:59:59.000Z

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  10. Turkey's energy demand and supply

    SciTech Connect (OSTI)

    Balat, M. [Sila Science, Trabzon (Turkey)

    2009-07-01T23:59:59.000Z

    The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

  11. Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5... for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 5 What is Demand Response? ?The temporary reduction of electricity demanded from the grid by an end-user in response to capacity shortages, system reliability events, or high wholesale...

  12. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    Energy Commission's final forecasts for 2012­2022 electricity consumption, peak, and natural gas demand Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand

  13. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

  14. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    In terms of demand response capability, building operatorsautomated demand response and improve building energy andand demand response features directly into building design

  15. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

  16. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

  17. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 2: Electricity Demand by Utility Planning Area Energy Policy Report. The forecast includes three full scenarios: a high energy demand case, a low

  18. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant...

  19. US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

    E-Print Network [OSTI]

    US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Page 1 of 25 US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

  20. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency SEPTEMBER 2013 CEC2002013004SDV1REV CALIFORNIA The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 1: Statewide Electricity Demand and Methods

  1. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    the California Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand

  2. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak, and natural Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility

  3. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    DEMAND RESPONSE .7 Wholesale Marketuse at times of high wholesale market prices or when systemenergy expenditure. In wholesale markets, spot energy prices

  4. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency DECEMBER 2013 CEC2002013004SFV1 CALIFORNIA and expertise of numerous California Energy Commission staff members in the Demand Analysis Office. In addition

  5. Energy Demand | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLC Place: Ketchum, Idaho(1) Datapalooza (1)) EDI

  6. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    produce the greatest energy and demand savings. Aeration andand C.Y. Chang (2005). "Energy Demand in Sludge Dewatering."be modified to reduce energy demand during demand response

  7. Modeling Energy Demand Aggregators for Residential Consumers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators are new actors in the energy scenario: they gather a group of energy consumers and implement a demand

  8. Transportation Energy: Supply, Demand and the Future

    E-Print Network [OSTI]

    Saldin, Dilano

    Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05 as a source of energy. Global supply and demand trends will have a profound impact on the ability to use our) Transportation energy demand in the U.S. has increased because of the greater use of less fuel efficient vehicles

  9. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    in peak demand. This definition of energy efficiency makesthe following definitions are used: Energy efficiency refersThis definition implicitly distinguishes energy efficiency

  10. CALIFORNIA ENERGY CALIFORNIA ENERGY DEMAND 2010-2020

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2010-2020 ADOPTED FORECAST for this report: Kavalec, Chris and Tom Gorin, 2009. California Energy Demand 20102020, Adopted Forecast. California Energy Commission. CEC2002009012CMF #12; i Acknowledgments The demand forecast

  11. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    ED2, September. CEC (2005b) Energy demand forecast methodsCalifornia Baseline Energy Demands to 2050 for Advancedof a baseline scenario for energy demand in California for a

  12. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    description of six energy and demand management concepts.how quickly it can modify energy demand. This is not a newimprovements in both energy efficiency and demand response (

  13. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    Institute, “Curbing Global Energy Demand Growth: The Energyup Assessment of Energy Demand in India Transportationa profound effect on energy demand. Policy analysts wishing

  14. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY | Department of...

    Energy Savers [EERE]

    SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY As a city that experiences seasonal...

  15. Demand-response (DR) programs, in which facilities reduce their electric loads in response to a utility signal, represent a

    E-Print Network [OSTI]

    The Issue Demand-response (DR) programs, in which facilities reduce their electric loads (Figure 1). The testing covered four Lighting the Way to Demand ResponseLighting the Way to Demand Response California Energy Commission's Public Interest Energy Research Program Technical Brief PIER

  16. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  17. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    DECC aggregator managed portfolio automated demand responseaggregator designs their own programs, and offers demand responseaggregator is responsible for designing and implementing their own demand response

  18. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    seasonal dependence in natural gas usage. January typicallyindustrial fuels usage. Natural gas demand has been risingnatural gas demands regionally, to account for variability in energy usage

  19. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema (OSTI)

    Arun Majumdar

    2010-01-08T23:59:59.000Z

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  20. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    SciTech Connect (OSTI)

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19T23:59:59.000Z

    The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  1. Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing

    E-Print Network [OSTI]

    Boutaba, Raouf

    Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing Jin Xiao, Jae--In this paper, we present demand-side energy manage- ment under real-time demand-response pricing as a task, demand-response, energy management I. INTRODUCTION The growing awareness of global climate change has

  2. Electricity Demand and Energy Consumption Management System

    E-Print Network [OSTI]

    Sarmiento, Juan Ojeda

    2008-01-01T23:59:59.000Z

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  3. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01T23:59:59.000Z

    iv Chapter 5: National energy demand and potential energyEnergy Demands and Efficiency Strategies   in Data Center AC02?05CH11231.   Energy Demands and Efficiency Strategies

  4. A residential energy demand system for Spain

    E-Print Network [OSTI]

    Labandeira Villot, Xavier

    2005-01-01T23:59:59.000Z

    Sharp price fluctuations and increasing environmental and distributional concerns, among other issues, have led to a renewed academic interest in energy demand. In this paper we estimate, for the first time in Spain, an ...

  5. PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022

    E-Print Network [OSTI]

    PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022 AUGUST 2011 CEC-200-2011-011-SD CALIFORNIA for electric vehicles. #12;ii #12;iii ABSTRACT The Preliminary California Energy Demand Forecast 2012 includes three full scenarios: a high energy demand case, a low energy demand case, and a mid energy demand

  6. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    BEST PRACTICES AND RESULTS OF DR IMPLEMENTATION . 31 Encouraging End-User Participation: The Role of Incentives 16 Demand Response

  7. Oncor Energy Efficiency Programs Solar Photovoltaic and Demand Response

    E-Print Network [OSTI]

    Tyra, K.; Hanel, J.

    2012-01-01T23:59:59.000Z

    Oncor Energy Efficiency Programs Solar Photovoltaic and Demand Response October 10, 2012 ENERGY EFFICIENCY PROGRAMS OVERVIEW ?Program rules and guidelines established by Public Utility Commission of Texas (PUCT) ?All Texas investor... to be administered by transmission-distribution utilities ?Programs are implemented by Energy Efficiency Services Providers and Retail Electric Providers 1 WHY DOES ONCOR DO SOLAR PV? ?Helps meet our energy efficiency goals ?Helps customers reduce...

  8. Climate control : smart thermostats, demand response, and energy efficiency in Austin, Texas

    E-Print Network [OSTI]

    Bowen, Brian (Brian Richard)

    2015-01-01T23:59:59.000Z

    Energy efficiency and demand response are critical resources for the transition to a cleaner electricity grid. Demand-side management programs can reduce electricity use during peak times when power is scarce and expensive, ...

  9. Demand Charges | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: Energy Resources Jump to:Delta, Ohio:Charges Jump

  10. Behavioral Aspects in Simulating the Future US Building Energy Demand

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    Importance Total off- site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decrease

  11. Learning Energy Demand Domain Knowledge via Feature Transformation

    E-Print Network [OSTI]

    Povinelli, Richard J.

    Learning Energy Demand Domain Knowledge via Feature Transformation Sanzad Siddique Department -- Domain knowledge is an essential factor for forecasting energy demand. This paper introduces a method knowledge substantially improves energy demand forecasting accuracy. However, domain knowledge may differ

  12. Drivers of Future Energy Demand

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2Yonthly Energy :and1. Total3.9Drivers

  13. Demand Response Initiatives at CPS Energy

    E-Print Network [OSTI]

    Luna, R.

    2013-01-01T23:59:59.000Z

    Demand Response Initiatives at CPS Energy Clean Air Through Energy Efficiency (CATEE) Conference December 17, 2013 ESL-KT-13-12-53 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 CPSE’s DR Program • DR... than the military bases and Toyota combined. • Schools & Universities contributed 6 MW’s of Demand Response in 2013. 2013 DR Participants Trinity University - $5,654 Fort Sam ISD - $18,860 Judson ISD - $45,540 Alamo Colleges - $98,222 UTSA - $168...

  14. Energy Upgrade California Drives Demand From Behind the Wheel...

    Energy Savers [EERE]

    Upgrade California Drives Demand From Behind the Wheel Energy Upgrade California Drives Demand From Behind the Wheel Photo of a trailer with the Energy Upgrade California logo and...

  15. Response to several FOIA requests - Renewable Energy. Demand...

    Office of Environmental Management (EM)

    Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA...

  16. Energy Demand (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

  17. Using Iterative Compilation to Reduce Energy Consumption

    E-Print Network [OSTI]

    Gheorghita, Valentin

    or to re- duce power. Most transformations require loop re- structuring. Although a large number.v.gheorghita,h.corporaal,a.a.basten}@tue.nl Keywords: Iterative Compilation, Program Optimization, Energy Consumption, Program Transformation. Abstract. This is emphasized by new demands added to compilers, like reducing static code size, energy consumption or power

  18. AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.

    E-Print Network [OSTI]

    Povinelli, Richard J.

    AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

  19. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    Energy Commission's preliminary forecasts for 2014­2024 electricity consumption and peak: Electricity Demand by Utility Planning Area MAY 2013 CEC-200-2013-004-SD-V2 Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P. Oglesby Executive

  20. Global Climate Change and Demand for Energy

    E-Print Network [OSTI]

    Subramanian, Venkat

    -CARES) Washington University in St. Louis #12;9 Jun ­ Jul ­ Aug Temperature Anomaly Distribution Frequency of air and water temperatures Losses of ice from Greenland and Antarctica Sea-level rise Energy demands 169 390 327 90 16 H2O, CO2, O3 Earth receives visible light from hot Sun and Earth radiates to space

  1. THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND

    E-Print Network [OSTI]

    LBNL-49947 THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND? ..................................... 8 What are the seasonal aspects of electric peak demand?............................ 9 What because of the California electricity crisis (Borenstein 2001). Uncertainties surrounding the reliability

  2. The Economics of Energy (and Electricity) Demand

    E-Print Network [OSTI]

    Platchkov, Laura M.; Pollitt, Michael G.

    13 taxation on the use of energy.6 This is in addition to taxation of the profits of energy companies and taxes on the production of oil and gas in the North Sea. Any migration of energy demand from heavily taxed liquid fuels to currently lightly... also be substituted for energy expenditure in the future (e.g. solar panels as part of a new roof). The figure shows that substantial amount of expenditure on transport where expenditure on vehicles and on their repair exceeds expenditure on fuel...

  3. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    gas demands are forecast for the four natural gas utilitythe 2006-2016 Forecast. Commercial natural gas demand isforecasts and demand scenarios. Electricity planning area Natural gas

  4. Demand-Side Management and Energy Efficiency Revisited

    E-Print Network [OSTI]

    Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

    2007-01-01T23:59:59.000Z

    EPRI). 1984. ”Demand Side Management. Vol. 1:Overview of Key1993. ”Industrial Demand-Side Management Programs: What’sJ. Kulick. 2004. ”Demand side management and energy e?ciency

  5. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    for Demand Response in a New Commercial Building in NewDemand Response and Energy Efficiency in Commercial Buildings.Demand Response Mary Ann Piette, Sila Kiliccote, and Girish Ghatikar Lawrence Berkeley National Laboratory Building

  6. Reduced-Order Modeling of Aggregated Thermostatic Loads With Demand Response

    E-Print Network [OSTI]

    Zhang, Wei

    Reduced-Order Modeling of Aggregated Thermostatic Loads With Demand Response Wei Zhang, Jianming Lian, Chin-Yao Chang, Karanjit Kalsi and Yannan Sun Abstract-- Demand Response is playing population of appliances under demand response is especially important to evaluate the effec- tiveness

  7. Optimal Demand Response with Energy Storage Management

    E-Print Network [OSTI]

    Huang, Longbo; Ramchandran, Kannan

    2012-01-01T23:59:59.000Z

    In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

  8. Unique University and Utility Team Reduces Energy and Pollutants

    E-Print Network [OSTI]

    Smith, K. L.; Traill, D. A.; Sears, R. L.; Spielman, M.

    In 1992 the Center for Energy Systems Research of the College of Engineering and Applied Sciences and the Arizona State University (ASU) Facilities Management Department formed a unique Demand Side Management (DSM) team dedicated to reducing energy...

  9. PAN-on-Demand: Leveraging multiple radios to build self-organizing, energy-efficient PANs

    E-Print Network [OSTI]

    Flinn, Jason

    , it adapts the network struc- ture to minimize energy usage. Our results show that PAN-on- Demand reducesPAN-on-Demand: Leveraging multiple radios to build self-organizing, energy-efficient PANs Manish- area network (PAN) that balances performance and energy con- cerns by scaling the structure

  10. Demand Management Institute (DMI) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDayton Power & LightDemand Management

  11. Demand Response (transactional control) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortal DecisionRichlandDelegations,DemandEnergy

  12. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    and Ohio have similar statutory mandates to lower energyOhio. In New York, the Public Service Commission established an Energy

  13. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    energy efficiency portfolio standards Cost Recovery and DSM Funds Whether in the US, the UK, or Australia,

  14. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    demand response: ? Distribution utility ? ISO ? Aggregator (demand response less obstructive and inconvenient for the customer (particularly if DR resources are aggregated by a load aggregator).

  15. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

  16. Examining Synergies between Energy Management and Demand Response: A

    E-Print Network [OSTI]

    LBNL-5719E Examining Synergies between Energy Management and Demand Response: A Case Study at Two Summary #12;Introduction Energy Management · · · · · · · · · · #12;Demand Response #12;#12;Bentley Prince-Project Personnel Changes #12;Enablement of Demand Response Capabilities due to Energy Management Improvement

  17. Opportunities for Energy Efficiency and Demand Response in the California

    E-Print Network [OSTI]

    LBNL-4849E Opportunities for Energy Efficiency and Demand Response in the California Cement in this report was coordinated by the Demand Response Research Center and funded by the California Energy. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry. PIER Industrial

  18. Alberta's Energy Reserves 2007 and Supply/Demand Outlook

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Alberta's Energy Reserves 2007 and Supply/Demand Outlook 2008-2017 0 ST98-2008 Energy Resources RESOURCES CONSERVATION BOARD ST98-2008: Alberta's Energy Reserves 2007 and Supply/Demand Outlook 2008: Reserves Andy Burrowes, Rick Marsh, Nehru Ramdin, and Curtis Evans; Supply/Demand and Economics

  19. Pseudo dynamic transitional modeling of building heating energy demand using artificial neural network

    E-Print Network [OSTI]

    Paudel, Subodh; Elmtiri, Mohamed; Kling, Wil L; Corre, Olivier Le; Lacarriere, Bruno

    2014-01-01T23:59:59.000Z

    R. Satake, Prediction of energy demands using neural networkof Building Heating Energy Demand Using Artificial Neuralknow energy flows and energy demand of the buildings for the

  20. Energy and Security in Northeast Asia: Supply and Demand, Conflict and

    E-Print Network [OSTI]

    Fesharaki, Fereidun; Banaszak, Sarah; WU, Kang; Valencia, Mark J.; Dorian, James P.

    1998-01-01T23:59:59.000Z

    favorable economically, energy demand, and particularly oil3 Energy Policies and Energy Demand in Northeastissue of whether rising energy demand generates new security

  1. Coordination of Energy Efficiency and Demand Response: A Resource...

    Open Energy Info (EERE)

    Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Coordination of Energy Efficiency and...

  2. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST

    E-Print Network [OSTI]

    procurement process at the California Public Utilities Commission. This forecast was produced with the Energy Commission demand forecast models. Both the staff draft energy consumption and peak forecasts are slightly and commercial sectors. Keywords Electricity demand, electricity consumption, demand forecast, weather

  3. Smoothing the Energy Consumption: Peak Demand Reduction in Smart Grid

    E-Print Network [OSTI]

    Li, Xiang-Yang

    for autonomous demand side management within one house. The DRS devices are able to sense and control the peak energy consumption or demand. We assume that several appliances within one building access to oneSmoothing the Energy Consumption: Peak Demand Reduction in Smart Grid Shaojie Tang , Qiuyuan Huang

  4. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010InJanuary 29, 2013Redbird

  5. COMBINING DIVERSE DATA SOURCES FOR CEDSS, AN AGENT-BASED MODEL OF DOMESTIC ENERGY DEMAND

    E-Print Network [OSTI]

    Gotts, Nicholas Mark; Polhill, Gary; Craig, Tony; Galan-Diaz, Carlos

    2014-01-01T23:59:59.000Z

    Model CEDSS (Community Energy Demand Social Simulator) wasthe determinants of domestic energy demand and covering fivescenarios of domestic energy demand to 2050, and for its

  6. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    on the forecast of total energy demand. Based on this, weIndustrialization and Energy Demand Scenarios Nathaniel T.adjustment spurred energy demand for construction of new

  7. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01T23:59:59.000Z

    of Distributed Energy Resources and Demand Response underof Distributed Energy Resources and Demand Response underof Distributed Energy Resources and Demand Response under

  8. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01T23:59:59.000Z

    ABORATORY Japan’s Residential Energy Demand Outlook to 2030o r n i a Japan’s Residential Energy Demand Outlook to 2030residential sector, where energy demand has grown vigorously

  9. Intelligent Building Energy Information and Control Systems for Low-Energy Operations and Optimal Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2014-01-01T23:59:59.000Z

    Systems for  Energy Management and Demand Response in 7.  Linking energy efficiency and demand response.   In for Low-Energy Operations and Optimal Demand Response Mary

  10. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST, and utilities. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption STAFFFINALREPORT NOVEMBER 2007 CEC-200-2007-015-SF2 Arnold Schwarzenegger, Governor #12;CALIFORNIA ENERGY

  11. Demand Response - Policy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    prices or when grid reliability is jeopardized. In regions with centrally organized wholesale electricity markets, demand response can help stabilize volatile electricity prices...

  12. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    the dispatch of flexible loads and generation resources bothof controllable generation and flexible demand. In the casecontrollable generation resources and flexible loads in the

  13. Residential Energy Demand Reduction Analysis and Monitoring Platform...

    Broader source: Energy.gov (indexed) [DOE]

    development that is built to conventional code). * This objective will be achieved by - Energy efficient home construction with roof- integrated PV system - Demand Side...

  14. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST

    E-Print Network [OSTI]

    and water pumping sectors. Mark Ciminelli forecasted energy for transportation, communication and utilities. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption data at the California Public Utilities Commission. This forecast was produced with the Energy Commission demand forecast

  15. UK Energy Research Centre Demand Reduction Theme, University of Oxford

    E-Print Network [OSTI]

    UK Energy Research Centre Demand Reduction Theme, University of Oxford The Experience of Carbon Energy Research Centre ­ Demand Reduction Theme Environmental Change Institute Oxford University Centre for the Environment South Parks Road Oxford OX1 3QY www.eci.ox.ac.uk www.ukerc.ac.uk #12;UK Energy Research Centre 2 1

  16. Retrofitting Existing Buildings for Demand Response & Energy Efficiency

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Retrofitting Existing Buildings for Demand Response & Energy Efficiency www rate periods to avoid high charges. · Assembly Bill 1103 ­ Building Energy Efficiency Disclosure - Starting January 1, 2010, all commercial building lease transactions must disclose the energy efficiency

  17. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01T23:59:59.000Z

    Total Energy Source Demand Coal, Oil, Gas, Heat, ElectricityEnergy Source Demand per Household Coal, Oil, Gas, Heat,ton of oil equivalent Considerable increases in demand for

  18. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01T23:59:59.000Z

    Energy Resources and Demand Response under Uncertainty AfzalEnergy Resources and Demand Response under Uncertainty ?DER in conjunction with demand response (DR): the expected

  19. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    PA. 3. DEMAND RESPONSE IN COMMERCIAL BUILDINGS ElectricityDemand Response and Energy Efficiency in Commercial BuildingsDemand Response and Energy Efficiency in Commercial Buildings

  20. The Integration of Energy Efficiency, Renewable Energy, Demand Response and Climate Change: Challenges and Opportunities for Evaluators and Planners

    E-Print Network [OSTI]

    Vine, Edward

    2007-01-01T23:59:59.000Z

    to inform projected energy and demand reductions in regionaldown to reflect energy and demand savings due to spillover (market and estimate the energy and demand savings associated

  1. Continuous Improvement Energy Projects Reduce Energy Consumption

    E-Print Network [OSTI]

    Niemeyer, E.

    2014-01-01T23:59:59.000Z

    Continuous Improvement Energy Projects Reduce Energy Consumption Eric Niemeyer, Operations Superintendent Drilling Specialties Company A division of Chevron Phillips Chemical Company LP ESL-IE-14-05-31 Proceedings of the Thrity..., LA. May 20-23, 2014 A presentation of the paper “Continuous Improvement Energy Projects Reduce Energy Consumption” by Bruce Murray and Allison Myers ESL-IE-14-05-31 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans...

  2. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    account for the most natural gas usage (33% and 51% of totalseasonal dependence in natural gas usage, and consequently,Natural gas demand exhibits a strong winter peak in residential usage

  3. Using Compressed Air Efficiency Projects to Reduce Peak Industrial Electric Demands: Lessons Learned

    E-Print Network [OSTI]

    Skelton, J.

    "To help customers respond to the wildly fluctuating energy markets in California, Pacific Gas & Electric (PG&E) initiated an emergency electric demand reduction program in October 2000 to cut electric use during peak periods. One component...

  4. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    Scale Renewable Energy Integration . . . . . . . . . . .Impacts of Renewable Energy Supply . . . . . . . . . . . . .1.3 Coupling Renewable Energy with Deferrable

  5. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    Impacts Monthly Energy Savings Business Type Program Optionto begin in 2009: Business Energy Services. “The goal ofPlan for Energy Efficiency Business Energy Challenge. “This

  6. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    energy scenarios to explore alternative energy pathways indo not include the alternative energy pathways (such asmodeling to investigate alternative energy supply strategies

  7. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Majumdar, Arun

    2008-07-29T23:59:59.000Z

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  8. Oncor Energy Efficiency Programs Solar Photovoltaic and Demand Response 

    E-Print Network [OSTI]

    Tyra, K.; Hanel, J.

    2012-01-01T23:59:59.000Z

    Oncor Energy Efficiency Programs Solar Photovoltaic and Demand Response October 10, 2012 ENERGY EFFICIENCY PROGRAMS OVERVIEW ?Program rules and guidelines established by Public Utility Commission of Texas (PUCT) ?All Texas investor...

  9. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Majumdar, Arun

    2011-04-28T23:59:59.000Z

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  10. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    Programs Integrated Energy Audit Provide engineeringtechnicians performed energy audits and provided advice to8 PG&E’s Integrated Energy Audit, a program for businesses

  11. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    has for years used “New York Energy $mart” as the umbrellaevent days. The New York State Energy Research & DevelopmentEnergy Challenge”). The New York State Energy Research and

  12. The role of building technologies in reducing and controlling peak electricity demand

    SciTech Connect (OSTI)

    Koomey, Jonathan; Brown, Richard E.

    2002-09-01T23:59:59.000Z

    Peak power demand issues have come to the fore recently because of the California electricity crisis. Uncertainties surrounding the reliability of electric power systems in restructured markets as well as security worries are the latest reasons for such concerns, but the issues surrounding peak demand are as old as the electric utility system itself. The long lead times associated with building new capacity, the lack of price response in the face of time-varying costs, the large difference between peak demand and average demand, and the necessity for real-time delivery of electricity all make the connection between system peak demand and system reliability an important driver of public policy in the electric utility sector. This exploratory option paper was written at the request of Jerry Dion at the U.S.Department of Energy (DOE). It is one of several white papers commissioned in 2002 exploring key issues of relevance to DOE. This paper explores policy-relevant issues surrounding peak demand, to help guide DOE's research efforts in this area. The findings of this paper are as follows. In the short run, DOE funding of deployment activities on peak demand can help society achieve a more economically efficient balance between investments in supply and demand-side technologies. DOE policies can promote implementation of key technologies to ameliorate peak demand, through government purchasing, technology demonstrations, and improvements in test procedures, efficiency standards, and labeling programs. In the long run, R&D is probably the most important single leverage point for DOE to influence the peak demand issue. Technologies for time-varying price response hold great potential for radically altering the way people use electricity in buildings, but are decades away from widespread use, so DOE R&D and expertise can make a real difference here.

  13. OFWAR: Reducing SSD Response Time Using On-Demand Fast-Write-and-Rewrite

    E-Print Network [OSTI]

    Zhang, Tong

    OFWAR: Reducing SSD Response Time Using On-Demand Fast-Write-and-Rewrite Qi Wu and Tong Zhang to degrade SSD response time, we speed up memory programming at the penalty of shorter data retention time the average SSD response time by up to 52.3%. Index Terms--Solid-state drive, data retention, workload

  14. Modelling the Energy Demand of Households in a Combined

    E-Print Network [OSTI]

    Steininger, Karl W.

    . Emissions from passenger transport, households'electricity and heat consumption are growing rapidly despite demand analysis for electricity (e.g. Larsen and Nesbakken, 2004; Holtedahl and Joutz, 2004Modelling the Energy Demand of Households in a Combined Top Down/Bottom Up Approach Kurt Kratena

  15. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    gas demands are forecast for the four natural gas utility2013 Forecast, these trends lead to declining natural gasthe 2006-2016 Forecast. Commercial natural gas demand is

  16. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01T23:59:59.000Z

    L ABORATORY Japan’s Residential Energy Demand Outlook tol i f o r n i a Japan’s Residential Energy Demand Outlook toParticularly in Japan’s residential sector, where energy

  17. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    energy consumption is projected through 2050 using the linear trendtrends that lead to greater or lesser energy consumption,energy consumption is projected through 2050 based on projected near-term trends

  18. A Full Demand Response Model in Co-Optimized Energy and

    SciTech Connect (OSTI)

    Liu, Guodong [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

    2014-01-01T23:59:59.000Z

    It has been widely accepted that demand response will play an important role in reliable and economic operation of future power systems and electricity markets. Demand response can not only influence the prices in the energy market by demand shifting, but also participate in the reserve market. In this paper, we propose a full model of demand response in which demand flexibility is fully utilized by price responsive shiftable demand bids in energy market as well as spinning reserve bids in reserve market. A co-optimized day-ahead energy and spinning reserve market is proposed to minimize the expected net cost under all credible system states, i.e., expected total cost of operation minus total benefit of demand, and solved by mixed integer linear programming. Numerical simulation results on the IEEE Reliability Test System show effectiveness of this model. Compared to conventional demand shifting bids, the proposed full demand response model can further reduce committed capacity from generators, starting up and shutting down of units and the overall system operating costs.

  19. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    natural gas and electricity—is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security

  20. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01T23:59:59.000Z

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  1. Automated Demand Response Technologies and Demonstration in New York City using OpenADR

    E-Print Network [OSTI]

    Kim, Joyce Jihyun

    2014-01-01T23:59:59.000Z

    customers need to reduce energy demand during expensiveadditive) $11.42 / kW-max demand Energy Delivery Charges Alltype, floor space, peak demand, energy supplier, DR program

  2. Energy Demand Modelling Introduction to the PhD project

    E-Print Network [OSTI]

    Energy Demand Modelling Introduction to the PhD project Erika Zvingilaite Risø DTU System Analysis for optimization of energy systems Environmental effects Global externalities cost of CO2 Future scenarios for the Nordic energy systems 2010, 2020, 2030, 2040, 2050 (energy-production, consumption, emissions, net costs

  3. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    E-Print Network [OSTI]

    Olsen, Daniel

    2012-01-01T23:59:59.000Z

    Opportunities for Energy  Efficiency and Demand Response in Agricultural/Water End?Use Energy Efficiency Program.    i 1   4.0   Energy Efficiency and Demand Response 

  4. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01T23:59:59.000Z

    Control of Distributed Energy Resources and Demand ResponseControl of Distributed Energy Resources and Demand Responseinstalled distribution energy resources (DER) in the form of

  5. A Successful Case Study of Small Business Energy Efficiency and Demand Response with Communicating Thermostats

    E-Print Network [OSTI]

    Herter, Karen

    2010-01-01T23:59:59.000Z

    Case Study of Small Business Energy Efficiency and DemandCase Study of Small Business Energy Efficiency and DemandSolutions Participant Energy Savings Business Type Program

  6. Examining Synergies between Energy Management and Demand Response: A Case Study at Two California Industrial Facilities

    E-Print Network [OSTI]

    Olsen, Daniel

    2013-01-01T23:59:59.000Z

    Capabilities due to Energy Management Improvement inSummary Introduction Energy Management Demand Responseand Processes Energy Management and Demand Response History

  7. Energy and Demand Savings from Implementation Costs in Industrial Facilities

    E-Print Network [OSTI]

    Razinha, J. A.; Heffington, W. M.

    1 ENERGY AND DEMAND SAVINGS FROM IMPLEMENTATION COSTS IN INDUSTRIAL FACILITIES 1 Razinha, J.A. and Heffington, W.M. Industrial Assessment Center and Mechanical Engineering Department Texas A&M University, College Station, Texas 77843.... noted that a direct calculation of cost savings from the implementation cost could eliminate as much as 30% of the preparation time (and associated cost) for the LoanSTAR reports. The savings result from not having to calculate energy or demand...

  8. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    supervised data preparation. Steven Mac and Keith O'Brien prepared the historical energy consumption data. Nahid Movassagh forecasted consumption for the agriculture and water pumping sectors. Cynthia Rogers generation, conservation, energy efficiency, climate zone, investorowned, public, utilities, additional

  9. New York: Weatherizing Westbeth Reduces Energy Consumption |...

    Energy Savers [EERE]

    New York: Weatherizing Westbeth Reduces Energy Consumption New York: Weatherizing Westbeth Reduces Energy Consumption August 21, 2013 - 12:00am Addthis The New York State Homes and...

  10. Reducing the demand forecast error due to the bullwhip effect in the computer processor industry

    E-Print Network [OSTI]

    Smith, Emily (Emily C.)

    2010-01-01T23:59:59.000Z

    Intel's current demand-forecasting processes rely on customers' demand forecasts. Customers do not revise demand forecasts as demand decreases until the last minute. Intel's current demand models provide little guidance ...

  11. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    E-Print Network [OSTI]

    DeForest, Nicholas

    2014-01-01T23:59:59.000Z

    residential cooling energy demand to climate change, Energy,M. Sivak, Potential energy demand for cooling in the 50of the potential cooling energy demand comes from developing

  12. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2013-10-01T23:59:59.000Z

    Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

  13. Exhausting Battery Statistics Understanding the energy demands on mobile handsets

    E-Print Network [OSTI]

    Cambridge, University of

    energy models and resources managers designed for laptops [20] and data cen- ters [4] inapplicableExhausting Battery Statistics Understanding the energy demands on mobile handsets Narseo Vallina.surname@telekom.de ABSTRACT Despite the advances in battery technologies, mobile phones still suffer from severe energy

  14. Energy Demands and Efficiency Strategies in Data Center Buildings

    SciTech Connect (OSTI)

    Shehabi, Arman

    2009-09-01T23:59:59.000Z

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands haveincreased by nearly a factor of four over the past decade. Data centers house IT equipment and require significantly more energy to operate per unit floor area thanconventional buildings. The economic and environmental ramifications of continued data center growth motivate the need to explore energy-efficient methods to operate these buildings. A substantial portion of data center energy use is dedicated to removing the heat that is generated by the IT equipment. Using economizers to introduce large airflow rates of outside air during favorable weather could substantially reduce the energy consumption of data center cooling. Cooling buildings with economizers is an established energy saving measure, but in data centers this strategy is not widely used, partly owing to concerns that the large airflow rates would lead to increased indoor levels of airborne particles, which could damage IT equipment. The environmental conditions typical of data centers and the associated potential for equipment failure, however, are not well characterized. This barrier to economizer implementation illustrates the general relationship between energy use and indoor air quality in building design and operation. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously.As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature for office or residential buildings. Estimates using a material-balance model match well with empirical results, indicating that the dominant particle sources and losses -- ventilation and filtration -- have been characterized. Measurements taken at a data center using economizers show nearly an order of magnitude increase in particle concentration during economizer activity. However, even with the increase, themeasured particle concentrations are still below concentration limits recommended in most industry standards. The research proceeds by exploring the feasibility of using economizers in data centers while simultaneously controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at a data center using economizers and varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to the measurements when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh the increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration couldsignificantly reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design. The emphasis of the dissertation then shifts to evaluate the energy benefits of economizer use in data centers under different design strategies. Economizer use with high ventilation rates is compared against an alternative, water-side economizer design that does not affect indoor particle concentrations. Building energy models are employed to estimate energy savings of both economizer designs for data centers in

  15. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    , Gary Occhiuzzo, and Keith O'Brien prepared the historical energy consumption data. Nahid Movassagh forecasted consumption for the agriculture and water pumping sectors. Don Schultz and Doug Kemmer developed. California Energy Commission, Electricity Supply Analysis Division. Publication Number: CEC2002012001CMFVI

  16. Solar in Demand | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYouof Energy ProjectsHeaters and

  17. DemandDirect | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: Energy Resources Jump to:Delta,

  18. Demand Response - Policy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1 DEPARTMENTSeptember 27,SeptemberEnergy 4, CITE:WithSince its

  19. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    Net- Energy Buildings with Demand Response Michael Stadler,Net-Energy Buildings with Demand Response 1 Michael Stadlerbuilding simulation tools, e.g. , EnergyPlus, require specification of the demand response

  20. Transportation Demand Management (TDM) Encyclopedia | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company)Library <InformationTopics Ask

  1. Water supply and demand in an energy supply model

    SciTech Connect (OSTI)

    Abbey, D; Loose, V

    1980-12-01T23:59:59.000Z

    This report describes a tool for water and energy-related policy analysis, the development of a water supply and demand sector in a linear programming model of energy supply in the United States. The model allows adjustments in the input mix and plant siting in response to water scarcity. Thus, on the demand side energy conversion facilities can substitute more costly dry cooling systems for conventional evaporative systems. On the supply side groundwater and water purchased from irrigators are available as more costly alternatives to unappropriated surface water. Water supply data is developed for 30 regions in 10 Western states. Preliminary results for a 1990 energy demand scenario suggest that, at this level of spatial analysis, water availability plays a minor role in plant siting. Future policy applications of the modeling system are discussed including the evaluation of alternative patterns of synthetic fuels development.

  2. Tracking Progress Last updated 5/7/2014 Statewide Energy Demand 1

    E-Print Network [OSTI]

    Tracking Progress Last updated 5/7/2014 Statewide Energy Demand 1 Statewide Energy Demand Energy Commission's energy demand forecast includes multiple scenarios, the Energy Commission worked together1 to agree upon a single managed demand forecast that incorporates all energy efficiency

  3. Reduced-Order Modeling of Aggregated Thermostatic Loads With Demand Response

    SciTech Connect (OSTI)

    Zhang, Wei; Lian, Jianming; Chang, Chin-Yao; Kalsi, Karanjit; Sun, Yannan

    2012-12-12T23:59:59.000Z

    Demand Response is playing an increasingly important role in smart grid control strategies. Modeling the behavior of populations of appliances under demand response is especially important to evaluate the effectiveness of these demand response programs. In this paper, an aggregated model is proposed for a class of Thermostatically Controlled Loads (TCLs). The model efficiently includes statistical information of the population, systematically deals with heterogeneity, and accounts for a second-order effect necessary to accurately capture the transient dynamics in the collective response. However, an accurate characterization of the collective dynamics however requires the aggregate model to have a high state space dimension. Most of the existing model reduction techniques require the stability of the underlying system which does not hold for the proposed aggregated model. In this work, a novel model reduction approach is developed for the proposed aggregated model, which can significantly reduce its complexity with small performance loss. The original and the reducedorder aggregated models are validated against simulations of thousands of detailed building models using GridLAB-D, which is a realistic open source distribution simulation software. Index Terms – demand response, aggregated model, ancillary

  4. Measured energy savings and demand reduction from a reflective roof membrane on a large retail store in Austin

    E-Print Network [OSTI]

    Konopacki, Steven J.; Akbari, Hashem

    2001-01-01T23:59:59.000Z

    the abated annual energy and demand expenditures, simplea/c annual abated energy and demand expenditures and presentof future abated energy and demand expenditures is estimated

  5. Demand Response - Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton:|Electricity Policy Coordination and

  6. Solar in Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of EnergySite Screening Decision Tree

  7. BPA, Energy Northwest launch demand response pilot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BES UserDOEprogram to expense

  8. Distributed Automated Demand Response - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers SubfoldersU.S. Refining

  9. A dynamic model of industrial energy demand in Kenya

    SciTech Connect (OSTI)

    Haji, S.H.H. [Gothenburg Univ. (Sweden)

    1994-12-31T23:59:59.000Z

    This paper analyses the effects of input price movements, technology changes, capacity utilization and dynamic mechanisms on energy demand structures in the Kenyan industry. This is done with the help of a variant of the second generation dynamic factor demand (econometric) model. This interrelated disequilibrium dynamic input demand econometric model is based on a long-term cost function representing production function possibilities and takes into account the asymmetry between variable inputs (electricity, other-fuels and Tabour) and quasi-fixed input (capital) by imposing restrictions on the adjustment process. Variations in capacity utilization and slow substitution process invoked by the relative input price movement justifies the nature of input demand disequilibrium. The model is estimated on two ISIS digit Kenyan industry time series data (1961 - 1988) using the Iterative Zellner generalized least square method. 31 refs., 8 tabs.

  10. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    s natural gas and electricity sectors within the timeframeto California’s electricity sector led to rolling blackoutsimpacts on the electricity sector is the hourly demand

  11. Demand Responsive and Energy Efficient Control Technologies andStrategies in Commercial Buildings

    SciTech Connect (OSTI)

    Piette, Mary Ann; Kiliccote, Sila

    2006-09-01T23:59:59.000Z

    Commercial buildings account for a large portion of summer peak electric demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial buildings contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. The main objectives of the study were: (1) To evaluate the size of contributions of peak demand commercial buildings in the U.S.; (2) To understand how commercial building control systems support energy efficiency and DR; and (3) To disseminate the results to the building owners, facility managers and building controls industry. In order to estimate the commercial buildings contribution to peak demand, two sources of data are used: (1) Commercial Building Energy Consumption Survey (CBECS) and (2) National Energy Modeling System (NEMS). These two sources indicate that commercial buildings noncoincidental peak demand is about 330GW. The project then focused on technologies and strategies that deliver energy efficiency and also target 5-10% of this peak. Based on a building operations perspective, a demand-side management framework with three main features: (1) daily energy efficiency, (2) daily peak load management and (3) dynamic, event-driven DR are outlined. A general description of DR, its benefits, and nationwide DR potential in commercial buildings are presented. Case studies involving these technologies and strategies are described. The findings of this project are shared with building owners, building controls industry, researchers and government entities through a webcast and their input is requested. Their input is presented in the appendix section of this report.

  12. Reducing the Energy Usage of Oce Applications

    E-Print Network [OSTI]

    Flinn, Jason

    Reducing the Energy Usage of OÆce Applications Jason Flinn 1 , Eyal de Lara 2 , M. Satyanarayanan 1 of the energy usage of Microsoft's PowerPoint application and show that adaptive policies can reduce energy research e#11;ort, no silver bullet for reducing energy usage has yet been found. Instead, a comprehensive

  13. An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network

    E-Print Network [OSTI]

    An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network Sheetalkumar Doshi of an on-demand minimum energy routing protocol and suggests mechanisms for their imple- mentation. We of an on-demand minimum energy routing protocol in terms of energy savings with an existing on-demand ad

  14. U.S. Energy Demand, Offshore Oil Production and

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    U.S. Energy Demand, Offshore Oil Production and BP's Macondo Well Spill Tad Patzek, Petroleum form well-rounded petroleum engineers, and deliver science and technology to O&G Industry, while trying that run the U.S. Complexity, models, risks Gulf of Mexico's oil and gas production Conclusions ­ p.3/4 #12

  15. ENABLING ENERGY DEMAND RESPONSE WITH VEHICULAR MESH NETWORKS

    E-Print Network [OSTI]

    Chuah, Chen-Nee

    ENABLING ENERGY DEMAND RESPONSE WITH VEHICULAR MESH NETWORKS Howard CheHao Chang1, Haining Du2 compared to their counterparts such as laptops in nomad computing or sensor networks. First, vehicles response (DR) [1] for automatic utility usage retrievals and price dispatching. DR is a project in- itiated

  16. Univariate Modeling and Forecasting of Monthly Energy Demand Time Series

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    Univariate Modeling and Forecasting of Monthly Energy Demand Time Series Using Abductive and Neural dedicated models to forecast the 12 individual months directly. Results indicate better performance is superior to naïve forecasts based on persistence and seasonality, and is better than results quoted

  17. A study of industrial equipment energy use and demand control

    E-Print Network [OSTI]

    Dooley, Edward Scott

    2001-01-01T23:59:59.000Z

    Technologies. A battery storage system, capable of providing up to 5, 000 kW was installed (Hunt 1999). The batterics allow the plant's demand peaks to be lowcrcd by using energy stored in the batteries during off-peak periods to provide a portion...

  18. How to Reduce Energy Supply Costs

    E-Print Network [OSTI]

    Swanson, G.

    2007-01-01T23:59:59.000Z

    Rising energy costs have many businesses looking for creative ways to reduce their energy usage and lower the costs of energy delivered to their facilities. This paper explores innovative renewable and alternative energy technologies that can help...

  19. Review, reduce, and replace: The three `R's of energy security Larry Hughes

    E-Print Network [OSTI]

    Hughes, Larry

    ERG2007/01 Review, reduce, and replace: The three `R's of energy security Larry Hughes Energy: The three `R's of energy security 1 Abstract Rising world energy costs, increasing demand for energy contributed to national and international concerns over energy security. If a jurisdiction's energy security

  20. Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs

    E-Print Network [OSTI]

    Victoria, University of

    Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs Supervisory Committee Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management of Environmental Studies) Departmental Member For energy utilities faced with expanded jurisdictional energy

  1. Tankless or Demand-Type Water Heaters | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|Idaho |EnergyTankless or Demand-Type Water

  2. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

  3. Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under

    E-Print Network [OSTI]

    Boutaba, Raouf

    Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under Real-time Demand of appliance specific adapters. Designed and implemented GHS Modeled the demand-side energy management problem (NP-hard) Designed a scheduling algorithm for demand side energy management Showed that our

  4. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    E-Print Network [OSTI]

    Dudley, Junqiao Han

    2010-01-01T23:59:59.000Z

    of Automated Demand Response in a Large Office Building”, inBuilding Control Strategies and Techniques for Demand Response.Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

  5. A Supply-Demand Model Based Scalable Energy Management System for Improved Energy

    E-Print Network [OSTI]

    Bhunia, Swarup

    energy generation and consumption parameters. The system uses economics inspired supply-demand modelA Supply-Demand Model Based Scalable Energy Management System for Improved Energy Utilization Western Reserve University, *Cleveland State University, +Rockwell Automation, Cleveland, OR, USA Email

  6. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2015-01-01T23:59:59.000Z

    This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

  7. Tankless Demand Water Heater Basics | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartmentEnergyonWIPP 11-3458TakingDemand Water

  8. Estimating Demand Response Market Potential | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLCInsulation IncentivesEshone EnergyEstero,Demand

  9. Big Problems. Big Results. Energy demands, environmental impacts, and national security are some of America's toughest challenges.

    E-Print Network [OSTI]

    Big Problems. Big Results. Energy demands, environmental impacts, and national security are some interaction physics. » PNNL is driven to help increase U.S. energy capacity and reduce our dependence on imported oil. Collaborating with our partners, we are developing ways to use today's energy sources more

  10. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    Operation in Zero-Net- Energy Buildings with Demand ResponseOperation in Zero-Net-Energy Buildings with Demand Responsemicrogrid, storage, zero- net energy buildings, zero-carbon

  11. Pseudo Dynamic Transitional Modeling of Building Heating Energy Demand Using Artificial1 Neural Network2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Transitional Modeling of Building Heating Energy Demand Using Artificial1 Neural Network2 Subodh Paudel a, it is39 essential to know energy flows and energy demand of the buildings for the control of heating and40 cooling energy production from plant systems. The energy demand of the building system, thus,41

  12. Demand Response Resources for Energy and Ancillary Services (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01T23:59:59.000Z

    Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind an solar power generation. However, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado test system. We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating

  13. Property:FlatDemandStructure | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation, search Property NameFirstWellDepth JumpFlatDemandStructure

  14. Web-based energy information systems for energy management and demand response in commercial buildings

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18T23:59:59.000Z

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS are discussed: Metering and Connectivity; Visualization and Analysis Features; Demand Response Features; and Remote Control Features. This report also describes the following technologies and the potential benefits of incorporating them into future EIS products: Benchmarking; Load Shape Analysis; Fault Detection and Diagnostics; and Savings Analysis.

  15. Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

    2006-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities.for Energy Efficiency and Demand Response”, Proceedings ofAuthority (NYSERDA), the Demand Response Research Center (

  16. Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

    2006-01-01T23:59:59.000Z

    potential demand response in commercial buildings with EMCSbuildings for integrated energy efficiency and demand response (buildings provide an excellent resource for demand response.

  17. An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network

    E-Print Network [OSTI]

    Brown, Timothy X.

    An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network Sheetalkumar Doshi the necessary features of an on-demand minimum energy routing protocol and suggests mechanisms the performance of an on-demand minimum energy routing protocol in terms of energy savings with an existing on

  18. STRENGTH AND ENERGY DEMANDS FROM THE AUGUST 1999 KOCAELI EARTHQUAKE GROUND MOTIONS

    E-Print Network [OSTI]

    Manuel, Lance

    STRENGTH AND ENERGY DEMANDS FROM THE AUGUST 1999 KOCAELI EARTHQUAKE GROUND MOTIONS A. Sari 1 and L the demands placed on structures during earthquakes one might also employ an energy-based approach, especially such as absorbed energy (Chou and Uang, 2000) and input energy (Chapman, 1999). Understanding seismic demands

  19. Autonomous Demand Side Management Based on Game-Theoretic Energy Consumption

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Autonomous Demand Side Management Based on Game-Theoretic Energy Consumption Scheduling distributed demand side energy management strategy requires each user to simply apply its best response-average ratio of the total energy demand, the total energy costs, as well as each user's individual daily

  20. ECEEE 2005 SUMMER STUDY WHAT WORKS & WHO DELIVERS? 183 Local energy efficiency and demand-side

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ECEEE 2005 SUMMER STUDY ­ WHAT WORKS & WHO DELIVERS? 183 1,202 Local energy efficiency and demand be the basis for local energy policies and energy efficiency/demand-side management activities1, have been) activities in 1. DSM: Demand-Side Management; EE: energy efficiency (here, does not include renewable

  1. Cooling energy demand evaluation by means of regression models obtained from dynamic simulations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Cooling energy demand evaluation by means of regression models obtained from dynamic simulations Ph, Université Lyon1, FRANCE ABSTRACT The forecast of the energy heating/cooling demand would be a good indicator between simple and complex methods of evaluating the cooling energy demand we have proposed to use energy

  2. A critical review of single fuel and interfuel substitution residential energy demand models

    E-Print Network [OSTI]

    Hartman, Raymond Steve

    1978-01-01T23:59:59.000Z

    The overall purpose of this paper is to formulate a model of residential energy demand that adequately analyzes all aspects of residential consumer energy demand behavior and properly treats the penetration of new technologies, ...

  3. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01T23:59:59.000Z

    No.4 Japan's Long-term Energy Demand and Supply Scenario towe projected Japan's energy demand/supply and energy-relatedcrises (to cut primary energy demand per GDP ( T P E S / G D

  4. 39610 Energy Conversion & Supply (6) 39611 Energy Demand &Utilization (6)

    E-Print Network [OSTI]

    McGaughey, Alan

    Control Systems (12) 18418 Electric Energy Processing (12ugTR34:20 ) 18472 Fund. in Elec. Power Systems (12UG see notes) 18875 Econ+Engr Elec Energy Sys(12 TR4:305:50) 18819B Solar Arrays: Model, Analysis:305:20) Mechanical Engineering 24722 Energy System Modeling (12) 24640 Special Topics: Climate Mitigation (12) 24616

  5. Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity

    E-Print Network [OSTI]

    Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity Chris in this paper. Energy consumption data was sourced from the Bureau of Resources and Energy Economics' Australian Energy Statistics publication. Price and income data were sourced from the Australian Bureau

  6. The Impact of CO2-Based Demand-Controlled Ventilation on Energy Consumptions for Air Source Heat Pumps in Schools

    E-Print Network [OSTI]

    AlRaees, N.; Nassif, N.

    2013-01-01T23:59:59.000Z

    There have been increasingly growing concerns for many years over the quality of the air inside buildings and the associated energy use. The CO2-based demand-controlled ventilation DCV offers a great opportunity to reduce energy consumption in HVAC...

  7. Retail Demand Response in Southwest Power Pool | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -DepartmentRetail Demand Response in Southwest Power Pool

  8. Assumption to the Annual Energy Outlook 2014 - Commercial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5Are thereDemand Module This

  9. Assumption to the Annual Energy Outlook 2014 - Industrial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5Are thereDemand

  10. Assumption to the Annual Energy Outlook 2014 - Residential Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5AreOil and Gas SupplyDemand

  11. Draft Chapter 3: Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 FederalDonnaDraft3: Demand-Side Resources

  12. EnergySolve Demand Response | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis JumpESL Jump to:CostaEnergyGridEnergySolve

  13. CSEM WP 165R Demand-Side Management and Energy Efficiency

    E-Print Network [OSTI]

    Auffhammer, Maximilian

    CSEM WP 165R Demand-Side Management and Energy Efficiency Revisited Maximilian Auffhammer, Carl, California 94720-5180 www.ucei.org #12;Demand-Side Management and Energy Efficiency Revisited Maximilian associated with energy efficiency demand side management (DSM) programs. This claim is based on point

  14. Brussels, Belgium, November 19-22, 2012 Energy Demand Prediction in a Charge Station: A

    E-Print Network [OSTI]

    Boyer, Edmond

    EEVC Brussels, Belgium, November 19-22, 2012 Energy Demand Prediction in a Charge Station over a real database which can be associated with the energy demand generated by electric vehicles simplifying assumptions about the EV drivers' energy demand. To improve the accuracy of the modelling

  15. Real-Time Demand Response with Uncertain Renewable Energy in Smart Grid

    E-Print Network [OSTI]

    Low, Steven H.

    Real-Time Demand Response with Uncertain Renewable Energy in Smart Grid Libin Jiang and Steven Low manages user load through real-time demand response and purchases balancing power on the spot market and demand response in the presence of uncertain renewable supply and time-correlated demand. The overall

  16. Demand Response Energy Consulting LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: Energy Resources Jump to:Delta, Ohio:Charges

  17. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

    2008-05-15T23:59:59.000Z

    As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

  18. Electrical Energy and Demand Savings from a Geothermal Heat Pump ESPC at Fort Polk, LA

    SciTech Connect (OSTI)

    Shonder, John A [ORNL; Hughes, Patrick [ORNL

    1997-06-01T23:59:59.000Z

    At Fort Polk, Louisiana, the space-conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHPs) under an energy savings performance contract. At the same time, other efficiency measures, such as compact fluorescent lights, low-flow hot water outlets, and attic insulation, were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. Fifteen-minute interval data were also taken on energy use from a sample of the residences. The analysis presented in this paper shows that for a typical meteorological year, the retrofits result in an electrical energy savings of approximately 25.6 million kWh, or 32.4% of the pre-retrofit electrical use in family housing. Peak electrical demand has also been reduced by about 6.8 MW, which is 40% of pre-retrofit peak demand. In addition, the retrofits save about 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the 'apparent' energy savings observed in the monitored data and are not to be mistaken for the 'contracted' energy savings used as the basis for payments. To determine the 'contracted' energy savings, the 'apparent' energy savings may require adjustments for such things as changes in indoor temperature performance criteri, addition of ceiling fans, and other factors.

  19. Reducing Energy Loss | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8,PastRadiation LossesReducingReducing

  20. Demand-Side Load Scheduling Incentivized by Dynamic Energy Hadi Goudarzi, Safar Hatami, and Massoud Pedram

    E-Print Network [OSTI]

    Pedram, Massoud

    Demand-Side Load Scheduling Incentivized by Dynamic Energy Prices Hadi Goudarzi, Safar Hatami growth in electrical energy consumption under worst- case demand conditions [1]. To avoid expending 90089 {hgoudarz, shatami, pedram}@usc.edu Abstract--Demand response is an important part of the smart

  1. Control and Optimization Meet the Smart Power Grid: Scheduling of Power Demands for Optimal Energy

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    Control and Optimization Meet the Smart Power Grid: Scheduling of Power Demands for Optimal Energy technologies to enforce sensible use of energy through effective demand load management. We envision a scenario con- sumer power demand requests with different power require- ments, durations, and deadlines

  2. The Impact of Technological Change and Lifestyles on the Energy Demand

    E-Print Network [OSTI]

    Steininger, Karl W.

    of technological and socio- demographic variables on the demand for gasoline/diesel, heating and electricity. KeyThe Impact of Technological Change and Lifestyles on the Energy Demand of Households A Combination on the Energy Demand of Households A Combination of Aggregate and Individual Household Analysis Kurt Kratena

  3. Demand Response and Smart Metering Policy Actions Since the Energy...

    Broader source: Energy.gov (indexed) [DOE]

    This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response...

  4. Behavioral Aspects in Simulating the Future US Building Energy Demand

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    USA, and published in the Conference Proceedings SBEAM Functionality Commercial Lighting Equipment Marketshare Commercial Electricity DemandUSA, and published in the Conference Proceedings SBEAM Functionality Commercial Lighting Equipment Marketshare Commercial Electricity Demand

  5. 39610 Energy Conversion & Supply (6) 39611 Energy Demand &Utilization (6)

    E-Print Network [OSTI]

    McGaughey, Alan

    Engineering 18618 Smart Grids & Fut. Elec. Energy Sys (12) TBA 18771 Linear Systems (12)MW2:304:20,F2 to Sustainable Engr (12)MW34:20 19472 Fund. Electric Pwr Sys (12/note MW3:304:20) 19638 (18618) Smart Grids & F 12706 Civil Systems Invest. Plan & Pricing (12)MW10:3012:20 12741 Data Management & Analysis (A26)TR121

  6. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    January 2008. Biography Mary Ann Piette is a Staff ScientistAutomated Demand Response Mary Ann Piette, Sila Kiliccote,

  7. Driving change : evaluating strategies to control automotive energy demand growth in China

    E-Print Network [OSTI]

    Bonde Åkerlind, Ingrid Gudrun

    2013-01-01T23:59:59.000Z

    As the number of vehicles in China has relentlessly grown in the past decade, the energy demand, fuel demand and greenhouse gas emissions associated with these vehicles have kept pace. This thesis presents a model to project ...

  8. Issues in International Energy Consumption Analysis: Canadian Energy Demand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015YearYear Jan FebIssues in

  9. Proceedings of the Chinese-American symposium on energy markets and the future of energy demand

    SciTech Connect (OSTI)

    Meyers, S. (ed.)

    1988-11-01T23:59:59.000Z

    The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

  10. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01T23:59:59.000Z

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of this study show that a CLU-style development path would avoid 430 million tonnes coal-equivalent energy use by 2025. More than 60% of these energy savings would come from reduced activity and production levels. In carbon terms, this would amount to more than a billion-tonne reduction of energy-related carbon emissions compared with the BAU scenario in 2025, though the absolute level of emissions rises in both scenarios. Aside from the energy and carbon savings related to CLU scenario development, this study showed impending saturation effects in commercial construction, urban appliance ownership, and fertilizer application. The implication of these findings is that urbanization will have a direct impact on future energy use and emissions - policies to guide urban growth can play a central role in China's efforts to mitigate emissions growth.

  11. Phase-Change Frame Walls (PCFWs) for On-Peak Demand Reduction and Energy Conservation in Residential Buildings: Development, Construction and Evaluation

    E-Print Network [OSTI]

    Zhang, M.; Medina, M. A.; King, J. B.

    2004-01-01T23:59:59.000Z

    The main purpose of this work was to develop a thermally enhanced frame wall that would reduce peak load air conditioning demand, shift a portion of the thermal load, and conserve energy in residential buildings. A frame wall containing...

  12. Renewable Energy Can Help Reduce Oil Dependency

    SciTech Connect (OSTI)

    Arvizu, Dan

    2010-01-01T23:59:59.000Z

    In a speech to the Economic Club of Kansas City on June 23, 2010, NREL Director Dan Arvizu takes a realistic look at how renewable energy can help reduce America's dependence on oil, pointing out that the country gets as much energy from renewable sources now as it does from offshore oil production. For a transcript, visit http://www.nrel.gov/director/pdfs/energy_overview_06_10.pdf

  13. Renewable Energy Can Help Reduce Oil Dependency

    ScienceCinema (OSTI)

    Arvizu, Dan

    2013-05-29T23:59:59.000Z

    In a speech to the Economic Club of Kansas City on June 23, 2010, NREL Director Dan Arvizu takes a realistic look at how renewable energy can help reduce America's dependence on oil, pointing out that the country gets as much energy from renewable sources now as it does from offshore oil production. For a transcript, visit http://www.nrel.gov/director/pdfs/energy_overview_06_10.pdf

  14. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01T23:59:59.000Z

    2011).pdf. ———. 2012a. “Annual Energy Outlook (AEO) 2012. ”2013. “Annual Energy Outlook - Model Documentation. ”forecast, the Annual Energy Outlook (AEO) (DOE EIA 2012a).

  15. Energy-Agile Laptops: Demand Response of Mobile Plug Loads Using Sensor/Actuator Networks

    E-Print Network [OSTI]

    Culler, David E.

    Energy-Agile Laptops: Demand Response of Mobile Plug Loads Using Sensor/Actuator Networks Nathan@me.berkeley.edu Abstract--This paper explores demand response techniques for managing mobile, distributed loads with on observed. Our first simulation study explores a classic demand response scenario in which a large number

  16. Distributed Algorithms for Control of Demand Response and Distributed Energy Resources

    E-Print Network [OSTI]

    Liberzon, Daniel

    (DRRs), sign a contract with an aggregating entity--the demand response provider--so as their load canDistributed Algorithms for Control of Demand Response and Distributed Energy Resources Alejandro D networks. These algorithms are relevant for load curtailment control in demand response programs, and also

  17. Reducing Your Electricity Use | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for| DepartmentReduce Hot Water Use for Energy

  18. Comfort demand leading the optimization to energy supply from the Smart Grid

    E-Print Network [OSTI]

    Aduba,K.; Zeiler,W.; Boxem,G.

    2014-01-01T23:59:59.000Z

    ). The control of loads in the building, may also be a resource to the grid using the flexibilities in service of the grid in Demand Side Management (DSM) scenarios as so called Demand Response (DR) or Load Control (LC). (Callaway and Hiskens 2011) However... of energy management, building management, and comfort management have to be developed to anticipate on the coming possible changes on Demand Side Management by Demand Response (DR) and Load Control (LC). This study is a first step towards...

  19. Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water Treatment

    SciTech Connect (OSTI)

    Daily, W; Coleman, S; Love, A; Reynolds, J; O'Brien, K; Gammon, S

    2004-09-22T23:59:59.000Z

    Rapid deployment and the use of objective force aggressively reduce logistic footprints and replenishment demands. Maneuver Sustainment requires that Future Combat Systems be equipped with water systems that are lightweight, have small footprints, and are highly adaptable to a variety of environments. Technologies employed in these settings must be able to meet these demands. Lawrence Livermore National Laboratory has designed and previously field tested nano-engineered materials for the treatment of water. These materials have been either based on silica aerogel materials or consist of composites of these aerogels with granular activated carbon (GAC). Recent tests have proven successful for the removal of contaminants including uranium, hexavalent chromium, and arsenic. Silica aerogels were evaluated for their ability to purify water that had been spiked with the nerve agent VX (O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate). These results demonstrated that silica aerogels were able to remove the VX from the supply water and were nearly 30 times more adsorbent than GAC. This performance could result in REDUCING CHANGEOUT FREQUENCY BY A FACTOR OF 30 or DECREASING the VOLUME of adsorbent BY A FACTOR OF 30; thereby significantly reducing logistic footprints and replenishment demands. The use of the nano-engineered Silica Aerogel/GAC composites would provide a water purification technology that meets the needs of Future Combat Systems.

  20. Reducing Energy Usage in Extractive Distillation

    E-Print Network [OSTI]

    Saxena, A. C.; Bhandari, V. A.

    , .. ~ REDUCING ENERGY USAGE IN,EXTRACTIVE DISTILLATION A. C. Saxena V. A. Bhandari Polysar Limited Sarnia, Ontario, Canada Abstract Butadiene 1:3 is separated from other C. hydrocarbons by extractive distillation in a sieve plate tower.... To improve the energy efficiency, butadiene recovery and productivity of the extractive distillation process, many process changes have been made. Their rationale, the methodology used to implement the various changes, and how they affected the process...

  1. Sustainable Energy Resources for Consumers (SERC)- On-Demand Tankless Water Heaters

    Broader source: Energy.gov [DOE]

    This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of On-Demand Tankless Water Heaters.

  2. Large-Scale Integration of Deferrable Demand and Renewable Energy Sources

    E-Print Network [OSTI]

    Oren, Shmuel S.

    1 Large-Scale Integration of Deferrable Demand and Renewable Energy Sources Anthony Papavasiliou. In order to accurately assess the impacts of renewable energy integration and demand response integration model for assessing the impacts of the large-scale integration of renewable energy sources

  3. Program Strategies and Results for California’s Energy Efficiency and Demand Response Markets

    E-Print Network [OSTI]

    Ehrhard, R.; Hamilton, G.

    2008-01-01T23:59:59.000Z

    Global Energy Partners provides a review of California’s strategic approach to energy efficiency and demand response implementation, with a focus on the industrial sector. The official role of the state, through the California Energy Commission (CEC...

  4. Energy and Security in Northeast Asia: Supply and Demand, Conflict and

    E-Print Network [OSTI]

    Fesharaki, Fereidun; Banaszak, Sarah; WU, Kang; Valencia, Mark J.; Dorian, James P.

    1998-01-01T23:59:59.000Z

    Energy and Security in Northeast Asia: Supply and Demand,Policy Papers 35- 37, Energy and Security in Northeast Asia,on Northeast Asian energy and security held in Seoul, Korea.

  5. Energy Demand and Fuel Supply in Developing Countries Brazil, Korea and the Philippines

    E-Print Network [OSTI]

    Sathaye, Jayant A.

    1984-01-01T23:59:59.000Z

    1980. COUNTRY REPORT BRAZIL TRENDS OF ENERGY USE I N BRAZILBRAZIL KOREA PHILIPPINES INTRODUCTION During the 1970s, energyENERGY DEMAND AND FUEL SUPPLY IN DEVELOPING COUNTRIES BRAZIL,

  6. Reduced Energy Consumption for Melting in Foundries

    E-Print Network [OSTI]

    ­ 336 ­ 007 TM 06 ­ 07 Department of Manufacturing Engineering and Management Technical University at the Technical University of Denmark, DTU. The project has been financed by the Danish transmission system-melted, and hence reduce the energy consumption for melting in foundries. Traditional gating systems are known

  7. Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel use and CO2 emissions, has resulted in

    E-Print Network [OSTI]

    Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel, combined with the expanded demand for biofuels, will result in higher food prices, since less land by using biofuels (vegetable oils). But the use of biofuels may not reduce CO2 emissions, even when

  8. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01T23:59:59.000Z

    appliance_standards/. DOE EIA. 2011a. The Electricity Marketof Energy, Energy Information Administration (EIA)(DOE EIA 2013). The methods and assumptions implemented in

  9. HVAC ENERGY EFFICIENCY CASE STUDY "Melink works well in our kitchen--it saves energy, reduces hood noise

    E-Print Network [OSTI]

    California at Davis, University of

    HVAC ENERGY EFFICIENCY CASE STUDY "Melink works well in our kitchen--it saves energy, reduces hood case studies have already been performed using this technology (demand control kitchen ventilation) and the savings are well proven. This study is a summarized compilation of select SPEED case studies

  10. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  11. Special Feature: Reducing Energy Costs with Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Energy Costs with Better Batteries Special Feature: Reducing Energy Costs with Better Batteries September 9, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov...

  12. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  13. Project Profile: Reducing the Cost of Thermal Energy Storage...

    Energy Savers [EERE]

    Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

  14. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Stadler, Michael; Marnay, Chris; Lai, Judy

    2010-06-01T23:59:59.000Z

    We take the perspective of a microgrid that has installed distribution energy resources (DER) in the form of distributed generation with combined heat and power applications. Given uncertain electricity and fuel prices, the microgrid minimizes its expected annual energy bill for various capacity sizes. In almost all cases, there is an economic and environmental advantage to using DER in conjunction with demand response (DR): the expected annualized energy bill is reduced by 9percent while CO2 emissions decline by 25percent. Furthermore, the microgrid's risk is diminished as DER may be deployed depending on prevailing market conditions and local demand. In order to test a policy measure that would place a weight on CO2 emissions, we use a multi-criteria objective function that minimizes a weighted average of expected costs and emissions. We find that greater emphasis on CO2 emissions has a beneficial environmental impact only if DR is available and enough reserve generation capacity exists. Finally, greater uncertainty results in higher expected costs and risk exposure, the effects of which may be mitigated by selecting a larger capacity.

  15. THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY PROFESSION

    E-Print Network [OSTI]

    1 THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY, Iowa State University ABSTRACT There is a tremendous imbalance between engineering workforce demand and supply in the world in general, and in the US, in particular. The electric power and energy industry

  16. energy: Supply, Demand, and impacts CooRDinATinG LeAD AUThoR

    E-Print Network [OSTI]

    Kammen, Daniel M.

    ;energy: supply, demand, and impacts 241 · Delivery of electricity may become more vulnerable is likely to have significant impacts. For example, a study found that electrical power blackouts and "sags, such as by increased peak electricity demand for cooling, damage to energy infrastructure by extreme events, disruption

  17. A Review of Energy Reduction Competitions. What Have We Learned?

    E-Print Network [OSTI]

    Edward, Vine; Jones, Christopher M

    2015-01-01T23:59:59.000Z

    and 4) reduce peak demand energy use in summer • Phase 22010. Driving Demand for Home Energy Improvements, LBNLMotivations • Drive demand for energy efficiency services

  18. Reducing Regulatory Burden | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012Energy ReliabilityNews FlashesRedbirdPetroleum,Reducing

  19. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    Linking Continuous Energy Management and Open AutomatedKeywords: Continuous Energy Management, Automated Demandlinking continuous energy management and continuous

  20. China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model

    E-Print Network [OSTI]

    Zhou, Nan

    2014-01-01T23:59:59.000Z

    Implications for Chinese energy demand and imports in 2020.for China to reduce energy demand and emissions. Thisand physical drivers of energy demand and thereby help

  1. Deployment of Behind-The-Meter Energy Storage for Demand Charge...

    Office of Scientific and Technical Information (OSTI)

    It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand....

  2. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    SciTech Connect (OSTI)

    Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

    2009-09-01T23:59:59.000Z

    In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

  3. Residential energy demand modeling and the NIECS data base : an evaluation

    E-Print Network [OSTI]

    Cowing, Thomas G.

    1982-01-01T23:59:59.000Z

    The purpose of this report is to evaluate the 1978-79 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance ...

  4. Economic development and the structure of the demand for commerial energy

    E-Print Network [OSTI]

    Judson, Ruth A.; Schmalensee, Richard.; Stoker, Thomas M.

    To deepen understanding of the relation between economic development and energy demand, this study estimates the Engel curves that relate per-capita energy consumption in major economic sectors to per-capita GDP. Panel ...

  5. 1.0 INTRODUCTION As the world's demand for energy continues to grow, unconventional gas will

    E-Print Network [OSTI]

    CHAPTER 1 1.0 INTRODUCTION As the world's demand for energy continues to grow, unconventional gas energy source in the world and plays host to a lot of natural gas resources. Between 3,500 and 9

  6. Economic development and the structure of the demand for commerial energy

    E-Print Network [OSTI]

    Judson, Ruth A.

    To deepen the understanding of the relation between economic development and energy demand, this study estimates the Engel curves that relate per-capita energy consumption in major economic sectors to per-capita GDP. Panel ...

  7. Factors Influencing Water Heating Energy Use and Peak Demand in a Large Scale Residential Monitoring Study

    E-Print Network [OSTI]

    Bouchelle, M. P.; Parker, D. S.; Anello, M. T.

    2000-01-01T23:59:59.000Z

    , as well as obtain improved appliance energy consumption indexes and load profiles. A portion of the monitoring measures water heater energy use and demand in each home on a 15-minute basis....

  8. Impacts of Temperature Variation on Energy Demand in Buildings (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    In the residential and commercial sectors, heating and cooling account for more than 40% of end-use energy demand. As a result, energy consumption in those sectors can vary significantly from year to year, depending on yearly average temperatures.

  9. Control and Optimization Meet the Smart Power Grid - Scheduling of Power Demands for Optimal Energy Management

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    2010-01-01T23:59:59.000Z

    The smart power grid aims at harnessing information and communication technologies to enhance reliability and enforce sensible use of energy. Its realization is geared by the fundamental goal of effective management of demand load. In this work, we envision a scenario with real-time communication between the operator and consumers. The grid operator controller receives requests for power demands from consumers, with different power requirement, duration, and a deadline by which it is to be completed. The objective is to devise a power demand task scheduling policy that minimizes the grid operational cost over a time horizon. The operational cost is a convex function of instantaneous power consumption and reflects the fact that each additional unit of power needed to serve demands is more expensive as demand load increases.First, we study the off-line demand scheduling problem, where parameters are fixed and known. Next, we devise a stochastic model for the case when demands are generated continually and sched...

  10. Calculating Energy and Demand Retrofit Savings for Victoria High School: Interim Report

    E-Print Network [OSTI]

    Liu, Y.; Reddy, T. A.; Katipamula, S.; Claridge, D. E.

    1992-01-01T23:59:59.000Z

    ESL-TR-92/12-03 Calculating Energy and Demand Retrofit Savings For Victoria High School Yue Liu, T. Agami Reddy, S. Katipamula and David E. Claridge. Interim Report Energy Systems Laboratory Texas A&M University College Station, TX 77843 December... 1992 Calculating Energy and Demand Retrofit Savings For Victoria High School Yue Liu, T. Agami Reddy, S. Katipamula and David E. Claridge. Interim Report Energy Systems Laboratory Texas A&M University College Station, TX 77843 December 1992 Abstract...

  11. China's Building Energy Demand: Long-Term Implications from a Detailed Assessment

    SciTech Connect (OSTI)

    Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Kyle, G. Page; Patel, Pralit L.

    2012-10-01T23:59:59.000Z

    We present here a detailed, service-based model of China’s building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of China’s building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how China’s building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China’s building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy.

  12. Model for Analysis of Energy Demand (MAED-2) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of Energy Demand (MAED-2) Jump to:

  13. Intelligent Building Energy Information and Control Systems for Low-Energy Operations and Optimal Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2014-01-01T23:59:59.000Z

    account  demand  response  signals,  building?integrated of Automated Demand Response in Commercial Buildings.  and Demand Response in Commercial  Buildings. , LBNL 

  14. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response can help reduce the threat of planned rotational outages. Demand response is also widely regarded as having

  15. High-Performance with Solar Electric Reduced Peak Demand: Premier Homes

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of EnergySeacrist, SeniorVolume 6 Building AmericaRancho

  16. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01T23:59:59.000Z

    O. , 2004. Energy efficient data centers. Report LBNL-54163,is a showcase for energy-efficient data center design andimplementation of energy-efficient data centers. Chapter 5:

  17. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01T23:59:59.000Z

    improving building energy efficiency has the potential toand improving building energy efficiency by exploring thecontributes to general building energy efficiency efforts by

  18. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    11% oil, 6% coal, and traditional energy. A survey conductedand Renewable Energy Ministry of Coal Ministry of Commerce &in Figure 10, coal represents the largest energy product

  19. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    patterns of energy consumption, trends in saturation and1 shows the trend in total primary energy consumption overvalue added – energy consumption. This trend can be observed

  20. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    U.S. DOE, 2006, “Buildings Energy Data Book 2006”, Septembersame period (US Buildings Energy Data Book). Over the next

  1. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11T23:59:59.000Z

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  2. Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand

    Reports and Publications (EIA)

    2014-01-01T23:59:59.000Z

    Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.

  3. Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency 

    E-Print Network [OSTI]

    Kiliccote, S.; Piette, M. A.

    2005-01-01T23:59:59.000Z

    ICEBO 2005 Conference Paper September 1, 2005 LBNL # 58179 ADVANCED CONTROL TECHNOLOGIES AND STRATEGIES LINKING DEMAND RESPONSE AND ENERGY EFFICIENCY Sila Kiliccote Mary Ann Piette Lawrence Berkeley National Laboratory Berkeley..., and nationwide status is outlined. The role of energy management and control systems for DR is described. Building systems such as HVAC and lighting that utilize control technologies and strategies for energy efficiency are mapped on to DR and demand...

  4. Economic Development and the Structure of the Demand for Commercial Energy Ruth A. Judson, Richard Schmalensee and Thomas M. Stoker*

    E-Print Network [OSTI]

    Economic Development and the Structure of the Demand for Commercial Energy Ruth A. Judson, Richard development and energy demand, this study estimates the Engel curves that relate per-capita energy consumption of the demands for commercial energy in its various forms and of the technologies that will be used to meet those

  5. Energy Department Announces $7 Million to Reduce Non-Hardware...

    Office of Environmental Management (EM)

    7 Million to Reduce Non-Hardware Costs of Solar Energy Systems Energy Department Announces 7 Million to Reduce Non-Hardware Costs of Solar Energy Systems November 15, 2011 -...

  6. Reducing Demand through Efficiency and Services: Impacts and Opportunities in Buildings Sector (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Piette, Mary Ann [Director, Demand Response Research Center

    2011-06-08T23:59:59.000Z

    Mary Ann Piette, Deputy of LBNL's Building Technologies Department and Director of the Demand Response Research Center, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  7. OG&E Uses Time-Based Rate Program to Reduce Peak Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No. EA-212-AOAHU2014) |OFFICIAL USE ONLYOFPP1

  8. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01T23:59:59.000Z

    site location into energy-efficient design strategies. Theof IT and non-IT energy efficient design measures (Brown etcenter with an energy-efficient design. A closer evaluation

  9. Experts Meeting: Behavioral Economics as Applied to Energy Demand...

    U.S. Energy Information Administration (EIA) Indexed Site

    - Maps out how to convert the intention to save energy with an actual plan to save energy: - Organizations interact with consumers in many ways in addition to pricing....

  10. Construction of a Demand Side Plant with Thermal Energy Storage

    E-Print Network [OSTI]

    Michel, M.

    1989-01-01T23:59:59.000Z

    in num- ber. Wind and solar power hold promise for some day in the future, but they are generally not cost effective today with the exception of remote, off-grid locations. They are also not the most reliable forms of electrical genera- tion. One...- tion of new technologies and/or changes in be- havior. This is generally acceptable to regu- lators and provides a means for the utilities to meet their requirement to provide reliable service to their customer base. At the same time, demand side...

  11. 1.0 Motivation............................................................................................................2 1.1Overview of Energy Supply and Demand in the 21st

    E-Print Network [OSTI]

    ............................................................................................................2 1.1Overview of Energy Supply and Demand in the 21st Century..........................2 1.2 UK Energy ...................................................................................24 6.6 Correlation between Wind Strength and Demand for Electricity..................24 6

  12. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Demand Side Strategies for Energy Efficiency in University of British Columbia

    E-Print Network [OSTI]

    of a project/report". #12;DEMAND&SIDE)STRATEGIES)FOR)ENERGY)EFFICIENCY) INUBC Social Ecological Economic Development Studies (SEEDS) Student Report Demand Side Strategies for Energy Efficiency in University of British Columbia Residences Jennifer Clark, Nate Croft, Liam Fast

  13. Lifestyle studies Market demand Usage patterns Funding: Calif. Energy Commission, BMW, Calif. ARB, ECOtality

    E-Print Network [OSTI]

    California at Davis, University of

    as much energy as it consumes. When done in 2014, the 130-acre UC Davis West Village will be home to 3Consumers Lifestyle studies · Market demand · Usage patterns Funding: Calif. Energy Commission, BMW operation · Energy savings Funding: Chrysler, US Dept of Energy Lead researcher: Kevin Nesbitt, Ph

  14. June 10, 2013 Canada's energy future meeting demand AND the climate change challenge

    E-Print Network [OSTI]

    Pedersen, Tom

    MEDIA TIP June 10, 2013 Canada's energy future ­meeting demand AND the climate change challenge Energy and business reporters are welcome to attend a high-level energy experts' presentation and panel on "Seeking Common Ground on Canada's Energy Future" during the Pacific Institute for Climate Solutions (PICS

  15. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    nuclear hydro Energy output Own Uses Transmission and distribution loses Electricity delivered Primary factor The Agriculture

  16. Cooling Energy Demand Evaluation by Meansof Regression Models Obtained From Dynamic Simulations

    E-Print Network [OSTI]

    Catalina, T.; Virgone, J.

    2011-01-01T23:59:59.000Z

    The forecast of the energy heating/cooling demand would be a good indicator for the choice between different conception solutions according to the building characteristics and the local climate. A previous study (Catalina T. et al 2008...

  17. Three Case Studues of the Application of Energy Systems Optimization Best Prectices for Automatic Demand Response

    E-Print Network [OSTI]

    Shi, Y.; Guiberteau, K.; Yagua, C.; Watt, J.

    2013-01-01T23:59:59.000Z

    This paper summarizes three case study buildings located in Austin, Texas that were selected for inclusion in a review of the demand reduction program of the utility company Austin Energy. The buildings studied include a city government office...

  18. Reduce Hot Water Use for Energy Savings | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for| DepartmentReduce Hot Water Use for Energy Savings

  19. Controlling electric power demand

    SciTech Connect (OSTI)

    Eikenberry, J.

    1984-11-15T23:59:59.000Z

    Traditionally, demand control has not been viewed as an energy conservation measure, its intent being to reduce the demand peak to lower the electric bill demand charge by deferring the use of a block of power to another demand interval. Any energy savings were essentially incidental and unintentional, resulting from curtailment of loads that could not be assumed at another time. This article considers a microprocessor-based multiplexed system linked to a minicomputer to control electric power demand in a winery. In addition to delivering an annual return on investment of 55 percent in electric bill savings, the system provides a bonus in the form of alarm and monitoring capability for critical processes.

  20. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    input Coal gas oil nuclear hydro Energy output Own Uses Transmission and distribution loses Electricity delivered Primary factor The Agriculture

  1. Design Considerations for an On-Demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network

    E-Print Network [OSTI]

    Brown, Timothy X.

    1 Design Considerations for an On-Demand Minimum Energy Routing Protocol for a Wireless Ad Hoc- demand minimum energy routing protocol and suggests mechanisms for their implementation. We highlight of an 'energy aware' link cache for storing this information. We also compare the performance of an on-demand

  2. Energy-Efficient Reliable Paths for On-Demand Routing Protocols Tamer Nadeem, Suman Banerjee, Archan Misra, Ashok Agrawala

    E-Print Network [OSTI]

    Banerjee, Suman

    1 Energy-Efficient Reliable Paths for On-Demand Routing Protocols Tamer Nadeem, Suman Banerjee does not work for on-demand protocols and some additional mechanisms are needed to compute energy-efficient-Demand routing proto- col (AODV), and show how it can be enhanced to compute such energy-efficient reliable paths

  3. EnergyEfficient Reliable Paths for OnDemand Routing Protocols Tamer Nadeem, Suman Banerjee, Archan Misra, Ashok Agrawala

    E-Print Network [OSTI]

    Banerjee, Suman

    1 Energy­Efficient Reliable Paths for On­Demand Routing Protocols Tamer Nadeem, Suman Banerjee does not work for on­demand protocols and some additional mechanisms are needed to compute energy­efficient­Demand routing proto­ col (AODV), and show how it can be enhanced to compute such energy­efficient reliable paths

  4. Energy demand and conservation in Kenya: initial appraisal

    SciTech Connect (OSTI)

    Schipper, L.

    1980-03-01T23:59:59.000Z

    Ongoing research into the use and conservation of energy in Kenya is reported briefly. A partial accounting of energy use in Kenya is presented, and evidence that some energy conservation has been taking place is discussed. A fuller accounting for all commercial energy flows is both possible and desirable. The work presented should serve as a basis for further data collection and analysis in Kenya, and can be used as a model for similar efforts in other countries. The author intends to continue much of this energy accounting in Kenya in the latter half of 1980.

  5. High Electric Demand Days: Clean Energy Strategies for Improving Air Quality

    Broader source: Energy.gov [DOE]

    This presentation by Art Diem of the State and Local Capacity Building Branch in the U.S. Environmental Protection Agency was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  6. Assessment of Achievable Potential from Energy Efficiency and Demand

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformationGuide | Open Energy

  7. Assisting Mexico in Developing Energy Supply and Demand Projections | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon Capture andsoftwareAsianEnergy Information Assisting

  8. Energy, Water and Fish: Biodiversity Impacts of Energy-Sector Water Demand in the United States Depend on

    E-Print Network [OSTI]

    Olden, Julian D.

    for electricity generation from coal. Historical water use by the energy sector is related to patterns of fishEnergy, Water and Fish: Biodiversity Impacts of Energy- Sector Water Demand in the United States Rising energy consumption in coming decades, combined with a changing energy mix, have the potential

  9. Environmental and Resource Economics Household Energy Demand in Urban China: Accounting for regional prices and rapid

    E-Print Network [OSTI]

    Energy Demand in Urban China: Accounting for regional prices and rapid income change Article Type and changing demographics. We estimate income and price elasticities for these energy types using a two effects into account, we find that total energy is price-inelastic for all income groups. For individual

  10. Comfort-Aware Home Energy Management Under Market-Based Demand-Response

    E-Print Network [OSTI]

    Boutaba, Raouf

    pricing and consumption data in South Korea. Index Terms--smart grid, demand-response, energy management I-based pricing. In peak capping, each home is allocated an energy quota. In market-based pricing, the price-term viable way of regulating energy consumptions. We work with day-ahead market pricing in this paper

  11. Reduce Risk, Increase Clean Energy: How States and Cities are...

    Office of Environmental Management (EM)

    Reduce Risk, Increase Clean Energy: How States and Cities are Using Old Finance Tools to Scale Up a New Industry Reduce Risk, Increase Clean Energy: How States and Cities are Using...

  12. Consideration of the environmental impact of aircraft has become critical in commercial aviation. The continued growth of air traffic has caused increasing demands to reduce aircraft emissions,

    E-Print Network [OSTI]

    Papalambros, Panos

    ABSTRACT Consideration of the environmental impact of aircraft has become critical in commercial. Demands by the public, environ- mentalists, and governments to reduce aircraft environmental impact, have technologies can reduce the environmental impact of air travel per passenger-mile flown. However, with current

  13. India Energy Outlook: End Use Demand in India to 2020

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    2009-03-30T23:59:59.000Z

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

  14. An overview of energy supply and demand in China

    SciTech Connect (OSTI)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01T23:59:59.000Z

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world's largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China's energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China's energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  15. An overview of energy supply and demand in China

    SciTech Connect (OSTI)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01T23:59:59.000Z

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world`s largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China`s energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China`s energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  16. Fabricate-on-Demand Vacuum Insulating Glazings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVID GEISEREnergy1 of 3 PPG developed and

  17. Retail Demand Response in Southwest Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof EnhancedRestructuring ourU.S. DepartmentRetail

  18. Response to several FOIA requests - Renewable Energy. Demand for Fossil

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepository | Department of EnergyDepartmentRespondingFuels |

  19. Hydrogen Demand and Resource Assessment Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9 CorporationHydraA) Jump to:

  20. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demands

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02ReportWaste-to-Energy andAprilWater andWatershed Scale

  1. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01T23:59:59.000Z

    Boyd et al. : “Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

  2. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01T23:59:59.000Z

    Boyd et al. : “Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

  3. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    more than 40% of end-use energy demand. It is important toin terms of building energy supply and demand. Additionally,to evaluate energy performance and demand response. Accurate

  4. ENERGY DEMAND AND CONSERVATION IN KENYA: INITIAL APPRAISAL

    E-Print Network [OSTI]

    Schipper, Lee

    2013-01-01T23:59:59.000Z

    and commercial uses" of oil products as given by the 1978as net i.mports of oil products. Electric power productionfrom Kenya is refined oil products, energy for which is

  5. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    building electric load management concepts and faster scale dynamic DR using open automation systems.systems are being designed to be compatible with existing open building automationbuilding controls, weather sensitivity and occupancy patterns. Automation - Historically many energy management systems

  6. Regulation Services with Demand Response - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberg and Sondershausen (September 10May

  7. Energy and Demand Savings from Implementation Costs in Industrial Facilities

    E-Print Network [OSTI]

    Razinha, J. A.; Heffington, W. M.

    Improve Lubrication Practices 0.91 4 na 3 na 0 24 16 487 Use Waste Heat from Hot Flue Gases to Preheat Combustion Air 0.29 483 na 2 0.31 449 25 11 464 Use Synthetic Lubricant 0.03 198 0.03 198 na 0 5 Table 3. National IAC... 2 25 11 Use Synthetic Lubricant 0.00 159 0.00 24 6 Table 4. Texas A&M University IAC Energy Conservation - Implementation Cost Correlations Rank No. TAMU Assessment Recommendation (AR) Total Energy Electrical Consumption Natural...

  8. Chapter 3 Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. Feedstock & Production ChallengeEfficient Future |

  9. Chapter 3: Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. Feedstock & Production ChallengeEfficient Future |:

  10. AVTA: PHEV Demand and Energy Cost Demonstration Report | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 of 5) ALARAManager QualificationIncidents in

  11. Property:DemandRateStructure | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType JumpDOEInvolve Jump to: navigation,DayQuantity

  12. Network-Driven Demand Side Management Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel Wind Power Project Jump to:Nestle

  13. Energy Conservation and Commercialization in Gujarat: Report On Demand Side

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLC Place: Ketchum, Idaho Zip: IDConcepts Jump

  14. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    best practices that could be applicable in improving the energy efficiency and demand responsebest practices that could be applied to form the basis for demand responsedemand response activities. The following case studies illustrate best practices

  15. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    best practices that could be applied to form the basis for demand responsebest practices that could be applicable in improving the energy efficiency and demand responsedemand response activities. The following case studies illustrate best practices

  16. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response (DR) can.S. and internationally and lay out ideas that could help move California forward. KEY WORDS demand response, peak

  17. Reducing Energy Consumption in Industrial Facilities

    E-Print Network [OSTI]

    Whalen, J. M.

    1984-01-01T23:59:59.000Z

    Owners or managers want to conserve energy, however, they have limited funds. Energy conservation must stand on its merits economically if it is to successfully compete for funds. There are two basic types of approaches to achieving energy...

  18. Energy Demand in China (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Price, Lynn

    2011-06-08T23:59:59.000Z

    Lynn Price, LBNL scientist, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  19. SmartHG: Energy Demand Aware Open Services for Smart Grid Intelligent Automation

    E-Print Network [OSTI]

    Tronci, Enrico

    solar panels)], for each time slot (say each hour) the DNO price policy defines an interval of energySmartHG: Energy Demand Aware Open Services for Smart Grid Intelligent Automation Enrico Tronci.prodanovic,jorn.gruber, barry.hayes}@imdea.org I. INTRODUCTION The SmartHG project [1], [2] has the goal of developing

  20. Fabricate-on-Demand Vacuum Insulating Glazings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|JulyR--FOIA SupportDOE's FY3 CurrentFY55FY 20163

  1. International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has| Methodology24,Jim

  2. Light-Duty Vehicle Energy Demand, Demographics, and Travel Behavior

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14Biomass feedstocks and the

  3. Assumption to the Annual Energy Outlook 2014 - Transportation Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5AreOil and Gas

  4. Energy Upgrade California Drives Demand From Behind the Wheel | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energyof 2005 at Iowa WindUnion7Transfer Energyof Energy

  5. Sandia Energy - ECIS-Princeton Power Systems, Inc.: Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage Silicon CarbideAgency:

  6. Indianapolis Offers a Lesson on Driving Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of EnergyTreatment andJune 25, 2012 EM

  7. Demand Response - Policy: More Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton:|Electricity Policy Coordination

  8. Tankless or Demand-Type Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment ofEnergy State7/109T.M.TRUPACT-III QuickonDepartment

  9. Behavioral Economics Applied to Energy Demand Analysis: A Foundation -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior of Spent

  10. Agreement for Energy Conservation and Demand Side Management Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building America TopAgendaLaboratoryTemplate |

  11. Increasing Underwater Vehicle Autonomy by Reducing Energy Consumption

    E-Print Network [OSTI]

    Chyba, Monique

    : Autonomous Underwater Vehicle, Minimum Energy Consumption, Optimal Control, Experiments. 1 IntroductionIncreasing Underwater Vehicle Autonomy by Reducing Energy Consumption M. Chybaa , T. Haberkornd , S, we concern ourselves with finding a control strategy that minimizes energy consumption along

  12. Reduced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead of Contracting ActivityRedoxReduced

  13. Regional Differences in the Price-Elasticity of Demand for Energy

    SciTech Connect (OSTI)

    Bernstein, M. A.; Griffin, J.

    2006-02-01T23:59:59.000Z

    At the request of the National Renewable Energy Laboratory (NREL), the RAND Corporation examined the relationship between energy demand and energy prices with the focus on whether the relationships between demand and price differ if these are examined at different levels of data resolution. In this case, RAND compares national, regional, state, and electric utility levels of data resolution. This study is intended as a first step in helping NREL understand the impact that spatial disaggregation of data can have on estimating the impacts of their programs. This report should be useful to analysts in NREL and other national laboratories, as well as to policy nationals at the national level. It may help them understand the complex relationships between demand and price and how these might vary across different locations in the United States.

  14. Demand Response and Open Automated Demand Response

    E-Print Network [OSTI]

    LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

  15. REDUCING ENERGY USE IN FLORIDA BUILDINGS

    E-Print Network [OSTI]

    Raustad, R.; Basarkar, M.; Vieira, R.

    to determine the energy saving features available which are, in most cases, stricter than the current Florida Building Code. The energy savings features include improvements to building envelop, fenestration, lighting and equipment, and HVAC efficiency...

  16. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  17. Opportunities for Energy Efficiency and Demand Response in Corrugated Cardboard Manufacturing Facilities

    E-Print Network [OSTI]

    Chow, S.; Hackett, B.; Ganji, A. R.

    2005-01-01T23:59:59.000Z

    OPPORTUNITIES FOR ENERGY EFFICIENCY AND DEMAND RESPONSE IN CORRUGATED CARDBOARD MANUFACTURING FACILITIES Sandra Chow BASE Energy, Inc.* San Francisco, CA 94103 Ahmad R. Ganji, Ph.D., P.E. San Francisco State University San Francisco, CA....6 Plant F 7 53,307 0.7 Plant G 14 294,544 0.3 Plant H 13 61,553 0.8 Plant I 9 28,945 1.1 Plant J 9 24,759 2.9 Plant K 12 124,854 0.8 Plant L 18 113,640 1.2 MAJOR OPPORTUNITIES IN DEMAND RESPONSE In recent years, due...

  18. Property:OpenEI/UtilityRate/FlatDemandMonth1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 Jump to:FlatDemandMonth1 Jump

  19. Property:OpenEI/UtilityRate/FlatDemandMonth10 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 Jump to:FlatDemandMonth1

  20. Property:OpenEI/UtilityRate/FlatDemandMonth11 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 Jump to:FlatDemandMonth1This is

  1. Property:OpenEI/UtilityRate/FlatDemandMonth12 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 Jump to:FlatDemandMonth1This

  2. Property:OpenEI/UtilityRate/FlatDemandMonth3 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 JumpFlatDemandMonth3 Jump to:

  3. Property:OpenEI/UtilityRate/FlatDemandMonth4 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 JumpFlatDemandMonth3 Jump

  4. Property:OpenEI/UtilityRate/FlatDemandMonth5 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 JumpFlatDemandMonth3

  5. Property:OpenEI/UtilityRate/FlatDemandMonth7 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8FlatDemandMonth7 Jump to:

  6. Property:OpenEI/UtilityRate/FlatDemandMonth8 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8FlatDemandMonth7 Jump

  7. Property:OpenEI/UtilityRate/FlatDemandMonth9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8FlatDemandMonth7

  8. Comfort demand leading the optimization to energy supply from the Smart Grid 

    E-Print Network [OSTI]

    Aduba,K.; Zeiler,W.; Boxem,G.

    2014-01-01T23:59:59.000Z

    stochastic behaviour, which necessitates for a change in the the management of the grid Slootweg et al., 2011 statedthe increase in decentralised active loads such as, micro Combined Heat and Power (µCHP), Electrical-vehicles, heat pumps which can... of uncertainty within Smart Energy Systems by applying offices as LVPP with different types of energy storage on different systems levels, connecting energy demand and supply within offices (nano Grid) with micro Grid (field or street) and public Smart Grid...

  9. Reducing Energy Costs and Rebuilding the Past | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8,PastRadiation LossesReducing Energy

  10. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOE Patents [OSTI]

    Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

    2011-12-06T23:59:59.000Z

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  11. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOE Patents [OSTI]

    Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

    2006-12-12T23:59:59.000Z

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  12. Reducing the Energy Consumption of Mobile Applications Behind the Scenes

    E-Print Network [OSTI]

    Tilevich, Eli

    Reducing the Energy Consumption of Mobile Applications Behind the Scenes Young-Woo Kwon and Eli, an increasing number of perfective maintenance tasks are concerned with optimizing energy consumption. However, optimizing a mobile application to reduce its energy consumption is non-trivial due to the highly volatile

  13. GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS

    E-Print Network [OSTI]

    Schott, René - Institut de Mathématiques Élie Cartan, Université Henri Poincaré

    GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS Maha IDRISSI AOUAD.loria.fr/zendra Keywords: Energy consumption reduction, Genetic heuristics, memory allocation management, optimizations on heuristic methods for SPMs careful management in order to reduce memory energy consumption. We propose

  14. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    SciTech Connect (OSTI)

    DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2013-06-02T23:59:59.000Z

    In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

  15. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    SciTech Connect (OSTI)

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

    2011-12-22T23:59:59.000Z

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting iron ore to metallic iron nodules. Various types of coals including a bio-coal produced though torrefaction can result in production of NRI at reduced GHG levels. The process results coupled with earlier already reported developments indicate that this process technique should be evaluated at the next level in order to develop parameter information for full scale process design. Implementation of the process to full commercialization will require a full cost production analysis and comparison to other reduction technologies and iron production alternatives. The technical results verify that high quality NRI can be produced under various operating conditions at the pilot level.

  16. Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach

    SciTech Connect (OSTI)

    Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

    2015-01-01T23:59:59.000Z

    This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to perform detailed hourly impact studies of building adaptation and mitigation strategies on energy use and electricity peak demand within the context of the entire grid and economy.

  17. Calibration of an EnergyPlus Building Energy Model to Assess the Impact of Demand Response Measures

    E-Print Network [OSTI]

    Lavigne, K.; Sansregret, S.; Daoud, A.; Leclair, L. A.

    2013-01-01T23:59:59.000Z

    1 Karine Lavigne Simon Sansregret Ahmed DaoudLouis-Alexandre Leclaire CALIBRATION OF AN ENERGYPLUS BUILDING ENERGY MODEL TO ASSESS THE IMPACT OF DEMAND RESPONSE MEASURES ICEBO 2013, Montr?al Groupe ? Technologie2 ICEBO-2013 Contextualization... ICEBO-2013 Groupe ? Technologie Calibrated Results 22 ICEBO-2013 12 Groupe ? Technologie Conclusion 23 ICEBO-2013 > Calibrating model for a demand response objective : Challenging and High Effort > Capturing building and human erratic behaviour...

  18. Reducing Photovoltaic Costs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005UNS Electric,RM ExitPropertySeptemberof Energy Patricia A.DOEPhoto of

  19. Reducing Regulatory Burden | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energy Recoveryof Energy -

  20. Reducing Regulatory Burden | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energy Recoveryof Energy -As part of

  1. DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program

    E-Print Network [OSTI]

    Hofmann, Hans A.

    DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program 4 operating hours for the lights in each room a. Assign a usage category to each room in all buildings (e electrical usage and savings in room by room spreadsheet d. Subtotal savings by building

  2. DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program

    E-Print Network [OSTI]

    Hofmann, Hans A.

    DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program 4 Works Association Research Foundation (AwwaRF) and building demographics for savings calculations 4-retrofit; calculate savings in room by room spreadsheet 5. Pre-retrofit (Process water audit) ­ Walk buildings

  3. How to Reduce Energy Supply Costs 

    E-Print Network [OSTI]

    Swanson, G.

    2007-01-01T23:59:59.000Z

    customers control their supply-side costs of energy. Specific topics include distributive wind power generation and solid fuel boilers. It identities factors to consider in determining whether these technologies are economically viable for customers...

  4. Fact Sheet: U.S. and China Actions Matter for Global Energy Demand...

    Broader source: Energy.gov (indexed) [DOE]

    support provided a variety of energy efficiency technologies to reduce the heating and cooling loads, improve lighting efficiency, save water and serve as models of what the next...

  5. Reducing Power Factor Cost | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8,PastRadiationReducing LEDReducing

  6. Reducing Regulatory Burden | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010InJanuary 29, 2013RedbirdThis hybrid electric

  7. The worldwide demand for green energy systems is evident. In this context, wind energy converters will play a paramount role. Extending the service life of a

    E-Print Network [OSTI]

    Stanford University

    ABSTRACT The worldwide demand for green energy systems is evident. In this context, wind energy with respect to the future energy supply. As a consequence, a massive demand for green energy systems becomes converters will play a paramount role. Extending the service life of a wind energy converter translates

  8. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    perspective, a demand-side management framework with threethe integration of DR in demand-side management activitiesdevelopments. The demand-side management (DSM) framework

  9. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    buildings. A demand-side management framework from buildingthe integration of DR in demand-side management activitiesdevelopments. The demand-side management (DSM) framework

  10. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    Demand Response in Commercial Buildings 3.1. Demand Response in Commercial Buildings ElectricityDemand Response: Understanding the DR potential in commercial buildings

  11. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CA Control Areas CO 2 Carbon Dioxide CHP Combined Heat and Power CPP Critical Peak Pricing DG Distributed Generation DOE Department of Energy DR Demand Response DRCC Demand...

  12. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13T23:59:59.000Z

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy giants', a phenomenon that is expected to continue, accelerate and spread to other countries. This paper explores the potential for slowing energy consumption and greenhouse gas emissions in the residential sector in developing countries and evaluates the potential of energy savings and emissions mitigation through market transformation programs such as, but not limited to Energy Efficiency Standards and Labeling (EES&L). The bottom-up methodology used allows one to identify which end uses and regions have the greatest potential for savings.

  13. Model documentation report: Industrial sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  14. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    SciTech Connect (OSTI)

    Stadler , Michael; Siddiqui, Afzal; Marnay, Chris; ,, Hirohisa Aki; Lai, Judy

    2009-05-26T23:59:59.000Z

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.

  15. Intelligent Building Automation: A Demand Response Management Perspective

    E-Print Network [OSTI]

    Qazi, T.

    2010-01-01T23:59:59.000Z

    the energy consumption in response to energy price fluctuations, demand charges, or a direct request to reduce demand when the power grid reaches critical levels. However, in order for a demand response regime to be effective the building will need to have a...

  16. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  17. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Demand Response Enabling Technology Development Phase IEfficiency and Demand Response Programs for 2005/2006,Application to Demand Response Energy Pricing” SenSys 2003,

  18. Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options Neufville Professor of Engineering Systems Chair, ESD Education Committee #12;2 #12;3 Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities By Chia

  19. Methodology for Analyzing Energy and Demand Savings From Energy Services Performance Contract Using Short-Term Data

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J. S.; Cho, S.; Lynn, B.; Cook, M.

    2006-01-01T23:59:59.000Z

    . New methods, which were developed to measure hourly demand savings from short-term data, were also discussed. INTRODUCTION The Fort Hood Army Base has selected an Energy Services Performance Contract (ESPC) contractor to help achieve its... energy reduction goals as mandated by Executive Order. This ESPC is expected to be a $3.8 million, 20 year contract, which includes five primary types of Energy Conservation Measures (ECMs) in 58 buildings, including: boiler insulation, control...

  20. Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann

    2005-01-01T23:59:59.000Z

    driven building response. Demand Side Management Energybuildings. Table 1 outlines how DR fits into historical demand side management (

  1. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    SciTech Connect (OSTI)

    Dudley, Junqiao Han; Black, Doug; Apte, Mike; Piette, Mary Ann; Berkeley, Pam

    2010-05-14T23:59:59.000Z

    We have studied a low energy building on a campus of the University of California. It has efficient heating, ventilation, and air conditioning (HVAC) systems, consisting of a dual-fan/dual-duct variable air volume (VAV) system. As a major building on the campus, it was included in two demand response (DR) events in the summers of 2008 and 2009. With chilled water supplied by thermal energy storage in the central plant, cooling fans played a critical role during DR events. In this paper, an EnergyPlus model of the building was developed and calibrated. We compared both whole-building and HVAC fan energy consumption with model predictions to understand why demand savings in 2009 were much lower than in 2008. We also used model simulations of the study building to assess pre-cooling, a strategy that has been shown to improve demand saving and thermal comfort in many types of building. This study indicates a properly calibrated EnergyPlus model can reasonably predict demand savings from DR events and can be useful for designing or optimizing DR strategies.

  2. Model documentation report: Industrial sector demand module of the national energy modeling system

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  3. Reducing "Search Cost" and Risk in Energy-efficiency Investments

    E-Print Network [OSTI]

    Reducing "Search Cost" and Risk in Energy-efficiency Investments: Two Success Stories Philip E "search Cost"and Risk in Energy-Eficiency Investments: Two Success Stories - 4.91 #12;Perspectives that the unsystematic risk associated with energy-efficiency investments is often very large, since the actual

  4. STRATEGIC PLAN TO REDUCE THE ENERGY IMPACT OF AIR CONDITIONERS

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION STRATEGIC PLAN TO REDUCE THE ENERGY IMPACT OF AIR CONDITIONERS Acknowledgements This report represents the efforts of many experts from the air conditioning industry who Manufacturer Freus Air Conditioning Jim Bazemore Consultant Energy Market Innovations, Inc. Doug Beaman

  5. A Multipath Energy-Aware On demand Source Routing Protocol for Mobile Ad-Hoc Networks

    E-Print Network [OSTI]

    Chettibi, Saloua

    2009-01-01T23:59:59.000Z

    Energy consumption is the most challenging issue in routing protocol design for mobile ad-hoc networks (MANETs), since mobile nodes are battery powered. Furthermore, replacing or recharging batteries is often impossible in critical environments such as in military or rescue missions. In a MANET, the energy depletion of a node does not affect the node itself only, but the overall network lifetime. In this paper, we present multipath and energy-aware on demand source routing (MEA-DSR) protocol, which exploits route diversity and information about batteries-energy levels for balancing energy consumption between mobile nodes. Simulation results, have shown that MEA-DSR protocol is more energy efficient than DSR in almost mobility scenarios.

  6. The Impact of Energy Efficiency and Demand Response Programs on the U.S. Electricity Market

    SciTech Connect (OSTI)

    Baek, Young Sun [ORNL; Hadley, Stanton W [ORNL

    2012-01-01T23:59:59.000Z

    This study analyzes the impact of the energy efficiency (EE) and demand response (DR) programs on the grid and the consequent level of production. Changes in demand caused by EE and DR programs affect not only the dispatch of existing plants and new generation technologies, the retirements of old plants, and the finances of the market. To find the new equilibrium in the market, we use the Oak Ridge Competitive Electricity Dispatch Model (ORCED) developed to simulate the operations and costs of regional power markets depending on various factors including fuel prices, initial mix of generation capacity, and customer response to electricity prices. In ORCED, over 19,000 plant units in the nation are aggregated into up to 200 plant groups per region. Then, ORCED dispatches the power plant groups in each region to meet the electricity demands for a given year up to 2035. In our analysis, we show various demand, supply, and dispatch patterns affected by EE and DR programs across regions.

  7. RESEARCH ARTICLE Open Access Noninvasive ventilation reduces energy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    RESEARCH ARTICLE Open Access Noninvasive ventilation reduces energy expenditure in amyotrophic with a shift of the burden of ventilation to extradiaphragmatic inspiratory muscles, including neck muscles prognostic value. We hypothesized that noninvasive ventilation (NIV) would relieve inspiratory neck muscles

  8. Iowa Community College Campuses Reduce Energy Use | Department...

    Broader source: Energy.gov (indexed) [DOE]

    in the state of Iowa. In an effort to lower operating costs and reduce the college's carbon footprint, DMACC's staff is giving the college an energy makeover through a variety...

  9. Reducing 3G energy consumption on mobile devices

    E-Print Network [OSTI]

    Deng, Shuo

    2012-01-01T23:59:59.000Z

    The 3G wireless interface is a significant contributor to battery drain on mobile devices. This paper describes the design, implementation, and experimental evaluation of methods to reduce the energy consumption of the 3G ...

  10. A Successful Case Study of Small Business Energy Efficiency and Demand Response with Communicating Thermostats

    SciTech Connect (OSTI)

    Herter, Karen; Wayland, Seth; Rasin, Josh

    2009-08-12T23:59:59.000Z

    This report documents a field study of 78 small commercial customers in the Sacramento Municipal Utility District service territory who volunteered for an integrated energy-efficiency/demand-response (EE-DR) program in the summer of 2008. The original objective for the pilot was to provide a better understanding of demand response issues in the small commercial sector. Early findings justified a focus on offering small businesses (1) help with the energy efficiency of their buildings in exchange for occasional load shed, and (2) a portfolio of options to meet the needs of a diverse customer sector. To meet these expressed needs, the research pilot provided on-site energy efficiency advice and offered participants several program options, including the choice of either a dynamic rate or monthly payment for air-conditioning setpoint control. Overall results show that pilot participants had energy savings of 20%, and the potential for an additional 14% to 20% load drop during a 100 F demand response event. In addition to the efficiency-related bill savings, participants on the dynamic rate saved an estimated 5% on their energy costs compared to the standard rate. About 80% of participants said that the program met or surpassed their expectations, and three-quarters said they would probably or definitely participate again without the $120 participation incentive. These results provide evidence that energy efficiency programs, dynamic rates and load control programs can be used concurrently and effectively in the small business sector, and that communicating thermostats are a reliable tool for providing air-conditioning load shed and enhancing the ability of customers on dynamic rates to respond to intermittent price events.

  11. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    of energy and environmental benefits of demand controlledindicate the energy and cost savings for demand controlled24) (California Energy Commission 2008), demand controlled

  12. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    of energy and environmental benefits of demand controlled indicate the energy and cost savings for  demand controlled 24) (California Energy  Commission 2008), demand controlled 

  13. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    integrating HECO and Hawaii Energy demand response relatedpotential. Energy efficiency and demand response efforts areBoth  energy  efficiency  and  demand  response  should  

  14. Reducing energy use comes at a costReducing energy use comes at a cost ----the EU casethe EU case

    E-Print Network [OSTI]

    Deputy Director and Chief Economist Centre for Global Energy StudiesCentre for Global Energy Studies Athens emissions, which are deemed to cause globalemissions, which are deemed to cause global warming regions ofsupplies (especially oil) from unstable regions of the world.the world. Why reduce energy use

  15. Local government involvement in long term resource planning for community energy systems. Demand side management

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  16. Property:OpenEI/UtilityRate/DemandChargePeriod3 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump Jump to:DemandChargePeriod3 Jump to:

  17. Property:OpenEI/UtilityRate/DemandChargePeriod3FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump Jump to:DemandChargePeriod3 Jump

  18. Property:OpenEI/UtilityRate/DemandChargePeriod4 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump Jump to:DemandChargePeriod3

  19. Property:OpenEI/UtilityRate/DemandChargePeriod5 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump JumpDemandChargePeriod5 Jump to:

  20. Property:OpenEI/UtilityRate/DemandChargePeriod5FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump JumpDemandChargePeriod5 Jump

  1. Property:OpenEI/UtilityRate/DemandChargePeriod6 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump JumpDemandChargePeriod5

  2. Property:OpenEI/UtilityRate/DemandChargePeriod6FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump JumpDemandChargePeriod5Information

  3. Property:OpenEI/UtilityRate/DemandRatchetPercentage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations JumpInformation DemandRatchetPercentage

  4. Property:OpenEI/UtilityRate/DemandReactivePowerCharge | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump to: navigation, search This is a

  5. Property:OpenEI/UtilityRate/DemandWindow | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump to: navigation, search This is

  6. Property:OpenEI/UtilityRate/EnableDemandCharge | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump to: navigation, search This

  7. Property:OpenEI/UtilityRate/FixedDemandChargeMonth1 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformation Rate Jump to:Information

  8. Property:OpenEI/UtilityRate/FixedDemandChargeMonth10 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformation Rate Jump

  9. Property:OpenEI/UtilityRate/FixedDemandChargeMonth11 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformation Rate JumpInformation 1

  10. Property:OpenEI/UtilityRate/FixedDemandChargeMonth12 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformation Rate JumpInformation

  11. Property:OpenEI/UtilityRate/FixedDemandChargeMonth2 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformation Rate

  12. Property:OpenEI/UtilityRate/FixedDemandChargeMonth3 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformation RateInformation

  13. Property:OpenEI/UtilityRate/FixedDemandChargeMonth4 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformation

  14. Property:OpenEI/UtilityRate/FixedDemandChargeMonth5 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformationInformation

  15. Property:OpenEI/UtilityRate/FixedDemandChargeMonth6 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformationInformationInformation

  16. Property:OpenEI/UtilityRate/FixedDemandChargeMonth8 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 Jump to: navigation, search

  17. Property:OpenEI/UtilityRate/FixedDemandChargeMonth9 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 Jump to: navigation,

  18. Property:OpenEI/UtilityRate/FlatDemandMonth2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 Jump

  19. Property:OpenEI/UtilityRate/FlatDemandMonth6 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8

  20. New Demands on Heavy Duty Engine Management Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForum |EnergyNew CatalyticDemands on Heavy Duty Engine

  1. Impact of the renewable oxygenate standard for reformulated gasoline on ethanol demand, energy use, and greenhouse gas emissions

    SciTech Connect (OSTI)

    Stork, K.C.; Singh, M.K.

    1995-04-01T23:59:59.000Z

    To assure a place for renewable oxygenates in the national reformulated gasoline (RFG) program, the US Environmental Protection Agency has promulgated the renewable oxygenate standard (ROS) for RFG. It is assumed that ethanol derived from corn will be the only broadly available renewable oxygenate during Phase I of the RFG program. This report analyzes the impact that the ROS could have on the supply of ethanol, its transported volume, and its displacement from existing markets. It also considers the energy and crude oil consumption and greenhouse gas (GHG) emissions that could result from the production and use of various RFGs that could meet the ROS requirements. The report concludes that on the basis of current and projected near-term ethanol capacity, if ethanol is the only available renewable oxygenate used to meet the requirements of the ROS, diversion of ethanol from existing use as a fuel is likely to be necessary. Year-round use of ethanol and ETBE would eliminate the need for diversion by reducing winter demand for ethanol. On an RFG-program-wide basis, using ethanol and ETBE to satisfy the ROS can be expected to slightly reduce fossil energy use, increase crude oil use, and have essentially no effect on GHG emissions or total energy use relative to using RFG oxygenated only with MTBE.

  2. Centre on Innovation and Energy Demand The UK's climate goals are ambitious and challenging. Achieving an 80% reduction in GHG emissions

    E-Print Network [OSTI]

    Jensen, Max

    Centre on Innovation and Energy Demand The UK's climate goals are ambitious and challenging demand. While many low-energy innovations represent relatively incremental changes to existing on energy demand and carbon emissions; and to provide practical recommendations for UK energy and climate

  3. Revolutionary ultrasonic nozzle can reduce water and energy used for

    E-Print Network [OSTI]

    Sóbester, András

    Revolutionary ultrasonic nozzle can reduce water and energy used for cleaning by ten times by N O R into the air to then settle and contaminate other surfaces). As it is able to use cold water, energy is saved ultrasonic cleaning baths can easily be scaled up and neither can be used To search, type and hit enter " F i

  4. PET: Reducing Database Energy Cost via Query Optimization

    E-Print Network [OSTI]

    Tu, Yicheng

    PET: Reducing Database Energy Cost via Query Optimization Zichen Xu The Ohio State University xuz@ece.osu.edu Yi-Cheng Tu The University of South Florida ytu@cse.usf.edu Xiaorui Wang The Ohio State University xwang@ece.osu.edu ABSTRACT Energy conservation is a growing important issue in designing mod- ern

  5. Electrical energy and demand savings from a geothermal heat pump energy savings performance contract at Ft. Polk, LA

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.

    1997-06-01T23:59:59.000Z

    At Fort Polk, LA the space conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHP) under an energy savings performance contract. At the same time, other efficiency measures such as compact fluorescent lights (CFLs), low-flow hot water outlets, and attic insulation were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. 15-minute interval data was also taken on energy use from a sample of the residences. This paper summarizes the electrical energy and demand savings observed in this data. Analysis of feeder-level data shows that for a typical year, the project will result in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing. Results from analysis of building-level data compare well with this figure. Analysis of feeder-level data also shows that the project has resulted in a reduction of peak electrical demand of 6,541 kW, which is 39.6% of the pre-retrofit peak electrical demand. In addition to these electrical savings, the facility is also saving an estimated 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  6. Model documentation report: Residential sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  7. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    Japan‘s 2007 primary plastics demand of 107.95 kilograms perChina reaches a lower plastic demand level of 75 kilogramsper capita primary plastics demand was used to estimate per

  8. Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann

    2005-01-01T23:59:59.000Z

    and individuals. DEMAND RESPONSE BUILDINGS RESEARCH Recentand event driven building response. Demand Side ManagementDemand Response does not involve human intervention, but is initiated at a home, building,

  9. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Lekov, Alex

    2009-01-01T23:59:59.000Z

    Best Practices. Kiliccote, S. (2008). Automated Demand Responsebest operation practices and behaviors to enhance the impact of DR activities. 1.0 Introduction Background and Overview Demand Response (

  10. Web-based energy information systems for energy management and demand response in commercial buildings

    E-Print Network [OSTI]

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-01-01T23:59:59.000Z

    Commercial Building Energy Benchmarking Database”.2002 ACEEE Summer Study on Energy Efficiency in Buildings.Burns, August 2001. “Energy-Related Information Services”.

  11. Intelligent Building Energy Information and Control Systems for Low-Energy Operations and Optimal Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2014-01-01T23:59:59.000Z

    As  we  develop low?energy buildings, the need for models Building Energy Information and Control Systems for Low-Building  Energy  Information  and  Control  Systems  for  Low­

  12. Industrial Demand-Side Management in Texas

    E-Print Network [OSTI]

    Jaussaud, D.

    of programs result in lower consumption and/or lower peak demand, and ultimately reduce the need to build new capacity. Hence demand-side management can be used as a resource option to be considered alongside more traditional supply-side resources in a...INDUSTRIAL DEMAND-SIDE MANAGEMENT IN TEXAS Danielle Jaussaud Economic Analysis Section Public Utility Commission of Texas Austin, Texas ABSTRACT The industrial sector in Texas is highly energy intensive and represents a large share...

  13. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30T23:59:59.000Z

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  14. Optimal Power Flow Based Demand Response Offer Price Optimization

    E-Print Network [OSTI]

    Lavaei, Javad

    Optimal Power Flow Based Demand Response Offer Price Optimization Zhen Qiu 1 Introduction-time energy balance. Demand response programs are offered by the utility companies to reduce the load response cost in exchange for load reduction. A considerable amount of papers have discussed the demand

  15. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

    2009-04-01T23:59:59.000Z

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  16. Study of Energy and Demand Savings on a High Efficiency Hydraulic Pump System with Infinite Turn Down Technology (ITDT)

    E-Print Network [OSTI]

    Sfeir, R. A.; Kanungo, A.; Liou, S.

    2005-01-01T23:59:59.000Z

    Detailed field measurement and verification of electrical energy (kWh) and demand (kW) savings is conducted on an injection molding machine used in typical plastic manufacturing facility retrofitted with a high efficiency hydraulic pump system...

  17. Statewide Emissions Reduction, Electricity and Demand Savings from the Implementation of Building-Energy-Codes in Texas

    E-Print Network [OSTI]

    Yazdani, B.; Haberl, J.; Kim, H.; Baltazar, J.C.; Zilbershtein, G.

    2012-01-01T23:59:59.000Z

    This paper focuses on the estimate of electricity reduction and electric demand savings from the adoption energy codes for single-family residences in Texas, 2002-2009, corresponding increase in cnstruction costs and estimates of the statewide...

  18. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22T23:59:59.000Z

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  19. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  20. Economic development and the structure of the demand for commercial energy

    SciTech Connect (OSTI)

    Judson, R.A.; Schmalensee, R.; Stoker, T.M.

    1999-07-01T23:59:59.000Z

    To deepen understanding of the relation between economic development and energy demand, this study estimates the relations between per-capita GDP and per-capita energy consumption in major economic sectors. Panel data covering up to 123 nations are employed, and measurement problems are treated both in dataset construction and in estimation. Time and country fixed effects are assumed, and flexible forms for income effects are employed. There are substantial differences among sectors in the structure of country, time, and income effects. In particular, the household sector's share of aggregate energy consumption tends to fall with income, the share of transportation tends to rise, and the share of industry follows an inverse-U pattern.

  1. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

  2. A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making

    SciTech Connect (OSTI)

    Puig, Rita, E-mail: rita.puig@eei.upc.edu [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Fullana-i-Palmer, Pere [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain); Baquero, Grau; Riba, Jordi-Roger [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Bala, Alba [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain)

    2013-12-15T23:59:59.000Z

    Highlights: • We developed a methodology useful to environmentally compare industrial waste management options. • The methodology uses a Net Energy Demand indicator which is life cycle based. • The method was simplified to be widely used, thus avoiding cost driven decisions. • This methodology is useful for governments to promote the best environmental options. • This methodology can be widely used by other countries or regions around the world. - Abstract: Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

  3. Recirculation of Factory Heat and Air to Reduce Energy Consumption 

    E-Print Network [OSTI]

    Thiel, G. R.

    1983-01-01T23:59:59.000Z

    ---- -- - ------ RECIRCULATION OF FACTORY HEAT AND AIR TO REDUCE ENERGY CONSUMPTION Gregory R. Thiel Eltron Mfg. Inc. Fort Thomas, KY. ABSTRACT Two methods for achieving substantial energy savings through recirculation techniques are discussed... challenging conditions: Because they are constructed to op erate "dripping wet", Eltron' s pro prietary "Conductive Precipitate" models can resume normal air clean ing operation immediately after each water washing cycle. They are the only...

  4. Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand for deployment of autonomous

    E-Print Network [OSTI]

    Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand for localized, independent energy harvesting capabilities for each node. In this paper, a method of remote area wind energy harvesting is presented, with a focus on an anemometer-based solution. By utilizing

  5. Reduce Hot Water Use for Energy Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8,Past OpportunitiesRedAirReduce Hot

  6. New generation of software? Modeling of energy demands for residential ventilation with HTML interface

    SciTech Connect (OSTI)

    Forowicz, T.

    1997-06-01T23:59:59.000Z

    The paper presents an interactive on-line package for calculation of energy and cost demands for residential infiltration and ventilation, with input and output data entry through a web browser. This is a unique tool. It represents a new kind of approach to developing software employing user (client) and server (package provider) computers. The main program, servicing {open_quotes}intelligent{close_quotes} CGI (Common Gateway Interface) calls, resides on the server and dynamically handles the whole package performance and the procedure of calculations. The {open_quotes}computing engine{close_quotes} consists of two parts: RESVENT - the previously existing program for ventilation calculations and ECONOMICS - for heating and cooling system energy and cost calculations. The user interface is designed in such a way, that it allows simultaneous access by many users from all over the world.

  7. CONNECTICUT CHALLENGES TOWNS TO REDUCE ENERGY USE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report,COMMENTS ON BEHALF OFDid

  8. Reducing Waste and Harvesting Energy This Halloween | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010InJanuary 29, 2013RedbirdThis hybridThis graphic

  9. Reducing Waste and Saving Energy with Composting | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010InJanuary 29, 2013RedbirdThis hybridThis graphicErin

  10. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Ponderosa Commons Energy Conservation Studies

    E-Print Network [OSTI]

    and evaluation of possible demand side management strategies for reducing energy demand reduce heating loads in residential buildings, the fourth option of the use

  11. Using occupancy to reduce energy consumption of buildings

    E-Print Network [OSTI]

    Balaji, Bharathan

    2011-01-01T23:59:59.000Z

    Response The demand response actions give building managersdemand response (DR) events are handled in our system. Both end users and buildingbuilding managers to actuate the plug loads in case of a demand response

  12. A First Look at Colocation Demand Response Shaolei Ren

    E-Print Network [OSTI]

    Ren, Shaolei

    programs and receive financial benefits by reducing energy consumption upon utility's request. However, on the other hand, can reduce server energy consumption but may not desire demand response unless response by using a trace-based simulation to show that iCODE can significantly reduce energy consumption

  13. Potential For Energy, Peak Demand, and Water Savings in California Tomato Processing Facilities

    E-Print Network [OSTI]

    Trueblood, A. J.; Wu, Y. Y.; Ganji, A. R.

    2013-01-01T23:59:59.000Z

    - wattage metal halide lamps. Other support areas may be lit by inefficient T12 lighting. Replacing these lamps with T5, T8, light-emitting diode (LED), or induction lighting can result in significant electrical energy savings and reduce the peak...

  14. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    oil. Findings suggest that there are substantial opportunities to reduce energy consumption in the petroleum refining industry

  15. Journal of Artificial Intelligence Research 50 (2014) 885-922 Submitted 4/14; published 8/14 Demand Side Energy Management via Multiagent Coordination in

    E-Print Network [OSTI]

    Sadeh, Norman M.

    Abstract A key challenge in creating a sustainable and energy-efficient society is to make consumer demand propose a novel multiagent coordination algorithm, to shape the energy demand of the cooperativeJournal of Artificial Intelligence Research 50 (2014) 885-922 Submitted 4/14; published 8/14 Demand

  16. Reducing Energy Costs And Minimizing Capital Requirements: Case Studies of Thermal Energy Storage (TES)

    E-Print Network [OSTI]

    Andrepont, J. S.

    2007-01-01T23:59:59.000Z

    , and thus during those times when power has its highest cost or value. Thermal Energy Storage (TES) provides a means of de-coupling the generation of cooling from the provision of cooling to the peak cooling loads. In this manner, peak power demand...

  17. Energy and Security in Northeast Asia: Supply and Demand, Conflict and

    E-Print Network [OSTI]

    Fesharaki, Fereidun; Banaszak, Sarah; WU, Kang; Valencia, Mark J.; Dorian, James P.

    1998-01-01T23:59:59.000Z

    increased to 18 percent, nuclear power's to 15 percent, andgovernment is promoting nuclear power to meet the demand for

  18. Building Energy Codes Collaborative Technical Assistance for...

    Energy Savers [EERE]

    State Energy Officials - 2014 BTO Peer Review Southeast Energy Efficiency Alliance's Building Energy Codes Project Reducing Energy Demand in Buildings Through State Energy Codes...

  19. Residential-energy-demand modeling and the NIECS data base: an evaluation

    SciTech Connect (OSTI)

    Cowing, T.G.; Dubin, J.A.; McFadden, D.

    1982-01-01T23:59:59.000Z

    The purpose of this report is to evaluate the 1978-1979 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance choice and utilization decisions. The NIECS contains detailed energy usage information at the household level for 4081 households during the April 1978 to March 1979 period. Among the data included are information on the structural and thermal characteristics of the housing unit, demographic characteristics of the household, fuel usage, appliance characteristics, and actual energy consumption. The survey covers the four primary residential fuels-electricity, natural gas, fuel oil, and liquefied petroleum gas - and includes detailed information on recent household conservation and retrofit activities. Section II contains brief descriptions of the major components of the NIECS data set. Discussions are included on the sample frame and the imputation procedures used in NIECS. There are also two extensive tables, giving detailed statistical and other information on most of the non-vehicle NIECS variables. Section III contains an assessment of the NIECS data, focusing on four areas: measurement error, sample design, imputation problems, and additional data needed to estimate appliance choice/use models. Section IV summarizes and concludes the report.

  20. Abstract --Due to the potentially large number of Distributed Energy Resources (DERs) demand response, distributed

    E-Print Network [OSTI]

    Zhang, Wei

    to accurately estimate the transients caused by demand response is especially important to analyze the stability of the system under different demand response strategies, where dynamics on time scales of seconds to minutes demand response. The aggregated model efficiently includes statistical information of the population

  1. Development of a local carbon dioxide emissions inventory based on energy demand and waste production

    SciTech Connect (OSTI)

    Joao Gomes; Joana Nascimento; Helena Rodrigues [Instituto Superior de Engenharia de Lisboa, Lisboa (Portugal)

    2007-09-15T23:59:59.000Z

    The paper describes the study that led to the development of a carbon dioxide emissions matrix for the Oeiras municipality, one of the largest Portuguese municipalities, located in the metropolitan area of Lisbon. This matrix takes into account the greenhouse gas (GHG) emissions due to an increase of electricity demand in buildings as well as solid and liquid wastes treatment from the domestic and services sectors. Using emission factors that were calculated from the relationship between the electricity produced and amount of treated wastes, the GHC emissions in the Oeiras municipality were estimated for a time series of 6 yr (1998 - 2003). The obtained results showed that the electricity sector accounts for approximately 75% of the municipal emissions in 2003. This study was developed to obtain tools to base options and actions to be undertaken by local authorities such as energy planning and also public information. 11 refs., 12 tabs.

  2. DOE Announces $27 Million to Reduce Costs of Solar Energy Projects...

    Broader source: Energy.gov (indexed) [DOE]

    7 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations DOE Announces 27 Million to Reduce Costs of Solar Energy Projects, Streamline...

  3. An evaluation of the US Department of Energy`s reducing swimming pool energy costs initiative

    SciTech Connect (OSTI)

    Jones, R.W.; Irwin, R.

    1997-06-01T23:59:59.000Z

    The US Department of Energy`s Reduce Swimming Pool Energy Costs (RSPEC) initiative developed and distributed a set of consumer-oriented fact sheets and the Energy Smart Pools software package to over 1300 pool owners, builders, and product manufacturers and retailers since the fall of 1994. The purpose was to promote the adoption of cost-effective energy efficiency and renewable energy measures in swimming pools. An evaluation request for feedback was recently sent to all who had received the materials to determine the impact of the program. With a minimal government investment, the RSPEC program has generated significant sales of pool energy efficiency and renewable energy technologies resulting in significant energy savings. These are very conservative numbers since they are based only on the fourteen percent of RSPEC program participants who returned the evaluations. Results are also from only one year of use. Results will continue to multiply as savings accumulate over the years, more pool industry people receive the RSPEC materials, and more energy efficiency and renewable energy products are sold.

  4. Policies to Reduce Emissions from the Transportation Sector | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation to Reduce Emissions from the Transportation

  5. Reduce Pumping Costs Through Optimum Pipe Sizing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012Energy ReliabilityNews FlashesRedbird Red HabitatReduce

  6. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27T23:59:59.000Z

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  7. A Unit Commitment Model with Demand Response for the Integration of Renewable Energies

    E-Print Network [OSTI]

    Ikeda, Yuichi; Kataoka, Kazuto; Ogimoto, Kazuhiko

    2011-01-01T23:59:59.000Z

    The output of renewable energy fluctuates significantly depending on weather conditions. We develop a unit commitment model to analyze requirements of the forecast output and its error for renewable energies. Our model obtains the time series for the operational state of thermal power plants that would maximize the profits of an electric power utility by taking into account both the forecast of output its error for renewable energies and the demand response of consumers. We consider a power system consisting of thermal power plants, photovoltaic systems (PV), and wind farms and analyze the effect of the forecast error on the operation cost and reserves. We confirm that the operation cost was increases with the forecast error. The effect of a sudden decrease in wind power is also analyzed. More thermal power plants need to be operated to generate power to absorb this sudden decrease in wind power. The increase in the number of operating thermal power plants within a short period does not affect the total opera...

  8. Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

    2004-12-21T23:59:59.000Z

    Heightened natural gas prices have emerged as a key energy-policy challenge for at least the early part of the 21st century. With the recent run-up in gas prices and the expected continuation of volatile and high prices in the near future, a growing number of voices are calling for increased diversification of energy supplies. Proponents of renewable energy and energy efficiency identify these clean energy sources as an important part of the solution. Increased deployment of renewable energy (RE) and energy efficiency (EE) can hedge natural gas price risk in more than one way, but this paper touches on just one potential benefit: displacement of gas-fired electricity generation, which reduces natural gas demand and thus puts downward pressure on gas prices. Many recent modeling studies of increased RE and EE deployment have demonstrated that this ''secondary'' effect of lowering natural gas prices could be significant; as a result, this effect is increasingly cited as justification for policies promoting RE and EE. This paper summarizes recent studies that have evaluated the gas-price-reduction effect of RE and EE deployment, analyzes the results of these studies in light of economic theory and other research, reviews the reasonableness of the effect as portrayed in modeling studies, and develops a simple tool that can be used to evaluate the impact of RE and EE on gas prices without relying on a complex national energy model. Key findings are summarized.

  9. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19T23:59:59.000Z

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  10. ADB-Methods and Tools for Energy Demand Projection | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergySulfonate as aAAB AsiaABEEolicaSection

  11. Construction of energy-stable Galerkin reduced order models.

    SciTech Connect (OSTI)

    Kalashnikova, Irina; Barone, Matthew Franklin; Arunajatesan, Srinivasan; van Bloemen Waanders, Bart Gustaaf

    2013-05-01T23:59:59.000Z

    This report aims to unify several approaches for building stable projection-based reduced order models (ROMs). Attention is focused on linear time-invariant (LTI) systems. The model reduction procedure consists of two steps: the computation of a reduced basis, and the projection of the governing partial differential equations (PDEs) onto this reduced basis. Two kinds of reduced bases are considered: the proper orthogonal decomposition (POD) basis and the balanced truncation basis. The projection step of the model reduction can be done in two ways: via continuous projection or via discrete projection. First, an approach for building energy-stable Galerkin ROMs for linear hyperbolic or incompletely parabolic systems of PDEs using continuous projection is proposed. The idea is to apply to the set of PDEs a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. The resulting ROM will be energy-stable for any choice of reduced basis. It is shown that, for many PDE systems, the desired transformation is induced by a special weighted L2 inner product, termed the %E2%80%9Csymmetry inner product%E2%80%9D. Attention is then turned to building energy-stable ROMs via discrete projection. A discrete counterpart of the continuous symmetry inner product, a weighted L2 inner product termed the %E2%80%9CLyapunov inner product%E2%80%9D, is derived. The weighting matrix that defines the Lyapunov inner product can be computed in a black-box fashion for a stable LTI system arising from the discretization of a system of PDEs in space. It is shown that a ROM constructed via discrete projection using the Lyapunov inner product will be energy-stable for any choice of reduced basis. Connections between the Lyapunov inner product and the inner product induced by the balanced truncation algorithm are made. Comparisons are also made between the symmetry inner product and the Lyapunov inner product. The performance of ROMs constructed using these inner products is evaluated on several benchmark test cases.

  12. The addition of a US Rare Earth Element (REE) supply-demand model improves the characterization and scope of the United States Department of Energy's effort to forecast US REE Supply and Demand

    E-Print Network [OSTI]

    Mancco, Richard

    2012-01-01T23:59:59.000Z

    This paper presents the development of a new US Rare Earth Element (REE) Supply-Demand Model for the explicit forecast of US REE supply and demand in the 2010 to 2025 time period. In the 2010 Department of Energy (DOE) ...

  13. Sandia National Laboratories: reduce emissions from wasted energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. water supply and demand and explored potential "transformational" solutions from the perspectives of technology and policy (or both) and discussed ... Last Updated: October...

  14. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  15. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  16. Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

    2010-04-08T23:59:59.000Z

    In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

  17. An Energy-Aware On-Demand Routing Protocol for Ad-Hoc Wireless Networks

    E-Print Network [OSTI]

    Veerayya, Mallapur

    2008-01-01T23:59:59.000Z

    An ad-hoc wireless network is a collection of nodes that come together to dynamically create a network, with no fixed infrastructure or centralized administration. An ad-hoc network is characterized by energy constrained nodes, bandwidth constrained links and dynamic topology. With the growing use of wireless networks (including ad-hoc networks) for real-time applications, such as voice, video, and real-time data, the need for Quality of Service (QoS) guarantees in terms of delay, bandwidth, and packet loss is becoming increasingly important. Providing QoS in ad-hoc networks is a challenging task because of dynamic nature of network topology and imprecise state information. Hence, it is important to have a dynamic routing protocol with fast re-routing capability, which also provides stable route during the life-time of the flows. In this thesis, we have proposed a novel, energy aware, stable routing protocol named, Stability-based QoS-capable Ad-hoc On-demand Distance Vector (SQ-AODV), which is an enhancement...

  18. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    Reliability - Emergency - Conservation - Environmental Protection - Efficient Shell, Equipment &equipment cycling. DR methods such as demand limiting and shifting can be utilized when the economics and reliability

  19. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    Strategies Linking Demand Response and Energy Efficiency,”Fully Automated Demand Response Tests in Large Facilities,technical support from the Demand Response Research Center (

  20. Assessment of Energy Savings Potential from the Use of Demand Controlled Ventilation in General Office Spaces in California

    SciTech Connect (OSTI)

    Hong, Tianzhen; Fisk, William

    2010-01-01T23:59:59.000Z

    A prototypical office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (Title 24) was used in EnergyPlus simulations to calculate the energy savings potential of demand controlled ventilation (DCV) in five typical California climates per three design occupancy densities and two minimum ventilation rates. The assumed minimum ventilation rates in offices without DCV, based on two different measurement methods employed in a large survey, were 38 and 13 L/s per occupant. The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rate without DCV is 38 L/s per person, except at the low design occupancy of 10.8 people per 100 m2 in climate zones 3 (north coast) and 6 (south Coast). DCV was not found to be cost effective if the typical minimum ventilation rate without DCV is 13 L/s per occupant, except at high design occupancy of 21.5 people per 100 m2 in climate zones 14 (desert) and 16 (mountains). Until the large uncertainties about the base case ventilation rates in offices without DCV are reduced, the case for requiring DCV in general office spaces will be a weak case. Under the Title 24 Standards office occupant density of 10.8 people per 100 m2, DCV becomes cost effective when the base case minimum ventilation rate is greater than 42.5, 43.0, 24.0, 19.0, and 18.0 L/s per person for climate zone 3, 6, 12, 14, and 16 respectively.