Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Utility Sector Impacts of Reduced Electricity Demand  

SciTech Connect (OSTI)

This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

Coughlin, Katie

2014-12-01T23:59:59.000Z

2

Reducing Electricity Demand Charge for Data Centers with Partial Execution  

E-Print Network [OSTI]

. INTRODUCTION Data centers are the powerhouse behind many Internet services today. A modern data centerReducing Electricity Demand Charge for Data Centers with Partial Execution Hong Xu Department@eecg.toronto.edu ABSTRACT Data centers consume a large amount of energy and incur substantial electricity cost

Li, Baochun

3

High-Performance with Solar Electric Reduced Peak Demand: Premier...  

Energy Savers [EERE]

energy systems with high-performance homes and showing how they align with utility peak-demand reduction interests. In addition to substantial energy savings, solar electric home...

4

THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND  

E-Print Network [OSTI]

LBNL-49947 THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND? ..................................... 8 What are the seasonal aspects of electric peak demand?............................ 9 What because of the California electricity crisis (Borenstein 2001). Uncertainties surrounding the reliability

5

High Temperatures & Electricity Demand  

E-Print Network [OSTI]

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

6

Using Compressed Air Efficiency Projects to Reduce Peak Industrial Electric Demands: Lessons Learned  

E-Print Network [OSTI]

"To help customers respond to the wildly fluctuating energy markets in California, Pacific Gas & Electric (PG&E) initiated an emergency electric demand reduction program in October 2000 to cut electric use during peak periods. One component...

Skelton, J.

7

Demand-response (DR) programs, in which facilities reduce their electric loads in response to a utility signal, represent a  

E-Print Network [OSTI]

The Issue Demand-response (DR) programs, in which facilities reduce their electric loads (Figure 1). The testing covered four Lighting the Way to Demand ResponseLighting the Way to Demand Response California Energy Commission's Public Interest Energy Research Program Technical Brief PIER

8

Reduces electric energy consumption  

E-Print Network [OSTI]

BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

9

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.  

E-Print Network [OSTI]

is fraction of total electricity consumption for commercialy) ! calculate total electricity consumption for the end-useis fraction of total electricity consumption for residential

Coughlin, Katie

2013-01-01T23:59:59.000Z

10

Converting 15-Minute Interval Electricity Load Data into Reduced Demand, Energy Reduction and Cash Flow  

E-Print Network [OSTI]

, store managers are intimidated. 5 So what are the solutions? A data acquisition system. Pro-active with alarming and demand-response. Is there staff to maintain and ensure a response? Passive. Acquire the data and then evaluate and assess... is not required, this will prevent the requirement for additional costs of installing an OAT sensor at the building and potentially adding costs to the datalogger hardware or configuration. If possible, it is best to use and on-site OAT sensor. If a demand-response...

Herrin, D. G.

11

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma  

Broader source: Energy.gov (indexed) [DOE]

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant...

12

ELECTRICITY DEMAND FORECAST COMPARISON REPORT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005 Gorin Principal Authors Lynn Marshall Project Manager Kae C. Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting

13

Electrical Demand Control  

E-Print Network [OSTI]

Almost every building owner or manager is interested in controlling electrical costs. Since the HVAC system is a large user of electricity, this article will discuss what can be done in the HVAC system to influence parts of the utility bill....

Eppelheimer, D. M.

1984-01-01T23:59:59.000Z

14

Electrical Demand Management  

E-Print Network [OSTI]

bination of a 2200 ton, the 1200 ton and the 800 ton units or by two 2200 ton units. We sought to di sp 1ace the 1200 ton or part of a 2200 ton unit with two steam turbi ne chill ers duri ng peak hours at a total reduced cost for supplying all building...

Fetters, J. L.; Teets, S. J.

1983-01-01T23:59:59.000Z

15

Projecting Electricity Demand in 2050  

SciTech Connect (OSTI)

This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% ? 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

2014-07-01T23:59:59.000Z

16

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

fuel electricity demands, and generation from these plantplants .. 47 Additional generation .. 48 Electricityelectricity demand increases generation from NGCC power plants.

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

17

Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application  

E-Print Network [OSTI]

energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility...

Meckler, G.

1985-01-01T23:59:59.000Z

18

SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK DRAFTSTAFFREPORT May ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION B. B assessment of the capability of the physical electricity system to provide power to meet electricity demand

19

Energy-efficiency standards for homes have the potential to reduce energy consumption and peak electrical demand.  

E-Print Network [OSTI]

The Issue Energy-efficiency standards for homes have the potential to reduce energy consumption HVAC system efficiency, including problems with airflows, refrigerant system components, and ductwork standards, but little data is available on the actu- al energy performance of new homes. The Solution

20

Electricity Demand and Energy Consumption Management System  

E-Print Network [OSTI]

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Economics of Energy (and Electricity) Demand  

E-Print Network [OSTI]

home to charge up at night. 12 The Tesla Roadster is an electric sport car prototype manufactured by Tesla Motors (http://www.teslamotors.com/). 13 This is based on there being around 25 million homes... 25 3.3.2 Electrification of personal transport New sources of electricity demand may emerge which substantially change the total demand for electricity and the way electricity is consumed by the household. The Tesla Roadster12 stores 53 k...

Platchkov, Laura M.; Pollitt, Michael G.

22

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Designing Markets for Electricity, Wiley-IEEE Press. CEC (in Major Drivers in U.S. Electricity Markets, NREL/CP-620-and fuel efficiency and electricity demand assumptions used

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

23

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

49 Table 13. Vehicle and fuel efficiency and electricity14. Timing profiles and vehicle and fuel pathways includedand generation, Table 18. Vehicle demand and system load

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

24

Reducing Energy Demand in Buildings Through State Energy Codes...  

Energy Savers [EERE]

Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building...

25

Demand Response and Electric Grid Reliability  

E-Print Network [OSTI]

Demand Response and Electric Grid Reliability Paul Wattles Senior Analyst, Market Design & Development, ERCOT CATEE Conference, Galveston October 10, 2012 2 North American Bulk Power Grids CATEE Conference October 10, 2012 ? The ERCOT... adequacy ? ?Achieving more DR participation would . . . displace some generation investments, but would achieve the same level of reliability... ? ?Achieving this ideal requires widespread demand response and market structures that enable loads...

Wattles, P.

2012-01-01T23:59:59.000Z

26

Demand Response in U.S. Electricity Markets: Empirical Evidence  

E-Print Network [OSTI]

Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

Cappers, Peter

2009-01-01T23:59:59.000Z

27

Tool Improves Electricity Demand Predictions to Make More Room...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tool Improves Electricity Demand Predictions to Make More Room for Renewables Tool Improves Electricity Demand Predictions to Make More Room for Renewables October 3, 2011 -...

28

Price-elastic demand in deregulated electricity markets  

SciTech Connect (OSTI)

The degree to which any deregulated market functions efficiently often depends on the ability of market agents to respond quickly to fluctuating conditions. Many restructured electricity markets, however, experience high prices caused by supply shortages and little demand-side response. We examine the implications for market operations when a risk-averse retailer's end-use consumers are allowed to perceive real-time variations in the electricity spot price. Using a market-equilibrium model, we find that price elasticity both increases the retailers revenue risk exposure and decreases the spot price. Since the latter induces the retailer to reduce forward electricity purchases, while the former has the opposite effect, the overall impact of price responsive demand on the relative magnitudes of its risk exposure and end-user price elasticity. Nevertheless, price elasticity decreases cumulative electricity consumption. By extending the analysis to allow for early settlement of demand, we find that forward stage end-user price responsiveness decreases the electricity forward price relative to the case with price-elastic demand only in real time. Moreover, we find that only if forward stage end-user demand is price elastic will the equilibrium electricity forward price be reduced.

Siddiqui, Afzal S.

2003-05-01T23:59:59.000Z

29

Sixth Northwest Conservation and Electric Power Plan Chapter 3: Electricity Demand Forecast  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Chapter 3: Electricity Demand Forecast Summary............................................................................................................ 2 Sixth Power Plan Demand Forecast................................................................................................ 4 Demand Forecast Range

30

What is a High Electric Demand Day?  

Broader source: Energy.gov [DOE]

This presentation by T. McNevin of the New Jersey Bureau of Air Quality Planning was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

31

California's Summer 2004 Electricity Supply and Demand Outlook  

E-Print Network [OSTI]

forecast for 2004 is higher to reflect increased demand from more robust economic growth. In this newCALIFORNIA ENERGY COMMISSION California's Summer 2004 Electricity Supply and Demand Outlook Supply and Demand Outlook The California Energy Commission staff's electricity supply and demand outlook

32

TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN  

E-Print Network [OSTI]

PWP-085 TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN CALIFORNIA, California 94720-5180 www.ucei.org #12;TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING** Abstract This study analyzes state and regional electricity supply and demand trends for the eleven states

California at Berkeley. University of

33

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

Like HECO actual utility demand response implementations canindustry-wide utility demand response applications tend toobjective. Figure 4. Demand Response Objectives 17

Levy, Roger

2014-01-01T23:59:59.000Z

34

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

and best practices to guide HECO demand response developmentbest practices for DR renewable integration Technically demand responseof best practices. This is partially because demand response

Levy, Roger

2014-01-01T23:59:59.000Z

35

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

of control. Water heater demand response options are notcurrent water heater and air conditioning demand responsecustomer response Demand response water heater participation

Levy, Roger

2014-01-01T23:59:59.000Z

36

Demand Reduction  

Broader source: Energy.gov [DOE]

Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

37

Control Mechanisms for Residential Electricity Demand in SmartGrids  

E-Print Network [OSTI]

Email: lvs2@lehigh.edu Abstract--We consider mechanisms to optimize electricity consumption both within subscription plan. Such methods for controlling electricity consumption are part of demand response, whichControl Mechanisms for Residential Electricity Demand in SmartGrids Shalinee Kishore Department

Snyder, Larry

38

Electricity Markets Meet the Home through Demand Response Lazaros Gkatzikis  

E-Print Network [OSTI]

Electricity Markets Meet the Home through Demand Response Lazaros Gkatzikis CERTH, University) programs motivate home users through dynamic pricing to shift electricity consumption from peak demand periods. In this paper, we introduce a day ahead electricity market where the operator sets the prices

39

Electricity demand as frequency controlled reserves, ENS (Smart...  

Open Energy Info (EERE)

ENS (Smart Grid Project) Jump to: navigation, search Project Name Electricity demand as frequency controlled reserves, ENS Country Denmark Coordinates 56.26392, 9.501785...

40

Benefits of Demand Response in Electricity Markets and Recommendations...  

Broader source: Energy.gov (indexed) [DOE]

Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them. A report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act...

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Electricity demand as frequency controlled reserves, ForskEL...  

Open Energy Info (EERE)

ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Electricity demand as frequency controlled reserves, ForskEL Country Denmark Coordinates 56.26392,...

42

Strategies for reducing energy demand in the materials sector  

E-Print Network [OSTI]

This research answers a key question - can the materials sector reduce its energy demand by 50% by 2050? Five primary materials of steel, cement, aluminum, paper, and plastic, contribute to 50% or more of the final energy ...

Sahni, Sahil

2013-01-01T23:59:59.000Z

43

Price Responsive Demand in New York Wholesale Electricity Market using OpenADR  

E-Print Network [OSTI]

Advanced Metering, and Demand Response in Electricity2006. Benefits of Demand Response in Electricity Markets and2010. Open Automated Demand Response Technologies for

Kim, Joyce Jihyun

2013-01-01T23:59:59.000Z

44

Demand responsive programs - an emerging resource for competitive electricity markets?  

SciTech Connect (OSTI)

The restructuring of regional electricity markets in the U.S. has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created significant new opportunities for technologies and business approaches that allow load serving entities and other aggregators, to control and manage the load patterns of their wholesale or retail end-users. These technologies and business approaches for manipulating end-user load shapes are known as Load Management or, more recently, Demand Responsive programs. Lawrence Berkeley National Laboratory (LBNL) is conducting case studies on innovative demand responsive programs and presents preliminary results for five case studies in this paper. These case studies illustrate the diversity of market participants and range of technologies and business approaches and focus on key program elements such as target markets, market segmentation and participation results; pricing scheme; dispatch and coordination; measurement, verification, and settlement; and operational results where available.

Heffner, Grayson C. Dr.; Goldman, Charles A.

2001-06-25T23:59:59.000Z

45

Electric Water Heater Modeling and Control Strategies for Demand Response  

SciTech Connect (OSTI)

Abstract Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency support following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms Centralized control, decentralized control, demand response, electrical water heater, smart grid

Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.; Mayhorn, Ebony T.; Zhang, Yu; Samaan, Nader A.

2012-07-22T23:59:59.000Z

46

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

SciTech Connect (OSTI)

The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

2009-05-18T23:59:59.000Z

47

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast Energy Demand................................................................................................................................. 1 Demand Forecast Methodology.................................................................................................. 3 New Demand Forecasting Model for the Sixth Plan

48

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

widely differing control technologies, notification options,Electric Reliability Technology, LBNL, Joseph Eto E. Availability F. Technology Proposed Residential Large

Levy, Roger

2014-01-01T23:59:59.000Z

49

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

management in the US electricity sector, Energy Policy, 23(deep reductions in electricity sector GHG emissions requireson the electricity sector. 19 Table 3.

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

50

U.S. electric utility demand-side management 1995  

SciTech Connect (OSTI)

The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

NONE

1997-01-01T23:59:59.000Z

51

Electrical ship demand modeling for future generation warships  

E-Print Network [OSTI]

The design of future warships will require increased reliance on accurate prediction of electrical demand as the shipboard consumption continues to rise. Current US Navy policy, codified in design standards, dictates methods ...

Sievenpiper, Bartholomew J. (Bartholomew Jay)

2013-01-01T23:59:59.000Z

52

The Impact of Climate Change on Electricity Demand in Thailand  

E-Print Network [OSTI]

Climate change is expected to lead to changes in ambient temperature, wind speed, humidity, precipitation and cloud cover. As electricity demand is closely influenced by these climatic variables, there is likely to be ...

Parkpoom, Suchao Jake

2008-01-01T23:59:59.000Z

53

U.S. electric utility demand-side management 1993  

SciTech Connect (OSTI)

This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

NONE

1995-07-01T23:59:59.000Z

54

The residential demand for electricity in New England,  

E-Print Network [OSTI]

The residential demand for electricity, studied on the national level for many years, is here investigated on the regional level. A survey of the literature is first presented outlining past econometric work in the field ...

Levy, Paul F.

1973-01-01T23:59:59.000Z

55

Smart Metering and Electricity Demand: Technology, Economics and International Experience  

E-Print Network [OSTI]

www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R Abstract Smart Metering and Electricity Demand: Technology, Economics and International Experience EPRG Working Paper EPRG0903 Cambridge Working Paper in Economics 0905 Aoife... Brophy Haney, Tooraj Jamasb and Michael G. Pollitt In recent years smart metering of electricity demand has attracted attention around the world. A number of countries and regions have started deploying new metering systems; and many others have...

Brophy Haney, A; Jamasb, Tooraj; Pollitt, Michael G.

56

Electric Utility Demand-Side Evaluation Methodologies  

E-Print Network [OSTI]

, in the case of electric utilities society and the ratepayer. Commissio~ Substanti ve Rul es Sec. 23.22 stops short of specifying an evaluation methodology or requiring a benefit-cost analysis for each conservation program, but it does require that util... of view using a standard benefit-cost methodology. The methodology now in use by several. electric utilities and the Public Utility Commlsslon of Texas includes measures of efficiency and equity. The nonparticipant test as a measure of equity...

Treadway, N.

57

Electricity Demand Forecasting using Gaussian Processes Manuel Blum and Martin Riedmiller  

E-Print Network [OSTI]

Electricity Demand Forecasting using Gaussian Processes Manuel Blum and Martin Riedmiller Abstract We present an electricity demand forecasting algorithm based on Gaussian processes. By introducing. Introduction Electricity demand forecasting is an important aspect of the control and scheduling of power

Teschner, Matthias

58

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

problems, Electric Power Systems Research, 73(2): p. 169-problems, Electric Power Systems Research, 77(3-4): p. 212-decomposition, Electric Power Systems Research, 77(7): p.

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

59

Sixth Northwest Conservation and Electric Power Plan Appendix H: Demand Response  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Appendix H: Demand Response Introduction..................................................................................................................................... 1 Demand Response in the Council's Fifth Power Plan......................................................................................................................... 3 Estimate of Potential Demand Response

60

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

fuel carbon intensity. . 8a function of the lifecycle carbon intensity of electricityCarbon Intensity

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

US electric utility demand-side management, 1994  

SciTech Connect (OSTI)

The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

NONE

1995-12-26T23:59:59.000Z

62

U.S. electric utility demand-side management 1996  

SciTech Connect (OSTI)

The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

NONE

1997-12-01T23:59:59.000Z

63

Industrial-Load-Shaping: The Practice of and Prospects for Utility/Industry Cooperation to Manage Peak Electricity Demand  

E-Print Network [OSTI]

INDUSTRIAL-LOAD-SHAPI1IG: TIlE PRACTICE OF AND PROSPECTS FOR UTILITY/INDUSTRY COOPERATION TO MAUGE PEAK ELECTRICITY DEMAND Donald J. BuIes and David E. Rubin Consultants, Pacific Gas and Electric Company San Francisco, California Michael F.... Maniates Energy and Resources Group, University of California Berkeley, California ABSTRACT Load-management programs designed to reduce demand for electricity during peak periods are becoming increasingly important to electric utilities. For a gf...

Bules, D. J.; Rubin, D. E.; Maniates, M. F.

64

SmartCap: Flattening Peak Electricity Demand in Smart Homes Sean Barker, Aditya Mishra, David Irwin, Prashant Shenoy, and Jeannie Albrecht  

E-Print Network [OSTI]

SmartCap: Flattening Peak Electricity Demand in Smart Homes Sean Barker, Aditya Mishra, David Irwin--Flattening household electricity demand reduces generation costs, since costs are disproportionately affected by peak demands. While the vast majority of household electrical loads are interactive and have little scheduling

Massachusetts at Amherst, University of

65

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices  

DOE Patents [OSTI]

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

2011-12-06T23:59:59.000Z

66

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices  

DOE Patents [OSTI]

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

2006-12-12T23:59:59.000Z

67

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

System Operator. WECC (2006) Information Summary, Westernx SDG&E SMR SMUD TID v VMT WECC San Diego Gas & ElectricCoordinating Council (WECC) differ somewhat from the CEC and

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

68

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Palm Springs solar insolation, and California electricityConcentrating Solar Power in California, NREL/SR-550-39291,generation from wind and solar in California could be very

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

69

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

al Scott et al (2007) [97] EPRI and NRDC (2007) [6, StephanAir Resources Board. EPRI and NRDC (2007) Environmentalin the hydrogen-electric economy, EPRI. Lemoine, D.M. , D.M.

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

70

Trends in Regional Electricity Demands 1995-2012  

E-Print Network [OSTI]

to Department of Energy in EIA form 861. Council staff takes annual reported retail sales by each utility. Street lighting sales are not metered but rather estimated . 10 #12;Losses are Defined as Energy LoadsTrends in Regional Electricity Demands 1995-2012 January 29, 2014 #12;In Today's Conversation

71

2012 Portland General Electric. All rights reserved. Planning for Demand  

E-Print Network [OSTI]

2/13/2013 1 © 2012 Portland General Electric. All rights reserved. Planning for Demand Response Balance: Energy #12;2/13/2013 2 3 PGE Load ­ Resource Balance: Winter Capacity 4 Traditional Role decade, access to a material portion of its legacy hydro resources. Meanwhile, PGE (and other IOU

72

Climate, extreme heat, and electricity demand in California  

SciTech Connect (OSTI)

Climate projections from three atmosphere-ocean climate models with a range of low to mid-high temperature sensitivity forced by the Intergovernmental Panel for Climate Change SRES higher, middle, and lower emission scenarios indicate that, over the 21st century, extreme heat events for major cities in heavily air-conditioned California will increase rapidly. These increases in temperature extremes are projected to exceed the rate of increase in mean temperature, along with increased variance. Extreme heat is defined here as the 90 percent exceedance probability (T90) of the local warmest summer days under the current climate. The number of extreme heat days in Los Angeles, where T90 is currently 95 F (32 C), may increase from 12 days to as many as 96 days per year by 2100, implying current-day heat wave conditions may last for the entire summer, with earlier onset. Overall, projected increases in extreme heat under the higher A1fi emission scenario by 2070-2099 tend to be 20-30 percent higher than those projected under the lower B1 emission scenario, ranging from approximately double the historical number of days for inland California cities (e.g. Sacramento and Fresno), up to four times for previously temperate coastal cities (e.g. Los Angeles, San Diego). These findings, combined with observed relationships between high temperature and electricity demand for air-conditioned regions, suggest potential shortfalls in transmission and supply during T90 peak electricity demand periods. When the projected extreme heat and peak demand for electricity are mapped onto current availability, maintaining technology and population constant only for demand side calculations, we find the potential for electricity deficits as high as 17 percent. Similar increases in extreme heat days are suggested for other locations across the U.S. southwest, as well as for developing nations with rapidly increasing electricity demands. Electricity response to recent extreme heat events, such as the July 2006 heat wave in California, suggests that peak electricity demand will challenge current supply, as well as future planned supply capacities when population and income growth are taken into account.

Miller, N.L.; Hayhoe, K.; Jin, J.; Auffhammer, M.

2008-04-01T23:59:59.000Z

73

Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost  

E-Print Network [OSTI]

Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue- ple users cooperate to perform load demand scheduling in order to minimize the electricity generation between electricity consumption and generation. On the consumption side, electric demand ramps up

Pedram, Massoud

74

Automated Demand Response: The Missing Link in the Electricity Value Chain  

SciTech Connect (OSTI)

In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This ?electricity value chain? defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to"demo" potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives.1 In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

McKane, Aimee; Rhyne, Ivin; Lekov, Alex; Thompson, Lisa; Piette, MaryAnn

2009-08-01T23:59:59.000Z

75

Automated Demand Response: The Missing Link in the Electricity Value Chain  

SciTech Connect (OSTI)

In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This 'electricity value chain' defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to 'demo' potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives. In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

McKane, Aimee; Rhyne, Ivin; Piette, Mary Ann; Thompson, Lisa; Lekov, Alex

2008-08-01T23:59:59.000Z

76

Sixth Northwest Conservation and Electric Power Plan Chapter 5: Demand Response  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Chapter 5: Demand Response Summary of Key.............................................................................................................. 1 Demand Response in the Fifth Power Plan........................................................................................... 3 Demand Response in the Sixth Power Plan

77

Quantifying Changes in Building Electricity Use, with Application to Demand Response  

E-Print Network [OSTI]

building control strategies and techniques for demand response,demand response systems, in Proceedings of 16th National Conference on BuildingBuilding Electricity Use, with Application to Demand Response

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

78

Influence of Air Conditioner Operation on Electricity Use and Peak Demand  

E-Print Network [OSTI]

Electricity demand due to occupant controlled room air conditioners in a large mater-metered apartment building is analyzed. Hourly data on the electric demand of the building and of individual air conditioners are used in analyses of annual...

McGarity, A. E.; Feuermann, D.; Kempton, W.; Norford, L. K.

1987-01-01T23:59:59.000Z

79

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network [OSTI]

In contrast to a hybrid vehicle whichcombines multipleor 180 mile hybrid electric vehicle. Natural gas vehicles (1994) "Demand Electric Vehicles in Hybrid for Households:

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

80

Electricity Demand Evolution Driven by Storm Motivated Population Movement  

SciTech Connect (OSTI)

Managing the risks posed by climate change to energy production and delivery is a challenge for communities worldwide. Sea Level rise and increased frequency and intensity of natural disasters due to sea surface temperature rise force populations to move locations, resulting in changing patterns of demand for infrastructure services. Thus, Infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Combining climate predictions and agent based population movement models shows promise for exploring the universe of these future population distributions and changes in coastal infrastructure configurations. In this work, we created a prototype agent based population distribution model and developed a methodology to establish utility functions that provide insight about new infrastructure vulnerabilities that might result from these patterns. Combining climate and weather data, engineering algorithms and social theory, we use the new Department of Energy (DOE) Connected Infrastructure Dynamics Models (CIDM) to examine electricity demand response to increased temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. This work suggests that the importance of established evacuation routes that move large populations repeatedly through convergence points as an indicator may be under recognized.

Allen, Melissa R [ORNL; Fernandez, Steven J [ORNL; Fu, Joshua S [ORNL; Walker, Kimberly A [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A comparison of univariate methods for forecasting electricity demand up to a day ahead  

E-Print Network [OSTI]

A comparison of univariate methods for forecasting electricity demand up to a day ahead James W methods for short-term electricity demand forecasting for lead times up to a day ahead. The very short of Forecasters. Published by Elsevier B.V. All rights reserved. Keywords: Electricity demand forecasting

McSharry, Patrick E.

82

The Influence of Residential Solar Water Heating on Electric Utility Demand  

E-Print Network [OSTI]

Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to determine the influence...

Vliet, G. C.; Askey, J. L.

1984-01-01T23:59:59.000Z

83

Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand  

SciTech Connect (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

2012-06-01T23:59:59.000Z

84

Reduced-Order Modeling of Aggregated Thermostatic Loads With Demand Response  

E-Print Network [OSTI]

Reduced-Order Modeling of Aggregated Thermostatic Loads With Demand Response Wei Zhang, Jianming Lian, Chin-Yao Chang, Karanjit Kalsi and Yannan Sun Abstract-- Demand Response is playing population of appliances under demand response is especially important to evaluate the effec- tiveness

Zhang, Wei

85

Demand Response in U.S. Electricity Markets: Empirical Evidence  

SciTech Connect (OSTI)

Empirical evidence concerning demand response (DR) resources is needed in order to establish baseline conditions, develop standardized methods to assess DR availability and performance, and to build confidence among policymakers, utilities, system operators, and stakeholders that DR resources do offer a viable, cost-effective alternative to supply-side investments. This paper summarizes the existing contribution of DR resources in U.S. electric power markets. In 2008, customers enrolled in existing wholesale and retail DR programs were capable of providing ~;;38,000 MW of potential peak load reductions in the United States. Participants in organized wholesale market DR programs, though, have historically overestimated their likely performance during declared curtailments events, but appear to be getting better as they and their agents gain experience. In places with less developed organized wholesale market DR programs, utilities are learning how to create more flexible DR resources by adapting legacy load management programs to fit into existing wholesale market constructs. Overall, the development of open and organized wholesale markets coupled with direct policy support by the Federal Energy Regulatory Commission has facilitated new entry by curtailment service providers, which has likely expanded the demand response industry and led to product and service innovation.

Cappers, Peter; Goldman, Charles; Kathan, David

2009-06-01T23:59:59.000Z

86

A demand responsive bidding mechanism with price elasticity matrix in wholesale electricity pools  

E-Print Network [OSTI]

In the past several decades, many demand-side participation features have been applied in the electricity power systems. These features, such as distributed generation, on-site storage and demand response, add uncertainties ...

Wang, Jiankang, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

87

On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic Dispatch  

E-Print Network [OSTI]

On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic;On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic Dispatch Abstract Information asymmetry in retail electricity markets is one of the largest sources of inef

Chen, Yiling

88

The behavioral response to voluntary provision of an environmental public good: Evidence from residential electricity demand  

E-Print Network [OSTI]

residential electricity demand Grant D. Jacobsen a,n , Matthew J. Kotchen b,c , Michael P. Vandenbergh d online 25 February 2012 JEL classification: H41 Q42 G54 Keywords: Green electricity Voluntary environmental protection Carbon offset Renewable energy Moral licensing Residential electricity demand a b s t r

Kotchen, Matthew J.

89

Climate, extreme heat, and electricity demand in California  

E-Print Network [OSTI]

demand responses to climate change: Methodology and application to the Commonwealth of Massachusetts.

Miller, N.L.

2008-01-01T23:59:59.000Z

90

Demand Forecast INTRODUCTION AND SUMMARY  

E-Print Network [OSTI]

Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required of any forecast of electricity demand and developing ways to reduce the risk of planning errors that could arise from this and other uncertainties in the planning process. Electricity demand is forecast

91

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network [OSTI]

for 90% of household electricity consumption in China. Usinggives an annual electricity consumption of 12kWh assumingto look at is electricity consumption at the household

Letschert, Virginie

2010-01-01T23:59:59.000Z

92

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network [OSTI]

Domestic Electric Storage Water Heater (DESWH) Test Methodsbuilt for electric storage water heaters and heat pumps asthat electric storage tank water heaters will be replaced

Letschert, Virginie

2010-01-01T23:59:59.000Z

93

California's Electricity Supply and Demand Balance Over the Next Five Years  

E-Print Network [OSTI]

the resources of the system. The Commission's 2003 Baseline Demand forecast assumes the following assumptions September October 1 CEC 2003 Baseline Demand Forecast (1-in-2 Weather)1, 2 31 California's Electricity Supply and Demand Balance Over the Next Five Years The Energy Commission

94

Stackelberg Game based Demand Response for At-Home Electric Vehicle Charging  

E-Print Network [OSTI]

Member, IEEE Abstract--Consumer electricity consumption can be controlled through electricity prices and customers respond accordingly with their electricity consumption levels. In particular, the demands as a game [7]. Note that in reality, electricity retailers are significantly regulated by governments

Bahk, Saewoong

95

A Fresh Look at Weather Impact on Peak Electricity Demand and  

E-Print Network [OSTI]

LBNL-6280E A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data Road, Berkeley, CA 94720, USA 2 Green Energy and Environment Research Laboratories, Industrial

96

THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY PROFESSION  

E-Print Network [OSTI]

1 THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY, Iowa State University ABSTRACT There is a tremendous imbalance between engineering workforce demand and supply in the world in general, and in the US, in particular. The electric power and energy industry

97

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network [OSTI]

Domestic Electric Storage Water Heater (DESWH) Test Methodsfans, washing machines, water heaters and space heaters.and Space Heating Water heater intensities and electric

Letschert, Virginie

2010-01-01T23:59:59.000Z

98

Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful  

E-Print Network [OSTI]

Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful emissions, and minimizes the cost of providing energy to the campus. As a result of energy conservation initiatives that have been implemented over the past 20 years, growth in the average demand per

99

Barriers to reducing energy demand in existing building stock -a perspective based on  

E-Print Network [OSTI]

Barriers to reducing energy demand in existing building stock - a perspective based on observation another radiator." #12;Typical End User Training #12;Demand Side Problem #12;Workman Mis(?)conceptions "If, interviews, probes, home inspections intervention - management committees, "message of the month", magazine

Carletta, Jean

100

Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric  

E-Print Network [OSTI]

expansion Plug-in hybrid electric vehicles Controlled charging Wind power integration a b s t r a c vehicles (BEVs), create additional electricity demand, resulting in additional air emissions from powerEstimating the potential of controlled plug-in hybrid electric vehicle charging to reduce

Michalek, Jeremy J.

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Trends in electricity demand and supply in the developing countries, 1980--1990  

SciTech Connect (OSTI)

This report provides an overview of trends concerning electricity demand and supply in the developing countries in the 1980--1990 period, with special focus on 13 major countries for which we have assembled consistent data series. We describe the linkage between electricity demand and economic growth, the changing sectoral composition of electricity consumption, and changes in the mix of energy sources for electricity generation. We also cover trends in the efficiency of utility electricity supply with respect to power plant efficiency and own-use and delivery losses, and consider the trends in carbon dioxide emissions from electricity supply.

Meyers, S.; Campbell, C.

1992-11-01T23:59:59.000Z

102

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network [OSTI]

replaced with heat pump water heaters (efficiency of 250%).electric storage water heaters and heat pumps as shown infor Electric Water Heaters and Heat Pumps End Use Elec WH HP

Letschert, Virginie

2010-01-01T23:59:59.000Z

103

A Dynamic Supply-Demand Model for Electricity Prices Manuela Buzoianu  

E-Print Network [OSTI]

A Dynamic Supply-Demand Model for Electricity Prices Manuela Buzoianu , Anthony E. Brockwell, and Duane J. Seppi Abstract We introduce a new model for electricity prices, based on the principle in a study of Californian wholesale electricity prices over a three-year period including the crisis period

104

Testing The Effects Of Price Responsive Demand On Uniform Price And Soft-Cap Electricity Auctions  

E-Print Network [OSTI]

Testing The Effects Of Price Responsive Demand On Uniform Price And Soft-Cap Electricity Auctions R. The soft-cap market has not worked well. Spot prices for electricity in California remained consistently of different electric power markets with respect to price volatility and average market price. In particular

105

Modeling of Electric Water Heaters for Demand Response: A Baseline PDE Model  

SciTech Connect (OSTI)

Demand response (DR)control can effectively relieve balancing and frequency regulation burdens on conventional generators, facilitate integrating more renewable energy, and reduce generation and transmission investments needed to meet peak demands. Electric water heaters (EWHs) have a great potential in implementing DR control strategies because: (a) the EWH power consumption has a high correlation with daily load patterns; (b) they constitute a significant percentage of domestic electrical load; (c) the heating element is a resistor, without reactive power consumption; and (d) they can be used as energy storage devices when needed. Accurately modeling the dynamic behavior of EWHs is essential for designing DR controls. Various water heater models, simplified to different extents, were published in the literature; however, few of them were validated against field measurements, which may result in inaccuracy when implementing DR controls. In this paper, a partial differential equation physics-based model, developed to capture detailed temperature profiles at different tank locations, is validated against field test data for more than 10 days. The developed model shows very good performance in capturing water thermal dynamics for benchmark testing purposes

Xu, Zhijie; Diao, Ruisheng; Lu, Shuai; Lian, Jianming; Zhang, Yu

2014-09-05T23:59:59.000Z

106

Reducing power transients in diesel-electric dynamically positioned ships using re-positioning  

E-Print Network [OSTI]

Reducing power transients in diesel-electric dynamically positioned ships using re--A thrust allocation method with a functionality to assist power management systems by using the hull the power consumption in the thrusters when a sharp increase in power consumption is demanded elsewhere

Johansen, Tor Arne

107

Effects of the drought on California electricity supply and demand  

E-Print Network [OSTI]

ELECTRICITY SUPPLY Hydroelectric Energy Supply Thermal-question. Data on PG&E's hydroelectric resources and Pacific27 Table 28 Table 29 Hydroelectric Supply in California Fuel

Benenson, P.

2010-01-01T23:59:59.000Z

108

Demand Response in U.S. Electricity Markets: Empirical Evidence  

E-Print Network [OSTI]

the second half of the wholesale electric market equation.response with Midwest ISO wholesale markets, report no.DR Programs in Wholesale Markets 18

Cappers, Peter

2009-01-01T23:59:59.000Z

109

Quantifying Changes in Building Electricity Use, with Application to Demand Response  

SciTech Connect (OSTI)

We present methods for analyzing commercial and industrial facility 15-minute-interval electric load data. These methods allow building managers to better understand their facility's electricity consumption over time and to compare it to other buildings, helping them to ask the right questions to discover opportunities for demand response, energy efficiency, electricity waste elimination, and peak load management. We primarily focus on demand response. Methods discussed include graphical representations of electric load data, a regression-based electricity load model that uses a time-of-week indicator variable and a piecewise linear and continuous outdoor air temperature dependence, and the definition of various parameters that characterize facility electricity loads and demand response behavior. In the future, these methods could be translated into easy-to-use tools for building managers.

Mathieu, Johanna L.; Price, Phillip N.; Kiliccote, Sila; Piette, Mary Ann

2010-11-17T23:59:59.000Z

110

Reducing Occupant-Controlled Electricity Consumption in Campus Buildings  

E-Print Network [OSTI]

2010 Reducing Occupant-Controlled Electricity Consumption in Campus Buildings Kill­09 and is expected to spend more than $17.1 million in 2009­10. In an effort to reduce electricity consumption; 1 EXECUTIVE SUMMARY UC Berkeley spent $16.39 million on purchased electricity in 2008

Doudna, Jennifer A.

111

Export demand response in the Ontario electricity market  

SciTech Connect (OSTI)

Export responses to unanticipated price shocks can be a key contributing factor to the rapid mean reversion of electricity prices. The authors use event analysis - a technique more familiar from financial applications - to demonstrate how hourly export transactions respond to negative supply shocks in the Ontario electricity market. (author)

Peerbocus, Nash; Melino, Angelo

2007-11-15T23:59:59.000Z

112

E-Print Network 3.0 - aggregate electricity demand Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: for electricity based on aggregate data may in fact reflect the exit of coal-intensive firms (e.g. manufacturers... of fuel demand based on aggregate data, and...

113

Electrical Energy Conservation and Peak Demand Reduction Potential for Buildings in Texas: Preliminary Results  

E-Print Network [OSTI]

This paper presents preliminary results of a study of electrical energy conservation and peak demand reduction potential for the building sector in Texas. Starting from 1980 building stocks and energy use characteristics, technical conservation...

Hunn, B. D.; Baughman, M. L.; Silver, S. C.; Rosenfeld, A. H.; Akbari, H.

1985-01-01T23:59:59.000Z

114

Electric power supply and demand for the contiguous United States, 1980-1989  

SciTech Connect (OSTI)

A limited review is presented of the outlook for the electric power supply and demand during the period 1980 to 1989. Only the adequacy and reliability aspects of bulk electric power supply in the contiguous US are considered. The economic, financial and environmental aspects of electric power system planning and the distribution of electricity (below the transmission level) are topics of prime importance, but they are outside the scope of this report.

None

1980-06-01T23:59:59.000Z

115

California DREAMing: the design of residential demand responsive technology with people in mind  

E-Print Network [OSTI]

Advanced Metering and Demand Response in ElectricityChen, X. (2008). Demand Response-enabled Autonomous Controlfor Thermal Comfort, Demand Response, and Reduced Annual

Peffer, Therese E.

2009-01-01T23:59:59.000Z

116

Edison Electric Institute (EEI) Reducing Regulatory Burden RFI...  

Broader source: Energy.gov (indexed) [DOE]

6 Fed. Reg. 75798 (Dec. 5, 2011) Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 76 Fed. Reg. 75798 (Dec. 5, 2011) The Edison Electric Institute (EEI) is submitting...

117

Edison Electric Institute (EEI) Reducing Regulatory Burden RFI...  

Broader source: Energy.gov (indexed) [DOE]

7 Fed. Reg. 28518 (May 15, 2012) Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 (May 15, 2012) The Edison Electric Institute (EEI) is submitting...

118

Electricity Distribution Networks: Investment and Regulation, and Uncertain Demand  

E-Print Network [OSTI]

Electricity distribution networks are capital intensive systems and timely investments are crucial for long-term reliability of their service. In coming years, in the UK, and elsewhere in Europe, many networks are in need of extensive investments...

Jamasb, Tooraj; Marantes, Cristiano

2011-01-31T23:59:59.000Z

119

Innovative and Progressive Electric Utility Demand-Side Management Strategies  

E-Print Network [OSTI]

Conservation of electric energy has been a concern of energy users in the residential, commercial and industrial sectors for several decades, and has increased in significance since the 1973 energy shortages. During this time, it has also become...

Epstein, G. J.; Fuller, W. H.

120

Electric Demand Cost Versus Labor Cost: A Case Study  

E-Print Network [OSTI]

steel and glass. Pins, glass beads and headers are assembled manually and are put in a carbon tray. Carbon trays are put in furnaces (ovens) which are maintained at a constant temperature between 160Q-2000F and have an exothermic gas environment.... At this time, company registers its peak demand. Company keeps all furnaces on and keep them available for workers in case they will need it for their products. On average, no more than two furnaces will have same temperature and exothermic gas...

Agrawal, S.; Jensen, R.

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

OFWAR: Reducing SSD Response Time Using On-Demand Fast-Write-and-Rewrite  

E-Print Network [OSTI]

OFWAR: Reducing SSD Response Time Using On-Demand Fast-Write-and-Rewrite Qi Wu and Tong Zhang to degrade SSD response time, we speed up memory programming at the penalty of shorter data retention time the average SSD response time by up to 52.3%. Index Terms--Solid-state drive, data retention, workload

Zhang, Tong

122

Reducing Electrical Power Use with a Performance Based Incentive  

SciTech Connect (OSTI)

This Departmental Energy Management Program (DEMP) funded Model Program Study developed out of a potential DOE-ID Performance Based Incentive for the Idaho National Engineering and Environmental Laboratory (INEEL), lasting from October 2001 through May 2002, which stressed reductions in electrical usage. An analysis of demand usage obtained from monthly INEEL Power Management electric reports revealed reductions in demand from a majority of the site areas. The purpose of this Model Program study was to determine the methods and activities that were used at these site areas to achieve the reductions in demand and to develop these demand reduction methods and activities into a Model Program that could be shared throughout the INEEL and DOE complex-wide for additional demand savings. INEEL Energy Management personnel interviewed contacts from the eight areas which had achieved a consistent reduction in demand during the study period, namely, Idaho Nuclear Technology and Engineering Center (INTEC), Test Area North (TAN), Power Burst Facility (PBF), Test Reactor Area (TRA) including Advanced Test Reactor ATR), Engineering Test Reactor (ETR), and Materials Test Reactor (MTR) areas, Central Facilities Area (CFA), Specific Manufacturing Capability (SMC), Radioactive Waste Management Complex (RWMC), and Argonne National Laboratory-West (ANLW). The information that resulted from the interviews indicated that more than direct demand and energy reduction actions were responsible for the recorded reductions in demand. INEEL Energy Management identified five categories of actions or conditions that contributed to the demand reduction. These categories are Decontamination and Decommissioning (D&D), employee actions, improvements, inactivation for maintenance, and processes. The following information details the findings from the study.

M. Kathleen Nell

2004-07-01T23:59:59.000Z

123

Analysis of PG E's residential end-use metered data to improve electricity demand forecasts  

SciTech Connect (OSTI)

It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

Eto, J.H.; Moezzi, M.M.

1992-06-01T23:59:59.000Z

124

The impact of changes in electric transmission regulation on coal demand  

SciTech Connect (OSTI)

The likely impact of changes in regulation of electric transmission and the environmental impacts associated with those changes on the demand for coal by the electric utility industry are discussed. Since the electric utility industry is currently the largest user of coal (in 1992, 87% of coal consumed in the United States was used to generate electricity by electric utilities) any systematic change in the electric utility industry could ripple through the coal industry. What deregulation or changes in regulations in the electric industry is occurring or has occurred at the federal level and the expected impact on the demand for coal are discussed. From the point of view of the electric industry, at least, the primary variable driving demand for coal up or down is its price relative to alternate fuels, particularly natural gas. This is no surprise. Regardless of how the regulators increase or alter their scrutiny of the industry, fundamental economics will prevail. Indeed, with the changes in regulation moving toward more free and open competition, those forces will move even more to the forefront.

Finn, E.J.

1996-12-31T23:59:59.000Z

125

Reducing the demand forecast error due to the bullwhip effect in the computer processor industry  

E-Print Network [OSTI]

Intel's current demand-forecasting processes rely on customers' demand forecasts. Customers do not revise demand forecasts as demand decreases until the last minute. Intel's current demand models provide little guidance ...

Smith, Emily (Emily C.)

2010-01-01T23:59:59.000Z

126

Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike  

SciTech Connect (OSTI)

In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

2013-06-02T23:59:59.000Z

127

Abstract--Forecasting of future electricity demand is very important for decision making in power system operation and  

E-Print Network [OSTI]

Abstract--Forecasting of future electricity demand is very important for decision making in power industry, accurate forecasting of future electricity demand has become an important research area sector. This paper presents a novel approach for mid-term electricity load forecasting. It uses a hybrid

Ducatelle, Frederick

128

Reducing Your Electricity Use | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartment ofManagementManagementReduce Hot Water Use

129

Statewide Electricity and Demand Capacity Savings from the Implementation of IECC Code in Texas: Analysis for Single-Family Residences  

E-Print Network [OSTI]

STATEWIDE ELECTRICITY AND DEMAND CAPACITY SAVINGS FROM THE IMPLEMENTATION OF IECC CODE IN TEXAS: ANALYSIS FOR SINGLE?FAMILY RESIDENCES 11th International Conference for Enhanced Building Operations New York City, October 18 ? 20, 2011 Hyojin...&M University System Statewide Electricity and Demand Savings from the IECC Code in TX 11th ICEBO Conference Oct. 18 ? 20, 2011 2 Outline Introduction Methodology Base?Case Building Results Summary Statewide Electricity and Demand Savings from the IECC...

Kim, H.; Baltazar, J.C.; Haberl, J.; Lewis, C.; Yazdani, B.

2011-01-01T23:59:59.000Z

130

Smart grid-demand side response model to mitigate prices and peak impact on the electrical system.  

E-Print Network [OSTI]

??The aims of this project is to develop demand side response model which assists electricity consumers who are exposed to the market price through aggregator (more)

Marwan, Marwan

2013-01-01T23:59:59.000Z

131

Assessing and Reducing Miscellaneous Electric Loads (MELs) in Lodging  

SciTech Connect (OSTI)

Miscellaneous electric loads (MELs) are the loads outside of a building's core functions of heating, ventilating, air conditioning, lighting, and water heating. This report reviews methods to reduce MELs in lodging.

Rauch, Emily M.

2011-09-01T23:59:59.000Z

132

Reduced-Order Modeling of Aggregated Thermostatic Loads With Demand Response  

SciTech Connect (OSTI)

Demand Response is playing an increasingly important role in smart grid control strategies. Modeling the behavior of populations of appliances under demand response is especially important to evaluate the effectiveness of these demand response programs. In this paper, an aggregated model is proposed for a class of Thermostatically Controlled Loads (TCLs). The model efficiently includes statistical information of the population, systematically deals with heterogeneity, and accounts for a second-order effect necessary to accurately capture the transient dynamics in the collective response. However, an accurate characterization of the collective dynamics however requires the aggregate model to have a high state space dimension. Most of the existing model reduction techniques require the stability of the underlying system which does not hold for the proposed aggregated model. In this work, a novel model reduction approach is developed for the proposed aggregated model, which can significantly reduce its complexity with small performance loss. The original and the reducedorder aggregated models are validated against simulations of thousands of detailed building models using GridLAB-D, which is a realistic open source distribution simulation software. Index Terms demand response, aggregated model, ancillary

Zhang, Wei; Lian, Jianming; Chang, Chin-Yao; Kalsi, Karanjit; Sun, Yannan

2012-12-12T23:59:59.000Z

133

ZONAL PRICING AND DEMAND-SIDE BIDDING IN THE NORWEGIAN ELECTRICITY MARKET  

E-Print Network [OSTI]

PWP-063 ZONAL PRICING AND DEMAND-SIDE BIDDING IN THE NORWEGIAN ELECTRICITY MARKET Tor Arnt Johnsen of the Program on Workable Energy Regulation (POWER). POWER is a program of the University of California Energy. University of California Energy Institute 2539 Channing Way Berkeley, California 94720-5180 www

California at Berkeley. University of

134

Battery Health-conscious Plug-in Hybrid Electric Vehicle Grid Demand Prediction Saeid Bashash  

E-Print Network [OSTI]

at an incipient stage. A market share of about 25% is projected in the United States by year 2020, resulting in nearly five million PHEV sales per year [2]. The energy requirements of PHEVs depend significantlyBattery Health-conscious Plug-in Hybrid Electric Vehicle Grid Demand Prediction Saeid Bashash

Krstic, Miroslav

135

Design for implementation : fully integrated charging & docking infrastructure used in Mobility-on-Demand electric vehicle fleets  

E-Print Network [OSTI]

As the technology used in electric vehicles continues to advance, there is an increased demand for urban-appropriate electric charging stations emphasizing a modern user interface, robust design, and reliable functionality. ...

Martin, Jean Mario Nations

2012-01-01T23:59:59.000Z

136

Statewide Electricity and Demand Capacity Savings from the Implementation of IECC Code in Texas: Analysis for Single-Family Residences  

E-Print Network [OSTI]

This paper presents estimates of the statewide electricity and electric demand savings achieved from the adoption of the International Energy Conservation Code (IECC) for single-family residences in Texas and includes the corresponding increase...

Kim, H.; Baltazar, J.C.; Haberl, J.

2011-01-01T23:59:59.000Z

137

Security and privacy in demand response systems in smart grid.  

E-Print Network [OSTI]

??Demand response programs are used in smart grid to improve stability of the electric grid and to reduce consumption of electricity and costs during peak (more)

Paranjpe, Mithila

2011-01-01T23:59:59.000Z

138

Integrating Demand into the U.S. Electric Power System: Technical, Economic, and Regulatory Frameworks for Responsive Load  

E-Print Network [OSTI]

for Responsive/Adaptive Load by Jason W. Black Massachusetts Institute of Technology Submitted to the Engineering integration of demand response. Integrating demand into the US electricity system will allow the development, and market issues to determine a system structure that provides incentives for demand response. An integrated

de Weck, Olivier L.

139

The Impact of Energy Efficiency and Demand Response Programs on the U.S. Electricity Market  

SciTech Connect (OSTI)

This study analyzes the impact of the energy efficiency (EE) and demand response (DR) programs on the grid and the consequent level of production. Changes in demand caused by EE and DR programs affect not only the dispatch of existing plants and new generation technologies, the retirements of old plants, and the finances of the market. To find the new equilibrium in the market, we use the Oak Ridge Competitive Electricity Dispatch Model (ORCED) developed to simulate the operations and costs of regional power markets depending on various factors including fuel prices, initial mix of generation capacity, and customer response to electricity prices. In ORCED, over 19,000 plant units in the nation are aggregated into up to 200 plant groups per region. Then, ORCED dispatches the power plant groups in each region to meet the electricity demands for a given year up to 2035. In our analysis, we show various demand, supply, and dispatch patterns affected by EE and DR programs across regions.

Baek, Young Sun [ORNL; Hadley, Stanton W [ORNL

2012-01-01T23:59:59.000Z

140

Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities  

E-Print Network [OSTI]

Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options Neufville Professor of Engineering Systems Chair, ESD Education Committee #12;2 #12;3 Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities By Chia

de Weck, Olivier L.

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Estimated winter 1980-1981 electric demand and supply, contiguous United States. Staff report  

SciTech Connect (OSTI)

This report summarizes the most recent data available concerning projected electrical peak demands and available power resouces for the 1980-1981 winter peak period, as reported by electric utilities in the contiguous United States. The data, grouped by Regional Reliability Council areas and by Electrical Regions within the Council areas, was obtained from the Form 12E-2 reports filed by utilities with the Department of Energy on October 15, 1980 (data as of September 30). In some instances the data were revised or verified by telephone. Considerations affecting reliability, arising from Nuclear Regulatory Commission actions based on lessons learned from the forced outage of Three Mile Island Nuclear Unit No. 2, were factored into the report. No widespread large-scale reliability problems are foreseen for electric power supply this winter, on the basis of the supply and demand projections furnished by the electric utilities. Reserve margins could drop in some electric regions to levels considered inadequate for reliable service, if historical forced-outage magnitudes recur.

None

1980-12-01T23:59:59.000Z

142

Influence of Climate Change Mitigation Technology on Global Demands of Water for Electricity Generation  

SciTech Connect (OSTI)

Globally, electricity generation accounts for a large and potentially growing water demand, and as such is an important component to assessments of global and regional water scarcity. However, the current suiteas well as potential future suitesof thermoelectric generation technologies has a very wide range of water demand intensities, spanning two orders of magnitude. As such, the evolution of the generation mix is important for the future water demands of the sector. This study uses GCAM, an integrated assessment model, to analyze the global electric sectors water demands in three futures of climate change mitigation policy and two technology strategies. We find that despite five- to seven-fold expansion of the electric sector as a whole from 2005 to 2095, global electric sector water withdrawals remain relatively stable, due to the retirement of existing power plants with water-intensive once-through flow cooling systems. In the scenarios examined here, climate policies lead to the large-scale deployment of advanced, low-emissions technologies such as carbon dioxide capture and storage (CCS), concentrating solar power, and engineered geothermal systems. In particular, we find that the large-scale deployment of CCS technologies does not increase long-term water consumption from hydrocarbon-fueled power generation as compared with a no-policy scenario without CCS. Moreover, in sensitivity scenarios where low-emissions electricity technologies are required to use dry cooling systems, we find that the consequent additional costs and efficiency reductions do not limit the utility of these technologies in achieving cost-effective whole-system emissions mitigation.

Kyle, G. Page; Davies, Evan; Dooley, James J.; Smith, Steven J.; Clarke, Leon E.; Edmonds, James A.; Hejazi, Mohamad I.

2013-01-17T23:59:59.000Z

143

Demand Control Utilizing Energy Management Systems - Report of Field Tests  

E-Print Network [OSTI]

Energy Management systems and particularly demand controllers are becoming more popular as commercial and light industrial operations attempt to reduce their electrical usage and demand. Numerous techniques are used to control energy use and demand...

Russell, B. D.; Heller, R. P.; Perry, L. W.

1984-01-01T23:59:59.000Z

144

High Electric Demand Days: Clean Energy Strategies for Improving Air Quality  

Broader source: Energy.gov [DOE]

This presentation by Art Diem of the State and Local Capacity Building Branch in the U.S. Environmental Protection Agency was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

145

The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency  

SciTech Connect (OSTI)

With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy giants', a phenomenon that is expected to continue, accelerate and spread to other countries. This paper explores the potential for slowing energy consumption and greenhouse gas emissions in the residential sector in developing countries and evaluates the potential of energy savings and emissions mitigation through market transformation programs such as, but not limited to Energy Efficiency Standards and Labeling (EES&L). The bottom-up methodology used allows one to identify which end uses and regions have the greatest potential for savings.

Letschert, Virginie; McNeil, Michael A.

2008-05-13T23:59:59.000Z

146

An integrated assessment of global and regional water demands for electricity generation to 2095  

SciTech Connect (OSTI)

Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

Davies, Evan; Kyle, G. Page; Edmonds, James A.

2013-02-01T23:59:59.000Z

147

Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power.  

SciTech Connect (OSTI)

This paper uses a new unit commitment model which can simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). Four PHEV charging scenarios are simulated for the Illinois power system: (1) unconstrained charging, (2) 3-hour delayed constrained charging, (3) smart charging, and (4) smart charging with DR. The PHEV charging is assumed to be optimally controlled by the system operator in the latter two scenarios, along with load shifting and shaving enabled by DR programs. The simulation results show that optimally dispatching the PHEV charging load can significantly reduce the total operating cost of the system. With DR programs in place, the operating cost can be further reduced.

Wang, J.; Liu, C.; Ton, D.; Zhou, Y.; Kim, J.; Vyas, A. (Decision and Information Sciences); ( ES); (ED); (Kyungwon Univ.)

2011-07-01T23:59:59.000Z

148

Reducing current reversal time in electric motor control  

DOE Patents [OSTI]

The time required to reverse current flow in an electric motor is reduced by exploiting inductive current that persists in the motor when power is temporarily removed. Energy associated with this inductive current is used to initiate reverse current flow in the motor.

Bredemann, Michael V

2014-11-04T23:59:59.000Z

149

Novel Nanoscale Materials Reduce Electricity Needed for Sludge  

E-Print Network [OSTI]

This project researches the use of nanoscale materials (a broadly defined set of substances that haveNovel Nanoscale Materials Reduce Electricity Needed for Sludge Dewatering Industrial process, requiring up to 6000 kilowatt hours/year per million gallons per day. Project Description

150

Dynamic Control of Electricity Cost with Power Demand Smoothing and Peak Shaving for Distributed Internet Data Centers  

E-Print Network [OSTI]

Dynamic Control of Electricity Cost with Power Demand Smoothing and Peak Shaving for Distributed a major part of their running costs. Modern electric power grid provides a feasible way to dynamically and efficiently manage the electricity cost of distributed IDCs based on the Locational Marginal Pricing (LMP

Rahman, A.K.M. Ashikur

151

Electricity demand-side management for an energy efficient future in China : technology options and policy priorities  

E-Print Network [OSTI]

The main objective of this research is to identify robust technology and policy options which achieve substantial reductions in electricity demand in China's Shandong Province. This research utilizes a scenario-based ...

Cheng, Chia-Chin

2005-01-01T23:59:59.000Z

152

Integrating demand into the U.S. electric power system : technical, economic, and regulatory frameworks for responsive load  

E-Print Network [OSTI]

The electric power system in the US developed with the assumption of exogenous, inelastic demand. The resulting evolution of the power system reinforced this assumption as nearly all controls, monitors, and feedbacks were ...

Black, Jason W. (Jason Wayne)

2005-01-01T23:59:59.000Z

153

Measured electric hot water standby and demand loads from Pacific Northwest homes  

SciTech Connect (OSTI)

The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

Pratt, R.G.; Ross, B.A.

1991-11-01T23:59:59.000Z

154

Automated Demand Response: The Missing Link in the Electricity Value Chain  

E-Print Network [OSTI]

and Open Automated Demand Response. In Grid Interop Forum.Berkeley National Laboratory. Demand Response ResearchCenter, Demand Response Research Center PIER Team Briefing,

McKane, Aimee

2010-01-01T23:59:59.000Z

155

Automated Demand Response: The Missing Link in the Electricity Value Chain  

E-Print Network [OSTI]

Laboratory. Berkeley. Demand Response Research Center,and Automated Demand Response in Wastewater TreatmentLaboratory. Berkeley. Demand Response Research Center,

McKane, Aimee

2010-01-01T23:59:59.000Z

156

Load-side Demand Management in Buildings usingControlled Electric Springs  

E-Print Network [OSTI]

The concept of demand-side management for electricand simulation of demand-side management potential in urbanin smart grids, demand side management has been a keen topic

Soni, Jayantika; Krishnanand, KR; Panda, Sanjib

2014-01-01T23:59:59.000Z

157

Statewide Electricity and Demand Capacity Savings from the International Energy Conservation Code (IECC) Adoption for Single-Family Residences in Texas (2002-2011)  

E-Print Network [OSTI]

This report is the continuation of the previous 2011 Statewide Electricity Savings report from code-compliant, single-family residences built between 2002 and 2009. Statewide electricity and electric demand savings achieved from the adoption...

Kim, H.; Baltazar, J. C.; Haberl, J. S.; Yazdani, B.

2013-01-01T23:59:59.000Z

158

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

159

Draft Fourth Northwest Conservation and Electric Power Plan, Appendix D ECONOMIC AND DEMAND FORECASTS  

E-Print Network [OSTI]

AND DEMAND FORECASTS INTRODUCTION AND SUMMARY Role of the Demand Forecast A demand forecast of at least 20 years is one of the explicit requirements of the Northwest Power Act. A demand forecast is, of course analysis. Because the future is inherently uncertain, the Council forecasts a range of future demand levels

160

Price Responsive Demand in New York Wholesale Electricity Market using OpenADR  

E-Print Network [OSTI]

and provide demand response (DR) through building controland provide demand response (DR) through building controlDemand Response Automation Server (DRAS) in a 15-minute interval. This allows the continuous monitoring of the building's

Kim, Joyce Jihyun

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Analysis of PG&E`s residential end-use metered data to improve electricity demand forecasts  

SciTech Connect (OSTI)

It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

Eto, J.H.; Moezzi, M.M.

1992-06-01T23:59:59.000Z

162

Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world  

SciTech Connect (OSTI)

The restructuring of regional and national electricity markets in the U.S. and around the world has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created new opportunities for technologies and business approaches that allow load serving entities and other aggregators to control and manage the load patterns of wholesale and retail end-users they serve. Demand Response Programs, once called Load Management, have re-emerged as an important element in the fine-tuning of newly restructured electricity markets. During the summers of 1999 and 2001 they played a vital role in stabilizing wholesale markets and providing a hedge against generation shortfalls throughout the U.S.A. Demand Response Programs include ''traditional'' capacity reservation and interruptible/curtailable rates programs as well as voluntary demand bidding programs offered by either Load Serving Entities (LSEs) or regional Independent System Operators (ISOs). The Lawrence Berkeley National Lab (LBNL) has been monitoring the development of new types of Demand Response Programs both in the U.S. and around the world. This paper provides a survey and overview of the technologies and program designs that make up these emerging and important new programs.

Heffner, Grayson C.

2002-09-01T23:59:59.000Z

163

Price Responsive Demand in New York Wholesale Electricity Market using OpenADR  

E-Print Network [OSTI]

3. Price Variations of Wholesale Electricity Markets for NYC4. Price Variations of Wholesale Electricity Markets for NYCDemand in New York Wholesale Electricity Market using

Kim, Joyce Jihyun

2013-01-01T23:59:59.000Z

164

Automated Demand Response and Commissioning  

SciTech Connect (OSTI)

This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-04-01T23:59:59.000Z

165

Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water Treatment  

SciTech Connect (OSTI)

Rapid deployment and the use of objective force aggressively reduce logistic footprints and replenishment demands. Maneuver Sustainment requires that Future Combat Systems be equipped with water systems that are lightweight, have small footprints, and are highly adaptable to a variety of environments. Technologies employed in these settings must be able to meet these demands. Lawrence Livermore National Laboratory has designed and previously field tested nano-engineered materials for the treatment of water. These materials have been either based on silica aerogel materials or consist of composites of these aerogels with granular activated carbon (GAC). Recent tests have proven successful for the removal of contaminants including uranium, hexavalent chromium, and arsenic. Silica aerogels were evaluated for their ability to purify water that had been spiked with the nerve agent VX (O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate). These results demonstrated that silica aerogels were able to remove the VX from the supply water and were nearly 30 times more adsorbent than GAC. This performance could result in REDUCING CHANGEOUT FREQUENCY BY A FACTOR OF 30 or DECREASING the VOLUME of adsorbent BY A FACTOR OF 30; thereby significantly reducing logistic footprints and replenishment demands. The use of the nano-engineered Silica Aerogel/GAC composites would provide a water purification technology that meets the needs of Future Combat Systems.

Daily, W; Coleman, S; Love, A; Reynolds, J; O'Brien, K; Gammon, S

2004-09-22T23:59:59.000Z

166

Load-side Demand Management in Buildings usingControlled Electric Springs  

E-Print Network [OSTI]

Load-side Demand Management in Buildings using Controlleddemand side management has been a keen topic of interest. Buildings,

Soni, Jayantika; Krishnanand, KR; Panda, Sanjib

2014-01-01T23:59:59.000Z

167

Field Demonstration of Automated Demand Response for Both Winter and  

E-Print Network [OSTI]

) is a demand-side management strategy to reduce electricity use during times of high peak electric loads;1 Field Demonstration of Automated Demand Response for Both Winter and Summer Events in Large Buildings of a series of field test of automated demand response systems in large buildings in the Pacific Northwest

168

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel use and CO2 emissions, has resulted in  

E-Print Network [OSTI]

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel, combined with the expanded demand for biofuels, will result in higher food prices, since less land by using biofuels (vegetable oils). But the use of biofuels may not reduce CO2 emissions, even when

169

Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India  

SciTech Connect (OSTI)

The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

McNeil, Michael A.; Iyer, Maithili

2009-05-30T23:59:59.000Z

170

Automated Demand Response: The Missing Link in the Electricity Value Chain  

E-Print Network [OSTI]

Missing Link in the Electricity Value Chain Aimee McKane,Missing Link in the Electricity Value Chain Aimee McKane,grid reliability and lower electricity use during periods of

McKane, Aimee

2010-01-01T23:59:59.000Z

171

Automated Demand Response: The Missing Link in the Electricity Value Chain  

E-Print Network [OSTI]

Missing Link in the Electricity Value Chain Aimee McKane*,Missing Link in the Electricity Value Chain Aimee McKane,grid reliability and lower electricity use during periods of

McKane, Aimee

2010-01-01T23:59:59.000Z

172

MEW Efforts in Reducing Electricity and Water Consumption in Government and Private Sectors in Kuwait  

E-Print Network [OSTI]

of Engineers, membership No. 1715. MEW EFFORTS IN REDUCING ELECTRICITY AND WATER CONSUMPTION IN GOVERNMENT AND PRIVATE SECTORS IN KUWAIT Eng. Iqbal Al-Tayar Manager ? Technical Supervision Department Planning and Training Sector Ministry... of Electricity & Water (MEW) - Kuwait Historical Background - Electricity ? In 1913, the first electric machine was installed in Kuwait to operate 400 lambs for Al-Saif Palace. ? In 1934, two electric generators were installed with a total capacity of 60 k...

Al-Tayar, I.

2011-01-01T23:59:59.000Z

173

NREL Reduces Climate Control Loads in Electric Vehicles (Fact Sheet)  

SciTech Connect (OSTI)

NREL demonstrates that zonal climate control can reduce air conditioning power and improve range while maintaining driver thermal sensation.

Not Available

2014-08-01T23:59:59.000Z

174

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network [OSTI]

travel by electric and hybrid vehicles. SAE Technical PapersIn contrast to a hybrid vehicle which combines multipleElectric, Hybrid and Other Alternative Vehicles. A r t h u r

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

175

Electrically operated magnetic switch designed to display reduced leakage inductance  

DOE Patents [OSTI]

An electrically operated magnetic switch is disclosed herein for use in opening and closing a circuit between two terminals depending upon the voltage across these terminals. The switch so disclosed is comprised of a ferrite core in the shape of a toroid having opposing ends and opposite inner and outer sides and an arrangement of electrically conductive components defining at least one current flow path which makes a number of turns around the core. This arrangement of components includes a first plurality of electrically conducive rigid rods parallel with and located outside the outer side of the core and a second plurality of electrically conductive rigid rods parallel with and located inside the inner side of the core. The arrangement also includes means for electrically connecting these rods together so that the define the current flow path. In one embodiment, this latter means uses rigid cross-tab means. In another, preferred embodiment, printed circuits on rigid dielectric substrates located on opposite ends of the core are utilized to interconnect the rods together. 10 figures.

Cook, E.G.

1994-05-10T23:59:59.000Z

176

Electrically operated magnetic switch designed to display reduced leakage inductance  

DOE Patents [OSTI]

An electrically operated magnetic switch is disclosed herein for use in opening and closing a circuit between two terminals depending upon the voltage across these terminals. The switch so disclosed is comprised of a ferrite core in the shape of a toroid having opposing ends and opposite inner and outer sides and an arrangement of electrically conductive components defining at least one current flow path which makes a number of turns around the core. This arrangement of components includes a first plurality of electrically conducive rigid rods parallel with and located outside the outer side of the core and a second plurality of electrically conductive rigid rods parallel with and located inside the inner side of the core. The arrangement also includes means for electrically connecting these rods together so that the define the current flow path. In one embodiment, this latter means uses rigid cross-tab means. In another, preferred embodiment, printed circuits on rigid dielectric substrates located on opposite ends of the core are utilized to interconnect the rods together.

Cook, Edward G. (Livermore, CA)

1994-01-01T23:59:59.000Z

177

Reduced form electricity spot price modeling with a view towards spike risk  

E-Print Network [OSTI]

Reduced form electricity spot price modeling with a view towards spike risk Prof. Dr. Meyer. Februar 2010, 16:15 Uhr Seminarraum, Ludwigstra?e 33 I The recent deregulation of electricity markets has led to the creation of energy exchanges, where the electricity is freely traded. We study the most

Gerkmann, Ralf

178

Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems  

E-Print Network [OSTI]

for DR and demand side management, along with operationalresponse), DSM (demand side management), DR strategy, air

Han, Junqiao; Piette, Mary Ann

2008-01-01T23:59:59.000Z

179

Examination of the Regional Supply and Demand Balance for Renewable Electricity in the United States through 2015: Projecting from 2009 through 2015 (Revised)  

SciTech Connect (OSTI)

This report examines the balance between the demand and supply of new renewable electricity in the United States on a regional basis through 2015. It expands on a 2007 NREL study that assessed the supply and demand balance on a national basis. As with the earlier study, this analysis relies on estimates of renewable energy supplies compared to demand for renewable energy generation needed to meet existing state renewable portfolio standard (RPS) policies in 28 states, as well as demand by consumers who voluntarily purchase renewable energy. However, it does not address demand by utilities that may procure cost-effective renewables through an integrated resource planning process or otherwise.

Bird, L.; Hurlbut, D.; Donohoo, P.; Cory, K.; Kreycik, C.

2010-06-01T23:59:59.000Z

180

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.  

E-Print Network [OSTI]

ngcc nuclear coal ngcc nuclear other peaking renewable otherpeaking renewable Terawatt- hours Terawatt-hoursnuclear other peaking renewable Marginal Capacity Starting

Coughlin, Katie

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

High-Performance with Solar Electric Reduced Peak Demand: Premier Homes  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many| Department HIGHImageDepartment ofRancho

182

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.  

E-Print Network [OSTI]

2011).pdf. . 2012a. Annual Energy Outlook (AEO) 2012. 2013. Annual Energy Outlook - Model Documentation. forecast, the Annual Energy Outlook (AEO) (DOE EIA 2012a).

Coughlin, Katie

2013-01-01T23:59:59.000Z

183

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.  

E-Print Network [OSTI]

types Oil & Gas Steam and Combustion Turbine/Diesel. Diesel.of Oil & Gas Steam plus Combustion Combustio Turbine/Diesel,Natural Gas Steam Combined Cycle Combustion Turbine/Diesel

Coughlin, Katie

2013-01-01T23:59:59.000Z

184

Floating offshore wind farms : demand planning & logistical challenges of electricity generation .  

E-Print Network [OSTI]

??Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind (more)

Nnadili, Christopher Dozie, 1978-

2009-01-01T23:59:59.000Z

185

Reducing the Vulnerability of Electric Power Grids to Terrorist Attacks  

SciTech Connect (OSTI)

This report describes the development of a cascading outage analyzer that, given an initial disturbance on an electric power system, checks for thermal overloads, under-frequency and over-frequency conditions, and under-voltage conditions that would result in removal of elements from the system. The analyzer simulates the successive tripping of elements due to protective actions until a post-event steady state or a system blackout is reached.

Ross Baldick; Thekla Boutsika; Jin Hur; Manho Joung; Yin Wu; Minqi Zhong

2009-01-31T23:59:59.000Z

186

Analysis of Michigan's demand-side electricity resources in the residential sector: Volume 3, End-use studies: Revised final report  

SciTech Connect (OSTI)

This volume of the ''Analysis of Michigan's Demand-Side Electricity Resources in the Residential Sector'' contains end-use studies on various household appliances including: refrigerators, freezers, lighting systems, water heaters, air conditioners, space heaters, and heat pumps. (JEF)

Krause, F.; Brown, J.; Connell, D.; DuPont, P.; Greely, K.; Meal, M.; Meier, A.; Mills, E.; Nordman, B.

1988-04-01T23:59:59.000Z

187

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

188

Measured electric hot water standby and demand loads from Pacific Northwest homes. End-Use Load and Consumer Assessment Program  

SciTech Connect (OSTI)

The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

Pratt, R.G.; Ross, B.A.

1991-11-01T23:59:59.000Z

189

Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems  

E-Print Network [OSTI]

Research Director, PIER Demand Response Research CenterAssessment of Demand Response & Advanced Metering, staffPower Shortages: Demand Response and its Applications in Air

Han, Junqiao; Piette, Mary Ann

2008-01-01T23:59:59.000Z

190

Electric Demand Reduction for the U.S. Navy Public Works Center San Diego, California  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory investigated the profitability of operating a Navy ship's generators (in San Diego) during high electricity price periods rather than the ships hooking up to the Base electrical system for power. Profitability is predicated on the trade-off between the operating and maintenance cost incurred by the Navy for operating the ship generators and the net profit associated with the sale of the electric power on the spot market. In addition, PNNL assessed the use of the ship's generators as a means to achieve predicted load curtailments, which can then be marketed to the California Independent System Operator.

Kintner-Meyer, Michael CW

2000-09-30T23:59:59.000Z

191

Quantifying Changes in Building Electricity Use, with Application to Demand Response  

E-Print Network [OSTI]

electric loads to deliver load following and regu- lation,6], and regulation/load following [7]), and as DR is used toload as a function of time-of-week and outdoor air temperature. Following

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

192

Floating offshore wind farms : demand planning & logistical challenges of electricity generation  

E-Print Network [OSTI]

Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind speeds in an offshore environment as opposed to the erratic wind ...

Nnadili, Christopher Dozie, 1978-

2009-01-01T23:59:59.000Z

193

Dynamic pricing and stabilization of supply and demand in modern electric power grids  

E-Print Network [OSTI]

The paper proposes a mechanism for real-time pricing of electricity in smart power grids, with price stability as the primary concern. In previous publications the authors argued that relaying the real-time wholesale market ...

Roozbehani, Mardavij

194

Consideration of the environmental impact of aircraft has become critical in commercial aviation. The continued growth of air traffic has caused increasing demands to reduce aircraft emissions,  

E-Print Network [OSTI]

ABSTRACT Consideration of the environmental impact of aircraft has become critical in commercial. Demands by the public, environ- mentalists, and governments to reduce aircraft environmental impact, have technologies can reduce the environmental impact of air travel per passenger-mile flown. However, with current

Papalambros, Panos

195

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network [OSTI]

EV market studies In the absenceof data on actual sales,EV, then we expect 16 to 18% annual of of light-duty vehicle salesEV experiments indicate there is still more than adequatepotential marketsfor electric vehicles to have , exceededthe former 1998CARB mandatefor sales

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

196

Solar Two is a concentrating solar power plant that can supply electric power "on demand"  

E-Print Network [OSTI]

. Solar One used water as a working fluid to generate the steam required to drive a conven- tional turbine steam, and electricity is produced by a conventional steam turbine. After the molten salt has cooled with the U.S. Department of Energy (DOE). Technical Achievement Solar Two represents a major technical

Laughlin, Robert B.

197

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

SciTech Connect (OSTI)

Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

2008-11-19T23:59:59.000Z

198

Peak-Coincident Demand Savings from Behavior-Based Programs: Evidence from PPL Electric's Behavior and Education Program  

E-Print Network [OSTI]

A Review. Energy Policy 38 PPL Electric. 2012. First AnnualBased Programs: Evidence from PPL Electrics Behavior andreports on the effects of PPL Electrics behavior-based

Stewart, James

2013-01-01T23:59:59.000Z

199

Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems  

E-Print Network [OSTI]

Demand Response Research Center Staff Scientist, Lawrence Berkeley National Laboratory 1 Cyclotron, Building

Han, Junqiao; Piette, Mary Ann

2008-01-01T23:59:59.000Z

200

Abstract--This paper formulates and develops a peak demand control tool for electric systems within the framework of direct  

E-Print Network [OSTI]

techniques. Index Terms--Demand Side Management, direct load control, peak demand control, genetic algorithms in order to evaluate the suitability of the decision chosen. The Demand Side Management (DSM) plans attempt for central air conditioning systems in commercial buildings, hence allowing a measured control of peak demand

Catholic University of Chile (Universidad Católica de Chile)

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Abstract--This paper formulates and develops a peak demand control tool for electric systems within the framework of direct  

E-Print Network [OSTI]

techniques. Index Terms--Demand Side Management, direct load control, peak demand control, genetic algorithms in order to evaluate the suitability of the decision chosen. Demand Side Management (DSM) plans attempt for central air conditioning systems in commercial buildings, hence allowing a measured control of peak demand

Catholic University of Chile (Universidad Católica de Chile)

202

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

203

The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency  

E-Print Network [OSTI]

B. Atanasiu (2006). Electricity Consumption and Efficiencywill see their electricity consumption rise significantly.the bulk of household electricity consumption in developing

Letschert, Virginie

2010-01-01T23:59:59.000Z

204

Denton Municipal Electric- GreenSense Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Denton Municipal Electric pays residential and small commercial customers to reduce energy demand and consumption in order to reduce the utility bills of DME customers, reduce peak load, reduce...

205

A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real-World Electricity Pricing  

E-Print Network [OSTI]

1 A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real bills. Our focus is on a subset of this work that carries out demand response (DR) by modulating

Urgaonkar, Bhuvan

206

A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real-World Electricity Pricing  

E-Print Network [OSTI]

1 A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real for optimizing their utility bills. Our focus is on a subset of this work that carries out demand response (DR

Urgaonkar, Bhuvan

207

Strategies for Demand Response in Commercial Buildings  

SciTech Connect (OSTI)

This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-06-20T23:59:59.000Z

208

Reducing Demand through Efficiency and Services: Impacts and Opportunities in Buildings Sector (Carbon Cycle 2.0)  

SciTech Connect (OSTI)

Mary Ann Piette, Deputy of LBNL's Building Technologies Department and Director of the Demand Response Research Center, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Piette, Mary Ann [Director, Demand Response Research Center] [Director, Demand Response Research Center

2010-02-02T23:59:59.000Z

209

Reducing Demand through Efficiency and Services: Impacts and Opportunities in Buildings Sector (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Mary Ann Piette, Deputy of LBNL's Building Technologies Department and Director of the Demand Response Research Center, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Piette, Mary Ann [Director, Demand Response Research Center

2011-06-08T23:59:59.000Z

210

Measuring the capacity impacts of demand response  

SciTech Connect (OSTI)

Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

Earle, Robert; Kahn, Edward P.; Macan, Edo

2009-07-15T23:59:59.000Z

211

The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency  

E-Print Network [OSTI]

Domestic Electric Storage Water Heater (DESWH) Test Methodsby products 5 , and water heaters. Appliance diffusion isor endorsement levels. Water Heaters The share of electric

Letschert, Virginie

2010-01-01T23:59:59.000Z

212

Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on U.S. Electric Generation Efficiency  

E-Print Network [OSTI]

Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on U.S. Electric-of-service regulation to market-oriented environments for many U.S. electric generating plants. Our estimates of input their wholesale electricity markets improved the most. The results suggest modest medium-term efficiency benefits

Kammen, Daniel M.

213

Multi-period Optimal Procurement and Demand Responses in the Presence of Uncertain Supply  

E-Print Network [OSTI]

Smart Grid involves changes in both the demand side and supply side. On the supply side, more renewable energy will be integrated to reduce greenhouse gas emissions and other pollution. On the demand side, smarter demand management systems will be available to respond to the electricity price and improve

Low, Steven H.

214

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product estimates. Margaret Sheridan provided the residential forecast. Mitch Tian prepared the peak demand

215

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined provided estimates for demand response program impacts and contributed to the residential forecast. Mitch

216

Planning for electric utility solar applications: the effects on reliability and production cost estimates of the variability in demand  

SciTech Connect (OSTI)

Previous studies have shown the necessity of the consideration of hourly variability in the output from the intermittent generation source. However, the studies did not take into account the variability in the demand. A result is presented which shows that under general conditions the variability due to randomness can be ignored except in the neighborhood of the peak and minimum demands.

Fegan, G.R.; Percival, C.D.

1980-01-01T23:59:59.000Z

217

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

Aden, Nathaniel

2010-01-01T23:59:59.000Z

218

Abstract--Electrical Distribution Systems (EDS) are facing ever-increasing complexity due to fast growing demand and large  

E-Print Network [OSTI]

to improve the reliability and quality of electrical distribution system. Index Terms- OPC technology, ICT1 Abstract-- Electrical Distribution Systems (EDS) are facing ever-increasing complexity due systems and Local Agent , Distribution Network, IEDs, Maltab OPC Toolbox, Distributed Generators

Paris-Sud XI, Universit de

219

Market and Policy Barriers for Demand Response Providing Ancillary Services in U.S. Markets  

E-Print Network [OSTI]

Wholesale Electricity Demand Response Program Comparison,J. (2009) Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services.

Cappers, Peter

2014-01-01T23:59:59.000Z

220

Multi-scale Demand-Side Management for Continuous Power-intensive Processes  

E-Print Network [OSTI]

(DR) Reduce demand on operational level Energy Efficiency (EE) Permanently reduce power consumption Demand-Side Management (DSM) "Systematic utility and government activities designed to change the amount and/or timing of the customer's use of electricity for the collective benefit of the society

Grossmann, Ignacio E.

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Method for reducing formation of electrically resistive layer on ferritic stainless steels  

DOE Patents [OSTI]

A method of reducing the formation of electrically resistive scale on a an article comprising a silicon-containing ferritic stainless subjected to oxidizing conditions in service includes, prior to placing the article in service, subjecting the article to conditions under which silica, which includes silicon derived from the steel, forms on a surface of the steel. Optionally, at least a portion of the silica is removed from the surface to placing the article in service. A ferritic stainless steel alloy having a reduced tendency to form silica on at least a surface thereof also is provided. The steel includes a near-surface region that has been depleted of silicon relative to a remainder of the steel.

Rakowski, James M.

2013-09-10T23:59:59.000Z

222

Coordination of Energy Efficiency and Demand Response  

SciTech Connect (OSTI)

This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

2010-01-29T23:59:59.000Z

223

The use of electrical resistance in the plant stem to measure plant response to soil moisture tension and evaporative demand  

E-Print Network [OSTI]

. . . . . . , . . . . . . ~. . . . . . . . . 30 10- Diurnal cotton plant stem electrical resistance readings as recorded simultaneously from three soil moisture levels. ~ 36 Flot 1-P (cotton), Diurnal cotton plant stem electrical resistance readings with soil moisture tension equal to 13... atsespheresl ~ ~ a ~ ~ ~ ~ ~ . ~ ~ ~ ~ ta ~ I ~ ~ ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ae ~ ~ ~ a ~ ~ t ~ ~ ~ ~ 37 13 ' Electrical resistance in the plant stem, and evapotrans- piration in non-irrigated and irrigated cotton plots during one diurnal period. . ~ 39 Plots...

Box, James E.

1956-01-01T23:59:59.000Z

224

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect (OSTI)

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the worlds roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the worlds roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the worlds roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

225

Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike  

E-Print Network [OSTI]

N ATIONAL L ABORATORY Thermal Energy Storage for Electricity20, 2012. I. Dincer, On thermal energy storage systems andin research on cold thermal energy storage, International

DeForest, Nicholas

2014-01-01T23:59:59.000Z

226

Demand Response-Enabled Model Predictive HVAC Load Control in Buildings using Real-Time Electricity Pricing.  

E-Print Network [OSTI]

??A practical cost and energy efficient model predictive control (MPC) strategy is proposed for HVAC load control under dynamic real-time electricity pricing. The MPC strategy (more)

Avci, Mesut

2013-01-01T23:59:59.000Z

227

Techno-economic Assessment of Wind Energy to Supply the Demand of Electricity for a Residential Community in Ethiopia.  

E-Print Network [OSTI]

?? The electricity sector is a major source of carbon dioxide emission that contributes to the global climate change. Over the past decade wind energy (more)

Yebi, Adamu

2011-01-01T23:59:59.000Z

228

Progress toward Producing Demand-Response-Ready Appliances  

SciTech Connect (OSTI)

This report summarizes several historical and ongoing efforts to make small electrical demand-side devices like home appliances more responsive to the dynamic needs of electric power grids. Whereas the utility community often reserves the word demand response for infrequent 2 to 6 hour curtailments that reduce total electrical system peak load, other beneficial responses and ancillary services that may be provided by responsive electrical demand are of interest. Historically, demand responses from the demand side have been obtained by applying external, retrofitted, controlled switches to existing electrical demand. This report is directed instead toward those manufactured products, including appliances, that are able to provide demand responses as soon as they are purchased and that require few, or no, after-market modifications to make them responsive to needs of power grids. Efforts to be summarized include Open Automated Demand Response, the Association of Home Appliance Manufacturer standard CHA 1, a simple interface being developed by the U-SNAP Alliance, various emerging autonomous responses, and the recent PinBus interface that was developed at Pacific Northwest National Laboratory.

Hammerstrom, Donald J.; Sastry, Chellury

2009-12-01T23:59:59.000Z

229

arXiv:cond-mat/0408020v12Aug2004 Electric generation of spin in crystals with reduced symmetry  

E-Print Network [OSTI]

arXiv:cond-mat/0408020v12Aug2004 Electric generation of spin in crystals with reduced symmetry of spin accumulation in semiconduc- tors, we propose a way of generating a spin polarization in crystals with strong spin-orbit interac- tions. We show that, in the presence of an electric field, there exists

Niu, Qian

230

Open Automated Demand Response Communications Specification (Version 1.0)  

E-Print Network [OSTI]

Keywords:demandresponse,buildings,electricityuse,Interface AutomatedDemandResponse BuildingAutomationofdemandresponsein commercialbuildings. Onekey

Piette, Mary Ann

2009-01-01T23:59:59.000Z

231

Load Reduction, Demand Response and Energy Efficient Technologies and Strategies  

SciTech Connect (OSTI)

The Department of Energys (DOEs) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

2008-11-19T23:59:59.000Z

232

Demand response compensation, net Benefits and cost allocation: comments  

SciTech Connect (OSTI)

FERC's Supplemental Notice of Public Rulemaking addresses the question of proper compensation for demand response in organized wholesale electricity markets. Assuming that the Commission would proceed with the proposal ''to require tariff provisions allowing demand response resources to participate in wholesale energy markets by reducing consumption of electricity from expected levels in response to price signals, to pay those demand response resources, in all hours, the market price of energy for such reductions,'' the Commission posed questions about applying a net benefits test and rules for cost allocation. This article summarizes critical points and poses implications for the issues of net benefit tests and cost allocation. (author)

Hogan, William W.

2010-11-15T23:59:59.000Z

233

Performance of reduced wall EPR insulated medium voltage power cables. Pat 1: Electrical characteristics  

SciTech Connect (OSTI)

Paper insulated lead covered cables (PILC) have had a long and successful heritage. After almost 100 years, this design of cable is still in operation and continues to be manufactured. However, utilities are now looking for a reliable replacement for PILC cables. This is due to two primary reasons: (1) difficulty in installing and maintaining this type of cable and (2) increasing pressure to replace these cables due to environmental concerns. To date diameter limitations of conventional extruded dielectric cables has impeded their replacement in existing PILC conduits. This paper describes a study for the evaluation for reliably reducing the insulation thickness to achieve a lower diameter cable to effectively replace PILC cable in existing conduits. Part 1 of the investigation reviews the theory of insulation wall determination and the test program carried out to evaluate electrical performance of reduced wall EPR cables. Additionally, cable design concepts and constructions are discussed. In Part 2 the mechanical performance on conventional and reduced wall EPR insulated cables are evaluated. This is reported in a separate paper.

Cinquemani, P.L.; Wen, Y.; Kuchta, F.L.; Doench, C. [Pirelli Cable Corp., Lexington, SC (United States)] [Pirelli Cable Corp., Lexington, SC (United States)

1997-04-01T23:59:59.000Z

234

Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle  

SciTech Connect (OSTI)

Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

Jehlik, Forrest [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); LaClair, Tim J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

235

The Window Market in Texas: Opportunities for Energy Savings and Demand Reduction  

E-Print Network [OSTI]

The use of high performance windows represents a promising opportunity to reduce energy consumption and summer electrical demand in homes and commercial buildings in Texas and neighboring states. While low-e glass coatings and other energy...

Zarnikau, J.; Campbell, L.

2002-01-01T23:59:59.000Z

236

Statewide Emissions Reduction, Electricity and Demand Savings from the Implementation of Building-Energy-Codes in Texas  

E-Print Network [OSTI]

residences in Texas by climate zone as well as the average statewide electricity price ( /kWh). The ratio of electric/gas and heat pump houses constructed in Texas was determined using the annual surveys, National Association of Home Builders (NAHB... of Home Builders. Upper Marlboro, MD: NAHB Research Center. NREL. 2001. Building America House Performance Analysis Procedures. (NREL/TP-550-27754) Golden, CO: National Renewable Energy Laboratory. p.34 Paquette, Z., J. Miller, and M. DeWein. 2010...

Yazdani, B.; Haberl, J.; Kim, H.; Baltazar, J.C.; Zilbershtein, G.

2012-01-01T23:59:59.000Z

237

A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data  

SciTech Connect (OSTI)

Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small office; and 5) simulated energy savings and peak demand reduction by energy conservation measures using the TMY3 weather data can be significantly underestimated or overestimated. It is crucial to run multi-decade simulations with AMY weather data to fully assess the impact of weather on the long-term performance of buildings, and to evaluate the energy savings potential of energy conservation measures for new and existing buildings from a life cycle perspective.

Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

2013-05-01T23:59:59.000Z

238

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

Commission (FERC) 2008a. Wholesale Competition in RegionsDemand Response into Wholesale Electricity Markets, (URL:1 2. Wholesale and Retails Electricity Markets in

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

239

Demand Response - Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

prices or when grid reliability is jeopardized. In regions with centrally organized wholesale electricity markets, demand response can help stabilize volatile electricity prices...

240

Reduced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 RevisionDivisionReduced intermittency in

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

demand-side management (DSM) framework presented in Table x provides three major areas for changing electric loads in buildings:

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

242

Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world  

E-Print Network [OSTI]

MARKETS REVIEW OF DEMAND RESPONSE PROGRAMS IN THE U.S. ANDMARKETS REVIEW OF DEMAND RESPONSE PROGRAMS IN THE U.S. ANDend-users they serve. Demand Response Programs, once called

Heffner, Grayson C.

2002-01-01T23:59:59.000Z

243

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

Broader source: Energy.gov (indexed) [DOE]

Max electricity demand across all days Min electricity demand across all days Electricity demand on single calendar day with highest peak Charging Unit Usage Residential Level 2...

244

Equity Effects of Increasing-Block Electricity Pricing  

E-Print Network [OSTI]

Evidence from Residential Electricity Demand, Review ofLester D. The Demand for Electricity: A Survey, The BellResidential Demand for Electricity under Inverted Block

Borenstein, Severin

2008-01-01T23:59:59.000Z

245

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

industrial demand response (DR) with energy efficiency (EE) to most effectively use electricity and natural gas

McKane, Aimee T.

2009-01-01T23:59:59.000Z

246

New top layer reduces the"wiggle"that degrades the conversion of light to electricity in solar cells by absorbing  

E-Print Network [OSTI]

New top layer reduces the"wiggle"that degrades the conversion of light to electricity in solar cells by absorbing light within a specific wavelength. Today's thin-film solar cells could not function light to pass through to the cell's active layers. Until recently, TCOs were seen as a necessary

247

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network [OSTI]

energy flows in the building electrical load tree. . . . . . . . . . . . . . . . . . . . . . . .intrinsic property of energy load trees is additivity - thevisualization of energy flows in the load tree, as shown in

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

248

Thermal Energy Storage: It's not Just for Electric Cost Savings Anymore  

E-Print Network [OSTI]

Large cool Thermal Energy Storage (TES), typically ice TES or chilled water (CHW) TES, has traditionally been thought of, and used for, managing time-of-day electricity use to reduce the cost associated with electric energy and demand charges...

Andrepont, J. S.

2014-01-01T23:59:59.000Z

249

Daylighting, dimming, and the electricity crisis in California  

SciTech Connect (OSTI)

Dimming controls for electric lighting have been one of the mainstays of the effort to use daylighting to reduce annual lighting energy consumption. The coincidence of daylighting with electric utility peak demand makes daylighting controls an effective strategy for reducing commercial building peak electric loads. During times of energy shortage, there is a greatly increased need to reduce electricity use during peak periods, both to ease the burden on electricity providers and to control the operating costs of buildings. The paper presents a typical commercial building electric demand profile during summer, and shows how daylighting-linked lighting controls and load shedding techniques can reduce lighting at precisely those times when electricity is most expensive. We look at the importance of dimming for increasing the reliability of the electricity grid in California and other states, as well as examine the potential cost-effectiveness of widespread use of daylighting to save energy and reduce monthly electricity bills.

Rubinstein, Francis; Neils, Danielle; Colak, Nesrin

2001-09-17T23:59:59.000Z

250

Industrial Approaches to Reducing Energy Costs in a Restructuring Electric Industry  

E-Print Network [OSTI]

. Although many electricity providers will offer their services in a restructure U.S. electricity market, it is not clear which pow r producers industrial customers wil1 buy from. James Rouse, associate director of energy policy for Praxair, Inc., thinks...

Lowe, E. T.

251

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network [OSTI]

s natural gas and electricity sectors within the timeframeto Californias electricity sector led to rolling blackoutsimpacts on the electricity sector is the hourly demand

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

252

OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS  

SciTech Connect (OSTI)

Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2005-10-01T23:59:59.000Z

253

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network [OSTI]

3 System Architecture 3.1 Building as a2.1 Energy Flows in Buildings . . . . . . . . 2.1.1 Electric2.3.2 Networking . . . . . . . . . . . . 2.4 Building Energy

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

254

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

in significant energy and demand savings for refrigeratedbe modified to reduce energy demand during demand responsein refrigerated warehouse energy demand if they are not

Lekov, Alex

2009-01-01T23:59:59.000Z

255

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work to the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

256

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network [OSTI]

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work and expertise of numerous the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

257

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network [OSTI]

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work Sheridan provided the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid

258

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy for demand response program impacts and contributed to the residential forecast. Mitch Tian prepared

259

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work provided estimates for demand response program impacts and contributed to the residential forecast. Mitch

260

The business value of demand response for balance responsible parties.  

E-Print Network [OSTI]

?? By using IT-solutions, the flexibility on the demand side in the electrical systems could be increased. This is called demand response and is part (more)

Jonsson, Mattias

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Industrial Equipment Demand and Duty Factors  

E-Print Network [OSTI]

Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

Dooley, E. S.; Heffington, W. M.

262

Demand Response and Energy Efficiency  

E-Print Network [OSTI]

Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5... for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 5 What is Demand Response? ?The temporary reduction of electricity demanded from the grid by an end-user in response to capacity shortages, system reliability events, or high wholesale...

263

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network [OSTI]

Energy. Benefits of Demand Response in Electricity MarketsEnergy Efficiency and Demand Response?7 3.1.Demand Response in Commercial

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

264

Cooperative Demand Response Using RepeatedGame for Price-Anticipating Buildings in Smart Grid  

E-Print Network [OSTI]

E. El-Saadany, A summary of demand response in electricityYang, and X. Guan, Optimal demand response scheduling withwith application to demand response, IEEE Transactions on

Ma, Kai; Hu, Guoqiang; Spanos, Costas J

2014-01-01T23:59:59.000Z

265

Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study  

E-Print Network [OSTI]

2001. Electricity Demand Side Management Study: Review ofEpping/North Ryde Demand Side Management Scoping Study:Energy Agency Demand Side Management (IEA DSM) Programme:

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

266

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network [OSTI]

Demand Response in Commercial Buildings 3.1. Demand Response in Commercial Buildings ElectricityDemand Response: Understanding the DR potential in commercial buildings

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

267

Examining Uncertainty in Demand Response Baseline Models and Variability in Automated Response to Dynamic Pricing  

E-Print Network [OSTI]

demand response and energy ef?ciency in commercial buildings,building control strategies and techniques for demand response,building electricity use with application to demand response,

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

268

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network [OSTI]

PA. 3. DEMAND RESPONSE IN COMMERCIAL BUILDINGS ElectricityDemand Response and Energy Efficiency in Commercial BuildingsDemand Response and Energy Efficiency in Commercial Buildings

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

269

Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response  

E-Print Network [OSTI]

high. DemandresponsehelpstomanagebuildingelectricityBuilding ControlStrategiesandTechniquesforDemandResponse. Non?ResidentialBuildinginCalifornia. DemandResponse

Kiliccote, Sila

2011-01-01T23:59:59.000Z

270

Cooperative Demand Response Using RepeatedGame for Price-Anticipating Buildings in Smart Grid  

E-Print Network [OSTI]

1. Demand response with price-anticipating buildings. C.one-stage demand response because all the building managersbuilding electricity use, with application to demand response,

Ma, Kai; Hu, Guoqiang; Spanos, Costas J

2014-01-01T23:59:59.000Z

271

Harnessing the power of demand  

SciTech Connect (OSTI)

Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

2008-03-15T23:59:59.000Z

272

Results and commissioning issues from an automated demand responsepilot  

SciTech Connect (OSTI)

This paper describes a research project to develop and test Automated Demand Response hardware and software technology in large facilities. We describe the overall project and some of the commissioning and system design problems that took place. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability purposes, manage electricity costs, and ensure that customers receive signals that encourage load reduction during times when the electric grid is near its capacity. There were a number of specific commissioning challenges in conducting this test including software compatibility, incorrect time zones, IT and EMCS failures, and hardware issues. The knowledge needed for this type of system commissioning combines knowledge of building controls with network management and knowledge of emerging information technologies.

Piette, Mary Ann; Watson, Dave; Sezgen, Osman; Motegi, Naoya

2004-08-05T23:59:59.000Z

273

Demand Response This is the first of the Council's power plans to treat demand response as a resource.1  

E-Print Network [OSTI]

Demand Response This is the first of the Council's power plans to treat demand response the resource and describes some of the potential advantages and problems of the development of demand response. WHAT IS DEMAND RESPONSE? Demand response is a change in customers' demand for electricity corresponding

274

Analysis of Residential Demand Response and Double-Auction Markets  

SciTech Connect (OSTI)

Demand response and dynamic pricing programs are expected to play increasing roles in the modern Smart Grid environment. While direct load control of end-use loads has existed for decades, price driven response programs are only beginning to be explored at the distribution level. These programs utilize a price signal as a means to control demand. Active markets allow customers to respond to fluctuations in wholesale electrical costs, but may not allow the utility to control demand. Transactive markets, utilizing distributed controllers and a centralized auction can be used to create an interactive system which can limit demand at key times on a distribution system, decreasing congestion. With the current proliferation of computing and communication resources, the ability now exists to create transactive demand response programs at the residential level. With the combination of automated bidding and response strategies coupled with education programs and customer response, emerging demand response programs have the ability to reduce utility demand and congestion in a more controlled manner. This paper will explore the effects of a residential double-auction market, utilizing transactive controllers, on the operation of an electric power distribution system.

Fuller, Jason C.; Schneider, Kevin P.; Chassin, David P.

2011-10-10T23:59:59.000Z

275

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: SO2, Nox, CO2  

Reports and Publications (EIA)

This report responds to a request received from Senator David McIntosh on June 29, 2000 to analyze the impacts on energy consumers and producers of coordinated strategies to reduce emissions of sulfur dioxide, nitrogen oxides, and carbon dioxide at U.S. power plants.

2001-01-01T23:59:59.000Z

276

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

Broader source: Energy.gov (indexed) [DOE]

all days Percentage of charging units connected on single calendar day with peak electricity demand Charging Demand: Range of Aggregate Electricity Demand versus Time of Day...

277

Wireless Demand Response Controls for HVAC Systems  

E-Print Network [OSTI]

Response Controls for HVAC Systems Clifford Federspiel,tests. Figure 5: Specific HVAC electric power consumptioncontrol, demand response, HVAC, wireless Executive Summary

Federspiel, Clifford

2010-01-01T23:59:59.000Z

278

Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes  

E-Print Network [OSTI]

Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes. Developing novel schemes for demand response in smart electric gird is an increasingly active research area/SCADA for demand response in smart infrastructures face the following dilemma: On one hand, in order to increase

Sastry, S. Shankar

279

Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants  

SciTech Connect (OSTI)

Revised maps and associated data show potential mercury, sulfur, and chlorine emissions for U.S. coal by county of origin. Existing coal mining and coal washing practices result in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Selection of low-mercury coal is a good mercury control option for plants having hot-side ESP, cold-side ESP, or hot-side ESP/FGD emission controls. Chlorine content is more important for plants having cold-side ESP/FGD or SDA/FF controls; optimum net mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2005-01-31T23:59:59.000Z

280

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

Demand Side Management Framework for Industrial Facilities provides three major areas for changing electric loads in industrial buildings:

McKane, Aimee T.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Case for Electric Vehicles  

E-Print Network [OSTI]

land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

Sperling, Daniel

2001-01-01T23:59:59.000Z

282

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity forecast is the combined product of the hard work and expertise of numerous staff members in the Demand prepared the peak demand forecast. Ravinderpal Vaid provided the projections of commercial floor space

283

THE STATE OF DEMAND RESPONSE IN CALIFORNIA  

E-Print Network [OSTI]

THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response can help reduce the threat of planned rotational outages. Demand response is also widely regarded as having

284

Validation of the Electrical Properties of the ITER ICRF Antenna using Reduced-Scale Mock-Ups  

SciTech Connect (OSTI)

Experimental measurements on reduced-scale mock-ups allow validating the electrical properties and RF numerical optimization of the ITER ICRF antenna. Frequency response in the different regions of the antenna is described and key parameters for performance improvement are given. Coupling is improved by acting on the front-face geometry (strap width, antenna box depth and vertical septa recess). The 4-port junction acts as a frequency filter and together with the service stub performs pre-matching in the whole frequency band. Influence of the Faraday screen on coupling is limited. The effect of voltage limitation on the maximum total radiated power is given. The importance of a good decoupling network and of grounding is emphasized. Finally the control of the antenna wave spectrum is performed by implementing feedback controlled load-resilient matching and decoupling options and control algorithms are tested.

Dumortier, Pierre; Durodie, Frederic; Grine, Djamel; Kyrytsya, Volodymyr; Louche, Fabrice; Messiaen, Andre; Vervier, Michel; Vrancken, Mark [LPP-ERM/KMS, EURATOM-Belgian State Association, CYCLE, Trilateral Euregio Cluster, B-1000 Brussels (Belgium)

2011-12-23T23:59:59.000Z

285

Oncor Energy Efficiency Programs Solar Photovoltaic and Demand Response  

E-Print Network [OSTI]

Oncor Energy Efficiency Programs Solar Photovoltaic and Demand Response October 10, 2012 ENERGY EFFICIENCY PROGRAMS OVERVIEW ?Program rules and guidelines established by Public Utility Commission of Texas (PUCT) ?All Texas investor... to be administered by transmission-distribution utilities ?Programs are implemented by Energy Efficiency Services Providers and Retail Electric Providers 1 WHY DOES ONCOR DO SOLAR PV? ?Helps meet our energy efficiency goals ?Helps customers reduce...

Tyra, K.; Hanel, J.

2012-01-01T23:59:59.000Z

286

Demand Side Management (DSM) Through Absorption Refrigeration Systems  

E-Print Network [OSTI]

DEMAND SIDE MANAGEMENT (DSM) TIIROUGH ABSORPTION REFRIGERATION SYSTEMS Peter Y. Chao, PhD, Deepak Shukla, PhD, Sr. Process Engineers, TENSA Services, Inc. Ammi Amarnath, Sr. Project Manager, Electrical Power Research Institute Ed. Mergens.... They are Peak Clipping, Valley filling, Load Shifting, Strategic Conservation, Strategic Load Growth, and Flexible Load Shaping. Absorption Refrigeration from waste heat offers a viable option for DSM. This will either reduce the peak load (peak clipping...

Chao, P. Y.; Shukla, D.; Amarnath, A.; Mergens, E.

287

Demand Responsive Lighting: A Scoping Study  

SciTech Connect (OSTI)

The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

Rubinstein, Francis; Kiliccote, Sila

2007-01-03T23:59:59.000Z

288

Demand Response and Open Automated Demand Response  

E-Print Network [OSTI]

LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

289

Demand Response Spinning Reserve Demonstration  

SciTech Connect (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

290

Installation and Commissioning Automated Demand Response Systems  

SciTech Connect (OSTI)

Demand Response (DR) can be defined as actions taken to reduce electric loads when contingencies, such as emergencies and congestion, occur that threaten supply-demand balance, or market conditions raise supply costs. California utilities have offered price and reliability DR based programs to customers to help reduce electric peak demand. The lack of knowledge about the DR programs and how to develop and implement DR control strategies is a barrier to participation in DR programs, as is the lack of automation of DR systems. Most DR activities are manual and require people to first receive notifications, and then act on the information to execute DR strategies. Levels of automation in DR can be defined as follows. Manual Demand Response involves a labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. We refer to this as Auto-DR (Piette et. al. 2005). Auto-DR for commercial and industrial facilities can be defined as fully automated DR initiated by a signal from a utility or other appropriate entity and that provides fully-automated connectivity to customer end-use control strategies. One important concept in Auto-DR is that a homeowner or facility manager should be able to 'opt out' or 'override' a DR event if the event comes at time when the reduction in end-use services is not desirable. Therefore, Auto-DR is not handing over total control of the equipment or the facility to the utility but simply allowing the utility to pass on grid related information which then triggers facility defined and programmed strategies if convenient to the facility. From 2003 through 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) developed and tested a series of demand response automation communications technologies known as Automated Demand Response (Auto-DR). In 2007, LBNL worked with three investor-owned utilities to commercialize and implement Auto-DR programs in their territories. This paper summarizes the history of technology development for Auto-DR, and describes the DR technologies and control strategies utilized at many of the facilities. It outlines early experience in commercializing Auto-DR systems within PG&E DR programs, including the steps to configure the automation technology. The paper also describes the DR sheds derived using three different baseline methodologies. Emphasis is given to the lessons learned from installation and commissioning of Auto-DR systems, with a detailed description of the technical coordination roles and responsibilities, and costs.

Global Energy Partners; Pacific Gas and Electric Company; Kiliccote, Sila; Kiliccote, Sila; Piette, Mary Ann; Wikler, Greg; Prijyanonda, Joe; Chiu, Albert

2008-04-21T23:59:59.000Z

291

Near-Optimal Execution Policies for Demand-Response Contracts in Electricity Markets Vineet Goyal1, Garud Iyengar1 and Zhen Qiu1  

E-Print Network [OSTI]

-side participation including time of use pricing, real-time pricing for smart appliances and interruptible demand-AR0000235 the real-time spot price that can be significantly higher than the day-ahead price, especially contracts (if any) to offset the imbalance instead of paying the real-time spot price. Therefore

Goyal, Vineet

292

Reliability implications of price responsive demand : a study of New England's power system  

E-Print Network [OSTI]

With restructuring of the traditional, vertically integrated electricity industry come new opportunities for electricity demand to actively participate in electricity markets. Traditional definitions of power system ...

Whitaker, Andrew C. (Andrew Craig)

2011-01-01T23:59:59.000Z

293

'Tilted' Industrial Electric Rates: A New Negative Variable for Energy Engineers  

E-Print Network [OSTI]

The cost of purchased electricity for industry is rising even faster than for other sectors. Conventional means of reducing power costs include internal techniques like load management, demand controls and energy conservation. External mechanisms...

Greenwood, R. W.

1981-01-01T23:59:59.000Z

294

A State Regulatory Perspective; New Building, Old Motors, and Marginal Electricity Generation  

E-Print Network [OSTI]

Electricity consumption in Texas is expected to grow at 3.2 percent annually for the next ten years. Utility demand management activities, if effective, may reduce that expected rate of growth. Residential cooling, commercial lighting and cooling...

Treadway, N.

1987-01-01T23:59:59.000Z

295

Impact of Industrial Electric Rate Structure on Energy Conservation - A Utility Viewpiont  

E-Print Network [OSTI]

As the price of energy rises, changes in industrial electric rates will have an impact on energy usage and conservation. Utilities interested in reducing system peak demands may reflect this need in the rate structure as an incentive...

Williams, M. M.

1981-01-01T23:59:59.000Z

296

ELECTRIC  

Office of Legacy Management (LM)

you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

297

The alchemy of demand response: turning demand into supply  

SciTech Connect (OSTI)

Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

Rochlin, Cliff

2009-11-15T23:59:59.000Z

298

Empirical analysis of the spot market implications ofprice-elastic demand  

SciTech Connect (OSTI)

Regardless of the form of restructuring, deregulated electricity industries share one common feature: the absence of any significant, rapid demand-side response to the wholesale (or, spotmarket) price. For a variety of reasons, electricity industries continue to charge most consumers an average cost based on regulated retail tariff from the era of vertical integration, even as the retailers themselves are forced to purchase electricity at volatile wholesale prices set in open markets. This results in considerable price risk for retailers, who are sometimes forbidden by regulators from signing hedging contracts. More importantly, because end-users do not perceive real-time (or even hourly or daily) fluctuations in the wholesale price of electricity, they have no incentive to adjust their consumption in response to price signals. Consequently, demand for electricity is highly inelastic, and electricity generation resources can be stretched to the point where system stability is threatened. This, then, facilitates many other problems associated with electricity markets, such as market power and price volatility. Indeed, economic theory suggests that even modestly price-responsive demand can remove the stress on generation resources and decrease spot prices. To test this theory, we use actual generator bid data from the New York control area to construct supply stacks, and intersect them with demand curves of various slopes to approximate different levels of demand elasticity. We then estimate the potential impact of real-time pricing on the equilibrium spot price and quantity. These results indicate the immediate benefits that could be derived from a more price-elastic demand. Such analysis can provide policymakers with a measure of how effective price-elastic demand can potentially reduce prices and maintain consumption within the capability of generation resources.

Siddiqui, Afzal S.; Bartholomew, Emily S.; Marnay, Chris

2004-07-08T23:59:59.000Z

299

Combining Financial Double Call Options with Real Options for Early Curtailment of Electricity Service  

E-Print Network [OSTI]

Combining Financial Double Call Options with Real Options for Early Curtailment of Electricity@IEOR.Berkeley.edu Abstract In a competitive electricity market traditional demand side management options offering customers curtailable service at reduced rates are replaced by voluntary customer responses to electricity spot prices

300

The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations  

SciTech Connect (OSTI)

Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second, market and reliability rules have, understandably, been written around the capabilities and limitations of generators, the historic reliability resources. Responsive load limitations and capabilities are often not accommodated in markets or reliability criteria. Third, because of the institutional structure, demand response alternatives are treated as temporary solutions that can delay but not replace transmission enhancement. Financing has to be based on a three to five year project life as opposed to the twenty to fifty year life of transmission facilities. More can be done to integrate demand response options into transmission expansion planning. Given the societal benefits it may be appropriate for independent transmission planning organizations to take a more proactive role in drawing demand response alternatives into the resource mix. Existing demand response programs provide a technical basis to build from. Regulatory and market obstacles will have to be overcome if demand response alternatives are to be routinely considered in transmission expansion planning.

Kirby, Brendan J [ORNL

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Puget Sound Area Electric Reliability Plan : Final Environmental Impact Statement.  

SciTech Connect (OSTI)

A specific need exists in the Puget Sound area for balance between east-west transmission capacity and the increasing demand to import power generated east of the Cascades. At certain times of the year, and during certain conditions, there is more demand for power in the Puget Sound area than the transmission system and existing generation can reliably supply. This high demand, called peak demand occurs during the winter months when unusually cold weather increases electricity use for heating. The existing power system can supply enough power if no emergencies occur. However, during emergencies the system will not operate properly. As demand grows, the system becomes more strained. To meet demand, the rate of growth of demand must be reduced or the ability to serve the demand must be increased, or both.

United States. Bonneville Power Administration.

1992-04-01T23:59:59.000Z

302

THE STATE OF DEMAND RESPONSE IN CALIFORNIA  

E-Print Network [OSTI]

THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response (DR) can.S. and internationally and lay out ideas that could help move California forward. KEY WORDS demand response, peak

303

Draft for Public Comment Appendix A. Demand Forecast  

E-Print Network [OSTI]

Draft for Public Comment A-1 Appendix A. Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required component of the Council's Northwest Regional Conservation had a tradition of acknowledging the uncertainty of any forecast of electricity demand and developing

304

Demand Response Programs for Oregon  

E-Print Network [OSTI]

wholesale prices and looming shortages in Western power markets in 2000-01, Portland General Electric programs for large customers remain, though they are not active at current wholesale prices. Other programs demand response for the wholesale market -- by passing through real-time prices for usage above a set

305

Reduce Demand Rather than Increase Supply  

E-Print Network [OSTI]

2) parking cash out, and (3) car sharing. TRANSIT PASSES INis a good investment. CAR SHARING Another possible in-lieua car when needed. The car-sharing organization would also

Shoup, Donald C.

2006-01-01T23:59:59.000Z

306

Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement  

E-Print Network [OSTI]

Measuring Short-term Air Conditioner Demand Reductions forMeasuring Short-term Air Conditioner Demand Reductions forpilots have shown that air conditioner (AC) electric loads

Bode, Josh

2013-01-01T23:59:59.000Z

307

Providing Reliability Services through Demand Response: A Prelimnary Evaluation of the Demand Response Capabilities of Alcoa Inc.  

SciTech Connect (OSTI)

Demand response is the largest underutilized reliability resource in North America. Historic demand response programs have focused on reducing overall electricity consumption (increasing efficiency) and shaving peaks but have not typically been used for immediate reliability response. Many of these programs have been successful but demand response remains a limited resource. The Federal Energy Regulatory Commission (FERC) report, 'Assessment of Demand Response and Advanced Metering' (FERC 2006) found that only five percent of customers are on some form of demand response program. Collectively they represent an estimated 37,000 MW of response potential. These programs reduce overall energy consumption, lower green house gas emissions by allowing fossil fuel generators to operate at increased efficiency and reduce stress on the power system during periods of peak loading. As the country continues to restructure energy markets with sophisticated marginal cost models that attempt to minimize total energy costs, the ability of demand response to create meaningful shifts in the supply and demand equations is critical to creating a sustainable and balanced economic response to energy issues. Restructured energy market prices are set by the cost of the next incremental unit of energy, so that as additional generation is brought into the market, the cost for the entire market increases. The benefit of demand response is that it reduces overall demand and shifts the entire market to a lower pricing level. This can be very effective in mitigating price volatility or scarcity pricing as the power system responds to changing demand schedules, loss of large generators, or loss of transmission. As a global producer of alumina, primary aluminum, and fabricated aluminum products, Alcoa Inc., has the capability to provide demand response services through its manufacturing facilities and uniquely through its aluminum smelting facilities. For a typical aluminum smelter, electric power accounts for 30% to 40% of the factory cost of producing primary aluminum. In the continental United States, Alcoa Inc. currently owns and/or operates ten aluminum smelters and many associated fabricating facilities with a combined average load of over 2,600 MW. This presents Alcoa Inc. with a significant opportunity to respond in areas where economic opportunities exist to help mitigate rising energy costs by supplying demand response services into the energy system. This report is organized into seven chapters. The first chapter is the introduction and discusses the intention of this report. The second chapter contains the background. In this chapter, topics include: the motivation for Alcoa to provide demand response; ancillary service definitions; the basics behind aluminum smelting; and a discussion of suggested ancillary services that would be particularly useful for Alcoa to supply. Chapter 3 is concerned with the independent system operator, the Midwest ISO. Here the discussion examines the evolving Midwest ISO market structure including specific definitions, requirements, and necessary components to provide ancillary services. This section is followed by information concerning the Midwest ISO's classifications of demand response parties. Chapter 4 investigates the available opportunities at Alcoa's Warrick facility. Chapter 5 involves an in-depth discussion of the regulation service that Alcoa's Warrick facility can provide and the current interactions with Midwest ISO. Chapter 6 reviews future plans and expectations for Alcoa providing ancillary services into the market. Last, chapter 7, details the conclusion and recommendations of this paper.

Starke, Michael R [ORNL; Kirby, Brendan J [ORNL; Kueck, John D [ORNL; Todd, Duane [Alcoa; Caulfield, Michael [Alcoa; Helms, Brian [Alcoa

2009-02-01T23:59:59.000Z

308

Quantifying the Variable Effects of Systems with Demand Response Resources  

E-Print Network [OSTI]

Quantifying the Variable Effects of Systems with Demand Response Resources Anupama Kowli and George in the electricity industry. In particular, there is a new class of consumers, called demand response resources (DRRs

Gross, George

309

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Hydrogen and Electricity: Public-Private Partnershipand electricity demands. Foster Public-Private Partnershipand electricity demands. Foster Public-Private Partnership

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

310

Home Network Technologies and Automating Demand Response  

SciTech Connect (OSTI)

Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

McParland, Charles

2009-12-01T23:59:59.000Z

311

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network [OSTI]

tariff-driven demand response in these buildings. By usingbuilding electricity costs distributed energy resources costs fuel costs demand responsebuilding energy systems. Local storage will enable demand response.

Stadler, Michael

2012-01-01T23:59:59.000Z

312

A Full Demand Response Model in Co-Optimized Energy and  

SciTech Connect (OSTI)

It has been widely accepted that demand response will play an important role in reliable and economic operation of future power systems and electricity markets. Demand response can not only influence the prices in the energy market by demand shifting, but also participate in the reserve market. In this paper, we propose a full model of demand response in which demand flexibility is fully utilized by price responsive shiftable demand bids in energy market as well as spinning reserve bids in reserve market. A co-optimized day-ahead energy and spinning reserve market is proposed to minimize the expected net cost under all credible system states, i.e., expected total cost of operation minus total benefit of demand, and solved by mixed integer linear programming. Numerical simulation results on the IEEE Reliability Test System show effectiveness of this model. Compared to conventional demand shifting bids, the proposed full demand response model can further reduce committed capacity from generators, starting up and shutting down of units and the overall system operating costs.

Liu, Guodong [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

2014-01-01T23:59:59.000Z

313

Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California  

SciTech Connect (OSTI)

This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30percent using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation to field test results provides an understanding of the DR potential in commercial buildings.

Yin, Rongxin; Kiliccote, Sila; Piette, Mary Ann; Parrish, Kristen

2010-05-14T23:59:59.000Z

314

A Vision of Demand Response - 2016  

SciTech Connect (OSTI)

Envision a journey about 10 years into a future where demand response is actually integrated into the policies, standards, and operating practices of electric utilities. Here's a bottom-up view of how demand response actually works, as seen through the eyes of typical customers, system operators, utilities, and regulators. (author)

Levy, Roger

2006-10-15T23:59:59.000Z

315

Electric Vehicle Deployment: Policy Questions and Impacts to...  

Energy Savers [EERE]

regarding policy questions and impacts to the electric grid from the energy demands of electric vehicles. EAC - Electric Vehicle Deployment - Impacts to the US Electric Grid -...

316

Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)  

SciTech Connect (OSTI)

Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

Neubauer, J.; Simpson, M.

2013-10-01T23:59:59.000Z

317

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

sjstems (ITS) Electricity Sector Promoting nuclear useindustrial and electricity generation sectors (Table 4-2).In the industrial sector, electricity demand will increase,

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

318

Automated demand response applied to a set of commercial facilities.  

E-Print Network [OSTI]

?? Commercial facility demand response refers to voluntary actions by customers that change their consumption of electric power in response to price signals, incentives, or (more)

Lincoln, Donald F.

2010-01-01T23:59:59.000Z

319

SGDP Report Now Available: Interoperability of Demand Response...  

Office of Environmental Management (EM)

and demonstrate methodologies to enhance the ability of customer sited demand response resources, both conventional and renewable, to integrate more effectively with electric...

320

SGDP Report: Interoperability of Demand Response Resources Demonstrati...  

Office of Environmental Management (EM)

and demonstrate methodologies to enhance the ability of customer sited demand response resources, both conventional and renewable, to integrate more effectively with electric...

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network [OSTI]

in Demand Response for Wholesale Ancillary Services. Incan be used to link wholesale and retail real-time prices.11 Wholesale Electricity Market Information

Ghatikar, Girish

2010-01-01T23:59:59.000Z

322

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

Shen, Bo

2013-01-01T23:59:59.000Z

323

Evaluation of pulse electric fields to reduce foodborne pathogen levels in scalder/chiller water during poultry processing  

E-Print Network [OSTI]

to be preferred by the majority of the consumers in the United States, especially in the southern states and by most fast food companies. Companies that coat chicken products with batter and breading, will demand to be supplied with chicken that has been hard... scalded. Chicken carcasses that have been subjected to hard scalding have a tendency to allow for better batter breading pick-up due to the lack of the waxy skin that is removed during hard scalds. This waxy skin can act as a barrier and prevent much...

Martin, Bradley Curtis

2009-05-15T23:59:59.000Z

324

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network [OSTI]

Total Energy Source Demand Coal, Oil, Gas, Heat, ElectricityEnergy Source Demand per Household Coal, Oil, Gas, Heat,ton of oil equivalent Considerable increases in demand for

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

325

Advanced Demand Responsive Lighting  

E-Print Network [OSTI]

Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

326

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

Heffner, Grayson

2010-01-01T23:59:59.000Z

327

Demand Response Enabling Technologies and Approaches for Industrial Facilities  

E-Print Network [OSTI]

on the higher of either $500/MWH, or the wholesale electricity price in the customer?s area, during the time of the event. Exact payment arrangements differ by program provider. Day-Ahead Demand Response Program Day-Ahead Demand Response Program (DADRP...), offers retail electricity customers a chance to bid load reduction capability in New York State?s wholesale electricity market. To participate, companies bid their load reduction capability, on a day-ahead basis, into the wholesale electricity market...

Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

2005-01-01T23:59:59.000Z

328

Demand Response in the West: Lessons for States and Provinces  

SciTech Connect (OSTI)

OAK-B135 This paper is submitted in fulfillment of DOE Grant No. DE-FG03-015F22369 on the experience of western states/provinces with demand response (DR) in the electricity sector. Demand-side resources are often overlooked as a viable option for meeting load growth and addressing the challenges posed by the region's aging transmission system. Western states should work together with utilities and grid operators to facilitate the further deployment of DR programs which can provide benefits in the form of decreased grid congestion, improved system reliability, market efficiency, price stabilization, hedging against volatile fuel prices and reduced environmental impacts of energy production. This report describes the various types of DR programs; provides a survey of DR programs currently in place in the West; considers the benefits, drawbacks and barriers to DR; and presents lessons learned and recommendations for states/provinces.

Douglas C. Larson; Matt Lowry; Sharon Irwin

2004-06-29T23:59:59.000Z

329

Industrial Demand-Side Management in Texas  

E-Print Network [OSTI]

of programs result in lower consumption and/or lower peak demand, and ultimately reduce the need to build new capacity. Hence demand-side management can be used as a resource option to be considered alongside more traditional supply-side resources in a...INDUSTRIAL DEMAND-SIDE MANAGEMENT IN TEXAS Danielle Jaussaud Economic Analysis Section Public Utility Commission of Texas Austin, Texas ABSTRACT The industrial sector in Texas is highly energy intensive and represents a large share...

Jaussaud, D.

330

Tunable Electrical and Thermal Transport in Ice-Templated MultiLayer Graphene Nanocomposites  

E-Print Network [OSTI]

to electrical energy storage,1­3 thermal energy storage,4­13 and composite materials.14­21 Ice applications in thermal and electrical energy storage. Phase change thermal storage seeks to reduce building offsets in energy supply and demand.6 Thermal energy storage is also an appealing way to cool power

Maruyama, Shigeo

331

A Successful Implementation with the Smart Grid: Demand Response Resources  

E-Print Network [OSTI]

1 A Successful Implementation with the Smart Grid: Demand Response Resources Contribution of intelligent line switching, demand response resources (DRRs), FACTS devices and PMUs is key in the smart grid events as a result of voluntary load curtailments. Index Terms--Electricity Markets, Demand Response re

Gross, George

332

Opportunities and Challenges for Data Center Demand Response  

E-Print Network [OSTI]

Opportunities and Challenges for Data Center Demand Response Adam Wierman Zhenhua Liu Iris Liu of renewable energy into the grid as well as electric power peak-load shaving: data center demand response. Data center demand response sits at the intersection of two growing fields: energy efficient data

Wierman, Adam

333

An Integrated Architecture for Demand Response Communications and Control  

E-Print Network [OSTI]

An Integrated Architecture for Demand Response Communications and Control Michael LeMay, Rajesh for the MGA and ZigBee wireless communications. Index Terms Demand Response, Advanced Meter Infrastructure. In principle this can be done with demand response techniques in which electricity users take measures

Gross, George

334

Towards Continuous Policy-driven Demand Response in Data Centers  

E-Print Network [OSTI]

Towards Continuous Policy-driven Demand Response in Data Centers David Irwin, Navin Sharma, and Prashant Shenoy University of Massachusetts, Amherst {irwin,nksharma,shenoy}@cs.umass.edu ABSTRACT Demand response (DR) is a technique for balancing electricity sup- ply and demand by regulating power consumption

Shenoy, Prashant

335

Demand Response Providing Ancillary A Comparison of Opportunities and  

E-Print Network [OSTI]

LBNL-5958E Demand Response Providing Ancillary Services A Comparison of Opportunities Government or any agency thereof or The Regents of the University of California. #12;Demand Response System Reliability, Demand Response (DR), Electricity Markets, Smart Grid Abstract Interest in using

336

LEED Demand Response Credit: A Plan for Research towards Implementation  

E-Print Network [OSTI]

demand-side management activities and commercial buildingsdemand-side management (DSM) framework presented in Figure 1 provides continuous energy management concepts for shaping electric loads in buildings,demand-side management activities, DR methods and levels of automation. We highlight OpenADR as a standard for commercial buildings

Kiliccote, Sila

2014-01-01T23:59:59.000Z

337

Northwest Open Automated Demand Response Technology Demonstration Project  

SciTech Connect (OSTI)

The Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC) demonstrated and evaluated open automated demand response (OpenADR) communication infrastructure to reduce winter morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA) in the Seattle City Light (SCL) service territory at five sites: Seattle Municipal Tower, Seattle University, McKinstry, and two Target stores. This report describes the process and results of the demonstration. OpenADR is an information exchange model that uses a client-server architecture to automate demand-response (DR) programs. These field tests evaluated the feasibility of deploying fully automated DR during both winter and summer peak periods. DR savings were evaluated for several building systems and control strategies. This project studied DR during hot summer afternoons and cold winter mornings, both periods when electricity demand is typically high. This is the DRRC project team's first experience using automation for year-round DR resources and evaluating the flexibility of commercial buildings end-use loads to participate in DR in dual-peaking climates. The lessons learned contribute to understanding end-use loads that are suitable for dispatch at different times of the year. The project was funded by BPA and SCL. BPA is a U.S. Department of Energy agency headquartered in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy generation facilities. Created by the citizens of Seattle in 1902, SCL is the second-largest municipal utility in America. SCL purchases approximately 40% of its electricity and the majority of its transmission from BPA through a preference contract. SCL also provides ancillary services within its own balancing authority. The relationship between BPA and SCL creates a unique opportunity to create DR programs that address both BPA's and SCL's markets simultaneously. Although simultaneously addressing both market could significantly increase the value of DR programs for BPA, SCL, and the end user, establishing program parameters that maximize this value is challenging because of complex contractual arrangements and the absence of a central Independent System Operator or Regional Transmission Organization in the northwest.

Kiliccote, Sila; Piette, Mary Ann; Dudley, Junqiao

2010-03-17T23:59:59.000Z

338

Laboratory Testing of Demand-Response Enabled Household Appliances  

SciTech Connect (OSTI)

With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond to demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses.The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.

Sparn, B.; Jin, X.; Earle, L.

2013-10-01T23:59:59.000Z

339

Development of a demand defrost controller. Final report  

SciTech Connect (OSTI)

The purpose of this project was to develop and commercialize a demand defrost controller that initiates defrosts of refrigeration systems only when required. The standard method of control is a time clock that usually defrosts too often, which wastes energy. The controller developed by this project uses an algorithm based on the temperature difference between the discharge and return of the display case air curtain along with several time settings to defrost only when needed. This controller was field tested in a supermarket where it controlled defrost of the low-temperature display cases. According to test results the controller could reduce annual energy consumption by 20,000 and 62,000 kWh for hot gas and electric defrost, respectively. The controller saves electric demand as well as energy, is adaptable to ambient air conditions, and provides valuable savings throughout the year. The savings are greatest for low-temperature systems that use the most energy. A less tangible benefit of the demand controller is the improvement in food quality that results from fewer defrosts.

Borton, D.N. [Power Kinetics, Troy, NY (United States); Walker, D.H. [Foster-Miller, Inc., Waltham, MA (United States)

1993-10-01T23:59:59.000Z

340

Reducing the environmental impacts of intermodal transportation: a multi-criteria analysis based on ELECTRE and AHP methods  

E-Print Network [OSTI]

Reducing the environmental impacts of intermodal transportation: a multi-criteria analysis on a case of freight transport between Paris and Marseille. Keywords: Supply chain, Environmental impacts with lower environmental impacts, such as rail and waterways. The dilemma here is that all motorized modes

Boyer, Edmond

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network [OSTI]

OF THE EMERGING HYBRID-ELECTRIC AND DIESEL TECHNOLOGIES TOof the Emerging Hybrid-Electric and Diesel Technologies tomodern clean diesel engines and hybrid-electric powertrains

Burke, Andy

2004-01-01T23:59:59.000Z

342

Electric Efficiency Standard  

Broader source: Energy.gov [DOE]

In December 2009, the Indiana Utility Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity...

343

The development of a charge protocol to take advantage of off- and on-peak demand economics at facilities  

SciTech Connect (OSTI)

This document reports the work performed under Task 1.2.1.1: 'The development of a charge protocol to take advantage of off- and on-peak demand economics at facilities'. The work involved in this task included understanding the experimental results of the other tasks of SOW-5799 in order to take advantage of the economics of electricity pricing differences between on- and off-peak hours and the demonstrated charging and facility energy demand profiles. To undertake this task and to demonstrate the feasibility of plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) bi-directional electricity exchange potential, BEA has subcontracted Electric Transportation Applications (now known as ECOtality North America and hereafter ECOtality NA) to use the data from the demand and energy study to focus on reducing the electrical power demand of the charging facility. The use of delayed charging as well as vehicle-to-grid (V2G) and vehicle-to-building (V2B) operations were to be considered.

Jeffrey Wishart

2012-02-01T23:59:59.000Z

344

Development and evaluation of fully automated demand response in large facilities  

SciTech Connect (OSTI)

This report describes the results of a research project to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve electric grid reliability, manage electricity costs, and ensure that customers receive signals that encourage load reduction during times when the electric grid is near its capacity. The two main drivers for widespread demand responsiveness are the prevention of future electricity crises and the reduction of electricity prices. Additional goals for price responsiveness include equity through cost of service pricing, and customer control of electricity usage and bills. The technology developed and evaluated in this report could be used to support numerous forms of DR programs and tariffs. For the purpose of this report, we have defined three levels of Demand Response automation. Manual Demand Response involves manually turning off lights or equipment; this can be a labor-intensive approach. Semi-Automated Response involves the use of building energy management control systems for load shedding, where a preprogrammed load shedding strategy is initiated by facilities staff. Fully-Automated Demand Response is initiated at a building or facility through receipt of an external communications signal--facility staff set up a pre-programmed load shedding strategy which is automatically initiated by the system without the need for human intervention. We have defined this approach to be Auto-DR. An important concept in Auto-DR is that a facility manager is able to ''opt out'' or ''override'' an individual DR event if it occurs at a time when the reduction in end-use services is not desirable. This project sought to improve the feasibility and nature of Auto-DR strategies in large facilities. The research focused on technology development, testing, characterization, and evaluation relating to Auto-DR. This evaluation also included the related decisionmaking perspectives of the facility owners and managers. Another goal of this project was to develop and test a real-time signal for automated demand response that provided a common communication infrastructure for diverse facilities. The six facilities recruited for this project were selected from the facilities that received CEC funds for new DR technology during California's 2000-2001 electricity crises (AB970 and SB-5X).

Piette, Mary Ann; Sezgen, Osman; Watson, David S.; Motegi, Naoya; Shockman, Christine; ten Hope, Laurie

2004-03-30T23:59:59.000Z

345

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

technology investments and more permanent behavior change. Both objectives also address foundational energy usage

Levy, Roger

2014-01-01T23:59:59.000Z

346

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

potential as-available renewable over generation issues,examining many of the roadmap renewable integration options.integration of significant renewable resources into the HECO

Levy, Roger

2014-01-01T23:59:59.000Z

347

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

Examination Table 1. HECO Water Heater Direct Control Reliability Table 2. HECO Water Heater Direct Control criteria for current water heater and air conditioning

Levy, Roger

2014-01-01T23:59:59.000Z

348

Implications of Low Electricity Demand Growth  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,992000Implications ofU.S. Energy

349

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

development effort. While storage water heater options beganany load reduction. 36 Water heater storage capability, ifstrategies based on water heater storage capacity 37 the

Levy, Roger

2014-01-01T23:59:59.000Z

350

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network [OSTI]

produce the greatest energy and demand savings. Aeration andand C.Y. Chang (2005). "Energy Demand in Sludge Dewatering."be modified to reduce energy demand during demand response

Lekov, Alex

2010-01-01T23:59:59.000Z

351

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

Data for Automated Demand Response in Commercial Buildings,Demand Response Infrastructure for Commercial Buildings",demand response and energy efficiency functions into the design of buildings,

Shen, Bo

2013-01-01T23:59:59.000Z

352

Uranium 2009 resources, production and demand  

E-Print Network [OSTI]

With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry the first critical link in the fuel supply chain for nuclear reactors is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

Organisation for Economic Cooperation and Development. Paris

2010-01-01T23:59:59.000Z

353

Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices  

E-Print Network [OSTI]

building control strategies and techniques for demand response,demand response and energy ef?ciency in commercial buildings,building electricity use with application to demand response,

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

354

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

impacts of marginal electricity demand for CA hydrogenUS DOE, 2007. EIA. Electricity data. [cited 2007 March 2,F. Decarbonized hydrogen and electricity from natural gas.

Yang, Christopher

2008-01-01T23:59:59.000Z

355

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

356

Renewable Electricity Futures Study  

E-Print Network [OSTI]

Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

357

The Demand Reduction Potential of Smart Appliances in U.S. Homes  

SciTech Connect (OSTI)

The widespread deployment of demand respond (DR) enabled home appliances is expected to have significant reduction in the demand of electricity during peak hours. The work documented in this paper focuses on estimating the energy shift resulting from the installation of DR enabled smart appliances in the U.S. This estimation is based on analyzing the market for smart appliances and calculating the total energy demand that can potentially be shifted by DR control in appliances. Appliance operation is examined by considering their sub components individually to identify their energy consumptions and savings resulting from interrupting and shifting their load, e.g., by delaying the refrigerator defrost cycle. In addition to major residential appliances, residential pool pumps are also included in this study given their energy consumption profiles that make them favorable for DR applications. In the market analysis study documented in this paper, the U.S. Energy Information Administration's (EIA) Residential Energy Consumption Survey (RECS) and National Association of Home Builders (NAHB) databases are used to examine the expected life of an appliance, the number of appliances installed in homes constructed in 10 year intervals after 1940 and home owner income. Conclusions about the effectiveness of the smart appliances in reducing electrical demand have been drawn and a ranking of appliances in terms of their contribution to load shift is presented. E.g., it was concluded that DR enabled water heaters result in the maximum load shift; whereas, dishwashers have the highest user elasticity and hence the highest potential for load shifting through DR. This work is part of a larger effort to bring novel home energy management concepts and technologies to reduce energy consumption, reduce peak electricity demand, integrate renewables and storage technology, and change homeowner behavior to manage and consume less energy and potentially save consumer energy costs.

Makhmalbaf, Atefe; Srivastava, Viraj; Parker, Graham B.

2013-08-14T23:59:59.000Z

358

Demand Response Spinning Reserve Demonstration  

E-Print Network [OSTI]

F) Enhanced ACP Date RAA ACP Demand Response SpinningReserve Demonstration Demand Response Spinning Reservesupply spinning reserve. Demand Response Spinning Reserve

2007-01-01T23:59:59.000Z

359

Automated Demand Response and Commissioning  

E-Print Network [OSTI]

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

360

Automated Demand Response and Commissioning  

E-Print Network [OSTI]

and Demand Response in Commercial Buildings, Lawrencesystems. Demand Response using HVAC in Commercial BuildingsDemand Response Test in Large Facilities13 National Conference on Building

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy-2 Demand Forecast Disaggregation......................................................1-4 Statewide

362

Demand response pilot event conducted August 2,2011 : summary report.  

SciTech Connect (OSTI)

Energy management in a commercial facility can be segregated into two areas: energy efficiency and demand response (DR). Energy efficiency focuses on steady-state load minimization. Demand response reduces load for event driven periods during the peak load. Demand-response-driven changes in electricity use are designed to be short-term in nature, centered on critical hours during the day when demand is high or when the electricity supplier's reserve margins are low. Due to the recent Federal Energy Regulatory Commission (FERC) Order 745, Demand Response Compensation in Organized Wholesale Energy Markets the potential annual compensation to Sandia National Laboratories (SNL) from performing DR ranges from $300K to $2,400K. While the current energy supply contract does not offer any compensation for participating in DR, there is benefit in understanding the issues and potential value in performing a DR event. This Report will be helpful in upcoming energy supply contract negotiations to quantify the energy savings and power reduction potential from DR at SNL. On August 25, 2011 the Facilities Management and Operations Center (FMOC) performed the first DR pilot event at SNL/NM. This report describes the details and results of this DR event.

Lincoln, Donald; Evans, Christoper

2012-01-01T23:59:59.000Z

363

Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings  

SciTech Connect (OSTI)

California is a leader in automating demand response (DR) to promote low-cost, consistent, and predictable electric grid management tools. Over 250 commercial and industrial facilities in California participate in fully-automated programs providing over 60 MW of peak DR savings. This paper presents a summary of Open Automated DR (OpenADR) implementation by each of the investor-owned utilities in California. It provides a summary of participation, DR strategies and incentives. Commercial buildings can reduce peak demand from 5 to 15percent with an average of 13percent. Industrial facilities shed much higher loads. For buildings with multi-year savings we evaluate their load variability and shed variability. We provide a summary of control strategies deployed, along with costs to install automation. We report on how the electric DR control strategies perform over many years of events. We benchmark the peak demand of this sample of buildings against their past baselines to understand the differences in building performance over the years. This is done with peak demand intensities and load factors. The paper also describes the importance of these data in helping to understand possible techniques to reach net zero energy using peak day dynamic control capabilities in commercial buildings. We present an example in which the electric load shape changed as a result of a lighting retrofit.

Kiliccote, Sila; Piette, Mary Ann; Mathieu, Johanna; Parrish, Kristen

2010-05-14T23:59:59.000Z

364

Demand Dispatch-Intelligent  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency EIA Energy Information Administration EMS Energy Management Systems ERCOT Electric Reliability Council of Texas EV Electric Vehicle FERC Federal Energy Regulatory...

365

Combined cycle meets Thailand's growing power demands  

SciTech Connect (OSTI)

This article describes how an ample supply of natural gas led the Electricity Generating Authority of Thailand (EGAT) to choose gas-fired combustion turbines. Thailand's rapid industrialization, which began in the late 1980's, placed a great strain on the country's electricity supply system. The demand for electricity grew at an astonishing 14% annually. To deal with diminishing reserve capacity margins, the EGAT announced, in 1988, a power development program emphasizing gas-fired combined cycle power plants. Plans included six 320-MW combined cycle blocks at three sites, and an additional 600-MW gas- and oil-fired thermal plant at Bang Pakong. As electricity demand continued to increase, EGAT expanded its plans to include two additional 320-MW combined cycle blocks, a 600-MW combined cycle block, and a 650-MW gas- and oil-fired thermal plant. All are currently in various stages of design and construction.

Sheets, B.A. (Black and Veatch, Kansas City, MO (United States)); Takabut, K. (Electricity Generating Authority of Thailand, Nonthaburi (Thailand))

1993-08-01T23:59:59.000Z

366

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

367

Demand Response In California  

Broader source: Energy.gov [DOE]

Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

368

Empirical Analysis of the Spot Market Implications ofPrice-Responsive Demand  

SciTech Connect (OSTI)

Regardless of the form of restructuring, deregulatedelectricity industries share one common feature: the absence of anysignificant, rapid demand-side response to the wholesale (or, spotmarket) price. For a variety of reasons, most electricity consumers stillpay an average cost based regulated retail tariff held over from the eraof vertical integration, even as the retailers themselves are oftenforced to purchase electricity at volatile wholesale prices set in openmarkets. This results in considerable price risk for retailers, who aresometimes additionally forbidden by regulators from signing hedgingcontracts. More importantly, because end-users do not perceive real-time(or even hourly or daily) fluctuations in the wholesale price ofelectricity, they have no incentive to adjust their consumptionaccordingly. Consequently, demand for electricity is highly inelastic,which together with the non storability of electricity that requiresmarket clearing over very short time steps spawn many other problemsassociated with electricity markets, such as exercise of market power andprice volatility. Indeed, electricity generation resources can bestretched to the point where system adequacy is threatened. Economictheory suggests that even modest price responsiveness can relieve thestress on generation resources and decrease spot prices. To quantify thiseffect, actual generator bid data from the New York control area is usedto construct supply stacks and intersect them with demand curves ofvarious slopes to approximate the effect of different levels of demandresponse. The potential impact of real-time pricing (RTP) on theequilibrium spot price and quantity is then estimated. These resultsindicate the immediate benefits that could be derived from a moreprice-responsive demand providing policymakers with a measure of howprices can be potentially reduced and consumption maintained within thecapability of generation assets.

Siddiqui, Afzal S.; Bartholomew, Emily S.; Marnay, Chris

2005-08-01T23:59:59.000Z

369

The electricity consumption impacts of commercial energy management systems  

SciTech Connect (OSTI)

An investigation of energy management systems (EMS) in large commercial and institutional buildings in North Carolina was undertaken to determine how EMS currently affect electricity consumption and what their potential is for being used to reduce on-peak electricity demand. A survey was mailed to 5000 commercial customers; the 430 responses were tabulated and analyzed; EMS vendors were interviewed, and 30 sites were investigated in detail. The detailed assessments included a site interview and reconstruction of historic billing data to evaluate EMS impact, if any. The results indicate that well-tuned EMS can result in a 10 to 40 percent reduction in billed demand, and smaller reductions in energy.

Buchanan, S.; Taylor, R.; Paulos, S.; Warren, W.; Hay, J.

1989-02-01T23:59:59.000Z

370

The strategic use of renewables to achieve demand-side management impact  

SciTech Connect (OSTI)

According to both the Electric Power Research Institute (EPRI) and the Edison Electric Institute (EEI), utilities in the United States are now spending about $2 billion per year on demand-side management (DSM) activities. By the year 2000, EPRI and EEI predict that utilities will be spending $10 to $15 billion per year on DSM. If this expenditure is matched by consumers, total expenditures -- $30 billion a year -- will equal what the nation spent on power plant construction during the peak 1970s power plant building era. Historically, DSM programs at utilities utilize technologies that reduce the demand for electricity and energy used by their customers. This is accomplished primarily by increasing the efficacy of lighting, improving the conversion efficiency of heating, cooling, and process equipment, and reducing thermal losses through the building envelope. A broader definition of DSM -- one that incorporates renewable energy resources -- will greatly enhance the opportunity to impact customer loads. Renewable energy technologies use resources that are not depleted, such as heat and light from the sun, the force of winds, falling water, biomass, and geothermal heat from the earth. As related to utility systems, renewable technologies can contribute in three main ways: (1) the more traditional ``supply-side`` role as central generating plants or independent power producers, (2) as distributed generation (supply-side variation), and (3) as demand-side options. Distributed generation is being seriously studied by several utilities as a means of serving remote loads and reducing transmission and distribution costs, but is not discussed further in this paper. Demand-side renewable technologies (DSR) are technologies that utilize renewable energy to reduce the end-use load of a customer. In this paper we will describe specific DSR options, characterize their potential load impact, and recommend a method for effectively integrating them into current DSM programs.

Carlisle, N.; Hauser, S.; Potter, T.; Westby, R.

1992-11-01T23:59:59.000Z

371

CONSULTANT REPORT DEMAND FORECAST EXPERT  

E-Print Network [OSTI]

CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

372

Demand Side Bidding. Final Report  

SciTech Connect (OSTI)

This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

Spahn, Andrew

2003-12-31T23:59:59.000Z

373

Optimal demand response: problem formulation and deterministic case  

E-Print Network [OSTI]

Optimal demand response: problem formulation and deterministic case Lijun Chen, Na Li, Libin Jiang load through real-time demand response and purchases balancing power on the spot market to meet, optimal demand response reduces to joint scheduling of the procurement and consumption decisions

Low, Steven H.

374

Intelligent Building Automation: A Demand Response Management Perspective  

E-Print Network [OSTI]

the energy consumption in response to energy price fluctuations, demand charges, or a direct request to reduce demand when the power grid reaches critical levels. However, in order for a demand response regime to be effective the building will need to have a...

Qazi, T.

2010-01-01T23:59:59.000Z

375

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)  

E-Print Network [OSTI]

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the potential to meet the worldwide demand of electricity and they contribute to the total generation

Suo, Zhigang

376

Puget Sound area electric reliability plan. Draft environmental impact statement  

SciTech Connect (OSTI)

The Puget Sound Area Electric Reliability Plan Draft Environmental Impact Statement (DEIS) identifies the alternatives for solving a power system problem in the Puget Sound area. This Plan is undertaken by Bonneville Power Administration (BPA), Puget Sound Power & Light, Seattle City Light, Snohomish Public Utility District No. 1 (PUD), and Tacoma Public Utilities. The Plan consists of potential actions in Puget Sound and other areas in the State of Washington. A specific need exists in the Puget Sound area for balance between east-west transmission capacity and the increasing demand to import power generated east of the Cascades. At certain times of the year, there is more demand for power than the electric system can supply in the Puget Sound area. This high demand, called peak demand, occurs during the winter months when unusually cold weather increases electricity use for heating. The existing power system can supply enough power if no emergencies occur. However, during emergencies, the system will not operate properly. As demand grows, the system becomes more strained. To meet demand, the rate of growth of demand must be reduced or the ability to serve the demand must be increased, or both. The plan to balance Puget Sound`s power demand and supply has these purposes: The plan should define a set of actions that would accommodate ten years of load growth (1994--2003). Federal and State environmental quality requirements should be met. The plan should be consistent with the plans of the Northwest Power Planning Council. The plan should serve as a consensus guideline for coordinated utility action. The plan should be flexible to accommodate uncertainties and differing utility needs. The plan should balance environmental impacts and economic costs. The plan should provide electric system reliability consistent with customer expectations. 29 figs., 24 tabs.

Not Available

1991-09-01T23:59:59.000Z

377

Puget Sound Area Electric Reliability Plan : Draft Environmental Impact State.  

SciTech Connect (OSTI)

The Puget Sound Area Electric Reliability Plan Draft Environmental Impact Statement (DEIS) identifies the alternatives for solving a power system problem in the Puget Sound area. This Plan is undertaken by Bonneville Power Administration (BPA), Puget Sound Power Light, Seattle City Light, Snohomish Public Utility District No. 1 (PUD), and Tacoma Public Utilities. The Plan consists of potential actions in Puget Sound and other areas in the State of Washington. A specific need exists in the Puget Sound area for balance between east-west transmission capacity and the increasing demand to import power generated east of the Cascades. At certain times of the year, there is more demand for power than the electric system can supply in the Puget Sound area. This high demand, called peak demand, occurs during the winter months when unusually cold weather increases electricity use for heating. The existing power system can supply enough power if no emergencies occur. However, during emergencies, the system will not operate properly. As demand grows, the system becomes more strained. To meet demand, the rate of growth of demand must be reduced or the ability to serve the demand must be increased, or both. The plan to balance Puget Sound's power demand and supply has these purposes: The plan should define a set of actions that would accommodate ten years of load growth (1994--2003). Federal and State environmental quality requirements should be met. The plan should be consistent with the plans of the Northwest Power Planning Council. The plan should serve as a consensus guideline for coordinated utility action. The plan should be flexible to accommodate uncertainties and differing utility needs. The plan should balance environmental impacts and economic costs. The plan should provide electric system reliability consistent with customer expectations. 29 figs., 24 tabs.

United States. Bonneville Power Administration.

1991-09-01T23:59:59.000Z

378

POWERTECH 2009, JUNE 28 -JULY 2, 2009, BUCHAREST, ROMANIA 1 Incorporation of Demand Response Resources in  

E-Print Network [OSTI]

POWERTECH 2009, JUNE 28 - JULY 2, 2009, BUCHAREST, ROMANIA 1 Incorporation of Demand Response, IEEE, Abstract--The use of demand-side resources, in general, and demand response resources (DRRs concerns. Integration of demand response resources in the competitive electricity markets impacts resource

Gross, George

379

Real-time Pricing Demand Response in Operations  

SciTech Connect (OSTI)

AbstractDynamic pricing schemes have been implemented in commercial and industrial application settings, and recently they are getting attention for application to residential customers. Time-of-use and critical-peak-pricing rates are in place in various regions and are being piloted in many more. These programs are proving themselves useful for balancing energy during peak periods; however, real-time (5 minute) pricing signals combined with automation in end-use systems have the potential to deliver even more benefits to operators and consumers. Besides system peak shaving, a real-time pricing system can contribute demand response based on the locational marginal price of electricity, reduce load in response to a generator outage, and respond to local distribution system capacity limiting situations. The US Department of Energy (DOE) is teaming with a mid-west electricity service provider to run a distribution feeder-based retail electricity market that negotiates with residential automation equipment and clears every 5 minutes, thus providing a signal for lowering or raising electric consumption based on operational objectives of economic efficiency and reliability. This paper outlines the capability of the real-time pricing system and the operational scenarios being tested as the system is rolled-out starting in the first half of 2012.

Widergren, Steven E.; Marinovici, Maria C.; Berliner, Teri; Graves, Alan

2012-07-26T23:59:59.000Z

380

Real-Time Demand Side Energy Management  

E-Print Network [OSTI]

Real-Time Demand Side Energy Management Annelize Victor Michael Brodkorb Sr. Business Consultant Business Development Manager Aspen Technology, Inc. Aspen Technology Espaa, S.A. Houston, TX Barcelona, Spain ABSTRACT To remain... competitive, manufacturers must capture opportunities to increase bottom-line profitability. The goal of this paper is to present a new methodology for reducing energy costs Demand-Side Energy Management. Learn how process manufacturers assess energy...

Victor, A.; Brodkorb, M.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

FERC sees huge potential for demand response  

SciTech Connect (OSTI)

The FERC study concludes that U.S. peak demand can be reduced by as much as 188 GW -- roughly 20 percent -- under the most aggressive scenario. More moderate -- and realistic -- scenarios produce smaller but still significant reductions in peak demand. The FERC report is quick to point out that these are estimates of the potential, not projections of what could actually be achieved. The main varieties of demand response programs include interruptible tariffs, direct load control (DLC), and a number of pricing schemes.

NONE

2010-04-15T23:59:59.000Z

382

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

for the boom: a simulation study of power plant constructionLEDGE-CA simulations, about 22 GW of NGCT power plants arepower plant type (by prime mover), location, and ownership. Simulation

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

383

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

121]. Like other renewable resources and nuclear power, inhydro, nuclear, or renewable resources, and average GHGsupplied by each renewable resource and the capacity of

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

384

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

109 Figure 57. Assumed natural gas and coal prices in LEDGE-in Figure 57. The coal price stays relatively constantAssumed natural gas and coal prices in LEDGE-CA [152]. It

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

385

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

wind turbines, biomass, or geothermal power. By 2050, thebiomass, geothermal, and nuclear power plants arebiomass Nuclear, geothermal, and biomass power plants are

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

386

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Generation from wind and solar power plants can be highlygrid. When wind stops blowing, another power plant must bethan intermittent wind availability or uncertain power plant

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

387

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

in the state come renewable resources by 2010 [26]. Thegeneration to come from renewable resources by 2020 [27].loads until the renewable resource is available. Tehachapi

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

388

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

103 Figure 52. Relative solar thermal generation foris obscured. Future solar thermal power plants may have theThe SEGS facility is a solar thermal facility that can be

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

389

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

high fraction of coal generation, greenhouse gas emissionsimports in 2005 from [111]; instate coal generation adjustedaccordingly Instate coal generation set equal to 2005 value,

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

390

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

from existing power plants without CCS technology declines.from existing NGCC and NGCT plants without CCS technology.Mixed technology grid profiles, existing nuclear plants are

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

391

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Biomass Geothermal Small Hydro Solar Wind Statewide CA-N CA-with a relatively small hydro resource require additionaldairy Photovoltaic Parabolic Small hydro Wind Hydro 1 Steam

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

392

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

cycle NGCT Natural gas combustion turbine NGST Natural gasfrom NGCC and natural gas combustion turbine (NGCT) powerfrom average natural gas combustion turbine (NGCT) plants.

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

393

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

plant dispatched a nuclear plant, for example ratherCalifornias two nuclear plants represent 8% of capacity,are coal facilities, one is a nuclear plant, and one is

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

394

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

turbine NGST Natural gas steam turbine NWPP Northwest Powerfrom natural gas steam turbine (NGST) and natural gasNGST = Natural gas steam turbine; NWPP = Northwest Power

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

395

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

fractions of coal power, marginal emissions rates could beon coal power in LADWP leads to higher average emissionscoal-fired power plants, respectively, median hourly GHG emissions

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

396

Electric Drive Vehicle Infrastructure Deployment  

Broader source: Energy.gov (indexed) [DOE]

pricing encourages off-peak energy * Smart Grid Integration o Charging stations with Demand Response, Time-of-Use Pricing, and AMI compatible with the modern electric grid *...

397

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

398

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

H. , and James M. Gri n. 1983. Gasoline demand in the OECDof dynamic demand for gasoline. Journal of Econometrics 77(An empirical analysis of gasoline demand in Denmark using

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

399

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

400

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Satisfiability of Elastic Demand in the Smart Grid  

E-Print Network [OSTI]

We study a stochastic model of electricity production and consumption where appliances are adaptive and adjust their consumption to the available production, by delaying their demand and possibly using batteries. The model incorporates production volatility due to renewables, ramp-up time, uncertainty about actual demand versus planned production, delayed and evaporated demand due to adaptation to insufficient supply. We study whether threshold policies stabilize the system. The proofs use Markov chain theory on general state space.

Tomozei, Dan-Cristian

2010-01-01T23:59:59.000Z

402

Interoperability of Demand Response Resources Demonstration in NY  

SciTech Connect (OSTI)

The Interoperability of Demand Response Resources Demonstration in NY (Interoperability Project) was awarded to Con Edison in 2009. The objective of the project was to develop and demonstrate methodologies to enhance the ability of customer sited Demand Response resources to integrate more effectively with electric delivery companies and regional transmission organizations.

Wellington, Andre

2014-03-31T23:59:59.000Z

403

Replace Pressure-Reducing Valves with Backpressure Turbogenerators: Office of Industrial Technologies (OIT) Steam Tip Fact Sheet No. 20  

SciTech Connect (OSTI)

Many industrial facilities produce steam at a higher pressure than is demanded by process requirements. Steam passes through pressure-reducing valves (PRVs, also known as letdown valves) at various locations in the steam distribution system to let down or reduce its pressure. A non-condensing or backpressure steam turbine can perform the same pressure-reducing function as a PRV, while converting steam energy into electrical energy.

Not Available

2002-01-01T23:59:59.000Z

404

Mobile applications constantly demand additional memory, and traditional  

E-Print Network [OSTI]

. This remote access could reduce local storage space, thereby reducing energy demands on the mobile plat- form60 Mobile applications constantly demand additional memory, and traditional designs increase- port connected ubiquitous environments. Engineers attempt to minimize network use because of its

Lee, Hsien-Hsin "Sean"

405

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

E-Print Network [OSTI]

backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are neededCost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b

Michalek, Jeremy J.

406

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

Sterner. 1991. Analysing gasoline demand elasticities: A2011. Measuring global gasoline and diesel price and incomeMutairi. 1995. Demand for gasoline in Kuwait: An empirical

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

407

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

Heffner, Grayson

2010-01-01T23:59:59.000Z

408

Electric Power annual 1996: Volume II  

SciTech Connect (OSTI)

This document presents a summary of electric power industry statistics. Data are included on electric utility retail sales of electricity, revenues, environmental information, power transactions, emissions, and demand-side management.

NONE

1997-12-01T23:59:59.000Z

409

On Demand Guarantees in Iran.  

E-Print Network [OSTI]

??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and (more)

Ahvenainen, Laura

2009-01-01T23:59:59.000Z

410

Power system balancing with high renewable penetration : the potential of demand response .  

E-Print Network [OSTI]

??This study investigated the ability of responsive demand to stabilize the electrical grid when intermittent renewable resources are present. The WILMAR stochastic unit commitment model (more)

Critz, David Karl

2012-01-01T23:59:59.000Z

411

Gasoline price volatility and the elasticity of demand for gasoline1 C.-Y. Cynthia Lina  

E-Print Network [OSTI]

externalities including local air pollution, global climate change, accidents, congestion, and dependence at reducing demand for gasoline or reducing pollution from automobiles. The latter could be addressed

Lin, C.-Y. Cynthia

412

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network [OSTI]

Technologies to Reduce CO2 Emissions of New Light- Dutyreduce their CO2 emissions. The emerging technologiessignificantly reduce their CO2 emissions. These technologies

Burke, Andy

2004-01-01T23:59:59.000Z

413

Energy Demand Staff Scientist  

E-Print Network [OSTI]

Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused on End-Use Energy Efficiency ~ 40 Current Projects in China Collaborations with ~50 Institutions in China Researcher #12;Talk OutlineTalk Outline · Overview · China's energy use and CO2 emission trends · Energy

Eisen, Michael

414

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network [OSTI]

owned integrated hydro electricity utilities prevail,s Loading Order for Electricity Resources”, Staff Report,International Developments in Electricity Demand Management

McNeil, MIchael

2011-01-01T23:59:59.000Z

415

Open Automated Demand Response for Small Commerical Buildings  

SciTech Connect (OSTI)

This report characterizes small commercial buildings by market segments, systems and end-uses; develops a framework for identifying demand response (DR) enabling technologies and communication means; and reports on the design and development of a low-cost OpenADR enabling technology that delivers demand reductions as a percentage of the total predicted building peak electric demand. The results show that small offices, restaurants and retail buildings are the major contributors making up over one third of the small commercial peak demand. The majority of the small commercial buildings in California are located in southern inland areas and the central valley. Single-zone packaged units with manual and programmable thermostat controls make up the majority of heating ventilation and air conditioning (HVAC) systems for small commercial buildings with less than 200 kW peak electric demand. Fluorescent tubes with magnetic ballast and manual controls dominate this customer group's lighting systems. There are various ways, each with its pros and cons for a particular application, to communicate with these systems and three methods to enable automated DR in small commercial buildings using the Open Automated Demand Response (or OpenADR) communications infrastructure. Development of DR strategies must consider building characteristics, such as weather sensitivity and load variability, as well as system design (i.e. under-sizing, under-lighting, over-sizing, etc). Finally, field tests show that requesting demand reductions as a percentage of the total building predicted peak electric demand is feasible using the OpenADR infrastructure.

Dudley, June Han; Piette, Mary Ann; Koch, Ed; Hennage, Dan

2009-05-01T23:59:59.000Z

416

ENERGY DEMAND FORECAST METHODS REPORT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

417

Emerging Technologies for Industrial Demand-Side Management  

E-Print Network [OSTI]

as demand-side management strategies for industrial consumers of electricity. An alternative strategy to replacing aging electric motors with high efficiency or ASD motors is a turbine let-down. A turbine letdown is a turbine which uses pressure reduction...

Neely, J. E.; Kasprowicz, L. M.

418

Guidelines for Marketing Demand-Side Management in the Commercial Sector  

E-Print Network [OSTI]

For the past decade, electric and gas utilities throughout the nation, not just in hot and humid climates, have promoted energy efficiency through a variety of demand-side management (DSM) programs. In 1984, the Electric Power Research Institute...

George, S. S.

1988-01-01T23:59:59.000Z

419

Potential For Energy, Peak Demand, and Water Savings in California Tomato Processing Facilities  

E-Print Network [OSTI]

of electrical energy in these plants will be shown. Results from potential electrical efficiency, demand response, and natural gas efficiency measures that have applications in tomato processing facilities will be presented. Additionally, water conservation...

Trueblood, A. J.; Wu, Y. Y.; Ganji, A. R.

2013-01-01T23:59:59.000Z

420

Electric Power Research Institute Cooperation to Increase Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by improving energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy use during peak periods. Electric...

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network [OSTI]

costs EV battery degradation costs electricity sales fixedand sales, DER capital costs, fuel costs, demand response measures and EV

Stadler, Michael

2012-01-01T23:59:59.000Z

422

Outline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel  

E-Print Network [OSTI]

.S., electric power generation accounts for significant portions of fuel demands 30% of the natural gas demand (over 50% in the summer) 90% of the coal demand over 45% of the residual fuel oil demand #12;OutlineOutline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions

Nagurney, Anna

423

Introduction Literature Review Integrated Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel  

E-Print Network [OSTI]

of fuel demands 30% of the natural gas demand (over 50% in the summer) 90% of the coal demand over 45% of the residual fuel oil demand. #12;Introduction Literature Review Integrated Electric Power Supply ChainsIntroduction Literature Review Integrated Electric Power Supply Chains Empirical Examples

Nagurney, Anna

424

A DISTRIBUTED INTELLIGENT AUTOMATED DEMAND RESPONSE BUILDING MANAGEMENT SYSTEM  

SciTech Connect (OSTI)

The goal of the 2.5 year Distributed Intelligent Automated Demand Response (DIADR) project was to reduce peak electricity load of Sutardja Dai Hall at UC Berkeley by 30% while maintaining a healthy, comfortable, and productive environment for the occupants. We sought to bring together both central and distributed control to provide deep demand response1 at the appliance level of the building as well as typical lighting and HVAC applications. This project brought together Siemens Corporate Research and Siemens Building Technology (the building has a Siemens Apogee Building Automation System (BAS)), Lawrence Berkeley National Laboratory (leveraging their Open Automated Demand Response (openADR), Auto-?Demand Response, and building modeling expertise), and UC Berkeley (related demand response research including distributed wireless control, and grid-?to-?building gateway development). Sutardja Dai Hall houses the Center for Information Technology Research in the Interest of Society (CITRIS), which fosters collaboration among industry and faculty and students of four UC campuses (Berkeley, Davis, Merced, and Santa Cruz). The 141,000 square foot building, occupied in 2009, includes typical office spaces and a nanofabrication laboratory. Heating is provided by a district heating system (steam from campus as a byproduct of the campus cogeneration plant); cooling is provided by one of two chillers: a more typical electric centrifugal compressor chiller designed for the cool months (Nov-? March) and a steam absorption chiller for use in the warm months (April-?October). Lighting in the open office areas is provided by direct-?indirect luminaries with Building Management System-?based scheduling for open areas, and occupancy sensors for private office areas. For the purposes of this project, we focused on the office portion of the building. Annual energy consumption is approximately 8053 MWh; the office portion is estimated as 1924 MWh. The maximum peak load during the study period was 1175 kW. Several new tools facilitated this work, such as the Smart Energy Box, the distributed load controller or Energy Information Gateway, the web-?based DR controller (dubbed the Central Load-?Shed Coordinator or CLSC), and the Demand Response Capacity Assessment & Operation Assistance Tool (DRCAOT). In addition, an innovative data aggregator called sMAP (simple Measurement and Actuation Profile) allowed data from different sources collected in a compact form and facilitated detailed analysis of the building systems operation. A smart phone application (RAP or Rapid Audit Protocol) facilitated an inventory of the buildings plug loads. Carbon dioxide sensors located in conference rooms and classrooms allowed demand controlled ventilation. The extensive submetering and nimble access to this data provided great insight into the details of the building operation as well as quick diagnostics and analyses of tests. For example, students discovered a short-?cycling chiller, a stuck damper, and a leaking cooling coil in the first field tests. For our final field tests, we were able to see how each zone was affected by the DR strategies (e.g., the offices on the 7th floor grew very warm quickly) and fine-?tune the strategies accordingly.

Auslander, David; Culler, David; Wright, Paul; Lu, Yan; Piette, Mary

2013-12-30T23:59:59.000Z

425

Climate policy implications for agricultural water demand  

SciTech Connect (OSTI)

Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy optionsone which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands.?

Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

2013-03-28T23:59:59.000Z

426

Open Automated Demand Response Communications Specification (Version 1.0)  

SciTech Connect (OSTI)

The development of the Open Automated Demand Response Communications Specification, also known as OpenADR or Open Auto-DR, began in 2002 following the California electricity crisis. The work has been carried out by the Demand Response Research Center (DRRC), which is managed by Lawrence Berkeley National Laboratory. This specification describes an open standards-based communications data model designed to facilitate sending and receiving demand response price and reliability signals from a utility or Independent System Operator to electric customers. OpenADR is one element of the Smart Grid information and communications technologies that are being developed to improve optimization between electric supply and demand. The intention of the open automated demand response communications data model is to provide interoperable signals to building and industrial control systems that are preprogrammed to take action based on a demand response signal, enabling a demand response event to be fully automated, with no manual intervention. The OpenADR specification is a flexible infrastructure to facilitate common information exchange between the utility or Independent System Operator and end-use participants. The concept of an open specification is intended to allow anyone to implement the signaling systems, the automation server or the automation clients.

Piette, Mary Ann; Ghatikar, Girish; Kiliccote, Sila; Koch, Ed; Hennage, Dan; Palensky, Peter; McParland, Charles

2009-02-28T23:59:59.000Z

427

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

BEST PRACTICES AND RESULTS OF DR IMPLEMENTATION . 31 Encouraging End-User Participation: The Role of Incentives 16 Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

428

Managing Sustainable Demand-side Infrastructure for Power System Ancillary Services  

E-Print Network [OSTI]

Managing Sustainable Demand-side Infrastructure for Power System Ancillary Services by Simon Sustainable Demand-side Infrastructure for Power System Ancillary Services by Simon Christopher Parkinson B highly-distributed sustainable demand- side infrastructure, in the form of heat pumps, electric vehicles

Victoria, University of

429

Tracking Progress Last updated 5/7/2014 Statewide Energy Demand 1  

E-Print Network [OSTI]

dollars) to $1.8 trillion in 2012 (2012 dollars). Forecast Electricity Demand Although the California Energy Commission's energy demand forecast includes multiple scenarios, the Energy Commission worked together1 to agree upon a single managed demand forecast that incorporates all energy efficiency

430

Residential Demand Response under Uncertainty Paul Scott and Sylvie Thiebaux and  

E-Print Network [OSTI]

Residential Demand Response under Uncertainty Paul Scott and Sylvie Thi´ebaux and Menkes van den stochastic optimisation in residential demand response. 1 Introduction Electricity consumption in residential participate in smart grid activities such as demand response where loads are shifted to times favourable

Thiébaux, Sylvie

431

Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems  

E-Print Network [OSTI]

Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems with Variable Resources Electric Energy System #12;#12;Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems benefits correspond to a real-world power system, as we use actual data on demand-response and wind

432

Demo Abstract: Toward Data-driven Demand-Response Optimization in a Campus Microgrid  

E-Print Network [OSTI]

Demo Abstract: Toward Data-driven Demand-Response Optimization in a Campus Microgrid Yogesh Simmhan-driven demand response optimization (DR) in the USC campus microgrid, as part of the Los An- geles Smart Grid of this project is to investigate techniques for demand-response optimization (DR) ­ cur- tailing the electricity

Prasanna, Viktor K.

433

energy: Supply, Demand, and impacts CooRDinATinG LeAD AUThoR  

E-Print Network [OSTI]

240 chapter 12 energy: Supply, Demand, and impacts CooRDinATinG LeAD AUThoR Vincent C. Tidwell the potential to impact the production, demand, and delivery of energy in a number of ways. Chapter citation;energy: supply, demand, and impacts 241 · Delivery of electricity may become more vulnerable

Kammen, Daniel M.

434

Demand-Side Load Scheduling Incentivized by Dynamic Energy Hadi Goudarzi, Safar Hatami, and Massoud Pedram  

E-Print Network [OSTI]

Demand-Side Load Scheduling Incentivized by Dynamic Energy Prices Hadi Goudarzi, Safar Hatami growth in electrical energy consumption under worst- case demand conditions [1]. To avoid expending 90089 {hgoudarz, shatami, pedram}@usc.edu Abstract--Demand response is an important part of the smart

Pedram, Massoud

435

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network [OSTI]

reliability of the electricity system; reducing costs associated with generation, transmission and distribution;

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

436

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network [OSTI]

reliability of the electricity system; Reducing costs associated with generation, transmission and distribution;

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

437

The Impact of Technological Change and Lifestyles on the Energy Demand  

E-Print Network [OSTI]

demand into a model of total private consumption. Private consumption is determined by economic variables of technological and socio- demographic variables on the demand for gasoline/diesel, heating and electricity. Key, households' electricity and heat consumption are growing rapidly despite of technological progress

Steininger, Karl W.

438

Demand Dispatch-Intelligent  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data FilesFeFe-HydrogenaseDemand

439

Customer focused collaborative demand planning  

E-Print Network [OSTI]

Many firms worldwide have adopted the process of Sales & Operations Planning (S&OP) process where internal departments within a firm collaborate with each other to generate a demand forecast. In a collaborative demand ...

Jha, Ratan (Ratan Mohan)

2008-01-01T23:59:59.000Z

440

Carbon dioxide emissions from the U.S. electricity sector  

SciTech Connect (OSTI)

As climate change negotiators from around the world prepared together in 1996 to consider new international targets and policies for greenhouse-gas reductions, the US Department of Energy asked the authors to review the options available to the electricity sector to reduce CO{sub 2} emissions. The charge was to focus on supply-side options and utility demand-side management (DSM) programs because other researchers were considered energy efficiency options for the residential, commercial, and industrial sectors. The next section presents the EIA baseline projections of electricity production, use, and CO{sub 2} emissions to the year 2010. Subsequent sections briefly summarize the options available to the electricity industry to reduce its CO{sub 2} emissions, speculate on how industry restructuring might affect the ability of the industry and its regulators to reduce CO{sub 2} emissions, and discuss the policies available to affect those emissions: research and development, voluntary programs, regulation, and fiscal policies.

Hirst, E.; Baxter, L. [Oak Ridge National Lab., TN (United States)

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Please cite this article in press as: Hughes L, Meeting residential space heating demand with wind-generated electricity, Renewable Energy (2009), doi:10.1016/j.renene.2009.11.014  

E-Print Network [OSTI]

, or compressed air (Blarke and Lund 2008). Energy suppliers are forced to go to these lengths when integrating. The benefits as well as the limitations of the approach are discussed in detail. Keywords: Energy storage- generated electricity, Renewable Energy (2009), doi:10.1016/j.renene.2009.11.014 ERG/200909 Meeting

Hughes, Larry

442

Demand Response: Load Management Programs  

E-Print Network [OSTI]

CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

Simon, J.

2012-01-01T23:59:59.000Z

443

1.0 Motivation............................................................................................................2 1.1Overview of Energy Supply and Demand in the 21st  

E-Print Network [OSTI]

............................................................................................................2 1.1Overview of Energy Supply and Demand in the 21st Century..........................2 1.2 UK Energy ...................................................................................24 6.6 Correlation between Wind Strength and Demand for Electricity..................24 6

444

Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York  

E-Print Network [OSTI]

Demand-Side Management Framework for Commercial BuildingsTimes (NYT) Building and Its Demand-Side Management Lawrencedemand-side management (DSM) framework presented in Table 1 provides three major areas for changing electric loads in buildings:

Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

2006-01-01T23:59:59.000Z

445

TRAVEL DEMAND AND RELIABLE FORECASTS  

E-Print Network [OSTI]

TRAVEL DEMAND AND RELIABLE FORECASTS FOR TRANSIT MARK FILIPI, AICP PTP 23rd Annual Transportation transportation projects § Develop and maintain Regional Travel Demand Model § Develop forecast socio in cooperative review during all phases of travel demand forecasting 4 #12;Cooperative Review Should Include

Minnesota, University of

446

Demand Forecasting of New Products  

E-Print Network [OSTI]

Demand Forecasting of New Products Using Attribute Analysis Marina Kang A thesis submitted Abstract This thesis is a study into the demand forecasting of new products (also referred to as Stock upon currently employed new-SKU demand forecasting methods which involve the processing of large

Sun, Yu

447

Assessment of Demand Response Resource  

E-Print Network [OSTI]

Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

448

Summary of the 2006 Automated Demand Response Pilot  

E-Print Network [OSTI]

This paper discusses the specific concept for, design of, and results from a pilot program to automate demand response with critical peak pricing. California utilities have been exploring the use of critical peak pricing (CPP) to help reduce peak...

Piette, M.; Kiliccote, S.

2007-01-01T23:59:59.000Z

449

A First Look at Colocation Demand Response Shaolei Ren  

E-Print Network [OSTI]

programs and receive financial benefits by reducing energy consumption upon utility's request. However, on the other hand, can reduce server energy consumption but may not desire demand response unless response by using a trace-based simulation to show that iCODE can significantly reduce energy consumption

Ren, Shaolei

450

Energy technologies and their impact on demand  

SciTech Connect (OSTI)

Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

Drucker, H.

1995-06-01T23:59:59.000Z

451

Sixth Northwest Conservation and Electric Power Plan Chapter 11: Climate Change Issues  

E-Print Network [OSTI]

demand and change precipitation patterns, river flows, and hydroelectric generation. Second, policies-reduction goals. The issue of potential changes to electricity demand and hydroelectric generation is discussed

452

Case Study-Talquin Electric Cooperative  

Broader source: Energy.gov (indexed) [DOE]

substation during a winter peak event and saved 12,000 in demand charges from their wholesale electricity provider. Mr. Eugene Kanikovsky, Director of Finance, believes it is...

453

Energy Department - Electric Power Research Institute Cooperation...  

Broader source: Energy.gov (indexed) [DOE]

energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy use during peak periods. "Through ongoing...

454

Energy Department - Electric Power Research Institute Cooperation...  

Broader source: Energy.gov (indexed) [DOE]

by improving energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy use during peak periods. "Through...

455

Exploring Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Souhern California Edison Service Territory  

SciTech Connect (OSTI)

Distributed energy (DE) technologies have received much attention for the energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention have been the desires to globally reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and concerns with interconnection on the distribution system. This study assesses the costs and benefits of DE to both consumers and distribution utilities and expands upon a precursory study done with Detroit Edison (DTE)1, by evaluating the combined impact of DE, energy-efficiency, photovoltaics (a use of solar energy), and demand response that will shape the grid of the future. This study was funded by the U.S. Department of Energy (DOE), Gas Research Institute (GRI), American Electric Power (AEP), and Gas Technology Institute's (GTI) Distributed Energy Collaborative Program (DECP). It focuses on two real Southern California Edison (SCE) circuits, a 13 MW suburban circuit fictitiously named Justice on the Lincoln substation, and an 8 MW rural circuit fictitiously named Prosper on the Washington Substation. The primary objectives of the study were threefold: (1) Evaluate the potential for using advanced energy technologies, including DE, energy-efficiency (EE), demand response, electricity storage, and photovoltaics (PV), to reshape electric load curves by reducing peak demand, for real circuits. (2) Investigate the potential impact on guiding technology deployment and managing operation in a way that benefits both utilities and their customers by: (a) Improving grid load factor for utilities; (b) Reducing energy costs for customers; and (c) Optimizing electric demand growth. (3) Demonstrate benefits by reporting on a recently installed advanced energy system at a utility customer site. This study showed that advanced energy technologies are economical for many customers on the two SCE circuits analyzed, providing certain customers with considerable energy cost savings. Using reasonable assumptions about market penetration, the study showed that adding distributed generation would reduce peak demand on the two circuits enough to defer the need to upgrade circuit capacity. If the DE is optimally targeted, the deferral could economically benefit SCE, with cost savings that outweigh the lost revenues due to lower sales of electricity. To a lesser extent, economically justifiable energy-efficiency, photovoltaic technologies, and demand response could also help defer circuit capacity upgrades by reducing demand.

Stovall, Therese K [ORNL; Kingston, Tim [Gas Technology Institute

2005-12-01T23:59:59.000Z

456

Evaluation of a Current Source Active Power Filter to Reduce the DC Bus Capacitor in a Hybrid Electric Vehicle Traction Drive  

E-Print Network [OSTI]

system, additional heat, audible noise, mechanical stress, and vibration [1]. DC bus harmonic current- powered three-phase inverter is used to drive the traction motor. Due to the switching behavior combustion engine, electric motor, and energy storage device (for example, batteries and ultracapacitors

Tolbert, Leon M.

457

Integration of Renewables Via Demand Management: Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation  

SciTech Connect (OSTI)

GENI Project: AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signal to be sent to millions of customers in extremely short timeframesincentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing Projects in the U.S.

None

2012-02-11T23:59:59.000Z

458

Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report  

SciTech Connect (OSTI)

The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

2012-11-01T23:59:59.000Z

459

Reducing Energy Demand in Buildings Through State Energy Codes | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumpingStudy

460

Reducing Energy Demand in Buildings Through State Energy Codes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof Energy Redefining9Codes

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReport #Study | Department of Energy

462

Electric retail market options: The customer perspective  

SciTech Connect (OSTI)

This report describes various options that are now available for retail electric customers, or that may become available during the next few years as the electric utility industry restructures. These options include different ways of meeting demand for energy services, different providers of service or points of contact with providers, and different pricing structures for purchased services. Purpose of this document is to examine these options from the customer`s perspective: how might being a retail electric customer in 5--10 years differ from now? Seizing opportunities to reduce cost of electric service is likely to entail working with different service providers; thus, transaction costs are involved. Some of the options considered are speculative. Some transitional options include relocation, customer-built/operated transmission lines, municipalization, self-generation, and long-term contracts with suppliers. All these may change or diminish in a restructured industry. Brokers seem likely to become more common unless restructuring takes the form of mandatory poolcos (wholesale). Some options appear robust, ie, they are likely to become more common regardless of how restructuring is accomplished: increased competition among energy carriers (gas vs electric), real-time pricing, etc. This report identified some of the qualitative differences among the various options. For customers using large amounts of electricity, different alternatives are likely to affect greatly service price, transaction costs, tailoring service to customer preferences, and risks for customer. For retail customers using small amounts of electricity, there may be little difference among the options except service price.

Hadley, S.W.; Hillsman, E.L.

1995-07-01T23:59:59.000Z

463

Demand Response Programs, 6. edition  

SciTech Connect (OSTI)

The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

NONE

2007-10-15T23:59:59.000Z

464

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

465

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

for each day type for the demand response study - moderate8.4 Demand Response Integration . . . . . . . . . . .for each day type for the demand response study - moderate

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

466

Installation and Commissioning Automated Demand Response Systems  

E-Print Network [OSTI]

their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

467

Strategies for Demand Response in Commercial Buildings  

E-Print Network [OSTI]

Fully Automated Demand Response Tests in Large Facilitiesof Fully Automated Demand Response in Large Facilities,was coordinated by the Demand Response Research Center and

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

468

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

2 2.0 Demand ResponseFully Automated Demand Response Tests in Large Facilities,was coordinated by the Demand Response Research Center and

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

469

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

Goldman, Charles

2010-01-01T23:59:59.000Z

470

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

3 2.1 Demand-Side Managementbuildings. The demand side management framework is discussedIssues 2.1 Demand-Side Management Framework Forecasting

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

471

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

472

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

473

Strategies for Demand Response in Commercial Buildings  

E-Print Network [OSTI]

Strategies for Demand Response in Commercial Buildings DavidStrategies for Demand Response in Commercial Buildings Davidadjusted for demand response in commercial buildings. The

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

474

Installation and Commissioning Automated Demand Response Systems  

E-Print Network [OSTI]

Demand Response Systems National Conference on BuildingDemand Response Systems National Conference on BuildingDemand Response Systems National Conference on Building

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

475

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

In terms of demand response capability, building operatorsautomated demand response and improve building energy andand demand response features directly into building design

Goldman, Charles

2010-01-01T23:59:59.000Z

476

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

DEMAND RESPONSE .7 Wholesale Marketuse at times of high wholesale market prices or when systemenergy expenditure. In wholesale markets, spot energy prices

Shen, Bo

2013-01-01T23:59:59.000Z

477

Demand-Side Response from Industrial Loads  

SciTech Connect (OSTI)

Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

Starke, Michael R [ORNL; Alkadi, Nasr E [ORNL; Letto, Daryl [Enbala Power Networks; Johnson, Brandon [University of Tennessee, Knoxville (UTK); Dowling, Kevin [University of Tennessee, Knoxville (UTK); George, Raoule [Enbala Power Networks; Khan, Saqib [University of Texas, Austin

2013-01-01T23:59:59.000Z

478

Driving Demand | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

strategies, results achieved to date, and advice for other programs. Driving Demand for Home Energy Improvements. This guide, developed by the Lawrence Berkeley National...

479

Demand Response Technology Roadmap A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

workshop agendas, presentation materials, and transcripts. For the background to the Demand Response Technology Roadmap and to make use of individual roadmaps, the reader is...

480

Demand Response Technology Roadmap M  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

between May 2014 and February 2015. The Bonneville Power Administration (BPA) Demand Response Executive Sponsor Team decided upon the scope of the project in May. Two subsequent...

Note: This page contains sample records for the topic "reduce electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

China's Coal: Demand, Constraints, and Externalities  

SciTech Connect (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

482

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

483

Honeywell Demonstrates Automated Demand Response Benefits for...  

Office of Environmental Management (EM)

Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility,...

484

E-Print Network 3.0 - atmospheric water demand Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and this in turn reduces carbon dioxide emissions and water use. CO2... emissions Coal Dam Demand ... Source: Crimmins, Michael A. - School of Earth and Environmental...

485

Peak demand reduction from pre-cooling with zone temperature reset in an office building  

SciTech Connect (OSTI)

The objective of this study was to demonstrate the potential for reducing peak-period electrical demand in moderate-weight commercial buildings by modifying the control of the HVAC system. An 80,000 ft{sup 2} office building with a medium-weight building structure and high window-to-wall ratio was used for a case study in which zone temperature set-points were adjusted prior to and during occupancy. HVAC performance data and zone temperatures were recorded using the building control system. Additional operative temperature sensors for selected zones and power meters for the chillers and the AHU fans were installed for the study. An energy performance baseline was constructed from data collected during normal operation. Two strategies for demand shifting using the building thermal mass were then programmed in the control system and implemented progressively over a period of one month. It was found that a simple demand limiting strategy performed well in this building. This strategy involved maintaining zone temperatures at the lower end of the comfort region during the occupied period up until 2 pm. Starting at 2 pm, the zone temperatures were allowed to float to the high end of the comfort region. With this strategy, the chiller power was reduced by 80-100% (1-2.3 W/ft{sup 2}) during normal peak hours from 2-5 pm, without causing any thermal comfort complaints. The effects on the demand from 2-5 pm of the inclusion of pre-cooling prior to occupancy are unclear.

Xu, Peng; Haves, Philip; Piette, Mary Ann; Braun, James

2004-08-01T23:59:59.000Z

486

Peak Demand Reduction from Pre-Cooling with Zone Temperature Reset in an Office Building  

SciTech Connect (OSTI)

The objective of this study was to demonstrate the potential for reducing peak-period electrical demand in moderate-weight commercial buildings by modifying the control of the HVAC system. An 80,000 ft{sup 2} office building with a medium-weight building structure and high window-to-wall ratio was used for a case study in which zone temperature set-points were adjusted prior to and during occupancy. HVAC performance data and zone temperatures were recorded using the building control system. Additional operative temperature sensors for selected zones and power meters for the chillers and the AHU fans were installed for the study. An energy performance baseline was constructed from data collected during normal operation. Two strategies for demand shifting using the building thermal mass were then programmed in the control system and implemented progressively over a period of one month. It was found that a simple demand limiting strategy performed well in this building. This strategy involved maintaining zone temperatures at the lower end of the comfort region during the occupied period up until 2 pm. Starting at 2 pm, the zone temperatures were allowed to float to the high end of the comfort region. With this strategy, the chiller power was reduced by 80-100% (1-2.3 W/ft{sup 2}) during normal peak hours from 2-5 pm, without causing any thermal comfort complaints. The effects on the demand from 2-5 pm of the inclusion of pre-cooling prior to occupancy are unclear.

Xu, Peng; Haves, Philip; Piette, Mary Ann; Braun, James

2006-08-01T23:59:59.000Z

487

Using Whole-Building Electric Load Data in Continuous or Retro-Commissioning  

E-Print Network [OSTI]

Building Electricity Use, With Application to Demand Response,Demand Response Research Center and a Program Manager in the Buildingand demand response. For example: Does the building use too

Price, Phillip N.

2012-01-01T23:59:59.000Z

488

China, India demand cushions prices  

SciTech Connect (OSTI)

Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

Boyle, M.

2006-11-15T23:59:59.000Z

489

Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

Not Available

2012-03-01T23:59:59.000Z

490

Effects of reduced voltage on the operation and efficiency of electric systems. Volume 3. Field tests in a northern utility service area. Final report  

SciTech Connect (OSTI)

Volume 3 of this three-volume report for RP1419-1 describes the tests on selected residential, commercial, and small industry areas of the Detroit Edison Company system and the statistical analysis performed on the test data gathered. The purpose of the field testing was to provide data to analyze changes in energy consumption due to changes in feeder voltage levels. Detroit Edison was chosen to represent a winter peaking load area. Original intent was to present these results simultaneously with results from a summer peaking load area, Texas Electric Service Company (TESCO). Unavoidable delays retarded the Detroit study results to this Volume 3. TESCO results were reported in Volume 1, and the Distribution System Analysis and Simulation (DSAS) program for these studies was presented in Volume 2 in the form of a User's Manual.

Chen, M.S.; Shoults, R.R.

1985-07-01T23:59:59.000Z

491

Applications of Nash Equilibria In Electricity Markets  

E-Print Network [OSTI]

customers in smaller quantities on the retail electricity market. #12;Clearing Price Auctions determine in the stack, while high price offers are promising during peak demand. The electricity price is thereforeApplications of Nash Equilibria In Electricity Markets Term Paper Seminar Electrical Power Networks

Lavaei, Javad

492

Electric power annual 1995. Volume II  

SciTech Connect (OSTI)

This document summarizes pertinent statistics on various aspects of the U.S. electric power industry for the year and includes a graphic presentation. Data is included on electric utility retail sales and revenues, financial statistics, environmental statistics of electric utilities, demand-side management, electric power transactions, and non-utility power producers.

NONE

1996-12-01T23:59:59.000Z

493

Demand Response for Ancillary Services  

SciTech Connect (OSTI)

Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL

2013-01-01T23:59:59.000Z

494

Nordic TSOs' Action Plans in enhancing and monitoring Demand Response  

E-Print Network [OSTI]

improvment ­ activate the energy efficiency actors 13 5. SYSTEMATIC MONITORING OF REALISED DEMAND RESPONSE 13 report to about 12 000 MW in total. Every 10 % of the potential that can be activated (1 200 MW) equals. In the report "Peak Production Capabil- ity and Peak Load in the Nordic Electricity Market" (Summary

495

Outline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel Market  

E-Print Network [OSTI]

Supply Chains and Fuel Markets In the U.S., electric power generation accounts for 30% of the natural gas demand (over 50% in the summer), 90% of the coal demand, and over 45% of the residual fuel oil demand, the wholesale electricity price in New England decreased by 38% mainly because the delivered natural gas price

Nagurney, Anna

496

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

SciTech Connect (OSTI)

The Pacific Gas and Electric Company (PG&E) is conducting a pilot program to investigate the technical feasibility of bidding certain demand response (DR) resources into the California Independent System Operator's (CAISO) day-ahead market for ancillary services nonspinning reserve. Three facilities, a retail store, a local government office building, and a bakery, are recruited into the pilot program. For each facility, hourly demand, and load curtailment potential are forecasted two days ahead and submitted to the CAISO the day before the operation as an available resource. These DR resources are optimized against all other generation resources in the CAISO ancillary service. Each facility is equipped with four-second real time telemetry equipment to ensure resource accountability and visibility to CAISO operators. When CAISO requests DR resources, PG&E's OpenADR (Open Automated DR) communications infrastructure is utilized to deliver DR signals to the facilities energy management and control systems (EMCS). The pre-programmed DR strategies are triggered without a human in the loop. This paper describes the automated system architecture and the flow of information to trigger and monitor the performance of the DR events. We outline the DR strategies at each of the participating facilities. At one site a real time electric measurement feedback loop is implemented to assure the delivery of CAISO dispatched demand reductions. Finally, we present results from each of the facilities and discuss findings.

Kiliccote, Sila; Piette, Mary Ann; Ghatikar, Girish; Koch, Ed; Hennage, Dan; Hernandez, John; Chiu, Albert; Sezgen, Osman; Goodin, John

2009-11-06T23:59:59.000Z

497

A dynamic model of industrial energy demand in Kenya  

SciTech Connect (OSTI)

This paper analyses the effects of input price movements, technology changes, capacity utilization and dynamic mechanisms on energy demand structures in the Kenyan industry. This is done with the help of a variant of the second generation dynamic factor demand (econometric) model. This interrelated disequilibrium dynamic input demand econometric model is based on a long-term cost function representing production function possibilities and takes into account the asymmetry between variable inputs (electricity, other-fuels and Tabour) and quasi-fixed input (capital) by imposing restrictions on the adjustment process. Variations in capacity utilization and slow substitution process invoked by the relative input price movement justifies the nature of input demand disequilibrium. The model is estimated on two ISIS digit Kenyan industry time series data (1961 - 1988) using the Iterative Zellner generalized least square method. 31 refs., 8 tabs.

Haji, S.H.H. [Gothenburg Univ. (Sweden)

1994-12-31T23:59:59.000Z

498

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

499

Electric power annual 1993  

SciTech Connect (OSTI)

This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

Not Available

1994-12-08T23:59:59.000Z

500

Workshop on Demand Response, Ballerup, 7. February 2006 1 Monte Carlo Simulations of the Nordic Power System  

E-Print Network [OSTI]

· Nordic power market · Time resolution: Hour · Simulates the electricity and heat markets based on: · Heat and electricity demand prognoses · Technical and economic data for power plants · Power and heat capacities · Fuel Power System · How to estimate the value of demand response? · Method · Model · Setup · Results Stine