Sample records for reduce building energy

  1. Reducing Energy Demand in Buildings Through State Energy Codes...

    Energy Savers [EERE]

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building...

  2. REDUCING ENERGY USE IN FLORIDA BUILDINGS

    E-Print Network [OSTI]

    Raustad, R.; Basarkar, M.; Vieira, R.

    to determine the energy saving features available which are, in most cases, stricter than the current Florida Building Code. The energy savings features include improvements to building envelop, fenestration, lighting and equipment, and HVAC efficiency...

  3. Using occupancy to reduce energy consumption of buildings

    E-Print Network [OSTI]

    Balaji, Bharathan

    2011-01-01T23:59:59.000Z

    Driven Energy Management for Smart Building Automation” InDriven Energy Management for Smart Building Au- tomation” Innetwork for all our smart building solutions. For this we

  4. Building Technologies Research and Integration Center Reducing the energy consumption of the nation's buildings is

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    2/21/2011 Building Technologies Research and Integration Center Reducing the energy consumption of the nation's buildings is essential for achieving a sustainable clean energy future and will be an enormous challenge. Buildings account for 40% of the nation's carbon emissions and the consumption of 40% of our

  5. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    E-Print Network [OSTI]

    Sidheswaran, Meera

    2010-01-01T23:59:59.000Z

    VOCs substitute for ventilation in commercial buildings? ."Gorfain J (2008). Analysis of ventilation data from the U.S.Commercial Building Ventilation Energy Meera Sidheswaran,

  6. Using occupancy to reduce energy consumption of buildings

    E-Print Network [OSTI]

    Balaji, Bharathan

    2011-01-01T23:59:59.000Z

    network for all our smart building solutions. For this weDriven Energy Management for Smart Building Automation” Inused in a variety of smart building scenarios. In terms of

  7. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27T23:59:59.000Z

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  8. Using occupancy to reduce energy consumption of buildings

    E-Print Network [OSTI]

    Balaji, Bharathan

    2011-01-01T23:59:59.000Z

    Smart Building Automation” In Proceedings of the ACM Workshop on Embedded Sensing Systems for Energy-EfficiencySmart Building Automation” In Proceedings of the ACM Workshop on Embedded Sensing Systems for Energy-EfficiencySmart Building Au- tomation” In Proceedings of the ACM Workshop on Embedded Sensing Systems for Energy-Efficiency

  9. High-albedo materials for reducing building cooling energy use

    SciTech Connect (OSTI)

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01T23:59:59.000Z

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building`s envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  10. Reducing Energy Demand in Buildings Through State Energy Codes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8,PastRadiation LossesReducing

  11. Reducing Energy Demand in Buildings Through State Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012Energy ReliabilityNews FlashesRedbird Red

  12. Webinar: Make Your Building Sing!: Building-Retuning to Reduce Energy Waste

    Broader source: Energy.gov [DOE]

    Panelists: Eileen Gohr and Steve Harrison, Parameter Realty Partners; Dennis Bohlayer, Towson University; Benjamin Goldstein, U.S. Department of Energy; Lisa Shulock, Building Owners and Managers...

  13. Prospects to Reduce the Use of Energy by 50% in Existing Office Buildings 

    E-Print Network [OSTI]

    Dalenback, J.; Abel, E.

    2008-01-01T23:59:59.000Z

    A comprehensive feasibility study indicates that it is possible to reduce the energy used in Swedish office buildings by 50% within an acceptable economic framework. A recent project managed by an advisory group to The Swedish Energy Agency...

  14. Using occupancy to reduce energy consumption of buildings

    E-Print Network [OSTI]

    Balaji, Bharathan

    2011-01-01T23:59:59.000Z

    This technique, called Non-Intrusive Load Monitor- ing(NILM)loads in a building is Non- Intrusive Load Monitoring(NILM)[

  15. Using occupancy to reduce energy consumption of buildings

    E-Print Network [OSTI]

    Balaji, Bharathan

    2011-01-01T23:59:59.000Z

    Response The demand response actions give building managersdemand response (DR) events are handled in our system. Both end users and buildingbuilding managers to actuate the plug loads in case of a demand response

  16. Using occupancy to reduce energy consumption of buildings

    E-Print Network [OSTI]

    Balaji, Bharathan

    2011-01-01T23:59:59.000Z

    4.2 Smart Energy Meter . . . . . . 4.2.1 Hardwareconsumption provided the Smart Meter installed can send datahave developed the Smart Energy Meter to monitor and actuate

  17. Using occupancy to reduce energy consumption of buildings

    E-Print Network [OSTI]

    Balaji, Bharathan

    2011-01-01T23:59:59.000Z

    and is designed with Smart Home applications in mind.Smart Thermostat: Using Occupancy Sensors to Save Energy in Homes.

  18. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    Broader source: Energy.gov [DOE]

    Document provides information about using energy savings performance contracts (ESPCs) to reduce energy consumption and provide energy and cost savings in non-building applications.

  19. Barriers to reducing energy demand in existing building stock -a perspective based on

    E-Print Network [OSTI]

    Carletta, Jean

    Barriers to reducing energy demand in existing building stock - a perspective based on observation another radiator." #12;Typical End User Training #12;Demand Side Problem #12;Workman Mis(?)conceptions "If, interviews, probes, home inspections intervention - management committees, "message of the month", magazine

  20. Reducing Building Energy Costs Using Optimized Operation Strategies for Constant Volume Air Handling Systems

    E-Print Network [OSTI]

    Liu, M.; Athar, A.; Reddy, A.; Claridge, D. E.; Haberl, J. S.; White, E.

    1994-01-01T23:59:59.000Z

    , building energy consumption can be further reduced even after these traditional O&M measures are applied. This involves optimal adjusting of cold deck and hot deck settings according to the ambient temperature and organizing cold deck settings properly... where more than one cold deck is present (Extended O&M Measures). The cold deck and hot deck settings can be adjusted continuously by the Energy Management and Control Systems without additional investment. The optimized cold deck settings can...

  1. A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings

    E-Print Network [OSTI]

    Jiang, Xiaofan

    2010-01-01T23:59:59.000Z

    3 System Architecture 3.1 Building as a2.1 Energy Flows in Buildings . . . . . . . . 2.1.1 Electric2.3.2 Networking . . . . . . . . . . . . 2.4 Building Energy

  2. Scenario analysis of retrofit strategies for reducing energy consumption in Norwegian office buildings

    E-Print Network [OSTI]

    Engblom, Lisa A. (Lisa Allison)

    2006-01-01T23:59:59.000Z

    Model buildings were created for simulation to describe typical office buildings from different construction periods. A simulation program was written to predict the annual energy consumption of the buildings in their ...

  3. Use of Computer Simulation to Reduce the Energy Consumption in a Tall Office Building in Dubai-UAE 

    E-Print Network [OSTI]

    Abu-Hijleh, B.; Abu-Dakka, M.

    2010-01-01T23:59:59.000Z

    increasing the cooling load due to its heat dissipation. Proper design for the maximization of natural light helps reduce the use of artificial lights and results in reduction in the buildings energy consumption. Computer simulation of the lighting and energy...

  4. The only way to achieve low carbon emission targets is to substantially reduce the energy used in buildings.

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    reduce the energy used in buildings. Adding `renewables' electricity generation to a building is very11 KTA@Bath Challenge The only way to achieve low carbon emission targets is to substantially costly compared with designing a building that performs well in the first place, but to do this needs

  5. A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings

    E-Print Network [OSTI]

    Jiang, Xiaofan

    2010-01-01T23:59:59.000Z

    Energy Monitoring and 2.2.1 Building Management Systems .energy flows in buildings and an overview of existing monitoring and management solutions in the previous chapter, we now take a more systems

  6. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    SciTech Connect (OSTI)

    Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

    2013-08-01T23:59:59.000Z

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

  7. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    SciTech Connect (OSTI)

    Mills, Evan

    2009-07-16T23:59:59.000Z

    The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the energy savings. Commissioning also improves worker comfort, mitigates indoor air quality problems

  8. A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings

    E-Print Network [OSTI]

    Jiang, Xiaofan

    2010-01-01T23:59:59.000Z

    architecture that provides fine-grained real-time visibility into building energy consumption enables significant and sustainablearchitecture, to create actionable views of energy usages, which lead to significant and sustainablearchitecture for local energy generation, distribution, and sharing. IEEE Conference on Global Sustainable

  9. Strategic Industrial Energy Efficiency: Reduce Expenses, Build Revenues, and Control Risk

    E-Print Network [OSTI]

    Russell, C.

    2004-01-01T23:59:59.000Z

    Some manufacturing companies successfully boost their financial performance through optimized energy use. This leads not only to reduced energy consumption and associated environmental benefits, but also to capacity improvements that generate...

  10. Strategic Industrial Energy Efficiency: Reduce Expenses, Build Revenues, and Control Risk 

    E-Print Network [OSTI]

    Russell, C.

    2004-01-01T23:59:59.000Z

    Some manufacturing companies successfully boost their financial performance through optimized energy use. This leads not only to reduced energy consumption and associated environmental benefits, but also to capacity improvements that generate...

  11. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    SciTech Connect (OSTI)

    Langner, R.; Hendron, B.; Bonnema, E.

    2014-08-01T23:59:59.000Z

    The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

  12. Building Energy Codes Collaborative Technical Assistance for...

    Energy Savers [EERE]

    State Energy Officials - 2014 BTO Peer Review Southeast Energy Efficiency Alliance's Building Energy Codes Project Reducing Energy Demand in Buildings Through State Energy Codes...

  13. A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings

    E-Print Network [OSTI]

    Jiang, Xiaofan

    2010-01-01T23:59:59.000Z

    9 RadLab as a Green Building Testbed 9.126] Autodesk. Autodesk Green Building Studio. http://David Culler. Enabling green building applications. In The

  14. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    E-Print Network [OSTI]

    Mills, Evan

    2010-01-01T23:59:59.000Z

    Case Study: Supermarket Commissioning with an Emphasis onNational Conference on Building Commissioning, May 18-20,Building Enclosure Commissioning: What's the Big Deal?"

  15. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    E-Print Network [OSTI]

    Mills, Evan

    2010-01-01T23:59:59.000Z

    construction costs inflation-corrected using Engineering News Record (McGraw-Hill), Engineering News Record, Building Cost Index.

  16. Prospects to Reduce the Use of Energy by 50% in Existing Office Buildings

    E-Print Network [OSTI]

    Dalenback, J.; Abel, E.

    for the economic evaluation. BUILDINGS AND MEASURES There is about 150 million m 2 of service building area in Sweden. The average total annual use of heat and electricity is about 210 kWh/m 2 total building area. The project comprises five...

  17. A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings

    E-Print Network [OSTI]

    Jiang, Xiaofan

    2010-01-01T23:59:59.000Z

    building. . . . . . . . . . . . . . .SCADA is a supervisoryInc. http://www.campbellsci.com/scada. [6] DOE-2. http://BIBLIOGRAPHY [17] SCADA Group. http://www.scadagroup.com/

  18. Building America Residential Buildings Energy Efficiency Meeting...

    Energy Savers [EERE]

    Building America Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link...

  19. Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)

    SciTech Connect (OSTI)

    Sheppy, M.; Lobato, C.; Van Geet, O.; Pless, S.; Donovan, K.; Powers, C.

    2011-12-01T23:59:59.000Z

    This publication detailing the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. Data centers are energy-intensive spaces that facilitate the transmission, receipt, processing, and storage of digital data. These spaces require redundancies in power and storage, as well as infrastructure, to cool computing equipment and manage the resulting waste heat (Tschudi, Xu, Sartor, and Stein, 2003). Data center spaces can consume more than 100 times the energy of standard office spaces (VanGeet 2011). The U.S. Environmental Protection Agency (EPA) reported that data centers used 61 billion kilowatt-hours (kWh) in 2006, which was 1.5% of the total electricity consumption in the U.S. (U.S. EPA, 2007). Worldwide, data centers now consume more energy annually than Sweden (New York Times, 2009). Given their high energy consumption and conventional operation practices, there is a potential for huge energy savings in data centers. The National Renewable Energy Laboratory (NREL) is world renowned for its commitment to green building construction. In June 2010, the laboratory finished construction of a 220,000-square-foot (ft{sup 2}), LEED Platinum, Research Support Facility (RSF), which included a 1,900-ft{sup 2} data center. The RSF will expand to 360,000 ft{sup 2} with the opening of an additional wing December, 2011. The project's request for proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 35 kBtu/ft{sup 2} per year. On-site renewable energy generation will offset the annual energy consumption. To support the RSF's energy goals, NREL's new data center was designed to minimize its energy footprint without compromising service quality. Several implementation challenges emerged during the design, construction, and first 11 months of operation of the RSF data center. This document highlights these challenges and describes in detail how NREL successfully overcame them. The IT settings and strategies outlined in this document have been used to significantly reduce data center energy requirements in the RSF; however, these can also be used in existing buildings and retrofits.

  20. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    E-Print Network [OSTI]

    Mills, Evan

    2010-01-01T23:59:59.000Z

    a tool for managing non-energy risks. Indeed, prevention ofand often are defeated Risks to Energy-Efficiency Programs:for saving energy have an intrinsic degree of risk simply

  1. Villa Trieste Homes Building Reduced-Energy Homes in the Southwest U.S. Desert

    E-Print Network [OSTI]

    Hemmers, Oliver

    and o Photovoltaic units for solar energy on the roofs of these homes. o A system that allowsVilla TriesteRomaNVLas VegasNV #12;Design Details Center for Energy Research at UNLV Solar Energy Each that is equivalent to a dial that the customer can set to any choice from `No modification of energy loads' to `Full

  2. A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings

    E-Print Network [OSTI]

    Jiang, Xiaofan

    2010-01-01T23:59:59.000Z

    Idle Laptop Figure 9.4: Aggregated energy usage by applianceenergy usage based on the appliance types, such CHAPTER 8. FEEDBACK as “desktops”, “laptops”, “

  3. Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint

    SciTech Connect (OSTI)

    Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

    2011-02-01T23:59:59.000Z

    This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

  4. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31T23:59:59.000Z

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  5. Energy-Smart Building Choices: How School Facilities Managers and Business Officials Are Reducing Operating Costs and Saving Money

    SciTech Connect (OSTI)

    Energy Smart Schools Team

    2001-08-06T23:59:59.000Z

    Most K-12 schools could save 25% of their energy costs by being smart about energy. Nationwide, the savings potential is $6 billion. While improving energy use in buildings and busses, schools are likely to create better places for teaching and learning, with better lighting, temperature control, acoustics, and air quality. This brochure, targeted to school facilities managers and business officials, describes how schools can become more energy efficient.

  6. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    United States and China, Energy and Buildings, 2013. Underin Singapore. Energy and Buildings, 37, 167-174. Eom, J. ,building operations. Energy and Buildings, 33, 783–791.

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  8. Model Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

  11. Whole Building Energy Simulation

    Broader source: Energy.gov [DOE]

    Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

  12. Using measured equipment load profiles to "right-size" HVAC systems and reduce energy use in laboratory buildings (Pt. 2)

    E-Print Network [OSTI]

    Mathew, Paul; Greenberg, Steve; Frenze, David; Morehead, Michael; Sartor, Dale; Starr, William

    2008-01-01T23:59:59.000Z

    load profiles to “right-size” HVAC systems and reduce energyGeorgia. ASHRAE [1999]. HVAC Applications Handbook 1999.Inefficiency of a Common Lab HVAC System,” presented at the

  13. Energy Management Strategies for Existing Buildings 

    E-Print Network [OSTI]

    Gilmer, L.

    2009-01-01T23:59:59.000Z

    Energy Management Strategies for Existing Buildings Energy efficiency in the built environment: in the United States, we have over 5 million existing buildings. These buildings consume a large percentage of our resources, one of which is energy.... In the coming years, as our demands increase, our infrastructure ages, and we set goals to reduce our green house gas emissions, building energy use plays a vital role. Our success in reducing our carbon footprint lies in our ability to determine energy use...

  14. Energy-Smart Building Choices: How School Facilities Managers and Business Officials Are Reducing Operating Costs and Saving Money (Revision)

    SciTech Connect (OSTI)

    Not Available

    2002-02-01T23:59:59.000Z

    Operating a typical school today is no easy task for facilities managers and business officials. You're expected to deliver increased services with constrained operating budgets. Many schools stay open for longer hours to accommodate community use of the facilities. Dilapidated buildings and systems gobble up energy, yet in many districts, maintenance needs are overshadowed by the need for expansion or new construction to serve growing student populations and changing educational needs.

  15. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    I Figure 21. Sample building energy use label expressed inanalyses of actual buildings energy consumption data confirm1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W. Wall

  16. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    Center for Building Energy Efficiency, and the China Center on Building Energy Efficiency (CERC-BEE) November,1)  CERC  Building  Energy  Efficiency  (CERC?BEE) 

  17. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

  18. Office Buildings: Assessing and Reducing Plug and Process Loads in Office Buildings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01T23:59:59.000Z

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

  19. Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01T23:59:59.000Z

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in retail spaces are poorly understood.

  20. Reduces electric energy consumption

    E-Print Network [OSTI]

    BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

  1. Using measured equipment load profiles to 'right-size' HVACsystems and reduce energy use in laboratory buildings (Pt. 2)

    SciTech Connect (OSTI)

    Mathew, Paul; Greenberg, Steve; Frenze, David; Morehead, Michael; Sartor, Dale; Starr, William

    2005-06-29T23:59:59.000Z

    There is a general paucity of measured equipment load datafor laboratories and other complex buildings and designers often useestimates based on nameplate rated data or design assumptions from priorprojects. Consequently, peak equipment loads are frequentlyoverestimated, and load variation across laboratory spaces within abuilding is typically underestimated. This results in two design flaws.Firstly, the overestimation of peak equipment loads results in over-sizedHVAC systems, increasing initial construction costs as well as energy usedue to inefficiencies at low part-load operation. Secondly, HVAC systemsthat are designed without accurately accounting for equipment loadvariation across zones can significantly increase simultaneous heatingand cooling, particularly for systems that use zone reheat fortemperature control. Thus, when designing a laboratory HVAC system, theuse of measured equipment load data from a comparable laboratory willsupport right-sizing HVAC systems and optimizing their configuration tominimize simultaneous heating and cooling, saving initial constructioncosts as well as life-cycle energy costs.In this paper, we present datafrom recent studies to support the above thesis. We first presentmeasured equipment load data from two sources: time-series measurementsin several laboratory modules in a university research laboratorybuilding; and peak load data for several facilities recorded in anational energy benchmarking database. We then contrast this measureddata with estimated values that are typically used for sizing the HVACsystems in these facilities, highlighting the over-sizing problem. Next,we examine the load variation in the time series measurements and analyzethe impact of this variation on energy use, via parametric energysimulations. We then briefly discuss HVAC design solutions that minimizesimultaneous heating and cooling energy use.

  2. Building energy calculator : a design tool for energy analysis of residential buildings in Developing countries

    E-Print Network [OSTI]

    Smith, Jonathan Y. (Jonathan York), 1979-

    2004-01-01T23:59:59.000Z

    Buildings are one of the world's largest consumers of energy, yet measures to reduce energy consumption are often ignored during the building design process. In developing countries, enormous numbers of new residential ...

  3. Building Energy Efficient Schools

    E-Print Network [OSTI]

    McClure, J. D.; Estes, J. M.

    1985-01-01T23:59:59.000Z

    Many new school buildings consume only half the energy required by similar efficient structures designed without energy performance as a design criterion. These are comfortable and efficient while construction costs remain about the same as those...

  4. Guam- Building Energy Code

    Broader source: Energy.gov [DOE]

    NOTE: In September 2012, The Guam Building Code Council adopted the draft [http://www.guamenergy.com/outreach-education/guam-tropical-energy-code/ Guam Tropical Energy Code]. It must be adopted by...

  5. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    Seven recent energy-efficient U.S. office buildings areSeven recent energy-efficient U.S. office buildings are18, 1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W.

  6. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    the case for building energy-efficiency labels. 3.1 Trendsenergy efficiency. Building energy efficiency labels are anThe use of building energy efficiency labels may be the

  7. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    a future with very low energy buildings resulting in very making  for  low  energy  buildings.   This  project  will and operation of low energy buildings.  Several studies, 

  8. Building Energy Standards

    Broader source: Energy.gov [DOE]

    The 2015 Vermont Commercial Building Energy Standards (CBES) took effect on March 1, 2015. The code is based on the 2015 IECC, with amendments to incorporate ASHRAE 90.1-2013. The new guidelines ...

  9. Building America Webinar: Saving Energy in Multifamily Buildings...

    Energy Savers [EERE]

    More Documents & Publications Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar Energy Saver Guide Building America...

  10. Buildings Energy Efficiency Policy

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Efficiency Wind Biomass Natural Gas Combined Cycle Nuclear Coal IGCC Photovoltaics RangeofBuildings Energy Efficiency Policy ­ A Brief History Steven Nadel Executive Director American Council for an Energy- Efficient Economy #12;U.S. Energy Use in Relation to GDP 1970-2008 0.0 50.0 100

  11. Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH

    E-Print Network [OSTI]

    from buildings. Ventilation, however, comes with a significant energy cost. Currently, heating, with roughly onethird of this energy used to heat and cool ventilation air. As buildings strive to become.energy.ca.gov/research/ environmental March 2011 The Issue Previous studies have associated low ventilation rates with reduced worker

  12. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    E-Print Network [OSTI]

    Williams, Charles

    2014-01-01T23:59:59.000Z

    unimproved. After the ESPC payback period, the governmentbefore, during, and after the ESPC. Figure B2: Agency's CashText APPENDIX B– History of ESPC in Federal Buildings EISA

  13. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    SciTech Connect (OSTI)

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-09-30T23:59:59.000Z

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

  14. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    of actual buildings energy consumption data confirm thedata bases. Actual energy consumption data are necessary toten years. The energy consumption data for new low-energy

  15. Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead of Contractingof

  16. Operation Diagnosis for Buildings Connecting Building Management Systems with Energy Management Systems

    E-Print Network [OSTI]

    Mehler, G.

    2008-01-01T23:59:59.000Z

    Reducing energy consumption of buildings is a good contribution to protect the environment and to reduce costs. The first and most important step to operate a building most efficiently is to make aware of most of the technical parameters. Connecting...

  17. CALIFORNIA ENERGY Large HVAC Building

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION Large HVAC Building Survey Information Database of Buildings over 100 Energy Systems: Productivity and Building Science Program. This program was funded by the California of Portland Energy Conservation, Inc. Project Management: Cathy Higgins, Program Director for New Buildings

  18. Building Energy Efficiency in China - Status, Trends, Targets, and Solutions 

    E-Print Network [OSTI]

    Xia, J.

    2008-01-01T23:59:59.000Z

    It is well accepted that the reduction of building energy consumption is one of the most effective actions fro reducing the emission of CO2 and for protection of energy resources world wide. Understanding and comparing the real building energy...

  19. Building Energy Efficiency in China - Status, Trends, Targets, and Solutions

    E-Print Network [OSTI]

    Xia, J.

    2008-01-01T23:59:59.000Z

    It is well accepted that the reduction of building energy consumption is one of the most effective actions fro reducing the emission of CO2 and for protection of energy resources world wide. Understanding and comparing the real building energy...

  20. Webinar: Make Your Building Sing!: Building-Retuning to Reduce...

    Broader source: Energy.gov (indexed) [DOE]

    (PNNL) developed a curricula focused on retuning both large (with a building automation system, or BAS) and small (without a BAS) commercial buildings. Hear from Better...

  1. Nevada Energy Code for Buildings

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  2. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    due to different definitions of energy use and boundary,due to different definitions of energy use and boundary, methodology for building energy data definition, collection,

  3. Buildings | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to:Brunei: Energy3BuildingOS byprovide

  4. Autotune Building Energy Models

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automation WorldofAutotune Building Energy

  5. Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1 Buildings Sector

  6. Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1 Buildings

  7. Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1 BuildingsContact Us

  8. Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1 BuildingsContact

  9. Laying the Foundation for Energy Efficient Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how the Energy Department is helping commercial building owners and operators throughout America save energy and reduce carbon emissions.

  10. Building Energy Code | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the http:www.energycodes.govstates DOE and http:...

  11. Preliminary Energy Savings Impact Evaluation: Better Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Savings Impact Evaluation: Better Buildings Neighborhood Program Preliminary Energy Savings Impact Evaluation: Better Buildings Neighborhood Program Preliminary Energy...

  12. Energy Standards for State Buildings

    Broader source: Energy.gov [DOE]

    The State is still required by statute to adopt planning and construction standards for state buildings that conserve energy and optimize the energy performance of new buildings. The standards mu...

  13. Moving Toward Zero Energy Buildings 

    E-Print Network [OSTI]

    Ginsberg, M.

    2008-01-01T23:59:59.000Z

    of Directors U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 00 12 02/ 5 86 - 12 11 mark.ginsberg@ee.doe.gov Moving Toward Zero Energy Buildings When I began discussing the idea of Zero Energy Buildings in the mid...-1990s, I received sceptical looks and laughter. Today, we are seeing the concept blossom into a large number of buildings throughout the world that are net zero fossil fuel buildings. I use the term zero energy buildings to mean ?buildings...

  14. Moving Toward Zero Energy Buildings

    E-Print Network [OSTI]

    Ginsberg, M.

    2008-01-01T23:59:59.000Z

    -1990s, I received sceptical looks and laughter. Today, we are seeing the concept blossom into a large number of buildings throughout the world that are net zero fossil fuel buildings. I use the term zero energy buildings to mean ?buildings... of Directors U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 00 12 02/ 5 86 - 12 11 mark.ginsberg@ee.doe.gov Moving Toward Zero Energy Buildings When I began discussing the idea of Zero Energy Buildings in the mid...

  15. 2008 BUILDING ENERGY EFFICIENCY STANDARDS

    E-Print Network [OSTI]

    2008 BUILDING ENERGY EFFICIENCY STANDARDS C A L I F O R N I A E N E RGY CO M M I S S I O N Buildings and Appliances Office #12;Acknowledgments The Building Energy Efficiency Standards (Standards and consultants. Valerie Hall, Deputy Director of the Energy Efficiency and Renewable Division provided policy

  16. Energy Department Announces Building Energy Efficiency Investments...

    Office of Environmental Management (EM)

    Building Energy Efficiency Investments in Twenty-Two States Energy Department Announces Building Energy Efficiency Investments in Twenty-Two States June 27, 2012 - 6:55pm Addthis...

  17. Revealing myths about people, energy and buildings

    E-Print Network [OSTI]

    Diamond, R.

    2011-01-01T23:59:59.000Z

    Myths about People, Energy and Buildings Rick Diamond andmyths about people, energy and buildings are current today?myths about people, energy and buildings? Who tells these

  18. Building Energy Data Exchange Specification Scoping Report |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Data Exchange Specification Scoping Report Building Energy Data Exchange Specification Scoping Report The Building Energy Data Exchange Specification (BEDES),...

  19. Energy Sciences Building | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video Argonne's Energy Sciences Building Energy Sciences Building The Energy Sciences Building is a world-class scientific facility and a shining example of sustainable design....

  20. Building Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartmentDavid Cohan Program Manager

  1. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartmentDavid Cohan

  2. Building Energy Modeling Library

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartmentDavidDepartment ofAmir

  3. Comparison of Building Energy Modeling Programs: Building Loads

    E-Print Network [OSTI]

    LBNL-6034E Comparison of Building Energy Modeling Programs: Building Loads Dandan Zhu1 , Tianzhen Energy, the U.S.-China Clean Energy Research Center for Building Energy Efficiency, of the U;Comparison of Building Energy Modeling Programs: Building Loads A joint effort between Lawrence Berkeley

  4. Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed

    E-Print Network [OSTI]

    Pang, Xiufeng

    2013-01-01T23:59:59.000Z

    generation building energy simulation program. Energy andReal-Time Building Energy Simulation Using EnergyPlus andREAL-TIME BUILDING ENERGY SIMULATION USING ENERGYPLUS AND

  5. Energy 101: Energy Efficient Commercial Buildings

    SciTech Connect (OSTI)

    None

    2014-03-14T23:59:59.000Z

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  6. Energy 101: Energy Efficient Commercial Buildings

    ScienceCinema (OSTI)

    None

    2014-06-26T23:59:59.000Z

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  7. Buildings Events | Department of Energy

    Energy Savers [EERE]

    Webinar: Building America Technology-to-Market Roadmaps 3:00PM to 4:30PM EDT Zero Energy Buildings: What are they and how do we build them? 3:00PM to 4:00PM EDT Residential Energy...

  8. Scripted Building Energy Modeling and Analysis (Presentation)

    SciTech Connect (OSTI)

    Macumber, D.

    2012-10-01T23:59:59.000Z

    Building energy analysis is often time-intensive, error-prone, and non-reproducible. Entire energy analyses can be scripted end-to-end using the OpenStudio Ruby API. Common tasks within an analysis can be automated using OpenStudio Measures. Graphical user interfaces (GUI's) and component libraries reduce time, decrease errors, and improve repeatability in energy modeling.

  9. NASA Net Zero Energy Buildings Roadmap

    SciTech Connect (OSTI)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01T23:59:59.000Z

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  10. Southface Energy Institute: Advanced Commercial Buildings Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southface Energy Institute: Advanced Commercial Buildings Initiative - 2015 Peer Review Southface Energy Institute: Advanced Commercial Buildings Initiative - 2015 Peer Review...

  11. Energy Department Issues Green Building Certification System...

    Office of Environmental Management (EM)

    Issues Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green Building Certification...

  12. Rating the energy performance of buildings

    E-Print Network [OSTI]

    Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

    2004-01-01T23:59:59.000Z

    Energy and Sustainable Buildings, 2004 Available at http://Energy and Sustainable Buildings, Vol. 3, (2004), Olofsson,for a commercial office building in Melbourne, Australia,

  13. Building Energy Monitoring and Analysis

    SciTech Connect (OSTI)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01T23:59:59.000Z

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  14. Building Energy Monitoring and Analysis

    SciTech Connect (OSTI)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01T23:59:59.000Z

    This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  15. Assessing and Reducing Plug and Process Loads in Retail Buildings (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in retail spaces are poorly understood.

  16. Assessing and Reducing Plug and Process Loads in Office Buildings (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

  17. New! Building Energy Standards Essentials for Plans Examiners & Building Inspectors

    E-Print Network [OSTI]

    New! Building Energy Standards Essentials for Plans Examiners & Building Inspectors Building energy codes are complex. Plans examiners and building inspectors are expected to understand and enforce energy savings. This new, hands-on course strives to provide plans examiners and building inspectors

  18. Using Dashboards to Improve Energy and Comfort in Federal Buildings

    E-Print Network [OSTI]

    Marini, Kyle

    2011-01-01T23:59:59.000Z

    gases (GHG) or carbon footprint, and public education onand lowering the carbon footprint or GHG emissions forby reducing carbon footprint. • Compare buildingsenergy

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2009 S.B. 1182 created the Oklahoma Uniform Building Code Commission. The 11-member Commission was given the power to conduct rulemaking processes to adopt new building codes. The codes adopted...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    Prior to 1997, South Carolina's local governments adopted and enforced the building codes. In 1997, the law required statewide use of the most up-to-date building codes, which then required the...

  1. Sault Tribe Building Efficiency Energy Audits

    SciTech Connect (OSTI)

    Holt, Jeffrey W.

    2013-09-26T23:59:59.000Z

    The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

  2. Methodology for the evaluation of natural ventilation in buildings using a reduced-scale air model

    E-Print Network [OSTI]

    Walker, Christine E. (Christine Elaine)

    2006-01-01T23:59:59.000Z

    Commercial office buildings predominantly are designed to be ventilated and cooled using mechanical systems. In temperate climates, passive ventilation and cooling techniques can be utilized to reduce energy consumption ...

  3. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    SciTech Connect (OSTI)

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06T23:59:59.000Z

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  4. Review of Building Energy Saving Techniques

    E-Print Network [OSTI]

    Zeng, X.; Zhu, D.

    2006-01-01T23:59:59.000Z

    The pace of building energy saving in our country is late, compared with developed countries, and the consumption of building energy is much higher. Therefore, it is imperative to open up new building energy saving techniques and heighten energy use...

  5. Review of Building Energy Saving Techniques 

    E-Print Network [OSTI]

    Zeng, X.; Zhu, D.

    2006-01-01T23:59:59.000Z

    The pace of building energy saving in our country is late, compared with developed countries, and the consumption of building energy is much higher. Therefore, it is imperative to open up new building energy saving techniques and heighten energy use...

  6. Building Energy Information Systems: User Case Studies

    E-Print Network [OSTI]

    Granderson, Jessica

    2010-01-01T23:59:59.000Z

    energy and building automation systems. Lilburn, GA:providers' use of building automation systems (BAS), orweb- based building control and automation systems and their

  7. 1 | Building America eere.energy.gov DOE's Building America

    E-Print Network [OSTI]

    1 | Building America eere.energy.gov DOE's Building America Low-E Storm Window Adoption Program Working Group #12;2 | Building America eere.energy.gov Pacific Northwest National Laboratory · Katie Cort, Larson Manufacturing Company Key Staff #12;3 | Building America eere.energy.gov Problem · Windows account

  8. Agent Technology to Improve Building Energy Efficiency and Occupant Comfort

    E-Print Network [OSTI]

    Zeiler, W.; van Houten, R.; Kamphuis, R.; Hommelberg, M.

    2006-01-01T23:59:59.000Z

    Global warming, caused largely by energy consumption, has become a major problem. During the last decades the introduction of energy saving technologies has strongly reduced energy consumption of buildings. Users' preferences and behavior have...

  9. Innovative Faade Systems for Low-energy Commercial Buildings

    E-Print Network [OSTI]

    Innovative Façade Systems for Low-energy Commercial Buildings Eleanor Lee, Stephen Selkowitz abstract Glazing and façade systems have very large impacts on all aspects of commercial building for commercial buildings to significantly reduce energy and demand, helping to move us toward our goal of net

  10. BUILDING ENERGY 1987 Edition

    E-Print Network [OSTI]

    changes in lighting control and HVAC requirements. The lighting control requirements in Section 2-5319(a, are required for all alterations. The HVAC requirements of new buildings are requ ired for some HVAC alterat for a wide variety of building shapes. "SECOND GENERATioN" ALTERNATIVE HVAC COMPLIANCE CODIFIED 4

  11. Reducing Data Center Loads for a Large-scale, Low Energy Office Building: NREL's Research Support Facility (Book), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead of Contractingof the Forward

  12. Toward zero net energy buildings : optimized for energy use and cost

    E-Print Network [OSTI]

    Brown, Carrie Ann, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Recently, there has been a push toward zero net energy buildings (ZNEBs). While there are many options to reduce the energy used in buildings, it is often difficult to determine which are the most appropriate technologies ...

  13. Building Energy Optimization Analysis Method (BEopt) - Building...

    Energy Savers [EERE]

    about BEopt. See an example of a Building America project that used BEopt. Find more case studies of Building America projects across the country that incorporate BEopt when...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    All new residential, commercial, and community-owned buildings constructed on or after January 1, 1992 that recieve financing from the Alaska Housing Finance Corporation (AHFC) must comply with...

  15. asean usaid buildings energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    years, as our demands increase, our infrastructure ages, and we set goals to reduce our green house gas emissions, building energy use plays a vital role. Our success in reducing...

  16. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01T23:59:59.000Z

    solution”. In: Energy and Buildings 52.0 (2012), pp. 39–49.with GenOpt”. In: Energy and Buildings 42.7 (2010), pp.lation Program”. In: Energy and Buildings 33.4 (2001), pp.

  17. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01T23:59:59.000Z

    2006). Re: 2008 Building Energy Efficiency Standards -2010). 2008 Building Energy Efficiency Standards2010). 2008 Building Energy Efficiency Standards Residential

  18. Sustainable Energy Future in China's Building Sector

    E-Print Network [OSTI]

    Li, J.

    2007-01-01T23:59:59.000Z

    gases emission. Energy consumption in buildings could be reduced by 100-300 million tons of oil equivalent (mtoe) in 2030 compared to the business-as-usual (BAU) scenario, which means that 600-700 million metric tons of carbon dioxide (CO2) emissions...

  19. Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed

    E-Print Network [OSTI]

    Pang, Xiufeng

    2013-01-01T23:59:59.000Z

    creating a new-generation building energy simulationprogram. Energy and Buildings, 33: 319-331. Haves, P. ,Liu M. 2001. Use of Whole Building Simulation in On- Line

  20. Reducing Occupant-Controlled Electricity Consumption in Campus Buildings

    E-Print Network [OSTI]

    Doudna, Jennifer A.

    2010 Reducing Occupant-Controlled Electricity Consumption in Campus Buildings Kill­09 and is expected to spend more than $17.1 million in 2009­10. In an effort to reduce electricity consumption; 1 EXECUTIVE SUMMARY UC Berkeley spent $16.39 million on purchased electricity in 2008

  1. Building America Residential Energy Efficiency Research Planning...

    Energy Savers [EERE]

    Building America Residential Energy Efficiency Research Planning Meeting: October 2011 Building America Residential Energy Efficiency Research Planning Meeting: October 2011 On...

  2. Energy Savings in Industrial Buildings 

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    2009-01-01T23:59:59.000Z

    , and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings – heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due...

  3. Buildings Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Peer Exchange Call 4:30PM to 6:00PM EDT The Federal Guiding Principles Checklist in ENERGY STAR Portfolio 6:00PM to 7:30PM EDT Better Buildings Residential Network Orientation...

  4. ENERGY STAR® Guide to Energy Efficiency Competitions for Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY STAR Guide to Energy Efficiency Competitions for Buildings and Plants ENERGY STAR Guide to Energy Efficiency Competitions for Buildings and Plants This step-by-step...

  5. Revisit of Energy Use and Technologies of High Performance Buildings

    E-Print Network [OSTI]

    Li Ph.D., Cheng

    2014-01-01T23:59:59.000Z

    Energy performance of LEED for new construction buildings:New Buildings Institute.New Buildings Institute. 2013. Buildings database, http://

  6. Energy use in office buildings

    SciTech Connect (OSTI)

    None

    1980-10-01T23:59:59.000Z

    This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

  7. Continuous Improvement Energy Projects Reduce Energy Consumption

    E-Print Network [OSTI]

    Niemeyer, E.

    2014-01-01T23:59:59.000Z

    Continuous Improvement Energy Projects Reduce Energy Consumption Eric Niemeyer, Operations Superintendent Drilling Specialties Company A division of Chevron Phillips Chemical Company LP ESL-IE-14-05-31 Proceedings of the Thrity..., LA. May 20-23, 2014 A presentation of the paper “Continuous Improvement Energy Projects Reduce Energy Consumption” by Bruce Murray and Allison Myers ESL-IE-14-05-31 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans...

  8. Local Option- Property Tax Assessment for Energy Efficient Buildings

    Broader source: Energy.gov [DOE]

    In March 2008, Virginia enacted legislation that would allow local jurisdictions to assess the property tax of energy efficient buildings at a reduced rate. Under this law, eligible energy...

  9. Energy Department Recognizes University of Utah in Better Buildings Challenge

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of President Obama’s Better Buildings Challenge, the Energy Department recognized the University of Utah today for its leadership in energy efficiency and for reducing energy use by 40 percent in a historic campus building, saving the University $57,000 a year.

  10. Singapore's Zero-Energy Building's daylight monitoring system

    E-Print Network [OSTI]

    Grobe, Lars

    2010-01-01T23:59:59.000Z

    Singapore’s Zero-Energy Building’s daylight monitoringof California. Singapore’s Zero-Energy Building's daylightchambers in BCAA's Zero Energy Building in Singapore. These

  11. Singapore's Zero-Energy Building's daylight monitoring system

    E-Print Network [OSTI]

    Grobe, Lars

    2010-01-01T23:59:59.000Z

    Singapore’s Zero-Energy Building’s daylight monitoringSingapore’s Zero-Energy Building's daylight monitoringchambers in BCAA's Zero Energy Building in Singapore. These

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    All residential and commercial structures are required to comply with the state’s energy code. The 2009 New Mexico Energy Conservation Code (NMECC), effective June 2013, is based on 2009...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    Authority for adopting the state energy codes was previously vested in the Energy Security Office of the Department of Commerce (originally the Department of Public Services). In 1999-2000, the...

  14. Searching for the Optimal Mix of Solar and Efficiency in Zero Net Energy Buildings: Preprint

    SciTech Connect (OSTI)

    Horowitz, S.; Christensen, C.; Anderson, R.

    2008-08-01T23:59:59.000Z

    Zero net energy buildings employ efficiency to reduce energy consumption and solar technologies to produce as much energy on site as is consumed on an annual basis.

  15. Building Energy-Efficient Schools

    E-Print Network [OSTI]

    ), through the National Renewable Energy Laboratory (NREL), began providing technical assistance to New to spend their Federal Emergency Management Agency (FEMA) settlement money on temporary campuses. LangstonBuilding Energy- Efficient Schools in New Orleans Lessons Learned #12;2 #12;3 The devastation

  16. Building Energy Asset Score: Building Owners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartment ofCodesBuilding Owners

  17. DOE Zero Energy Ready Home Webinar: Building Energy Optimization...

    Broader source: Energy.gov (indexed) [DOE]

    Building Energy Optimization (BEopt) Software DOE Zero Energy Ready Home Webinar: Building Energy Optimization (BEopt) Software This webinar was presented on May 15, 2014 and gives...

  18. International Comparison of Energy Labeling and Standards for Energy Efficient and Green Buildings 

    E-Print Network [OSTI]

    Hennicke, P.; Shrestha, S.; Schleicher, T.

    2011-01-01T23:59:59.000Z

    This paper discusses the approaches of the European Union, Germany and India to reduce GHG- emissions and mitigate climate change impacts from buildings through the establishment of energy performance standards and green building...

  19. International Comparison of Energy Labeling and Standards for Energy Efficient and Green Buildings

    E-Print Network [OSTI]

    Hennicke, P.; Shrestha, S.; Schleicher, T.

    2011-01-01T23:59:59.000Z

    This paper discusses the approaches of the European Union, Germany and India to reduce GHG- emissions and mitigate climate change impacts from buildings through the establishment of energy performance standards and green building...

  20. GSA Building Energy Strategy

    Office of Environmental Management (EM)

    6.5 billion in utilities each year. GSA plays a large role in this business through its energy procurements, alternative financing mechanism, regulatory intervention and...

  1. Buildings | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotinsBostonBridgerBuckeyeEnergy

  2. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01T23:59:59.000Z

    of Public Buildings. Energy and Buildings (41), 426–435.and Renewable Energy, Building Technologies Program, of theand Renewable Energy, Building Technologies Program, of the

  3. Energy consumption of building 39

    E-Print Network [OSTI]

    Hopeman, Lisa Maria

    2007-01-01T23:59:59.000Z

    The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further expand our understanding of how the MIT campus consumes energy and ...

  4. Evaluation of Energy Concepts for Office Buildings

    E-Print Network [OSTI]

    Fisch, M.; Norbert, M.; Plesser, S.

    2005-01-01T23:59:59.000Z

    ) Figure 2 Average Annual Consumption of Primary Energy for 16 EVA-buildings and Reference-Studies Reference studies: Schweiz [2], EG-Audit [5], Stadt Frankfurt [6], enerkenn [3] EVA glassed buildings includes 4 buildings with existing data... buildings and analysed existing data on energy consumption suggest that glassed office buildings do not generally have a significantly higher energy consumption than regular office buildings. Introduction Over the last 10 years, some research...

  5. Reduce Building Energy Consumption by Improving the Supply Air Temperature Schedule and Recommissioning the Terminal Boxes, Submitted to the Energy Management and Operations Division at the M.D. Anderson Cancer Center

    E-Print Network [OSTI]

    Liu, M.; Athar, A.; Zhu, Y.; Claridge, D. E.

    1995-01-01T23:59:59.000Z

    At the request of the Energy Management and Operations Department at M.D. Anderson Cancer Center, the Energy Systems Laboratory of Texas A&M University performed a study of optimizing the HVAC operation at its Basic Research Building. The Basic...

  6. Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture applications |1.1

  7. Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture applications |1.12.1

  8. Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture applications

  9. Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture applications4.1

  10. Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture applications4.15.1

  11. Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture applications4.15.16.1

  12. Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture

  13. Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1

  14. Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1Most Popular Tables

  15. Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1Most Popular

  16. Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1Most Popular 5.5 :

  17. Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1Most Popular 5.5

  18. Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1Most Popular

  19. Energy Efficient Buildings Hub

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |in STEMEnergyI.of Energy Energy

  20. Office Buildings - Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul Aug SepDecadeEnergy Consumption

  1. Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here Western PagesPages

  2. Commercial Buildings Integration Program | Department of Energy

    Office of Environmental Management (EM)

    Million to Support Commercial Building Efficiency These four projects will generate data, case studies, and information intended to help commercial building owners adopt new energy...

  3. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01T23:59:59.000Z

    control logic for building energy systems. Most moderncontrol actuators. Modern digital building automation systemssystem in the lab. The lab is equipped with a modern digital control

  4. EL Program: Embedded Intelligence in Buildings Program Manager: Steven Bushby, Energy and Environment Division, x5873

    E-Print Network [OSTI]

    Perkins, Richard A.

    be significantly reduced. Congress has established a national goal of achieving net-zero energy buildings by 20301 EL Program: Embedded Intelligence in Buildings Program Manager: Steven Bushby, Energy energy buildings by 2030.1 Approximately 84% of the life cycle energy use of a building is associated

  5. Midwest Building Energy Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,Official FileEnergy Midsize Wind Turbines for theMidwest

  6. RADON DAUGHTER EXPOSURES IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    DAUGHTER EXPOSURES IN ENERGY-EFFICIENT BUILDINGS A.V. Nero,DAUGHTER EXPOSURES IN ENERGY-EFFICIENT BUILDINGS A.V. Nero,vs. VENTILATION IN ENERGY EFFICIENT HOUSES Air change rate(

  7. Optimization of energy parameters in buildings

    E-Print Network [OSTI]

    Jain, Ruchi V

    2007-01-01T23:59:59.000Z

    When designing buildings, energy analysis is typically done after construction has been completed, but making the design decisions while keeping energy efficiency in mind, is one way to make energy-efficient buildings. The ...

  8. N. Mariana Islands- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  9. Building Energy Efficiency in India: Compliance Evaluation of Energy Conservation Building Code

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd; Delgado, Alison

    2014-03-26T23:59:59.000Z

    India is experiencing unprecedented construction boom. The country doubled its floorspace between 2001 and 2005 and is expected to add 35 billion m2 of new buildings by 2050. Buildings account for 35% of total final energy consumption in India today, and building energy use is growing at 8% annually. Studies have shown that carbon policies will have little effect on reducing building energy demand. Chaturvedi et al. predicted that, if there is no specific sectoral policies to curb building energy use, final energy demand of the Indian building sector will grow over five times by the end of this century, driven by rapid income and population growth. The growing energy demand in buildings is accompanied by a transition from traditional biomass to commercial fuels, particularly an increase in electricity use. This also leads to a rapid increase in carbon emissions and aggravates power shortage in India. Growth in building energy use poses challenges to the Indian government. To curb energy consumption in buildings, the Indian government issued the Energy Conservation Building Code (ECBC) in 2007, which applies to commercial buildings with a connected load of 100 kW or 120kVA. It is predicted that the implementation of ECBC can help save 25-40% of energy, compared to reference buildings without energy-efficiency measures. However, the impact of ECBC depends on the effectiveness of its enforcement and compliance. Currently, the majority of buildings in India are not ECBC-compliant. The United Nations Development Programme projected that code compliance in India would reach 35% by 2015 and 64% by 2017. Whether the projected targets can be achieved depends on how the code enforcement system is designed and implemented. Although the development of ECBC lies in the hands of the national government – the Bureau of Energy Efficiency under the Ministry of Power, the adoption and implementation of ECBC largely relies on state and local governments. Six years after ECBC’s enactment, only two states and one territory out of 35 Indian states and union territories formally adopted ECBC and six additional states are in the legislative process of approving ECBC. There are several barriers that slow down the process. First, stakeholders, such as architects, developers, and state and local governments, lack awareness of building energy efficiency, and do not have enough capacity and resources to implement ECBC. Second, institution for implementing ECBC is not set up yet; ECBC is not included in local building by-laws or incorporated into the building permit process. Third, there is not a systematic approach to measuring and verifying compliance and energy savings, and thus the market does not have enough confidence in ECBC. Energy codes achieve energy savings only when projects comply with codes, yet only few countries measure compliance consistently and periodic checks often indicate poor compliance in many jurisdictions. China and the U.S. appear to be two countries with comprehensive systems in code enforcement and compliance The United States recently developed methodologies measuring compliance with building energy codes at the state level. China has an annual survey investigating code compliance rate at the design and construction stages in major cities. Like many developing countries, India has only recently begun implementing an energy code and would benefit from international experience on code compliance. In this paper, we examine lessons learned from the U.S. and China on compliance assessment and how India can apply these lessons to develop its own compliance evaluation approach. This paper also provides policy suggestions to national, state, and local governments to improve compliance and speed up ECBC implementation.

  10. Buildings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJune 17,Agenda Top Innovation Spotlight: BuildingofBuzRSS

  11. INDOOR AIR QUALITY MEASUREMENTS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01T23:59:59.000Z

    Quality Measurements in Energy Efficient Buildings Craig D.Quality ~leasurements in Energy Efficient Buildings Craig D.Gregory W. Traynor Energy Efficient Buildings Program Energy

  12. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    energy use in buildings and energy efficiency retrofits;example in which building and energy-efficiency experts cameTechnical Standard of Building Energy Efficiency Labeling.

  13. Assessment of Energy Impact of Window Technologies for Commercial Buildings

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    Energy, 2007 Buildings Energy Data Book, September 2007.levels (2006 Buildings Energy Data Book). Figure 1 - Shareto the 2007 Buildings Energy Data Book, among all types of

  14. Acquisition of building geometry in the simulation of energy performance

    E-Print Network [OSTI]

    Bazjanac, Vladimir

    2001-01-01T23:59:59.000Z

    New-Generation Building Energy Simulation Program," Energy &Classes,” Building Energy Simulation User News, Vol.21,Clarke, J.A. 1985. Energy Simulation in Building Design,

  15. EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables...

  16. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01T23:59:59.000Z

    Learning Control for Thermal Energy Storage Systems”. In:Predictive Control of Thermal Energy Storage in Buildingmaking use of building thermal energy storage, and this work

  17. Trends in Building Energy Usage in Texas State Agencies

    E-Print Network [OSTI]

    Murphy, W. E.; Turner, W. D.; O'Neal, D. L.; Seshan, S.

    1985-01-01T23:59:59.000Z

    unit costs for gas and electricity and a lack of incentives for conservation efforts due to the method of utility budget allocations. A building standard signed into law in 1976 could have reduced energy consumption, but was never enforced. Beginning...

  18. Experimental Method to Determine the Energy Envelope Performance of Buildings 

    E-Print Network [OSTI]

    Berger, J.; Tasca-Guernouti, S. T.; Humbert, M.

    2010-01-01T23:59:59.000Z

    In France, buildings represent 40% of the annual energy consumption. This sector represents an important stack to achieve the objective of reducing by 4 the greenhouse gas emissions by 2050. Knowledge of construction ...

  19. Zero Energy Buildings: A Critical Look at the Definition; Preprint

    SciTech Connect (OSTI)

    Torcellini, P.; Pless, S.; Deru, M.; Crawley, D.

    2006-06-01T23:59:59.000Z

    A net zero-energy building (ZEB) is a residential or commercial building with greatly reduced energy needs through efficiency gains such that the balance of energy needs can be supplied with renewable technologies. Despite the excitement over the phrase ''zero energy'', we lack a common definition, or even a common understanding, of what it means. In this paper, we use a sample of current generation low-energy buildings to explore the concept of zero energy: what it means, why a clear and measurable definition is needed, and how we have progressed toward the ZEB goal.

  20. New York: Weatherizing Westbeth Reduces Energy Consumption |...

    Energy Savers [EERE]

    New York: Weatherizing Westbeth Reduces Energy Consumption New York: Weatherizing Westbeth Reduces Energy Consumption August 21, 2013 - 12:00am Addthis The New York State Homes and...

  1. Federal, state and utility roles in reducing new building greenhouse gas emissions

    SciTech Connect (OSTI)

    Johnson, J.A.; Shankle, D. [Pacific Northwest Lab., Richland, WA (United States); Boulin, J. [USDOE, Washington, DC (United States)

    1995-03-01T23:59:59.000Z

    This paper will explore the role of implementation of building energy codes and standards in reducing US greenhouse gas emissions. It will discuss the role of utilities in supporting the US Department of Energy (DOE) and the Environmental Protection Agency in improving the efficiency of new buildings. The paper will summarize Federal policies and programs that improve code compliance and increase overall greenhouse gas emission reductions. Finally, the paper will discuss the role of code compliance and the energy and greenhouse gas emission reductions that have been realized from various Federal, State and utility programs that enhance compliance.

  2. Building Energy Codes Program (BECP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartmentDavid CohanEnergy Codes

  3. Building Energy Codes Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartmentDavid CohanEnergy CodesProgram

  4. Buildings Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of EnergyRolandBuilding the

  5. Buildings Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of EnergyRolandBuilding theAugust 2015 <

  6. Honest Buildings | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: EnergyHoloceneHonest Buildings Jump to:

  7. Autotune E+ Building Energy Models

    SciTech Connect (OSTI)

    New, Joshua Ryan [ORNL; Sanyal, Jibonananda [ORNL; Bhandari, Mahabir S [ORNL; Shrestha, Som S [ORNL

    2012-01-01T23:59:59.000Z

    This paper introduces a novel Autotune methodology under development for calibrating building energy models (BEM). It is aimed at developing an automated BEM tuning methodology that enables models to reproduce measured data such as utility bills, sub-meter, and/or sensor data accurately and robustly by selecting best-match E+ input parameters in a systematic, automated, and repeatable fashion. The approach is applicable to a building retrofit scenario and aims to quantify the trade-offs between tuning accuracy and the minimal amount of ground truth data required to calibrate the model. Autotune will use a suite of machine-learning algorithms developed and run on supercomputers to generate calibration functions. Specifically, the project will begin with a de-tuned model and then perform Monte Carlo simulations on the model by perturbing the uncertain parameters within permitted ranges. Machine learning algorithms will then extract minimal perturbation combinations that result in modeled results that most closely track sensor data. A large database of parametric EnergyPlus (E+) simulations has been made publicly available. Autotune is currently being applied to a heavily instrumented residential building as well as three light commercial buildings in which a de-tuned model is autotuned using faux sensor data from the corresponding target E+ model.

  8. City of Chicago- Building Energy Code

    Broader source: Energy.gov [DOE]

    The Chicago Energy Conservation Code (CECC) requires residential buildings applying for building permits to comply with energy efficient measures which go beyond those required by the [http://www...

  9. The design of energy-responsive commercial buildings

    SciTech Connect (OSTI)

    Ternoey, S.; Bickle, L.; Robbins, C.; Busch, R.; Mc Cord, K.

    1985-01-01T23:59:59.000Z

    This book is a practical guide for building designers who want to reduce the nonrenewable energy needs of commercial and institutional buildings. The book presents, compares, and interprets the most current information on the principles, advantages, and disadvantages of many energy-related design alternatives. Topics considered include reviewing and interpreting our collective learning experience, the range of possible solutions, energy-responsive climate-rejecting buildings, energy-responsive climate-adapted buildings, the range of possible design approaches, a framework for design, a recommended design approach, applying the recommended design approach: examples, the financial value of energy-responsive design, building energy analysis during early design stages, and component energy analysis during early design stages.

  10. Integrating Renewable Energy Systems in Buildings (Presentation)

    SciTech Connect (OSTI)

    Hayter, S. J.

    2011-08-01T23:59:59.000Z

    This presentation on integrating renewable energy systems into building was presented at the August, 2011 ASHRAE Region IX CRC meetings.

  11. Re-Energize: Building Energy Smart Communities

    Broader source: Energy.gov [DOE]

    This is a document posted on the website of the U.S. Department of Energy's Better Buildings Neighborhood Program.

  12. Energy Analysis and Energy Conservation Options for the Addition to Records Storage Building

    E-Print Network [OSTI]

    Farzad, M.; O'Neal, D. L.

    1986-01-01T23:59:59.000Z

    analyzed using the DOE 2.1B building energy simulation program. An analysis was made for the building as specified in schematic designs and primary drawings. To reduce the solar heat gain of the building through the windows and skylights, a glass with high..., and implementing the proposed ASHRAE standards. Finally, the energy consumption of the building was compared with the energy consumption of the building with solar film and other options which conformed to the proposed ASHRAE energy standard. SUMMARY The energy...

  13. Better Buildings Webinar: Making Utility Energy Efficiency Funds Work for You

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Better Buildings will host a webinar on innovative collaborations with utilities to bring big energy savings to their building portfolios and help reduce utility peak electricity demand.

  14. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    study of Ningbo. Energy and Buildings(43), 2197-2202. Yin,buildings in China. Energy and Buildings, 36, 1191-1196.Public Buildings. Energy and Buildings, 41, 426:435. Hong,

  15. PROPOSED 2013 BUILDING ENERGY EFFICIENCY STANDARDS

    E-Print Network [OSTI]

    PROPOSED 2013 BUILDING ENERGY EFFICIENCY STANDARDS Title 24, Part 6, and Associated400201200415 DAY #12;2013 Building Energy Efficiency Standards Page 1 NOTICE NOTICE This version of the 2013 Building Energy Efficiency Standards is a marked version; that is, it contains underlined or struck

  16. ,/ t"tSlifornla Energy Building Regulations

    E-Print Network [OSTI]

    J ,/ t"tSlifornla 'IOt'nergy Commission Energy Building Regulations for New Residential and Nonre (Energy Building Regulations) 1-1 #12;#12;Section TABLE OF CONTENTS Title Page 1401 1402 General.--ENERGY BUILDING REGULATIONS Section 1401. General. This article contains administrative regulations

  17. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    platforms and  building automation systems (BAS), a building  automation  control,  fault  detection  and  diagnostics  (FDD),  and  continuous  system 

  18. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01T23:59:59.000Z

    S. (2011). Utilities and Building Energy Codes: Air QualityUtility Programs and Building Energy Codes: How utilityUtility Programs and Building Energy Codes: How utility

  19. Using Dashboards to Improve Energy and Comfort in Federal Buildings

    E-Print Network [OSTI]

    Marini, Kyle

    2011-01-01T23:59:59.000Z

    Web based enterprise energy and building automation systems.from an Analysis of Building Energy Information SystemG. , & Price, P. 2009b. Building Energy Information Systems:

  20. Gauging Improvements in Urban Building Energy Policy in India

    E-Print Network [OSTI]

    Williams, Christopher

    2013-01-01T23:59:59.000Z

    constructing a net zero-energy building to house the REECCountry Report on Building Energy Codes in India. Richland,2010. Mainstreaming Building Energy Efficiency Codes in

  1. Worldwide Status of Energy Standards for Buildings - Appendices

    E-Print Network [OSTI]

    Janda, K.B.

    2008-01-01T23:59:59.000Z

    Consumption in Buildings and Energy Efficiency Projectsnon-residential buildings: Energy Efficiency of ElectricalBetter" National Building Agency "Energy Efficiency in New

  2. Gauging Improvements in Urban Building Energy Policy in India

    E-Print Network [OSTI]

    Williams, Christopher

    2013-01-01T23:59:59.000Z

    Mainstreaming Building Energy Efficiency Codes in Developing2010. Transforming the Building Energy Efficiency Market inin crafting new building energy efficiency policies and

  3. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01T23:59:59.000Z

    improving building energy efficiency has the potential toand improving building energy efficiency by exploring thecontributes to general building energy efficiency efforts by

  4. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    communication on building energy efficiency policy in China.emitting country. Building energy efficiency has become antarget. One of the building energy efficiency policies the

  5. SIMMODEL: A DOMAIN DATA MODEL FOR WHOLE BUILDING ENERGY SIMULATION

    E-Print Network [OSTI]

    O'Donnell, James

    2013-01-01T23:59:59.000Z

    whole building energy simulation program. In: IBPSA BuildingExchange Protocols for Energy Simulation of HVAC&R EquipmentInteroperability for Energy Simulation. buildingSmart (2010)

  6. European Union Energy Performance of Building Directive and the Impact of Building Automation on Energy Efficiency

    E-Print Network [OSTI]

    Wirth, U.

    2008-01-01T23:59:59.000Z

    Gubelstrasse 22 CH-6301 Zug 00 41 41/ 7 24 55 60 wirth.ulrich@siemens.com European Union Energy Performance of Buildings Directive and The impact of Building Automation on Energy Efficiency Buildings account for 40 percent of global energy... building automation and control and technical building management based on the same may provide a demonstrable contribution to EU savings goals of 20 percent by 2020. The goal of European Directive 2002/91/EC on the total energy efficiency of buildings...

  7. Building Energy Modeling (BEM) Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartmentDavidDepartment of

  8. Building Envelopes | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHARE Building Envelopes MFEL.jpg The

  9. Building Energy Codes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to:Brunei: Energy3 WindBuilding Energy

  10. Building America Residential Energy Efficiency Stakeholders Meeting...

    Energy Savers [EERE]

    Energy Efficiency Stakeholders Meeting: March 2011 Building America Residential Energy Efficiency Stakeholders Meeting: March 2011 On this page, you may link to the summary report...

  11. Building America Residential Energy Efficiency Technical Update...

    Energy Savers [EERE]

    Residential Energy Efficiency Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link...

  12. Better Buildings Neighborhood Program: Energy Efficiency Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program: Energy Efficiency Market Sustainable Business Planning Better Buildings Neighborhood Program: Energy Efficiency Market Sustainable Business Planning U.S. Department of...

  13. Energy Reduction Plan for State Buildings

    Broader source: Energy.gov [DOE]

    In April 2007, Massachusetts Gov. Deval Patrick signed Executive Order 484, titled “Leading by Example: Clean Energy and Efficient Buildings.” This order establishes numerous energy targets and...

  14. Worldwide Energy Efficiency Action through Capacity Building...

    Open Energy Info (EERE)

    and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide Energy Efficiency Action...

  15. Residential Buildings Integration | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Promote the use of energy efficient technologies and methods by builders through the DOE Zero Energy Ready Home program. Building Codes and Equipment Standards Provide a wide...

  16. Building Energy Optimization Tool (BEopt) Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tool (BEopt) 2 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov The Home of the Future....Today 3 | INNOVATION & INTEGRATION:...

  17. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01T23:59:59.000Z

    fast urbanization makes building energy efficiency a crucials potential for building energy efficiency and on-siteor carbon effective building energy efficiency and on-site

  18. Renewable Energy Applications for Existing Buildings: Preprint

    SciTech Connect (OSTI)

    Hayter, S. J.; Kandt, A.

    2011-08-01T23:59:59.000Z

    This paper introduces technical opportunities, means, and methods for incorporating renewable energy (RE) technologies into building designs and operations. It provides an overview of RE resources and available technologies used successfully to offset building electrical and thermal energy loads. Methods for applying these technologies in buildings and the role of building energy efficiency in successful RE projects are addressed along with tips for implementing successful RE projects.

  19. A long-term, integrated impact assessment of alternative building energy code scenarios in China

    SciTech Connect (OSTI)

    Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon E.

    2014-04-01T23:59:59.000Z

    China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13% - 22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement.

  20. Feature Selection for Support Vector Regression in the Application of Building Energy Prediction

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Feature Selection for Support Vector Regression in the Application of Building Energy Prediction--When using support vector regression to predict building energy consumption, since the energy influence and reduces the computational time. Keywords-support vector regression; feature selection; build- ing; energy

  1. More Issues of Building Energy Simulation 

    E-Print Network [OSTI]

    Kang, Z.; Zhao, J.

    2006-01-01T23:59:59.000Z

    The paper investigates the development of building energy simulation software. It is shown that such applications can be used for energy forecasting, system design and operations, and energy evaluation. Several energy simulation methods are analyzed...

  2. Building Energy Modeling | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary 29 - MarchCodes Resources Building CodesofDepartment

  3. Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Energy-Saving Homes, Buildings, &...

  4. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    Breakdown of Total  Electricty Consumption ? Building A kWh/Breakdown of Total  Electricty Consumption ? Building B kWh/Breakdown of Total   Electricty Consumption ? Building C 

  5. Sandia Energy - Building a Microgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim Bay CoatingsBuilding a Microgrid

  6. Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables

    Broader source: Energy.gov [DOE]

    Energy use intensities in commercial buildings vary widely and depend on activity and climate, as shown in this data table, which was derived from the Energy Information Agency's 2003 Commercial Building Energy Consumption Survey.

  7. PSNC Energy (Gas)- Green Building Rate Discount

    Broader source: Energy.gov [DOE]

    This discounted rate is available to commercial customers whose building meets the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) certification or equivalent. To...

  8. Reducing the Energy Usage of Oce Applications

    E-Print Network [OSTI]

    Flinn, Jason

    Reducing the Energy Usage of OÆce Applications Jason Flinn 1 , Eyal de Lara 2 , M. Satyanarayanan 1 of the energy usage of Microsoft's PowerPoint application and show that adaptive policies can reduce energy research e#11;ort, no silver bullet for reducing energy usage has yet been found. Instead, a comprehensive

  9. Advanced Energy Retrofit Guide Retail Buildings

    SciTech Connect (OSTI)

    Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-19T23:59:59.000Z

    The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  10. Advanced Energy Retrofit Guide Office Buildings

    SciTech Connect (OSTI)

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27T23:59:59.000Z

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  11. Achieving Energy Efficiency in Exis0ng Buildings How achieve significant commercial building energy efficiency?

    E-Print Network [OSTI]

    Hutyra, Lucy R.

    · Led BU Energy Audit over past 3 years · University Sustainability CommiAchieving Energy Efficiency in Exis0ng Buildings ·How achieve significant commercial building energy efficiency? Focus on HVAC. ·Our solu0on

  12. Better Buildings Summit Residential Sessions Engage Energy Pros...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Summit Residential Sessions Engage Energy Pros Better Buildings Summit Residential Sessions Engage Energy Pros This year's DOE Better Buildings Summit, taking...

  13. Energy Department Launches Better Buildings Alliance Indoor Lighting...

    Energy Savers [EERE]

    Energy Department Launches Better Buildings Alliance Indoor Lighting Campaign for Commercial Buildings Energy Department Launches Better Buildings Alliance Indoor Lighting Campaign...

  14. Building Energy Codes Program Overview - 2014 BTO Peer Review...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Building Building Energy Codes Program activities. Through...

  15. Worldwide Status of Energy Standards for Buildings - Appendices

    E-Print Network [OSTI]

    Janda, K.B.

    2008-01-01T23:59:59.000Z

    for NON-RESIDENTIAL BUILDINGS. This survey has been designedtypes of energy standards for buildings. Please respond asI: GENERAL OVERVIEW OF BUILDING ENERGY STANDARDS Does your

  16. Using Dashboards to Improve Energy and Comfort in Federal Buildings

    SciTech Connect (OSTI)

    Lawrence Berkeley National Laboratory; Marini, Kyle; Ghatikar, Girish; Diamond, Richard

    2011-02-01T23:59:59.000Z

    Federal agencies are taking many steps to improve the sustainability of their operations, including improving the energy efficiency of their buildings, promoting recycling and reuse of materials, encouraging carpooling and alternative transit schemes, and installing low flow water fixture units are just a few of the common examples. However, an often overlooked means of energy savings is to provide feedback to building users about their energy use through information dashboards connected to a building?s energy information system. An Energy Information System (EIS), broadly defined, is a package of performance monitoring software, data acquisition hardware, and communication systems that is used to collect, store, analyze, and display energy information. At a minimum, the EIS provides the whole-building energy-use information (Granderson 2009a). We define a ?dashboard? as a display and visualization tool that utilizes the EIS data and technology to provide critical information to users. This information can lead to actions resulting in energy savings, comfort improvements, efficient operations, and more. The tools to report analyzed information have existed in the information technology as business intelligence (Few 2006). The dashboard is distinguished from the EIS as a whole, which includes additional hardware and software components to collect and storage data, and analysis for resources and energy management (Granderson 2009b). EIS can be used for a variety of uses, including benchmarking, base-lining, anomaly detection, off-hours energy use evaluation, load shape optimization, energy rate analysis, retrofit and retro-commissioning savings (Granderson 2009a). The use of these EIS features depends on the specific users. For example, federal and other building managers may use anomaly detection to identify energy waste in a specific building, or to benchmark energy use in similar buildings to identify energy saving potential and reduce operational cost. There are several vendors of EIS technology that provide information on energy and other environmental variables in buildings.

  17. Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options

    SciTech Connect (OSTI)

    Pless, S.; Torcellini, P.

    2010-06-01T23:59:59.000Z

    A net-zero energy building (NZEB) is a residential or commercial building with greatly reduced energy needs. In such a building, efficiency gains have been made such that the balance of energy needs can be supplied with renewable energy technologies. Past work has developed a common NZEB definition system, consisting of four well-documented definitions, to improve the understanding of what net-zero energy means. For this paper, we created a classification system for NZEBs based on the renewable sources a building uses.

  18. Building Energy Transparency Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartmentDavidDepartmentRating

  19. Building Energy Modeling Projects | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:WhetherNovember 13,National RenewableEnergyView the Building

  20. How to Reduce Energy Supply Costs

    E-Print Network [OSTI]

    Swanson, G.

    2007-01-01T23:59:59.000Z

    Rising energy costs have many businesses looking for creative ways to reduce their energy usage and lower the costs of energy delivered to their facilities. This paper explores innovative renewable and alternative energy technologies that can help...

  1. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01T23:59:59.000Z

    Department of Energy Commercial Reference Building Models ofthe National Building Stock. Golden, Colorado: Nationaland Renewable Energy, Building Technologies Program, of the

  2. Handbook of energy use for building construction

    SciTech Connect (OSTI)

    Stein, R.G.; Stein, C.; Buckley, M.; Green, M.

    1980-03-01T23:59:59.000Z

    The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, ralroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. The handbook focuses on new building construction; however, some information for the other parts of the construction industry is also included. The handbook provides building designers with information to determine the energy required for buildings construction and evaluates the energy required for alternative materials, assemblies, and methods. The handbook is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

  3. NASA Net Zero Energy Buildings Roadmap

    Office of Environmental Management (EM)

    site energy goal for new buildings * Step 1. Best-in-class energy efficiency (EE), demand-side energy use intensity (EUI) 50% reduction versus AHSRAE Standard 90.1-2010...

  4. Energy and Buildings 81 (2014) 371380 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Kusiak, Andrew

    2014-01-01T23:59:59.000Z

    Energy and Buildings 81 (2014) 371­380 Contents lists available at ScienceDirect Energy buildings. Improved HVAC control may reduce its energy consumption without additional costs. The supervisory and Buildings journal homepage: www.elsevier.com/locate/enbuild Performance optimization of HVAC systems

  5. Energy Efficiency in Buildings- the Utilities View

    E-Print Network [OSTI]

    Konig, U.

    for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 RWE Energy / Energieeffizienz bei Immobilien / U. K?nig / ICEBO '08 SEITE 5 1. RWE/RWE Energy 2. German Energy Market 3. Buildings and Climate Protection 4. What does RWE do? 5. Need.... German Energy Market 3. Buildings and Climate Protection 4. What does RWE do? 5. Need for action va W GGEHEN ESL-IC-08-10-27 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008...

  6. Better Buildings Residential Network | Department of Energy

    Energy Savers [EERE]

    Call summaries See the partnerships case study Read the February issue of the Better Buildings Network View Upcoming Peer Exchange Calls* Residential Energy Efficiency...

  7. Energy Efficiency in Buildings- the Utilities View 

    E-Print Network [OSTI]

    Konig, U.

    2008-01-01T23:59:59.000Z

    for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 RWE Energy / Energieeffizienz bei Immobilien / U. K?nig / ICEBO '08 SEITE 5 1. RWE/RWE Energy 2. German Energy Market 3. Buildings and Climate Protection 4. What does RWE do? 5. Need.... German Energy Market 3. Buildings and Climate Protection 4. What does RWE do? 5. Need for action va W GGEHEN ESL-IC-08-10-27 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008...

  8. Buildings Technologies Deployment | Clean energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are successfully deployed to the fullest extent possible. ORNL helps optimize the energy performance of buildings and industrial processes by moving technologies to full use...

  9. Impact of Continuous Commissioning® on the Energy Star® Rating of Hospitals and Office Buildings

    E-Print Network [OSTI]

    Kulkarni, Aditya Arun

    2012-02-14T23:59:59.000Z

    Re-commissioning, retro-commissioning, Continuous Commissioning® (CC®) are examples of successful systematic processes implemented in buildings to reduce overall building energy consumption, and improve efficiency of systems and their operations...

  10. Implementation of Simple Measures for Savings Water and Energy Consumption in Kuwait Government Buildings

    E-Print Network [OSTI]

    Albaharani, H.; Al-Mulla, A.

    2012-01-01T23:59:59.000Z

    This paper gives in details the efforts made by the Public Services Department (PSD) to reduce water and energy consumptions in the Ministry of Social Affairs and Labour's (MOSAL) buildings in Kuwait. PSD manages around 125 buildings distributed...

  11. Visualizing Energy Information in Commercial Buildings: A Study of Tools, Expert Users, and Building Occupants

    E-Print Network [OSTI]

    Lehrer, David; Vasudev, Janani

    2011-01-01T23:59:59.000Z

    of LEED-Certified Commercial Buildings. ” Proceedings,on Energy Efficiency in Buildings, ACEEE, Washington DC,System User Interface for Building Occupants. ” ASHRAE

  12. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    HVAC consumes more electricity in September, the daily trendsHVAC Equipment Figure 44 Building 2 typical weekday electricity consumption trendHVAC Equipment Figure 45 Building 2 typical weekend electricity consumption trend

  13. Energy-efficient buildings: Does the marketplace work?

    SciTech Connect (OSTI)

    Brown, M.A.

    1996-12-31T23:59:59.000Z

    For a variety of reasons, U.S. households, businesses, manufacturers, and government agencies all fail to take full advantage of cost-effective, energy-efficiency opportunities. Despite a growing environmental ethic among Americans and a concern for energy independence, consumers in this country are underinvesting in technologies, products, and practices that would cut their energy bills. The result is a large untapped potential for improving energy productivity, economic competitiveness, environmental quality, and energy security. The thesis of this paper is that the marketplace for energy efficiency, in general, is not operating perfectly, and the marketplace for energy-efficient buildings, in particular, is flawed. The reasons for underinvestments in cost-effective, energy efficiency are numerous and complicated. They also vary from sector to sector: the principal causes of energy inefficiencies in agriculture, manufacturing, and transportation are not the same as the causes of inefficiencies in homes and office buildings, although there are some similarities. One of the reasons for these differences is that the structure of marketplace for delivering new technologies and products in each sector differs. Energy-efficiency improvements in the buildings sector is critical to reducing greenhouse gas emissions, since most of the energy consumed in buildings comes from the burning of fossil fuels. This paper therefore begins by describing energy use and energy trends in the U.S. buildings sector. Characteristics of the marketplace for delivering energy efficiency technologies and products are then described in detail, arguing that this marketplace structure significantly inhibits rapid efficiency improvements.

  14. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    cooling, and lighting using passive systems, and optimal building design strategies to realize that potential. ASSESSMENT OF PROGRESS-

  15. Energy Savings Modeling of Standard Commercial Building Re-tuning Measures: Large Office Buildings

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2012-06-01T23:59:59.000Z

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS's capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This report investigates the energy savings potential of several common HVAC system retuning measures on a typical large office building prototype model, using the Department of Energy's building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated - each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All of these measures and combinations were simulated in 16 cities representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for most cities for all measures). Combining many of the retuning measures revealed deep savings potential. Some of the more aggressive combinations revealed 35-75% reductions in annual HVAC energy consumption, depending on climate and building vintage.

  16. Building Energy Efficiency in Rural China

    SciTech Connect (OSTI)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-04-01T23:59:59.000Z

    Rural buildings in China now account for more than half of China’s total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China’s success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.

  17. Planning for energy efficiency in new commercial buildings

    SciTech Connect (OSTI)

    Deakin, J.F.; O'Sullivan, T.

    1986-02-01T23:59:59.000Z

    The project described in this report provides other cities with an example of a city working to develop locally sponsored building energy review procedures. These procedures should result in the construction of new buildings incorporating the most energy efficient design measures. This will provide two specific benefits to San Francisco. First, it will reduce energy consumption in new buildings and will slow down the overall energy growth rate for the City's commercial sector. Over the past five years the growth rate for commercial building electricity use in San Francisco has averaged 5% per year, a rate double that of Citywide growth. This project works toward bringing that growth rate in line with the rest of San Francisco's energy users. In addition, San Francisco has the highest rental costs for commercial space in the nation outside of New York City. Any action that can be taken to reduce energy consumption in a new building will result in lower operating costs throughout its life. Reducing costs that would otherwise be spent on energy frees those resources to be spent on more productive areas of the local economy. 39 refs., 8 figs., 8 tabs.

  18. Estimation of Building Parameters Using Simplified Energy Balance Model and Metered Whole Building Energy Use

    E-Print Network [OSTI]

    Masuda, H.; Claridge, D.

    2012-01-01T23:59:59.000Z

    , cooling and heating and weather data using multiple linear regression models based on the simplified steady-state energy balance for a whole building. Two approaches using different response variables: the energy balance load (EBL) and the building thermal...

  19. Estimation of Building Parameters Using Simplified Energy Balance Model and Metered Whole Building Energy Use 

    E-Print Network [OSTI]

    Masuda, H.; Claridge, D.

    2012-01-01T23:59:59.000Z

    , cooling and heating and weather data using multiple linear regression models based on the simplified steady-state energy balance for a whole building. Two approaches using different response variables: the energy balance load (EBL) and the building thermal...

  20. Control and Room Temperature Optimization of Energy Efficient Buildings

    SciTech Connect (OSTI)

    Djouadi, Seddik M [ORNL] [ORNL; Kuruganti, Phani Teja [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. It is therefore economically and environmentally important to reduce the building energy consumption to realize massive energy savings. In this paper, a method to control room temperature in buildings is proposed. The approach is based on a distributed parameter model represented by a three dimensional (3D) heat equation in a room with heater/cooler located at ceiling. The latter is resolved using finite element methods, and results in a model for room temperature with thousands of states. The latter is not amenable to control design. A reduced order model of only few states is then derived using Proper Orthogonal Decomposition (POD). A Linear Quadratic Regulator (LQR) is computed based on the reduced model, and applied to the full order model to control room temperature.

  1. Midwest Building Energy Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil &315_ArnibanPriority DataPART 970Midwest Building Energy Program

  2. U.S. Department of Energy Building Energy Data Exchange Specification...

    Office of Environmental Management (EM)

    U.S. Department of Energy Building Energy Data Exchange Specification U.S. Department of Energy Building Energy Data Exchange Specification This document describes the DOE Building...

  3. European Union Energy Performance of Building Directive and the Impact of Building Automation on Energy Efficiency 

    E-Print Network [OSTI]

    Wirth, U.

    2008-01-01T23:59:59.000Z

    Gubelstrasse 22 CH-6301 Zug 00 41 41/ 7 24 55 60 wirth.ulrich@siemens.com European Union Energy Performance of Buildings Directive and The impact of Building Automation on Energy Efficiency Buildings account for 40 percent of global energy... consumption. The European Union's 2002 Energy Performance of Buildings Directive takes this fact into account and formulates savings goals. A resulting European standard, and uniform certification, applicable throughout Europe, form the foundation since...

  4. Building Energy Information Systems: User Case Studies

    E-Print Network [OSTI]

    Granderson, Jessica

    2010-01-01T23:59:59.000Z

    and monitor energy consumption data. Wal-Mart's decision toof operational and energy consumption data the web-EMCS hasuse of data to reduce energy consumption. Resources and

  5. Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint

    SciTech Connect (OSTI)

    Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

    2010-08-01T23:59:59.000Z

    Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

  6. New York building stands out, saves energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and other features, the building mitigates heat radiation. A rain water harvesting unit reduces runoff into the sewage system, and the water is reused for nonpotable purposes...

  7. Flexible Framework for Building Energy Analysis: Preprint

    SciTech Connect (OSTI)

    Hale, E.; Macumber, D.; Weaver, E.; Shekhar, D.

    2012-09-01T23:59:59.000Z

    In the building energy research and advanced practitioner communities, building models are perturbed across large parameter spaces to assess energy and cost performance in the face of programmatic and economic constraints. This paper describes the OpenStudio software framework for performing such analyses.

  8. Nonresidential Building Energy Use Disclosure Program

    E-Print Network [OSTI]

    ® program online tool for managing building energy use data. (hk) "Prospective buyer" means a person who has)"Data Verification Checklist" means a report generated by Portfolio Manager that summarizes a property's physical· ·/ Nonresidential Building Energy Use Disclosure Program California Code of Regulations Title

  9. Building Technologies Office: EnergyPlus Energy Simulation Software

    Energy Savers [EERE]

    tools to support whole building energy modeling using EnergyPlus and advanced daylight analysis using Radiance. OpenStudio is an open source project to facilitate community...

  10. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    SciTech Connect (OSTI)

    New Buildings Institute; Pacific Northwest National Laboratory; Granderson, Jessica; Piette, Mary Ann; Rosenblum, Ben; Hu, Lily; Harris, Daniel; Mathew, Paul; Price, Phillip; Bell, Geoffrey; Katipamula, Srinivas; Brambley, Michael

    2011-10-01T23:59:59.000Z

    This handbook will give you the information you need to plan an energy-management strategy that works for your building, making it more energy efficient.

  11. Commercial Building Energy Efficiency Education Project

    SciTech Connect (OSTI)

    None

    2013-01-13T23:59:59.000Z

    The primary objective of this grant is to educate the public about carbon emissions and the energy-saving and job-related benefits of commercial building energy efficiency. investments in Illinois.

  12. Energy Efficiency Standards for State Buildings

    Broader source: Energy.gov [DOE]

    In April 2009, the legislature passed [http://data.opi.mt.gov/bills/2009/billhtml/SB0049.htm S.B. 49], creating energy efficiency standards for state-owned and state-leased buildings. Energy...

  13. Reference Buildings by Building Type: Medium office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding Type: Medium office Reference Buildings by

  14. Reference Buildings by Building Type: Medium office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding Type: Medium office Reference Buildings

  15. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," SeminarTHERMAL FOR COOLING ENERGY STORAGE BUILDINGS OF COMMERCIAL

  16. Commercial Building Energy Asset Score Frequently Asked Questions...

    Broader source: Energy.gov (indexed) [DOE]

    Frequently Asked Questions Commercial Building Energy Asset Score Frequently Asked Questions The U.S. Department of Energy's (DOE) Commercial Building Energy Asset Score program...

  17. EERE FY 2016 Budget Overview -- Energy-Saving Homes, Buildings...

    Energy Savers [EERE]

    EERE FY 2016 Budget Overview -- Energy-Saving Homes, Buildings, and Manufacturing EERE FY 2016 Budget Overview -- Energy-Saving Homes, Buildings, and Manufacturing Office of Energy...

  18. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    the case to building owners for energy efficiency. Developoperation with energy efficiency in building systems. X X XBuildings: A Roadmap to Improved Energy Efficiency 11-Sept-

  19. reEnergize: Building Energy Smart Communities | Department of...

    Energy Savers [EERE]

    reEnergize: Building Energy Smart Communities reEnergize: Building Energy Smart Communities Slides presented in the "What's Working in Residential Energy Efficiency Upgrade...

  20. DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training The National Renewable Energy Laboratory...

  1. Better Buildings Network View | March 2015 | Department of Energy

    Energy Savers [EERE]

    Better Buildings Network View | March 2015 Better Buildings Network View | March 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's...

  2. Energy Efficiency Trends in Residential and Commercial Buildings...

    Office of Environmental Management (EM)

    Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building trends...

  3. Better Buildings Network View | June 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2014 Better Buildings Network View | June 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network....

  4. Better Buildings Network View | March 2014 | Department of Energy

    Energy Savers [EERE]

    March 2014 Better Buildings Network View | March 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential...

  5. Visualizing Energy Information in Commercial Buildings: A Study of Tools, Expert Users, and Building Occupants

    E-Print Network [OSTI]

    Lehrer, David; Vasudev, Janani

    2011-01-01T23:59:59.000Z

    Benchmarking for Net-Zero Energy Buildings. ” 12 Included ina small commercial zero-energy building (ZEB). This team hasnet-zero energy for all new commercial buildings by 2030.

  6. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    Figure 9 ? Annual electricity consumption comparison of the total annual electricity consumption, Buildings A and B mostly  measure  electricity  consumption,  cooling  loads, 

  7. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    main building with large glass curtain walls and an annex.  monochromatic vacuum glass curtain wall heating systembuilding with large glass curtain walls and an annex. Total

  8. Specification of an Information Delivery Tool to Support Optimal Holistic Environmental and Energy Management in Buildings

    E-Print Network [OSTI]

    O'Donnell, James

    2008-01-01T23:59:59.000Z

    Laboratory Buildings. ” Energy and Buildings 34 Geoghegan,consumption data. ” Energy and Buildings 24, Hampton, Dave.building operations. ” Energy and Buildings 33, (8):783–791.

  9. Energy Factors, Leasing Structure and the Market Price of Office Buildings in the U.S.

    E-Print Network [OSTI]

    Jaffee, Dwight; Stanton, Richard; Wallace, Nancy

    2012-01-01T23:59:59.000Z

    requirements in building codes, energy efficiency policiesto improve the building’s energy efficiency. Lease contractsimprove the building’s energy efficiency. We focus first on

  10. Business Case for Energy Efficient Building Retrofit and Renovation...

    Energy Savers [EERE]

    More Documents & Publications Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Marketing and Market Transformation Building America...

  11. Better Buildings Quarterly Program Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- SEP Data Dashboard Austin Energy Data Dashboard Better Buildings Neighborhood Program Home Accomplishments History Better Buildings Partners Stories Interviews Videos...

  12. Sensitivity of Building Energy Simulation with Building Occupancy for a University Building 

    E-Print Network [OSTI]

    Chhajed, Shreyans

    2014-08-01T23:59:59.000Z

    of Texas A&M University. The energy model for the building was created using the DOE-2 engine and validated with actual energy consumption data. As constructed building characteristics and occupancy loading data were used in the DOE-2 model. Parametric runs...

  13. Sensitivity of Building Energy Simulation with Building Occupancy for a University Building

    E-Print Network [OSTI]

    Chhajed, Shreyans

    2014-08-01T23:59:59.000Z

    of Texas A&M University. The energy model for the building was created using the DOE-2 engine and validated with actual energy consumption data. As constructed building characteristics and occupancy loading data were used in the DOE-2 model. Parametric runs...

  14. Energy conservation in commercial and residential buildings

    SciTech Connect (OSTI)

    Chiogioji, M.H.; Oura, E.N.

    1982-01-01T23:59:59.000Z

    Energy experts have indicated that we can, by exploiting currently available technology, cut energy consumption by 30 to 50% in new buildings and 10 to 30% in existing buildings, with no significant loss in standard of living, comfort, or convenience. This book surveys the many architectural/engineering techniques for combating energy waste in residential and commercial buildings. The experts in these 10 chapters acquaint us with what is being done and with what can be done in the design, construction, and maintenance of buildings in order to foster energy efficiency; they emphasize life-cycle costing as the only sound approach toward energy conservation. A separate abstract was prepared for each chapter; all abstracts will appear in Energy Abstracts for Policy Analysis (EAPA), with 5 appearing in Energy Research Abstracts (ERA).

  15. Building Energy-Efficiency Best Practice Policies and Policy Packages

    SciTech Connect (OSTI)

    Levine, Mark; Can, Stephane de la Rue de; Zheng, Nina; Williams, Christopher; Amman, Jennifer; Staniaszek, Dan

    2012-10-26T23:59:59.000Z

    This report addresses the single largest source of greenhouse gas emissions and the greatest opportunity to reduce these emissions. The IPCC 4th Assessment Report estimates that globally 35% to 40% of all energy-related CO{sub 2} emissions (relative to a growing baseline) result from energy use in buildings. Emissions reductions from a combination of energy efficiency and conservation (using less energy) in buildings have the potential to cut emissions as much as all other energy-using sectors combined. This is especially the case for China, India and other developing countries that are expected to account for 80% or more of growth in building energy use worldwide over the coming decades. In short, buildings constitute the largest opportunity to mitigate climate change and special attention needs to be devoted to developing countries. At the same time, the buildings sector has been particularly resistant to achieving this potential. Technology in other sectors has advanced more rapidly than in buildings. In the recent past, automobile companies have made large investments in designing, engineering, and marketing energy efficient and alternative fuel vehicles that reduce greenhouse gas emissions. At the same time, the buildings sector – dependent on millions and millions of decisions by consumers and homeowners – face a large variety of market barriers that cause very substantial underinvestment in energy efficiency. How can the trajectory of energy use in buildings be changed to reduce the associated CO{sub 2} emissions? Is it possible to greatly accelerate this change? The answer to these questions depends on policy, technology, and behavior. Can policies be crafted and implemented to drive the trajectory down? Can the use of existing energy efficiency technologies be increased greatly and new technologies developed and brought to market? And what is the role of behavior in reducing or increasing energy use in buildings? These are the three overarching issues. The information assembled in this study and the knowledge derived from it needs to be brought to bear on these three questions. And thus we turn to some of the insights from the study, presented in the form of findings and recommendation.

  16. Buildings Success Stories | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRAM-04-07 AuditOptimizingEnergy BuildingBuilding a 21stBuildings

  17. Energy Conservation Policy Issues and End-Use Scenarios of Savings Potential--Part 5. Energy Efficient Buildings: The Cause of Litigation Against Energy Conservation Building Codes

    E-Print Network [OSTI]

    Benenson, P.

    2011-01-01T23:59:59.000Z

    LITIGATION AGAINST ENERGY CONSERVATION BUILDING CODES I TWO-OF LITIGATION AGAINST ENERGY CONSERVATION BUILDING CODESDIFFERENT PURPOSES OF ENERGY CONSERVATION BUILDING CODES B.

  18. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Sonderegger, R. C.

    2011-01-01T23:59:59.000Z

    Quality Measurements in Energy- Efficient Buildings; April,air are built into energy-efficient buildings, 2 Burnersuse to design new energy efficient buildings and to analyze

  19. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    China demonstration energy- efficient commercial building”,China Demonstration Energy Efficient Office Building insideUS-China demonstration energy-efficient office building Peng

  20. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    analysis of building energy efficiency in China. Tsinghuaand energy efficiency potential in public buildings inraise the energy-efficiency awareness of building owners and

  1. Intelligent Building Energy Information and Control Systems for Low-Energy Operations and Optimal Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2014-01-01T23:59:59.000Z

    As  we  develop low?energy buildings, the need for models Building Energy Information and Control Systems for Low-Building  Energy  Information  and  Control  Systems  for  Low­

  2. Reference Buildings by Building Type: Primary school | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding Type: Medium

  3. Reference Buildings by Building Type: Small office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding

  4. Reference Buildings by Building Type: Small office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding

  5. Reference Buildings by Building Type: Small office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding

  6. Buildings Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal Ongoing at DOE's PaducahBuildings Events Buildings

  7. Buildings Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2015 < prev next > Sun Mon Tue Wed Thu Fri Sat 28 29 30 31 1 2 3 4 5 6 7 8 9 10 Water World: Success Stories and Tools for Water Use Reduction in Your Building Portfolio...

  8. State Buildings Energy Reduction Plan

    Broader source: Energy.gov [DOE]

    The Governor of Virginia signed Executive Order 82, "Greening of State Government" in June 2009 as part of the greater RENEW VIRGINIA Initiative. This Order builds upon [http://www.lva.virginia.gov...

  9. BUI.LDING ENERGY 1987 Edition

    E-Print Network [OSTI]

    for Offices, Retail and Wholesale Stores Section Title PaaeDesign Requirements ...·.·.......·... 55Energy Building Energy Efficiency Standards Energy Conservation Standards for New Offices, Retail and Wholesale ...·...··...... - Retail and Wholesale Stores . Ventilation Requirements .... 81 85 106 122 138 154 Energy Conservation

  10. Energy Simulation for Buildings: Development and Training

    E-Print Network [OSTI]

    .5: Energy Efficiency April 2013 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science`i Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawai`i April 2013Energy Simulation for Buildings: Development and Training This report presents an architectural

  11. Economic Energy Savings Potential in Federal Buildings

    SciTech Connect (OSTI)

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04T23:59:59.000Z

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  12. Worldwide Status of Energy Standards for Buildings - Appendices

    E-Print Network [OSTI]

    Janda, K.B.

    2008-01-01T23:59:59.000Z

    of pakistan" Energy and Buildings 15-16 (199019] )'533 535in the IT S S R" Energy and Buildings (1990) 14· 401-409 "the IT 5 5 R " Energy and Buildings (1992) 3. Yu Matrosov "

  13. Retrofitting Existing Buildings for Demand Response & Energy Efficiency

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Retrofitting Existing Buildings for Demand Response & Energy Efficiency www rate periods to avoid high charges. · Assembly Bill 1103 ­ Building Energy Efficiency Disclosure - Starting January 1, 2010, all commercial building lease transactions must disclose the energy efficiency

  14. Uncertainties in Energy Consumption Introduced by Building Operations and

    E-Print Network [OSTI]

    Uncertainties in Energy Consumption Introduced by Building Operations and Weather for a Medium between predicted and actual building energy consumption can be attributed to uncertainties introduced in energy consumption due to actual weather and building operational practices, using a simulation

  15. Design for Energy Efficiency in Residential Buildings

    E-Print Network [OSTI]

    Song, M.; Zhang, Y.; Yang, G.

    2006-01-01T23:59:59.000Z

    -saving efficiency was 50%. Tab. 1 Difference of over all heat transfer coefficient limitation of building Exterior wall Exterior window Roof 65% energy-saving residence buildings in Beijing (>5 stories) 0.6 2.8 0.6 South of Sweden 0.17 2.5 0...

  16. Buildings Energy Program annual report, FY 1991

    SciTech Connect (OSTI)

    Secrest, T.J.

    1992-05-01T23:59:59.000Z

    The Buildings Energy Program at PNL conducts research and development (R&D) for DOE`s Office of Building Technologies (OBT). The OBT`s mission is to lead a national program supporting private and federal sector efforts to improve the energy efficiency of the nation`s buildings and to increase the use of renewable energy sources. Under an arrangement with DOE, Battelle staff also conduct research and development projects for other federal agencies and private clients. This annual report contains an account of the buildings-related research projects conducted at PNL during fiscal year (FY) 1991. A major focus of PNL`s energy projects is to improve the energy efficiency of commercial and residential buildings. Researchers who are developing solutions to energy-use problems view a building as an energy-using system. From this perspective, a desirable solution is not only one that is cost-effective and responsive to the needs of the occupants, but also one that optimizes the interaction among the energy components and systems that compose the whole.

  17. Energy Savings in Industrial Buildings

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    2001 5. Environmental Protection Agency (EPA), ENERGY STAR program, 2007. ?Useful Facts and Figures.? http://www.energystar.gov/index.cfm?c=energy_awareness.bus_energy_use 6. Navigant Consulting Inc. (2003), Energy Savings Estimate of Light Emitting... Diodes in Niche Lighting Applications, Prepared for Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. 7. National Renewable Energy Laboratory (NREL) (2006), Energy Sector Market Analysis, NREL/TP 620-40541 8. Sentech, Inc...

  18. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    Engineers, 5th Energy Audit Symposium and Productivitycontributions. Numerous energy audits have taken placeabout the accuracy of energy audit procedures used to

  19. Proposed new energy standard for commercial buildings

    SciTech Connect (OSTI)

    Reilly, R.W.

    1983-09-01T23:59:59.000Z

    A project was established to develop a new energy standard for commercial buildings, using the widely accepted ASHRAE/IES Standard 90A-1980, Energy Conservation in New Building Design, as a starting point and general pattern. Under this project, 90A-1980 was analyzed to determine its effectiveness and to define shortcomings; research was conducted to develop a technical/economic basis for setting improved cost-effective requirements for energy conservation; recommendations were developed for an improved standard; and the recommendations were tested across a suite of 10 building types in 8 climates. Preliminary results from these tests indicate that design compliance with the recommendations provides 15 to 30% annual energy savings in office buildings and smaller but significant savings in other building categories (as compared to buildings designed in compliance with 90A-1980). The recommendations also provide for expanded design freedom in demonstrating compliance, especially compliance with envelope requirements. The recommendations and technical support information were presented to ASHRAE to assist in its periodic upgrading of Standard 90, and to the US Department of Energy as major input to its Congressionally-mandated process of developing minimum design standards for federal buildings and voluntary guidelines for the private sector.

  20. A review of methods to match building energy simulation models to measured data

    E-Print Network [OSTI]

    Coakley, Daniel; Raftery, Paul; Keane, Marcus

    2014-01-01T23:59:59.000Z

    2 Building energy performance simulation (BEPS)generation building energy simulation program. Energy Buildwhen using building energy simulation. Build Serv Eng Res

  1. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    E-Print Network [OSTI]

    Evans, Meredydd

    2008-01-01T23:59:59.000Z

    for the commercial zero-energy building (ZEB), -Improvedand operation of net-zero energy buildings Develop “Methodssoftware (for zero energy buildings) BESTEST Building Energy

  2. Reference Buildings by Building Type: Primary school | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding Type: Medium officeEnergyof

  3. Reference Buildings by Building Type: Small Hotel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding Type:Energy

  4. Reference Buildings by Building Type: Small Hotel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding Type:Energypost1980_v1.3_5.0.zip

  5. Reference Buildings by Building Type: Strip mall | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuildingEnergynew2004_v1.3_5.0.zip

  6. Reducing Fossil Carbon Emissions and Building Environmental Awareness at

    E-Print Network [OSTI]

    of waste that is created when extracting and consuming fossil fuels. · Reducing Dartmouth College's demand on the biophysical environment in the following ways: · Reducing the amount of fossil fuels that are consumed. · Reducing the amount of pollution that is generated from fossil fuel consumption. · Reducing the amount

  7. Gauging Improvements in Urban Building Energy Policy in India

    E-Print Network [OSTI]

    Williams, Christopher

    2013-01-01T23:59:59.000Z

    Urban Building Energy Policy in India Christopher WilliamsUrban Building Energy Policy in India Christopher Williamsefficiency policies and programs in India are in an active

  8. Building Energy Codes Implementation Overview - 2014 BTO Peer...

    Energy Savers [EERE]

    Building Energy Codes Implementation Overview - 2014 BTO Peer Review Building Energy Codes Implementation Overview - 2014 BTO Peer Review Presenter: Jeremiah Williams, U.S....

  9. Building Energy Codes Program Overview - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Building Energy Codes Program. Through robust feedback, the BTO...

  10. Commercial Building Energy Asset Score: 2013 Pilot Overview ...

    Office of Environmental Management (EM)

    Score: 2013 Pilot Overview Commercial Building Energy Asset Score: 2013 Pilot Overview provides an overview of the 2013 pilot for the commercial building energy asset score...

  11. Commercial Building Energy Asset Scoring Tool Application Programming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Building Energy Asset Scoring Tool Application Programming Interface Commercial Building Energy Asset Scoring Tool Application Programming Interface slides from June 14,...

  12. An Extensible Sensing and Control Platform for Building Energy...

    Office of Environmental Management (EM)

    An Extensible Sensing and Control Platform for Building Energy Management An Extensible Sensing and Control Platform for Building Energy Management Lead Performer: Carnegie Mellon...

  13. DOE Commercial Building Energy Asset Rating Program Focus Groups...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Building Energy Asset Rating Program Focus Groups with Primary Stakeholders in Seattle -- Final Report DOE Commercial Building Energy Asset Rating Program Focus Groups...

  14. Sustainable Energy Resources for Consumers Webinar on Building...

    Energy Savers [EERE]

    Sustainable Energy Resources for Consumers Webinar on Building Design & Passive Solar Transcript Sustainable Energy Resources for Consumers Webinar on Building Design & Passive...

  15. Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables

    Reports and Publications (EIA)

    2008-01-01T23:59:59.000Z

    The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

  16. BuildingSync File Download | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Download BuildingSync represents a standard schema for organizing and expressing energy audit data, developed using the standard energy data terminology defined in the Building...

  17. Energy Performance Certification of Buildings: A Policy Tool...

    Open Energy Info (EERE)

    Buildings: A Policy Tool to Improve Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Performance Certification of Buildings: A Policy Tool to...

  18. DOE Zero Energy Ready Home Case Study: Weiss Building & Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Zero Energy Ready Home Case Study: Weiss Building & Development LLC., Custom Home, Downers Grove, IL DOE Zero Energy Ready Home Case Study: Weiss Building & Development LLC.,...

  19. Penn State Consortium for Building Energy Innovation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The Center for Building Energy...

  20. Clean Energy Finance Guide for Residential and Commercial Building...

    Broader source: Energy.gov (indexed) [DOE]

    Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 8 Clean Energy Finance Guide for Residential and Commercial Building Improvements -...

  1. Clean Energy Finance Guide for Residential and Commercial Building...

    Broader source: Energy.gov (indexed) [DOE]

    Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 7 Clean Energy Finance Guide for Residential and Commercial Building Improvements -...

  2. Obama Administration Launches $130 Million Building Energy Efficiency...

    Energy Savers [EERE]

    Administration Launches 130 Million Building Energy Efficiency Effort Obama Administration Launches 130 Million Building Energy Efficiency Effort February 12, 2010 - 12:00am...

  3. Behavioral Opportunities for Energy Savings in Office Buildings...

    Office of Environmental Management (EM)

    Opportunities for Energy Savings in Office Buildings: a London Field Experiment Behavioral Opportunities for Energy Savings in Office Buildings: a London Field Experiment Report...

  4. agency building energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage, Conversion and Utilization Websites Summary: TO THE CALIFORNIA BUILDING ENERGY EFFICIENCY STANDARDS and GREEN BUILDING STANDARDS CODE CALIFORNIA CODE and...

  5. Building on Efficiency | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    easy-to-use tools to size and finance rooftop solar panels; and download virtual energy audit software that can cut costs for building owners and help get retrofits started...

  6. Conservation and renewable energy technologies for buildings

    SciTech Connect (OSTI)

    Not Available

    1991-05-01T23:59:59.000Z

    The Office of building Technologies (OBT) pursues advanced energy efficiency and renewable technologies and accelerates the rate of adoption of these technologies in the residential and commercial sectors through research, development, and demonstration.

  7. Home Energy Ratings and Building Performance 

    E-Print Network [OSTI]

    Gardner, J.C.

    2008-01-01T23:59:59.000Z

    an accepted method to determine home efficiency based on standards developed and overseen by the Residential Energy Services Network (RESNET), a not-for-profit corporation. The paper will discuss the effect of various building systems and effects of local...

  8. Buildings Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal Ongoing at DOE's PaducahBuildings Events

  9. Uncalibrated Building Energy Simulation Modeling Results 

    E-Print Network [OSTI]

    Ahmad, M.; Culp, C.H.

    2006-01-01T23:59:59.000Z

    VOLUME 12, NUMBER 4 HVAC&R RESEARCH OCTOBER 2006 1141 Uncalibrated Building Energy Simulation Modeling Results Mushtaq Ahmad Charles H. Culp, PhD, PE Associate Member ASHRAE Fellow ASHRAE Received June 23, 2005; accepted April 17, 2006... the uncalibrated simulations were completed. The dis- crepancies between the simulated and measured total yearly building energy use varied over ±30% with one outlier. The results show that discrepancies ranged over ±90% between the sim- ulations and the measured...

  10. The State Energy Program: Building Energy Efficiency and Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Understanding of building control equipment, systems, software and operations. * Renewable energy technology and equipment fundamentals and an understanding of how they...

  11. Building Energy Asset Score: Energy Services Companies, Engineers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. View additional information...

  12. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock

    SciTech Connect (OSTI)

    Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

    2011-02-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

  13. Discovering unexpected information using a building energy visualization tool.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    platform to manage buildings energy. Smart buildings are already managed by BMS (Building Management SystemDiscovering unexpected information using a building energy visualization tool. Lange B.a, Rodriguez insight about buildings energy consumption. We will focus on the usage of this software to extract

  14. Country Report on Building Energy Codes in China

    SciTech Connect (OSTI)

    Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

    2009-04-15T23:59:59.000Z

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

  15. Country Report on Building Energy Codes in India

    SciTech Connect (OSTI)

    Evans, Meredydd; Shui, Bin; Somasundaram, Sriram

    2009-04-07T23:59:59.000Z

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America. This reports gives an overview of the development of building energy codes in India, including national energy policies related to building energy codes, history of building energy codes in India, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial buildings in India.

  16. Country Report on Building Energy Codes in Canada

    SciTech Connect (OSTI)

    Shui, Bin; Evans, Meredydd

    2009-04-06T23:59:59.000Z

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

  17. Country Report on Building Energy Codes in Australia

    SciTech Connect (OSTI)

    Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

    2009-04-02T23:59:59.000Z

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

  18. Country Report on Building Energy Codes in Japan

    SciTech Connect (OSTI)

    Evans, Meredydd; Shui, Bin; Takagi, T.

    2009-04-15T23:59:59.000Z

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

  19. Country Report on Building Energy Codes in Korea

    SciTech Connect (OSTI)

    Evans, Meredydd; McJeon, Haewon C.; Shui, Bin; Lee, Seung Eon

    2009-04-17T23:59:59.000Z

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Korea, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial buildings in Korea.

  20. Country Report on Building Energy Codes in the United States

    SciTech Connect (OSTI)

    Halverson, Mark A.; Shui, Bin; Evans, Meredydd

    2009-04-30T23:59:59.000Z

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

  1. Sustainable Energy Future in China's Building Sector 

    E-Print Network [OSTI]

    Li, J.

    2007-01-01T23:59:59.000Z

    policies; this will generate significantly benefits given the fast- growing urbanization process and the number of buildings that will be constructed in the next 20 years in Chinese cities. ENERGY USE HISTORY AND OUTLOOK IN CHINA China...://www.energy.gov/ EIA. International Energy Outlook.2006. DOE, Washington. 2006. ERI. 2003. China’s Sustainable Energy Future. European Commission Directorate General for Energy and Transport. 2001. Information and Communication. Fisher-Vanden et al...

  2. Solar energy dehumidification experiment on the Citicorp Center building : final report

    E-Print Network [OSTI]

    Unknown author

    The technical and economic feasibility of using solar energy to reduce conventional energy consumption of a large urban commercial building were studied in depth. Specifically, solar assisted dehumidification of ventillation ...

  3. Clean Cities: Building Partnerships to Reduce Petroleum Use in Transportation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This fact sheet provides an overview of the U.S. Department of Energy's Clean Cities program, which builds partnerships to reduce petroleum use in transportation in communities across the country. The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to reduce petroleum consumption in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge. Clean Cities overarching goal is to reduce U.S. petroleum use by 2.5 billion gallons per year by 2020. To achieve this goal, Clean Cities employs three strategies: (1) Replace petroleum with alternative and renewable fuels, including natural gas, propane, electricity, ethanol, biodiesel, and hydrogen; (2) Reduce petroleum consumption through smarter driving practices and fuel economy improvements; and (3) Eliminate petroleum use through idle reduction and other fuel-saving technologies and practices.

  4. Responsive and Intelligent Building Information and Control for Low-Energy

    E-Print Network [OSTI]

    that greatly reduce energy use and peak electric power in buildings while providing or improving the services and optimization, and model predictive control to augment these models with dynamics of building system more integrated there is an opportunity for buildings to respond to common grid systems and model-ba

  5. Building America Webinar: Saving Energy in Multifamily Buildings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuilding Enclosures | DepartmentStrategies

  6. Building Energy Optimization Analysis Method (BEopt) - Building America Top

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartmentDavidDepartment

  7. Reference Buildings by Building Type: Medium office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding Type: Medium office Reference

  8. Reference Buildings by Building Type: Primary school | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding Type: Mediumpre1980_v1.3_5.0.zip

  9. Reducing Energy Loss | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8,PastRadiation LossesReducingReducing

  10. Buildings Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America Update -Composites | Department

  11. Data and Analytics to Inform Energy Retrofit of High Performance Buildings

    SciTech Connect (OSTI)

    Hong , Tianzhen; Yang, Le; Hill, David; Feng , Wei

    2014-01-25T23:59:59.000Z

    Buildings consume more than one-third of the world?s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energy audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis ? energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high performance building in California to analyze its energy use and identify retrofit opportunities, including: (1) analyzing patterns of major energy end-use categories at various time scales, (2) benchmarking the whole building total energy use as well as major end-uses against its peers, (3) benchmarking the power usage effectiveness for the data center, which is the largest electricity consumer in this building, and (4) diagnosing HVAC equipment using detailed time-series operating data. Finally, a few energy efficiency measures were identified for retrofit, and their energy savings were estimated to be 20percent of the whole-building electricity consumption. Based on the analyses, the building manager took a few steps to improve the operation of fans, chillers, and data centers, which will lead to actual energy savings. This study demonstrated that there are energy retrofit opportunities for high performance buildings and detailed measured building performance data and analytics can help identify and estimate energy savings and to inform the decision making during the retrofit process. Challenges of data collection and analytics were also discussed to shape best practice of retrofitting high performance buildings.

  12. Understanding Building Energy Codes and Standards

    SciTech Connect (OSTI)

    Bartlett, Rosemarie; Halverson, Mark A.; Shankle, Diana L.

    2003-03-01T23:59:59.000Z

    Energy codes and standards play a vital role by setting minimum requirements for energy-efficient design and construction. They outline uniform requirements for new buildings as well as additions and renovations. The Difference Between Energy Codes, Energy Standards and the Model Energy Code Energy codes--specify how buildings must be constructed or perform, and are written in mandatory, enforceable language. States or local governments adopt and enforce energy codes for their jurisdictions. Energy standards--describe how buildings should be constructed to save energy cost-effectively. They are published by national organizations such as the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). They are not mandatory, but serve as national recommendations, with some variation for regional climate. States and local governments frequently use energy standards as the technical basis for developing their energy codes. Some energy standards are written in mandatory, enforceable language, making it easy for jurisdictions to incorporate the provisions of the energy standards directly into their laws or regulations.

  13. Towards a Very Low Energy Building Stock: Modeling the US Commercial Building Sector

    E-Print Network [OSTI]

    Towards a Very Low Energy Building Stock: Modeling the US Commercial Building Sector to Support and continuing development of a model of time varying energy consumption in the US commercial building stock targeting very low future energy consumption in the building stock. Model use has highlighted the scale

  14. Building Energy Codes Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America Update - November 13, 2014InnovationsBuilding

  15. NREL: Technology Deployment - Building Energy Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCostBuilding Energy Systems NREL experts

  16. Buildings Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    EST ZERH Webinar: High-Performance Home Sales Training Part I 12:00PM to 1:00PM EST ESPC 2.0: How New Twists on Energy Savings Performance Contracting are Improving Energy...

  17. Building Energy Use Benchmarking Guidance

    Broader source: Energy.gov [DOE]

    Guidance describes the Energy Independence and Security Act of 2007 section 432 requirement for benchmarking Federal facilities.

  18. Building Buddies (6 lessons) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartment of EnergyBuilding Buddies

  19. Buildings Technologies Deployment | Clean energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHAREManufacturing |BuildingEnergyBuilding

  20. Building Agent Software - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science,Energy,BubblesBuilding 9731 Building

  1. Technologies for Energy Efficient Buildings

    E-Print Network [OSTI]

    .4.2.3 Total electrical energy consumption 33 3.4.2.4 Consumer alert messages 33 3.5 Laboratory Testing of Electricity Delivery and Energy Reliability Under Award No. DE-FC26-06NT42847 Hawai`i Distributed Energy of work sponsored by an agency of the United States Government. Neither the United States Government nor

  2. DOE Commercial Building Energy Asset Score Web Service (Draft)

    SciTech Connect (OSTI)

    Elliott, Geoffrey; Wang, Na

    2013-09-30T23:59:59.000Z

    Documentation of the DOE Commercial Building Energy Asset Score application programming interface (API).

  3. INDOOR AIR QUALITY IN ENERGY-EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Hollowell, Craig D.

    2011-01-01T23:59:59.000Z

    new buildings incorporating energy- efficient designs, Theenergy-efficient residential, studied as possible models design.

  4. An energy standard for residential buildings in south China

    E-Print Network [OSTI]

    Huang, Yu Joe; Lang, Siwei; Hogan, John; Lin, Haiyan

    2003-01-01T23:59:59.000Z

    Code for Residential Buildings”, Third International Conference on Indoor Air Quality, Ventilation and Energy Conservation

  5. Integrating energy expertise into building design

    SciTech Connect (OSTI)

    Brambley, M.R.; Stratton, R.C. (Pacific Northwest Lab., Richland, WA (USA)); Bailey, M.L. (USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (USA). Office of the Deputy Assistant Secretary for Building Technologies)

    1990-08-01T23:59:59.000Z

    Most commercial buildings designed to today will use more energy to operate, and cost more to design and construct than necessary. Significant energy savings cold be achieved with little or not increase in first cost if energy-efficient design technologies were used. Research into integration of building systems indicates that by considering energy performance early in the design process, energy savings between 30% and 50% of current energy consumption rates are technically and economically feasible. However, most building design teams do not adequately consider the energy impacts of design decisions to achieve these savings. The US Department of Energy has initiated a project, led by Pacific Northwest Laboratory, to develop advanced computer-based technologies that will help designers take advantage of these large potential energy savings. The objective of this work is to develop automated, intelligent, energy design assistance that can be integrated into computer aided design systems of the future. This paper examines the need for this technology by identifying the impediments to energy-efficient design, identifies essential and desirable features of such systems, presents the concept under development in this effort, illustrates how energy expertise might be incorporated into design, and discusses the importance of an integrated approach. 8 refs., 1 fig.

  6. BUILD UP: Energy Solutions for Better Buildings (Website) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeonBCHP

  7. Building Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America Update - NovemberBuildingEnergy6About

  8. PV Integration by Building Energy Management System

    E-Print Network [OSTI]

    Boyer, Edmond

    stands for any variable that could be PV, grid power, or load power if calculation is valid for allPV Integration by Building Energy Management System Rim.Missaoui¹, Ghaith.Warkozek¹, Seddik. BachaLab.grenoble-inp.fr Abstract- This paper focuses on Energy Management System (EMS) applied to the residential sector. The EMS

  9. Capacity Building in Wind Energy for PICs

    E-Print Network [OSTI]

    indicates that significant wind energy potential exists. · A monitoring project showed that in Rarotonga system. · About 30 other islands could have potential for grid connected wind turbines in the 100-1000 k1 Capacity Building in Wind Energy for PICs Presentation of the project Regional Workshop Suva

  10. Building Energy Performance Analysis of an Academic Building Using IFC BIM-Based Methodology 

    E-Print Network [OSTI]

    Aziz, Z.; Arayici, Y.; Shivachev, D.

    2012-01-01T23:59:59.000Z

    This paper discusses the potential to use an Industry Foundation Classes (IFC)/Building Information Modelling (BIM) based method to undertake Building Energy Performance analysis of an academic building. BIM/IFC based methodology provides a...

  11. Building Operator Certification: Improving Commercial Building Energy Efficiency Through Operator Training and Certification

    E-Print Network [OSTI]

    Putnam, C.; Mulak, A.

    2001-01-01T23:59:59.000Z

    Building Operator Certification (BOC) is a competency-based certification for building operators designed to improve the energy efficiency of commercial buildings. Operators earn certification by attending training sessions and completing project...

  12. Enforcing Building Energy Codes in China: Progress and Comparative Lessons

    SciTech Connect (OSTI)

    Evans, Meredydd; Shui, Bin; Halverson, Mark A.; Delgado, Alison

    2010-08-15T23:59:59.000Z

    From 1995 to 2005, building energy use in China increased more rapidly than the world average. China has been adding 0.4 to 1.6 billion square meters of floor space annually , making it the world’s largest market for new construction. In fact, by 2020, China is expected to comprise half of all new construction. In response to this, China has begun to make important steps towards achieving building energy efficiency, including the implementation of building energy standards that requires new buildings to be 65% more efficient than buildings from the early 1980s. Making progress on reducing building energy use requires both a comprehensive code and a robust enforcement system. The latter – the enforcement system – is a particularly critical component for assuring that a building code has an effect. China has dramatically enhanced its enforcement system in the past two years, with more detailed requirements for ensuring enforcement and new penalties for non-compliance. We believe that the U.S. and other developed countries could benefit from learning about the multiple checks and the documentation required in China. Similarly, some of the more user-friendly enforcement approaches developed in the U.S. and elsewhere may be useful for China as it strives to improve enforcement in rural and smaller communities. In this article, we provide context to China’s building codes enforcement system by comparing it to the U.S. Among some of the enforcement mechanisms we look at are testing and rating procedures, compliance software, and training and public information.

  13. Using Iterative Compilation to Reduce Energy Consumption

    E-Print Network [OSTI]

    Gheorghita, Valentin

    or to re- duce power. Most transformations require loop re- structuring. Although a large number.v.gheorghita,h.corporaal,a.a.basten}@tue.nl Keywords: Iterative Compilation, Program Optimization, Energy Consumption, Program Transformation. Abstract. This is emphasized by new demands added to compilers, like reducing static code size, energy consumption or power

  14. Renewable energy in commercial buildings

    E-Print Network [OSTI]

    Scarpa, Massimiliano; Schiavon, Stefano; Zecchin, Roberto

    2008-01-01T23:59:59.000Z

    è la geotermia. Le energie eolica e solare si attestanospecialmente quelle solari ed eolica, si presentano inproduzione dell'energia eolica. L’ANALISI DEL CICLO DI VITA

  15. Renewable energy in commercial buildings

    E-Print Network [OSTI]

    Scarpa, Massimiliano; Schiavon, Stefano; Zecchin, Roberto

    2008-01-01T23:59:59.000Z

    Policy Institute www.enea.it : Enea – Ente per le nuove tecnologie, l’energia e l’ambiente www.ewea.org : Ewea – European Wind Energy

  16. Building Insulation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotinsBostonBridgerBuckeye Power,energyGHGs

  17. Predicted versus monitored performance of energy-efficiency measures in new commercial buildings from energy edge

    SciTech Connect (OSTI)

    Piette, M.A.; Nordman, B.; deBuen, O.; Diamond, R.

    1993-08-01T23:59:59.000Z

    Energy Edge is a research-oriented demonstration program involving 28 new commercial buildings in the Pacific Northwest. This paper discusses the energy savings and cost-effectiveness of energy-efficiency measures for the first 12 buildings evaluated using simulation models calibrated with measured end-use data. Average energy savings per building from the simulated code baseline building was 19%, less than the 30% target. The most important factor for the lower savings is that many of the installed measures differ from the measures specified in the design predictions. Only one of the first 12 buildings met the project objective of reducing energy use by more than 30% at a cost below the target of 56 mills/kWh (in 1991 dollars). Based on results from the first 12 calibrated simulation models, 29 of the 66 energy-efficiency measures, or 44%, met the levelized cost criterion. Despite the lower energy savings from individual measures, the energy-use intensities of the buildings are lower than other regional comparison data for new buildings. The authors review factors that contribute to the uncertainty regarding measured savings and suggest methods to improve future evaluations.

  18. Energy Signal Tool for Decision Support in Building Energy Systems

    SciTech Connect (OSTI)

    Henze, G. P.; Pavlak, G. S.; Florita, A. R.; Dodier, R. H.; Hirsch, A. I.

    2014-12-01T23:59:59.000Z

    A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use. As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.

  19. Commercial Building Energy Assest Score Overall Building Score

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational Broadbandof theCommercial Building

  20. Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    in the LCA of low energy buildings,” Energy and Buildingsin the LCA of low energy buildings,” Energy and Buildingsof conventional and low-energy buildings: A review article,”

  1. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    in China. Vienna: Renewable Energy & Energy EfficiencyY. , & Zeng, D. (2011). China Renewable Energy Architecture155 Building-Integrated Renewable Energy

  2. Renewable Energy Can Help Reduce Oil Dependency

    SciTech Connect (OSTI)

    Arvizu, Dan

    2010-01-01T23:59:59.000Z

    In a speech to the Economic Club of Kansas City on June 23, 2010, NREL Director Dan Arvizu takes a realistic look at how renewable energy can help reduce America's dependence on oil, pointing out that the country gets as much energy from renewable sources now as it does from offshore oil production. For a transcript, visit http://www.nrel.gov/director/pdfs/energy_overview_06_10.pdf

  3. Renewable Energy Can Help Reduce Oil Dependency

    ScienceCinema (OSTI)

    Arvizu, Dan

    2013-05-29T23:59:59.000Z

    In a speech to the Economic Club of Kansas City on June 23, 2010, NREL Director Dan Arvizu takes a realistic look at how renewable energy can help reduce America's dependence on oil, pointing out that the country gets as much energy from renewable sources now as it does from offshore oil production. For a transcript, visit http://www.nrel.gov/director/pdfs/energy_overview_06_10.pdf

  4. Chicago Joins President Obama's Better Buildings Challenge to Reduce

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSSDepartment ofElectric Power Generation UsingCherry

  5. Passive Solar Design: The Foundation for Low-Energy Federal Buildings

    SciTech Connect (OSTI)

    Zachmann, W.; Pitchford, P.

    2000-11-13T23:59:59.000Z

    This fact sheet updates a similar one published in 1996 for the U.S. Department of Energy's Federal Energy Management Program. It is part of a series of fact sheets on ways that the Federal government can incorporate new energy efficiency, solar energy, and other renewable energy technologies in buildings and other facilities to save on energy costs and reduce greenhouse gas emissions. This fact sheet describes strategies for implementing passive solar features--such as south-facing windows, daylighting, and thermal mass--into new building designs and retrofits. It also discusses how to design and build low-energy, sustainable buildings by using a whole-building approach to the design process. In this approach, designers not only use passive solar techniques, they also create a design that makes the most of the complex ways that a building's occupants, components, and materials connect and interact in order to achieve the greatest possible comfort and energy efficiency.

  6. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    Deru, D. Crawley (2006), “Zero Energy Buildings: A Criticaland Energy Management in Zero-Net-Energy Buildings Michaeland Energy Management in Zero-Net-Energy Buildings 1 Michael

  7. Better Buildings Energy Data Accelerator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for Consumers anymoreEnergy Data

  8. Building Solutions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington: Energy

  9. Sustainable Buildings | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - January 16, 2015 SummarySuspect andResearch &

  10. 2005 Buildings Energy Data Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment of Energy with6, 2014, 6:32 p.m.January

  11. Clean Energy Finance Guide for Residential and Commercial Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean...

  12. Energy Department Announces Winner of the 2013 Better Buildings...

    Broader source: Energy.gov (indexed) [DOE]

    Battle of the Buildings, which challenges federal, commercial, and industrial buildings to achieve the greatest reduction in annual energy use intensity. Participants...

  13. Building America Best Practices Series: Volume 12. EnergyRenovations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Best Practices Series: Volume 12. Energy Renovations-Insulation: A Guide for Contractors to Share With Homeowners Building America Best Practices Series: Volume...

  14. Energy Innovation Hub Report Shows Philadelphia-area Building...

    Office of Environmental Management (EM)

    Innovation Hub Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits Could Support...

  15. Energy Department Launches Virtual Hackathon to Build the Next...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launches Virtual Hackathon to Build the Next Big Solar Software Solutions Energy Department Launches Virtual Hackathon to Build the Next Big Solar Software Solutions February 20,...

  16. Energy and Commerce Departments Announce New Centers for Building...

    Office of Environmental Management (EM)

    Commerce Departments Announce New Centers for Building Operations Excellence Energy and Commerce Departments Announce New Centers for Building Operations Excellence June 19, 2012 -...

  17. Energy-Efficient Building Standards for State Facilities

    Broader source: Energy.gov [DOE]

    Via Executive Order 27, Maine requires that construction or renovation of state buildings must incorporate "green building" standards that would achieve "significant" energy efficiency and...

  18. Distributed energy resources at naval base ventura county building 1512

    E-Print Network [OSTI]

    Bailey, Owen C.; Marnay, Chris

    2004-01-01T23:59:59.000Z

    Resources at Naval Base Ventura Country Building 1512 7.August 2001. “Naval Base Ventura County Standby GeneratorEnergy Resources at Naval Base Ventura Country Building 1512

  19. Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure

    E-Print Network [OSTI]

    Mendell, Mark

    2014-01-01T23:59:59.000Z

    EUI) predicted with building energy models created using theusing EPA model ? Health benefits of reduced energy usage (

  20. Building Codes Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartment ofCodes Resources Building

  1. Building Efficiency Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartment ofCodes ResourcesBuilding

  2. Building Technologies Program | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHARE BuildingBuilding Technologies

  3. Energy Efficient Industrial Building Design

    E-Print Network [OSTI]

    Holness, G. V. R.

    1983-01-01T23:59:59.000Z

    " or precooled air concept of ventilation, with a high temperature hot-water/chilled-water changeover piping system. Extensive energy recovery systems would be provided for production equipment and oil mist control would be by local captive systems, rather...

  4. Buildings Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 2015 < prev next > Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 Home Energy Score Update: New Simulation Training & Credential Requirements for Assessors 2:00PM to 3:00PM EST 8...

  5. Construction of energy-stable Galerkin reduced order models.

    SciTech Connect (OSTI)

    Kalashnikova, Irina; Barone, Matthew Franklin; Arunajatesan, Srinivasan; van Bloemen Waanders, Bart Gustaaf

    2013-05-01T23:59:59.000Z

    This report aims to unify several approaches for building stable projection-based reduced order models (ROMs). Attention is focused on linear time-invariant (LTI) systems. The model reduction procedure consists of two steps: the computation of a reduced basis, and the projection of the governing partial differential equations (PDEs) onto this reduced basis. Two kinds of reduced bases are considered: the proper orthogonal decomposition (POD) basis and the balanced truncation basis. The projection step of the model reduction can be done in two ways: via continuous projection or via discrete projection. First, an approach for building energy-stable Galerkin ROMs for linear hyperbolic or incompletely parabolic systems of PDEs using continuous projection is proposed. The idea is to apply to the set of PDEs a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. The resulting ROM will be energy-stable for any choice of reduced basis. It is shown that, for many PDE systems, the desired transformation is induced by a special weighted L2 inner product, termed the %E2%80%9Csymmetry inner product%E2%80%9D. Attention is then turned to building energy-stable ROMs via discrete projection. A discrete counterpart of the continuous symmetry inner product, a weighted L2 inner product termed the %E2%80%9CLyapunov inner product%E2%80%9D, is derived. The weighting matrix that defines the Lyapunov inner product can be computed in a black-box fashion for a stable LTI system arising from the discretization of a system of PDEs in space. It is shown that a ROM constructed via discrete projection using the Lyapunov inner product will be energy-stable for any choice of reduced basis. Connections between the Lyapunov inner product and the inner product induced by the balanced truncation algorithm are made. Comparisons are also made between the symmetry inner product and the Lyapunov inner product. The performance of ROMs constructed using these inner products is evaluated on several benchmark test cases.

  6. Building Technologies Program | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Technologies Program SHARE Building Technologies Program The Building Technologies Program Office administratively facilitates the integration of ORNL research across...

  7. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01T23:59:59.000Z

    Building thermal loadThe building thermal load predictor. . . . . . . .of Figures 1.1 Classification schematic for building MPC

  8. Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed

    SciTech Connect (OSTI)

    Pang, Xiufeng; Bhattachayra, Prajesh; O'Neill, Zheng; Haves, Philip; Wetter, Michael; Bailey, Trevor

    2011-11-01T23:59:59.000Z

    Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a comparison of building actual performance and expected performance in real time. The tool continuously acquires relevant building model input variables from existing Energy Management and Control System (EMCS). It then reports expected energy consumption as simulated of EnergyPlus. The Building Control Virtual Test Bed (BCVTB) is used as the software platform to provide data linkage between the EMCS, an EnergyPlus model, and a database. This paper describes the integrated real-time simulation environment. A proof-of-concept demonstration is also presented in the paper.

  9. Green Energy Standards for Public Buildings

    Broader source: Energy.gov [DOE]

    In March 2012, West Virginia enacted the Green Buildings Act, which applies to all new construction of public buildings, buildings receiving state grant funds, and buildings receiving state...

  10. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01T23:59:59.000Z

    Retrieved from National Renewable Energy Laboratory: http://Golden, Colorado: National Renewable Energy Laboratory.for Energy Efficiency and Renewable Energy, Building

  11. SPEER: Building a Regional Energy Efficiency Partnership 

    E-Print Network [OSTI]

    Lewin, D.

    2013-01-01T23:59:59.000Z

    SPEER: Building a Regional Energy Efficiency Partnership Clean Air Through Energy Efficiency Conference – San Antonio, TX Doug Lewin December 18, 2013 ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas... Dec. 16-18 SPEER • Member-based, non-profit organization • The Newest Regional Energy Efficiency Organization (REEO) • Founded in 2011 • 38 members from wide cross section of E.E. industries ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy...

  12. SPEER: Building a Regional Energy Efficiency Partnership

    E-Print Network [OSTI]

    Lewin, D.

    2013-01-01T23:59:59.000Z

    SPEER: Building a Regional Energy Efficiency Partnership Clean Air Through Energy Efficiency Conference – San Antonio, TX Doug Lewin December 18, 2013 ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas... Dec. 16-18 SPEER • Member-based, non-profit organization • The Newest Regional Energy Efficiency Organization (REEO) • Founded in 2011 • 38 members from wide cross section of E.E. industries ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy...

  13. Buildings Success Stories | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin usAcquisitionAlex3EnergyBuildingEnergy Efficiency »

  14. Buildings Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState and localStudy -Emerging TechnologiesMay

  15. Buildings Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState and localStudy -Emerging

  16. Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial1 | Energy

  17. THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND

    E-Print Network [OSTI]

    LBNL-49947 THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND? ..................................... 8 What are the seasonal aspects of electric peak demand?............................ 9 What because of the California electricity crisis (Borenstein 2001). Uncertainties surrounding the reliability

  18. Building a High-Level Dataflow System on top of Map-Reduce: The Pig Experience

    E-Print Network [OSTI]

    Olston, Christopher

    Building a High-Level Dataflow System on top of Map-Reduce: The Pig Experience Alan F. Gates, Olga are open-source projects administered by the Apache Software Foundation. This paper describes

  19. Energy Audit Results for Residential Building Energy Efficiency

    E-Print Network [OSTI]

    Energy Audit Results for Residential Building Energy Efficiency Forrest City Phases I and II This report analyses complete energy audit results from 28 homes within the Forest City residential complex. Relationships between temperature, humidity, comfort, and energy consumption are detailed. Recommendations

  20. Reducing Your Electricity Use | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for| DepartmentReduce Hot Water Use for Energy

  1. Building America Case Study: Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments Energy RatingsDepartmentRevsCold ClimateTesting

  2. NREL: Continuum Magazine - Building Better: Advanced Energy Design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    case study for the AEDG for K-12 School Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building. More than 200,000 energy model runs are needed to develop a...

  3. Tools for Assessing Building Energy Use in Industrial Plants

    E-Print Network [OSTI]

    Martin, M.; MacDonald, M.

    2007-01-01T23:59:59.000Z

    This presentation will cover a brief history of building energy measures savings potential for industrial plants and briefly characterize building energy measures and their savings identified over approximately the past 15 years in energy audits...

  4. Database Supported Bacnet Data Acquisition System for Building Energy Diagnostics

    E-Print Network [OSTI]

    Li, Z.; Augenbroe, G.

    2011-01-01T23:59:59.000Z

    This paper reports a tool that can be used to acquire and store the BACnet (A Data Communication Protocol for Building Automation and Control Networks) data for the purpose of building energy system Fault Detection and Diagnostics (FDD). Building...

  5. Building Energy Asset Score | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America Update - November 13, 2014Innovations

  6. Toward Net Energy Buildings: Design, Construction, and Performance of the Grand Canyon House

    SciTech Connect (OSTI)

    C. Edward Hancock; Greg Barker; J. Douglas Balcomb.

    1999-06-23T23:59:59.000Z

    The Grand Canyon house is a joint project of the DOE's National Renewable Energy Laboratory and the U.S. National Park Service and is part of the International Energy Agency Solar Heating and Cooling Programme Task 13 (Advanced Solar Low-Energy Buildings). Energy consumption of the house, designed using a whole-building low-energy approach, was reduced by 75% compared to an equivalent house built in accordance with American Building Officials Model Energy Code and the Home Energy Rating System criteria.

  7. Simulation and Big Data Challenges in Tuning Building Energy Models

    SciTech Connect (OSTI)

    Sanyal, Jibonananda [ORNL] [ORNL; New, Joshua Ryan [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    EnergyPlus is the flagship building energy simulation software used to model whole building energy consumption for residential and commercial establishments. A typical input to the program often has hundreds, sometimes thousands of parameters which are typically tweaked by a buildings expert to get it right . This process can sometimes take months. Autotune is an ongoing research effort employing machine learning techniques to automate the tuning of the input parameters for an EnergyPlus input description of a building. Even with automation, the computational challenge faced to run the tuning simulation ensemble is daunting and requires the use of supercomputers to make it tractable in time. In this proposal, we describe the scope of the problem, the technical challenges faced and overcome, the machine learning techniques developed and employed, and the software infrastructure developed/in development when taking the EnergyPlus engine, which was primarily designed to run on desktops, and scaling it to run on shared memory supercomputers (Nautilus) and distributed memory supercomputers (Frost and Titan). The parametric simulations produce data in the order of tens to a couple of hundred terabytes.We describe the approaches employed to streamline and reduce bottlenecks in the workflow for this data, which is subsequently being made available for the tuning effort as well as made available publicly for open-science.

  8. Reduced Call-Backs with High Performance Production Builders - Building

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site Environmental ReportsInvestment Grants Recovery Act: Smart GridEnergyAmerica Top

  9. Technical Support Document: 50% Energy Savings for Small Office Buildings

    SciTech Connect (OSTI)

    Thornton, Brian A.; Wang, Weimin; Huang, Yunzhi; Lane, Michael D.; Liu, Bing

    2010-04-30T23:59:59.000Z

    The Technical Support Document (TSD) for 50% energy savings in small office buildings documents the analysis and results for a recommended package of energy efficiency measures (EEMs) referred to as the advanced EEMs. These are changes to a building design that will reduce energy usage. The package of advanced EEMs achieves a minimum of 50% energy savings and a construction area weighted average energy savings of 56.6% over the ANSI/ASHRAE/IESNA Standard 90.1-2004 for 16 cities which represent the full range of climate zones in the United States. The 50% goal is for site energy usage reduction. The weighted average is based on data on the building area of construction in the various climate locations. Cost-effectiveness of the EEMs is determined showing an average simple payback of 6.7 years for all 16 climate locations. An alternative set of results is provided which includes a variable air volume HVAC system that achieves at least 50% energy savings in 7 of the 16 climate zones with a construction area weighted average savings of 48.5%. Other packages of EEMs may also achieve 50% energy savings; this report does not consider all alternatives but rather presents at least one way to reach the goal. Design teams using this TSD should follow an integrated design approach and utilize additional analysis to evaluate the specific conditions of a project.

  10. Energy Impacts of Nonlinear Behavior of PCM When Applied into Building Envelope: Preprint

    SciTech Connect (OSTI)

    Tabares-Velasco, P. C.

    2012-08-01T23:59:59.000Z

    Previous research on phase change materials (PCM) for building applications has been done for several decades resulting in plenty of literature on PCM properties, temperature, and peak reduction potential. Thus, PCMs are a potential technology to reduce peak loads and HVAC energy consumption in buildings. There are few building energy simulation programs that have PCM modeling features, and even fewer have been validated. Additionally, there is no previous research that indicates the level of accuracy when simulating PCM from a building energy simulation perspective. This study analyzes the effects a nonlinear enthalpy profile has on thermal performance and expected energy benefits for PCM-enhanced insulation.

  11. Achieving 50% Energy Savings in Office Buildings, Advanced Energy Design Guides: Office Buildings (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    This fact sheet summarizes recommendations for designing new office buildings that result in 50% less energy use than conventional designs meeting minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for Small to Medium Office Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use office buildings with gross floor areas up to 100,000 ft2 (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller office buildings with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of office buildings.

  12. Research on Commercial Patterns of China Existing Building Energy Retrofit Based on Energy Management Contract 

    E-Print Network [OSTI]

    Han, Z.; Liu, C.; Sun, J.

    2006-01-01T23:59:59.000Z

    Existing building energy retrofit is one of the keys of building energy efficiency in China. According to experience in developed countries, implementation of energy management contract (EMC) is crucial to promote existing building energy retrofit...

  13. Research on Commercial Patterns of China Existing Building Energy Retrofit Based on Energy Management Contract

    E-Print Network [OSTI]

    Han, Z.; Liu, C.; Sun, J.

    2006-01-01T23:59:59.000Z

    Existing building energy retrofit is one of the keys of building energy efficiency in China. According to experience in developed countries, implementation of energy management contract (EMC) is crucial to promote existing building energy retrofit...

  14. Web-based energy information systems for energy management and demand response in commercial buildings

    E-Print Network [OSTI]

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-01-01T23:59:59.000Z

    Commercial Building Energy Benchmarking Database”.2002 ACEEE Summer Study on Energy Efficiency in Buildings.Burns, August 2001. “Energy-Related Information Services”.

  15. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    good benchmark energy consumption data for buildings, and (total energy consumption Although the measured data arelimited data available for building energy consumption in

  16. Reducing Energy Usage in Extractive Distillation

    E-Print Network [OSTI]

    Saxena, A. C.; Bhandari, V. A.

    , .. ~ REDUCING ENERGY USAGE IN,EXTRACTIVE DISTILLATION A. C. Saxena V. A. Bhandari Polysar Limited Sarnia, Ontario, Canada Abstract Butadiene 1:3 is separated from other C. hydrocarbons by extractive distillation in a sieve plate tower.... To improve the energy efficiency, butadiene recovery and productivity of the extractive distillation process, many process changes have been made. Their rationale, the methodology used to implement the various changes, and how they affected the process...

  17. Developing an integrated building design tool by coupling building energy simulation and computational fluid dynamics programs

    E-Print Network [OSTI]

    Zhai, Zhiqiang, 1971-

    2003-01-01T23:59:59.000Z

    Building energy simulation (ES) and computational fluid dynamics (CFD) can play important roles in building design by providing essential information to help design energy-efficient, thermally comfortable and healthy ...

  18. Building Retrofits: Energy Conservation and Employee Retention Considerations in Medium-Size Commercial Buildings

    E-Print Network [OSTI]

    Freeman, Janice

    2013-04-29T23:59:59.000Z

    foot per year ($5.60 per square meter per year ) in energy costs (Booz Allen Hamilton, 2009). There is considerable research into building efficiency and expected energy savings resulting from building retrofits: Rocky Mountain Institute estimates...

  19. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    SciTech Connect (OSTI)

    Davis, J.; Swenson, A.

    1998-07-01T23:59:59.000Z

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  20. Department of Energy Commercial Building Benchmarks (New Construction): Energy Use Intensities, May 5, 2009

    Broader source: Energy.gov [DOE]

    This file contains the energy use intensities (EUIs) for the benchmark building files by building type and climate zone.

  1. Advanced Benchmarking: Benchmark Building Energy Use Quickly and Accurately Using EPA's ENERGY STAR Portfolio Manager

    Broader source: Energy.gov [DOE]

    Advanced Benchmarking: Benchmark Building Energy Use Quickly and Accurately Using EPA's ENERGY STAR Portfolio Manager Webinar.

  2. Commercial Buildings Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 BuildingEnergy Efficiency andAnnualEnergyPartnerships

  3. Better Buildings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJune 17,Agenda AgendaDepartment ofBen Solution CenterBetter

  4. Building Momentum | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJune 17,Agenda Top Innovation Spotlight: Buildingof

  5. Commercial Building Energy Asset Score

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational Broadbandof theCommercial

  6. Commercial Buildings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclearand Characterization ofC u r r e n tThe protozoanPlant fatty

  7. Building Technologies | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and technologyA Science DMZSecurity

  8. NEEP Building Energy Codes Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash, Shiprock, NewThis paper09 DOEOctober 2013 -AprilNEEP

  9. The New House of the Region of Hannover - Building Energy Efficient in a Public Private Partnership

    E-Print Network [OSTI]

    Schubert, T.; Plesser, S.

    2008-01-01T23:59:59.000Z

    / 3 91 - 35 84 plesser@igs.bau.tu-bs.de The New House of the Region of Hannover - Building energy Efficient in a Public Private Partnership Topic: Examples of advanced/demonstration buildings Key words: Demonstration building, PPP..., public private partnership, commissioning, energy efficiency, user comfort Public Private Partnerships are an increasingly popular approach to carry out public infra-structure projects. PPPs aim at reducing costs and risk and improving service...

  10. Reduced Energy Consumption for Melting in Foundries

    E-Print Network [OSTI]

    ­ 336 ­ 007 TM 06 ­ 07 Department of Manufacturing Engineering and Management Technical University at the Technical University of Denmark, DTU. The project has been financed by the Danish transmission system-melted, and hence reduce the energy consumption for melting in foundries. Traditional gating systems are known

  11. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    construction,” Energy and Buildings 20: 205–217. Chau 2007.management in China,” Energy and Buildings (forthcoming).addition to operational energy, buildings embody the energy

  12. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2008-01-01T23:59:59.000Z

    2006. “Strengthening the Building Energy Efficiency (BEE)Of The Impacts Of Building Energy Efficiency Policies Andcommercial building, energy intensity, energy efficiency,

  13. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    E-Print Network [OSTI]

    Sun, Kaiyu

    2014-01-01T23:59:59.000Z

    Calibrated building energy simulation and its application inparameters in energy simulation of office buildings. EnergyApplication in Building Energy Simulation and Calibration

  14. On Variations of Space-heating Energy Use in Office Buildings

    SciTech Connect (OSTI)

    Lin, Hung-Wen; Hong, Tianzhen

    2013-05-01T23:59:59.000Z

    Space heating is the largest energy end use, consuming more than 7 quintillion joules of site energy annually in the U.S. building sector. A few recent studies showed discrepancies in simulated space-heating energy use among different building energy modeling programs, and the simulated results are suspected to be underpredicting reality. While various uncertainties are associated with building simulations, especially when simulations are performed by different modelers using different simulation programs for buildings with different configurations, it is crucial to identify and evaluate key driving factors to space-heating energy use in order to support the design and operation of low-energy buildings. In this study, 10 design and operation parameters for space-heating systems of two prototypical office buildings in each of three U.S. heating climates are identified and evaluated, using building simulations with EnergyPlus, to determine the most influential parameters and their impacts on variations of space-heating energy use. The influence of annual weather change on space-heating energy is also investigated using 30-year actual weather data. The simulated space-heating energy use is further benchmarked against those from similar actual office buildings in two U.S. commercial-building databases to better understand the discrepancies between simulated and actual energy use. In summary, variations of both the simulated and actual space-heating energy use of office buildings in all three heating climates can be very large. However these variations are mostly driven by a few influential parameters related to building design and operation. The findings provide insights for building designers, owners, operators, and energy policy makers to make better decisions on energy-efficiency technologies to reduce space-heating energy use for both new and existing buildings.

  15. Indonesia-ECN Capacity building for energy policy formulation...

    Open Energy Info (EERE)

    building for energy policy formulation and implementation of sustainable energy projects Jump to: navigation, search Name CASINDO: Capacity development and strengthening for energy...

  16. Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in saving energy in homes, buildings, and industrial plants.

  17. Energy efficiency indicators for high electric-load buildings

    E-Print Network [OSTI]

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-01-01T23:59:59.000Z

    Aebischer, A. Huser, 2003: Energy Consumption of InformationCalifornia Commercial Building Energy Benchmarking Database.Architekt Nr. 50, p. The Energy Data and Modelling Center,

  18. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

  19. SEE Action Series: Local Strategies for Whole-Building Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Savings. Presentation More Documents & Publications Energy Audit and Retro-Commissioning Policies for Public and Commercial Buildings Energy Performance Benchmarking and...

  20. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," Seminar25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF COMMERCIAL