National Library of Energy BETA

Sample records for reduce blackout risk

  1. Blackout 2003: The August 14, 2003 Blackout One Year Later: Actions Taken in the United States and Canada To Reduce Blackout Risk

    Broader source: Energy.gov [DOE]

    A report to the US-Canada Power System Outage Task Force on steps taken in the United States and Canada to reduce blackout risk one year after the August 14, 2003 blackout.

  2. Exploring Complex Systems Aspects of Blackout Risk and Mitigation

    SciTech Connect (OSTI)

    Newman, David E; Carreras, Benjamin A; Lynch, Vickie E; Dobson, Ian

    2011-01-01

    Electric power transmission systems are a key infrastructure, and blackouts of these systems have major consequences for the economy and national security. Analyses of blackout data suggest that blackout size distributions have a power law form over much of their range. This result is an indication that blackouts behave as a complex dynamical system. We use a simulation of an upgrading power transmission system to investigate how these complex system dynamics impact the assessment and mitigation of blackout risk. The mitigation of failures in complex systems needs to be approached with care. The mitigation efforts can move the system to a new dynamic equilibrium while remaining near criticality and preserving the power law region. Thus, while the absolute frequency of blackouts of all sizes may be reduced, the underlying forces can still cause the relative frequency of large blackouts to small blackouts to remain the same. Moreover, in some cases, efforts to mitigate small blackouts can even increase the frequency of large blackouts. This result occurs because the large and small blackouts are not mutually independent, but are strongly coupled by the complex dynamics.

  3. D:\0myfiles\Blackout Progress\Blackout-Progress.vp | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D:\0myfiles\Blackout Progress\Blackout-Progress.vp D:\0myfiles\Blackout Progress\Blackout-Progress.vp D:\0myfiles\Blackout Progress\Blackout-Progress.vp (236.14 KB) More Documents & Publications Blackout 2003: The August 14, 2003 Blackout One Year Later: Actions Taken in the United States and Canada To Reduce Blackout Risk U.S. - Canada Power System Outage Task Force: Final Report on the Implementation of Task Force Recommendations Blackout 2003: Blackout Final Implementation Report

  4. Blackout 2003: The August 14, 2003 Blackout One Year Later: Actions...

    Energy Savers [EERE]

    Blackout 2003: The August 14, 2003 Blackout One Year Later: Actions Taken in the United States and Canada To Reduce Blackout Risk A report to the US-Canada Power System Outage Task ...

  5. Blackout 2003: Blackout Final Implementation Report | Department...

    Energy Savers [EERE]

    Blackout Risk D:0myfilesBlackout ProgressBlackout-Progress.vp U.S. - Canada Power System Outage Task Force: Final Report on the Implementation of Task Force Recommendations

  6. Blackout Final Implementation Report

    Energy Savers [EERE]

    ... and Northeast and in Ontario, and why the blackout was not contained; and ii) to recommend measures to reduce the risk of future power outages and the scope of any that do occur. ...

  7. D:\0myfiles\Blackout Progress\Blackout-Progress.vp

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 14, 2003 Blackout One Year Later: Actions Taken in the United States and Canada To Reduce Blackout Risk Report to the U.S.-Canada Power System Outage Task Force Natural Resources Canada U.S. Department of Energy August 13, 2004 The August 14, 2003 Blackout One Year Later: Actions Taken in the United States and Canada To Reduce Blackout Risk Report to the U.S.-Canada Power System Outage Task Force August 13, 2004 Natural Resources Canada U.S. Department of Energy Acknowledgments As

  8. Complex systems analysis of series of blackouts: cascading failure, critical points, and self-organization

    SciTech Connect (OSTI)

    Dobson, Ian [University of Wisconsin, Madison; Carreras, Benjamin A [ORNL; Lynch, Vickie E [ORNL; Newman, David E [University of Alaska

    2007-01-01

    We give an overview of a complex systems approach to large blackouts of electric power transmission systems caused by cascading failure. Instead of looking at the details of particular blackouts, we study the statistics and dynamics of series of blackouts with approximate global models. Blackout data from several countries suggest that the frequency of large blackouts is governed by a power law. The power law makes the risk of large blackouts consequential and is consistent with the power system being a complex system designed and operated near a critical point. Power system overall loading or stress relative to operating limits is a key factor affecting the risk of cascading failure. Power system blackout models and abstract models of cascading failure show critical points with power law behavior as load is increased. To explain why the power system is operated near these critical points and inspired by concepts from self-organized criticality, we suggest that power system operating margins evolve slowly to near a critical point and confirm this idea using a power system model. The slow evolution of the power system is driven by a steady increase in electric loading, economic pressures to maximize the use of the grid, and the engineering responses to blackouts that upgrade the system. Mitigation of blackout risk should account for dynamical effects in complex self-organized critical systems. For example, some methods of suppressing small blackouts could ultimately increase the risk of large blackouts.

  9. Blackout 2003: Final Report on the August 14, 2003 Blackout in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the United States and Canada: Causes and Recommendations Blackout 2003: Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and ...

  10. Innovative Computational Tools for Reducing Exploration Risk...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computational Tools for Reducing Exploration Risk Through Integration of Water-Rock ... More Documents & Publications track 4: enhanced geothermal systems (EGS) | geothermal 2015 ...

  11. The Northeast Blackout of 1965

    SciTech Connect (OSTI)

    Vassell, G.S.

    1990-10-11

    Twenty-five years ago, on November 9, 1965, the electric utility industry - and the nation - experienced the biggest power failure in history. While major power outages did happen before and after this unique event, none of them came even close to the Great Northeast Blackout of 1965 - not in terms of the size of the area or the number of people affected, not in terms of the trauma inflicted on the society at large, and not in terms of its impact on the electric utility industry. With our institution memory - as a society - being as short as it is, many of the lessons that were learned by the industry, by the regulators, and by the nation at large in the wake of the Northeast Blackout have been, by now, mostly forgotten. The 25th anniversary of this event offers a unique opportunity, therefore, to refresh our institutional memory in this regard and, by doing so, bring to bear our past experience to the problems of today. This article has been written with this objective in mind and from the perspective of an individual who experienced firsthand - as an active electric utility industry participant - the Northeast Blackout itself, its aftermath, and the subsequent evolution of the industry to the present day.

  12. August 2003 Blackout | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation ¬Ľ August 2003 Blackout August 2003 Blackout General Information Final Report on Implementation of Task Force Recommendations (Issued Oct. 3, 2006) and the press release information Report on Competition v. Reliability per Rec. 12 of Aug. 2004 Blackout Investigation Final Report Draft Report on Implementation of the U.S.-Canada Power System Outage Task Force Recommendations Notice of June 22 Conference For Public Review of Draft Report on Implementation of the U.S. - Canada Power

  13. Are You Prepared for a Blackout? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prepared for a Blackout? Are You Prepared for a Blackout? August 24, 2012 - 2:23pm Addthis Earlier this week, Lynn talked about how you could prepare for a blackout. It's always...

  14. Blackout 2003: Energy Secretary Bodman and Minister of Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blackout 2003: Energy Secretary Bodman and Minister of Natural Resources for Canada Lunn Release the 2003 Power Outage Final Report, October 3, 2006 Blackout 2003: Energy Secretary ...

  15. New time-line technique for station blackout core-melt analysis

    SciTech Connect (OSTI)

    Stutzke, M.A.

    1986-01-01

    Florida Power Corporation (FPC) has developed a new method for analyzing station blackout (SBO) core-melt accidents. This method, created during the recent probabilistic risk assessment (PRA) of Crystal River Unit 3 (CR-3), originated from the need to analyze the interactions among the two-train emergency feedwater (EFW) system, station batteries, and diesel generators (DGs) following a loss of off-site power (LOSP) event. SBO core-melt sequences for CR-3 are unique since the time core-melt commences depends on which DG fails last. The purpose of this paper is to outline the new method of analysis of SBO core-melt accidents at CR-3. The significance of SBO core-melt accidents to total plant risk, along with the efficacy of various methods to reduce SBO risk, are also discussed.

  16. August 2003 Blackout | Department of Energy

    Energy Savers [EERE]

    Reliability per Rec. 12 of Aug. 2004 Blackout Investigation Final Report Draft Report on Implementation of the U.S.-Canada Power System Outage Task Force Recommendations Notice of ...

  17. Utilities respond to nuclear station blackout rule

    SciTech Connect (OSTI)

    Rubin, A.M.; Beasley, B.; Tenera, L.P

    1990-02-01

    The authors discuss how nuclear plants in the United States have taken actions to respond to the NRC Station Blackout Rule, 10CFR50.63. The rule requires that each light water cooled nuclear power plant licensed to operate must be able to withstand for a specified duration and recover from a station blackout. Station blackout is defined as the complete loss of a-c power to the essential and non-essential switch-gear buses in a nuclear power plant. A station blackout results from the loss of all off-site power as well as the on-site emergency a-c power system. There are two basic approaches to meeting the station blackout rule. One is to cope with a station blackout independent of a-c power. Coping, as it is called, means the ability of a plant to achieve and maintain a safe shutdown condition. The second approach is to provide an alternate a-c power source (AAC).

  18. Station blackout transients in the semiscale facility

    SciTech Connect (OSTI)

    Chapman, J.C.

    1985-12-01

    The test results of station blackout transients conducted in the Semiscale MOD-2B facility are discussed in this report. The Semiscale MOD-2B facility simulates a pressurized water reactor (PWR) power plant. The experiments were initiated from conditions typical of PWR plant operating conditions (primary pressure of 15.2 MPa (2205 psi) and cold leg fluid temperature of 550 K (530F)). Five station blackout experiments were conducted, Three tests in the Power Loss (PL) Test Series and the two Primary Boil-off (PBO) Tests. The responses of these tests were analyzed and compared. However, only one test response (S-PL-2) is presented and discussed in detail. The S-PL-2 experiment is characterized by examining the responses of the primary and secondary pressures and fluid temperatures, the pressurizer liquid level, the primary fluid distribution, and the core thermal behavior. The mechanisms driving the S-PL-2 responses, the main elements of the station blackout transient, the influences of initial and boundary conditions and other transient that may appear similar to a station blackout are also discussed. Information pertinent to station blackout nuclear safety issues is presented in the report. 13 refs., 44 figs.

  19. Reduce Risk, Increase Clean Energy: How States and Cities are...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Risk, Increase Clean Energy: How States and Cities are Using Old Finance Tools to Scale Up a New Industry Reduce Risk, Increase Clean Energy: How States and Cities are Using ...

  20. Blackout 2003: Electric System Working Group Technical Conference -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comments and Recommendations | Department of Energy Electric System Working Group Technical Conference - Comments and Recommendations Blackout 2003: Electric System Working Group Technical Conference - Comments and Recommendations December 16, 2003 Electric System Working Group Technical Conference, Philadelphia PA - Summary of comments and recommendations relating to the aftermath of the August 2003 blackout. Recommendations (120.51 KB) More Documents & Publications Blackout 2003:

  1. Innovative Computational Tools for Reducing Exploration Risk Through

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Water-Rock Interactions and Magnetotelluric Surveys | Department of Energy Computational Tools for Reducing Exploration Risk Through Integration of Water-Rock Interactions and Magnetotelluric Surveys Innovative Computational Tools for Reducing Exploration Risk Through Integration of Water-Rock Interactions and Magnetotelluric Surveys Innovative Computational Tools for Reducing Exploration Risk Through Integration of Water-Rock Interactions and Magnetotelluric Surveys

  2. Reducing Cyber Risk to Critical Infrastructure: NIST Framework

    Broader source: Energy.gov [DOE]

    The National Institute of Standards and Technology (NIST) works with stakeholders to develop a voluntary Framework for reducing cyber risks to critical infrastructure. The Framework aims to be flexible and repeatable, while helping asset owner and operators manage cybersecurity risk.

  3. Milestone Reached: New Process Reduces Cost and Risk of Biofuel...

    Office of Environmental Management (EM)

    Risk of Biofuel Production from Bio-Oil Upgrading Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading May 6, 2015 - 11:29am Addthis ...

  4. Milestone Reached: New Process Reduces Cost and Risk of Biofuel...

    Broader source: Energy.gov (indexed) [DOE]

    a bio-oil intermediate into biofuel, making the conversion process expensive. Battelle's new process substantially reduces the cost and risk of biofuel production and helps make ...

  5. Blackout 2003: Transcript of Technical Conference with the Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transcript of the technical conference sponsored by the U.S. Canada task force investigating the August 14, 2003 blackout across Canada and the Northeastern United States. The ...

  6. Blackout 2003: Electric System Working Group Technical Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blackout 2003: Electric System Working Group Technical Conference - Comments and Recommendations December 16, 2003 Electric System Working Group Technical Conference, Philadelphia ...

  7. Reducing Risk for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare; Kyle B. Oswald

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  8. Blackout 2003: Summary of Comments from Forum and Email | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Summary of Comments from Forum and Email Blackout 2003: Summary of Comments from Forum and Email This Excel file is a summary of all comments and recommendations received by DOE on the Blackout Report via email and the Blackout Forum as of 1-12-04. Summary of Comments from Forum and Email (170.5 KB) More Documents & Publications Blackout 2003: Blackout Final Implementation Report Blackout 2003: Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes

  9. 10 Years after the 2003 Northeast Blackout

    Broader source: Energy.gov [DOE]

    Ten years ago today, large portions of the Midwest and Northeast United States and into Canada went dark. The cascading event, which started shortly after 4:00 PM on August 14, 2003, ended up affecting an estimated 50 million people. For some customers, power was not restored for nearly four days. The Department of Energy and Natural Resources Canada jointly commissioned a task force that examined the underlying causes of the blackout and recommended forty-six actions to enhance the reliability of the North American power system. A number of the recommendations were incorporated into law passed by Congress and enacted in the Energy Policy Act of 2005 and the Energy Infrastructure Security Act of 2007.

  10. A surety engineering framework to reduce cognitive systems risks.

    SciTech Connect (OSTI)

    Caudell, Thomas P.; Peercy, David Eugene; Caldera, Eva O.; Shaneyfelt, Wendy L.

    2008-12-01

    Cognitive science research investigates the advancement of human cognition and neuroscience capabilities. Addressing risks associated with these advancements can counter potential program failures, legal and ethical issues, constraints to scientific research, and product vulnerabilities. Survey results, focus group discussions, cognitive science experts, and surety researchers concur technical risks exist that could impact cognitive science research in areas such as medicine, privacy, human enhancement, law and policy, military applications, and national security (SAND2006-6895). This SAND report documents a surety engineering framework and a process for identifying cognitive system technical, ethical, legal and societal risks and applying appropriate surety methods to reduce such risks. The framework consists of several models: Specification, Design, Evaluation, Risk, and Maturity. Two detailed case studies are included to illustrate the use of the process and framework. Several Appendices provide detailed information on existing cognitive system architectures; ethical, legal, and societal risk research; surety methods and technologies; and educing information research with a case study vignette. The process and framework provide a model for how cognitive systems research and full-scale product development can apply surety engineering to reduce perceived and actual risks.

  11. Determination of station blackout frequency-duration relationships

    SciTech Connect (OSTI)

    Griggs, D.P.; Riggs, B.K.; Balakrishna, S.

    1986-01-01

    Station blackout is the loss of all alternating current (ac) power to the essential and nonessential electrical buses in a nuclear power plant. This generally involves the loss of redundant off-site power sources and the failure of two or more emergency diesel generators (EDGs). The US Nuclear Regulatory Commission (NRC) has proposed requiring all commercial reactors to have the capability of coping with a station blackout of a specified duration. The NRC has also proposed 4 or 8 h as acceptable durations, depending on plant susceptibility to the occurrence of station blackout events. Analyses were performed to determine expected station blackout frequencies representative of a majority of domestic nuclear power plants. A methodology based on that developed by the NRC was used. Representative industry data for loss of off-site power (LOOP) events and EDG reliability were used in the analyses.

  12. Blackout 2003: Transcript of Technical Conference with the Electric System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigation Team | Department of Energy Transcript of Technical Conference with the Electric System Investigation Team Blackout 2003: Transcript of Technical Conference with the Electric System Investigation Team Electric System Investigation Team: 8 Reliability Recommendation consultation Transcript of the technical conference sponsored by the U.S. Canada task force investigating the August 14, 2003 blackout across Canada and the Northeastern United States. The transcript includes reports

  13. Loss of pressurizer water level during station blackout

    SciTech Connect (OSTI)

    Griggs, D.P.; Riggs, B.K.

    1986-01-01

    Station blackout is the loss of all alternating current (ac) power to both the essential and nonessential electrical buses in a nuclear power plant. The US Nuclear Regulatory Commission (NRC) has proposed a requirement that all plants be capable of maintaining adequate core cooling during station blackout events lasting a specified duration. The NRC has also suggested acceptable specified durations of four or eight hours, depending on individual plant susceptibility to blackout events. In a pressurized water reactor (PWR), the occurrence of a station blackout event results in the functional loss of many plant components, including main feedwater, reactor coolant pumps, the emergency core cooling system, and pressurizer heaters and spray. Nevertheless, PWRs have the capability of removing decay heat for some period of time using steam-driven auxiliary feedwater pumps and the natural-circulation capability of the primary system. The purpose of this investigation is to determine the early response of a PWR to station blackout conditions. In particular, the effect of primary coolant shrinkage and inventory loss on pressurizer level is examined to gain insight into the operational and analytical issues associated with the proposed station blackout coping requirement.

  14. Blackout 2003: Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Task Force has completed a thorough investigation of the causes of the August 14, 2003 blackout and has recommended actions to minimize the likelihood and scope of similar events in the future.

  15. Blackout 2003: U.S.- Canada Task Force Presents Final Report onBlackout of August 2003

    Broader source: Energy.gov [DOE]

    August 14, 2003, saw the worst blackout in North American history. Today, Spencer Abraham, U.S. Secretary of Energy, and the Honorable R. John Efford, Minister of Natural Resources Canada, released...

  16. How to Prepare Your Home for a Blackout | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Your Home for a Blackout How to Prepare Your Home for a Blackout August 20, 2012 - 7:19pm Addthis Lynn Meyer Presidential Management Fellow, Office of Energy Efficiency and...

  17. Study of a Station Blackout Event in the PWR Plant

    SciTech Connect (OSTI)

    Ching-Hui Wu; Tsu-Jen Lin; Tsu-Mu Kao [Institute of Nuclear Energy Research P.O. Box 3-3, Longtan, 32500, Taiwan (China)

    2002-07-01

    On March 18, 2001, a PWR nuclear power plant located in the Southern Taiwan occurred a Station Blackout (SBO) event. Monsoon seawater mist caused the instability of offsite power grids. High salt-contained mist caused offsite power supply to the nuclear power plant very unstable, and forced the plant to be shutdown. Around 24 hours later, when both units in the plant were shutdown, several inadequate high cycles of bus transfer between 345 kV and 161 kV startup transformers degraded the emergency 4.16 kV switchgears. Then, in the Train-A switchgear room of Unit 1 occurred a fire explosion, when the degraded switchgear was hot shorted at the in-coming 345 kV breaker. Inadequate configuration arrangement of the offsite power supply to the emergency 4.16 kV switchgears led to loss of offsite power (LOOP) events to both units in the plant. Both emergency diesel generators (EDG) of Unit 1 could not be in service in time, but those of Unit 2 were running well. The SBO event of Unit 1 lasted for about two hours till the fifth EDG (DG-5) was lined-up to the Train-B switchgear. This study investigated the scenario of the SBO event and evaluated a risk profile for the SBO period. Guidelines in the SBO event, suggested by probabilistic risk assessment (PRA) procedures were also reviewed. Many related topics such as the re-configuration of offsite power supply, the addition of isolation breakers of the emergency 4.16 kV switchgears, the betterment of DG-5 lineup design, and enhancement of the reliability of offsite power supply to the PWR plant, etc., will be in further studies. (authors)

  18. Proposed SPAR Modeling Method for Quantifying Time Dependent Station Blackout Cut Sets

    SciTech Connect (OSTI)

    John A. Schroeder

    2010-06-01

    Abstract: The U.S. Nuclear Regulatory Commissionís (USNRCís) Standardized Plant Analysis Risk (SPAR) models and industry risk models take similar approaches to analyzing the risk associated with loss of offsite power and station blackout (LOOP/SBO) events at nuclear reactor plants. In both SPAR models and industry models, core damage risk resulting from a LOOP/SBO event is analyzed using a combination of event trees and fault trees that produce cut sets that are, in turn, quantified to obtain a numerical estimate of the resulting core damage risk. A proposed SPAR method for quantifying the time-dependent cut sets is sometimes referred to as a convolution method. The SPAR method reflects assumptions about the timing of emergency diesel failures, the timing of subsequent attempts at emergency diesel repair, and the timing of core damage that may be different than those often used in industry models. This paper describes the proposed SPAR method.

  19. Use of comprehensive NEPA documents to reduce program risk

    SciTech Connect (OSTI)

    Wolff, T.A.; Hansen, R.P.

    1994-04-01

    Sandia National Laboratories operates DOE`s Kauai Test Facility (KTF) on the western coast of the Hawaiian island of Kauai. In July 1992, DOE approved a comprehensive Environmental Assessment (EA) covering ongoing and future rocket launches of experimental payloads. The KTF EA fulfilled two basic objectives: Consideration of environmental values early in the planning and decision making process; and public disclosure. These objectives can also be considered to be benefits of preparing comprehensive NEPA documents. However, proponents of an action are not as dedicated to these twin NEPA objectives as they are motivated by NEPA`s ability to reduce program risks. Once the KTF environmental assessment was underway, it was apparent that reducing risks to the program, budget, and schedule was the main incentive for successful completion of the EA. The comprehensive or ``omnibus`` environmental assessment prepared for the KTF is a de facto ``detailed statement,`` and it is also a good example of a ``mitigated FONSI,`` i.e., mitigation measures are essential to render some potential impacts not significant. Because the KTF EA is a broad scope, umbrella-like, site-wide assessment, it ``bounds`` the impacts of continuing and proposed future actions. The successful completion of this document eliminated the need to review, document, and gain approval individually for numerous related actions. Also, because it supported a Finding of No Significant Impact (FONSI) after identifying appropriate mitigation, it also eliminated the need for an environmental impact statement (EIS). This paper discusses seven specific ways in which the KTF EA reduced program risks and supported budget and schedule objectives.

  20. Initial Evidence for Self-Organized Criticality in Electric Power System Blackouts

    SciTech Connect (OSTI)

    Carreras, B.A.; Dobson, I.; Newman, D.E.; Poole, A.B.

    2000-01-04

    We examine correlations in a time series of electric power system blackout sizes using scaled window variance analysis and R/S statistics. The data shows some evidence of long time correlations and has Hurst exponent near 0.7. Large blackouts tend to correlate with further large blackouts after a long time interval. Similar effects are also observed in many other complex systems exhibiting self-organized criticality. We discuss this initial evidence and possible explanations for self-organized criticality in power systems blackouts. Self-organized criticality, if fully confirmed in power systems, would suggest new approaches to understanding and possibly controlling blackouts.

  1. Estimating Failure Propagation in Models of Cascading Blackouts

    SciTech Connect (OSTI)

    Dobson, Ian [University of Wisconsin, Madison; Carreras, Benjamin A [ORNL; Lynch, Vickie E [ORNL; Nkei, Bertrand [ORNL; Newman, David E [University of Alaska

    2005-09-01

    We compare and test statistical estimates of failure propagation in data from versions of a probabilistic model of loading-dependent cascading failure and a power systems blackout model of cascading transmission line overloads. The comparisons suggest mechanisms affecting failure propagation and are an initial step towards monitoring failure propagation from practical system data. Approximations to the probabilistic model describe the forms of probability distributions of cascade sizes.

  2. Reducing Cyber Risk to Critical Infrastructure: NIST Framework...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyber Community C Voluntary Program Electricity Subsector Cybersecurity Risk Management ... November 3, 2015 National Critical Infrastructure Security and Resilience Month: Improving ...

  3. Comparative Study of Station Blackout Counterpart Tests in APEX and ROSA/AP600

    SciTech Connect (OSTI)

    Lafi, Abd Y.; Reyes, Jose N. Jr.

    2000-05-15

    A comparison is presented between station blackout tests conducted in both the Advanced Plant Experiment (APEX) facility and in the modified Rig of Safety Assessment (ROSA/AP600) Large-Scale Test Facility. The comparison includes the depressurization and liquid-level behavior during secondary-side blowdown, natural circulation, automatic depressurization system operation, and in-containment refueling water storage tank injection. Reasonable agreement between the test results from APEX NRC-2 and ROSA/AP600 AP-BO-01 has been observed with respect to the timing of depressurization and liquid draining rates. This indicates that the reduced height and pressure scaling of APEX preserves the sequence of events relative to the full-height and pressure ROSA/AP600.

  4. Reproducing continuous radio blackout using glow discharge plasma

    SciTech Connect (OSTI)

    Xie, Kai; Li, Xiaoping; Liu, Donglin; Shao, Mingxu [School of Aerospace Science and Technology, Xidian University, Xi'an 710071 (China)] [School of Aerospace Science and Technology, Xidian University, Xi'an 710071 (China); Zhang, Hanlu [School of Communication and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121 (China)] [School of Communication and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121 (China)

    2013-10-15

    A novel plasma generator is described that offers large-scale, continuous, non-magnetized plasma with a 30-cm-diameter hollow structure, which provides a path for an electromagnetic wave. The plasma is excited by a low-pressure glow discharge, with varying electron densities ranging from 10{sup 9} to 2.5 ◊ 10{sup 11} cm{sup ?3}. An electromagnetic wave propagation experiment reproduced a continuous radio blackout in UHF-, L-, and S-bands. The results are consistent with theoretical expectations. The proposed method is suitable in simulating a plasma sheath, and in researching communications, navigation, electromagnetic mitigations, and antenna compensation in plasma sheaths.

  5. Scientific Opportunities to Reduce Risk in Nuclear Process Science - 9279

    SciTech Connect (OSTI)

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-03-01

    In this document, we propose that scientific investments for the disposal of nuclear and hazardous wastes should not be focused solely on what may be viewed as current Department of Energy needs, but also upon longer-term investments in specific areas of science that underpin technologies presently in use. In the latter regard, we propose four science theme areas: 1) the structure and dynamics of materials and interfaces, 2) coupled chemical and physical processes, 3) complex solution phase phenomena, and 4) chemical recognition phenomena. The proposed scientific focus for each of these theme areas and the scientific opportunities are identified, along with links to major risks within the initiative areas identified in EMís Engineering and Technology Roadmap.

  6. Thermohydraulic and Safety Analysis for CARR Under Station Blackout Accident

    SciTech Connect (OSTI)

    Wenxi Tian; Suizheng Qiu; Guanghui Su; Dounan Jia [Xi'an Jiaotong University, 28 Xianning Road, Xi'an 710049 (China); Xingmin Liu - China Institute of Atomic Energy

    2006-07-01

    A thermohydraulic and safety analysis code (TSACC) has been developed using Fortran 90 language to evaluate the transient thermohydraulic behaviors and safety characteristics of the China Advanced Research Reactor(CARR) under Station Blackout Accident(SBA). For the development of TSACC, a series of corresponding mathematical and physical models were considered. Point reactor neutron kinetics model was adopted for solving reactor power. All possible flow and heat transfer conditions under station blackout accident were considered and the optional models were supplied. The usual Finite Difference Method (FDM) was abandoned and a new model was adopted to evaluate the temperature field of core plate type fuel element. A new simple and convenient equation was proposed for the resolution of the transient behaviors of the main pump instead of the complicated four-quadrant model. Gear method and Adams method were adopted alternately for a better solution to the stiff differential equations describing the dynamic behaviors of the CARR. The computational result of TSACC showed the enough safety margin of CARR under SBA. For the purpose of Verification and Validation (V and V), the simulated results of TSACC were compared with those of Relap5/Mdo3. The V and V result indicated a good agreement between the results by the two codes. Because of the adoption of modular programming techniques, this analysis code is expected to be applied to other reactors by easily modifying the corresponding function modules. (authors)

  7. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout caused by external flooding using the RISMC toolkit

    SciTech Connect (OSTI)

    Mandelli, Diego; Smith, Curtis; Prescott, Steven; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2014-08-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impacts of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This paper focuses on the impacts of power uprate on the safety margin of a boiling water reactor for a flooding induced station black-out event. Analysis is performed by using a combination of thermal-hydraulic codes and a stochastic analysis tool currently under development at the Idaho National Laboratory, i.e. RAVEN. We employed both classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. Results obtained give a detailed investigation of the issues associated with a plant power uprate including the effects of station black-out accident scenarios. We were able to quantify how the timing of specific events was impacted by a higher nominal reactor core power. Such safety insights can provide useful information to the decision makers to perform risk informed margins management.

  8. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect (OSTI)

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-08-28

    intent of this paper is to foster a dialogue on how basic scientific research can assist DOE in executing its cleanup and environmental management mission. In this paper, we propose that such scientific investments not be focused solely on what may be viewed as current DOE needs, but also be based upon longer-term investments in specific areas of science that underpin technologies presently in use. In the latter regard, we propose four science theme areas: 1) the structure and dynamics of materials and interfaces, 2) coupled chemical and physical processes, 3) complex solution phase phenomena, and 4) chemical recognition phenomena. The proposed scientific focus for each of these theme areas and the scientific opportunities are identified, along with links to major risks within the initiative areas identified in EMís Engineering and Technology Roadmap.

  9. Station Blackout: A case study in the interaction of mechanistic and probabilistic safety analysis

    SciTech Connect (OSTI)

    Curtis Smith; Diego Mandelli; Cristian Rabiti

    2013-11-01

    The ability to better characterize and quantify safety margins is important to improved decision making about nuclear power plant design, operation, and plant life extension. As research and development (R&D) in the light-water reactor (LWR) Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway R&D is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a ‚Äústation blackout‚ÄĚ wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario.

  10. Reduce Risk, Increase Clean Energy: How States and Cities are Using Old

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finance Tools to Scale Up a New Industry | Department of Energy Reduce Risk, Increase Clean Energy: How States and Cities are Using Old Finance Tools to Scale Up a New Industry Reduce Risk, Increase Clean Energy: How States and Cities are Using Old Finance Tools to Scale Up a New Industry Provides a overview of finance tools available to scale-up to clean energy. Author: Clean Energy and Bond Finance Initiative (CE+BFI) Reduce Risk, Increase Clean Energy (3.97 MB) More Documents &

  11. Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wister, CA | Department of Energy Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA DOE Geothermal Technologies Peer Review 2010 - Presentation. The primary objective of this project is to conduct a 3C 3D (converted shear wave) seismic survey to reduce exploration risk by characterizing fault and fracture geometrics at Wister, CA.The intent of the proposed program is to

  12. Merging high resolution geophysical and geochemical surveys to reduce exploration risk at Glass Buttes, Oregon

    Broader source: Energy.gov [DOE]

    DOE Geothermal Technologies Peer Review - 2010. The primary objective of this project is to combine a suite of high resolution geophysical and geochemical techniques to reduce exploration risk by characterizing hydrothermal alteration, fault geometries and relationships.

  13. Potential failure of steam generator tubes following a station blackout

    SciTech Connect (OSTI)

    Ward, L.W.; Palmrose, D.E.

    1994-12-31

    The U.S. Nuclear Regulatory Commission is considering changes to pressurized water reactor (PWR) requirements relating to steam generator tube plugging and repair criteria, including leakage monitoring. The proposed changes are known as the alternate tube plugging criteria (APC) and are intended to permit PWRs to operate with through-wall cracks in steam generator tubes subject to meeting a specified limit on predicted primary to secondary leakage under accident conditions. To assess the consequences of the alternate plugging criteria, analyses were performed for a station blackout sequence in which the reactor core melts while the reactor coolant system (RCS) remains at high pressure. Evaluations were conducted to investigate the potential for tube failure with and without secondary system depressurization. The excessive heat coupled with the high-pressure differentials across the steam generator tubes could result in creep rupture failure of the tubes during a severe accident, which could lead to a radiological release directly to the environment. In order to assess the safety significance of the APC, it is important to identify the level of steam generator tube leakage that can occur without challenging the previous study conclusions that steam generator creep failure will not occur prior to a surge line or hot-leg failure. To assess the effect of leakage on steam generator tube integrity during a core melt sequence with the RCS at high pressure and the secondary side of the steam generators pressurized and depressurized, an analysis was performed for a core melt event resulting from an unmitigated station blackout to identify the total steamenerator and tube leakage flow rates that could induce tube ruptures prior to other RCS boudary faliures that could depressurize the RCS.

  14. OSTIblog Articles in the blackout Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Approximately 50 million people in 8 U.S. states and Canada experienced the worst blackout in North American history. Research has been ongoing at the Department of Energy to ...

  15. BWR station blackout: A RISMC analysis using RAVEN and RELAP5-3D

    SciTech Connect (OSTI)

    Mandelli, D.; Smith, C.; Riley, T.; Nielsen, J.; Alfonsi, A.; Cogliati, J.; Rabiti, C.; Schroeder, J.

    2016-01-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates and improved operations. In order to evaluate the impact of these factors on the safety of the plant, the Risk-Informed Safety Margin Characterization (RISMC) project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions and accident scenarios. This paper presents a case study in order to show the capabilities of the RISMC methodology to assess impact of power uprate of a Boiling Water Reactor system during a Station Black-Out accident scenario. We employ a system simulator code, RELAP5-3D, coupled with RAVEN which perform the stochastic analysis. Lastly, our analysis is performed by: 1) sampling values from a set of parameters from the uncertainty space of interest, 2) simulating the system behavior for that specific set of parameter values and 3) analyzing the outcomes from the set of simulation runs.

  16. BWR station blackout: A RISMC analysis using RAVEN and RELAP5-3D

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mandelli, D.; Smith, C.; Riley, T.; Nielsen, J.; Alfonsi, A.; Cogliati, J.; Rabiti, C.; Schroeder, J.

    2016-01-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates and improved operations. In order to evaluate the impact of these factors on the safety of the plant, the Risk-Informed Safety Margin Characterization (RISMC) project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions and accident scenarios. This paper presents a case study in order to show the capabilities of the RISMC methodology to assess impact of power uprate of a Boiling Watermore¬†¬Ľ Reactor system during a Station Black-Out accident scenario. We employ a system simulator code, RELAP5-3D, coupled with RAVEN which perform the stochastic analysis. Lastly, our analysis is performed by: 1) sampling values from a set of parameters from the uncertainty space of interest, 2) simulating the system behavior for that specific set of parameter values and 3) analyzing the outcomes from the set of simulation runs.¬ę¬†less

  17. Analysis of Kuosheng Station Blackout Accident Using MELCOR 1.8.4

    SciTech Connect (OSTI)

    Wang, S.-J.; Chien, C.-S.; Wang, T.-C.; Chiang, K.-S

    2000-11-15

    The MELCOR code, developed by Sandia National Laboratories, is a fully integrated, relatively fast-running code that models the progression of severe accidents in commercial light water nuclear power plants (NPPs).A specific station blackout (SBO) accident for Kuosheng (BWR-6) NPP is simulated using the MELCOR 1.8.4 code. The MELCOR input deck for Kuosheng NPP is established based on Kuosheng NPP design data and the MELCOR users' guides. The initial steady-state conditions are generated with a developed self-initialization algorithm. The main severe accident phenomena and the fission product release fractions associated with the SBO accident were simulated. The predicted results are plausible and as expected in light of current understanding of severe accident phenomena. The uncertainty of this analysis is briefly discussed. The important features of the MELCOR 1.8.4 are described. The estimated results provide useful information for the probabilistic risk assessment (PRA) of Kuosheng NPP. This tool will be applied to the PRA, the severe accident analysis, and the severe accident management study of Kuosheng NPP in the near future.

  18. Analysis of core uncovery time in Kuosheng station blackout transient with MELCOR

    SciTech Connect (OSTI)

    Wang, S.J.; Chien, C.S. [Inst. of Nuclear Energy Research, Lungtan (Taiwan, Province of China)

    1996-02-01

    The MELCOR code, developed by the Sandia National Laboratories, is capable of simulating severe accident phenomena of nuclear power plants. Core uncovery time is an important parameter in the probabilistic risk assessment. However, many MELCOR users do not generate the initial conditions in a station blackout (SBO) transient analysis. Thus, achieving reliable core uncovery time is difficult. The core uncovery time for the Kuosheng nuclear power plant during an SBO transient is analyzed. First, full-power steady-state conditions are generated with the application of a developed self-initialization algorithm. Then the response of the SBO transient up to core uncovery is simulated. The effects of key parameters including the initialization process and the reactor feed pump (RFP) coastdown time on the core uncovery time are analyzed. The initialization process is the most important parameter that affects the core uncovery time. Because SBO transient analysis, the correct initial conditions must be generated to achieve a reliable core uncovery time. The core uncovery time is also sensitive to the RFP coastdown time. A correct time constant is required.

  19. BWR station blackout: A RISMC analysis using RAVEN and RELAP5-3D

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mandelli, D.; Smith, C.; Riley, T.; Nielsen, J.; Alfonsi, A.; Cogliati, J.; Rabiti, C.; Schroeder, J.

    2016-01-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates and improved operations. In order to evaluate the impact of these factors on the safety of the plant, the Risk-Informed Safety Margin Characterization (RISMC) project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions and accident scenarios. This paper presents a case study in order to show the capabilities of the RISMC methodology to assess impact of power uprate of a Boiling Watermore¬†¬Ľ Reactor system during a Station Black-Out accident scenario. We employ a system simulator code, RELAP5-3D, coupled with RAVEN which perform the stochastic analysis. Furthermore, our analysis is performed by: 1) sampling values from a set of parameters from the uncertainty space of interest, 2) simulating the system behavior for that specific set of parameter values and 3) analyzing the outcomes from the set of simulation runs.¬ę¬†less

  20. EERE Success Story-Milestone Reached: New Process Reduces Cost and Risk

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Biofuel Production from Bio-Oil Upgrading | Department of Energy Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading EERE Success Story-Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading May 12, 2015 - 4:53pm Addthis Battelle-a nonprofit research and development organization that operates many of the national laboratories-reached an Energy Department project milestone to demonstrate at least 1,000 hours of

  1. Planning for the Next Blackout: Optimizing the Use of Distributed Energy Resources

    SciTech Connect (OSTI)

    Glickman, Joan A.; Herrera, Shawn; Kline, Keith F.; Warwick, William M.

    2004-12-01

    Given recent blackouts and concerns of terrorist attacks, some public and private organizations are taking steps to produce their own heating, cooling, and power in the event of future, potentially prolonged, outages. For example, military installations, such as Fort Bragg in North Carolina, and the Marine Task Force Training Command in Twentynine Palms, California, turned to combined heat and power and other distributed energy technologies to reduce costs and simultaneously manage their energy and reliability needs. While these individual efforts can help ensure reliability for these facilities, public policies continue to discourage most individual public and private entities from making such investments. As a result, communities across the country are not adequately prepared to protect human health and ensure safety in the event of a prolonged emergency. Significant cost savings and social benefits can accrue if parties interested in emergency preparedness, energy efficiency, and environmentally preferred technologies, come together to identify and implement win-win solutions. This paper offers recommendations to help federal, state, and local governments, along with utilities, jointly plan and invest in cleaner distributed energy technologies to address growing reliability needs as well as environmental and emergency preparedness concerns.

  2. Reduced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reduce Waste and Save Energy this Holiday Season Reduce Waste and Save Energy this Holiday Season December 5, 2014 - 9:55am Addthis Wrap your gifts with recycled paper to reduce waste and save money. | Photo courtesy of istockphoto/diane555 Wrap your gifts with recycled paper to reduce waste and save money. | Photo courtesy of istockphoto/diane555 Paige Terlip Paige Terlip Former Communicator, National Renewable Energy Laboratory What are the key facts? Reduce waste and save energy this holiday

  3. POTENTIAL HEALTH RISK REDUCTION ARISING FROM REDUCED MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    SciTech Connect (OSTI)

    Sullivan, T. M.; Lipfert, F. W.; Morris, S. C.; Moskowitz, P. D.

    2001-09-01

    The U.S. Environmental Protection Agency (EPA) has announced plans to regulate mercury (Hg) emissions from coal-fired power plants. EPA has not prepared a quantitative assessment of the reduction in risk that could be achieved through reduction in coal plant emissions of Hg. To address this issue, Brookhaven National Laboratory (BNL) with support from the U.S. Department of Energy Office of Fossil Energy (DOE FE) prepared a quantitative assessment of the reduction in human health risk that could be achieved through reduction in coal plant emissions of Hg. The primary pathway for Hg exposure is through consumption of fish. The most susceptible population to Hg exposure is the fetus. Therefore the risk assessment focused on consumption of fish by women of child-bearing age. Dose response factors were generated from studies on loss of cognitive abilities (language skills, motor skills, etc.) by young children whose mothers consumed large amounts of fish with high Hg levels. Population risks were estimated for the general population in three regions of the country, (the Midwest, Northeast, and Southeast) that were identified by EPA as being heavily impacted by coal emissions. Three scenarios for reducing Hg emissions from coal plants were considered: (1) A base case using current conditions; (2) A 50% reduction; and, (3) A 90% reduction. These reductions in emissions were assumed to translate linearly into a reduction in fish Hg levels of 8.6% and 15.5%, respectively. Population risk estimates were also calculated for two subsistence fisher populations. These groups of people consume substantially more fish than the general public and, depending on location, the fish may contain higher Hg levels than average. Risk estimates for these groups were calculated for the three Hg levels used for the general population analyses. Analysis shows that the general population risks for exposure of the fetus to Hg are small. Estimated risks under current conditions (i.e., no

  4. Data Management Issues Associated with the August 14, 2003 Blackout Investigation

    SciTech Connect (OSTI)

    Dagle, Jeffery E.

    2004-06-10

    The largest blackout in the history of the North American electric power grid occurred on August 14, 2003. An extensive investigation into what happened (and why) began immediately. The joint U.S.-Canada task force led the effort, including support from the electric utility industry and several federal agencies, e.g. the U.S. Department of Energy. The North American Electric Reliability Council (NERC) supported the task force, including particularly the electricity working group. The overall blackout investigation team drew expertise from a large number of organizations, assembled into teams to address specific attributes of the blackout. This paper describes the data management issues associated with supporting the blackout investigation, beginning with the immediate response in the days and weeks following the blackout, supporting the interim report [1], to the long-term plans for deriving lessons learned for implementing improvements in the overall process of outage disturbance reporting. The sole focus of this paper is the electricity working group activities at NERC; the security and nuclear working groups are outside the scope of this paper.

  5. Enhancement of NRC station blackout requirements for nuclear power plants

    SciTech Connect (OSTI)

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to

  6. Utility perspective on station blackout rule implementation with NUMARC 87-00

    SciTech Connect (OSTI)

    Maracek, J.

    1990-01-01

    The development of the station blackout rule involved an unusually high level of cooperation between the industry and the Nuclear Regulatory Commission (NRC). The industry developed an approach to implementation of the rule in the form of the Nuclear Management and Resources Council's (NUMARC's) Guidelines and Technical Bases for NUMARC Initiatives Addressing Station Blackout at Light Water Reactors (NUMARC 87-00). This document was reviewed and accepted by the NRC staff as a means for meeting the requirements of the station blackout rule. Yet difficulties still arose when individual utilities used the NUMARC 87-00 approach to respond to the rule. This presentation examines the development process and subsequent difficulties and identifies potential improvements for development and implementation of new rules in the future.

  7. Applications of the RELAP5 code to the station blackout transients at the Browns Ferry Unit One Plant

    SciTech Connect (OSTI)

    Schultz, R.R.; Wagoner, S.R.

    1983-01-01

    As a part of the charter of the Severe Accident Sequence Analysis (SASA) Program, station blackout transients have been analyzed using a RELAP5 model of the Browns Ferry Unit 1 Plant. The task was conducted as a partial fulfillment of the needs of the US Nuclear Regulatory Commission in examining the Unresolved Safety Issue A-44: Station Blackout (1) the station blackout transients were examined (a) to define the equipment needed to maintain a well cooled core, (b) to determine when core uncovery would occur given equipment failure, and (c) to characterize the behavior of the vessel thermal-hydraulics during the station blackout transients (in part as the plant operator would see it). These items are discussed in the paper. Conclusions and observations specific to the station blackout are presented.

  8. The response of BWR Mark II containments to station blackout severe accident sequences

    SciTech Connect (OSTI)

    Greene, S.R.; Hodge, S.A.; Hyman, C.R.; Tobias, M.L. (Oak Ridge National Lab., TN (USA))

    1991-05-01

    This report describes the results of a series of calculations conducted to investigate the response of BWR Mark 2 containments to short-term and long-term station blackout severe accident sequences. The BWR-LTAS, BWRSAR, and MELCOR codes were employed to conduct quantitative accident sequence progression and containment response analyses for several station blackout scenarios. The accident mitigation effectiveness of automatic depressurization system actuation, drywell flooding via containment spray operation, and debris quenching in Mark 2 suppression pools is assessed. 27 refs., 16 figs., 21 tabs.

  9. OSTIblog Articles in the blackout Topic | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information blackout Topic Keeping the lights on by Kathy Chambers 17 Jul, 2013 in Products and Content 7547 NY_8076404_nightfall.jpg Keeping the lights on Read more about 7547 On August 14, 2003, a software bug at a utility company brought New York City to its knees, and the resulting cascading effect ultimately forced the shutdown of more than 100 power plants (read more). Approximately 50 million people in 8 U.S. states and Canada experienced the worst blackout in

  10. Reduce Risk, Increase Clean Energy: How States and Cities are Using Old Finance Tools

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Risk, Increase Clean Energy: How States and Cities are Using Old Finance Tools to Scale Up a New Industry August 2013 Report Prepared for the Clean Energy and Bond Finance Initiative (CE+BFI) A Joint Project of Clean Energy Group and the Council of Development Finance Agencies Robert G. Sanders Lewis Milford Toby Rittner Clean Energy Group (CEG) CEG is a leading national, nonprofit advocacy organization working on innovative technology, finance, and policy programs in the areas of clean

  11. Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading

    Office of Energy Efficiency and Renewable Energy (EERE)

    Battelle‚ÄĒa nonprofit research and development organization that operates many of the national laboratories‚ÄĒreached an Energy Department project milestone to demonstrate at least 1,000 hours of bio-oil hydrotreatment on a single catalyst charge. Typically, it takes many catalysts to convert a bio-oil intermediate into biofuel, making the conversion process expensive. Battelle‚Äôs new process substantially reduces the cost and risk of biofuel production and helps make the process more commercially viable.

  12. Use of Biostratigraphy to Increase Production, Reduce Operating Costs and Risks and Reduce Environmental Concerns in Oil Well Drilling

    SciTech Connect (OSTI)

    Edward Marks

    2005-09-09

    out at the top of the late Miocene, early Mohnian: Bolivina aff hughesi, Rotalia becki, Suggrunda californica, Virgulina grandis, Virgulina ticensis, Bulimina ecuadorana, Denticula lauta and Nonion medio-costatum. Please see Appendix B, Fig. 1, Neogene Zones, p. 91 and Appendix C, chart 5, p. 99 By the use of Stratigraphy, employing both Paleontology and Lithology, we can increase hydrocarbon production, reduce operating costs and risks by the identification of the productive sections, and reduce environmental concerns by drilling less dry holes needlessly.

  13. SCDAP severe core-damage studies: BWR ATWS and PWR station blackout

    SciTech Connect (OSTI)

    Laats, E.T.; Chambers, R.; Driskell, W.E.

    1983-01-01

    The Severe Accident Sequence Analysis (SASA) Program, sponsored by the US Nuclear Regulatory Commission (NRC), is addressing a number of accident scenarios that potentially pose a health hazard to the public. Two of the scenarios being analyzed in detail at the Idaho National Engineering Laboratory (INEL) are the station blackout at the Bellefonte nuclear plant and the anticipated transient without scram (ATWS) at the Browns Ferry-1 plant. The INEL analyses of the station blackout and ATWS have been divided into four parts, which represent the sequence being followed in this study. First, the evaluation of long term irradiation effects prior to the station blackout or ATWS was conducted using the FRAPCON-2 fuel rod behavior code; second, the reactor primary and secondary coolant system behavior is being analyzed with the RELAP5 code; third, the degradation of the core is being analyzed with the SCDAP code; and finally, the containment building response is being analyzed with the CONTEMPT code. This paper addresses only the SCDAP/MODO degraded core analyses for both the station blackout and ATWS scenarios.

  14. Recovery sequences for a station blackout accident at the Grand Gulf Nuclear Station

    SciTech Connect (OSTI)

    Carbajo, J.J. [Martin Marietta Energy Systems, Oak Ridge, TN (United States)

    1995-12-31

    Recovery sequences for a low-pressure, short term, station blackout severe accident at the Grand Gulf power plant have been investigated using the computer code MELCOR, version 1.8.3 PN. This paper investigates the effect of reflood timing and mass flow rate on accident recovery.

  15. RELAP5/MOD3 simulation of the station blackout experiment conducted at the IIST facility

    SciTech Connect (OSTI)

    Ferng, Y.M.; Liu, T.J.; Lee, C.H. [Inst. of Nuclear Energy Research, Lung-Tan (Taiwan, Province of China)

    1996-10-01

    Thermal-hydraulic responses in the station blackout experiment conducted at the IIST facility are simulated through the use of the advanced system code RELAP5/MOD3. Typical behaviors occurring in the IIST station blackout transient are characterized by secondary boiloff, primary saturation and pressurization, and subsequent core uncovery and heatup. As the coolant inventory within the steam generator secondary system boils dry, the primary system pressure increases as a result of degradation of the heat removal ability of the steam generator secondary side. This pressurization phenomenon causes the pressurizer safety valve to open and the primary coolant to deplete through the valve, causing the core to eventually become uncovered. The same response can be exactly simulated by the current model. The current calculated results show fairly good agreement with the experimental data, but the timing of the events occurring in the station blackout transient is calculated earlier than the measured value. The overall comparison of key parameters between the calculated results and IIST test data, however, reveals that the current RELAP5/MOD3 model can provide reasonable station blackout modeling for simulating long-term system behavior.

  16. Simulating Pelletization Strategies to Reduce the Biomass Supply Risk at America’s Biorefineries

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Shane Carnohan; Andrew Ford; Allyson Beall

    2014-07-01

    Demand for cellulosic ethanol and other advanced biofuels has been on the rise, due in part to federal targets enacted in 2005 and extended in 2007. The industry faces major challenges in meeting these worthwhile and ambitious targets. The challenges are especially severe in the logistics of timely feedstock delivery to biorefineries. Logistical difficulties arise from seasonal production that forces the biomass to be stored in uncontrolled field-side environments. In this storage format physical difficulties arise; transportation is hindered by the low bulk density of baled biomass and the unprotected material can decay leading to unpredictable losses. Additionally, uncertain yields and contractual difficulties can exacerbate these challenges making biorefineries a high-risk venture. Investors’ risk could limit business entry and prevent America from reaching the targets. This paper explores pelletizer strategies to convert the lignocellulosic biomass into a denser form more suitable for storage. The densification of biomass would reduce supply risks, and the new system would outperform conventional biorefinery supply systems. Pelletizer strategies exhibit somewhat higher costs, but the reduction in risk is well worth the extra cost if America is to grow the advanced biofuels industry in a sustainable manner.

  17. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Convergence of the Uncertainty Results

    SciTech Connect (OSTI)

    Bixler, Nathan E.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Eckert-Gallup, Aubrey Celia; Mattie, Patrick D.; Ghosh, S. Tina

    2014-02-01

    This paper describes the convergence of MELCOR Accident Consequence Code System, Version 2 (MACCS2) probabilistic results of offsite consequences for the uncertainty analysis of the State-of-the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout scenario at the Peach Bottom Atomic Power Station. The consequence metrics evaluated are individual latent-cancer fatality (LCF) risk and individual early fatality risk. Consequence results are presented as conditional risk (i.e., assuming the accident occurs, risk per event) to individuals of the public as a result of the accident. In order to verify convergence for this uncertainty analysis, as recommended by the Nuclear Regulatory Commission‚Äôs Advisory Committee on Reactor Safeguards, a ‚Äėhigh‚Äô source term from the original population of Monte Carlo runs has been selected to be used for: (1) a study of the distribution of consequence results stemming solely from epistemic uncertainty in the MACCS2 parameters (i.e., separating the effect from the source term uncertainty), and (2) a comparison between Simple Random Sampling (SRS) and Latin Hypercube Sampling (LHS) in order to validate the original results obtained with LHS. Three replicates (each using a different random seed) of size 1,000 each using LHS and another set of three replicates of size 1,000 using SRS are analyzed. The results show that the LCF risk results are well converged with either LHS or SRS sampling. The early fatality risk results are less well converged at radial distances beyond 2 miles, and this is expected due to the sparse data (predominance of ‚Äúzero‚ÄĚ results).

  18. Analyzing simulation-based PRA data through traditional and topological clustering: A BWR station blackout case study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maljovec, D.; Liu, S.; Wang, B.; Mandelli, D.; Bremer, P. -T.; Pascucci, V.; Smith, C.

    2015-07-14

    Here, dynamic probabilistic risk assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP and MELCOR) with simulation controller codes (e.g., RAVEN and ADAPT). Whereas system simulator codes model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic and operating procedures) and stochastic (e.g., component failures and parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by sampling values of a set of parameters and simulating the system behavior for that specific set of parameter values. For complex systems, a major challenge in using DPRA methodologies is to analyze the large number of scenarios generated,more¬†¬Ľ where clustering techniques are typically employed to better organize and interpret the data. In this paper, we focus on the analysis of two nuclear simulation datasets that are part of the risk-informed safety margin characterization (RISMC) boiling water reactor (BWR) station blackout (SBO) case study. We provide the domain experts a software tool that encodes traditional and topological clustering techniques within an interactive analysis and visualization environment, for understanding the structures of such high-dimensional nuclear simulation datasets. We demonstrate through our case study that both types of clustering techniques complement each other for enhanced structural understanding of the data.¬ę¬†less

  19. Analyzing simulation-based PRA data through traditional and topological clustering: A BWR station blackout case study

    SciTech Connect (OSTI)

    Maljovec, D.; Liu, S.; Wang, B.; Mandelli, D.; Bremer, P. -T.; Pascucci, V.; Smith, C.

    2015-07-14

    Here, dynamic probabilistic risk assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP and MELCOR) with simulation controller codes (e.g., RAVEN and ADAPT). Whereas system simulator codes model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic and operating procedures) and stochastic (e.g., component failures and parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by sampling values of a set of parameters and simulating the system behavior for that specific set of parameter values. For complex systems, a major challenge in using DPRA methodologies is to analyze the large number of scenarios generated, where clustering techniques are typically employed to better organize and interpret the data. In this paper, we focus on the analysis of two nuclear simulation datasets that are part of the risk-informed safety margin characterization (RISMC) boiling water reactor (BWR) station blackout (SBO) case study. We provide the domain experts a software tool that encodes traditional and topological clustering techniques within an interactive analysis and visualization environment, for understanding the structures of such high-dimensional nuclear simulation datasets. We demonstrate through our case study that both types of clustering techniques complement each other for enhanced structural understanding of the data.

  20. STEAM LINE BREAK AND STATION BLACKOUT TRANSIENTS FOR PROLIFERATION RESISTANT HEXAGONAL TIGHT LATTICE BWR.

    SciTech Connect (OSTI)

    ROHATGI,U.S.; JO,J.; CHUNG,B.D.; TAKAHASHI,H.

    2002-06-09

    Safety analyses of a proliferation resistant, economically competitive, high conversion, boiling water reactor (HCBWR) fueled with fissile plutonium and fertile thorium oxide fuel elements, and with passive safety systems are presented here. The HCBWR developed here is characterized by a very tight lattice with a relatively small water volume fraction in the core which therefore operates with a fast reactor neutron spectrum, and a considerably improved neutron economy compared to the current generation of Light Water Reactors. The tight lattice core has a very narrow flow channels with a hydraulic diameter less than half of the regular BWR core and, thus, presents a special challenge to core cooling, because of reduced water inventory and high friction in the core. The primary safety concern when reducing the moderator to fuel ratio and when using a tightly packed lattice arrangement is to maintain adequate cooling of the core during both normal operation and accident scenarios. In the preliminary HCBWR design, the core has been placed in a vessel with a large chimney section, and the vessel is connected with Isolation Condenser System (ICs). The vessel is placed in containment with Gravity Driven Cooling System (GDCS) and Passive Containment Cooling System (PCCS) in a configuration similar to General Electric's Simplified Boiling Water Reactor (SBWR). The safety systems are similar to SBWR; ICs and PCCS are scaled with power. An internal recirculation pump was placed in the downcomer to augment the buoyancy head provided by the chimney, since the buoyancy provided by the chimney alone could not generate sufficient recirculation in the vessel as the tight lattice configuration resulted in much larger friction in the core than the SBWR. The constitutive relationships for RELAP5 were assessed for narrow channels, and as a result the heat transfer package was modified. The modified RELAP5 was used to simulate and analyze two of the most limiting events for a tight

  1. Steam Line Break and Station Blackout Transients for Proliferation Resistant Hexagonal Tight Lattice BWR

    SciTech Connect (OSTI)

    Upendra Rohatgi; Jae Jo; Bub Dong Chung; Hiroshi Takahashi [Brookhaven National Laboratory, Energy Sciences and Technology Department, Upton, New York 11973 (United States); Downar, T.J. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906-1290 (United States)

    2002-07-01

    Safety analyses of a proliferation resistant, economically competitive, high conversion, boiling water reactor (HCBWR) fueled with fissile plutonium and fertile thorium oxide fuel elements, and with passive safety systems are presented here. The HCBWR developed here is characterized by a very tight lattice with a relatively small water volume fraction in the core which therefore operates with a fast reactor neutron spectrum, and a considerably improved neutron economy compared to the current generation of Light Water Reactors. A tight lattice BWR core has very narrow flow channels with a hydraulic diameter less than half of the regular BWR core. The tight lattice core presented a special challenge to core cooling, because of reduced water inventory and high friction in the core. The primary safety concern when reducing the moderator to fuel ratio and when using a tightly packed lattice arrangement is to maintain adequate cooling of the core during both normal operation and accident scenarios. In the preliminary HCBWR design, the core has been placed in a vessel with a large chimney section, and the vessel is connected with an Isolation Cooling System (ICS). The vessel is placed in a containment with a Gravity Driven Cooling System (GDCS) and a Passive Containment Cooling System (PCCS) in a configuration similar to General Electric's (GE) Simplified Boiling Water Reactor (SBWR). The safety systems are similar to the SBWR; the ICS and PCCS are scaled with power. An internal recirculation pump was placed in the downcomer to augment the buoyancy head provided by the chimney. The buoyancy provided by the chimney alone could not generate sufficient recirculation in the vessel since the tight lattice configuration resulted in much larger friction in the core than the SBWR. A modified RELAP5 Code was used to simulate and analyze two of the most limiting events for a tight pitch lattice core: the Station Blackout and the Main Steam Line Break events. The constitutive

  2. Comparing Simulation Results with Traditional PRA Model on a Boiling Water Reactor Station Blackout Case Study

    SciTech Connect (OSTI)

    Zhegang Ma; Diego Mandelli; Curtis Smith

    2011-07-01

    A previous study used RELAP and RAVEN to conduct a boiling water reactor station black-out (SBO) case study in a simulation based environment to show the capabilities of the risk-informed safety margin characterization methodology. This report compares the RELAP/RAVEN simulation results with traditional PRA model results. The RELAP/RAVEN simulation run results were reviewed for their input parameters and output results. The input parameters for each simulation run include various timing information such as diesel generator or offsite power recovery time, Safety Relief Valve stuck open time, High Pressure Core Injection or Reactor Core Isolation Cooling fail to run time, extended core cooling operation time, depressurization delay time, and firewater injection time. The output results include the maximum fuel clad temperature, the outcome, and the simulation end time. A traditional SBO PRA model in this report contains four event trees that are linked together with the transferring feature in SAPHIRE software. Unlike the usual Level 1 PRA quantification process in which only core damage sequences are quantified, this report quantifies all SBO sequences, whether they are core damage sequences or success (i.e., non core damage) sequences, in order to provide a full comparison with the simulation results. Three different approaches were used to solve event tree top events and quantify the SBO sequences: ďWĒ process flag, default process flag without proper adjustment, and default process flag with adjustment to account for the success branch probabilities. Without post-processing, the first two approaches yield incorrect results with a total conditional probability greater than 1.0. The last approach accounts for the success branch probabilities and provides correct conditional sequence probabilities that are to be used for comparison. To better compare the results from the PRA model and the simulation runs, a simplified SBO event tree was developed with only four top

  3. Reduced Order Model Implementation in the Risk-Informed Safety Margin Characterization Toolkit

    SciTech Connect (OSTI)

    Mandelli, Diego; Smith, Curtis L.; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua J.; Talbot, Paul W.; Rinaldi, Ivan; Maljovec, Dan; Wang, Bei; Pascucci, Valerio; Zhao, Haihua

    2015-09-01

    The RISMC project aims to develop new advanced simulation-based tools to perform Probabilistic Risk Analysis (PRA) for the existing fleet of U.S. nuclear power plants (NPPs). These tools numerically model not only the thermo-hydraulic behavior of the reactor primary and secondary systems but also external events temporal evolution and components/system ageing. Thus, this is not only a multi-physics problem but also a multi-scale problem (both spatial, ¬Ķm-mm-m, and temporal, ms-s-minutes-years). As part of the RISMC PRA approach, a large amount of computationally expensive simulation runs are required. An important aspect is that even though computational power is regularly growing, the overall computational cost of a RISMC analysis may be not viable for certain cases. A solution that is being evaluated is the use of reduce order modeling techniques. During the FY2015, we investigated and applied reduced order modeling techniques to decrease the RICM analysis computational cost by decreasing the number of simulations runs to perform and employ surrogate models instead of the actual simulation codes. This report focuses on the use of reduced order modeling techniques that can be applied to any RISMC analysis to generate, analyze and visualize data. In particular, we focus on surrogate models that approximate the simulation results but in a much faster time (¬Ķs instead of hours/days). We apply reduced order and surrogate modeling techniques to several RISMC types of analyses using RAVEN and RELAP-7 and show the advantages that can be gained.

  4. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures. Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost-effective retrofit measures to improve the energy efficiency of residential buildings. The database provides a single, consistent source of current data for DOE and private-sector energy audit and simulation software tools and the retrofit industry. The database will reduce risk for residential retrofit industry stakeholders by providing a central, publicly vetted source of up-to-date information.

  5. MELCOR calculations for a low-pressure short-term station blackout in a BWR-6

    SciTech Connect (OSTI)

    Carbajo, J.J. [Martin Marietta Energy Systems, Oak Ridge, TN (United States)

    1995-12-31

    A postulated, low-pressure, short term station blackout severe accident has been analyzed using the MELCOR code for the Grand Gulf nuclear power plant. Different versions have been used with three different models of the plant. This paper presents results of the effects of different plant models and versions of MELCOR on the calculated results and to present the best-estimating timing of events for this transient.

  6. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    SciTech Connect (OSTI)

    Vereb, F.; Winters, J.; Schulz, T.; Cummins, E.; Oriani, L. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation in the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)

  7. Postmortem analysis of power grid blackouts - The role of measurement systems

    SciTech Connect (OSTI)

    Dagle, Jeffery E.

    2006-09-01

    Promptly following any blackout, an investigation is conducted to determine the who, what, where, when, why, and how. For system operators, it is important to quickly grasp the scale and magnitude of the event and rapidly restore service. Then a broader set of stakeholders get involved to assess system performance, determine root causes, compile lessons learned, and develop recommendations. At the heart of the post-mortem investigation is the detailed sequence of events. As accurately as possible, investigators need to know what happened and when. Especially during a cascading failure where events occur rapidly, accurate timing is crucial to understanding how the event unfolded so that the root causes can be determined. The sequence of events is based on vast amounts of data collected from multiple points in the system from a myriad of data collection instruments, some devoted to the purpose of supporting system disturbance post mortem analysis, others providing useful additional context or filling in missing gaps. The more that the investigators know about their available sources of data, and the inherent limitations of each, the better (and quicker) will be the analysis. This is especially important when a large blackout has occurred; there is pressure to find answers quickly, but due to the size and complexity of the event, a deliberate and methodical investigation is necessary. This article discusses the role that system monitoring plays in supporting the investigation of large-scale system disruptions and blackouts.

  8. Regulatory/backfit analysis for the resolution of Unresolved Safety Issue A-44, Station Blackout

    SciTech Connect (OSTI)

    Rubin, A.M.

    1988-06-01

    Station blackout is the complete loss of alternating current (ac) electric power to the essential and nonessential buses in a nuclear power plant; it results when both offsite power and the onsite emergency ac power systems are unavailable. Because many safety systems required for reactor core decay heat removal and containment heat removal depend on ac power, the consequences of a station blackout could be severe. Because of the concern about the frequency of loss of offsite power, the number of failures of emergency diesel generators, and the potentially severe consequences of a loss of all ac power, ''Station Blackout'' was designated as Unresolved Safety Issue (USI) A-44. This report presents the regulatory/backfit analysis for USI A-44. It includes (1) a summary of the issue, (2) the recommended technical resolution, (3) alternative resolutions considered by the Nuclear Regulatory Commission (NRC) staff, (4) an assessment of the benefits and costs of the recommended resolution, (5) the decision rationale, (6) the relationship between USI A-44 and other NRC programs and requirements, and (7) a backfit analysis demonstrating that the resolution of USI A-44 complies with the backfit rule (10 CFR 50.109).

  9. Regulatory analysis for the resolution of Unresolved Safety Issue A-44, Station Blackout. Draft report

    SciTech Connect (OSTI)

    Rubin, A.M.

    1986-01-01

    ''Station Blackout'' is the complete loss of alternating current (ac) electric power to the essential and nonessential buses in a nuclear power plant; it results when both offsite power and the onsite emergency ac power systems are unavailable. Because many safety systems required for reactor core decay heat removal and containment heat removal depend on ac power, the consequences of a station blackout could be severe. Because of the concern about the frequency of loss of offsite power, the number of failures of emergency diesel generators, and the potentially severe consequences of a loss of all ac power, ''Station Blackout'' was designated as Unresolved Safety Issue (USI) A-44. This report presents the regulatory analysis for USI A-44. It includes: (1) a summary of the issue, (2) the proposed technical resolution, (3) alternative resolutions considered by the Nuclear Regulatory Commission (NRC) staff, (4) an assessment of the benefits and costs of the recommended resolution, (5) the decision rationale, and (6) the relationship between USI A-44 and other NRC programs and requirements.

  10. Modeling Advanced Neutron Source reactor station blackout accident using RELAP5

    SciTech Connect (OSTI)

    Chen, N.C.J. (Oak Ridge National Lab., TN (USA)); Fletcher, C.D. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-01-01

    The Advanced Neutron Source (ANS) system model using RELAP5 has been developed to perform loss-of-coolant accident (LOCA) and non-LOCA transients as safety-related input for early design considerations. The transients studies include LOCA, station blackout, and reactivity insertion accidents. The small-, medium-, and large-break LOCA results were presented and documented. This paper will focus on the station blackout scenario. The station blackout analyses have concentrated on thermal-hydraulic system response with and without accumulators. Five transient calculations were performed to characterize system performance using various numbers and sizes of accumulators at several key sites. The main findings will be discussed with recommendations for conceptual design considerations. ANS is a state-of-the-art research reactor to be built and operated at high heat flux, high mass flux, and high coolant subcooling. To accommodate these features, three ANS-specific changes were made in the RELAP5 code by adding: the Petukhov heat transfer correlation for single-phase forced convection in the thin coolant channel; the Gambill additive method with the Weatherhead wall superheat for the critical heat flux; and the Griffith drift flux model for the interfacial drag in the slug flow regime. 7 refs., 6 figs., 1 tab.

  11. Are You Saved? HIM, an Intranet-based Expert System Reduces Fatality Risk

    SciTech Connect (OSTI)

    Crofts, Von David; Simpson, Wayne Winger; Hopkins, Deborah Jean; Hawke, Scott Allen

    2000-06-01

    proven review checklists and processes.The manual process is lengthyósometimes taking 12 to 18 hours to complete. As such, it is difficult, prone to errors, and very tempting to shortcut. Automation of this process through the HIM system reduced a monumental hazard identification task for each work order, into a streamlined, efficient, and accurate process that can be completed in less than one hour. The result is that the process gets done, the regulations are met, and risk to human life is reduced.

  12. Evaluation of station blackout accidents at nuclear power plants: Technical findings related to unresolved safety issue A-44: Final report

    SciTech Connect (OSTI)

    Not Available

    1988-06-01

    ''Station Blackout,'' which is the complete loss of alternating current (AC) electrical power in a nuclear power plant, has been designated as Unresolved Safety Issue A-44. Because many safety systems required for reactor core decay heat removal and containment heat removal depend on AC power, the consequences of a station blackout could be severe. This report documents the findings of technical studies performed as part of the program to resolve this issue. The important factors analyzed include: the fequency of loss of offsite power; the probability that emergency or onsite AC power supplies would be unavailable; the capability and reliability of decay heat removal systems independent of AC power; and the likelihood that offsite power would be restored before systems that cannot operate for extended periods without AC power fail, thus resulting in core damage. This report also addresses effects of different designs, locations, and operational features on the estimated frequency of core damage resulting from station blackout events.

  13. Containment pressurization and burning of combustible gases in a large, dry PWR containment during a station blackout sequence

    SciTech Connect (OSTI)

    Lee, M.; Fan, C.T. (National Tsing-Hua Univ., Dept. of Nuclear Engineering, Hsinchu (TW))

    1992-07-01

    In this paper, responses of a large, dry pressurized water reactor (PWR) containment in a station blackout sequence are analyzed with the CONTAIN, MARCH3, and MAAP codes. Results show that the predicted containment responses in a station blackout sequence of these three codes are substantially different. Among these predictions, the MAAP code predicts the highest containment pressure because of the large amount of water made available to quench the debris upon vessel failure. The gradual water boiloff by debris pressurizes the containment. The combustible gas burning models in these codes are briefly described and compared.

  14. Blackout: coal, climate and the last energy crisis

    SciTech Connect (OSTI)

    Heinberg, R. [Post Carbon Institute in California, CA (United States)

    2009-07-15

    Coal fuels more than 30 per cent of UK electricity production, and about 50 per cent in the US, providing a significant portion of total energy output. China and India's recent ferocious economic growth has been based almost entirely on coal-generated electricity. Coal currently looks like a solution to many of our fast-growing energy problems. However, while coal advocates are urging us full steam ahead, the increasing reliance on this dirtiest of all fossil fuels has crucial implications for energy policy, pollution levels, the global climate, world economy and geopolitics. Drawbacks to a coal-based energy strategy include: Scarcity - new studies suggest that the peak of world coal production may actually be less than two decades away; Cost - the quality of produced coal is declining, while the expense of transportation is rising, leading to spiralling costs and increasing shortages; and, Climate impacts - our ability to deal with the historic challenge of climate change may hinge on reducing coal consumption in future years.

  15. Merging high resolution geophysical and geochemical surveys to reduce exploration risk at glass buttes, Oregon

    SciTech Connect (OSTI)

    Walsh, Patrick; Fercho, Steven; Perkin, Doug; Martini, Brigette; Boshmann, Darrick

    2015-06-01

    The engineering and studies phase of the Glass Buttes project was aimed at reducing risk during the early stages of geothermal project development. The project‚Äôs inclusion of high resolution geophysical and geochemical surveys allowed Ormat to evaluate the value of these surveys both independently and in combination to quantify the most valuable course of action for exploration in an area where structure, permeability, and temperature are the most pressing questions. The sizes of the thermal anomalies at Glass Buttes are unusually large. Over the course of Phase I Ormat acquired high resolution LIDAR data to accurately map fault manifestations at the surface and collected detailed gravity and aeromagnetic surveys to map subsurface structural features. In addition, Ormat collected airborne hyperspectral data to assist with mapping the rock petrology and mineral alteration assemblages along Glass Buttes faults and magnetotelluric (MT) survey to try to better constrain the structures at depth. Direct and indirect identification of alteration assemblages reveal not only the geochemical character and temperature of the causative hydrothermal fluids but can also constrain areas of upflow along specific fault segments. All five datasets were merged along with subsurface lithologies and temperatures to predict the most likely locations for high permeability and hot fluids. The Glass Buttes temperature anomalies include 2 areas, totaling 60 km2 (23 mi2) of measured temperature gradients over 165¬į C/km (10¬į F/100ft). The Midnight Point temperature anomaly includes the Strat-1 well with 90¬įC (194 ¬įF) at 603 m (1981 ft) with a 164 ¬įC/km (10¬įF/100ft) temperature gradient at bottom hole and the GB-18 well with 71¬įC (160 ¬įF) at 396 m (1300 ft) with a 182¬įC/km (11¬įF/100ft) gradient. The primary area of alteration and elevated temperature occurs near major fault intersections associated with Brothers Fault Zone and Basin and Range systems. Evidence for faulting is

  16. Solution of resource allocation problem for identification of cost-effective measures to reduce nuclear proliferation risks

    SciTech Connect (OSTI)

    Andrianov, A.; Kuptsov, I.

    2013-07-01

    This report presents a methodology of selection of cost-effective measures to reduce nuclear proliferation risks. The methodology relies on a graded security model used in practice in different applications. The method is based on the controlled finite Markov chain approach set in combination with discrete dynamic programming and MCDM (Multi Criteria Decision Making) techniques that enables the expert to select the cost-effective measures to reduce nuclear proliferation risks depending on availability of resources. The analysis performed with different number of possible measures confirms the conclusions that the implementation of extra-large costs may not produce the required effect, and the increase in resources above a certain level does not appear sensitive. Diversification in improving the effectiveness of other measures seems more rational and efficient for the whole system than the unlimited improvement of the effectiveness of only one measure.

  17. Innovative Computational Tools for Reducing Exploration Risk Through Integration of Water-Rock Interactions and Magnetotelluric Surveys

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review Innovative Computational Tools for Reducing Exploration Risk Through Integration of Water- Rock Interactions and Magnetotelluric Surveys Principal Investigator: Joseph Moore Organization: University of Utah Track Name: Research and Development April 24, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. East - West Cross Section of Coso; Production Zones >-1000 ft ASL 2 | US DOE Geothermal Program eere.energy.gov

  18. ESBWR response to an extended station blackout/loss of all AC power

    SciTech Connect (OSTI)

    Barrett, A. J.; Marquino, W.

    2012-07-01

    U.S. federal regulations require light water cooled nuclear power plants to cope with Station Blackouts for a predetermined amount of time based on design factors for the plant. U.S. regulations define Station Blackout (SBO) as a loss of the offsite electric power system concurrent with turbine trip and unavailability of the onsite emergency AC power system. According to U.S. regulations, typically the coping period for an SBO is 4 hours and can be as long as 16 hours for currently operating BWR plants. Being able to cope with an SBO and loss of all AC power is required by international regulators as well. The U.S. licensing basis for the ESBWR is a coping period of 72 hours for an SBO based on U.S. NRC requirements for passive safety plants. In the event of an extended SBO (viz., greater than 72 hours), the ESBWR response shows that the design is able to cope with the event for at least 7 days without AC electrical power or operator action. ESBWR is a Generation III+ reactor design with an array of passive safety systems. The ESBWR primary success path for mitigation of an SBO event is the Isolation Condenser System (ICS). The ICS is a passive, closed loop, safety system that initiates automatically on a loss of power. Upon Station Blackout or loss of all AC power, the ICS begins removing decay heat from the Reactor Pressure Vessel (RPV) by (i) condensing the steam into water in heat exchangers located in pools of water above the containment, and (ii) transferring the decay heat to the atmosphere. The condensed water is then returned by gravity to cool the reactor again. The ICS alone is capable of maintaining the ESBWR in a safe shutdown condition after an SBO for an extended period. The fuel remains covered throughout the SBO event. The ICS is able to remove decay heat from the RPV for at least 7 days and maintains the reactor in a safe shutdown condition. The water level in the RPV remains well above the top of active fuel for the duration of the SBO event

  19. Source term experiment STEP-3 simulating a PWR severe station blackout

    SciTech Connect (OSTI)

    Simms, R.; Baker, L. Jr.; Ritzman, R.L.

    1987-05-21

    For a severe PWR accident that leads to a loss of feedwater to the steam generators, such as might occur in a station blackout, fission product decay heating will cause a water boiloff. Without effective cooling of the core, steam will begin to oxidize the Zircaloy cladding. The noble gases and volatile fission products, such as Cs and I, that are major contributors to the radiological source term, will be released from the damaged fuel shortly after cladding failure. The accident environment when these volatile fission products escape was simulated in STEP-3 using four fuel elements from the Belgonucleaire BR3 reactor. The primary objective was to examine the releases in samples collected as close to the test zone as possible. In this paper, an analysis of the temperatures and hydrogen generation is compared with the measurements. The analysis is needed to estimate releases and characterize conditions at the source for studies of fission product transport.

  20. Demonstration of fully coupled simplified extended station black-out accident simulation with RELAP-7

    SciTech Connect (OSTI)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling; Anders, David; Martineau, Richard

    2014-10-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The RELAP-7 code develop-ment effort started in October of 2011 and by the end of the second development year, a number of physical components with simplified two phase flow capability have been de-veloped to support the simplified boiling water reactor (BWR) extended station blackout (SBO) analyses. The demonstration case includes the major components for the primary system of a BWR, as well as the safety system components for the safety relief valve (SRV), the reactor core isolation cooling (RCIC) system, and the wet well. Three scenar-ios for the SBO simulations have been considered. Since RELAP-7 is not a severe acci-dent analysis code, the simulation stops when fuel clad temperature reaches damage point. Scenario I represents an extreme station blackout accident without any external cooling and cooling water injection. The system pressure is controlled by automatically releasing steam through SRVs. Scenario II includes the RCIC system but without SRV. The RCIC system is fully coupled with the reactor primary system and all the major components are dynamically simulated. The third scenario includes both the RCIC system and the SRV to provide a more realistic simulation. This paper will describe the major models and dis-cuss the results for the three scenarios. The RELAP-7 simulations for the three simplified SBO scenarios show the importance of dynamically simulating the SRVs, the RCIC sys-tem, and the wet well system to the reactor safety during extended SBO accidents.

  1. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    SciTech Connect (OSTI)

    J.R. Paterek; W.W. Bogan; L.M. Lahner; V. Trbovic; E. Korach

    2001-05-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  2. The Community Environmental Monitoring Program: Reducing Public Perception of Risk through Stakeholder Involvement

    SciTech Connect (OSTI)

    William T. Hartwell

    2007-05-21

    The Community Environmental Monitoring Program (CEMP) has promoted stakeholder involvement, awareness, and understanding of radiological surveillance in communities surrounding the Nevada Test Site (NTS) since 1981. It involves stakeholders in the operation, data collection, and dissemination of information obtained from a network of 29 stations across a wide area of Nevada, Utah and California. It is sponsored by the U.S. Department of Energy, National Nuclear Security Administration’s Nevada Site Office (NNSA/NSO) and administered by the Desert Research Institute (DRI) of the Nevada System of Higher Education. Integration of a near real-time communications system, a public web site, training workshops for involved stakeholders, and educational programs all help to alleviate public perception of risk of health effects from past activities conducted at the NTS.

  3. Steam Line Break and Station Blackout Transients for Proliferation-Resistant Hexagonal Tight Lattice Boiling Water Reactor

    SciTech Connect (OSTI)

    Rohatgi, Upendra S. [Brookhaven National Laboratory (United States); Jo, Jae H. [Brookhaven National Laboratory (United States); Chung, Bub Dong [Brookhaven National Laboratory (United States); Takahashi, Hiroshi [Brookhaven National Laboratory (United States); Downar, Thomas J. [Purdue University (United States)

    2004-01-15

    Safety analyses of a proliferation-resistant, economically competitive, high-conversion boiling water reactor (HCBWR) fueled with fissile plutonium and fertile thorium oxide fuel elements, and with passive safety systems, are presented here. The HCBWR developed here is characterized by a very tight lattice with a relatively small water volume fraction in the core that therefore operates with a fast reactor neutron spectrum and a considerably improved neutron economy compared to the current generation of light water reactors. The tight lattice core has a very narrow flow channel with a hydraulic diameter less than half of the regular boiling water reactor (BWR) core and, thus, presents a special challenge to core cooling because of reduced water inventory and high friction in the core. The primary safety concern when reducing the moderator-to-fuel ratio and when using a tightly packed lattice arrangement is to maintain adequate cooling of the core during both normal operation and accident scenarios.In the preliminary HCBWR design, the core is placed in a vessel with a large chimney section, and the vessel is connected to the isolation condenser system (ICS). The vessel is placed in containment with the gravity driven cooling system (GDCS) and passive containment cooling system (PCCS) in a configuration similar to General Electric's simplified BWR (SBWR). The safety systems are similar to those of the SBWR; the ICS and PCCS are scaled with power. An internal recirculation pump is placed in the downcomer to augment the buoyancy head provided by the chimney since the buoyancy provided by the chimney alone could not generate sufficient recirculation in the vessel as the tight lattice configuration results in much larger friction in the core than with the SBWR.The constitutive relationships for RELAP5 are assessed for narrow channels, and as a result the heat transfer package is modified. The modified RELAP5 is used to simulate and analyze two of the most limiting events

  4. A practical strategy for reducing the future security risk of United States spent nuclear fuel

    SciTech Connect (OSTI)

    Chodak, P. III; Buksa, J.J.

    1997-06-01

    Depletion calculations show that advanced oxide (AOX) fuels can be used in existing light water reactors (LWRs) to achieve and maintain virtually any desired level of US (US) reactor-grade plutonium (R-Pu) inventory. AOX fuels are composed of a neutronically inert matrix loaded with R-Pu and erbium. A 1/2 core load of 100% nonfertile, 7w% R-Pu AOX and 3.9 w% UO{sub 2} has a net total plutonium ({sup TOT}Pu) destruction rate of 310 kg/yr. The 20% residual {sup TOT}Pu in discharged AOX contains > 55% {sup 242}Pu making it unattractive for nuclear explosive use. A three-phase fuel-cycle development program sequentially loading 60 LWRs with 100% mixed oxide, 50% AOX with a nonfertile component displacing only some of the {sup 238}U, and 50% AOX, which is 100% nonfertile, could reduce the US plutonium inventory to near zero by 2050.

  5. ABSTRACT: The Community Environmental Monitoring Program: Reducing Public Perception of Risk Through Stakeholder Involvement

    SciTech Connect (OSTI)

    T. Hartwell

    2007-02-28

    . Finally, the CEMP provides training workshops for involved stakeholders, and educational programs, which help to alleviate public perception of risk of health effects from past activities conducted at the NTS.

  6. MELCOR Analysis of Steam Generator Tube Creep Rupture in Station Blackout Severe Accident

    SciTech Connect (OSTI)

    Liao, Y.; Vierow, K. [Purdue University (United States)

    2005-12-15

    A pressurized water reactor steam generator tube rupture (SGTR) is of concern because it represents a bypass of the containment for radioactive materials to the environment. In a station blackout accident, tube integrity could be threatened by creep rupture, particularly if cracks are present in the tube walls. Methods are developed herein to improve assessment capabilities for SGTR by using the severe-accident code MELCOR. Best-estimate assumptions based on recent research and computational fluid dynamics calculations are applied in the MELCOR analysis to simulate two-dimensional natural circulation and to determine the relative creep-rupture timing in the reactor coolant pressure boundary components. A new method is developed to estimate the steam generator (SG) hottest tube wall temperature and the tube critical crack size for the SG tubes to fail first. The critical crack size for SG tubes to fail first is estimated to be 20% of the wall thickness larger than by a previous analysis. Sensitivity studies show that the failure sequence would change if some assumptions are modified. In particular, the uncertainty in the countercurrent flow limit model could reverse the failure sequence of the SG tubes and surge line.

  7. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement.

    SciTech Connect (OSTI)

    Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.; Ross, Kyle; Cardoni, Jeffrey N; Kalinich, Donald A.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Ghosh, S. Tina

    2014-02-01

    This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the model response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)

  8. Source-term experiment STEP-3 simulating a PWR severe station blackout

    SciTech Connect (OSTI)

    Simms, R.; Baker, L. Jr.; Ritzman, R.L.

    1987-01-01

    For a severe pressurized water reactor accident that leads to a loss of feedwater to the stream generators, such as might occur in a station blackout, fission product decay heating causes a water boil-off. Without effective decay heat removal, the fuel elements will be uncovered. Eventually, steam will oxidize the overheated cladding. The noble gases and volatile fission products, such as cesium and iodine, that are major contributors to the radiological source term will be released from the damaged fuel shortly after cladding failure. The accident environment when these volatile fission products escape was simulated in STEP-3 using four fuel elements from the Belgonucleaire BR3 reactor. The primary objective was to examine the releases in samples collected as close to the test zone as possible. In this paper, an analysis of the temperatures and hydrogen generation is compared with the measurements. The analysis is needed to estimate releases and characterize conditions at the source for studies of fission product transport.

  9. Analysis of fission product revaporization in a BWR reactor cooling system during a station blackout accident

    SciTech Connect (OSTI)

    Yang, J.W.; Schmidt, E.; Cazzoli, E.; Khatib-Rahbar, M.

    1988-01-01

    This report presents a preliminary analysis of fission product revaporization in the Reactor Cooling System (RCS) after the vessel failure. The station blackout transient for BWR Mark I Power Plant is considered. The TRAPMELT3 models of evaporization, chemisorption, and the decay heating of RCS structures and gases are adopted in the analysis. The RCS flow models based on the density-difference between the RCS and containment pedestal region are developed to estimate the RCS outflow which carries the revaporized fission product to the containment. A computer code called REVAP is developed for the analysis. The REVAP is incorporated with the MARCH, TRAPMELT3 and NAUA codes of the Source Term Code Pack Package (STCP). The NAUA code is used to estimate the impact of revaporization on environmental release. The results show that the thermal-hydraulic conditions between the RCS and the pedestal region are important factors determining the magnitude of revaporization and subsequent release of the volatile fission product. 8 figs., 1 tab.

  10. Proliferation resistance assessments during the design phase of a recycling facility as a means of reducing proliferation risks

    SciTech Connect (OSTI)

    Lindell, M.A.; Grape, S.; Haekansson, A.; Jacobsson Svaerd, S.

    2013-07-01

    The sustainability criterion for Gen IV nuclear energy systems inherently presumes the availability of efficient fuel recycling capabilities. One area for research on advanced fuel recycling concerns safeguards aspects of this type of facilities. Since a recycling facility may be considered as sensitive from a non-proliferation perspective, it is important to address these issues early in the design process, according to the principle of Safeguards By Design. Presented in this paper is a mode of procedure, where assessments of the proliferation resistance (PR) of a recycling facility for fast reactor fuel have been performed so as to identify the weakest barriers to proliferation of nuclear material. Two supplementing established methodologies have been applied; TOPS (Technological Opportunities to increase Proliferation resistance of nuclear power Systems) and PR-PP (Proliferation Resistance and Physical Protection evaluation methodology). The chosen fuel recycling facility belongs to a small Gen IV lead-cooled fast reactor system that is under study in Sweden. A schematic design of the recycling facility, where actinides are separated using solvent extraction, has been examined. The PR assessment methodologies make it possible to pinpoint areas in which the facility can be improved in order to reduce the risk of diversion. The initial facility design may then be slightly modified and/or safeguards measures may be introduced to reduce the total identified proliferation risk. After each modification of design and/or safeguards implementation, a new PR assessment of the revised system can then be carried out. This way, each modification can be evaluated and new ways to further enhance the proliferation resistance can be identified. This type of iterative procedure may support Safeguards By Design in the planning of new recycling plants and other nuclear facilities. (authors)

  11. Analysis of Potential Hydrogen Risk in the PWR Containment

    SciTech Connect (OSTI)

    Deng Jian; Xuewu Cao [Shanghai Jiaotong University, Shanghai (China)

    2006-07-01

    Various studies have shown that hydrogen combustion is one of major risk contributors to threaten the integrity of the containment in a nuclear power plant. That hydrogen risk should be considered in severe accident strategies in current and future NPPs has been emphasized in the latest policies issued by the National Nuclear Safety Administration of China (NNSA). According to a deterministic approach, three typical severe accident sequences for a PWR large dry containment, such as the large break loss-of-coolant (LLOCA), the station blackout (SBO), and the small break loss-of-coolant (SLOCA) are analyzed in this paper with MELCOR code. Hydrogen concentrations in different compartments are observed to evaluate the potential hydrogen risk. The results show that there is a great amount of hydrogen released into the containment, which causes the containment pressure to increase and some potential in-consecutive burning. Therefore, certain hydrogen management strategies should be considered to reduce the risk to threaten the containment integrity. (authors)

  12. Hydrogen Mitigation Strategy of the APR1400 Nuclear Power Plant for a Hypothetical Station Blackout Accident

    SciTech Connect (OSTI)

    Kim, Jongtae; Hong, Seong-Wan; Kim, Sang-Baik; Kim, Hee-Dong [Korea Atomic Energy Research Institute (Korea, Republic of)

    2005-06-15

    In order to analyze the hydrogen distribution during a hypothetical station blackout accident in the Korean next-generation Advanced Power Reactor 1400 (APR1400) containment, the three-dimensional computational fluid dynamics code GASFLOW was used. The source of the hydrogen and steam for the GASFLOW analysis was obtained from a MAAP calculation. The discharged water, steam, and hydrogen from the pressurizer are released into the water of the in-containment refueling water storage tank (IRWST). Most of the discharged steam is condensed in the IRWST water because of its subcooling, and dry hydrogen is released into the free volume of the IRWST; finally, it goes out to the annular compartment above the IRWST through the vent holes. From the GASFLOW analysis, it was found that the gas mixture in the IRWST becomes quickly nonflammable by oxygen starvation but the hydrogen is accumulated in the annular compartment because of the narrow ventilation gap between the operating deck and containment wall when the igniters installed in the IRWST are not operated. When the igniters installed in the APR1400 were turned on, a short period of burning occurred in the IRWST, and then the flame was extinguished by the oxygen starvation in the IRWST. The unburned hydrogen was released into the annular compartment and went up to the dome because no igniters are installed around the annular compartment in the base design of the APR1400. From this result, it could be concluded that the control of the hydrogen concentration is difficult for the base design. In this study design modifications are proposed and evaluated with GASFLOW in view of the hydrogen mitigation strategy.

  13. Investigations on optimization of accident management measures following a station blackout accident in a VVER-1000 pressurized water reactor

    SciTech Connect (OSTI)

    Tusheva, P.; Schaefer, F.; Kliem, S.

    2012-07-01

    The reactor safety issues are of primary importance for preserving the health of the population and ensuring no release of radioactivity and fission products into the environment. A part of the nuclear research focuses on improvement of the safety of existing nuclear power plants. Studies, research and efforts are a continuing process at improving the safety and reliability of existing and newly developed nuclear power plants at prevention of a core melt accident. Station blackout (loss of AC power supply) is one of the dominant accidents taken into consideration at performing accident analysis. In case of multiple failures of safety systems it leads to a severe accident. To prevent an accident to turn into a severe one or to mitigate the consequences, accident management measures must be performed. The present paper outlines possibilities for application and optimization of accident management measures following a station blackout accident. Assessed is the behaviour of the nuclear power plant during a station blackout accident without accident management measures and with application of primary/secondary side oriented accident management measures. Discussed are the possibilities for operators ' intervention and the influence of the performed accident management measures on the course of the accident. Special attention has been paid to the effectiveness of the passive feeding and physical phenomena having an influence on the system behaviour. The performed simulations show that the effectiveness of the secondary side feeding procedure can be limited due to an early evaporation or flashing effects in the feed water system. The analyzed cases show that the effectiveness of the accident management measures strongly depends on the initiation criteria applied for depressurization of the reactor coolant system. (authors)

  14. An uncertainty analysis of the hydrogen source term for a station blackout accident in Sequoyah using MELCOR 1.8.5

    SciTech Connect (OSTI)

    Gauntt, Randall O.; Bixler, Nathan E.; Wagner, Kenneth Charles

    2014-03-01

    A methodology for using the MELCOR code with the Latin Hypercube Sampling method was developed to estimate uncertainty in various predicted quantities such as hydrogen generation or release of fission products under severe accident conditions. In this case, the emphasis was on estimating the range of hydrogen sources in station blackout conditions in the Sequoyah Ice Condenser plant, taking into account uncertainties in the modeled physics known to affect hydrogen generation. The method uses user-specified likelihood distributions for uncertain model parameters, which may include uncertainties of a stochastic nature, to produce a collection of code calculations, or realizations, characterizing the range of possible outcomes. Forty MELCOR code realizations of Sequoyah were conducted that included 10 uncertain parameters, producing a range of in-vessel hydrogen quantities. The range of total hydrogen produced was approximately 583kg 131kg. Sensitivity analyses revealed expected trends with respected to the parameters of greatest importance, however, considerable scatter in results when plotted against any of the uncertain parameters was observed, with no parameter manifesting dominant effects on hydrogen generation. It is concluded that, with respect to the physics parameters investigated, in order to further reduce predicted hydrogen uncertainty, it would be necessary to reduce all physics parameter uncertainties similarly, bearing in mind that some parameters are inherently uncertain within a range. It is suspected that some residual uncertainty associated with modeling complex, coupled and synergistic phenomena, is an inherent aspect of complex systems and cannot be reduced to point value estimates. The probabilistic analyses such as the one demonstrated in this work are important to properly characterize response of complex systems such as severe accident progression in nuclear power plants.

  15. Source terms released into the environment for a station blackout severe accident at the Peach Bottom Atomic Power Station

    SciTech Connect (OSTI)

    Carbajo, J.J.

    1995-07-01

    This study calculates source terms released into the environment at the Peach Bottom Atomic Power Station after containment failure during a postulated low-pressure, short-term station blackout severe accident. The severe accident analysis code MELCOR, version 1.8.1, was used in these calculations. Source terms were calculated for three different containment failure modes. The largest environmental releases occur for early containment failure at the drywell liner in contact with the cavity by liner melt-through. This containment failure mode is very likely to occur when the cavity is dry during this postulated severe accident sequence.

  16. Cooperative measures to support the Indo-Pak Agreement Reducing Risk from Accidents Relating to Nuclear Weapons.

    SciTech Connect (OSTI)

    Mishra, Sitakanta; Ahmed, Mansoor

    2014-04-01

    In 2012, India and Pakistan reaffirmed the Agreement on Reducing the Risk from Accidents Relating to Nuclear Weapons. Despite a history of mutual animosity and persistent conflict between the two countries, this agreement derives strength from a few successful nuclear confidence building measures that have stood the test of time. It also rests on the hope that the region would be spared a nuclear holocaust from an accidental nuclear weapon detonation that might be misconstrued as a deliberate use of a weapon by the other side. This study brings together two emerging strategic analysts from South Asia to explore measures to support the Agreement and further develop cooperation around this critical issue. This study briefly dwells upon the strategic landscape of nuclear South Asia with the respective nuclear force management structures, doctrines, and postures of India and Pakistan. It outlines the measures in place for the physical protection and safety of nuclear warheads, nuclear materials, and command and control mechanisms in the two countries, and it goes on to identify the prominent, emerging challenges posed by the introduction of new weapon technologies and modernization of the respective strategic forces. This is followed by an analysis of the agreement itself leading up to a proposed framework for cooperative measures that might enhance the spirit and implementation of the agreement.

  17. Integrated Risk Assessment for the LaSalle Unit 2 Nuclear Power Plant, Phenomenology and Risk Uncertainty Evaluation Program (PRUEP), MELCOR code calculations. Volume 3

    SciTech Connect (OSTI)

    Shaffer, C.J. [Science and Engineering Associates, Albuquerque, NM (United States); Miller, L.A.; Payne, A.C. Jr.

    1992-10-01

    A Level III Probabilistic Risk Assessment (PRA) has been performed for LaSalle Unit 2 under the Risk Methods Integration and Evaluation Program (RMIEP) and the Phenomenology and Risk Uncertainty Evaluation Program (PRUEP). This report documents the phenomenological calculations and sources of. uncertainty in the calculations performed with HELCOR in support of the Level II portion of the PRA. These calculations are an integral part of the Level II analysis since they provide quantitative input to the Accident Progression Event Tree (APET) and Source Term Model (LASSOR). However, the uncertainty associated with the code results must be considered in the use of the results. The MELCOR calculations performed include four integrated calculations: (1) a high-pressure short-term station blackout, (2) a low-pressure short-term station blackout, (3) an intermediate-term station blackout, and (4) a long-term station blackout. Several sensitivity studies investigating the effect of variations in containment failure size and location, as well as hydrogen ignition concentration are also documented.

  18. Integrated Risk Assessment for the LaSalle Unit 2 Nuclear Power Plant, Phenomenology and Risk Uncertainty Evaluation Program (PRUEP), MELCOR code calculations

    SciTech Connect (OSTI)

    Shaffer, C.J. (Science and Engineering Associates, Albuquerque, NM (United States)); Miller, L.A.; Payne, A.C. Jr.

    1992-10-01

    A Level III Probabilistic Risk Assessment (PRA) has been performed for LaSalle Unit 2 under the Risk Methods Integration and Evaluation Program (RMIEP) and the Phenomenology and Risk Uncertainty Evaluation Program (PRUEP). This report documents the phenomenological calculations and sources of. uncertainty in the calculations performed with HELCOR in support of the Level II portion of the PRA. These calculations are an integral part of the Level II analysis since they provide quantitative input to the Accident Progression Event Tree (APET) and Source Term Model (LASSOR). However, the uncertainty associated with the code results must be considered in the use of the results. The MELCOR calculations performed include four integrated calculations: (1) a high-pressure short-term station blackout, (2) a low-pressure short-term station blackout, (3) an intermediate-term station blackout, and (4) a long-term station blackout. Several sensitivity studies investigating the effect of variations in containment failure size and location, as well as hydrogen ignition concentration are also documented.

  19. Performance of "WAMS East 1" in Providing Dynamic Information for the North East Blackout of August 14, 2003

    SciTech Connect (OSTI)

    Hauer, John F.; Bhatt, Navin B.; Shah, Kirit; Kolluri, Sharma

    2004-12-31

    The blackout that impacted the U.S. and Canada on August 14, 2003, was notable for its extent, complexity, and impact. It triggered a massive review of operating records to determine what happened, why it happened, and how to avoid it in future operations. Much of this work was done at NERC level, through the U.S.-Canada Power System Outage Task Force. Additional background information concerning the event was gathered together by a group of utilities that, collectively, have been developing a wide area measurement system (WAMS) for the eastern interconnection. Like its counterpart in the western interconnection, "WAMS East" has a primary backbone of synchronized phasor measurements that are continuously recorded at central locations. Operational data have been critical for understanding and responding to the August 14 Blackout. Records collected on WAMS East demonstrate the contributions that well synchronized data offer in such efforts, and the value of strategically located continuous recording systems to facilitate their integration. This paper examines overall performance of the WAMS East backbone, with a brief assessment of the technology involved.

  20. Hills Creek-Lookout Point Transmission Line Rebuild Project

    Office of Environmental Management (EM)

    ... in order to reduce the risk of creating fuels for wildfire. ... or foster compaction-tolerant annual grass and forb ... occasional sudden storm, accident, or blackout ...

  1. Conceptual design station blackout and loss-of-flow accident analyses for the Advanced Neutron Source Reactor

    SciTech Connect (OSTI)

    Fletcher, C.D.; Ghan, L.S.; Determan, J.C.; Nielsen, H.H. )

    1994-04-01

    A system model of the Advanced Neutron Source Reactor (ANSR) has been developed and used to perform conceptual safety analyses. To better represent thermal-hydraulic behavior in the unique geometry and conditions of the ANSR core, three specific changes in the RELAP5/MOD3 computer code were implemented: a turbulent forced-convection heat transfer correlation, a critical heat flux correlation, and an interfacial drag correlation. The system model includes representations of the ANSR core, heat exchanger coolant loops, and the pressurizing and letdown systems. Analyses of ANSR station blackout and loss-of-flow accident scenarios are described. The results show that the core can survive without exceeding the flow excursion or critical heat flux thermal limits defined for the conceptual safety analysis, if the proper mitigation options are provided.

  2. Introduction of a methoxymethyl side chain into p-phenylenediamine attenuates its sensitizing potency and reduces the risk of allergy induction

    SciTech Connect (OSTI)

    Goebel, Carsten; Troutman, John; Hennen, Jenny; Rothe, Helga; Schlatter, Harald; Gerberick, G. Frank; BlŲmeke, Brunhilde

    2014-02-01

    The strong sensitizing potencies of the most important primary intermediates of oxidative hair dyes, p-phenylenediamine (PPD) and p-toluylenediamine (PTD, i.e. 2-methyl-PPD) are well established. They are considered as the key sensitizers in hair dye allergic contact dermatitis. While modification of their molecular structure is expected to alter their sensitizing properties, it may also impair their color performance. With introduction of a methoxymethyl side chain we found the primary intermediate 2-methoxymethyl-p-phenylenediamine (ME-PPD) with excellent hair coloring performance but significantly reduced sensitizing properties compared to PPD and PTD: In vitro, ME-PPD showed an attenuated innate immune response when analyzed for its protein reactivity and dendritic cell activation potential. In vivo, the effective concentration of ME-PPD necessary to induce an immune response 3-fold above vehicle control (EC3 value) in the local lymph node assay (LLNA) was 4.3%, indicating a moderate skin sensitizing potency compared to values of 0.1 and 0.17% for PPD and PTD, respectively. Finally, assessing the skin sensitizing potency of ME-PPD under consumer hair dye usage conditions through a quantitative risk assessment (QRA) indicated an allergy induction risk negligible compared to PPD or PTD. - Highlights: ē Methoxymethyl side chain in p-phenylenediamine reduces its strong skin sensitizing properties. ē Reduced protein reactivity and dendritic cell activation. ē Reduced skin sensitizing potency in local lymph node assay (LLNA). ē Negligible allergy induction risk under hair dye usage conditions.

  3. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost- effective retrofit measures to improve the energy

  4. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties Small Buildings and Small Portfolios Program Rois Langner, Bob Hendron, and Eric Bonnema Technical Report NREL/TP-5500-60976 August 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National

  5. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    SciTech Connect (OSTI)

    Langner, R.; Hendron, B.; Bonnema, E.

    2014-08-01

    The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

  6. Containment failure time and mode for a low-pressure short-term station blackout in a BWR-4 with Mark-I containment

    SciTech Connect (OSTI)

    Carbajo, J.J.; Greene, S.R. (Oak Ridge National Lab., TN (United States))

    1993-01-01

    This study investigates containment failure time and mode for a low-pressure, short-term station blackout severe accident sequence in a boiling water reactor (BWR-4) with a Mark-I containment. The severe accident analysis code MELCOR, version 1.8.1, was used in these calculations. Other results using the MELCOR/CORBH package and the BWRSAR and CONTAIN codes are also presented and compared to the MELCOR results. The plant analyzed is the Peach Bottom atomic station, a BWR-4 with a Mark-I containment. The automatic depressurization system was used to depressurize the vessel in accordance with the Emergency Procedure Guidelines. Two different variations of the station blackout were studied: one with a dry cavity and the other with a flooded cavity. For the flooded cavity, it is assumed that a control rod drive (CRD) pump becomes operational after vessel failure, and it is used to pump water into the cavity.

  7. Evaluating the Effect of Upgrade, Control and Development Strategies on Robustness and Failure Risk of the Power Transmission Grid

    SciTech Connect (OSTI)

    Newman, David E; Carreras, Benjamin A; Lynch, Vickie E; Dobson, Ian

    2008-01-01

    We use the OPA complex systems model of the power transmission system to investigate the effect of a series of different network upgrade scenarios on the long time dynamics and the probability of large cascading failures. The OPA model represents the power grid at the level of DC load flow and LP generation dispatch and represents blackouts caused by randomly triggered cascading line outages and overloads. We examine the effect of increased component reliability on the long-term risks, the effect of changing operational margins and the effect of redundancy on those same long-term risks. The general result is that while increased reliability of the components decreases the probability of small blackouts, depending on the implementation, it actually can increase the probability of large blackouts. When we instead increase some types of redundancy of the system there is an overall decrease in the large blackouts. As some of these results are counter intuitive these studies suggest that care must be taken when making what seem to be logical upgrade decisions.

  8. Developing Fully Coupled Dynamical Reactor Core Isolation System Models in RELAP-7 for Extended Station Black-Out Analysis

    SciTech Connect (OSTI)

    Haihua Zhao; Ling Zou; Hongbin Zhang; David Andrs; Richard Martineau

    2014-04-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup water to the reactor vessel for core cooling when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. It was one of the very few safety systems still available during the Fukushima Daiichi accidents after the tsunamis hit the plants and the system successfully delayed the core meltdown for a few days for unit 2 & 3. Therefore, detailed models for RCIC system components are indispensable to understand extended station black-out accidents (SBO) for BWRs. As part of the effort to develop the new generation reactor system safety analysis code RELAP-7, major components to simulate the RCIC system have been developed. This paper describes the models for those components such as turbine, pump, and wet well. Selected individual component test simulations and a simplified SBO simulation up to but before core damage is presented. The successful implementation of the simplified RCIC and wet well models paves the way to further improve the models for safety analysis by including more detailed physical processes in the near future.

  9. Experimental and code simulation of a station blackout scenario for APR1400 with test facility ATLAS and MARS code

    SciTech Connect (OSTI)

    Yu, X. G.; Kim, Y. S.; Choi, K. Y.; Park, H. S.; Cho, S.; Kang, K. H.; Choi, N. H.

    2012-07-01

    A SBO (station blackout) experiment named SBO-01 was performed at full-pressure IET (Integral Effect Test) facility ATLAS (Advanced Test Loop for Accident Simulation) which is scaled down from the APR1400 (Advanced Power Reactor 1400 MWe). In this study, the transient of SBO-01 is discussed and is subdivided into three phases: the SG fluid loss phase, the RCS fluid loss phase, and the core coolant depletion and core heatup phase. In addition, the typical phenomena in SBO-01 test - SG dryout, natural circulation, core coolant boiling, the PRZ full, core heat-up - are identified. Furthermore, the SBO-01 test is reproduced by the MARS code calculation with the ATLAS model which represents the ATLAS test facility. The experimental and calculated transients are then compared and discussed. The comparison reveals there was malfunction of equipments: the SG leakage through SG MSSV and the measurement error of loop flow meter. As the ATLAS model is validated against the experimental results, it can be further employed to investigate the other possible SBO scenarios and to study the scaling distortions in the ATLAS. (authors)

  10. Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents

    SciTech Connect (OSTI)

    Robb, Kevin R

    2015-01-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditional Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.

  11. Modeling of a Flooding Induced Station Blackout for a Pressurized Water Reactor Using the RISMC Toolkit

    SciTech Connect (OSTI)

    Mandelli, Diego; Prescott, Steven R; Smith, Curtis L; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua J; Kinoshita, Robert A

    2011-07-01

    In the Risk Informed Safety Margin Characterization (RISMC) approach we want to understand not just the frequency of an event like core damage, but how close we are (or are not) to key safety-related events and how might we increase our safety margins. The RISMC Pathway uses the probabilistic margin approach to quantify impacts to reliability and safety by coupling both probabilistic (via stochastic simulation) and mechanistic (via physics models) approaches. This coupling takes place through the interchange of physical parameters and operational or accident scenarios. In this paper we apply the RISMC approach to evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., system activation) and to perform statistical analyses (e.g., run multiple RELAP-7 simulations where sequencing/timing of events have been changed according to a set of stochastic distributions). By using the RISMC toolkit, we can evaluate how power uprate affects the system recovery measures needed to avoid core damage after the PWR lost all available AC power by a tsunami induced flooding. The simulation of the actual flooding is performed by using a smooth particle hydrodynamics code: NEUTRINO.

  12. Comparison of MELCOR and SCDAP/RELAP5 results for a low-pressure, short-term station blackout at Browns Ferry

    SciTech Connect (OSTI)

    Carbajo, J.J. [Oak Ridge National Lab., TN (United States)

    1995-12-31

    This study compares results obtained with two U.S. Nuclear Regulatory Commission (NRC)-sponsored codes, MELCOR version 1.8.3 (1.8PQ) and SCDAP/RELAP5 Mod3.1 release C, for the same transient - a low-pressure, short-term station blackout accident at the Browns Ferry nuclear plant. This work is part of MELCOR assessment activities to compare core damage progression calculations of MELCOR against SCDAP/RELAP5 since the two codes model core damage progression very differently.

  13. Blackout Final Implementation Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report on the Implementation of the Task Force Recommendations U.S.-Canada Power System Outage Task Force Natural Resources Canada U.S. Department of Energy September 2006 Final Report on the Implementation of the Task Force Recommendations U.S.-Canada Power System Outage Task Force September 2006 Natural Resources Canada U.S. Department of Energy Acknowledgments This document was prepared by staff of Natural Resources Canada and the U.S. Department of Energy. The principal contributors

  14. Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk

    SciTech Connect (OSTI)

    Buscheck, T A; Chen, M; Sun, Y; Hao, Y; Elliot, T R

    2012-02-02

    We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine, which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.

  15. Survey of Tools for Risk Assessment of Cascading Outages

    SciTech Connect (OSTI)

    Papic, Milorad; Bell, Keith; Chen, Yousu; Dobson, Ian; Fonte, Louis; Haq, Enamul; Hines, Paul; Kirschen, Daniel; Luo, Xiaochuan; Miller, Stephen; Samaan, Nader A.; Vaiman, Marianna; Varghese, Matthew; Zhang, Pei

    2011-10-17

    Cascading failure can cause large blackouts, and a variety of methods are emerging to study this challenging topic. In parts 1 and 2 of this paper, the IEEE task force on cascading failure seeks to consolidate and review the progress of the field towards methods and tools of assessing the risk of cascading failure. Part 2 summarizes and discusses the state of the art in the available cascading failure modeling tools. The discussion integrates industry and research perspectives from a variety of institutions. Strengths, weaknesses, and gaps in current approaches are indicated.

  16. Do Angiotensin-Converting Enzyme Inhibitors Reduce the Risk of Symptomatic Radiation Pneumonitis in Patients With Non-Small Cell Lung Cancer After Definitive Radiation Therapy? Analysis of a Single-Institution Database

    SciTech Connect (OSTI)

    Wang, Hongmei [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, P.R. of China (China); Liao, Zhongxing, E-mail: zliao@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhuang, Yan; Xu, Ting; Nguyen, Quynh-Nhu; Levy, Lawrence B.; O'Reilly, Michael [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gold, Kathryn A. [Department of Thoracic Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gomez, Daniel R. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-12-01

    Purpose: Preclinical studies have suggested that angiotensin-converting enzyme inhibitors (ACEIs) can mitigate radiation-induced lung injury. We sought here to investigate possible associations between ACEI use and the risk of symptomatic radiation pneumonitis (RP) among patients undergoing radiation therapy (RT) for nonĖsmall cell lung cancer (NSCLC). Methods and Materials: We retrospectively identified patients who received definitive radiation therapy for stages I to III NSCLC between 2004 and 2010 at a single tertiary cancer center. Patients must have received a radiation dose of at least 60 Gy for a single primary lung tumor and have had imaging and dosimetric data available for analysis. RP was quantified according to Common Terminology Criteria for Adverse Events, version 3.0. A Cox proportional hazard model was used to assess potential associations between ACEI use and risk of symptomatic RP. Results: Of 413 patients analyzed, 65 were using ACEIs during RT. In univariate analysis, the rate of RP grade ?2 seemed lower in ACEI users than in nonusers (34% vs 46%), but this apparent difference was not statistically significant (P=.06). In multivariate analysis of all patients, ACEI use was not associated with the risk of symptomatic RP (hazard ratio [HR] = 0.66; P=.07) after adjustment for sex, smoking status, mean lung dose (MLD), and concurrent carboplatin and paclitaxel chemotherapy. Subgroup analysis showed that ACEI use did have a protective effect from RP grade ?2 among patients who received a low (?20-Gy) MLD (P<.01) or were male (P=.04). Conclusions: A trend toward reduction in symptomatic RP among patients taking ACEIs during RT for NSCLC was not statistically significant on univariate or multivariate analyses, although certain subgroups may benefit from use (ie, male patients and those receiving low MLD). The evidence at this point is insufficient to establish whether the use of ACEIs does or does not reduce the risk of RP.

  17. Reducing the Risk of Arc-Faults

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arc-fault detection algorithms by: 1. Performing arcing tests at the Distributed Energy Technologies Laboratory (DETL) with AFCI prototypes to verify their functionality on...

  18. Comparison of a Traditional Probabilistic Risk Assessment Approach with Advanced Safety Analysis

    SciTech Connect (OSTI)

    Smith, Curtis L; Mandelli, Diego; Zhegang Ma

    2014-11-01

    As part of the Light Water Sustainability Program (LWRS) [1], the purpose of the Risk Informed Safety Margin Characterization (RISMC) [2] Pathway research and development (R&D) is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a ‚Äústation blackout‚ÄĚ (SBO) wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario. We also describe our approach we are using to represent advanced flooding analysis.

  19. Report: Technical Uncertainty and Risk Reduction

    Office of Environmental Management (EM)

    TECHNICAL UNCERTAINTY AND RISK REDUCTION Background In FY 2007 EMAB was tasked to assess EM's ability to reduce risk and technical uncertainty. Board members explored this topic ...

  20. Verbal risk in communicating risk

    SciTech Connect (OSTI)

    Walters, J.C.; Reno, H.W.

    1993-03-01

    When persons in the waste management industry have a conversation concerning matters of the industry, thoughts being communicated are understood among those in the industry. However, when persons in waste management communicate with those outside the industry, communication may suffer simply because of poor practices such as the use of jargon, euphemisms, acronyms, abbreviations, language usage, not knowing audience, and public perception. This paper deals with ways the waste management industry can communicate risk to the public without obfuscating issues. The waste management industry should feel obligated to communicate certain meanings within specific contexts and, then, if the context changes, should not put forth a new, more appropriate meaning to the language already used. Communication of the waste management industry does not have to be provisional. The authors suggest verbal risks in communicating risk can be reduced significantly or eliminated by following a few basic communication principles. The authors make suggestions and give examples of ways to improve communication with the general public by avoiding or reducing jargon, euphemisms, and acronyms; knowing the audience; avoiding presumptive knowledge held by the audience; and understanding public perception of waste management issues.

  1. Budget Risk & Prioritization Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    BRPAtool performs the following: ?Assists managers in making solid decisions on what scope/activities to reduce and/or eliminate, to meet constrained budgets, based on multiple risk factors ?Enables analysis of different budget scenarios ?Can analyze risks and cost for each activity based on technical, quantifiable risk criteria and management-determined risks ?Real-time analysis ?Enables managers to determine the multipliers and where funding is best applied ?Promotes solid budget defense

  2. Reduced waste generation, FY 1986

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    The United States Department of Energy is committed to the principles of minimizing the quantity and transuranic content of its transuranium (TRU) waste being generated at its nuclear facilities. The reasons are to reduce costs associated with waste handling and disposal, and also to reduce radiation exposure to workers and risk for radionuclide release to man and the environment. The purpose of this document is to provide the USDOE with a plan of research and development tasks for waste minimization, and is prepared so as to provide the maximum impact on volumes based on cost/benefit factors. The document is to be updated annually or as needed to reflect current and future tasks. The Reduced Waste Generation (RWG) tasks encompass a wide range of activities with the principal goals of (1) preventing the generation of waste and (2) converting TRU waste into low-level wastes (LLW) by sorting or decontamination. Concepts for reducing the volume such as in incineration and compaction are considered within the discipline of Reduced Waste Generation, but are considered as somewhat developed technology with only a need for implementation. 33 refs.

  3. Conducting a 3D Converted Shear Wave Project to Reduce Exploration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA DOE ...

  4. Risk Analysis

    Broader source: Energy.gov [DOE]

    Almost any new technology involves some risk. Risks involved in working with hydrogen can be minimized through adherence to standard design parameters for equipment and procedures. The Fuel Cell...

  5. Reducing the Vulnerability of Electric Power Grids to Terrorist Attacks

    SciTech Connect (OSTI)

    Ross Baldick; Thekla Boutsika; Jin Hur; Manho Joung; Yin Wu; Minqi Zhong

    2009-01-31

    This report describes the development of a cascading outage analyzer that, given an initial disturbance on an electric power system, checks for thermal overloads, under-frequency and over-frequency conditions, and under-voltage conditions that would result in removal of elements from the system. The analyzer simulates the successive tripping of elements due to protective actions until a post-event steady state or a system blackout is reached.

  6. Adequacy of Power-to-Mass Scaling in Simulating PWR Incident Transient for Reduced-Height, Reduced-Pressure and Full-Height, Full-Pressure Integral System Test Facilities

    SciTech Connect (OSTI)

    Liu, T.-J.; Lee, C.-H

    2004-03-15

    A complete scheme of scaling methods to design the reduced-height, reduced-pressure (RHRP) Institute of Nuclear Energy Research Integral System Test (IIST) facility and to specify test conditions for incident simulation was developed. In order to preserve core decay power history and coolant mass inventory during a transient, a unique power-to-mass scaling method is proposed and utilized for RHRP and full-height, full-pressure (FHFP) systems. To validate the current scaling method, three counterpart tests done at the IIST facility are compared with the FHFP tests in small-break loss-of-coolant, station blackout, and loss-of-feedwater accidents performed at the Large-Scale Test Facility (LSTF) and the BETHSY test facility. Although differences appeared in design, scaling, and operation conditions among the IIST, LSTF, and BETHSY test facilities, the important physical phenomena shown in the facilities are almost the same. The physics involved in incident transient phenomena are well measured and modeled by showing the common thermal-hydraulic behavior of key parameters and the general consistency of chronological events. The results also confirm the adequacy of power-to-mass scaling methodology.

  7. Reducible oxide based catalysts

    DOE Patents [OSTI]

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  8. Reducing the risk, complexity and cost of coiled tubing drilling

    SciTech Connect (OSTI)

    Portman, L.

    1999-07-01

    Drilling vertical well extensions with coiled tubing, particularly in the underbalanced state, exploits the inherent strengths of coiled tubing including: The ability to enter slim holes against a live well head; The use of small equipment that is fast to rig up and down; and The ability to trip quickly and maintain a steady pressure downhole with continuous circulation. Coiled tubing has successfully been used to deepen hundreds of wells, yet this application has only received sporadic attention. There are some very important technical considerations when drilling non-directionally with coiled tubing that must be addressed to ensure a commercially successful job. A recent vertical drilling job carried out in Western Australia illustrates the critical engineering aspects of an underbalanced, non-directional, coiled tubing drilling job. This job was completed for Arc Energy in April 1999 and produced a well that stabilized at 1.1 MMcfd, where three other wells drilled conventionally into these zones had shown only trace amounts of hydrocarbon.

  9. Reduce Risk, Increase Clean Energy: How States and Cities are...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... We can create a new asset class that would enable the sector to access low-cost ... the P3 is to realize public sector energy savings by installing solar panels on public buildings. ...

  10. Scientific Opportunity to Reduce Risk in Groundwater and Soil Remediation

    SciTech Connect (OSTI)

    Pierce, Eric M.; Freshley, Mark D.; Hubbard, Susan S.; Looney, Brian B.; Zachara, John M.; Liang, Liyuan; Lesmes, D.; Chamberlain, G. M.; Skubal, Karen L.; Adams, V.; Denham, Miles E.; Wellman, Dawn M.

    2009-08-25

    In this report, we start by examining previous efforts at linking science and DOE EM research with cleanup activities. Many of these efforts were initiated by creating science and technology roadmaps. A recurring feature of successfully implementing these roadmaps into EM applied research efforts and successful cleanup is the focus on integration. Such integration takes many forms, ranging from combining information generated by various scientific disciplines, to providing technical expertise to facilitate successful application of novel technology, to bringing the resources and creativity of many to address the common goal of moving EM cleanup forward. Successful projects identify and focus research efforts on addressing the problems and challenges that are causing ‚Äúfailure‚ÄĚ in actual cleanup activities. In this way, basic and applied science resources are used strategically to address the particular unknowns that are barriers to cleanup. The brief descriptions of the Office of Science basic (Environmental Remediation Science Program [ERSP]) and EM‚Äôs applied (Groundwater and Soil Remediation Program) research programs in subsurface science provide context to the five ‚Äúcrosscutting‚ÄĚ themes that have been developed in this strategic planning effort. To address these challenges and opportunities, a tiered systematic approach is proposed that leverages basic science investments with new applied research investments from the DOE Office of Engineering and Technology within the framework of the identified basic science and applied research crosscutting themes. These themes are evident in the initial portfolio of initiatives in the EM groundwater and soil cleanup multi-year program plan. As stated in a companion document for tank waste processing (Bredt et al. 2008), in addition to achieving its mission, DOE EM is experiencing a fundamental shift in philosophy from driving to closure to enabling the long-term needs of DOE and the nation.

  11. Smart Phone Technologies Reduce Risks to Eagles from Wind Turbines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Eagles are Making Wind Turbines Safer for Birds PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms - Technology Hybrids Show Best Potential Mitigating Wind-Radar ...

  12. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect (OSTI)

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Hobbs, David T.; Krahn, Steve; Machara, N.; Mcilwain, Michael; Moyer, Bruce A.; Poloski, Adam P.; Subramanian, K.; Vienna, John D.; Wilmarth, B.

    2008-07-18

    Cleaning up the nation’s nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as contracting strategies that may provide undue focus on near-term, specific clean-up goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research focused on the full cleanup life-cycle offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes.

  13. DOE Selects Projects Aimed at Reducing Drilling Risks in Ultra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other research includes the development of 3-D laser imaging inspection and monitoring ... (Houston, Texas) -- Autonomous Underwater Vehicle (AUV) Inspection Using a 3D Laser. ...

  14. NREL's Renewable Energy Development Expertise Reduces Project Risks (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    This National Renewable Energy Laboratory (NREL) success story fact sheet highlights a June 2012 solar power purchase agreement between the Virgin Islands Water and Power Authority and three corporations. The fact sheet describes how technical assistance from DOE's National Renewable Energy Laboratory enabled the U.S. Virgin Islands to realistically assess its clean energy resources and identify the most viable and cost-effective solutions to its energy challenges--resulting in a $65 million investment in solar energy in the territory.

  15. Reduced shear power spectrum

    SciTech Connect (OSTI)

    Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Northwestern U.; Shapiro, Charles; /Chicago U. /KICP, Chicago; White, Martin J.; /UC, Berkeley, Astron.

    2005-08-01

    Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.

  16. Reducing Power Factor Cost

    Broader source: Energy.gov [DOE]

    Low power factor is expensive and inefficient. Many utility companies charge an additional fee if your power factor is less than 0.95. Low power factor also reduces your electrical system’s distribution capacity by increasing current flow and causing voltage drops. This fact sheet describes power factor and explains how you can improve your power factor to reduce electric bills and enhance your electrical system’s capacity.

  17. Budget Risk & Prioritization Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    BRPAtool performs the following: ¬ēAssists managers in making solid decisions on what scope/activities to reduce and/or eliminate, to meet constrained budgets, based on multiple risk factors ¬ēEnables analysis of different budget scenarios ¬ēCan analyze risks and cost for each activity based on technical, quantifiable risk criteria and management-determined risks ¬ēReal-time analysis ¬ēEnables managers to determine the multipliers and where funding is best applied ¬ēPromotes solid budget defense

  18. Uncertainties in risk assessment at USDOE facilities

    SciTech Connect (OSTI)

    Hamilton, L.D.; Holtzman, S.; Meinhold, A.F.; Morris, S.C.; Rowe, M.D.

    1994-01-01

    The United States Department of Energy (USDOE) has embarked on an ambitious program to remediate environmental contamination at its facilities. Decisions concerning cleanup goals, choices among cleanup technologies, and funding prioritization should be largely risk-based. Risk assessments will be used more extensively by the USDOE in the future. USDOE needs to develop and refine risk assessment methods and fund research to reduce major sources of uncertainty in risk assessments at USDOE facilities. The terms{open_quote} risk assessment{close_quote} and{open_quote} risk management{close_quote} are frequently confused. The National Research Council (1983) and the United States Environmental Protection Agency (USEPA, 1991a) described risk assessment as a scientific process that contributes to risk management. Risk assessment is the process of collecting, analyzing and integrating data and information to identify hazards, assess exposures and dose responses, and characterize risks. Risk characterization must include a clear presentation of {open_quotes}... the most significant data and uncertainties...{close_quotes} in an assessment. Significant data and uncertainties are {open_quotes}...those that define and explain the main risk conclusions{close_quotes}. Risk management integrates risk assessment information with other considerations, such as risk perceptions, socioeconomic and political factors, and statutes, to make and justify decisions. Risk assessments, as scientific processes, should be made independently of the other aspects of risk management (USEPA, 1991a), but current methods for assessing health risks are based on conservative regulatory principles, causing unnecessary public concern and misallocation of funds for remediation.

  19. Risk Code?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Identify the Task Risk Code >2 Determine if a Work Control Document is needed What is the Unmitigated Risk Code? Rev.1 09/05/14 Read and Agree to Comply with appropriate mitigation and sign Work Control Documents Is there an approved Work Control Document (WCD)? WORK PLANNING, CONTROL AND AUTHORIZATION FLOW DIAGRAM 1. Define Scope of Work 2. Analyze Hazards 3. Develop and Implement Hazard Controls 4. Perform Work Within Controls 5. Feedback and Continuous Improvement Analyze Hazards and

  20. EERE Success Story-Milestone Reached: New Process Reduces Cost...

    Office of Environmental Management (EM)

    Biofuel Production from Bio-Oil Upgrading EERE Success Story-Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading May 12, 2015 - ...

  1. Reducing Configuration Complexity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ams AG 2015 Reducing Configuration Complexity The contribution of chipscale integrated solutions Tom Griffiths Sr. Marketing Manager ams AG November 2015 © ams AG 2015 Agenda Architecture of IoT smart lighting Importance of the sensors The puzzle pieces Focus on adoption (turn... key...) A quick case study Industry's to-do list (an opinion) © ams AG 2015 Page 3 The Opportunity of Smart Lighting "Sufficient" light 24x7 Worker Productivity Decorative Use Utilitarian Lights Following in

  2. Naval electrochemical corrosion reducer

    DOE Patents [OSTI]

    Clark, Howard L.

    1991-10-01

    A corrosion reducer for use with ships having a hull, a propeller mounted a propeller shaft and extending through the hull, bearings supporting the shaft, at least one thrust bearing and one seal. The improvement includes a current collector and a current reduction assembly for reducing the voltage between the hull and shaft in order to reduce corrosion due to electrolytic action. The current reduction assembly includes an electrical contact, the current collector, and the hull. The current reduction assembly further includes a device for sensing and measuring the voltage between the hull and the shaft and a device for applying a reverse voltage between the hull and the shaft so that the resulting voltage differential is from 0 to 0.05 volts. The current reduction assembly further includes a differential amplifier having a voltage differential between the hull and the shaft. The current reduction assembly further includes an amplifier and a power output circuit receiving signals from the differential amplifier and being supplied by at least one current supply. The current selector includes a brush assembly in contact with a slip ring over the shaft so that its potential may be applied to the differential amplifier.

  3. Highly Radioactive Sludge Removal Complete: Historic Cleanup Effort Reduces

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Risk along the Columbia River | Department of Energy Highly Radioactive Sludge Removal Complete: Historic Cleanup Effort Reduces the Risk along the Columbia River Highly Radioactive Sludge Removal Complete: Historic Cleanup Effort Reduces the Risk along the Columbia River September 13, 2012 - 12:00pm Addthis Media Contacts Cameron Salony, DOE Cameron.Salony@rl.doe.gov 509-376-0402 Dee Millikin, CH2M HILL Plateau Remediation Company Dee_Millikin@rl.gov 509-376-1297 RICHLAND, WASH. - The

  4. D:\\0myfiles\\DOE Policy (LBL) Blackout Final\\final-blackout-body...

    Office of Environmental Management (EM)

    ... and for the operations planning horizon at the CONTROL ... modeled to capture any problems crossing such boundaries." ... What Constitutes an Operating Emergency? An operating ...

  5. Assessing Risk and Driving Risk Mitigation for First-of-a-Kind Advanced Reactors

    SciTech Connect (OSTI)

    John W. Collins

    2011-09-01

    . Product - Risk Handling Strategy. STEP 4 - Residual Risk Work off The risk handling strategy is entered into the Project Risk Allocation Tool (PRAT) to analyze each task for its ability to reduce risk. The result is risk-informed task prioritization. The risk handling strategy is captured in the Risk Management System, a relational database that provides conventional database utility, including data maintenance, archiving, configuration control, and query ability. The tool's Hierarchy Tree allows visualization and analyses of complex relationships between risks, risk mitigation tasks, design needs, and PIRTs. Product - Project Risk Allocation Tool and Risk Management System which depict project plan to reduce risk and current progress in doing so.

  6. Pressure reducing regulator

    DOE Patents [OSTI]

    Whitehead, John C. (Davis, CA); Dilgard, Lemoyne W. (Willits, CA)

    1995-01-01

    A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes.

  7. Pressure reducing regulator

    DOE Patents [OSTI]

    Whitehead, J.C.; Dilgard, L.W.

    1995-10-10

    A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure is disclosed. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes. 10 figs.

  8. Stewarding a Reduced Stockpile

    SciTech Connect (OSTI)

    Goodwin, B T; Mara, G

    2008-04-18

    The future of the US nuclear arsenal continues to be guided by two distinct drivers: the preservation of world peace and the prevention of further proliferation through our extended deterrent umbrella. Timely implementation of US nuclear policy decisions depends, in part, on the current state of stockpile weapons, their delivery systems, and the supporting infrastructure within the Department of Defense (DoD) and the Department of Energy's National Nuclear Security Administration (NNSA). In turn, the present is a product of past choices and world events. Now more than ever, the nuclear weapons program must respond to the changing global security environment and to increasing budget pressures with innovation and sound investments. As the nation transitions to a reduced stockpile, the successes of the Stockpile Stewardship Program (SSP) present options to transition to a sustainable complex better suited to stockpile size, national strategic goals and budgetary realities. Under any stockpile size, we must maintain essential human capital, forefront capabilities, and have a right-sized effective production capacity. We present new concepts for maintaining high confidence at low stockpile numbers and to effectively eliminate the reserve weapons within an optimized complex. We, as a nation, have choices to make on how we will achieve a credible 21st century deterrent.

  9. Dynamical systems probabilistic risk assessment.

    SciTech Connect (OSTI)

    Denman, Matthew R.; Ames, Arlo Leroy

    2014-03-01

    Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power regulatory and licensing activities. Risk-informed regulations are intended to reduce inherent conservatism in regulatory metrics (e.g., allowable operating conditions and technical specifications) which are built into the regulatory framework by quantifying both the total risk profile as well as the change in the risk profile caused by an event or action (e.g., in-service inspection procedures or power uprates). Dynamical Systems (DS) analysis has been used to understand unintended time-dependent feedbacks in both industrial and organizational settings. In dynamical systems analysis, feedback loops can be characterized and studied as a function of time to describe the changes to the reliability of plant Structures, Systems and Components (SSCs). While DS has been used in many subject areas, some even within the PRA community, it has not been applied toward creating long-time horizon, dynamic PRAs (with time scales ranging between days and decades depending upon the analysis). Understanding slowly developing dynamic effects, such as wear-out, on SSC reliabilities may be instrumental in ensuring a safely and reliably operating nuclear fleet. Improving the estimation of a plant's continuously changing risk profile will allow for more meaningful risk insights, greater stakeholder confidence in risk insights, and increased operational flexibility.

  10. Ecological Risk Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ecological Risk Assessments Ecological Risk Assessments Ecological risk assessment is the appraisal of potential adverse effects of exposure to contaminants on plants and animals....

  11. Reducing gas generators and methods for generating a reducing gas

    DOE Patents [OSTI]

    Scotto, Mark Vincent; Perna, Mark Anthony

    2015-11-03

    One embodiment of the present invention is a unique reducing gas generator. Another embodiment is a unique method for generating a reducing gas. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for generating reducing gas. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  12. Risk Management Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-12

    The purpose of this guide is to describe effective risk management processes. The continuous and iterative process includes updating project risk documents and the risk management plan and emphasizes implementation communication of the risks and actions taken.

  13. Risk Management Process Overview

    Broader source: Energy.gov [DOE]

    The cybersecurity risk management process explained in the Electricity Sector Cybersecurity Risk Management Process (RMP) Guideline has two primary components: the risk management model and the the risk management cycle.

  14. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Opportunities in Reliability Reduced losses from power outages and power quality issues * Reducing the probability of regional blackouts can prevent significant losses to society. ...

  15. Advanced Test Reactor outage risk assessment

    SciTech Connect (OSTI)

    Thatcher, T.A.; Atkinson, S.A.

    1997-12-31

    Beginning in 1997, risk assessment was performed for each Advanced Test Reactor (ATR) outage aiding the coordination of plant configuration and work activities (maintenance, construction projects, etc.) to minimize the risk of reactor fuel damage and to improve defense-in-depth. The risk assessment activities move beyond simply meeting Technical Safety Requirements to increase the awareness of risk sensitive configurations, to focus increased attention on the higher risk activities, and to seek cost-effective design or operational changes that reduce risk. A detailed probabilistic risk assessment (PRA) had been performed to assess the risk of fuel damage during shutdown operations including heavy load handling. This resulted in several design changes to improve safety; however, evaluation of individual outages had not been performed previously and many risk insights were not being utilized in outage planning. The shutdown PRA provided the necessary framework for assessing relative and absolute risk levels and assessing defense-in-depth. Guidelines were written identifying combinations of equipment outages to avoid. Screening criteria were developed for the selection of work activities to receive review. Tabulation of inherent and work-related initiating events and their relative risk level versus plant mode has aided identification of the risk level the scheduled work involves. Preoutage reviews are conducted and post-outage risk assessment is documented to summarize the positive and negative aspects of the outage with regard to risk. The risk for the outage is compared to the risk level that would result from optimal scheduling of the work to be performed and to baseline or average past performance.

  16. GTRI: Reducing Nuclear Threats | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) GTRI: Reducing Nuclear Threats May 29, 2014 Mission In 2004 NNSA established the Global Threat Reduction Initiative (GTRI) in the Office of Defense Nuclear Nonproliferation to, as quickly as possible, identify, secure, remove and/or facilitate the disposition of high risk vulnerable nuclear and radiological materials around the world that pose a threat to the United States and the international community. GTRI's mission is to reduce and protect vulnerable nuclear and radiological

  17. Battery Electric Vehicles can reduce greenhouse has emissions and make renewable energy cheaper in India

    SciTech Connect (OSTI)

    Gopal, Anand R; Witt, Maggie; Sheppard, Colin; Harris, Andrew

    2015-07-01

    India's National Mission on Electric Mobility (NMEM) sets a countrywide goal of deploying 6 to 7 million hybrid and electric vehicles (EVs) by 2020. There are widespread concerns, both within and outside the government, that the Indian grid is not equipped to accommodate additional power demand from battery electric vehicles (BEVs). Such concerns are justified on the grounds of India's notorious power sector problems pertaining to grid instability and chronic blackouts. Studies have claimed that deploying BEVs in India will only

  18. Oxygen-reducing catalyst layer

    DOE Patents [OSTI]

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; Yang, Ruizhi; Easton, E. Bradley; Dahn, Jeffrey R.; O'Neill, David G.

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  19. Risk Assessment & Management Information

    Broader source: Energy.gov [DOE]

    NRC - A Proposed Risk Management Regulatory Framework, April 2012 Risk Assessment Technical Experts Working Group (RWG) web page DOE Standard on Development and Use of Probabilistic Risk Assessment in DOE Nuclear Safety Applications (draft), December 2010 Consortium for Risk Evaluation with Stakeholder Participation Workshop on Risk Assessment and Safety Decision Making Under Uncertainty

  20. Reducing Regulatory Burden | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request for information on reducing regulatory burden Reducing Regulatory Burden (177.64 KB) More Documents & Publications Reducing Regulatory Burden Reducing Regulatory Burden

  1. Fuzzy Risk Analyzer

    Energy Science and Technology Software Center (OSTI)

    1994-03-04

    FRA is a general purpose code for risk analysis using fuzzy, not numeric, attributes. It allows the user to evaluate the risk associated with a composite system on the basis of the risk estimates of the individual components.

  2. Enterprise Risk Management Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model The Enterprise Risk Management (ERM) Model is a system used to analyze the cost and benefit of addressing risks inherent in the work performed by the Department of Energy. This system measures risk using a combination of qualitative and quantitative methods to set a standard method for analyzing risk across the many functions within the department. Risks generally fall within five categories regardless ofthe subject matter ofthe subsystem. These categories are (1) risks to people, (2)

  3. Enterprise Risk Management Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Framework The Enterprise Risk Management (ERM) framework includes four steps: identify the risks, determine the probability and impact of each one, identify controls that are...

  4. Chemical, mechanical treatment options reduce hydroprocessor fouling

    SciTech Connect (OSTI)

    Groce, B.C.

    1996-01-29

    The processing of opportunity crudes and the need to meet stricter environmental regulations in the production of distillates and finished fuels have increased the benefit of the hydroprocessing unit to the refiner. With this potential for increased margins and more environmentally friendly fuel products comes increased risk of fouling in hydroprocessing units. Increased fouling can reduce unit reliability and increase maintenance and operating costs. The refiner has several options available to help minimize the fouling and maximize the unit`s profitability and flexibility. One of the two commonly selected options is to allocate capital for a mechanical solution to address a specific cause of fouling. The other option is the use of a chemical treatment program. This paper reviews the efficiency and implementation procedures for these two processes.

  5. Reducing Regulatory Burden | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Burden Reducing Regulatory Burden Request for information on reducing regulatory burden Reducing Regulatory Burden (289.74 KB) More Documents & Publications Reducing Regulatory Burden; Retrospective Review Under E.O. 13563 SEVENTH RFI COMMENTS ON REDUCING REGULATORY BURDEN

  6. RISK REDUCTION THROUGH USE OF EXTERNAL TECHNICAL REVIEWS, TECHNOLOGY READINESS ASSESSMENTS AND TECHNICAL RISK RATINGS - 9174

    SciTech Connect (OSTI)

    Cercy, M; Steven P Schneider, S; Kurt D Gerdes, K

    2008-12-12

    The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. A large majority of these wastes and facilities are 'one-of-a-kind' and unique to DOE. Many of the programs to treat these wastes have been 'first-of-a-kind' and unprecedented in scope and complexity. This has meant that many of the technologies needed to successfully disposition these wastes were not yet developed or required significant re-engineering to be adapted for DOE-EM's needs. The DOE-EM program believes strongly in reducing the technical risk of its projects and has initiated several efforts to reduce those risks: (1) Technology Readiness Assessments to reduce the risks of deployment of new technologies; (2) External Technical Reviews as one of several steps to ensure the timely resolution of engineering and technology issues; and (3) Technical Risk Ratings as a means to monitor and communicate information about technical risks. This paper will present examples of how Technology Readiness Assessments, External Technical Reviews, and Technical Risk Ratings are being used by DOE-EM to reduce technical risks.

  7. RISK REDUCTION THROUGH USE OF EXTERNAL TECHNICAL REVIEWS, TECHNOLOGY READINESS ASSESSMENTS AND TECHNICAL RISK RATINGS - 9174

    SciTech Connect (OSTI)

    Cercy, M; Steven P Schneider, S; Kurt D Gerdes, K

    2009-01-15

    The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. A large majority of these wastes and facilities are 'one-of-a-kind' and unique to DOE. Many of the programs to treat these wastes have been 'first-of-a-kind' and unprecedented in scope and complexity. This has meant that many of the technologies needed to successfully disposition these wastes were not yet developed or required significant re-engineering to be adapted for DOE-EM's needs. The DOE-EM program believes strongly in reducing the technical risk of its projects and has initiated several efforts to reduce those risks: (1) Technology Readiness Assessments to reduce the risks of deployment of new technologies; (2) External Technical Reviews as one of several steps to ensure the timely resolution of engineering and technology issues; and (3) Technical Risk Ratings as a means to monitor and communicate information about technical risks. This paper will present examples of how Technology Readiness Assessments, External Technical Reviews, and Technical Risk Ratings are being used by DOE-EM to reduce technical risks.

  8. Determining Reduced Order Models for Optimal Stochastic Reduced Order Models

    SciTech Connect (OSTI)

    Bonney, Matthew S.; Brake, Matthew R.W.

    2015-08-01

    The use of parameterized reduced order models(PROMs) within the stochastic reduced order model (SROM) framework is a logical progression for both methods. In this report, five different parameterized reduced order models are selected and critiqued against the other models along with truth model for the example of the Brake-Reuss beam. The models are: a Taylor series using finite difference, a proper orthogonal decomposition of the the output, a Craig-Bampton representation of the model, a method that uses Hyper-Dual numbers to determine the sensitivities, and a Meta-Model method that uses the Hyper-Dual results and constructs a polynomial curve to better represent the output data. The methods are compared against a parameter sweep and a distribution propagation where the first four statistical moments are used as a comparison. Each method produces very accurate results with the Craig-Bampton reduction having the least accurate results. The models are also compared based on time requirements for the evaluation of each model where the Meta- Model requires the least amount of time for computation by a significant amount. Each of the five models provided accurate results in a reasonable time frame. The determination of which model to use is dependent on the availability of the high-fidelity model and how many evaluations can be performed. Analysis of the output distribution is examined by using a large Monte-Carlo simulation along with a reduced simulation using Latin Hypercube and the stochastic reduced order model sampling technique. Both techniques produced accurate results. The stochastic reduced order modeling technique produced less error when compared to an exhaustive sampling for the majority of methods.

  9. Secretary Chu to Participate in White House Grid Modernization...

    Office of Environmental Management (EM)

    the grid; help accommodate the growing number of electric vehicles; help avoid blackouts and restore power quicker when outages occur; and reduce the need for new power plants. ...

  10. June 13, 2011: Building the 21st Century Grid | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the grid; help accommodate the growing number of electric vehicles; help avoid blackouts and restore power quicker when outages occur; and reduce the need for new power plants. ...

  11. Obama Administration Announces Job-Creating Grid Modernization...

    Office of Environmental Management (EM)

    of electric vehicles on America's roads, help avoid blackouts, restore power more quickly when outages occur, and reduce the need for new power plants. "Transmission is a vital ...

  12. Enterprise Risk Management Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Framework The Enterprise Risk Management (ERM) framework includes four steps: identify the risks, determine the probability and impact of each one, identify controls that are already in place that mitigate that risk, and propose additional controls if needed. Step 1: Identify Risks - What can go wrong? This step should identify the negative outcomes that could result from an action or decision . It is important to consider a wide range of risks, and so the Department's ERM framework includes

  13. Reduce air, reduce compliance cost new patented spray booth technology

    SciTech Connect (OSTI)

    McGinnis, F.

    1997-12-31

    A New Paint Spray Booth System that dramatically reduces air volumes normally required for capturing and controlling paint overspray that contains either Volatile Organic Compounds (VOC) or Hazardous Air Pollutants (HAP), or both. In turn, a substantial reduction in capital equipment expenditures for air abatement systems and air make-up heaters as well as related annual operating expenses is realized.

  14. Microbial methods of reducing technetium

    DOE Patents [OSTI]

    Wildung, Raymond E. [Richland, WA; Garland, Thomas R. [Greybull, WY; Gorby, Yuri A. [Richland, WA; Hess, Nancy J. [Benton City, WA; Li, Shu-Mei W. [Richland, WA; Plymale, Andrew E. [Richland, WA

    2001-01-01

    The present invention is directed toward a method for microbial reduction of a technetium compound to form other compounds of value in medical imaging. The technetium compound is combined in a mixture with non-growing microbial cells which contain a technetium-reducing enzyme system, a stabilizing agent and an electron donor in a saline solution under anaerobic conditions. The mixture is substantially free of an inorganic technetium reducing agent and its reduction products. The resulting product is Tc of lower oxidation states, the form of which can be partially controlled by the stabilizing agent. It has been discovered that the microorganisms Shewanella alga, strain Bry and Shewanelia putrifacians, strain CN-32 contain the necessary enzyme systems for technetium reduction and can form both mono nuclear and polynuclear reduced Tc species depending on the stabilizing agent.

  15. Reduced-vibration tube array

    DOE Patents [OSTI]

    Bruck, Gerald J.; Bartolomeo, Daniel R.

    2004-07-20

    A reduced-vibration tube array is disclosed. The array includes a plurality of tubes in a fixed arrangement and a plurality of damping members positioned within the tubes. The damping members include contoured interface regions characterized by bracing points that selectively contact the inner surface of an associated tube. Each interface region is sized and shaped in accordance with the associated tube, so that the damping member bracing points are spaced apart a vibration-reducing distance from the associated tube inner surfaces at equilibrium. During operation, mechanical interaction between the bracing points and the tube inner surfaces reduces vibration by a damage-reducing degree. In one embodiment, the interface regions are serpentine shaped. In another embodiment, the interface regions are helical in shape. The interface regions may be simultaneously helical and serpentine in shape. The damping members may be fixed within the associated tubes, and damping member may be customized several interference regions having attributes chosen in accordance with desired flow characteristics and associated tube properties.

  16. METHOD OF REDUCING PLUTONIUM COMPOUNDS

    DOE Patents [OSTI]

    Johns, I.B.

    1958-06-01

    A method is described for reducing plutonium compounds in aqueous solution from a higher to a lower valence state. This reduction of valence is achieved by treating the aqueous solution of higher valence plutonium compounds with hydrogen in contact with an activated platinum catalyst.

  17. Reducing carbon dioxide to products

    DOE Patents [OSTI]

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  18. Correlated Electrons in Reduced Dimensions

    SciTech Connect (OSTI)

    Bonesteel, Nicholas E

    2015-01-31

    This report summarizes the work accomplished under the support of US DOE grant # DE-FG02-97ER45639, "Correlated Electrons in Reduced Dimensions." The underlying hypothesis of the research supported by this grant has been that studying the unique behavior of correlated electrons in reduced dimensions can lead to new ways of understanding how matter can order and how it can potentially be used. The systems under study have included i) fractional quantum Hall matter, which is realized when electrons are confined to two-dimensions and placed in a strong magnetic field at low temperature, ii) one-dimensional chains of spins and exotic quasiparticle excitations of topologically ordered matter, and iii) electrons confined in effectively ``zero-dimensional" semiconductor quantum dots.

  19. Ferroelectric capacitor with reduced imprint

    DOE Patents [OSTI]

    Evans, Jr., Joseph T.; Warren, William L.; Tuttle, Bruce A.; Dimos, Duane B.; Pike, Gordon E.

    1997-01-01

    An improved ferroelectric capacitor exhibiting reduced imprint effects in comparison to prior art capacitors. A capacitor according to the present invention includes top and bottom electrodes and a ferroelectric layer sandwiched between the top and bottom electrodes, the ferroelectric layer comprising a perovskite structure of the chemical composition ABO.sub.3 wherein the B-site comprises first and second elements and a dopant element that has an oxidation state greater than +4. The concentration of the dopant is sufficient to reduce shifts in the coercive voltage of the capacitor with time. In the preferred embodiment of the present invention, the ferroelectric element comprises Pb in the A-site, and the first and second elements are Zr and Ti, respectively. The preferred dopant is chosen from the group consisting of Niobium, Tantalum, and Tungsten. In the preferred embodiment of the present invention, the dopant occupies between 1 and 8% of the B-sites.

  20. MapReduce SVM Game

    SciTech Connect (OSTI)

    Vineyard, Craig M.; Verzi, Stephen J.; James, Conrad D.; Aimone, James B.; Heileman, Gregory L.

    2015-08-10

    Despite technological advances making computing devices faster, smaller, and more prevalent in today's age, data generation and collection has outpaced data processing capabilities. Simply having more compute platforms does not provide a means of addressing challenging problems in the big data era. Rather, alternative processing approaches are needed and the application of machine learning to big data is hugely important. The MapReduce programming paradigm is an alternative to conventional supercomputing approaches, and requires less stringent data passing constrained problem decompositions. Rather, MapReduce relies upon defining a means of partitioning the desired problem so that subsets may be computed independently and recom- bined to yield the net desired result. However, not all machine learning algorithms are amenable to such an approach. Game-theoretic algorithms are often innately distributed, consisting of local interactions between players without requiring a central authority and are iterative by nature rather than requiring extensive retraining. Effectively, a game-theoretic approach to machine learning is well suited for the MapReduce paradigm and provides a novel, alternative new perspective to addressing the big data problem. In this paper we present a variant of our Support Vector Machine (SVM) Game classifier which may be used in a distributed manner, and show an illustrative example of applying this algorithm.

  1. MapReduce SVM Game

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vineyard, Craig M.; Verzi, Stephen J.; James, Conrad D.; Aimone, James B.; Heileman, Gregory L.

    2015-08-10

    Despite technological advances making computing devices faster, smaller, and more prevalent in today's age, data generation and collection has outpaced data processing capabilities. Simply having more compute platforms does not provide a means of addressing challenging problems in the big data era. Rather, alternative processing approaches are needed and the application of machine learning to big data is hugely important. The MapReduce programming paradigm is an alternative to conventional supercomputing approaches, and requires less stringent data passing constrained problem decompositions. Rather, MapReduce relies upon defining a means of partitioning the desired problem so that subsets may be computed independently andmore¬†¬Ľ recom- bined to yield the net desired result. However, not all machine learning algorithms are amenable to such an approach. Game-theoretic algorithms are often innately distributed, consisting of local interactions between players without requiring a central authority and are iterative by nature rather than requiring extensive retraining. Effectively, a game-theoretic approach to machine learning is well suited for the MapReduce paradigm and provides a novel, alternative new perspective to addressing the big data problem. In this paper we present a variant of our Support Vector Machine (SVM) Game classifier which may be used in a distributed manner, and show an illustrative example of applying this algorithm.¬ę¬†less

  2. State Energy Risk Assessment Initiative - State Energy Risk Profiles...

    Energy Savers [EERE]

    Mission Energy Infrastructure Modeling and Analysis State Energy Risk Assessment Initiative - State Energy Risk Profiles State Energy Risk Assessment Initiative - State...

  3. Topographical Risk Assessment

    Energy Science and Technology Software Center (OSTI)

    2002-09-24

    TRA was developed as a computer tool for the DOE Office of River Protection (ORP) that will provides the capability to visualize and rapidly understand information about the risks associated with the River protection Project (RPP). Previously, technical and programmatic risk management within ORP had relied heavily on risk lists and other techniques that presented risk information but did not place it in perspective of the overall project. This made it difficult for ORP seniormore¬†¬Ľ management to understand the risk information presented, prioritize their activities, and provide direction to ORP staff and contractors about how to manage specific risk events. The TRA visualization tool, provides the appropriate context and perspective that allows senior management to effectively manage risks. Basically, the TRA overlays information about risks associated with specific activities and their magnitudes on top of the project baseline schedule. this provides senior management with information about the magnitudes of specific risk events as well as their timing, and allows them to focus their attention and resources on the risks that merit attention and possible further action. The TRA tool can also be used to display other types of information associated with scheduled activities, such as cost to date, technical performance, schedule performance, etc. Additionally, the base of the 3-dimensional representation can be changed to other types of graphics, such as maps, process flow diagrams, etc., which allows the display of other types of informatio, such as hazards, health and safety risks, and system availability.¬ę¬†less

  4. Blackout 2003: Conference for public review draft report on implementa...

    Broader source: Energy.gov (indexed) [DOE]

    On Thursday, June 22, in Washington, D.C., the U.S.-Canada Power System Outage Task Force will hold a conference for stakeholders and the public to comment on the draft of the ...

  5. Second Anniversary of Northeast Blackout Marked with Progress...

    Broader source: Energy.gov (indexed) [DOE]

    On August 14, 2003, Americans throughout the Northeast lost electricity when problems at a utility in northern Ohio began a chain reaction of events that led to power outages ...

  6. Risk assessment as a framework for decisions.

    SciTech Connect (OSTI)

    Rechard, Robert Paul; McKenna, Sean Andrew; Borns, David James

    2010-12-01

    The risk assessment approach has been applied to support numerous radioactive waste management activities over the last 30 years. A risk assessment methodology provides a solid and readily adaptable framework for evaluating the risks of CO2 sequestration in geologic formations to prioritize research, data collection, and monitoring schemes. This paper reviews the tasks of a risk assessment, and provides a few examples related to each task. This paper then describes an application of sensitivity analysis to identify important parameters to reduce the uncertainty in the performance of a geologic repository for radioactive waste repository, which because of importance of the geologic barrier, is similar to CO2 sequestration. The paper ends with a simple stochastic analysis of idealized CO2 sequestration site with a leaking abandoned well and a set of monitoring wells in an aquifer above the CO2 sequestration unit in order to evaluate the efficacy of monitoring wells to detect adverse leakage.

  7. Reduced vibration motor winding arrangement

    DOE Patents [OSTI]

    Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

    1997-11-11

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

  8. Reduced vibration motor winding arrangement

    DOE Patents [OSTI]

    Slavik, Charles J.; Rhudy, Ralph G.; Bushman, Ralph E.

    1997-01-01

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of .sqroot.3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency.

  9. Risk and Realities | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ¬Ľ Risk Management Process Overview Risk Management Process Overview figure depicting three tier risk management process The cybersecurity risk management process explained in the Electricity Sector Cybersecurity Risk Management Process (RMP) Guideline has two primary components: the risk management model and the the risk management cycle. The risk management model reflects the organization as a three-tiered structure and provides a comprehensive view for the electricity sector organization and

  10. Ozone Risk Assessment Utilities

    Energy Science and Technology Software Center (OSTI)

    1999-08-10

    ORAMUS is a user-friendly, menu-driven software system that calculates and displays user-selected risk estimates for health effects attributable to short-term exposure to tropospheric ozone. Inputs to the risk assessment are estimates of exposure to ozone and exposure-response relationships to produce overall risk estimates in the form of probability distributions. Three fundamental models are included: headcount risk, benchmark risk, and hospital admissions. Exposure-response relationships are based on results of controlled human exposure studies. Exposure estimates aremore¬†¬Ľ based on the EPA''s probabilistic national ambient air quality standards (NAAQS) exposure model, pNEM/Osub3, which simulates air quality associated with attainment of alternative NAAQS. Using ORAMUS, risk results for 27 air quality scenarios, air quality in 9 urban areas, 33 health endpoints, and 4 chronic health endpoints can be calculated.¬ę¬†less

  11. Sociocultural definitions of risk

    SciTech Connect (OSTI)

    Rayner, S.

    1990-10-01

    Public constituencies frequently are criticized by technical experts as being irrational in response to low-probability risks. This presentation argued that most people are concerned with a variety of risk attributes other than probability and that is rather irrational to exclude these from the definition and analysis of technological risk. Risk communication, which is at the heart of the right-to-know concept, is described as the creation of shared meaning rather than the mere transmission of information. A case study of utilities, public utility commissions, and public interest groups illustrates how the diversity of institutional cultures in modern society leads to problems for the creation of shared meanings in establishing trust, distributing liability, and obtaining consent to risk. This holistic approach to risk analysis is most appropriate under conditions of high uncertainty and/or decision stakes. 1 fig., 5 tabs.

  12. Risk Identification and Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Risk Identification and Assessment [Sections in brackets are for instructions; these should be deleted or replaced with specifics in the template.] Subsystem Title or Section within Subsystem [In the first column, using short bullets, fill in "what can go wrong," or a brief description of a potential benefit from a program or action. Add additional rows as necessary. Fill in the other columns using the rating guidelines in the attached reference pages.] |Risk|Probability|Impact|Risk

  13. Marine and Hydrokinetic Technology Development Risk Management Framework

    SciTech Connect (OSTI)

    Snowberg, David; Weber, Jochem

    2015-09-01

    Over the past decade, the global marine and hydrokinetic (MHK) industry has suffered a number of serious technological and commercial setbacks. To help reduce the risks of industry failures and advance the development of new technologies, the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) developed an MHK Risk Management Framework. By addressing uncertainties, the MHK Risk Management Framework increases the likelihood of successful development of an MHK technology. It covers projects of any technical readiness level (TRL) or technical performance level (TPL) and all risk types (e.g. technological risk, regulatory risk, commercial risk) over the development cycle. This framework is intended for the development and deployment of a single MHK technology‚ÄĒnot for multiple device deployments within a plant. This risk framework is intended to meet DOE‚Äôs risk management expectations for the MHK technology research and development efforts of the Water Power Program (see Appendix A). It also provides an overview of other relevant risk management tools and documentation.1 This framework emphasizes design and risk reviews as formal gates to ensure risks are managed throughout the technology development cycle. Section 1 presents the recommended technology development cycle, Sections 2 and 3 present tools to assess the TRL and TPL of the project, respectively. Section 4 presents a risk management process with design and risk reviews for actively managing risk within the project, and Section 5 presents a detailed description of a risk registry to collect the risk management information into one living document. Section 6 presents recommendations for collecting and using lessons learned throughout the development process.

  14. Enterprise Risk Management Specialist

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration, Corporate Services Office, Office of the Chief Operating Officer, Risk and...

  15. PROJECT PROFILE: Scientific Approach to Reducing Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scientific Approach to Reducing Photovoltaic Module Material Costs While Increasing Durability PROJECT PROFILE: Scientific Approach to Reducing Photovoltaic Module Material Costs ...

  16. Reducing Your Electricity Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel Appliances & Electronics Reducing Your Electricity Use Reducing Your Electricity Use An energy audit can help you find the most effective ways to save...

  17. Draugen HSE-case - occupational health risk management

    SciTech Connect (OSTI)

    Glas, J.J.P.; Kjaer, E.

    1996-12-31

    The Draugen HSE-Case serves as a risk management tool. Originally, risk management included only major safety hazards to personnel, environment and assets. Work Environment risks such as ergonomics, psycho-social factors and exposure to chemicals and noise, was not given the same attention. The Draugen HSE-Case addresses this weakness and extends all work environment risks. In order to promote line responsibility and commitment, relevant personnel is involved in the Case development. {open_quotes}THESIS{degrees}, a software application, is used to systematize input and to generate reports. The Draugen HSE-case encompasses: HSE risk analyses related to specific activities; Control of risk related to work environment; Established tolerability criteria; Risk reducing measures; Emergency contingency measures; and Requirements for Competence and Follow-up. The development of Draugen HSE-Case is a continuous process. It will serve to minimize the potential of occupational illnesses, raise general awareness, and make occupational health management more cost-effective.

  18. Recognizing and Assigning ESPC Risks and Responsibilities Using the Risk,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Responsibility, and Performance Matrix | Department of Energy Recognizing and Assigning ESPC Risks and Responsibilities Using the Risk, Responsibility, and Performance Matrix Recognizing and Assigning ESPC Risks and Responsibilities Using the Risk, Responsibility, and Performance Matrix Document offers guidance on how to recognize and assign energy savings performance contract (ESPC) risks and responsibilities using the risk, responsibility, and performance matrix, also known as RRPM.

  19. Biogeochemical Mechanisms Controlling Reduced Radionuclide Particle Properties and Stability

    SciTech Connect (OSTI)

    Jim K. Fredrickson; John M. Zachara; Matthew J. Marshall; Alex S. Beliaev

    2006-06-01

    Uranium and Technetium are the major risk-driving contaminants at Hanford and other DOE sites. These radionuclides have been shown to be reduced by dissimilatory metal reducing bacteria (DMRB) under anoxic conditions. Laboratory studies have demonstrated that reduction results in the formation of poorly soluble hydrous oxides, UO2(s) and TcO2n?H2O(s), that are believed to limit mobility in the environment. The mechanisms of microbial reduction of U and Tc have been the focus of considerable research in the Environmental Remediation Sciences Program (ERSP). In spite of equal or greater importance in terms of controlling the environmental fate of the contaminants relatively little is known regarding the precipitation mechanism(s), reactivity, persistence, and transport of biogenic UO2(s) and TcO2(s).

  20. Reference manual for toxicity and exposure assessment and risk characterization. CERCLA Baseline Risk Assessment

    SciTech Connect (OSTI)

    1995-03-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 1980) (CERCLA or Superfund) was enacted to provide a program for identifying and responding to releases of hazardous substances into the environment. The Superfund Amendments and Reauthorization Act (SARA, 1986) was enacted to strengthen CERCLA by requiring that site clean-ups be permanent, and that they use treatments that significantly reduce the volume, toxicity, or mobility of hazardous pollutants. The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (USEPA, 1985; USEPA, 1990) implements the CERCLA statute, presenting a process for (1) identifying and prioritizing sites requiring remediation and (2) assessing the extent of remedial action required at each site. The process includes performing two studies: a Remedial Investigation (RI) to evaluate the nature, extent, and expected consequences of site contamination, and a Feasibility Study (FS) to select an appropriate remedial alternative adequate to reduce such risks to acceptable levels. An integral part of the RI is the evaluation of human health risks posed by hazardous substance releases. This risk evaluation serves a number of purposes within the overall context of the RI/FS process, the most essential of which is to provide an understanding of ``baseline`` risks posed by a given site. Baseline risks are those risks that would exist if no remediation or institutional controls are applied at a site. This document was written to (1) guide risk assessors through the process of interpreting EPA BRA policy and (2) help risk assessors to discuss EPA policy with regulators, decision makers, and stakeholders as it relates to conditions at a particular DOE site.

  1. Bio Risk Assessment Tool

    Energy Science and Technology Software Center (OSTI)

    2004-07-22

    The Biosecurity Risk Assessment Tool (BRAT) is a new type of computer application for the screening-level assessment of risk to dairy operations. BRAT for Dairies is designed to be intuitive and easy to use. Users enter basic data-property address, feed management, employee population, and so on - into the interface. Using these data and rules found in an expert system. BRAT for Dairies consults appropriate sections of its database. The expert system determines the riskmore¬†¬Ľ implications of the basic data, e.g. diseases are closely tied to pen location with respect to the outside world, When the analysis is complete, BRAT for Dairies evaluates and allocates the risk for each hazard, ranks the risks, and displays the results graphically.¬ę¬†less

  2. Risk Management Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-18

    This Guide provides non-mandatory risk management approaches for implementing the requirements of DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets. Supersedes DOE G 413.3-7.

  3. Risk in the Weapons Stockpile

    SciTech Connect (OSTI)

    Noone, Bailey C

    2012-08-14

    When it comes to the nuclear weapons stockpile, risk must be as low as possible. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk.

  4. Risk assessment based on point source deposition

    SciTech Connect (OSTI)

    Chadwick, G.F.

    1997-12-31

    The International Joint Commission (IJC) in a recently published report states that various clean-up techniques have resulted in significantly cleaner lakes than 20 years ago. Both the US EPA and Environment Canada have passed laws that require emissions controls on significant sources of contaminants. Improved emission controls have played a large part in the reduced pollution levels to the Great Lakes. Improved controls have significantly reduced the pollutants deposited to both land and water. This paper will discuss a Risk Analysis for the emissions from a Hospital in Rochester, New York. Current New York Department of Environmental Conservation (DEC) regulations require emission controls on such incinerators. This hospital has added both a scrubber and a bag house to control emissions. Twenty years ago, such incinerators, like many other emission sources would not have had control devices. New York`s Department of Environmental Conservation requires, as part of the Permitting process, that an Impact Analysis and if required, a multipathway Health Risk Assessment (HRA) be performed for all Medical Waste Incinerators before a Permit can be issued. This insures that the emissions will not create a health hazard to humans. Such an analysis was performed for a new 1,000 lb/hr Medical Waste Incinerator (MWI) installed in the North-East part of Rochester, New York. An Air Quality Impact Assessment (AQIA) based on an actual stack test indicated that this facility`s dioxin emissions would exceed the NY DEC Guideline levels. The Carcinogenic Risk (of death) for our most exposed individual (MEI) was calculated to be 8.75 E{sup {minus}06} (<1:100,000). The Hazard Index calculated for this MEI was 0.43. Hazard Index`s less then 1 are considered a reasonable risk. Health risk assessments are by design, very conservative. EPA sources have concluded that calculated death risks between one (1) and one hundred (100) per million are not excessive.

  5. Reducing Your Electricity Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing energy use in your home saves you money, increases our energy security, and reduces the pollution that is emitted from non-renewable sources of energy. If you are planning ...

  6. Reducing Plant Lignin for Cheaper Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Plant Lignin for Cheaper Biofuels Reducing Plant Lignin for Cheaper Biofuels Print Wednesday, 04 May 2016 12:11 Lignin is a polymer that permeates plant cell walls. ...

  7. Reducing Enzyme Costs Increases the Market Potential of Biofuels (Fact Sheet), Innovation Impact, Bioenergy, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Reducing Cyber Risk to Critical Infrastructure: NIST Framework Reducing Cyber Risk to Critical Infrastructure: NIST Framework Recognizing that the national and economic security of the United States depends on the reliable functioning of critical infrastructure, the President under Executive Order (EO) 13636 "Improving Critical Infrastructure Cybersecurity" of February 2013 directed the National Institute of Standards and Technology (NIST) to work with stakeholders to

  8. The Enterprise Risk Management Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enterprise Risk Management Model Using the Risk Assessment Tool to Prepare a Justification Memorandum for the Development and Revision of Departmental Directives * On January 14,...

  9. Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA

    SciTech Connect (OSTI)

    Matlick, Skip; Walsh, Patrick; Rhodes, Greg; Fercho, Steven

    2015-06-30

    Ormat sited 2 full-size exploration wells based on 3D seismic interpretation of fractures, prior drilling results, and temperature anomaly. The wells indicated commercial temperatures (>300 F), but almost no permeability, despite one of the wells being drilled within 820 ft of an older exploration well with reported indications of permeability. Following completion of the second well in 2012, Ormat undertook a lengthy program to 1) evaluate the lack of observed permeability, 2) estimate the likelihood of finding permeability with additional drilling, and 3) estimate resource size based on an anticipated extent of permeability.

  10. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry

    SciTech Connect (OSTI)

    David Roberts

    2012-01-01

    This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures.

  11. Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading

    Broader source: Energy.gov [DOE]

    Battelleóa nonprofit research and development organization that operates many of the national laboratoriesóreached an Energy Department project milestone to demonstrate at least 1,000 hours of bio...

  12. The Power of Integrators, Financiers, and Insurers to Reduce Proliferation Risks: Nuclear Dual-Use Goods

    SciTech Connect (OSTI)

    Weise, Rachel A.; Hund, Gretchen

    2015-05-01

    Globalization of manufacturing supply chains has changed the nature of nuclear proliferation. Before 1991, nonproliferation efforts focused almost exclusively on limiting the spread of materials and equipment specifically designed for nuclear use -- reactors, centrifuges, and fissile material. Dual-use items, those items with both nuclear and non-nuclear applications, were not closely scrutinized or controlled. However, in 1991 the international community discovered that Iraq had developed a fairly sophisticated nuclear weapons program by importing dual-use items; this discovery spurred the international community to increase controls on dual-use technologies. Despite these international efforts, dual-use items are still a challenge for those seeking to limit proliferation.

  13. Application of Chemically Accelerated Biotreatment to Reduce Risk in Oil-Impacted Soils

    SciTech Connect (OSTI)

    Paterek, J.R.; Bogan, W.W.; Lahner, L.M.; Trbovic, V.

    2003-03-06

    Conducted research in the following major focus areas: (1) Development of mild extraction approaches to estimate bioavailable fraction of crude oil residues in contaminated soils; (2) Application of these methods to understand decreases in toxicity and increases in sequestration of hydrocarbons over time, as well as the influence of soil properties on these processes; (3) Measurements of the abilities of various bacteria (PAH-degraders and others more representative of typical soil bacteria) to withstand oxidative treatments (i.e. Fenton's reaction) which would occur in CBT; and (4) Experiments into the biochemical/genetic inducibility of PAH degradation by compounds formed by the chemical oxidation of PAH.

  14. Innovative permeable cover system to reduce risks at a chemical munitions burial site

    SciTech Connect (OSTI)

    Powels, C.C.; Bon, I.; Okusu, N.M.

    1997-12-31

    An innovative permeable sand cover with various integrated systems has been designed to contain and treat the Old O-Field chemical munitions landfill at Aberdeen Proving Ground, Maryland. The 18,200 m{sup 2} (4.5 acre) landfill was used from the mid 1930s to the mid 1950s for the disposal of chemical, incendiary, and explosive munitions from domestic and foreign origins, together with contaminated wastes associated with the development and production of chemical warfare agents (CWA). The site is suspected to be contaminated with white phosphorous (WP) (which when dry, spontaneously burns when exposed to air), shock sensitive picric acid fuses and has the potential to contain large quantities of CWA-filled munitions. Historically, one to three explosions or fires occurred per ten-year period at the landfill. Such events have the potential to cause a CWA release to the environment, which could potentially affect densely populated areas. Recovery and decontamination projects conducted at the site in the late 1940s and early 1950s used large amounts of decontamination chemicals (containing solvents) and fuels which further contaminated the area. The groundwater downgradient of the landfill is contaminated with volatile organic compounds, metals, explosives and CWA degradation compounds and is currently being contained by a groundwater extraction and treatment system. This report describes a remedial action program for the site.

  15. Risk Management Process Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Risk Management Process Overview Risk Management Process Overview figure depicting three tier risk management process The cybersecurity risk management process explained in the ...

  16. Development of Improved Caprock Integrity and Risk Assessment Techniques

    SciTech Connect (OSTI)

    Bruno, Michael

    2014-09-30

    GeoMechanics Technologies has completed a geomechanical caprock integrity analysis and risk assessment study funded through the US Department of Energy. The project included: a detailed review of historical caprock integrity problems experienced in the natural gas storage industry; a theoretical description and documentation of caprock integrity issues; advanced coupled transport flow modelling and geomechanical simulation of three large-scale potential geologic sequestration sites to estimate geomechanical effects from CO‚āā injection; development of a quantitative risk and decision analysis tool to assess caprock integrity risks; and, ultimately the development of recommendations and guidelines for caprock characterization and CO‚āā injection operating practices. Historical data from gas storage operations and CO‚āā sequestration projects suggest that leakage and containment incident risks are on the order of 10-1 to 10-2, which is higher risk than some previous studies have suggested for CO‚āā. Geomechanical analysis, as described herein, can be applied to quantify risks and to provide operating guidelines to reduce risks. The risk assessment tool developed for this project has been applied to five areas: The Wilmington Graben offshore Southern California, Kevin Dome in Montana, the Louden Field in Illinois, the Sleipner CO‚āā sequestration operation in the North Sea, and the In Salah CO‚āā sequestration operation in North Africa. Of these five, the Wilmington Graben area represents the highest relative risk while the Kevin Dome area represents the lowest relative risk.

  17. Risk Estimation Methodology for Launch Accidents.

    SciTech Connect (OSTI)

    Clayton, Daniel James; Lipinski, Ronald J.; Bechtel, Ryan D.

    2014-02-01

    As compact and light weight power sources with reliable, long lives, Radioisotope Power Systems (RPSs) have made space missions to explore the solar system possible. Due to the hazardous material that can be released during a launch accident, the potential health risk of an accident must be quantified, so that appropriate launch approval decisions can be made. One part of the risk estimation involves modeling the response of the RPS to potential accident environments. Due to the complexity of modeling the full RPS response deterministically on dynamic variables, the evaluation is performed in a stochastic manner with a Monte Carlo simulation. The potential consequences can be determined by modeling the transport of the hazardous material in the environment and in human biological pathways. The consequence analysis results are summed and weighted by appropriate likelihood values to give a collection of probabilistic results for the estimation of the potential health risk. This information is used to guide RPS designs, spacecraft designs, mission architecture, or launch procedures to potentially reduce the risk, as well as to inform decision makers of the potential health risks resulting from the use of RPSs for space missions.

  18. Reducing Contingency through Sampling at the Luckey FUSRAP Site - 13186

    SciTech Connect (OSTI)

    Frothingham, David; Barker, Michelle; Buechi, Steve; Durham, Lisa

    2013-07-01

    Typically, the greatest risk in developing accurate cost estimates for the remediation of hazardous, toxic, and radioactive waste sites is the uncertainty in the estimated volume of contaminated media requiring remediation. Efforts to address this risk in the remediation cost estimate can result in large cost contingencies that are often considered unacceptable when budgeting for site cleanups. Such was the case for the Luckey Formerly Utilized Sites Remedial Action Program (FUSRAP) site near Luckey, Ohio, which had significant uncertainty surrounding the estimated volume of site soils contaminated with radium, uranium, thorium, beryllium, and lead. Funding provided by the American Recovery and Reinvestment Act (ARRA) allowed the U.S. Army Corps of Engineers (USACE) to conduct additional environmental sampling and analysis at the Luckey Site between November 2009 and April 2010, with the objective to further delineate the horizontal and vertical extent of contaminated soils in order to reduce the uncertainty in the soil volume estimate. Investigative work included radiological, geophysical, and topographic field surveys, subsurface borings, and soil sampling. Results from the investigative sampling were used in conjunction with Argonne National Laboratory's Bayesian Approaches for Adaptive Spatial Sampling (BAASS) software to update the contaminated soil volume estimate for the site. This updated volume estimate was then used to update the project cost-to-complete estimate using the USACE Cost and Schedule Risk Analysis process, which develops cost contingencies based on project risks. An investment of $1.1 M of ARRA funds for additional investigative work resulted in a reduction of 135,000 in-situ cubic meters (177,000 in-situ cubic yards) in the estimated base volume estimate. This refinement of the estimated soil volume resulted in a $64.3 M reduction in the estimated project cost-to-complete, through a reduction in the uncertainty in the contaminated soil

  19. Biosafety Risk Assessment Model

    Energy Science and Technology Software Center (OSTI)

    2011-05-27

    Software tool based on a structured methodology for conducting laboratory biosafety risk assessments by biosafety experts. Software is based upon an MCDA scheme and uses peer reviewed criteria and weights. The software was developed upon Microsoft¬ís .net framework. The methodology defines likelihood and consequence of a laboratory exposure for thirteen unique scenarios and provides numerical relative risks for each of the relevant thirteen. The software produces 2-d graphs reflecting the relative risk and a sensitivitymore¬†¬Ľ analysis which highlights the overall importance of each factor. The software works as a set of questions with absolute scales and uses a weighted additive model to calculate the likelihood and consequence.¬ę¬†less

  20. Assessment of the risk of transporting liquid chlorine by rail

    SciTech Connect (OSTI)

    Andrews, W.B.

    1980-03-01

    This report presents the risk of shipping liquid chlorine by rail. While chlorine is not an energy material, there are several benefits to studying chlorine transportation risks. First, chlorine, like energy materials, is widely used as a feedstock to industry. Second, it is the major purification agent in municipal water treatment systems and therefore, provides direct benefits to the public. Finally, other risk assessments have been completed for liquid chlorine shipments in the US and Europe, which provide a basis for comparison with this study. None of the previous PNL energy material risk assessments have had other studies for comparison. For these reasons, it was felt that a risk assessment of chlorine transportation by rail could provide information on chlorine risk levels, identify ways to reduce these risks and use previous studies on chlorine risks to assess the strengths and weaknesses of the PNL risk assessment methodology. The risk assessment methodology used in this study is summarized. The methodology is presented in the form of a risk assessment model which is constructed for ease of periodic updating of the data base so that the risk may be reevaluated as additional data become available. The report is sectioned to correspond to specific analysis steps identified in the model. The transport system and accident environment are described. The response of the transport system to accident environments is described. Release sequences are postulated and evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a direct comparison with other reports in this series.

  1. Healthy habits: reducing our carbon footprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Healthy habits: reducing our carbon footprint Healthy habits: reducing our carbon footprint We're dedicated to cutting greenhouse gas emissions by 30 percent across the Lab, from facilities to transportation. January 30, 2014 Healthy habits: reducing our carbon footprint From monitoring storm water run-off in Los Alamos Canyon to riding their bikes to work, employees in the field all over the Lab's 36 square miles see the landscape around them as an inspiration and reminder to go green at work

  2. Assessing the health risk of solar development on contaminated lands |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Assessing the health risk of solar development on contaminated lands December 11, 2013 Tweet EmailPrint A recently published report from Argonne's Environmental Science (EVS) division presents a methodology for assessing potential human health risks of developing utility-scale solar facilities on contaminated, previously developed sites. Developing on these lands rather than pristine, undeveloped lands can avoid or minimize environmental impacts, reduce

  3. Resources for global risk assessment: The International Toxicity Estimates for Risk (ITER) and Risk Information Exchange (RiskIE) databases

    SciTech Connect (OSTI)

    Wullenweber, Andrea Kroner, Oliver; Kohrman, Melissa; Maier, Andrew; Dourson, Michael; Rak, Andrew; Wexler, Philip; Tomljanovic, Chuck

    2008-11-15

    The rate of chemical synthesis and use has outpaced the development of risk values and the resolution of risk assessment methodology questions. In addition, available risk values derived by different organizations may vary due to scientific judgments, mission of the organization, or use of more recently published data. Further, each organization derives values for a unique chemical list so it can be challenging to locate data on a given chemical. Two Internet resources are available to address these issues. First, the International Toxicity Estimates for Risk (ITER) database ( (www.tera.org/iter)) provides chronic human health risk assessment data from a variety of organizations worldwide in a side-by-side format, explains differences in risk values derived by different organizations, and links directly to each organization's website for more detailed information. It is also the only database that includes risk information from independent parties whose risk values have undergone independent peer review. Second, the Risk Information Exchange (RiskIE) is a database of in progress chemical risk assessment work, and includes non-chemical information related to human health risk assessment, such as training modules, white papers and risk documents. RiskIE is available at (http://www.allianceforrisk.org/RiskIE.htm), and will join ITER on National Library of Medicine's TOXNET ( (http://toxnet.nlm.nih.gov/)). Together, ITER and RiskIE provide risk assessors essential tools for easily identifying and comparing available risk data, for sharing in progress assessments, and for enhancing interaction among risk assessment groups to decrease duplication of effort and to harmonize risk assessment procedures across organizations.

  4. Reduced AC losses in HTS coated conductors

    DOE Patents [OSTI]

    Ashworth, Stephen P.

    2004-10-05

    Methods for reducing hysteresis losses in superconductor coated ribbons where a flux distribution is set into the superconductor coated ribbon prior to the application of alternating current.

  5. Reducing Petroleum Despendence in California: Uncertainties About...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Petroleum Despendence in California: Uncertainties About Light-Duty Diesel Reducing Petroleum Despendence in California: Uncertainties About Light-Duty Diesel 2002 DEER Conference ...

  6. Reducing Logistics Footprints and Replenishment Demands: Nano...

    Office of Scientific and Technical Information (OSTI)

    Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water Treatment Citation Details In-Document Search Title: Reducing Logistics ...

  7. Reducing Logistics Footprints and Replenishment Demands: Nano...

    Office of Scientific and Technical Information (OSTI)

    Water Treatment Citation Details In-Document Search Title: Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water ...

  8. Concentrating Solar Power Commercial Application Study: Reducing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation Report to Congress U.S. Department of Energy ...

  9. Combustion with reduced carbon in the ash

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, III, Lawrence E.

    2005-12-27

    Combustion of coal in which oxygen is injected into the coal as it emerges from burner produces ash having reduced amounts of carbon.

  10. NGNP Risk Management Database: A Model for Managing Risk

    SciTech Connect (OSTI)

    John Collins; John M. Beck

    2011-11-01

    The Next Generation Nuclear Plant (NGNP) Risk Management System (RMS) is a database used to maintain the project risk register. The RMS also maps risk reduction activities to specific identified risks. Further functionality of the RMS includes mapping reactor suppliers Design Data Needs (DDNs) to risk reduction tasks and mapping Phenomena Identification Ranking Table (PIRTs) to associated risks. This document outlines the basic instructions on how to use the RMS. This document constitutes Revision 1 of the NGNP Risk Management Database: A Model for Managing Risk. It incorporates the latest enhancements to the RMS. The enhancements include six new custom views of risk data - Impact/Consequence, Tasks by Project Phase, Tasks by Status, Tasks by Project Phase/Status, Tasks by Impact/WBS, and Tasks by Phase/Impact/WBS.